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Open Loop Aircraft Take-off Mass Estimation:
An Optimal Trajectory Approach

Aidana Tassanbi, Junzi Sun, Jacco Hoekstra
Faculty of Aerospace Engineering, Delft University of Technology
Delft, the Netherlands

Abstract—The mass of an aircraft is crucial for performance-
related studies, such as predicting flight trajectories and analyzing
flight emissions. In these studies, the flight trajectories are often
reconstructed using a point-mass aircraft performance model
combined with flight profiles from surveillance data and take-
off mass information. However, airlines do not usually disclose
take-off mass information, considering its sensitive nature. Thus,
aircraft masses often need to be assumed or estimated.

This paper presents a simple and computationally effective
approach for estimating take-off mass using only open data and
models. We explore the strong correlation between take-off mass,
flight distance, cruise altitude, and partially, the airspeed during
the cruise. The main idea is to generate fuel-optimal trajectories
with known masses and distances, and then compare them with
actual flight data. The optimal trajectories are generated using the
open aircraft performance and optimization library. By assuming
that actual flights follow quasi-fuel-optimal trajectories, the take-
off mass of a flight can be estimated based on simple regression
models trained on the optimal trajectory dataset. This open-
loop take-off mass estimation approach requires no proprietary
information from aircraft manufacturers or airlines. We verified
the model with an anonymized dataset containing actual A320
flights with known take-off mass. Our two- and three-feature
multi-linear models yield mean absolute percentage errors of
5.95% and 4.89 %, respectively. This study is another step forward
in open science and a contribution to the aircraft trajectory
studies.

Keywords—Take-off mass estimation, trajectory optimization,
aircraft performance

I. INTRODUCTION

Aircraft mass is an important parameter in performance
models and affects various perspectives of the flight in terms of
fuel consumption, altitude, and flight performance limitations.
Aircraft take-off mass (TOW) is also necessary for operations
such as optimizing the flight trajectory of an aircraft when
considering fuel and emissions. However, information about
an aircraft’s weight is often confidential and rarely available
to researchers or air traffic controllers. Recently, anonymized
take-off mass data started to become available with the effort
from the Performance Review Commission!, which provides
objective information and independent advice to EuroControl’s
governing bodies with data-driven analyses.

Many studies have focused on estimating aircraft take-off
mass based on flight trajectory data. In general, there are two
main types of take-off mass studies: open-loop with unknown
ground truth information, and closed-loop with the use of
confidential weight information.

Thttps://ansperformance.eu/study/data-challenge/

The open-loop studies are mostly based on predetermining or
assuming thrust settings during take-off and applying empirical
methods. For example, research employing energy rate predic-
tion assumes a common thrust profile derived from historical
data and compares physics-based model profiles to real-world
observations [1], [2]. A similar study used a maximum thrust
setting and determined the weight at the moment of lift-
off, assuming the equilibrium of the forces [3]. Some studies
considered different flight stages to estimate take-off mass using
the Bayesian inference method and combined the results to
achieve a higher confidence level [4], [S]. These methods use
a short observation period to speed up computational processes
and to assume a constant weight and thrust, which simplifies
estimation.

One of the drawbacks of such methods is the sensitivity
of the derived model to noise in the observation data and
environmental uncertainties, such as runway conditions and
wind. To address these issues, a later study applied a parti-
cle filter method with four noise models [6]. It focused on
estimating take-off mass from publicly available ADS-B data,
taking into account noise, using changing flight dynamics and
near-maximum thrust during the initial climb phase. The other
limitations of the methods discussed are time-consuming model
settings and the realistic performance model requirement.

The closed-loop methods have generally focused on training
a statistical model. Gaussian Process Regression trained on
Flight Data Recorder (FDR) data to estimate fuel flow rates
[7], [8]. Those studies showed the potential of fuel flow
modeling using statistical data and resulted in higher accuracy
on take-off mass estimation compared to the Aircraft Noise and
Performance (ANP) database.

Another study proposes a supervised machine-learning model
on the take-off data of a Cessna 172 under different runway
conditions [9]. The study showed how environmental uncer-
tainties and flight conditions affect the performance of the
statistical model. Similar challenges were faced in a differ-
ent approach, which used fuel flow data from Quick Access
Recorder (QAR) to estimate take-off mass [10]. Although
statistical methods mostly proved to be more accurate in TOW
prediction compared to open-loop studies discussed above, their
main disadvantage is the use of not publicly available data. To
summarize, the reviewed literature has indicated the following
challenges:

1) For the open-loop approaches, where models do not use

airline weight data [1]-[6], there are significant uncertain-
ties in aircraft performance models and flight procedures
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during the climb, preventing the accurate prediction of
aircraft weight. In addition, the estimation process is often
slow.

2) For the closed-loop estimation approaches, where models
are built with airline weight of fuel flow data [7]-[10], the
models are more accurate but cannot be shared openly.
Though estimations are often fast, the lack of openness
reduces the significance of the research when considering
the implementation of models.

This paper proposes a new and fast open-loop approach for
determining the take-off mass of an aircraft. The literature
and our previous studies showed that take-off mass correlates
with cruise altitude [11], [12]. This is especially relevant when
generating optimal flight trajectories. In our research, we built
an aircraft-type-specific dataset containing optimal trajectories
across a range of take-off masses and flight distances, assuming
that commercial flights are quasi-fuel-optimal.

The optimal trajectories were generated using the open per-
formance model, OpenAP [13], and its associated optimization
framework, OpenAP.top [14]. The optimal dataset is then used
to train the regression models. The resulting model can estimate
the take-off mass for a flight using publicly available data, such
as ADS-B trajectory data and the weather ERAS data from
ECWFM database [15]. One of the advantages of this method
is that the model does not heavily rely on the completeness of
data, and the effect of flight data noise is insignificant. The
simplest two-feature multilinear regression model showed a
5.95% mean absolute percentage error, while a more advanced
model was able to achieve 4,89%. We have also tested gradient
boosting models, which had mean percentage errors of 5.36%
and 5.24% with two- and three-feature training.

The structure of this paper is organized as follows: Section
II details the assumptions and methodology used for optimal
trajectory generation and model choice. Section III presents
the test outcomes and their validation against real-world data.
Section IV analyzes the performance and limitations of the
approach. Finally, Section V provides the conclusions and
suggests directions for future research.

II. METHODS

Mass estimation using the optimal trajectory approach con-
sists of two primary stages: 1) generating a database of virtual
fuel-optimal flight trajectories and 2) training the take-off mass
estimator. This section details the assumptions, the methods
employed for generating fuel-optimal trajectories, the scope
and limitations of the optimal trajectories database, and the
techniques used for constructing the regression models.

A. Assumptions

We are following an open-loop approach for the mass esti-
mation, which means some major assumptions must be made.
The general concept is based on the following two assumptions:

1) The actual flights, especially their vertical profiles, are

sufficiently close to fuel-optimal trajectories due to the
fuel perspective of flight operations.

2) Aircraft weight and flight distance are the main parame-

ters significantly affecting the cruise altitude of a flight.

The second assumption ignores the flight speed, which is
also related to the cost index choice. In the paper, we tested
different models with and without cruise speed and compared
their performance. Overall, these assumptions allow the use of
an open-loop optimal trajectory approach to estimate the take-
off mass of an aircraft.

B. Generation of Optimal Trajectories

To generate optimal trajectories, we employ OpenAP.top,
an optimizer that uses the direct collocation method to solve
the continuous optimal control problem of optimal trajectory
generation through nonlinear programming (NLP). In this case,
the optimal control problem is formulated by simplifying the
aerodynamic model to a point mass model with the following
state parameters:

Xt = [xhytahtamt] (1)

where (z,y), h, and m are the 3D position and mass of an
aircraft. The control states include:

uy = [My, vse, 1] ()

where M, vs, and 1 are Mach number, vertical rate, and
heading of the aircraft. The dependence of state variables on
control variables can be expressed in the following ordinary
differential equations:

d

dit” — v; sin(es) cos(7e) 3)
d

cTi = v; cos(1¢) cos() @
dh

a v o
d

(TT = —ff,(m, v, h) ©)

where v is the true airspeed, which is calculated from Mach
number and altitude information, using the International Stan-
dard Atmosphere model (ISA), v is flight path angle, and ff
is the fuel flow model that is dependent on the aircraft mass,
speed, and altitude.

Airlines often operate flights using a cost index, weighing
fuel costs against time costs. Generally, airlines prioritize fuel
savings, unless a flight has strict arrival time requirements.
In this research, we use minimum fuel consumption as the
objective to generate fuel-optimal trajectories for our optimal
dataset. The generalized form of an objective function J can
be denoted as:

tr
J(x,u,tg, ty) = / ffy(x, 1) @)
to

where ?y and ¢ are the start and end times of the flight. The cost
can be dependent on control variable states and (or) flight states.
In our model, the fuel flow is dependent on states including
mass, altitude, speed, and vertical rate, which is calculated
using the OpenAP fuel module.

The resulting nonlinear equations can be solved numerically.
In our case, the direct collocation approach discretizes the
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time frames into collocation points and approximates the state
variables (1) by optimizing control variables (2) using low-
order polynomials over the defined intervals. The numerical
solver used in the optimizer is CasADi [16], an open-source
library and symbolic framework for numeric optimization. Input
variables for OpenAP.top include aircraft type, start and end
positions, and take-off mass, provided as a ratio of maximum
take-off mass (MTOW). The information about the aircraft type
allows the optimizer to obtain the aircraft-specific performance
models from OpenAP. A comprehensive explanation of the
optimization procedure is provided in [14].

C. Construction of Optimal Trajectory Dataset

For the creation of the optimal dataset (or lookup tables),
we divided the range of take-off masses and flight distances
into intervals. Specifically, we selected 40 intervals for take-
off mass, evenly distributed between 120% of the operating
empty weight (OEW) and maximum take-off mass (MTOW).
Additionally, 40 intervals were chosen for flight distances,
ranging from 500 km up to the maximum range for each aircraft
type sourced from the OpenAP aircraft performance database.

Therefore, each lookup table for a specific aircraft type com-
prises fewer than 1,600 trajectories, accounting for physical and
operational limitations preventing unrealistic trajectory genera-
tion. For instance, due to low weight, aircraft cannot undertake
long-distance flights with insufficient fuel. Conversely, landing
with a weight exceeding the maximum landing weight (MLW)
is also undesirable

D. Estimation Using Regression Models

To estimate the take-off mass, first, we used a multi-linear
regression model trained on the pre-constructed optimal flight
database. The estimator requires the following input param-
eters: cruise altitude, flight distance, and aircraft type. The
altitude and flight distance can be obtained from ADS-B data of
actual flights, while aircraft type can be obtained from various
databases, such as the OpenSky aircraft database.

In later sections of this paper, we incorporate cruise speed as
an additional feature in the regression models and demonstrate
its impact on estimation accuracy.

Although the multi-linear regression model is valued for
its simplicity, it is often less accurate compared to decision
tree-based models. We tested both multi-linear and gradient-
boosting regression models, and the latter showed superior
estimation accuracy in capturing the training set. However, the
three-feature multi-linear regression model showed the highest
accuracy when tested on real QAR data.

In order to evaluate the estimation performance and errors,
we applied the trained models to two real-world flight datasets.
The first dataset was obtained from the OpenSky Network [17]
over 36 days and spread over 2022. The second dataset is an
anonymized QAR dataset with known take-off masses for 637
flights.

III. RESULTS AND ANALYSES
A. Examples of Optimal Trajectories

As discussed in Section II-A, two assumptions are made. We
hypothesize that aircraft mass and flight distance are the pri-

mary factors influencing cruise altitude. Figure 1 demonstrates
the relationship between optimal flight altitude and aircraft take-
off mass. It showcases optimal trajectories generated for the
A320 at the same flight distance but different take-off masses.
We can observe that heavier aircraft tend to have lower optimal
altitudes during flight.

Altitude, ft

40,000 A
30,000 7
20,000 1

70% MTOW

- 75% MTOW

10,0007 —— 80% MTOW

—_— 85% MTOW

04 — 90% MTOW

0 500 1000 1500 2000
Distance, km

Figure 1. Generated optimal trajectories for different take-off mass and fixed
flight distance of 2100 km.

Altitude, ft
40,000 A
35,000 A
30,000 A
| 500 km
25,000 —— 1300 km
20,000 —— 2100 km
15,000 1 = 2900 km
— 3700 km
10,000 1
5,000 -
0 -
0 500 1000 1500 2000 2500 3000 3500

Distance, km

Figure 2. Generated optimal trajectories for different flight distances with the
fixed take-off mass of 85% MTOW.

Figure 2 shows five optimum trajectories generated for the
A320 aircraft type, all of which have the same take-off mass but
vary in range. The figure demonstrates the increase in altitude
during flight. This inclination occurs because the aircraft’s
mass decreases as it burns fuel, resulting in a higher optimum
altitude. In reality, continuous climbing during the cruise phase
is not typically implemented and is instead replaced by step
climbing. For this reason, we consider the mean cruise altitudes
when comparing the actual flights and optimal trajectories in
this study.

B. The Lookup Table Dataset

Figure 3 shows the generated lookup table for the A320. In
this scatter plot, each data point represents a flight trajectory,
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with the Y-axis indicating the mean cruise altitude during a
flight and the X-axis indicating the flight distance. The dots are
color-coded based on the estimated take-off mass; the darker
the color corresponds to the heavier take-off mass.

Mean Cruise Altitude, ft TOW, tons
75
40,000 o3 gee
a-"'::: 3-:;
008 g 9,
70
38,000
65
36,000 - i:
o
o 60
34,000 1 §9
55
32,000 - T T T T
1000 2000 3000 4000
Distance, km

Figure 3. Generated lookup table for A320.

This figure illustrates the relationship between take-off mass,
flight distance, and optimal cruising altitude (Fig. 3). The
smooth color transition across the scatter plot is evident. The
upper left corner, featuring lighter colors, represents lighter
aircraft that travel shorter distances and have higher optimal
altitudes. Conversely, the bottom right corner, with darker
colors, represents trajectories for heavier aircraft that fly longer
and for which higher altitudes are not optimal. Moreover, from
this figure, we can visually assume that the mutual dependency
of TOW, cruise altitude, and distance is linear. This means
a multi-linear model trained on the lookup table must be a
sufficiently accurate take-off mass estimator.

C. Two-feature Multi-linear Regression Model

Our two-feature multi-linear regression model was built
based on the information shown in Figure 3. The model
considers two features, which are flight distance and mean
cruise altitude, and the prediction target is the take-off mass.
The model was developed using the scikit-learn library [18]
and is relatively simple. For example, the model for the Airbus
A320 is expressed as follows:

Miakeott = 1.8533 dim — 1.99133 he, + 133497  (kg)  (8)

where hyg is the altitude in ft, and dy,, is the total flight air
distance in km.

To evaluate the variance in predictions within the lookup
table dataset, we randomly split the data into training and
testing sets using an 80/20 ratio. Figure 4a illustrates the test-
train check results for the full optimal dataset.

During the analysis, we observed that lightweight trajectories
tend to overlap at approximately 41,000 ft (Fig. 3), negatively
impacting the multilinear regression model. Specifically, flights
with the same flight distance at this altitude exhibit differ-
ent take-off masses, introducing inconsistencies in the model
predictions. To address this issue, we refined the dataset by

removing the lightest flights (represented by the lightest dots
in Fig. 3). As a result, the training dataset now consists of 1,307
flights instead of the original 1,324.

This refinement led to a slight improvement in model ac-
curacy. As shown in Figure 4b, the percentage error decreased
from 2.63% (full dataset) to 2.24% (cropped dataset) for the 2D
multilinear model. Most data points are tightly clustered around
the red reference line, indicating good predictive performance.
However, greater deviations are observed for take-off masses
below 58 tons and above 73 tons, with the maximum take-off
mass (MTOW) for the A320 being 78 tons.

Despite the dataset adjustment, some outliers remain in the
upper-left region of the test-train comparison plots (Fig. 4). This
suggests that while removing the most lightweight flights has
improved the performance to some extent, the overlapping has
not been eliminated.

D. Estimation of Take-off Mass Using Real-world Data

We tested the two-feature multi-linear regression model on
two real-world datasets. The open-source OpenSky flight data
was used, to predict the take-off mass for over 40,000 flights.
This test helped us to see how fast and efficient is the model
in the prediction of the TOW by using open-source data. The
second dataset is anonymized QAR data, which contains the
aircraft mass and trajectory information for 637 A320 flights.
This dataset was used to verify the accuracy of the estimation.

1) OpenSky ADS-B Dataset: To test the performance and
computational speed of our model, we used real-world open-
source data from OpenSky. The dataset included all A320
flights over Europe and North America during 36 days in 2022,
specifically the 1st, 11th, and 21st days of each month.

Since the model does not consider wind, we converted the
flight distance to the total air distance for a more accurate
estimation. The total air distance was derived from true airspeed
(TAS) instead of the ground speed. To obtain the airspeed, we
used the publicly available ERA 5 data [15], and the wind data
is integrated with flight trajectory using the fastmeteo tool [19].

Moreover, we filtered out flights with a mean cruise altitude
below 30,000 ft, as these flights are likely not following optimal
trajectories and are restricted by air traffic controls. All data pre-
processing was performed using the traffic library [20], with the
help of which we filtered and resampled the data downloaded
from the historical database of OpenSky Network.

The final dataset consisted of almost 40,000 Airbus A320
flights, with mean cruise altitudes ranging from 30,000 ft to
42,000 ft and flight distances between 538 km to 4,817 km.
The estimation process is relatively fast, taking less than one
second for all flights, and the results are shown in Figure 5.

In this figure, we can see that the heavier mass is related to
the lower altitude. Moreover, the lighter flights are correlated
with the flights with shorter ranges. This aligns with the
observations from the lookup table data visualized in Figure
3a and demonstrates the linearity.

2) A Flight with Known Take-off Mass: To verify the ac-
curacy of our model, we used a QAR dataset consisting of
real-world A320 flights with known mass. First, we closely
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(b) Cropped model

Figure 4. Model accuracy test based on a subset of the data from the lookup table dataset containing optimal trajectories of varying distance and masses. The
test is conducted on (a) the full optimal flights dataset and (b) the cropped dataset with omitted lightest-weight flights.

Mean Cruise Altitude, ft TOW, tons

75
38,000

70
36,000 A

65
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Distance, km

Figure 5. Estimation of take-off mass of OpenSky flights.

examined one real flight to evaluate the performance of our
optimizer and regression model.

Figure 6 shows where the real trajectory with an estimated
mass is located within the lookup table. The flight distance
is 2053 km, and the mean cruise altitude is 35,000 ft. The
estimated take-off mass is 67.19 tons, while the actual is 72.27
tons, resulting in an estimation error of 6.67%.

This figure highlights that the actual flight maintains a
constant altitude (35,000 ft) during the cruise phase, most likely
maintaining the field cruise altitude. In contrast, the optimal
flight trajectory gradually increases the altitude from 35,000
to 36,000 ft during the cruise as the aircraft’s mass decreases.
Moreover, the TOW of the actual flight is higher compared to
the optimal trajectory, yet they fly at almost the same flight
level. This discrepancy can be because real flights are not fully
optimal and often consume more fuel.

3) Verification Using QAR Flight Dataset: Next, we applied
the take-off mass inference to the entire QAR dataset and
compared the estimation errors. The dataset comprised 637
A320 trajectories with a maximum flight range of 3300 km.

The take-off mass of these flights varied between 69.48% and
94.58% of the MTOW.

Figures 7a and 7b show the real trajectory TOW and the two-
feature linear model estimation results, respectively. In those
figures, each data point represents one flight trajectory. The Y-
axis denotes the mean cruise altitude, while the X-axis denotes

Mean Cruise Altitude, ft TOW, tons

40,000 1 S
real
70

38,000 pred
65

36,000
60

34,000 -
55

32,000 - T T T T

1000 2000 3000 4000
Distance, km

Altitude, ft

35,000 -

20,000 A

—— Real, TOW =72.27 tons
5,000 1 —— Optimal, TOW = 67.19 tons
0 500 1000 1500 2000
Distance, km

Figure 6. Location of an example trajectory in the grid of the lookup table (the
red circle in the top figure) and corresponding fuel-optimal trajectory generated
based on OpenAP (comparison in the bottom figure). The 'real’ and ’pred’
ticks on the colorbar represent the actual and estimated take-off mass (TOW),
respectively.
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Figure 7. Estimation of take-off mass of A320 real trajectories using a lookup table and regression models.

the flight distance. The figures reveal that high-altitude flights
were mostly underestimated by the linear model, while low-
altitude flights were overestimated. Additionally, the plots show
that the actual flight patterns are more chaotic. Heavier flights
rarely exceed altitudes higher than 37,000 ft, which is not
optimal. Conversely, lighter aircraft may still fly at lower and
less optimal altitudes due to air traffic control.

The estimation errors for all the flights are shown in the
histogram in Figure 10a, which demonstrates that the majority
of flights are underestimated, with errors up to 5 tons. Although
some flights have been drastically overestimated (the largest
estimation error is 20,900 kg), they are few in number. Overall,
the mean absolute error (MAE) is about 3,819 kg, which is
5.95% in terms of mean absolute percentage error (MAPE).

E. Considering Cruise Speed for Estimation

Our current approach is built on the strong correlation
between cruise altitude, flight distance, and aircraft take-off
mass. However, feature importance analysis showed that true
airspeed (TAS) could also considerably impact take-off mass
estimation and is another significant parameter to consider.

To further improve estimation accuracy, we developed a new
regression model incorporating three features: altitude, flight
distance, and TAS. By adding TAS, we aimed to assess its
impact on take-off mass prediction.

Figure 8 presents the test-train check results for the three-
feature multilinear model, demonstrating a significant improve-
ment compared to the previous two-feature model (Fig. 4). In
this updated model, all data points are closely aligned with the
red reference line, and no distant outliers are observed. The
mean percentage error has also been reduced to 1.44%, further
validating the model’s improved accuracy. A key benefit of
incorporating TAS is that it resolves the issue of trajectory
overlap at 41,000 ft. Unlike in the previous model, where
flights with the same flight distance at this altitude had varying
take-off masses, TAS provides an additional distinguishing
factor, effectively eliminating this source of uncertainty while

maintaining simplicity. For A320 the 3D multilinear model is
as follows:

mrow = 1.456 dim —2.111 hg 4 187.53 vis + 55620 (kg)
©)
where vy 1S the mean cruise true airspeed in kts.

Figure 10c illustrates the distribution of estimation errors of
the 3D multilinear model. While the median shift from zero
is larger for the three-feature model (—2,424 kg) compared to
the two-feature model (—1,209 kg), the overall performance is
superior across multiple error metrics, namely MAPE, RMSE,
MAE, and STD.

These results confirm that TAS is a crucial parameter influ-
encing the optimal take-off mass estimation, making the three-
feature model the most accurate among those tested.

Test TOW, tons

759 = error=0 .3.
70
65
. RMSE: 1097 kg
60 MAE: 876 kg
MAPE: 1.44 %
ME: -246 kg
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55 60 65 70 75

Predicted TOW, tons

Figure 8. Train-test check for 3D multilinear model.

F. Gradient Boosting Model

The multilinear regression models have limitations when
dealing with non-linear feature-target relationships, which are
inherent to this problem. To address this, we tested a gradient
boosting model using both 2D (distance, altitude) and 3D
(distance, altitude, TAS) input features.
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The resulting error distributions are shown in Fig. 10b and
10d. These histograms indicate that while the three-feature
boosting model outperforms the 2D multilinear model, it still
exhibits larger errors compared to the 3D multilinear regression
model.

To further analyze this behavior, we evaluated the three-
feature boosting model by splitting the optimal flight data into
training and test sets and assessing its performance. As shown
in Figure 9, the boosting model effectively captures feature
dependencies and demonstrates better generalization compared
to both multilinear regression models (Figures 4 and 8). This
improved test-train performance is attributed to the model’s
ability to learn underlying non-linear patterns in the optimal
dataset.

However, despite its superior adaptability, the mean absolute
estimation error for the test-train check remains relatively
high: 5.36% for the 2D boosting model and 5.24% for the
3D boosting model. Both values exceed the error of the 3D
multilinear model (4.89%), indicating that while boost is more
flexible in learning the dependencies of features, it can also
introduce additional variance, potentially leading to overfitting
or increased sensitivity to data variations.

Test TOW, tons

— error=0

75 1

70 1

65 -
RMSE: 310 kg

60 - MAE: 238 kg
MAPE: .39 %
ME : -24 kg

551 STD: 310 kg

55 60 65 70 75

Predicted TOW, tons

Figure 9. Three-feature boosting model accuracy test based on a subset of the
data from the lookup table.

IV. DISCUSSIONS

A. Error Significance at Different Altitudes

Upon further investigation of the error, it was discovered
that considerably higher error corresponds to the lower altitude
flights. Table I shows that altitudes lower than 35,000 ft are
mostly overestimated, while higher altitude flights are under-
estimated, resulting in a negative mean error. This is because
our model assumes that flights follow optimal trajectories to
minimize flight and fuel costs. Therefore, if a flight is forced
to fly a non-optimal trajectory for any reason, the accuracy of
the take-off mass estimate decreases.

By generating various trajectories for different take-off
masses and flight distances, we demonstrated that it is rarely
optimal for the A320 to fly below 32,000 ft. As a result, our
two-feature multi-linear model has a greater error in estimating

TABLE I. VARIATION OF 2D MULTILINEAR MODEL ESTIMATION ERROR
WITH THE CRUISE ALTITUDE

flights  Alt. (ft) ME (kgy MAE (kg RMSE (kg) MAPE (%)
35 39 000 -4 532 3839 4297 6.08%
160 38 000 -2 610 3126 3633 4.93%
181 37 000 -3 368 3 749 4 385 5.58%
97 36 000 -1 249 3525 4133 5.35%

49 35 000 -871 2729 3 449 4.21%

48 34 000 4 879 5413 6 403 8.88%

57 33 000 2701 3770 4 825 5.85%

11 32 000 14 530 13 681 14 345 22.39%

the take-off mass for flights with cruising altitudes below this
threshold.

B. Other Aircraft Types

In this paper, we focused on the A320 aircraft due to the
availability of the A320 QAR dataset for evaluation and because
it is one of the most common aircraft types. However, OpenAP
contains performance models for 34 aircraft types, 15 of which
currently have accurate fuel flow models. The exact process
can be applied to all other available aircraft types. In future
studies, we plan to generate the mass prediction model for other
common commercial aircraft types.

C. Temperature Shift and Atmosphere Model

In reality, the atmosphere often differs significantly from the
ISA standard atmosphere model. This is addressed during flight
planning by applying a temperature shift to the ISA model.
For our lookup tables, we are also considering applying a
temperature shift as an additional dimension to account for
deviations from standard conditions.

Temperature plays a crucial role in flight dynamics, and the
use of the ISA model, which assumes a fixed temperature
profile, introduces inaccuracies that could affect the optimal
trajectories and, consequently, the take-off mass estimation.
True airspeed, which is one of the features considered in
the regression model, is highly dependent on temperature.
In addition, temperature impacts air density, which directly
influences lift and drag forces, and variations in temperature
can affect engine efficiency, as engines perform differently in
warmer or colder air.

Figure 11 illustrates how actual temperatures can deviate
from the ISA model. Including temperature shifts as an addi-
tional feature in our lookup tables could improve the accuracy
of the take-off mass estimation. However, further investigation
is required to determine whether the temperature shift should
be based on the mean trajectory temperature and how it applies
to flights near the poles.

V. CONCLUSION

In this paper, we have used the information obtained from
optimal trajectories to estimate the take-off mass for real flights.
This approach assumes that real flights follow fuel-optimal
trajectories and compensates for the lack of real-world data
by generating optimal flights with known parameters.

We have trained machine learning models on two and
three features extracted from optimal trajectories: mean cruise
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Figure 10. Estimation error histograms for multi-linear and boosting models with two (altitude and distance) and three (altitude, distance, and TAS) features
considered. The metrics are as follows: root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), median (ME),
and standard deviation (STD). The vertical red lines represent the median and the black lines are vertical O lines.

altitude, flight distance, and, partially, airspeed. The models
were validated against anonymized QAR data. For the best-
performing model, a three-feature multilinear model, the mean
error was 4.89%, while the simplest multilinear regression
model had an error of 5.95%. Gradient boosting models have
also been tested in these studies, showing performance error
of 5.36% with two features, and 5.24% with three features.
This level of accuracy is comparable to fully statistical methods
based on FDR data from prior studies [8]. Therefore, this study
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Figure 11. Real temperature approximation with the use of the International
Standard Atmosphere (ISA) model and shifts.

has shown that take-off mass can be reliably estimated by
assuming a simple linear relationship with cruise altitude, flight
distance, and speed, which are open-source parameters.

In conclusion, the approach offers a simple and effective way
to estimate take-off mass. It does not require highly accurate
data, and the observation noise has little to no impact on
estimation accuracy. This open-loop approach is a practical way
to conduct trajectory studies in the absence of real data. It is
a step forward for realistic aircraft performance modeling and
flight efficiency studies.
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