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Abstract—To evaluate the expected availability of a backbone
network service, the administrator should consider all possible
failure scenarios under the specific service availability model
stipulated in the corresponding service-level agreement. Given
the increase in natural disasters and malicious attacks with
geographically extensive impact, considering only independent
single component failures is often insufficient. This paper builds a
stochastic model of geographically correlated link failures caused
by disasters to estimate the hazards an optical backbone network
may be prone to and to understand the complex correlation
between possible link failures. We first consider link failures only
and later extend our model also to capture node failures. With
such a model, one can quickly extract essential information such
as the probability of an arbitrary set of network resources to fail
simultaneously, the probability of two nodes to be disconnected,
the probability of a path to survive a disaster. Furthermore, we
introduce standard data structures and a unified terminology on
Probabilistic Shared Risk Link Groups (PSRLGs), along with a
pre-computation process, which represents the failure probability
of a set of resources succinctly. In particular, we generate a
quasilinear-sized data structure in polynomial time, which allows
the efficient computation of the cumulative failure probability of
any set of network elements. Our evaluation is based on carefully
pre-processed seismic hazard data matched to real-world optical
backbone network topologies.

Index Terms—Disaster resilience, network failure modeling,
probabilistic shared risk link groups, PSRLG enumeration,
seismic hazard, Voronoi diagram

I. INTRODUCTION

A crucial part of network management is guaranteeing
high availability of network services. For backbone optical
networks, the required level of service availability is usually
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explicitly defined in a contract between the communication
service provider (CSP) and the customer, called a service-
level agreement (SLA). A violation of the agreed-upon service
availability may lead to a financial penalty for the CSP; hence,
CSPs must carefully (under-) estimate the availability of their
services and, if necessary, reserve protection resources and
implement recovery schemes to meet the availability demands.
A typical availability value is “five-nine” (99.999%), which
translates to an average of at most 5.26 minutes of downtime
per year. However, a recent taxonomy of Internet failures [3]
has revealed that big network outages last much longer and
are often caused by disasters beyond the protection schemes
deployed to protect against single failures. As a first step, this
paper focuses on how to take into account the correlations
between link failures properly. We provide efficient methods
to compute and store the link failure correlation in tightly-
coupled systems (instead of limiting the set of disasters to a
small number or wrongly assuming link-failure events to be
independent [4]–[6]).

The problem of correlated network element failures has
become more severe in the last decades due to the increased
use of virtual environments, whose physical structure is typ-
ically hidden from the user. Nevertheless, networks are built
on physical infrastructure and comprise optical cross-connects
and fibers, prone to physical failures. While some of these
failures are isolated, in many cases, several nodes and links
located in a geographic area fail simultaneously, e.g., due to
a natural disaster, such as an earthquake, a hurricane, or a
tsunami [7], [8]. A recent example is a few-day-long telecom
outage during Cyclone Amphan in West Bengal in May of
2020 due to around 100 fiber cuts due to tree falls by a
190km/h wind. Such geographically correlated failure events
are also called regional failures and, due to their significant
impact, are receiving increased attention [4], [8]–[27].

A. Related Work

Computing availability in the presence of independent
single-point failures is a well-investigated topic (cf. [3], [28]–
[32] and references therein). Also, dealing with correlated
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Fig. 1. Main contributions: We offer 1) standard data structures (for graph G, CFP[G] and FP[G]) for storing joint failure probabilities of link sets, 2) a
tractable stochastic model of network element failures caused by disasters, and finally 3) providing the seismic hazard data represented it in a more precise
way than the usual hazard maps. Note that our stochastic model can handle the combined inputs of an arbitrary number of disaster families (e.g., tornadoes,
earthquakes, tsunamis, etc.). Structures CFP[G] and FP[G] could be established using other models too.

failures has a long history in the form of Shared Risk Link
Groups (SRLGs) (e.g., [24], [28], [29], [31]–[33]). An SRLG
typically comprises a few network components (links or nodes)
with considerable risk of failing together. There have been
some efforts to attach probability values to an SRLG, called
Probabilistic SRLG (PSRLG) [34], [35]. A natural approach
is to select a set of disaster scenarios as input [9], e.g., based
on historical data. It is mostly assumed that the risk groups
are part of the input, and for example, the aim is to find a
pair of risk-disjoint paths. There has been some work, e.g.,
[24], [36], where the risk groups are based on the proximity
of links to each other, which may be considered a simplistic
form of geographically correlated failures. The terminology on
PSRLGs has not been unified yet.

Much of the work on regional failures has assumed a given
disaster shape (often a circular disk or even a line segment)
and, under that particular model, has addressed specific sub-
problems in network planning, like finding the most vulnerable
part(s) of the network [10]–[12], [16], studying the impact on
the network of a randomly placed disaster [20]–[22], designing
a network and its services with disaster resiliency in mind [13],
[15], [17], [18], and (re)routing of connections to minimize
service impact due to a disaster [14], [23]. Some work has
considered probabilities, either in the context of a disaster
having a certain probability of disconnecting a link, e.g., [4] or
in the context of only having partial (probabilistic) information
on the geographical layout of a network, e.g., [19].

While the papers mentioned above considered geographi-
cally correlated failures, a common property of the targeted
sub-problems is to search for the location(s) where a disaster
will cause the maximum expected damage to the network. In
particular, this is a simple averaging process that is unable to
exhibit correlations among many important failure events. The
problem of precisely and quickly calculating the correlations
between link failures for a more thorough network vulnerabil-
ity assessment has not been addressed sufficiently.

B. Main Contributions

The main contributions of this paper are the following:
• We provide a general stochastic model of disasters to ex-

plicitly capture the correlations between resource failures
as a result of regional disasters.

• To unify the terminology, we offer two natural standard
definitions of the meaning of the probability involved in
Probabilistic Shared Risk link Groups (PSRLGs).

• We devise a pre-computation process to perform the
necessary numerical integration off-line. In terms of the

network size, there may be exponentially many joint
failure events. However, we construct a concise rep-
resentation of the joint probability distribution of link
failures, which under some practical assumptions has
space complexity O((n+x)ρ3γ4), where n is the number
of nodes, x is the number of link crossings (in practice
x � n), ρ represents a density of the topology, which
is independent of the network size, and finally, γ stands
for the maximum number of line segments a (polyline-
shaped) link consists of.

• We provide proof-of-concept implementation and simu-
lations based on real seismic hazard data and network
topologies. Our simulations demonstrate how the above-
mentioned stochastic model can be efficiently computed,
even on commodity computers. This, extended with tra-
ditional random failure models, facilitates comprehensive
service availability analysis considering disaster failures.

Fig. 1 summarizes the three layers of our contributions.
There are two data structures on the left, analogous to CDF
and PDF, which we believe should be the standard way of
describing the joint failure probability of network resource
sets. In the middle, the second layer is a stochastic model
that explicitly considers the correlation between the failures of
geographically close-by network elements. In the third layer,
on the right, is the input to our framework, which might need
to be pre-processed to fit the model. As a specific example,
we show how to pre-process historical earthquake catalogs to
provide proper input for our model. This way, we describe a
method of computing PSRLGs of a network from end to end.

This paper is organized as follows: Sec. II presents the
framework for computing service availability, Sec. III explains
the stochastic model we use to represent regional failures.
Sec. IV proposes an offline pre-computation process with
performance guarantees. Sec. V extends the previously-defined
link failure model to cope with arbitrary network resources,
and Sec. VI provides theoretical bounds on the size and query
time of the proposed data structures. Sec. VII demonstrates
how the data structures can be pre-computed and queried
efficiently. Sec. VIII provides a numerical evaluation of the
proposed schemes based on seismic hazard data. Finally, Sec.
IX concludes our work.

II. NETWORK MODEL AND FRAMEWORK TO COMPUTE
SERVICE AVAILABILITY

A. Network Model
The network is modeled as an undirected connected geo-

metric graph G = (V,E), with n = |V | nodes and m = |E|
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(a) Framework to compute service availability

Data set name Space complexity Query time for an arbitrary link set

Ω(2ρ) and
O(2ρ(n+ x)ρ3γ4)

hashing: constant with high prob.
CFP[G] balanced binary tree:

O(ρ log((n+ x)ργ)) worst-case
FP[G] O((n+ x)ρ3γ4) O((n+ x)ρ3γ4)

(b) Trade-off between space complexity and query time in case of circular dish
shaped disasters

Fig. 2. Computing service availability via a pre-computed data set: while the disaster hazard can be represented more succinctly using FP[G] for a graph G,
with CFP[G] one can achieve lower query times.

links embedded in R2. The links can be either line segments
or polygonal chains (also called ‘polylines’) built up from at
most γ adjacent line segments (where γ is a parameter of our
model). The number of link crossings is denoted by x. The
geometric density of the network topology is the maximum
number of links that can be hit by a single disaster and is
denoted by ρ. The set of links E is lexicographically sorted,
any S ⊆ E is stored as a sorted list. Note that our algorithms
are mostly linear in the network size.

B. Framework to Compute Service Availability

We aim to develop a service availability computation engine,
where the task is basically to translate the compound problem
of simultaneous network failures into a scalar. When setting
up an SLA between the user and network provider, the
availability of a massive number of network services must be
evaluated. Therefore, we need to avoid committing resource-
intensive computations at every query. Intuitively, there is
much redundancy in these queries. The main idea behind
our general framework (depicted in Fig. 2a) is to exploit
this redundancy by pre-computing some numerical integrals
representing failure probabilities of sets of network elements.
This, out of the compound geometric and stochastic problem,
extracts all the relevant information to a static data set. This
data set can address many service availability queries, each of
which requiring only lookups and summation.

We propose two standard PSRLG definitions, with different
meanings on the probabilities associated with the link sets,
to store the failure probabilities of sets of network elements:
(1) the Cumulative Failure Probability (CFP), and (2) the Link
Failure State Probability (FP). While in this paper we focus on
failure probabilities of link sets, if necessary, these structures
can store failure probabilities of both links and node failures
(see Sec. V on extensions of our basic model).

Definition 1 (Cumulative Failure Probability (CFP)):
Given a set of links S ⊆ E, the cumulative failure probability
(CFP) of S, denoted by CFP(S), is the probability that all
links S fail simultaneously (and possibly other links too).

Definition 2 (Link Failure State Probability (FP)): Given
a set of links S ⊆ E, the link failure state probability (FP) of
S, denoted by FP(S), is the probability that exactly the links
of S fail simultaneously (and no other links).

Sometimes we will refer as ‘CFP’ to 1) the tuple
(S,CFP(S)) for a link set S, or simply, 2) to CFP(S). For
a graph G, we will denote the collection of CFPs with strictly
positive probability by CFP[G]. The same applies to the
Failure Probabilities (‘FP’s). We note that the reason behind

not referring the tuple of a link set S and CFP(S) or FP(S)
simply as PSRLGs is that, throughout this paper, we need to
make a distinction between these two data structures.

Although for some practical tasks, FP[G] may be a practical
input, in the standpoint of availability queries, we mainly look
at FP[G] as a compact representation of structure CFP[G]
(the space complexity of the proposed structures will be
investigated in detail in Sec. VI).

The space complexity of our availability computation engine
based on either CFPs or FPs is proportional to the number of
link sets S with CFP(S) > 0 (resp., FP(S) > 0). The engine’s
time complexity (namely, its query time) is the time needed
to determine the cumulative failure probability of a given link
set.

As it turns out, data structures CFP[G] and FP[G] present a
space-time trade-off: There are more link sets with non-zero
CFP than FP, since FP(S) > 0 implies that CFP(S′) > 0 for
all 2|S|−1 nonempty sets such that S′ ⊆ S. On the other hand,
availability queries need to address fewer PSRLGs if they are
all expressed as CFPs, and computing these from FPs requires
iterating over all FPs in the data set. In Sec. VI, we study this
trade-off in more detail and give formal bounds on the space
complexity and query time for both data structures (see Fig.
2b) when applied to our regional failure model.

C. On Availability Queries when Risk Failures are Correlated

Any availability query can be evaluated by iteratively call-
ing CFP(S), i.e., the probability of simultaneous failure of
all elements in any arbitrary set S. Consider the example
network and corresponding CFPs in Fig. 3 (non-listed link
sets have CFPs of 0). Suppose we need to establish a high-
availability connection from the top right node through a
working path c and protection path f − d − e. The unavail-
ability of the working path is CFP({c}) = 0.0113, and the
unavailability of the protection path is CFP({f})+CFP({d})+
CFP({e}) − CFP({f, d}) − CFP({f, e}) − CFP({d, e}) +
CFP({f, d, e}) ' 0.0275, by the inclusion-exclusion princi-
ple. The total connection availability is 1 − CFP({c, d}) −
CFP({c, f})−CFP({c, e})+CFP({c, f, d})+CFP({c, f, e})+
CFP({c, d, e})−CFP({c, f, d, e}) ' 0.99872. We can observe
that, based on CFP[G], the connection availability can be
computed with the help of CFPs of subsets of {c, d, e, f},
that is, the union of the links of the working and protection
paths.

In contrast, for computing the total connection availability,
the FP[G] data set requires considering a larger number of
data set entries. For example, the availability of working path



Input: Network G:
Failure model:
Model parameters:
pi,j,Mw : the probability of Ei,j,Mw , the
earthquake having a magnitude Mw ∈
{4.6, 4.7, . . . , 8.1} and centre point in ci,j , where
ci,j represents a latitude-longitude cell on the Earth
surface, taken from a grid over the network area
R(Mw): the radius of the area where network
elements fail at magnitude Mw (see Fig. 8b).

In this example, we set the intensity threshold to a
relatively high IX to grant space for the outputs (it is
mainly VI in the simulations section).
Regional failure model:
After each earthquake Ei,j,Mw , the physical infrastructure
in an area of a circular disk is destroyed. Its center point is
the centre of ci,j , its radius is R(Mw). Each link having
a point in the disaster area fails, the rest remain intact.

Output: Structure CFP[G]

CFP(S) : the probability that at least S will

fail during the next disaster

CFP(a) =4.07·10−2 CFP(b) =3.53·10−2

CFP(c) =1.13·10−2 CFP(d) =2.91·10−3

CFP(e) =1.46·10−2 CFP(f ) =2.60·10−2

CFP(a, b) =5.68·10−3 CFP(b, e) =6.91·10−6

CFP(a, e) =4.59·10−4 CFP(c, e) =7.48·10−4

CFP(d, e) =3.27·10−4 CFP(d, f ) =2.78·10−4

CFP(c, f ) =5.25·10−4 CFP(b, c) =7.27·10−6

CFP(a, d) =3.35·10−4

CFP(a, d, e) =3.27·10−4 CFP(a, b, e) =0

CFP(b, c, e) =6.91·10−6

Output: Structure FP[G]

FP(S) : the probability that exactly S will

fail during the next disaster

FP(a) =3.45·10−2 FP(b) =2.96·10−2

FP(c) =1.00·10−2 FP(d) =2.30·10−3

FP(e) =1.33·10−2 FP(f ) =2.52·10−2

FP(a, b) =5.68·10−3 FP(a, d) =7.14·10−6

FP(a, e) =1.32·10−4 FP(c, e) =7.41·10−4

FP(c, f ) =5.25·10−4 FP(b, c) =3.61·10−7

FP(d, f ) =2.78·10−4

FP(a, d, e) =3.27·10−4

FP(b, c, e) =6.91·10−6

Fig. 3. An illustration of the problem inputs and outputs. We note that the earthquake failure model depicted here, detailed in Sec. VIII-A, and used in our
simulations, is a special case of our general model presented in Sec. III, that can handle a wide variety of disaster types (including tornadoes, tsunamis, etc.),
possibly describing their combined effect.

c can be computed as is 1−
∑
{c}⊆S⊆{a,...,e} FP(S), i.e., we

have to subtract the FP of every link set containing c from 1.
Furthermore, to compute the total availability of the connec-
tion, we need to address all nonempty subsets of {a, b, c, d, e}.
The number of links is not part of neither the working nor the
protection path; this means up to exponentially more FP[G]
queries than CFP[G] queries. Structure FP[G] has an advantage
though: it has provably less elements than CFP[G].

By considering joint failure probabilities, we have found
that the total connection availability is < 0.9987, i.e., below
three nines. For comparison, traditional approaches that as-
sume link failures to be independent, would have estimated the
total connection availability to be 1− CFP({c})

(
CFP({d}) +

CFP({e}) + CFP({f}) − CFP({d}) · CFP({e}) − CFP({d}) ·
CFP({f}) − CFP({e}) · CFP({f}) + CFP({d}) · CFP({e}) ·
CFP({f})

)
> 0.99951, i.e., well above three nines. Even

if they correctly compute the availability of each path but
assume independent path failures, they estimate the availability
by 1 − 0.0113 · 0.0275 > 0.99968, i.e., even more above
three nines. Here, by not considering joint failure probabilities,
the traditional approaches significantly overestimate the total
connection availability, which can lead to more frequent SLA
violations and a financial burden on the CSP.

Unfortunately, (correlated) network failures are hard to
compute and predict. Nonetheless, to evaluate the expected
availability of a service, a network administrator should con-
sider all possible failure scenarios under the specific service
availability model stipulated in the corresponding SLA.

D. Denomination Issues of Probabilistic SRLGs

Probabilistic extensions of SRLGs are called Probabilistic
SRLGs, PSRLGs. The probabilistic refinement can be defined
in multiple ways, thus, in the literature, there are multiple
definitions of PSRLGs. E.g., in the first paper consider-
ing probabilistic extensions SRLGs (which was [34]), each
PSRLG event r ∈ R occurs with probability πr, and once a
PSRLG event r occurs, link (i, j) will fail independently of

the other links with probability pri,j ∈ [0, 1]. Thus, we could
call the [34]-PSRLGs as ’two-stage PSRLGs’. In contrast with
this paper, [34] does not tackle the issue of computing the
PSRLGs.

Since both FPs and CFPs are probabilistic extensions of
SRLGs, we say that, collectively, these structures are PSRLGs.
Moreover, since any version of probabilistic SRLGs can be
described with the help of either CFPs or FPs, and due to their
natural simplicity, we believe (C)FPs are the right standard
way of defining PSRLGs. In the following, we present a model
for calculating CFP[G] and FP[G] describing the correlated
failure patterns of networks.

III. THE REGIONAL FAILURE MODEL

To compute service availabilities, we need to answer the
following question: what is the probability that a set of
links S fails simultaneously? In other words, we need to
find the cumulative failure probability of S, i.e., CFP(S),
which has a complicated relationship with the correlation
structure of link failures. Links that lie close together more
often fail simultaneously, while further apart links rarely do.
To find CFP(S), we first propose a general stochastic model of
possible network failure events. After some pre-computation,
this will allow us to build a succinct representation of the
joint probability distribution of link failures described in the
previous section.

In our model, failures are considered to come solely from
disasters affecting a bounded geographical area. This section
focuses only on link failures (node failures can be translated
to the joint failure of the set of all links adjacent to the node).
We extend our model to incorporate node failures as well in
Sec. V.

While traditional approaches focus on single-point failures,
which represent hardware/node failures, cable/link cuts, etc.,
we adopt a model for regional failures and focus on computing
the conditional probability CFPd(S) that, in a given time
period, a set of links S fail together under a disaster of type



d (e.g., a tornado, earthquake, Electromagnetic Pulse (EMP),
etc.).

Assumption 1: We assume that, in the investigated time
period, there will be at most one disaster of any type1.
In such a case, to obtain the availability values, we need
to build a model for each disaster type, and the resulting
availability of S can be expressed as 1−

∑
d∈D pd ·CFPd(S),

where D denotes the set of modeled failure types and pd is the
probability of disaster d. From now on, for ease of notation,
we will consider a fixed failure type d, and, therefore, the
subscript d is omitted hereafter.

A. Stochastic Modeling of Regional Failures

In the remainder of the paper, we will call events that bring
down the network in a geographic area simply as disasters,
indifferent to their cause. We model regional failures caused
by a disaster with the following parameters with randomly
chosen values:

epicenter p , which is a point in the plane R2,
shape (and size) s , which is a real value in [0, 1].

Each point p ∈ R2 is assigned a hazard h(p) representing
the probability that p becomes the epicenter of the next
disaster (see Fig. 4a). Specifically, h(p) is a probability density
function on the area R2, and therefore,∫

p∈R2

h(p)dp = 1 . (1)

After a disaster of the examined type, the physical in-
frastructure (such as optical fibers, amplifiers, routers, and
switches) in some areas is destroyed. The possible shapes for
this area are defined by a set r(p, s) that represents a closed
region on the plane (the actual shape of the destroyed area) as
a function of epicenter p and the shape/size parameter s. This
is a general disaster model, where several possible damage
areas can be defined by r(p, s).

Definition 3 (Regional disaster): We assume a regional
disaster of epicenter p and shape/size s will result in the failure
of exactly those links of network G that have a point in r(p, s).

Our next assumption is that r(p, s) is monotone increasing
in the relative size s, that is, a more severe version of a disaster
hits at least the same region of the network, as a weaker

1The case, when more disasters are expected to happen simultaneously, can
be handled by defining a new mixed disaster type, see also [37].

(a) Probabilistic hazard map h(p)
for earthquakes as function of epi-
center p. [38]

s=0

×p

s=1

s= .3 s= .3

s= .6

(b) Shape of regional disaster
r(p, s) for epicenter p and dif-
ferent sizes s = 0, 0.3, 0.6, 1.

Fig. 4. Example of real-world inputs.

disaster (see Fig. 4b for an example)2. While this assumption
holds in general for a variety of disasters, we only use it to
achieve ‘nicer’ equations.

Assumption 2:

r(p, s) ⊆ r(p, s′) if s < s′ ∀p ∈ R2, 0 ≤ s, s′ ≤ 1 . (2)

For simplicity, we assume r(p, s) for a given p is a result of
uniform sampling of damage areas. Namely, for a given p, the
probability of the failure to be of size smaller than s is exactly
s. Thus, s is called relative size in the remainder of the paper.

Note that, given the disaster epicenter and relative size, the
outcome of the attack is deterministic. In other words, any link
e within r(p, s) fails with probability 1, if a failure event with
parameters p and s occurs. Let us denote the set of failed links
by R(p, s). Definition 3 together with Assumption 2 imply
that, given a point p, R(p, s) ⊆ R(p, s′) if s ≤ s′. Let s(p, e)
denote the corresponding smallest size s for which a failure
at point p can cover link e. Furthermore, we denote by ρ the
maximum number of links that can be affected by a single
failure (of maximum size s = 1):

ρ = max
p∈R2

|R(p, 1)| . (3)

B. The Failure Probability of a Link Set

We first explain how to compute the probability CFP(S)
that a set of links S ⊆ E will fail simultaneously in the next
disaster.

Let f(e, p) be the probability that link e fails if a dis-
aster with epicenter p happens. Note that by Assumption 2,
f(e, p) > 0 can occur iff e ∈ R(p, 1). f(e, p) can be computed
from R(p, s), where s is in the range [0, 1]. Hence,

f(e, p) =

∫ 1

s=0

IR(p,s)(e)ds , (4)

where the indicator function IR(p,s)(e) indicates whether e ∈
R(p, s). Thus,

IR(p,s)(e) =

{
1 if e ∈ R(p, s) ,

0 otherwise.
(5)

By Assumption 2, if IR(p,s)(e) = 1, then IR(p,s′)(e) = 1, for
s ≤ s′.

We now extend our notation to capture the probability of
the failure of link e in the next disaster:

P (e) :=

∫
p∈R2

h(p)f(e, p)dp. (6)

We denote the probability that a set of links S ⊆ E fail
simultaneously, given that the disaster epicenter is p ∈ R2:

f(S, p) :=

∫ 1

s=0

∏
e∈S

IR(p,s)(e)ds . (7)

In other words, if the sequence of links is S =
(e1, e2, . . . , e|S|) ⊆ R(p, 1) and s(p, e1) ≤ s(p, e2) ≤ · · · ≤

2Various failure shapes were studied so far [4], [8], [10]–[24], mainly in
the form of circular regional disasters or line-segment failures, but in some
cases also more general geometric shapes [4], [12]. All of these models meet
Assumption 2.



s(p, e|S|), then
∏
e∈S IR(p,s)(e) = 1 iff s ≥ s(p, e|S|),

otherwise the product is 0. This implies that

f(S, p) = f(e|S|, p) = min
e∈S

f(e, p) . (8)

Finally, using the above results3:

CFP(S) =

∫
p∈R2

h(p)f(S, p)dp =

∫
p∈R2

h(p) min
e∈S

f(e, p)dp .

(9)
For example, on the right of Fig. 3, the results of applying

the formula to the 5-node network are shown for all the non-
zero joint link failure probabilities. In this example, r(p, s)
is always a circular disk with a radius computed according
to the historical seismic information. Potentially there are
exponentially many joint failure events in terms of the network
size; however, links far from each other have zero probability
of failing jointly because of a single disaster. For example,
this holds for links f and b, whose smallest distance is more
than the radius of the largest destroyed area.

Former works (e.g., [4, in proof of Lemma 8]) expressed the
joint failure probability of a set S by multiplying the failure
probabilities of the links in S, thus implicitly assuming these
failures are independent. Unlike [4], our model assumes a
deterministic failure outcome (once its epicenter and shape are
set). This implies that, in our model, failures are dependent.
For example, two lines in the same location (e.g., within the
same conduit) always fail together (e.g., when the conduit is
cut).

C. Example of the Geographical Correlation of Failures

In this section, we first consider a simple linear and discrete
model for some of the ideas presented so far. We assume that
the ground set of our simplified world is the set of 1000 integer
points of a line with coordinates between zmin = −499,
zmax = 500 and we have two links e0 and ez , which
themselves are integer points from the interval [−499, 500], e0
is at position 0, and ez is at position z. Let the probability that i
is the location of a disaster be hi = 10−3 for i = −499, . . . 500
so that

∑500
i=−499 hi = 1. According to Eq. (9), the probability

of the failure of link e0 is

P (e0) :=

500∑
i=−499

hif(e0, i) , (10)

where f(e0, i) is the conditional probability that link e0 fails
if the failure is at position i. According to Eq. (9), the joint
probability of the failure of both links e0 and ez is

P ({e0, ez}) :=

500∑
i=−499

hi min(f(e0, i), f(ez, i)) . (11)

Let P (ez|e0) denote the conditional probability that ez fails,
on the condition that e0 fails. By definition we have

P (ez|e0) :=
P ({e0, ez})
P (e0)

. (12)

3Without Assumption 2, we would have CFP(S) =∫
p∈R2 h(p)

∫ 1
s=0

∏
e∈S IR(p,s)(e)dsdp.
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Fig. 5. An example of fi(0) at different i positions and the corresponding
P (ez |e0) depending on z. Former models assumed the link failures are
independent given an epicenter of the disaster.

This is a function of z in our setting. Intuitively, P (ez|e0) is
close to 1 if the two links are exactly in the same location (i.e.
z = 0).

Additionally, P (ez|e0) should be a decreasing function of z
in the range of [0, 500]. See Fig. 5 for an example of f(e0, i)
values and the corresponding P (ez|e0).

IV. PRE-COMPUTATION TO SPEED UP QUERIES

In the previous section, we have described a model that
generates a regional disaster according to a hazard density
h(p) and a failure shape function r(p, s). Recall that our task
is to return CFP(S) for a set of links S ⊆ E, which is the
probability that links S fail together in case of disaster d.

Unfortunately, the calculation of integrals (9) can be a
computationally-intensive process. One solution is to calculate
some FPs in advance so that when a query comes on the CFP
of an arbitrary set of links S, then the task would be summing
up some of the pre-computed FP values.

As Lemma 1 will show, a full list of FPs with non-zero
probabilities has O((n + x)ρ2γ4) items. Every CFP can be
derived by summing up

CFP(S) =
∑
T⊇S

FP(T ), ∀S ⊆ E. (13)

A. Precomputation of CFPs and FPs

In this subsection, we still rely on Assumption 2 and
make the following additional assumptions to apply some
computational geometry results. We emphasize that additional
specifications 2) and 3) are technical assumptions to avoid
lengthy discussions (see the Appendix).

1) The shapes r(p, s) are limited to circular disks centered
at p. This corresponds to the case where the failure of
a link e depends on the Euclidean distance dist(p, e) of
e to the epicenter p of the disaster. In this case, instead
of r(p, s), the input is given by radius d as a function
of s.

2) In our geometric reasoning, we will transform the links
of the graph into line segments by slightly shortening
them to ensure that no two segments share a com-
mon endpoint (see the details of the transformation in
Appendix A). We also assume that no more than two
links intersect in the same point, and no more than two
endpoints lie on the same line.



3) The relative size s is a uniformly Lipschitz continuous
function of radius d. That is, there exists a positive
number K such that for every point p in the plane, if we
have neighborhoods r(p, s′) and r(p, s) with respective
radii d′ and d, then |s′ − s| ≤ K|d′ − d| holds.

For ease of presentation, we slightly reduce the domain we
are integrating over. Let P denote the set of points p of the
plane such that dist(p, e) 6= dist(p, e′) whenever e and e′ are
different segments from E. We have that R2 \P is of measure
zero, hence in our considerations, integrating over the plane
R2 can be replaced by integrating over P .

Inspired by (8), we can now define the sequence of possible
link failures (see Fig. 6), when the epicenter of the disaster is
at p:

Definition 4: The sequence of link failures for epicenter
p ∈ P is an ordered set of links S(p) = (e1, e2, . . . , el),
such that s(p, e1) ≤ s(p, e2) ≤ · · · ≤ s(p, el), where
l = |R(p, 1)|. Let Sj(p) denote the first j links of S(p), i.e.
Sj(p) = (e1, e2, . . . , ej).

Furthermore, the ordinal number of a set S within S(p) is
defined as follows:

Definition 5:

j(S,S(p)) =

{
i, if S 6⊂ Si−1(p) and S ⊆ Si(p)
0, otherwise.

Due to Assumption 2 and using also (9), if there is a disaster at
point p, the conditional probability of a set of links S ⊆ S(p)
failing together is

f(S, p) = f(Sj(S,S(p))(p), p) = f(ej(S,S(p)), p) . (14)

Finally, we use two practical input parameters, x, and ρ, in
estimating the space complexity of our approaches. Let x be
the number of link crossings in the network G. For backbone
networks, x is a small number, as typically, a switch is also
installed on each link crossing [39]. The second parameter
is ρ, the link density of the network, which is defined as the
maximal number of links that could fail together (i.e., could be
covered by a circle of radius r). The link density ρ, practically,
does not depend on the network size. Moreover, ρ is at least
the maximal nodal degree in the graph.

Let us divide the plane into disjoint regions R1, . . . , Rk,
where each point p ∈ Ri has the same sequence Si of link
failures (see Fig. 7, [1] for a more detailed discussion, and
[40] for efficient algorithms calculating these regions). Here,
k is the number of possible failure sequences. For any point
p ∈ Ri, we introduce notation S(p) ≡ Si, i = 1, . . . , k.

e3

e1

e2

×p

S(p) = (e1, e2, e3)

(a) The sequence of link fail-
ures for epicenter p.

e1

e2

(b) Bisector curve of e1 and e2,
is the boundary of areas with same
sequences of link failures.

Fig. 6. Illustration of link failure sequences

(a) Regions with
same sequence of
link failures.

(b) Nearest Neigh-
bor Voronoi Dia-
gram

(c) 2-Voronoi dia-
gram

Fig. 7. An example of different partitions of the plane into regions used in
Lemma 1.

Based on Equation (14), it is sufficient to pre-compute and
store the following integrals:

P i,j =

∫
p∈Ri

h(p)f(ei,j , p)dp i = 1, . . . , k, j = 1, . . . , |Si|,

(15)
where ei,j denotes the j-th link in Si.

Finally, since the regions are mutually disjoint as subsets of
P and cover it entirely, equation (9) can be written as a sum
and, according to (14), the failure probability of any link set
S ⊆ E can be evaluated as

CFP(S) =

k∑
i=1

∫
p∈Ri

h(p)f(S, p)dp =

k∑
i=1

P i,j(S,Si) , (16)

where we define P i,0 := 0 for every i = 1, . . . , k. Based on
Eq. (13) and (16), one can derive that:

FP(S) =
∑
i,j

(
P i,j − P i,j+1

)
, (17)

where the summation is for those pairs (i, j) for which 1 ≤ i ≤
k and j(S,Si) = |S| > 0. As a default, we set P i,|Si|+1 = 0.

V. MODEL EXTENSIONS

A. Different Link Types

Most optical backbone networks consist of multiple types of
links, e.g. aerial, buried and submarine. In case of a disaster,
these link types have different failure patterns. For example,
in case of an earthquake, the failure regions of aerial cables
can be different from the regions for buried cables, while
submarine cables tend to be cut at rupture zones. With this
in mind, we extend our model as follows. Let L be the set
of different link types. For each link type l, disaster zone
r(p, s, l) denotes the area where links with type l fail in case
of a disaster with epicenter p and relative size s.

In this extension, Assumption 2 (r(p, s) is monotone in-
creasing in relative size s) translates to the following:

r(p, s, l) ⊆ r(p, s′, l) if s < s′ ∀p ∈ R2, 0 ≤ s, s′ ≤ 1, l ∈ L .
(18)

Although their failure regions may differ, this extension still
allows links of multiple types to fail due to a single disaster,
analogously to many natural settings.

B. Mixed Link Types

Taking the previous extension a step further, we introduce
the concept of mixed types. One can imagine that some links



may consist of different “link types”. For example, a link that
is mainly buried may need to cross a river above-water. We
implement these links by dividing each link into sections with
homogeneous types. If a single section fails, the whole link
fails. More formally, each link e ∈ E is partitioned to sections
e1, . . . , eM with types l1, . . . , lM , respectively. Section ei fails
if it has a common point with r(p, s, li), and link e fails if at
least one of its sections fails.

C. Nodes Also Considered Vulnerable

Network nodes have different failure patterns than links, and
their probabilistic failures can be represented by PSRLGs as
follows. For a node, v ∈ V that can fail, the edges incident
to v have mixed link types, and in a small vicinity of v are
considered to have a type lv ∈ L specific to the node such
that those parts of the links fail exactly then when the node
would have failed. This approach translates to CFPs or FPs
as follows: the set S of links incident to v fails because the
disaster hits every l ∈ S or the disaster hits node v.4

VI. SPACE AND TIME COMPLEXITY OF STRUCTURES
CFP[G] AND FP[G]

A. Cardinality of Structures FP[G] and CFP[G]

In our basic model, considering the case of the disaster
shapes being circular disks in a given Lp metric, (where, for
p = 2, we get back the usual Euclidean circles, for p = 1
or p = ∞, we have a family of parallel-sided squares, and,
for p = 2/3, astroids, that are specific 4-cornered stars), the
number of FPs can be upper bounded as follows.

Lemma 1: In case of a set of circular disk shaped disasters
(i.e., r(p, s) is circular) in a given Lp metric, and the edges
of the network being in general position,5 there are O((n +
x)ρ2γ4) FPs with non-zero probability.

Proof: Let us concentrate on line segment links for a
moment. According to [24, Claim 2], the number of links, m,
is O(n+ x) for line segment links. We know from [41, Thm.
6] that the number of k-Voronoi cells in Lp norm for line
segments is O(k(m− k) + x), or alternatively, O(k(n+ x−
k)+x) thus disasters hitting k links can hit at most this many
link sets. Since a circular disk can hit at most ρ links, this
sums up to O(ρ2(n+ x+ x), which is O(ρ2(n+ x)).

If links can be polygonal chains consisting of at most γ
line segments, there are O(γ(n+ x)) segments with O(γ2x)
crossings, meaning O(kγ2(n + x)) k-Voronoi regions. By
counting the k-Voronoi regions for k ∈ {1, . . . , γρ}, this yields
an upper bound of O((n+x)ρ2γ4) for the number of FPs.

In the same setting, the number of CFPs can be very large:
Lemma 2: The number of CFPs with non-zero probabilities

is lower-bounded by Ω(2ρ). In case of a set of circular disk
shaped disasters in a given Lp metric, and the edges of the

4Another possibility is to handle node failures natively, and assume the
failure of a node v infers the failure of the links incident to v.

5According to the general position assumption, there are no more than three
segments touch the same circle and no more than two endpoints lie on the
same line. If this assumption is not met, the coordinates of the network could
be perturbed.

network being in general position, the number of CFPs with
non-zero probabilities is upper-bounded by O(2ρ(n+x)ρ2γ4).

Proof: By the definition of ρ, there is a link set S with
CFP(S) > 0 and |S| = ρ. As, for any S′ ⊆ S, CFP(S) > 0
implies CFP(S′) > 0, implying the lower bound. By Lemma
1, there are at most O((n+x)ρ2γ4) non-zero FPs, each having
at most 2ρ subsets, yielding the upper bound.

Every FP and CFP can be stored in O(ρ) space, since it
contains a link set of at most ρ links, alongside with a related
probability. This way, the space requirement of FP[G] and
CFP[G] is upper bounded by O((n+ x)ρ3γ4) and O(2ρ(n+
x)ρ3γ4), respectively.

B. Query Time of Structures FP[G] and CFP[G]

When storing the non-zero FPs in a list, by Eq. (13),
querying the FP[G] structure for CFP(S) requires iterating over
all non-zero FPs and summing up all FP(T ) such that T ⊇ S.
Thus, S has to be compared with O((n + x)ρ2γ4) (Lemma
1) other sets, and each comparison can be made in O(ρ). The
number of possible additions is also O((n + x)ρ2γ4), thus
the query time of the FP[G] structure is upper-bounded by
O((n + x)ρ3γ4). Alternatively, if we stored the FPs in an
ordered balanced binary tree, we would need to lookup all the
exponential number of T ⊇ S.

The query time of CFP[G] also depends on the data structure
used for storing CFPs. For example, if we store all non-zero
CFPs in a list, the query time would be Ω(2ρ) (Lemma 2).
In contrast, by hashing all CFP(S) on S, we reduce the query
time a constant with very high probability. Last, when storing
all non-zero CFPs in a self-balancing binary tree, the worst-
case query time would be O(ρ + log((n + x)ργ)) (Lemma
2). Although the CFP structure can achieve impressive query
times, this comes at the cost of its space complexity (Ω(2ρ)),
which makes it inefficient for larger network densities.

VII. IMPLEMENTATION ISSUES

The approaches and performance guarantees we gave in
Sections IV and VI are valid under the assumption that the
shape of a regional failure is always a circular disk. In this
section, we propose a heuristic that (1) can accommodate
any disaster shape; (2) does not require advanced geometric
algorithms; and (3) is more suitable for digital inputs, as it
uses discrete functions instead of continuous ones.

We discretize the problem by defining a sufficiently fine grid
over the plane such that for each grid cell c, the disaster regions
r(p, s) and hit link sets R(p, s) are “almost identical”6 for all
p ∈ c. This reduces the integration problem from Sec. III to a
summation7.

We consider R2 as a Cartesian coordinate system. Let r
denote the absolute maximum range of a disaster in km. Let
(xmin, ymin) be the bottom left corner and (xmax, ymax) the
top right corner of a rectangular area in which the network lies.
It is sufficient to process each c in the rectangle of bottom left
corner (xmin − r, ymin − r) and top right corner (xmax +

6In particular, we may assume that f(e, p) is independent of p as long as
it is in c and denote this common value by f(e, c).

7 [20] uses a similar grid approach.



r, ymax + r), and we denote by ci,j the grid cell in the i-
th column and j-th row of this rectangle. We assume we are
given the probability hi,j of the next disaster epicenter p lying
in cell c: hi,j =

∫
p∈ci,j h(p)dp.

Now, for each c, we can compute the sequence of link
failures and store the link sets as follows.

1) Structure CFP[G]: For our CFP[G] structure, we use
an associative array CFP[G], which can be addressed by a
set of links S = {`1, `2, . . . , `k} and returns its cumulative
failure probability. In the pre-computation process, we have
to extract the contribution of ci,j to the failure probability of
every subset S of links. To do so, we process the sequence
of link failures Si,j = (e1, e2, . . . , el) attached to disaster
epicenters which are in ci,j8, and increment the CFP[G] values
accordingly: CFP({e1})+ = hi,j · f(e1, ci,j), CFP({e2})+ =
hi,j · f(e2, ci,j), CFP({e1, e2})+ = hi,j · f(e2, ci,j), etc. By
default, for every link set S, we set initially CFP(S) = 0.

To obtain CFP(S), we look it up in the associative array. If
S is not found, then CFP(S) = 0.

2) Structure FP[G]: For our FP[G] structure, we take a
similar approach as for the CFP[G] structure and use a list of
‘S, FP(S)’ set-failure probability pairs.

In the pre-computation process, we have to extract the
contribution of ci,j to the link failure state probability of
every subset S of links. As in the case of the CFPs, we
do so by iterating over the sequence of link failures Si,j =
(e1, e2, . . . , el) and incrementing the FP values accordingly:
FP({e1})+ = hi,j ·(f(e1, ci,j)− f(e2, ci,j)), FP({e1, e2})+ =
hi,j · (f(e2, ci,j − f(e3, ci,j)), FP({e1, e2, e3})+ = hi,j ·
(f(e3, ci,j − f(e4, ci,j)), etc.

To obtain CFP(S), we sum up
∑
T⊇S

FP(T ).

VIII. MODEL EVALUATION BASED ON SEISMIC HAZARD
DATA

In this section, we present numerical results that validate our
model and demonstrate the use of the proposed algorithms
on real backbone networks (taken from [42] and [2], resp.)
accompanied with real seismic hazard inputs. The algorithms
were implemented in Python 3.6., using its various libraries9,
respecting the regional failure model presented in Section III,
and following the implementation principles of Section VII.
Run-times were measured on a commodity laptop with a Core
i5 CPU at 2.3 GHz with 8 GiB of RAM.

As a practical scenario, the simulations presented in this
paper focus on transforming the seismic hazard on network
topologies to PSRLGs. For a more general proof-of-concept
evaluation, we refer the reader to the conference version of our
paper [1]. There, we assumed that the epicenter distribution
is uniform over the investigated area. The disasters shape is
a circular disk with a maximal radius r (at s = 1), which is
constant over the region.

As a first step, we need to convert the historical seismic
hazard data into a regional failure model for our framework.
Subsec. VIII-A discusses our earthquake representation, based

8Here, we represent ci,j by its center p. According to Def. 4, for i < j,
link ei is closer to p than ej , i.e., s(p, ei) < s(p, ei).

9The simulation data can be downloaded from [42].

on epicenter and moment magnitude. In a nutshell, the model
translates the seismic hazard data to a set of circular disk
shaped disaster areas with radii depending on the actual mo-
ment magnitude (Fig. 8). Note that the epicenter distribution
is non-uniform here.

We are taking this probabilistic earthquake set as input,
Subsec. VIII-B presents our simulation results validating our
PSRLG model.

A. Seismic Hazard Representation

We are investigating the failures caused by the next earth-
quake within a given geographic area; thus, we assume there
is exactly one earthquake in the investigated period. Each
earthquake is uniquely identified by its epicenter and moment
magnitude [44]:

epicenter ci,j, which represents a latitude-longitude cell on
the Earth’s surface, taken from a grid of cells over
the network area.

moment magnitude Mw ∈ {4.6, 4.7, . . . , 8.6} =:M.10

We index the grid cells such that i ∈ {1, . . . , imax} =:
Ii, j ∈ {1, . . . , jmax} =: Ij .

Let Ei,j,Mw
denote the set of earthquakes with centre point

in ci,j and magnitude in (Mw − 0.1,Mw]. As cells and
magnitude intervals are small enough that the failures caused
by each earthquake in Ei,j,Mw

will often be identical11, we
will represent all Ei,j,Mw

with a single earthquake having a
center point in the center of ci,j and a magnitude of Mw.
Let the probability that the next earthquake is in Ei,j,Mw

be pi,j,Mw . Note that these probabilities add up to 1, i.e.∑
i,j∈Ii×Ij

∑
Mw∈M pi,j,Mw

= 1.
Our initial input are the activity rates ri,j,Mw

of earthquake
types (see Fig. 8a) instead of the pi,j,Mw

values, so we first
have to translate these rates to probabilities. We claim that
under the assumption that each kind of earthquake Ei,j,Mw

arrives according to independent Poisson arrival processes with
parameters ri,j,Mw

, the rates of earthquakes Ei,j,Mw
can be

transformed to probabilities pi,j,Mw
as follows:

pi,j,Mw
= ri,j,Mw

/ ∑
i,j∈Ii×Ij

∑
Mw∈M

ri,j,Mw
. (19)

We assign each network element e an intensity threshold
t(e). If the intensity I of the ground shaking reaches this
threshold (I ≥ t(e)) at any point of the physical embedding
of e, the element fails. In our simulation, every network
element has the same threshold t(e) := t, where t ∈
{VI,VII,VIII,IX,X,XI,XII} := T according to the Mercalli-
Cancani-Sieberg (MCS) scale [45]12.

After each earthquake, Ei,j,Mw
, the physical infrastructure

(such as optical fibers, amplifiers, routers, and switches) in an
area disk(ci,j , R(Mw, t)) of a circular disk is destroyed. The
center point of disk(ci,j , R(Mw, t)) is the center of ci,j , while

10Mw ≤ 4.5 means no damage, while Mw > 8.6 has not been experienced
in the studied regions.

11The sides of grid cells used in our simulations were 0.05◦ long in the
Italian rate map, and 0.1◦ in case of the EU and the USA, meaning 4km to
10km of cell side length.

12Intensity I ≤V does not cause structural damage, while I =XII means
total damage.



its radius R(Mw, t) is monotone increasing in the magnitude
Mw, and decreasing in the intensity threshold t (see Fig. 8b
and 8c). As earthquakes can occur anywhere in the cell, we
increase the radius by the distance between the center of the
cell and its outer corners. This way, the disk is always an
overestimate of an earthquake’s damaged area in cell ci,j with
magnitude Mw.

1) Earthquake Activity Rates: These are the occurrence
rates of earthquake events as a function of space, time, and
magnitude. To obtain them, we need to define an earthquake
source model, defined as an area or an active fault that
could host earthquakes as testified by instrumental seismic
activity, historical seismicity, geomorphological evidence, and
regional tectonics. The choice of the earthquake source model
is strongly driven by the available knowledge of the area
and by the scale of the problem. It may range from well-
defined active faults, especially when working at a local scale,
to less understood and wider scale seismotectonic provinces.
When the catalog of earthquakes covers a long period, it
can be used to compute earthquake activity rates without any
information of seismotectonic provinces and/or active faults,
via, for example, a smoothed seismicity approach. In this
work, we evaluated the earthquake source model for Italy and
the USA from the most recent published earthquakes catalogs
( [43], and [46], for Italy and the USA, respectively) that
cover a long period and can be used to obtain earthquake
source model without other information. Although earthquakes
can be clustered in time and space with their distribution
that is over-dispersed if compared to the Poisson law [47],
a common way to treat this problem (i.e., cluster in time and
space) is to de-cluster the earthquake catalog, i.e., removing
all events not considered mainshocks, via a declustering filter
[48]. Here, both catalogs are considered de-clustered. The
standard methodology to estimate the density of seismicity
in a grid, and used in this work, is the one developed by [49].
The smoothed rate of events in each cell is determined as
follows:

Sri =

∑
j rj exp

(
−d2(ci,cj)

d2c

)
∑
j exp

(
−d2(ci,cj)

d2c

) , (20)

where rj is the cumulative rate of events with magnitudes
greater than the completeness magnitude Mc in each cell

ci of the grid and computed from the historical catalogue
of earthquakes, d(ci, cj) is the distance between the centers
of grid cells ci and cj . The parameter dc is the correlation
distance (for Italy, 30km [50] and for the USA, 75km [51]).
Then, the earthquake activity rates for each node of the grid are
computed following the Truncated Gutenberg-Richter model
[52]:

λ(M) = λ0
exp (−βM)− exp (−βMu)

exp (−βM0)− exp (−βMu)
(21)

for all magnitudes M between M0 (lower or minimum mag-
nitude) and Mu (upper or maximum magnitude); otherwise
λ(M) is 0. The upper and lower magnitude bounds repre-
sent, respectively, the maximum magnitude, or the largest
earthquake considered for a particular source model, which
depends on the regional tectonic context (in our case, Mw

is at most 8.1, 8.6 and 8.3 for Italy, Europe, and the US,
respectively), and the minimum magnitude, or threshold value,
below which there is no engineering interest or lack of data
(in this study, Mw > 4.5)13. Additionally, λ0 is the smoothed
rate Sri of earthquakes at Mw = 4.5 and β = bln(10),
where b is the b-value of the magnitude-frequency distribution.
For Italy, we calculated the b-value of the distribution on a
regional basis using the maximum-likelihood method from
[53], while for the USA, it comes from [46]. While for Italy
and the USA, we computed the earthquake rates (Fig. 8a)
following this approach and with the referenced data, for
Europe, we used the already published SEIFA model ( [54],
and [55]), a kernel-smoothed, zonation-free stochastic earth-
quake rate model that considers seismicity and accumulated
fault moment. In this model, activity rates are based on the
SHARE European Earthquake Catalogue frequency-magnitude
distribution model. The spatial distribution of model rates
depends on the density distributions of earthquakes and fault
slip rates. A magnitude-frequency distribution indicates the
probability that an earthquake of a size within the upper and
lower bound of the distribution may occur anywhere inside
the source during a specified period.

While this does give us the rates for all combinations of
epicenters and magnitudes for Italy, the USA, and Europe (Fig.

13Fig. 8a shows that, in the investigated range of magnitudes, the global
rate of earthquakes dips exponentially in the function of the magnitude.
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8a), we still need the relation between magnitude and disaster
area to be able to apply these rates to the network resiliency
models.

2) The Radius of the Damaged Zone: The only earthquake
effect that can be quantified at the scale of the whole country
is ground shaking because quantifying any other earthquake
effects requires a site investigation. Shaking intensity is lo-
calized and is generally diminishing with distance from the
earthquake’s epicenter. At the scale of a whole country, we
can assume that soil and topographic conditions are relatively
homogeneous. The seismic intensity only depends on the
distance from the earthquake epicenter.

Here, we assume all links (and nodes) inside the area with a
given MCS intensity I ≥ t (where t ≥VI) are damaged, while
all components outside of this area remain functioning. Thus,
to obtain all disaster areas, we now only need the disaster area
radius for each magnitude Mw ∈ {4.6, 4.7, . . . , 8.6}. For this
purpose, we used the intensity prediction equation of [56] and
[57], for Italy/Europe, and the USA, respectively, where the
expected intensity I at a site located at epicentral distance R
is:

IIt,EU = 1.621·Mw−1.343−0.0086(D−h)−1.037(lnD−lnh),
(22)

IUS = 0.44 + 1.70 ·Mw − 0.0048 ·D − 2.73 · log10D, (23)

where D =
√
R2 + h2 is a sort of hypocentral distance, and h

represents the hypocentral depth, which may be viewed as the
average depth of the apparent radiating source [56], h equaling
3.91km and 10km for Italy/Europe and the USA, respectively.
In this way, it is possible to compute for each Mw and intensity
threshold t the site-distance R(Mw, t) from the epicenter of
the desired intensity threshold level. It is worth noting that
Eq. (22) has been obtained using only the Italian earthquake
historical catalog, and so it is not entirely correct to use it
for the entirety of Europe. However, the Italian catalog is one
of the more complete catalogs in Europe. There is no similar
equation in the literature for the entire continent (to the best
of our knowledge), and its development is beyond the paper’s
scope. We assume that the application of Eq. (22), as a first
approximation, can be considered correct for entire Europe.

B. Simulation results

We consider seven topologies: one Italian topology, three
other European topologies, and another three US topologies.
Unless otherwise stated, we set the intensity tolerance thresh-
old, t, to VI according to the MCS scale. The node and link

counts, as well as the number of CFPs and FPs with non-
zero probability, of all topologies are given in Table I both for
t = VI and t = VII.

Interestingly, although the US network has slightly more
nodes and links than the Italian network, it has much less
CFPs (946 compared to 12106). This difference is easily
explainable when we consider our theoretical results from
Sec. VI: the number of non-zero CFPs is lower-bounded
by Ω(2ρ) (Lemma 2), which means an exponential growth
with the maximal number of hit links, ρ. Since the Italian
network has much shorter links than the American network,
its hit link sets tend to be larger. We can observe this same
exponential increase with the maximal number of hit links
when we decrease the threshold from t = VII to t = VI. For
example, the number of CFPs of NFSNET is 1762 at t = VII,
but explodes to 14199 if we decrease this threshold to t = VI.
In contrast, the number of FPs makes a much smaller jump,
from 523 to 969.

By only storing the x largest CFPs, we can trade in some
precision in exchange for a significant reduction in memory
usage. Fig. 9a shows the precision of this approach versus
x. For the Italian topology, the highest probability among the
omitted edge sets is 5.4×10−4 or 1.7×10−5 if we store only
the top 100 or 1000 CFPs respectively. Furthermore, increasing
the precision by order of magnitude requires only a bit more
than an order of magnitude more CFPs. Similarly, in the case
of the other networks, storing the first 100 or 1000 CFPs means
that the highest probability among the omitted edge sets is
below 5× 10−4 or 1× 10−5, respectively; and increasing the
number of CFPs by order of magnitude is more than enough
for increasing the precision by a factor of 10.

Speaking of the precision-memory trade, omitting some of
the FPs is also possible. In this case, the imprecision in the
value of CFP(S) for some S can be upper bounded by the
sum of probabilities stored in the omitted FPs. On Fig. 9b, we
can see the probability assigned to the xth most probable FP.
Fortunately, the highest number of non-zero FPs was low, 969
in our experience, meaning that, most probably, no omission
is needed.

As mentioned before, the difference in the number of non-
zero CFPs can partly be explained by a difference in hit link
set sizes. Fig. 9c shows the maximal number of hit links, ρ,
versus the intensity threshold, t. We can confirm that, at t =VI,
the Italian network has a much higher density than the US
network (13 compared to 7).

We have also investigated the average CFP of a set of
links with given cardinality. Fig. 9d shows the average failure

TABLE I
THE INVESTIGATED NETWORK TOPOLOGIES

Network name n m # CFPs at t =VI # FPs at t =VI # CFPs at t =VII # FPs at t =VII

Optic EU 22 45 6377 202 1369 135

Italian 25 34 12106 308 676 200

US 26 43 946 246 260 164

Nobel EU 28 41 3867 149 680 94

EU 37 57 5634 212 745 133

N.-American 39 61 2024 394 556 257

NFSNET 79 108 14199 969 1762 523
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Fig. 9. The space and complexity of the data structures for the examined network topologies.

probability concerning the number of links failing together.
Single links have an average failure probability between [4.2×
10−4, 2.1 × 10−3], depending on the network topology. The
average failure probability for double and triple link failures
lies in [1.2× 10−5, 3.9× 10−4] and [1.9× 10−6, 9.3× 10−5],
respectively. These averages meet our expectations that the
correlation between link failures is significant. By our obser-
vations, the combination of link failures with the highest CFPs
is predominantly the combined failure of links incident to a
single node.

Fig. 10 further investigates the relationship between the
space requirements of CFP[G] and FP[G]. In Fig. 10a, we
show the space requirement of structures CFP[G] and FP[G] as
a function of the intensity threshold t. As expected, the number
of CFPs drops quickly with the intensity threshold. Our results
show that, especially at lower thresholds, choosing the FP
structure can significantly reduce space requirements. This
phenomenon is even stronger in case of Italy 995, a network
with 32 nodes and 70 links over Italy, that we decided to
exclude from most of the simulation presentations. The reason
for this is its unusually high density: at intensity tolerances of
t = VI and ρ = VII, it has densities ρVI = 31 and ρVII = 19,
yielding > 109 and 1153294 CFPs, while the number of its
FPs is only 2011 and 1090, respectively.

Fig. 10b depicts the number of CFPs and FPs with given
cardinality for the Italian. Since there is a link set of cardinality
13 with positive FP, there must be over 1700 subsets of
cardinality 6 with non-zero CFP. In comparison, the number
of FPs peaks at 71 for cardinality 4.

Continuing our study of the cardinality of failed link sets,
Fig. 11a investigates the dependency between CFP(S) and |S|
in detail, for |S| = 1, 2 and 3. There are 34 single link
failures in the Italian network whose CFPs range between
[0.0003, 0.019]; it has 205 dual link failures with non-zero
probabilities between [7×10−8, 0.0037], and there is a number
of 648 triple link failures with strictly positive probabilities,
ranging between [7 × 10−8, 0.0019]. Here we can see that
some CFPs with size l are less probable than some other CFPs
containing l + 1 links. Thus, only storing CFPs with at most
l links rarely yields the same result as only storing the most
probable CFPs. Also, we can observe that the CFPs of the
most probable triple link sets are not much smaller than the

CFPs of the most probable link pairs. This is another sign that
the most probable double and triple link failures are failures
of the links incident to the same network node.

Finally, to explore if our data structures behave differently
in random-shaped disasters, we have set up the following
simulation. For Italian, we took the same grid as we used
for the earthquakes and generated four disasters for each grid
point by:
• picking between 3 and 6 points on the unit circle, from

the uniform distribution,
• connecting these points to form a simple polygon A,
• choosing 4 random radii r1, . . . , r4 between 0 and 150km

(again, uniformly distributed),
• and, finally, for each ri, scaling and shifting A such that

its circumcircle to have the grid point as center, and a
radius of ri.

With this setting, we found 1401 CFPs and 327 FPs. These
results are similar to what we saw for the topology in case of
earthquakes and t = VI. The difference is that we have slightly
more FPs and less CFPs. There are more FPs because, in some
areas, the random-shape disaster has larger extensions than
the maximum local earthquake disaster regions. The number
of CFPs is less because the maximal random shapes in this
simulation were smaller than the largest earthquake disaster
areas. Thus, the larges hit link sets were smaller in the random
scenario, and the smaller ρ translated to fewer CFPs. The
charts generated on these structures were very similar to those
seen on Fig. 9-11, thus we omit them due to the lack of space.

IX. CONCLUSION

In this paper, we 1) introduced a unified terminology for
Probabilistic Shared Risk (Link) Groups, 2) proposed a general
stochastic model of regional failures of elements (nodes and
links) of the physical network, and finally, 3) evaluated the
model after carefully processing raw seismic hazard data. The
pre-computation of the proposed PSRLGs is performed offline
during network planning by computing numerical integrals
using information about the disasters’ effects and network
equipment resistance to the catastrophes. As a result of the
pre-computation, the probability of each set of links’ joint
failure is stored as cumulative failure probabilities. Alterna-
tively, we propose a more space-efficient data structure that
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stores link failure state probabilities instead. Our proposed
pre-computation data sets allow us to quickly compute the
cumulative failure probability of any arbitrary set of links and
can be utilized to more accurately compute the availability
of network paths. We have proven that the memory usage
of our memory-efficient data structure is upper-bounded by
O((n + x)ρ3γ4) if the failure of a link only depends on the
distance to the epicenter of the disaster, where n is the number
of nodes, x is the number of link crossings (in practice x� n),
ρ is the maximal number of links subject to a disaster failure,
and γ is the maximal number of line segments of a single link.

Our approach facilitates a comprehensive service availabil-
ity analysis and can be used to answer related questions as
well, such as where to place VMs in order to guarantee a
certain SLA.

REFERENCES

[1] J. Tapolcai, B. Vass, Z. Heszberger, J. Biró, D. Hay et al., “A tractable
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APPENDIX

A. Geometric Transformation of the Network

In our geometric reasoning, we transform the links of the
graph into line segments. We also need to ensure that no
two segments share a common endpoint. In the network, the
adjacent links terminate in a single node; thus, we need to
perform a minor transformation as follows.

Let S ⊆ E be a set of segments and ε > 0 a small number.
Suppose that we shorten some segments e of S, in a way that
we delete ε long subsegment from both ends, in such a way
that the deleted intervals do not overlap. Let S′ denote the set
of segments S after shortening.

Lemma 3: We have f(S, p) ≥ f(S′, p) and f(S, p) −
f(S′, p) ≤ εK hold for every point p.

Proof: For the first inequality note that

f(S, p) =

∫ 1

s=0

∏
e∈S

IR(p,s)(e)ds

≥
∫ 1

s=0

∏
e′∈S′

IR(p,s)(e
′)ds = f(S′, p) (24)

because IR(p,s)(e) ≥ IR(p,s)(e
′) holds for every s, whenever

e ∈ S.
We turn now to the second inequality. Let s be the smallest

value such that
∏
e∈S IR(p,s)(e) = 1 (if there is any), and

set s′ = s + εK. Let d and d′ be the radii of r(p, s) and
r(p, s′), resp. By the Lipschitz property we have εK = s′−s ≤
K(d′−d) giving that d′ > d+ε. We know by the definition of
s that r(p, s) intersects every segment e ∈ S in some point Qe.
But then r(p, s′) intersects e′. This holds, because the larger
disk r(p, s′) clearly contains the disk of radius ε centered at
Qe, and the latter disk must intersect e′ because we deleted
disjoint subintervals of length at most ε from e to obtain e′.
We have therefore

∏
e′∈S′ IR(p,s′)(e

′) = 1, hence

f(p, S)−f(p, S′) =

1∫
y=0

(∏
e∈S

IR(p,y)(e)−
∏
e′∈S′

IR(p,y)(e
′)

)
dy

≤
s′∫

y=s

1dy = εK. (25)

We transform our set of segments into one, where no segment
e has an endpoint A on any other segment. If we have such

https://earthquake.usgs.gov/hazards/hazmaps/conterminous/
https://earthquake.usgs.gov/hazards/hazmaps/conterminous/
https://github.com/jtapolcai/regional-srlg/tree/master/psrlg
https://github.com/jtapolcai/regional-srlg/tree/master/psrlg


a segment, then we carry out the transformation by deleting
an ε long subsegment of e starting at A. Lemma 3 gives that
if we set ε sufficiently small, then all the values f(p, S) and
f(p, S′) will be very close to each other, hence CFP(S) and
CFP(S′) will be very close to each other. Moreover, for any
two segments e1, e2 ∈ E, we have that either e1 ∩ e2 = ∅, or
e1 ∩ e2 is an interior point of both segments.

As a simple example illustrating the Lipschitz condition 2)
from IV-A, suppose that r(p, s) is a disk centered at p having
radius sRp, where Rp is the radius of r(p, 1). Then for radii
d = sRp and d′ = s′Rp we have |s′ − s| = 1

Rp
|d′ − d|. The

Lipschitz condition then holds if there exists a k > 0 such
that Rp ≥ k for every p.
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