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SUMMARY

The COVID-19 pandemic has had a disruptive impact on healthcare systems and every-
day life of the majority of the people around the globe. Despite many years of research
on network epidemiology, many key aspects of disease transmission and in particular
the response of people to the spread of a disease, remain poorly understood. On the
basis of epidemiological modelling lie the Susceptible-Infected-Susceptible (SIS) and
Susceptible-Infected-Recovered (SIR) models. In this dissertation, we aim to improve
the understanding of the spread of contagious diseases, with an emphasis on the inter-
play between disease spread and personal behaviour, applied to the SIS and SIR models.

The first part starts with the analysis of the eigenvalue spectrum of the infinitesimal
generator of the Markovian SIS model with self-infections (Chapter 2). Based on the
eigenvalue spectrum, which we believe encodes the majority of the dynamics, we derive
an alternative definition of the epidemic threshold. We show that the epidemic thresh-
old approximately coincides with the effective infection rate for which the third-largest
eigenvalue is minimal. Contrary to the SIS process, where only an eigenvalue analysis
is possible, the SIR process is completely solved on an arbitrary, heterogeneous network
(Chapter 3). The benefit of the exact solution is demonstrated by analytically computing
the time when the number of infections is maximal.

The second part concerns the interplay between the spread of a disease and the re-
sponse of people to the disease spread. We develop the Generalised Adaptive SIS (G-
ASIS) model to describe how individuals break and create links in the contact graph.
The decisions for breaking or creating links are based on the viral state of the nodes at-
tached to that link. For all 36 instances in the G-ASIS model, we analyse the relation
between the epidemic threshold and the effective link-breaking rate (Chapter 4). We
derive the first-order and second-order mean-field approximation of the G-ASIS model
(Chapter 5) and illustrate that the second-order approximation is able to qualitatively
approximate the Markovian model more accurately than the first-order approximation.
The G-ASIS mean-field model is extended to arbitrary link-breaking and link-creation
responses, which are not only related to the number of susceptible and infectious neigh-
bours of a node, but may also depend on the presence of the virus in the whole popu-
lation (Chapter 6). For all possible link-breaking and link-creation responses, epidemic
waves cannot occur in the mean-field adaptive SIS process.

In the final part, we develop the Network-Inference-based Prediction Algorithm (NIPA)
for forecasting the spread of contagious diseases on heterogeneous networks (Chap-
ter 7). The contact graph is assumed to be unknown and is inferred by NIPA from the
number of reported cases. NIPA is a hybrid method, combining epidemiological knowl-
edge, machine-learning and networks. Network-based forecasting, and NIPA in par-
ticular, seems favourable for predicting epidemic outbreaks, which is demonstrated by
showing that NIPA outperforms many other forecasting algorithms for estimating the
spread of COVID-19.

vii





SAMENVATTING

COVID-19 heeft een verwoestende impact gehad op zorgsystemen en het alledaagse
leven van de meeste mensen op aarde. Ondanks jarenlang wetenschappelijk onder-
zoek naar epidemiologie blijven vele aspecten van ziekteverspreiding onvoldoende ge-
kend, met name de reactie van mensen ten gevolge van de verspreiding van een be-
smettelijke ziekte. De Susceptible-Infected-Susceptible (vatbaar-besmettelijk-vatbaar)
en Susceptible-Infected-Recovered (vatbaar-besmettelijk-genezen) modellen liggen aan
de basis van vrijwel alle ziekteverspreidingsmodellen. In dit proefschrift pogen we ziek-
teverspreidingsmodellen beter te begrijpen, met de nadruk op de interactie tussen ziek-
teverspreiding en menselijk gedrag, toegepast op SIS en SIR modellen.

In het eerste gedeelte wordt het eigenwaardespectrum van de transitiematrix van
het Markoviaanse SIS model met zelf-infecties onderzocht (Hoofdstuk 2). Op basis van
het eigenwaardespectrum, die een groot gedeelte van de dynamica omvat, suggereren
we een nieuwe definitie van de epidemische drempelwaarde. De epidemische drem-
pelwaarde komt ongeveer overeen met de infectiesterkte waarvoor de twee-na-grootste
eigenwaarde van de transitiematrix minimaal is. In tegenstelling tot het SIS proces waar
alleen een eigenwaarde-analyse mogelijk is, wordt het SIR model op een heterogeen
contactnetwerk exact opgelost (Hoofdstuk 3). De toegevoegde waarde van de exacte op-
lossing wordt gedemonstreerd door het maximale aantal tegelijke zieke mensen exact te
bepalen.

Het tweede gedeelte beschrijft de samenhang tussen ziekteverspreiding en het ge-
drag van mensen op deze verspreiding. We ontwikkelen het Generalised Adaptive SIS
(G-ASIS) model, welke beschrijft hoe individuele personen de contacten met hun naaste
buren kunnen verbreken en herstellen. Het verbreken of herstellen van deze verbin-
ding hangt af van de gezondheid van beide personen. Alle 36 mogelijke modelinstanties
worden afgeleid en voor elk van deze modelinstanties onderzoeken we de relatie tussen
de epidemische drempelwaarde en de effective verbrekingssterkte. We leiden de eerste-
orde en tweede-orde gemiddelde-veldbenadering af van het G-ASIS model (Hoofdstuk 5)
en illustreren dat de tweede-orde benadering het oorspronkelijke Markoviaanse model
veel nauwkeuriger benadert. In Hoofdstuk 6 breiden we de gemiddelde-veld benadering
uit naar algemene verbrekings- en herstellingsregels, die niet noodzakelijkerwijs afhan-
gen van de gezondheidstoestand van de twee verbonden personen, maar ook kunnen
afhangen van de aanwezigheid van de ziekte in de hele populatie. We laten zien dat
onafhankelijk van de keuze van de verbrekings- en herstellingsregels, periodieke golven
van infecties onmogelijk zijn in het gemiddelde-veld adaptieve SIS proces.

In het laatste gedeelte leiden we de Network-Inference-based Prediction Algorithm
(NIPA) af voor het voorspellen van ziekteverspreiding in heterogene netwerken. De con-
tactgraaf is in het algemeen onbekend en wordt daarom door NIPA geschat op basis
van gerapporteerde ziektegevallen. NIPA is a hybride methode, die ziekteverspreiding,
machine-learning en netwerktheorie combineert. Voorspellingen op basis van netwerk-
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theorie, en NIPA in het bijzonder, lijken bijzonder nauwkeurig te zijn in het voorspellen
van ziekteverspreiding, wat we demonstreren door te laten zien dat NIPA de verspreiding
van COVID-19 nauwkeuriger kan voorspellen dan verschillende andere voorspellingsal-
goritmes.



1
INTRODUCTION

1.1. CONTAGIOUS DISEASES
Contagious diseases have played a central role in shaping the world’s history [1], since
several devastating pandemics wiped out entire communities [2]. Thus, assessing and
managing the spread of contagious diseases is an important, but difficult task. The
severity of a disease is determined by its transmissibility and its virulence. Rather than
focussing on the viral properties of the disease, we focus on the epidemiological, larger
picture; how many people will be infected on which time and in which areas ?

At least as important as the characteristics of the virus is the people’s response to
the disease – what countermeasures are being taken to slow down the virus spread and
are those measures effective? Without the access to vaccinations or medicines, the only
treatment of contagious diseases is to prevent getting infected, e.g. by staying outside of
your infectious neighbours’ proximity. In popular terms, people apply social distancing
to reduce the risk of transmitting the disease.

Social distancing is one example of so-called non-pharmaceutical interventions (ab-
breviated as NPIs). NPIs come in various flavours. On a personal level, individuals can
prevent themselves from getting infected by isolating themselves at home. Similarly,
infected individuals can isolate to prevent others from getting infected. Those key epi-
demiological questions received a lot of attention from the scientific community during
the COVID-19 pandemic. Many COVID-19 measures including no hand-shaking, wash-
ing hands, wearing face masks and curfews are nation-wide NPIs that essentially have
the same goal: reducing the spread between infected and non-infected individuals.

1.2. BACKGROUND ON NETWORK EPIDEMIOLOGY
Epidemics are omnipresent in both human and animal populations. Epidemics often
occur on a large scale, complicating experiments on the effectiveness of countermea-
sures. In particular, epidemic outbreaks cannot be modelled using in-vitro1 experi-

1The Latin phrase in-vitro literally means in glass and is used to describe experiments that are conducted
outside of their usual habitat, e.g. in a laboratory. As epidemics involve humans and the impact of epidemics

1
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2 1. INTRODUCTION

ments, because of its potentially devastating consequences. Instead, scientists rely on
reports of the number of infected patients from health agencies and doctors. Using the
number of reported cases, forecasts on the number of cases can be made under various
scenarios using mathematical models.

The first scientist to provide a mathematical description of an epidemic outbreak
was Daniel Bernoulli in 1766 [3]. Bernoulli analysed an outbreak of smallpox in London
and developed a simple model to predict the number of future cases. A considerable ad-
vancement was made by Kermack and McKendrick in 1927. Kermack and McKendrick
split up the population into different groups, called compartments, based on the viral
state of the individuals [4]. Individuals can make a transition from one compartment to
another compartment during a certain event, i.e. infection upon contact, indirect infec-
tion through air or via animals, recovery, death, etc.

Typical examples of compartments are the following: Susceptible (healthy, but
may contract the disease upon contact with an infectious individual), Exposed (infected,
not infectious yet but will become infectious in the near future), Asymptomatic (infected
and infectious but shows no symptoms), Infected (infected and infectious and shows
symptoms), Quarantined (infected cases who are locked away at home or in the hos-
pital), Recovered (either temporary or permanently immune) and Deceased (passed
away due to the disease).

We focus in this thesis on the two most elementary compartmental models: the
Susceptible–Infected–Susceptible (SIS) and Susceptible–Infected–Recovered (SIR)
models. In both models, susceptible individuals can be infected by their infectious neigh-
bours and if successful, the susceptible person immediately becomes infected as well.
Additionally, infected individuals can recover from the disease, either becoming suscep-
tible again (SIS) or receiving permanent immunity (SIR).

Modelling the spread of epidemics can be performed on different aggregation levels.
One may investigate the spread of a disease among single individuals, or instead look at
groups of people, comprising of households, cities or countries. For both the individual
and the group-based methods, we use the notation of a network to describe the spread
of the disease in the population. The contact graph G = (N ,L) contains the set N of N
nodes, where each node represents one individual or one group. The set L of L links de-
scribes the connections between the nodes. The graph G is assumed to be simple2, such
that the graph G can be represented by an adjacency matrix A, whose elements ai j indi-
cate the existence (ai j = 1) or non-existence (ai j = 0) of a link between nodes i and j . We
assume that the population remains constant over time, that is, there are no births and
deaths in the population and there are no individuals emigrating from or immigrating
to our system. Together with a description of the spread of an epidemic, e.g. the SIS or
SIR process, the graph (structure) and infection process (service) describe an epidemi-
ological complex network. The review by Pastor-Satorras et al. [6] covers many recent
advancements in network epidemiology.

Throughout this thesis, we describe the spread of the disease by two processes: the
infection process and the curing process. An infected node j may infect a susceptible
node i with rate βi j if node i and j are connected (ai j = 1). Independently of the in-

is huge, such kind of experiments are simply impossible.
2A graph G is simple if it does not contain any self-loops or multiple links between two nodes [5].
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fection process, infected node i can recover from the disease with rate δi . Any physical
phenomenon spreads in continuous time, thus we assume in this thesis that the disease
also evolves in continuous time (unless otherwise specified). The time distribution for
both the infection and curing process can be any probability distribution, but in this
thesis, we restrict ourselves to exponentially distributed transition times. Then the dis-
ease spread can be described as a continuous-time Markov process, which has many
favourable properties.

1.3. ADAPTIVE NETWORKS

Most epidemic models assume that the contact graph G remains constant over time. In
the presence of pharmaceutical solutions to eradicate a disease, of which vaccinations
and medicines are prominent examples, we expect that the network barely changes over
time. Unfortunately, in case of world-wide epidemics like COVID-19, pharmaceutical
solutions are not immediately available and social distancing is the only available tool
for disease prevention. Social distancing may happen based on individual decisions or
governmental decisions. For example, if a person knows that a friend or family mem-
ber is infected by the disease, the person will avoid contact with that particular friend
or family member. In case of severe pandemics, like COVID-19, nation-wide lockdowns
imposed by the government significantly reduce the number of links in the contact net-
work. In either case, the contact network changes over time and the reason for changing
the contact graph is based on the presence of the virus in the population. We call these
networks adaptive or coevolutionary networks, because the structure of the contact net-
work changes based on the spread of the contagious process. The overview in Figure 1.1
shows the types of commonly used networks in the literature. In this thesis, we primarily
focus on static and adaptive networks.

Figure 1.1: The different types of networks. Arrows represent the relation: “has influence on”. Static networks
have a fixed contact graph, which influences the spread of the disease. The contact graph of temporal networks
changes over time due to external processes, like the movement of people. Adaptive networks allow individuals
to break or create links with other individuals to prevent contracting the disease. Thus, the contact graph
changes based on the spread of the virus in the population.
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1.4. BEYOND EPIDEMICS
Throughout this thesis, we use terminology and notation from epidemiology to intro-
duce and explain various concepts. However, the domain of spreading processes on
networks is much broader than network epidemiology alone and also encompasses the
spread of gossips, political preference, opinions [7], computer viruses [8], information in
the human brain [9], raising awareness about a particular event or fact [10], fake news
spreading [11], innovation spread [12], failure propagation [13] and internet packet rout-
ing [14]. Even though we primarily focus in this thesis on epidemiology, we emphasise
that many obtained results for epidemic spreading can be generalised for other spread-
ing phenomena that are also based on compartmental models.

1.5. MY CONTRIBUTIONS
Prior to discussing my contributions to the scientific literature of network epidemiology,
let me start by mentioning that the field of network epidemiology is very well-researched
and providing a comprehensive overview of network epidemiology is impossible due to
the plethora of works from biologists, virologists, epidemiologists, data scientists, physi-
cists, mathematicians and others. For example, a Google Scholar search for the keywords
“network” and “epidemics” in March 2023 yields over 300,000 scientific papers. Instead
of providing a generic literature overview, each chapter in this thesis will feature its own
literature overview.

My contribution starts in Part I with elementary results on the well-known SI, SIS and
SIR epidemic models. Chapter 2 discusses the Markovian SIS process with self-infections
on the complete graph. The main focus is on the understanding of the eigenvalues (spec-
trum) of the infinitesimal generator of the underlying Markov chain. We show that key
epidemiological behaviour of the SIS process, such as the epidemic threshold, is en-
coded in the eigenvalues. We proceed by investigating SI and SIR epidemics on heteroge-
neous graphs in Chapter 3. For the first time, we present an exact solution for epidemic
processes without reinfections on heterogeneous networks. We demonstrate our exact
solution by analytically solving the SI and SIR processes on heterogeneous networks.

Part II focusses on an important open problem in network epidemiology: what is
the effect of personal decisions – to break or restore connections with other individu-
als to prevent them or yourself from contracting the disease – on the spread of the dis-
ease? Chapter 4 introduces the Generalised Adaptive SIS (G-ASIS) model to describe the
spread of a disease in an adaptive network. We determine all possible rules to break or
create connections in the graph. We analytically derive the average fraction of infected
nodes in the metastable state and also derive bounds on the epidemic threshold. Chap-
ter 5 builds on Chapter 4 and investigates the mean-field approximation of the G-ASIS
model. Two different types of mean-field models are introduced and compared. We
find that the second-order mean-field approximation is a much better approximation
for the Markovian G-ASIS process than the first-order mean-field approximation. Chap-
ter 6 generalises the mean-field model from Chapter 5 for arbitrary link-breaking and
link-creation rules, which are not just limited to interactions between neighbours, but
may depend on the presence of the virus in the whole population. For all link-adaption
rules, we derive the epidemic threshold and show that limit cycles cannot exist.
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In Part III, we shift our focus to a practical setting; how to forecast the spread of the
COVID-19 pandemic? Chapter 7 introduces the Network-Inference-based Prediction Al-
gorithm (NIPA), which is designed to forecast the future number of infected cases. NIPA
is comprised of three steps. As a first step, the daily number of reported cases is prepro-
cessed into a time series for an SIR model. By regarding the spread of COVID-19 as an
epidemic spreading process on a network, the task of NIPA is to determine the infection
link weights. NIPA assumes that the link weights are unknown, but are instead inferred
from observations of the epidemic outbreak. Finally, using the inferred disease param-
eters, a forecast is produced based on an SIR model. We benchmark NIPA against other
well-known epidemic models and introduce several variants of NIPA, e.g. including par-
tial prior knowledge on the contact network. We show that network-based forecasting
(and NIPA in particular) seems to be beneficial for predicting the spread of COVID-19.

We finalise this thesis with a conclusion, that summarises the majority of the ob-
tained results. We further provide suggestions for future investigations in the field of
network epidemiology.
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EPIDEMICS ON STATIC NETWORKS
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2
EIGENVALUE ANALYSIS OF ε-SIS

DYNAMICS

We analyse continuous-time Markovian ε-SIS epidemics with self-infections on the com-
plete graph. We focus on the complete graph because the majority of the graphs is analyt-
ically intractable, but many features of the ε-SIS process observed in the complete graph
occur in other graphs. In this chapter, we illustrate that the time scales of the ε-SIS process
are related to the eigenvalues of the tridiagonal infinitesimal generator of the SIS Markov
chain. We provide a detailed analysis of all eigenvalues and illustrate that the eigenvalues
show staircases, which are caused by the nearly degenerate (but strictly distinct) pairs of
eigenvalues. We also illustrate that the ratio between the second-largest and third-largest
eigenvalue is a good indicator of metastability in the ε-SIS process. Additionally, we show
that the epidemic threshold of the Markovian ε-SIS process can be accurately approxi-
mated by the effective infection rate for which the third-largest eigenvalue of the transition
matrix is the smallest. Finally, we derive the exact mean-field solution for the ε-SIS pro-
cess on the complete graph with arbitrary initial conditions and show that the mean-field
approximation does not correctly represent the metastable behaviour of Markovian ε-SIS
epidemics.

This chapter is based on M. A. Achterberg, B. Prasse and P. Van Mieghem, Analysis of continuous-time Marko-
vian ε-SIS epidemics on networks, Physical Review E 105, 054305, May 2022 [15].

9
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2.1. INTRODUCTION
Over the last hundred years, many epidemic diseases have plagued humanity. Most epi-
demic outbreaks tend to emerge quickly, but take much longer to disappear [2]. One of
the main reasons is re-infections. A common example of a disease with re-infections is
influenza, which affects large portions of the population during the winter season. The
influenza virus strain keeps mutating slightly, thereby bypassing the human immune
system while maintaining most of its viral properties. Another example of recurring dis-
eases are sexually transmitted diseases, such as chlamydia and gonorrhoea. Contrary
to influenza, sexually transmitted diseases do not mutate, but people can simply be re-
infected after recovering from the disease.

Initially, epidemic outbreaks spread exponentially fast, because most individuals in
the population are susceptible to the new disease, as happened with the COVID-19 pan-
demic. In a closed and well-mixed population, the number of infected individuals sta-
bilizes after a short time and continues to oscillate around the prevalence, which is de-
fined as the average number of infected individuals. Then, the epidemic process is in
the metastable or quasi-stationary state, because the number of infected individuals re-
mains in the vicinity of the prevalence for a long period of time, whereafter the process
eventually converges to its steady state. The steady state of most epidemic processes is
the overall-healthy state, which corresponds to the situation where the disease has dis-
appeared completely from the population.

We focus in this chapter on one of the simplest epidemic models, namely the SIS
process. Besides the usual infection and curing processes, we consider a third, inde-
pendent self-infection process with self-infection rate ε, which describes background or
indirect infections. Infections may happen either through direct contact or indirectly, for
example, after touching infected surfaces or inhaling air in a closed room previously con-
taminated by an infected individual. Thus, the Markovian ε-SIS model consists of three,
independent Poisson processes: (i) the curing process with rate δ, (ii) infection process
with rate β and (iii) self-infection process with rate ε. Given that the ε-SIS model con-
sists of independent Poisson processes, we can describe the time-dependent behaviour
of the ε-SIS model as a continuous-time Markov chain with 2N states [16]. Continuous-
time Markovian modeling implies that the infection and curing times are exponentially
distributed. However, measurements in real epidemics seem to suggest that the infec-
tion time follows a bell-shaped distribution (such as Gamma, Weibull or lognormal dis-
tribution [17, 18]) which requires non-Markovian analysis, that is, unfortunately, consid-
erably more complex (see e.g. [19]) and is currently insufficiently developed to compute
time-dependent infection probabilities.

The continuous-time Markovian SIS process without self-infections on static net-
works has been investigated thoroughly [6]. Even on the complete graph, quantifying
the average time spent in the metastable state appears challenging [20]. The major
issue is that the metastable state is not stable, but collapses eventually, by a rare oc-
currence of successive curings, to the absorbing or overall-healthy state [21]. Several
approaches have been proposed to quantify the metastable state in the Markovian SIS
model. Jacquez and Simon [22] introduced an epidemic process, that prevents the orig-
inal SIS process from entering the absorbing state at time t . Their reduced SIS model
has a unique steady state, which can be related to the metastable state of the original SIS
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model. Cator and Van Mieghem [23] constructed a similar modified process: If only a
single node is infected, then the modified process forbids the curing of that node. Effec-
tively, their modified SIS process is equivalent to the SIS process, with the exception that
the transitions to the absorbing state have been removed. De Oliveira and Dickman [24]
proposed to store the complete time lapse of the SIS model. Once the process converges
to the absorbing state, the process jumps to a randomly selected sample from the history
of the SIS process. Keeling and Ross [25] and Hill et al. [26] introduced a self-infection
process ε on the complete graph. Besides the usual infection and curing processes, the
nodes in the modified process can be infected by external sources, which are modelled
as self-infections. Van Mieghem and Cator [16] generalised the ε-SIS model from the
complete graph to general networks. Introducing a small amount of self-infections re-
moves the absorbing state, establishes an irreducible Markov chain with a well-defined
steady state different from the overall-healthy state and allows for the comparison be-
tween the ε-SIS model and the SIS model without self-infections. Finally, the 2N -state
Markov chain, described by 2N linear differential equations, is often approximated by a
mean-field approximation with N non-linear differential equations. The simplest mean-
field approximation for the SIS model on networks is called the N-Intertwined Mean-
Field Approximation (NIMFA) and assumes that the infection state of any two nodes is
uncorrelated [27, 28, 29, 30]. A mean-field approximation is generally an adequate ap-
proximation for large, dense graphs with homogeneous transition rates and for infection
rates sufficiently larger than the epidemic threshold. The epidemic threshold, denoted
as τc , is defined as the largest infection rate for which the prevalence decays exponen-
tially fast to zero [31]. The accuracy of NIMFA with respect to the Markovian SIS process
is studied in [32] for various graph types. A key difference is the possibility of die-outs in
the stochastic model, albeit with a very small probability, whereas the mean-field model
either converges to the endemic equilibrium or to the all-healthy state, and excludes the
possibility of sudden die-outs.

The continuous-time Markovian ε-SIS process on the complete graph can be de-
scribed by a birth and death process (BDP). Birth and death processes can be solved
by computing the probability generating function and solving the corresponding par-
tial differential equation [33, 34]. Unfortunately, solving the partial differential equation
seems infeasible for ε-SIS dynamics [35, Appendix A]. On the other hand, one may com-
pute the Rayleigh-Ritz coefficient of the partial differential equations to derive bounds
for the eigenvalues. There are also several approaches to compute the eigenvalues of
BDPs exactly. A possibility is to consider the orthogonal polynomials that correspond to
the BDPs, which are the Tricomi-Carlitz polynomials. The zeros of the Tricomi-Carlitz
polynomials correspond to the eigenvalues of the BDP. Unfortunately, not many results
are known for the zeros of the Tricomi-Carlitz polynomials [36]. Alternatively, one may
solve for the eigenvalues directly, resulting in a continued fraction expansion [5], or one
can also derive bounds on the eigenvalues, e.g. by the Cauchy interlacing theorem or
using a Fokker-Planck approximation [37].

The eigenvalues of Markov chains and their relation to metastability have been stud-
ied in several works. Artajelo [38] studied the second-largest eigenvalue in general Markov
chains in both continuous time and discrete time. Holme and Tupikina [39] computed
the exact second-largest eigenvalue in SIS epidemics for all non-isomorphic graphs with
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3 ≤ N ≤ 8 nodes. For an arbitrary graph size N , exact results of the ε-SIS model can
be obtained only for a few graphs, such as the complete graph and the star graph [23].
For the complete graph with homogeneous transition rates and no self-infections, sev-
eral analytical results have been obtained, such as the average time before extinction
[37, 40, 31, 41] and the average time between the onset of the disease and the arrival at
the metastable state [42, 43].

In this chapter, we study continuous-time Markovian ε-SIS epidemics on the com-
plete graph from an eigenvalue perspective by computing all its eigenvalues. Although
we realise that the complete graph is far from a realistic setting, we derive many qualita-
tive properties of the ε-SIS process which, we believe, may also hold for other graphs. We
describe the continuous-time Markov chain for the complete graph in Section 2.2. We
additionally derive the general solution of the Markov chain. We introduce the concept
of metastability in Section 2.3 and derive the exact mean-field solution in Section 2.4. We
return to the Markovian ε-SIS process in Section 2.5 and provide a detailed analysis of all
eigenvalues. We numerically identify the influence of the infection rate β, self-infection
rate ε and network size N on the eigenvalues in Section 2.6. Finally, we present conclu-
sions in Section 2.7.

2.2. THE ε-SIS PROCESS ON THE COMPLETE GRAPH
The Markov chain M of the ε-SIS process on the complete graph describes the number
of infected individuals M . Since the population consists of N individuals, the number
M of infected nodes ranges from zero to N . Thus, the Markov chain M has N +1 states
with the transition rates [44, p. 474]

M 7→ M +1, at rate (βM +ε)(N −M)

M 7→ M −1, at rate δM

where β denotes the infection rate, δ the curing rate and ε the self-infection rate in the
complete graph KN . The Markov chain M is drawn in Figure 2.1. The Markov chain is
a birth and death process with birth rate Ξk = (βk +ε)(N −k) that is quadratic in k and
death rate µk = δk that is linear in k 1.

We compute the probability that k nodes are infected at time t in the Markov chainM.
Let M(t ) be the number of infected nodes at time t . By introducing sk (t ) = Pr[M(t ) = k]
as the probability that the number M(t ) of infected nodes at time t equals k, the follow-
ing differential equations describe the exact dynamics of the Markov chain M:

d s0

d t
=µ1s1(t )−Ξ0s0(t ),

d sk

d t
=−(Ξk +µk )sk (t )+Ξk−1sk−1(t )+µk+1sk+1(t ), k = 1, . . . , N −1

d sN

d t
=ΞN−1sN−1(t )−µN sN (t ).

1Contrary to the usual notation of the birth rateλ in birth and death processes and queueing theory, we denote
the birth rate as Ξ to avoid confusion with the eigenvalue λ.
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Figure 2.1: The Markov chain M of the ε-SIS process on the complete graph KN with N nodes is a finite birth
and death process with birth rate Ξk = (βk + ε)(N −k) and death rate µk = δk. The state M = 0, ..., N of the
Markov chain denotes the number of infected nodes in the graph. Furthermore, β is the infection rate, δ the
curing rate and ε the self-infection rate.

If the curing rate δ > 0, the ε-SIS process can be simplified by introducing the rescaled
time t̃ = δt . We additionally define the scaled birth rate Ξ̃k = Ξk /δ = (τk + ε∗)(N − k)
and the scaled death rate µ̃k = µk /δ = k, where the effective infection rate τ = β/δ and
effective self-infection rate ε∗ = ε/δ. We emphasise that the scaled time t̃ , the effective
infection rate τ and the effective self-infection rate ε∗ are dimensionless variables. In-
troducing the (N +1)×1 vector s = (s0, ..., sN )T , the linear differential equations can be
written in matrix notation:

d sT

d t̃
= sT P, (2.1)

where P is the (N +1)× (N +1) tridiagonal transition matrix,

P =



−Ξ̃0 Ξ̃0

µ̃1 −(Ξ̃1 + µ̃1) Ξ̃1

µ̃2 −(Ξ̃2 + µ̃2)
. . .
. . .
. . . Ξ̃N−2

µ̃N−1 −(Ξ̃N−1 + µ̃N−1) Ξ̃N−1

µ̃N −µ̃N


. (2.2)

Together with the initial condition s0 = s(0), equation (2.1) describes the exact dynamics
of the continuous-time Markovian ε-SIS process on the complete graph KN , which can
be solved to find

sT (t̃ ) = sT
0 eP t̃ . (2.3)

Using the probability vector of the number of infected nodes s(t̃ ) at time t̃ , one may
compute the average fraction of infected cases y(t̃ ), commonly known as the prevalence,
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as

y(t̃ ) = 1

N

N∑
k=0

k · sk (t̃ ). (2.4)

In the remainder of this chapter, we omit the tilde for the scaled time t̃ for readability.
We intend to show that metastability in the ε-SIS process is directly linked to the

eigenvalues of the transition matrix P . We denote the eigenvalues λ1, . . . ,λN+1, the right-
eigenvectors v1, . . . ,vN+1 and the left-eigenvectors w1, . . . ,wN+1 of the (N + 1)× (N + 1)
transition matrix P . The eigenvalues of the transition matrix P are real, because P is sim-
ilar to a symmetric matrix P̃ and similarity preserves the eigenvalues. The transformed
matrix P̃ is computed in Appendix A.1. The eigenvalues of P and P̃ cannot be computed
analytically for N > 4 because it involves finding the roots of a characteristic polynomial
with degree N . Thus one resorts to numerical methods to obtain the eigenvalues. Once
the eigenvalues are known, the corresponding eigenvectors can be computed analyti-
cally [44, Appendix A.6.3].

Since all eigenvalues are real-valued, we may rank them in decreasing orderλ1 ≥λ2 ≥
. . . ≥ λN+1. Given that the tridiagonal matrix P̃ is symmetric and all off-diagonal terms
are non-zero2, all eigenvalues of P are distinct [45, Lemma 7.7.1]. The same conclusion
follows by computing the probability generating function of the ε-SIS process and con-
cluding that the resulting differential equation is of Sturm-Liouville type [35], which is
known to have simple eigenvalues. The transition matrix P of the ε-SIS Markov chain
has an unique, largest eigenvalue λ1 = 0, which corresponds to the steady state π. The
remaining eigenvalues λ2, . . . ,λN+1 are negative and distinct. The solution (2.3) can be
written as

s(t ) =π+
N+1∑
k=2

ck eλk t wk , (2.5)

where λk is the eigenvalue corresponding to the right-eigenvector wk of the ε-SIS pro-
cess and the constant ck = vT

k s(0) projects the initial vector s(0) on the k-th left-eigenvector
vk [25, equation (2.5)]. The vector s(t ), whose components sk (t ) specify the probability
that k nodes at time t are infected, is decomposed in Eq. (2.5) into N +1 eigenstates of
which the corresponding eigenvectors w1, . . . ,wN+1 span the (N +1)-dimensional vector
space. Each eigenvector wk in Eq. (2.5) is weighted by the coefficient ck eλk t . The eigen-
value λk resembles a rate and has unit 1/time. The contribution of eigenvector wk to
the solution s(t ) decays exponentially over time with decay rate equal to the eigenvalue
λk (the contribution decays because λk < 0). The eigenvalue λk is thus inversely pro-
portional to the average time that the corresponding eigenvector wk significantly con-
tributes to the solution s(t ).

In particular, the second-largest eigenvalue λ2 (sometimes called the convergence
rate, spectral gap, mixing rate or decay parameter) is inversely proportional to the aver-
age time required to converge towards the steady state [38, 46]. The convergence rate
for continuous-time Markov chains and BDPs is thoroughly analysed in probability the-
ory. For an overview of bounds of the convergence rate in Markov chains and BDPs, we
refer to Van Doorn et al. [47] and Artalejo [38] and references therein. If the effective

2Here, we assume that the curing rate δ, the effective infection rate τ and the effective self-infection rate ε∗ are
non-zero.
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self-infection rate ε∗ = 0, then the average time of convergence E[Textinction] = −1/λ2 to
the steady state (or equivalently, the extinction time, survival time or absorption time)
on the complete graph has the following exact relationship [40]:

E[Textinction] =
N∑

i=1

i−1∑
j=0

(N − i + j )!

i (N − i )!
τ j .

Nearly all works consider the SIS process without self-infections. Most proofs for
the convergence rate (e.g. the proof in [40]) are based on the hitting time distribution
of the absorbing state. By introducing the self-infection process, the absorbing state no
longer exists and the proofs therefore do not hold for the ε-SIS process. Fortunately, the
introduction of the self-infection process makes the Markov chain of the ε-SIS process
irreducible, implying that the steady state exists and is also unique. The existence of the
steady state greatly simplifies the analysis of the ε-SIS process for large times, because we
can analyse the behaviour of the conceptually simpler steady state instead of the more
complicated metastable state.

2.3. METASTABILITY IN THE ε-SIS PROCESS
Our primary motivation for researching the eigenvalues of the transition matrix P in
equation (2.2) is the observation of plateau-behaviour in the ε-SIS process [35], which
is illustrated in Figure 2.2. Each curve in Figure 2.2 is computed based on the exact solu-
tion (2.5), where initially a single node is infected. For small effective self-infection rates
ε∗ ≤ 10−5, Figure 2.2 depicts roughly three regimes for the time-varying prevalence: (I)
initial phase, (II) metastable behaviour, and (III) convergence to the steady state. Phase
(I) is characterised by the fast convergence to the metastable state. In the metastable
phase (II), the prevalence y stays nearly constant for an extended period of time. Finally,
phase (III) shows the exponential convergence to the steady state π.

Plateau-behaviour is generally caused by metastability of the dynamical process,
where the infection and curing processes are temporarily in equilibrium (the physical
explanation is presented in [21]). We consider the following definition of metastability
for general dynamical processes that possess a steady state π.

Definition 2.1 A dynamical process is metastable if the process stays in a certain state for
an extended period of time before converging to the steady state π.

We quantify metastability for the ε-SIS process using the eigenvalue ratio, which was first
introduced by Jacquez and Simon [22, p. 85].

Definition 2.2 The eigenvalue ratio ρ is defined as

ρ = λ3

λ2
. (2.6)

The eigenvalue ratio ρ is an indicator for the existence of plateaus [22]. If the eigen-
value ratio ρ is large, then the second-largest eigenvalue λ2 is much larger than the other
eigenvalues λ3, . . . ,λN+1. The influence of the right-eigenvectors w2, . . . ,wN+1 on the so-
lution s(t ) in (2.5), weighted by the exponentials eλk t , will therefore converge much faster
to zero for the eigenvalues λ3, . . . ,λN+1 than for the second-largest eigenvalue λ2.
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Figure 2.2: Plateau-behaviour in the Markovian ε-SIS process on the complete graph. Each curve is com-
puted using the exact solution (2.5) and the parameters are N = 30 nodes, effective infection rate τ =
2.5τ(1)

c = 2.5/(N − 1), the process starts with a single infected node and the effective self-infection rate ε∗ =
{10−2,10−3,10−4,10−5,10−6,10−7,0}. For ε∗ ≤ 10−5, the background colours indicate the current phase of the
ε-SIS process: (I) initial phase, (II) metastable behaviour and (III) convergence to the steady state.

The height of the plateaus in Figure 2.2 equals the prevalence y , which is defined in
Eq. (2.4). Plateau-behaviour, as shown in Figure 2.2, is only clearly observed if the steady-
state prevalence y∞ is sufficiently different from the prevalence in the metastable state
and if the effective self-infection rate ε∗ is sufficiently small. Our definition of metasta-
bility in the ε-SIS process is:

Definition 2.3 The ε-SIS process is metastable if the eigenvalue ratioρ≫ 1 and the preva-
lence y∞ in the steady state is sufficiently different from the prevalence in the metastable
state.

We analyse the case when the metastable prevalence y and the steady-state preva-
lence y∞ are equal in Appendix A.2. We find the powerlaw relation ε∗ ∼ τ−N if τ is
sufficiently larger than the epidemic threshold τc . For further details, we refer to Ap-
pendix A.2.

If the ε-SIS process is metastable, the average time spent in the metastable state is
roughly equivalent to the average time required to converge to the steady state, because
the average time between the onset of the disease and the arrival at the metastable state
is relatively short (see Figure 2.2 for an example).

2.4. MEAN-FIELD APPROXIMATION OF THE ε-SIS PROCESS
The majority of the research in network epidemiology is based on mean-field approx-
imations of stochastic processes. However, the behaviour of the Markovian ε-SIS pro-
cess is intrinsically different from its mean-field approximation, especially regarding the
metastable state. Recently, Prasse et al. [48] solved the continuous-time mean-field SIS
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process on the complete graph KN with arbitrary initial conditions. We derive a similar
result in Theorem 2.4 for the ε-SIS process with self-loops, whereby we added the infec-
tion rates τi i from each node i to itself. Adding self-loops only further upper-bounds the
mean-field approximation from the Markovian solution and have not been added based
on any physical intuition, but instead simplify the exact computation of the mean-field
prevalence in Theorem 2.4. We refer to Appendix A.3 for the derivation of the mean-field
equations, which approximate the exact, Markovian solution s(t ) by the mean-field state
vector sMF(t ).

Theorem 2.4 Consider the mean-field approximation of the ε-SIS process on the com-
plete graph with homogeneous transition rates and self-loops, given by Eq. (A.6) in Ap-
pendix A.3, with arbitrary initial conditions. Then the mean-field state vector sMF(t ) is
equal to

sMF(t ) = c1(t )z1 + c2(t )z2 (2.7)

at every time t . Here, z1 and z2 are orthonormal agitation modes, which are given by

z1 = 1p
N

u, (2.8)

where u = (1, ...,1)T denotes the N ×1 all-one vector, and

z2 =
∥∥(

I −z1zT
1

)
sMF(0)

∥∥−1
2

(
I −z1zT

1

)
sMF(0). (2.9)

The functions cl (t ) = zT
l sMF(t ) ∈R, where l = 1,2, are the projection of the viral state vector

sMF(t ) on the agitation mode zl . The scalar function c1(t ) equals

c1(t ) = 1

2τ
p

N

(
τN −1−ε∗+wε∗ tanh

( wε∗

2
t +Υ1,ε∗ (c1(0))

))
with the viral slope

wε∗ =
√

(1+ε∗−τN )2 +4ε∗τN

and the constant

Υ1,ε∗ (c1(0)) = arctanh

(
1

wε∗

(
2τ

p
N zT

1 sMF(0)−τN +1+ε∗
))

.

The scalar function c2(t ) equals

c2(t ) =Υ2,ε∗ (c2(0))exp

(
−1+ε∗+τN

2
t

)
sech

( wε∗

2
t +Υ1,ε∗ (c1(0))

)
,

with the constant

Υ2,ε∗ (c2(0)) = zT
2 sMF(0)cosh

(
Υ1,ε∗ (c1(0))

)
. (2.10)
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Proof. See Appendix A.3. □

We emphasise that Theorem 2.4 holds for arbitrary initial conditions. If the initial
conditions are symmetric for all nodes, the solution sMF equals the prevalence yMF(t )
and simplifies to

yMF(t ) = τN −ε∗−1

2τN
+ wε∗

2τN
tanh

(
wε∗

2
t + tanh−1

(
ε∗+1−τN +2τN y0

wε∗

))
.

As derived in Appendix A.3, the mean-field prevalence upperbounds the Markovian
prevalence y(t ). Theorem 2.4 states that the mean-field dynamics on the complete graph
can be reduced from N equations to two agitation modes, where one is related to the
initial condition and the other to the steady state. Hence, the metastable state (Phase (II)
in Figure 2.2) does not exist under the mean-field approximation, because the existence
of only two agitation modes does not allow for an intermediate, transient regime.

Figure 2.3 depicts the Markovian prevalence, mean-field prevalence and the exact
mean-field prevalence with self-loops based on Theorem 2.4. Figure 2.3 illustrates that
the mean-field approximation vastly overestimates the time-dependent fraction of in-
fected nodes of the Markovian ε-SIS process, both with and without self-loops. If the
effective infection rate τ is larger than the epidemic threshold τc , Figure 2.3a shows that,
for N = 30, the discrepancy between the mean-field and Markovian prevalence is large
everywhere, except at very small time scales or if ε∗ is very large. Figure 2.3b is situ-
ated around the epidemic threshold τc , where the mean-field approximation is known
to have the worst accuracy [32]. In the limit N →∞, the mean-field approximation error
converges to zero, which we further illustrate in Section 2.6.3. Given that the metastable
state is a key epidemiological quantity and that the metastable state does not exist under
the mean-field approximation, we focus in the remainder of this chapter on the Marko-
vian ε-SIS process.

Besides approximating the Markovian ε-SIS process by a mean-field approximation,
various other approximation methods exist. We investigate an eigenmode approxima-
tion of the Markovian ε-SIS process on KN in Appendix A.4. Unfortunately, for an ac-
curate approximation, the number of eigenmodes scales proportional to the number of
nodes N , rendering the approximation method infeasible for large networks.

2.5. SPECTRUM ANALYSIS OF THE ε-SIS PROCESS

Since the eigenvalues λk are key for the characteristic time scales of the ε-SIS process,
we focus on the determination of the eigenvalues λk of the transition matrix P from
Eq. (2.2). The eigenvalues are computed in several parameter limits in Theorem 2.5.
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Figure 2.3: The exact Markovian solution (solid lines), the mean-field approximation without self-loops
(dashed lines) and exact mean-field solution with self-loops from Theorem 2.4 (dotted lines) of the ε-SIS pro-
cess on the complete graph with N = 30 nodes for various effective self-infection rates ε∗ for (a) effective
infection rate τ= 2.5/(N −1) and (b) effective infection rate τ= 1/(N −1).

Theorem 2.5 The eigenvalues λk of the transition matrix P satisfy3

for ε∗ →∞ λk =−(k −1)ε∗− (k −1)(τ(N +1−k)+1)+O
(

1

ε∗

)
,

for τ→∞ λk =



− 1
4τ(N −1)(N +1)±p

τ(N +1)
√

N−1
2 +O(1), if N odd, k = N+2±1

2

−τ( N
2 −1

)( N
2 +1

)+ N 3

12 + N 2

12 − 5N
6 − 1

3 if N even,

±
√

1+ ( N
2

)3 ( N
2 +1

)2 ( N
2 −1

)+O
(

1p
τ

)
, k = N+2±2

2 ,ε∗ = 1

−τ(k −1)(N −k +1)

+
(
−ε∗(N −k +1)+ (k−1)(N−k+1)(N+1)

(2k−N−3)(2k−N−1)

)
+O

(
1p
τ

)
, otherwise

for ε∗ < 1

N
λN+1 ≳

{
−( 1

2x +1+ x
2

)
N , for x ≥ 1

−2N , for x < 1

for k = 1,2, ..., N +1 and where x = τ/τ(1)
c is the normalised effective infection rate.

Proof. See Appendix A.5. □
Theorem 2.5 states that the eigenvalue ratioρ for large effective self-infection rates ε∗

equals ρ = λ3/λ2 ≈ 2. Thus metastability is not expected if the self-infection process
dominates the infection and curing processes. For large, but finite effective infection
rates τ and effective self-infection rates ε∗, the asymptotic expansions in Theorem 2.5
are only valid if the second term is strictly smaller than the first term, the third is smaller
than the second, etc. For example, the second term in the expansion τ→ ∞ must be
strictly smaller than the first term, which only holds if τ > N + 1 (see Appendix A.5 for

3Contrary to our general consensus that the eigenvalues 0 = λ1 > λ2 > . . . > λN+1 are ordered, the eigenval-
ues λk in Theorem 2.5 are not necessarily ordered.
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Figure 2.4: All eigenvalues λk of the transition matrix P on the complete graph with effective infection rate
τ = 2/(N − 1), effective self-infection rate ε∗ = 0.01/N on (a) linear-linear scale and (b) log-log scale for
k = 1, . . . , N +1. The eigenvalues have been normalised with respect to the number of nodes N . Normalised
index 0 corresponds to the largest eigenvalueλ1 = 0 and normalised index 1 corresponds to the smallest eigen-
value λN+1. The horizontal dash-dotted line indicates the lower bound for λN+1 from Theorem 2.5. The
largest eigenvalue λ1 = 0 is not shown in subfigure (b) because of the logarithmic axis. The inset in (a) zooms
in for 0 ≤ (k −1)/N ≤ 0.05 and shows the critical index k2 as a vertical dash-dotted line. In this example, the
critical index k1 = 0.

the derivation). Hence, the expansions in Theorem 2.5 provide valuable insights into
the eigenvalues λk , even for finite values of the effective infection rate τ and effective
self-infection rate ε∗.

We present here a full numerical analysis of the eigenvalues for finite parameter val-
ues. We compute the eigenvalues of the transition matrix P in Matlab using the com-
mand eig. Figure 2.4 illustrates the normalised eigenvaluesλk /N versus the normalised
index (k −1)/N of the ε-SIS process for k = 1, . . . , N +1. An interesting observation from
Figure 2.4a is the negligible dependence of the network size N on the normalised eigen-
values λk /N . We further investigate the influence of the network size N by simulations
in Section 2.6. Figure 2.4b shows that the second-largest eigenvalue λ2 deviates sig-
nificantly from the other eigenvalues λ3, . . . ,λN+1. The difference between the second-
largest eigenvalueλ2 and the third-large eigenvalueλ3 is the precise reason why we used
the eigenvalue ratio ρ as the starting point for our Definition 2.3 of the metastable state
in the ε-SIS process.

The inset of Figure 2.4a shows a “staircase” for the certain eigenvalues of the ε-SIS
process. We propose to subdivide the eigenvalues into three regimes. We define the crit-
ical index k1 as the start of the staircase and critical index k2 as the end of the staircase.
If the staircase does not exist, we take k1 = k2 = 0. The main plot of Figure 2.4a illustrates
that the eigenvalues λk with k > k2 roughly follow a quadratic relation between the nor-
malised eigenvalues λk /N and the normalised index (k −1)/N . Theorem 2.5 states that
the eigenvalues λk converge to τ(k −1)(N −k +1) if the effective infection rate τ tends to
infinity, which explains the nearly quadratic form for k > k2. On the other hand, the inset
of Figure 2.4a shows staircase behaviour for k1 < k ≤ k2. The staircase is the result of two
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nearly degenerate (but strictly distinct) eigenvalues of the ε-SIS process. If the effective
infection rate τ tends to infinity, the eigenvalues converge to λk → τ(k − 1)(N − k + 1),
which are degenerate because λk = λN−k+2 for all k = 1, . . . , N +1. Even for large, finite
effective infection rates τ, there is a small region k1 < k ≤ k2 where staircase behaviour is
observed, which is illustrated in Figure 2.4.

The staircase behaviour from Figure 2.4a is not always observed. Figure 2.5 illustrates
the dependence of the critical indices k1 and k2 on the effective infection rate τ and the
effective self-infection rate ε∗. Staircases are observed if the critical index k2 > 0 in Fig-
ure 2.5, whereas the critical index k1 indicates the start of the staircase and is only non-
zero for a small region in the (τ,ε∗)-space. If the effective infection rate τ is below the
epidemic threshold τc , both indices k1 = k2 = 0 and no staircases can be observed. In the
limit ε∗ →∞, Theorem 2.5 shows that staircases do not exist, because λk →−(k −1)ε∗
for k = 1, . . . , N +1. In the intermediate regime, where 0 < ε∗ <∞ and τ> τc , the critical
index k2 is often non-zero, indicating staircase behaviour. However, Figure 2.5 addi-
tionally shows small blue regions, where staircase behaviour is not observed. The blue
regions are centred around ε∗ = τ

(
n + 1

2

)
, where n = 0,1,2, . . .. Upon further inspection,

the staircases seem best visible for ε∗ = τn where n = 1,2, . . ..

For a given number of k infected nodes, the total effective infection rate τk(N −k)
and the total effective self-infection rate ε∗(N −k). The effect of both infection processes
is equally strong if its rates are equal, which implies that ε∗ = τk. Thus, the staircases are
best visible if the total rate of the infection process and self-infection process are equally
large. We argue that one eigenvalue of the nearly-degenerate pair is due to the infection
process and one eigenvalue corresponds to the self-infection process. Then, by varying
either τ or ε∗, one of the eigenvalues of the pair must remain unchanged. Figure 2.6
shows the normalised eigenvalues for varying effective self-infection rates ε∗ between τ
and 2τ. Indeed, while the effective self-infection rate ε∗ is varied, one eigenvalue of the
nearly-degenerate pair changes whereas the other stays approximately constant. Thus,
a plausible explanation for the staircase behaviour is a balance between self-infections
and infections between nodes. While Figure 2.6 supports our explanation for the stair-
case behaviour, an analytic proof remains an open research question.

To summarise, we believe that the eigenvalues λk in the regime 2 < k ≤ k1 are related
to self-infection-dominated behaviour, the regime k1 < k ≤ k2 describes when the influ-
ence of the infection and self-infection process is equally strong and the regime k > k2

pertains to the infection-dominated behaviour. Equation (2.11) summarises our find-
ings for the eigenvalues λk of the ε-SIS process:

λk ≈



0 for k = 1,

convergence rate for k = 2,

roughly linear for 2 < k ≤ k1,

staircases for k1 < k ≤ k2,

roughly quadratic for k2 < k ≤ N +1.

(2.11)
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Figure 2.5: The critical indices k1 (left) and k2 (right) for different values of the effective infection rate τ and
the effective self-infection rate ε∗ on the complete graph KN with N = 20 nodes.

2.6. NUMERICAL SIMULATIONS
We perform numerical simulations to examine how the entire set of eigenvalues changes
with the effective self-infection rate ε∗, the effective infection rate τ and the network
size N .

2.6.1. THE INFLUENCE OF THE EFFECTIVE SELF-INFECTION RATE ε∗
First, we examine the influence of the effective self-infection rate ε∗ on the eigenvalues,
by fixing the network size N and the effective infection rate τ. Figure 2.7 shows the abso-
lute value of the eigenvalues of the transition matrix P for varying effective self-infection
rates ε∗.

The ε-SIS process is governed by two infection processes: The infection process and
the self-infection process. All events in the continuous-time Markovian ε-SIS process are
independent, such that the rate to transition from a completely susceptible population
to one infected node is solely governed by the self-infection process and may happen for
every node independently, leading to a total rate ε∗N . Simultaneously, if a single node
is infected, another node is infected with rate τ(N −1). If ε∗N < τ(N −1), the process is
dominated by the infection process, whereas the process is dominated by self-infections
if ε∗N > τ(N −1). For large network sizes N , the influence of the self-infection process
and the infection process is equally large if τ ≈ ε∗. The vertical line in Figure 2.7 indi-
cates the relation τ= ε∗. The minimum of the eigenvalue ratio ρ and the relation τ= ε∗
coincide in Figure 2.7c. At the intersection point τ= ε∗, the minimal eigenvalue ratio ρ
is approximately one. Then both eigenvalues are approximately equal and exhibit stair-
cases in the eigenvalue spectrum, which was discussed in detail in Section 2.5.

The second-largest eigenvalue λ2 changes significantly from ε∗ = 0 to ε∗ = τ, but the
remaining eigenvalues λ3, . . . ,λN+1 stay nearly constant. To the right of the vertical line
in Figure 2.7a, the remaining eigenvalues increase as well. In the limit of large effective
self-infection rates ε∗, it holds that λk ≈−(k−1)ε∗ according to Theorem 2.5. The small-
est eigenvalue λN+1 ≈ −ε∗N and the second-largest eigenvalue λ2 ≈ −ε∗ are shown by
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Figure 2.6: The normalised eigenvalues λk /N on the complete graph KN with N = 20 nodes and τ = 10 for
different effective self-infection rates between ε∗ = 10 and ε∗ = 20. By varying the effective self-infection
rate ε∗, one eigenvalue of the nearly-degenerate pair changes significantly whereas the other remains largely
unchanged.

dashed lines in Figure 2.7a. Thus, the eigenvalues λk increase linearly with the effective
self-infection rate ε∗, because self-infection process dominates the other processes and
drives the ε-SIS process to the all-infected state.

If the effective self-infection rate ε∗ < τ, Figure 2.7 shows that the self-infection pro-
cess barely influences the characteristic timescales of the ε-SIS process, which was also
observed in Figure 2.2. A seemingly contradictory result was obtained by Van Mieghem
[21], who showed that the steady-state prevalence y∞ exhibits an explosive phase tran-
sition at certain small effective self-infection rates ε∗. The difference is that we consider
a fixed effective infection rate τ and vary the effective self-infection rate ε∗, which con-
trasts [21], where the effective infection rate τ is varied for fixed self-infection rates ε∗ = 0
and ε∗ > 0. Performing a similar analysis as [21] on the eigenvalues, Figure 2.8 illustrates
that the second-largest eigenvalue λ2 is heavily influenced by the effective self-infection
rate ε∗. For any finite effective self-infection rate ε∗ > 0, there exists a phase transition
for some effective infection rate τ, where the second-largest eigenvalue λ2 converges to
a constant for large effective infection rates τ. In the limit ε∗ → 0, no such transition is
observed, which is in agreement with [21]. The other eigenvalues λ3, . . . ,λN+1 remain
largely unaffected by considering the limit ε∗ → 0.

2.6.2. THE INFLUENCE OF THE EFFECTIVE INFECTION RATE τ
Analogously to the effective self-infection rate ε∗, we analyse the influence of the ef-
fective infection rate τ on the eigenvalues of the transition matrix P in Figure 2.9. The
vertical line in Figure 2.9 illustrates the mean-field epidemic threshold τ(1)

c = 1
N−1 , which

is slightly smaller than the true epidemic threshold [23, 49]. Below the epidemic thresh-
old τc , the eigenvalue ratio ρ in Figure 2.9c is small. Around the epidemic threshold τc ,
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Figure 2.7: The eigenvalues of the transition matrix P for the complete graph with N = 30 nodes and effective

infection rate τ= 2.5τ(1)
c for varying effective self-infection rates ε∗ on a log-log scale. Subfigure (a) shows the

second-to-fifth-largest eigenvalues λ2,λ3,λ4,λ5 and smallest eigenvalue λN+1 as a function of the effective
self-infection rate ε∗. The vertical line indicates the relation ε∗ = τ. Subfigure (b) is equivalent to (a), but here
the eigenvalue ratio ρ is coloured green (light) and the area with the other eigenvalues is coloured blue (dark).
Finally, (c) shows a plot of the eigenvalue ratio ρ versus the effective self-infection rate ε∗.

the eigenvalue ratio ρ increases rapidly as illustrated in Figure 2.9c.

For large effective infection rates τ, the second-largest eigenvalue λ2 converges to
−ε∗N whereas the remaining eigenvalues λ3, . . . ,λN+1 increase linearly with the effec-
tive infection rate τ, which is in line with Theorem 2.5. Hence, the eigenvalue ratio ρ

tends to infinity if τ→∞ and the system is considered metastable according to our Def-
inition 2.3. For large effective infection rates τ and starting with a non-zero number of
infected nodes, the remaining nodes will be infected extremely quickly. The spreading is
only slowed down by the transition from 0 to 1 infected node. The metastable state here
is the all-healthy state, which takes a considerable amount of time to leave, whereafter
the process converges extremely fast to the all-infected state. The convergence rate from
the metastable state to the steady state, which is −λ2, exactly equals the rate to jump
from 0 to 1 infected node, which is given by the scaled birth rate Ξ̃0 = ε∗N .
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Figure 2.8: Illustration of the explosive phase transition for effective self-infection rates ε∗ > 0 and no phase
transition for ε∗ = 0 for the second-largest eigenvalue λ2. The remaining eigenvalues λ3, . . . ,λN+1 are nearly
indistinguishable for different ε∗. The network size equals N = 30.

The epidemic threshold τc in the Markovian ε-SIS process exhibits a second-order
phase transition4. Van Mieghem and Cator [16, p. 9] derived the following relation for
the epidemic threshold τc for ε-SIS dynamics on the complete graph for large network
sizes N ≫ 1 and for small effective self-infection rates ε∗ < 1

N :

τc,∞ = 1

N +2−2
p

N +1
. (2.12)

We expand both approximations for the epidemic threshold τc for large network sizes
N ≫ 1:

τ(1)
c = 1

N −1
= 1

N

[
1 + 1

N
+O

(
1

N 2

)]
,

τc,∞ = 1

N +2−2
p

N +1
= 1

N

[
1+ 2p

N
+ 2

N
− 1

N
p

N
+O

(
1

N 2

)]
.

Figure 2.9 illustrates that the eigenvalues λ2,λ3 and λ4 reach a minimum at a cer-
tain infection rate τ. We verify our hypothesis that the minimum of λ2,λ3 or λ4 coin-
cides with the true epidemic threshold by plotting the mean-field threshold τ(1)

c , Van
Mieghem and Cator’s threshold τc,∞ and the numerically obtained effective infection
rates τ for which the eigenvalues λ2, λ3 and λ4 attain a minimum in Figure 2.10. Addi-
tionally, we compute the steady-state prevalence y∞ for the ε-SIS process, and take the
derivative of the steady-state prevalence y∞ with respect to the effective infection rate τ.

4A first-order, abrupt phase transition at the epidemic threshold τc exhibits a discontinuity in the first deriva-
tive of the steady-state prevalence y∞. A second-order, continuous phase transition is an interval [a,b] in
which the behaviour of the ε-SIS process gradually changes from nearly exponential die-outs to long-lived
epidemic outbreaks.
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Figure 2.9: The eigenvalues of the transition matrix P for the complete graph with N = 30 nodes and effective
self-infection rate ε∗ = 10−5 for varying effective infection rates τ. Subfigure (a) shows the second-to-fifth-
largest eigenvalues λ2,λ3,λ4,λ5 and smallest eigenvalue λN+1 as a function of the effective infection rate

τ. The vertical line indicates the mean-field epidemic threshold τ(1)
c , which is slightly smaller than the true

epidemic threshold τc . Subfigure (b) is equivalent to (a), but here the eigenvalue ratio ρ is coloured green
(light) and the area with the other eigenvalues is coloured blue (dark). Finally, (c) shows a plot of the eigenvalue
ratio ρ versus the effective infection rate τ. Finally, (a) illustrates the lower bound for the smallest eigenvalue
λN+1 from Theorem 2.5 by a dashed line.

Then the epidemic threshold follows as the effective infection rate τ for which d y∞/dτ
is maximal5. The maximum of d y∞/dτ indicates for which effective infection rate τ,
the steady-state prevalence grows the fastest, which is presumably a good indicator of
the epidemic threshold. Figure 2.10 depicts that the effective infection rate τ where the
minimum λ3 is attained, is very close to the epidemic threshold based on the maximum
of d y∞/dτ. Interestingly, Van Mieghem and Cator’s epidemic threshold τc,∞ is always
larger than the mean-field threshold τ(1)

c , but always lower than the other estimates.
Figure 2.11 shows the steady-state prevalence y∞ and the eigenvalue ratio ρ for vary-

ing infection rates τ. Above the epidemic threshold τc , the eigenvalue ratio ρ increases

5We further investigate the maximum of d y∞/dτ as a function of the network size N in Section 2.6.3.
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Figure 2.10: Several formulas for the suggested epidemic threshold τc for various network sizes N .

significantly and the time-dependent ε-SIS process will show metastable behaviour. Be-
low the epidemic threshold τc , metastability is never observed because the eigenvalue
ratio ρ is small. We conclude here that the epidemic threshold τc not only describes
for which infection rates τ the epidemic persists or dies out, but is additionally a good
descriptor whether the ε-SIS process exhibits metastable behaviour.

For non-complete graphs, we expect that a similar conclusion will hold, but the 2N -
sized Markov chain for general graphs prevents us from rigorously demonstrating this
claim. For connected Erdős-Rényi graphs with N ≤ 12 nodes and a randomly chosen
link-connectivity p, simulations indicate that the eigenvalue ratio ρ and the steady-state
prevalence y∞ show a similar plot as for the complete graph in Figure 2.11.

2.6.3. THE INFLUENCE OF THE NETWORK SIZE N
Finally, we investigate the effect of the network size N on the ε-SIS process. In the
limit N →∞, the Markovian ε-SIS process exactly converges to the mean-field approxi-
mation [50]. Figure 2.12 shows the steady-state prevalence y∞ for various network sizes
and the mean-field steady-state prevalence y (1)∞ = 1−1/x. By increasing the network size
N , the steady-state prevalence y∞ converges to the mean-field approximation. One of
the methods in Section 2.6.2 to estimate the epidemic threshold τc is based on the com-
putation of the derivative d y∞/dτ, which in plotted in Figure 2.12b. We estimate the
epidemic threshold τc based on the peak of d y∞/dτ, which converges to the mean-field
threshold x = 1 if the network size N increases to infinity. All curves have an 1/x2 tail,
which agrees with the mean-field steady-state prevalence d y (1)∞ /dτ= 1/x2.

We further investigate the eigenvalues of the ε-SIS process in Figure 2.13. In Figure
2.13, we scale the effective infection rate τ/N and the effective self-infection rate ε∗/N . If
the effective infection rate τ= 1.5τ(1)

c is larger than the epidemic threshold τc , as shown
in Figure 2.13a, then by fixing k, all eigenvalues λk converge to a constant value in the
limit N → ∞. For example, the second-largest eigenvalue λ2 stays nearly constant for
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Figure 2.12: The normalised effective infection rate x = τ/τ(1)
c versus the steady-state prevalence y∞ for varying

network sizes N and the mean-field steady-state prevalence y (1)∞ = 1− 1
x and ε∗ = 0.01/N .

N ≳ 100. Closer to the epidemic threshold, namely for τ = 1.2τ(1)
c in Figure 2.13b, con-

vergence occurs near N ≳ 600.
The mean-field approximation of the ε-SIS process is often used in network theory

to reduce the computational complexity of the 2N -sized Markov chain. In the limit of
the network size N approaching infinity, the mean-field approximation becomes the ex-
act solution, at least for the complete graph [50]. In practice, however, finite-sized net-
works are also approximated by mean-field methods, introducing an approximation er-
ror. It is known that mean-field methods perform poorly around the epidemic threshold,
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Figure 2.13: The eigenvalues of the transition matrix P for the complete graph with effective self-infection
rate ε∗ = 0.01/N . Both subfigures show the second-to-fifth-largest eigenvalues λ2,λ3,λ4,λ5 and smallest
eigenvalue λN+1 as a function of the network size N . Subfigure (a) corresponds to effective infection rate

τ= 1.5τ(1)
c = 1.5/(N −1) and (b) to τ= 1.2τ(1)

c = 1.2/(N −1).

because the assumed independence of the stochastic variables does not hold. Around
the epidemic threshold, the number of nodes N in the complete graph required to ob-
tain a reasonable accuracy with the mean-field method, tends to increase closer to the
epidemic threshold. We illustrate the aforementioned statement by focussing on the
second-largest eigenvalue λ2 of the transition matrix P . We define the critical network
size Nc as the smallest network size N for which the second-largest eigenvalue λ2 has
a relative error of less than 10−6 compared to λ2 in the thermodynamic limit (i.e. when
N →∞). Figure 2.14 illustrates that the critical network size Nc increases if the epidemic
threshold is approached from above.

2.7. CONCLUSION
In this chapter, we analysed the continuous-time Markovian ε-SIS process on the com-
plete graph with N nodes. The transition matrix corresponding to the underlying Markov
chain has N + 1 distinct eigenvalues, of which the largest eigenvalue is zero and cor-
responds to the steady state. The remaining eigenvalues are all negative and distinct.
Metastable behaviour can be observed in the ε-SIS process if the ratio between the second-
largest and third-largest eigenvalue of the transition matrix is sufficiently large. The re-
maining eigenvalues are nearly degenerate for large effective infection rates, which re-
sults in staircases in the eigenvalue plot. The staircases are best visible if ε∗ = nτ, where
n = 1,2, . . .. The epidemic threshold can be accurately estimated using the effective in-
fection rate for which the third-largest eigenvalue of the transition matrix is the smallest.
We additionally showed that the epidemic threshold does not only distinguish between
small and large epidemic outbreaks, but additionally describes when the ε-SIS process
may exhibit metastable behaviour.

Even though we confined ourselves in this chapter to the complete graph, we believe
that some of our results are physical characteristics of ε-SIS dynamics and may hold for



2

30 2. EIGENVALUE ANALYSIS OF ε-SIS DYNAMICS

2 2.5 3 3.5 4

30

40

50

60

70

80

90

Figure 2.14: The critical network size Nc as a function of the normalised effective infection rate x = τ/τ(1)
c . The

analysis is conducted on the complete graph with effective self-infection rate ε∗ = 0.01/N . The critical net-
work size Nc , which indicates when the ε-SIS process can be safely approximated using a mean-field method,
increases if the normalised effective infection rate x approaches the epidemic threshold xc = 1.

any graph. Monte Carlo simulations show metastable behaviour for the ε-SIS process
on general graphs [35], in non-Markovian SIS epidemics [51] and also in SIS processes
on time-varying or adaptive networks [52]. Therefore, our results on the complete graph
may describe the general physical behaviour of metastability in ε-SIS dynamics on net-
works.



3
ANALYTIC SOLUTIONS OF

COMPARTMENTAL EPIDEMICS

WITHOUT REINFECTIONS

Many epidemic processes on networks can be modelled by compartmental models. The
corresponding compartmental graph describes how the viral state of the nodes changes
from one compartment to another. If the compartmental model does not allow for re-
infections, i.e. the compartmental graph does not contain loops, we provide an analytic
closed-form solution of the continuous-time Markovian compartmental model on hetero-
geneous networks. The exact eigenvalues of the linear Markovian process are related to cut
sets in the graph between nodes with states in different compartments. We illustrate our
finding by analytically solving the continuous-time Markovian SI and SIR processes on
heterogeneous networks. We show that analytic extensions to non-Markovian dynamics,
temporal networks and simplicial contagion are possible.
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3.1. INTRODUCTION
Most research in network epidemiology focuses on so-called compartmental models, in
which the population is subdivided into several groups based on the current viral state
of the individual [6]. General epidemic models are comprised of c compartments. We
assume that interactions only occur between neighbouring nodes and that after such
an interaction, at most one of those nodes changes its viral state. Then the transitions
between compartments can be classified into two types: (i) link-based transitions, such
as the infection of a particular node by another node, which requires a link between
the nodes and (ii) node-based transitions, such as nodes recovering from the disease
[53]. Many results have been obtained in the well-mixed assumption, i.e. all individu-
als can directly contact all other individuals [54] and the contact graph is a complete
graph. In reality, each individual has different characteristics and cannot contact any
other member of the population, leading to heterogeneous behaviour during an epi-
demic [6]. Therefore, we focus in this chapter on epidemic processes on heterogeneous
networks.

Properties of such network-based models are usually computed using mean-field
approximations [8] or Monte-Carlo simulations [55]. The downside is that Monte-Carlo
simulations are known to converge slowly, which is problematic if the probability of a
certain event is small. On the other hand, the mean-field approximation performs well
for homogeneous, well-mixed graphs but is less precise for heterogeneous networks [32].
Instead of resorting to either Monte-Carlo simulations or mean-field approximations,
we focus in this chapter on determining the exact time-dependent solution for general
Markovian compartmental models.

For the computation the exact time-dependent solution, we require an efficient enu-
meration of all states of the underlying Markov chain. Since each of the N nodes can
attain c viral states, the number of states equals cN . The set of all possible states is de-
noted by S. Providing explicit constructions for the states1 and the corresponding in-
finitesimal generators on heterogeneous networks for general Markovian compartmen-
tal models is a tedious task. Several researchers have attempted to construct infinitesi-
mal generators for specific epidemic models on networks. For example, Van Mieghem et
al. [56] provided a construction based on binary numberings for SIS epidemics and for
SIS epidemics with self-infections [16]. Simon et al. [27] suggested a tridiagonal block
structure for the infinitesimal generator of the SIS process. Each block contains con-
figurations with the same number of infected nodes k. Configurations with k infected
nodes can only make transitions to configurations with k +1 and k −1 infected nodes,
such that the infinitesimal generator Q has a block-tridiagonal structure. Economou
et al. [57] developed a similar tridiagonal block structure, but used a different ordering
within each block. For SIR epidemics, López-García [58] groups configurations based on
the number of recovered nodes. Within each block with the same number of recovered
nodes, configurations are grouped based on the number of infected nodes. Within each
block with the same number of recovered and infected nodes, a lexicographical order-
ing is applied. The Generalised Epidemic Mean-Field (GEMF) model by Sahneh et al.
[53] describes disease transmission in general compartmental models, where the state

1Throughout this chapter, we will use state and configuration when referring to one element of the state space
S, interchangeably.
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space is constructed using a tensor product formulation. Merbis [59] proceeded with a
similar tensor product construction to derive the time-dependent equations for general
epidemic models. In this tensor formulation, Merbis and Lodato [60] derived an exact
solution for the SI process on unweighted graphs. Another representation in terms of
a tensor-product formulation for SIR epidemics is provided by Dolgov and Savostyanov
[61].

General compartmental epidemic models, as formalised in the GEMF framework
[53], can be solved by the eigendecomposition of the corresponding infinitesimal gener-
ator. If the compartmental graph is a tree, i.e. the compartmental graph does not contain
any loops, then the corresponding Markov graph is also a tree, whose infinitesimal gen-
erator Q only has upper-triangular non-zero elements. Consequently, the eigenvalues
and eigenvectors can be determined efficiently. If loops or cycles occur, as in the ε-SIS
process from Chapter 2, then the infinitesimal generator Q is no longer upper-triangular
and our solution method is not applicable, because the eigenvalues and eigenvectors
can only be determined numerically, which is infeasible for large graphs.

In this chapter, we present for the first time an analytic closed-form solution of con-
tinuous-time Markovian epidemic processes without reinfections on heterogeneous net-
works. We demonstrate our method by considering SI epidemics in Section 3.2. We
present an in-depth explanation of the eigenvalues of the infinitesimal generator in Sec-
tion 3.2.1 and derive the full solution in Section 3.2.2. We discuss the benefits and dif-
ficulties of the exact solution in Section 3.2.3 and compare our exact results with sim-
ulations in Section 3.2.4. We then generalise our exact solution on non-Markovian dy-
namics, temporal networks, simplicial contagion and self-infections in Section 3.2.5. We
also provide an extensive analysis on SIR epidemics in Section 3.3. We provide exact
eigenvalues in Section 3.3.1, SIR eigenvectors in Section 3.3.2 and the full solution in
Section 3.3.3. We demonstrate the power of our exact method by analytically computing
the time of the epidemic peak in Section 3.3.4. Finally, we conclude in Section 3.4.

3.2. THE SI PROCESS
The Susceptible-Infected (SI) process describes the spread of information, diseases, in-
novations or neural activity over a network. Starting from a single infected node, the
infection spreads to all its neighbours, which again infects their neighbours, until the
whole network is infected [62]. The Markovian SI process is actually a Markovian discov-
ery process, or, equivalently, a stochastic shortest path process [44, Chapter 16]. The SI
process describes spreading phenomena without damping or curing (for example, HIV
viruses in humans or the spread of innovations) or the spread evolves extremely fast,
effectively flooding the population and prohibiting curing or recovering (for example,
epileptic seizures in the human brain [63] and the spread of information on social me-
dia).

The SI process subdivides the nodes into two compartments: the set I ⊆ N of in-
fected (I) nodes are infected, aware or activated and the complementary set S = N \I
of susceptible (S) nodes are healthy, unaware or idle. We further assume that an in-
fection over the direct link from node i towards a susceptible node j is a Poisson pro-
cess with rate βi j and is independent of all other links. By this assumption, the SI pro-
cess is a continuous-time Markov process containing 2N states, because each of the N
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nodes in the graph is either susceptible or infected. The 2N × 1 state vector is s(t ) =
(s0(t ), s1(t ), . . . , s2N−1(t ))T , whose element si (t ) describes the probability that the SI pro-
cess is in state i at time t . Since the process must certainly be, for any time t , in one of

the possible states,
∑2N−1

i=0 si (t ) = 1 for all times t . The transition rates between the states
are denoted by the 2N ×2N infinitesimal generator Q.

We describe the SI process using the labeling in [56]. The idea of the construction
in [16, 56] is that the state i represents the viral state of all N nodes in the graph. We
define the binary variables xk (i ) indicating whether node k is infected in configuration i .
Then the viral state vector x = (xN , xN−1, . . . , x2, x1)T describes the viral state of all nodes.
By regarding the viral state vector x as a binary number, the configuration number i is
computed as

i =
N∑

k=1
xk (i )2k−1,

where xk = 1 if node k is infected and xk = 0 if node k is susceptible. For the complete
graph with N = 4 nodes, the possible transitions for the SIS process are shown in Fig-
ure 3.1. For example, the all-healthy state i = 0 has representation (0000), indicating that
all nodes in state 0 are healthy. Similarly, for state 5 the binary representation is (0101),
indicating that node 2 and 4 are healthy and node 1 and 3 are infected.
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Figure 3.1: The Markov graph or Hasse diagram for the SIS process with N = 4 nodes from [56].

A fundamental property of Markov processes is that events in continuous time oc-
cur sequentially and simultaneous events do not happen almost surely. This means that
transitions between states in the Markov chain can only occur if the binary representa-
tion of those states differs exactly one bit, which is illustrated in Figure 3.1. However, not
all links in Figure 3.1 correspond to actual transitions in the SI process. Contrary to the
SIS process that allows for the curing of nodes, the SI process only considers the infec-
tion process. Hence, the upward-pointing transitions in the Markov graph in Figure 3.1
cannot occur, because upward transitions correspond to the curing process. Further-
more, if the SI process is in the all-healthy state, then the spread never activates, because
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there is no initial infection. Hence, the all-healthy state i = 0 cannot be entered nor left,
thus state i = 0 has no incoming nor outgoing arrows in the SI process. Finally, we re-
mark that the underlying graph G describes the existence of links between pairs of nodes.
Naturally, the existence and weight of the links in the Markov graph are influenced by the
existence of links in the original graph G .

Using the binary notation of the state space S, we describe the transitions between
the states using the 2N ×2N -dimensional infinitesimal generator Q. To simplify the no-
tation, we introduce the N ×N , possibly asymmetric, weighted and non-negative adja-
cency matrix B with elements β̃kl = aklβkl . The elements qi j of the infinitesimal gener-
ator Q for the SI process are [44, Chapter 17]

qi j =
N∑

k=1
β̃mk xk (i ), if j = i +2m−1 (3.1a)

with m = 1,2, . . . , N and xm(i ) = 0.

qi i =−
2N−1∑

j=0
j ̸=i

qi j , (3.1b)

for i , j = 1,2, . . . ,2N . The non-zero elements of the infinitesimal generator Q are visu-
alised in Figure 3.2. The infinitesimal generator Q is an upper triangular matrix, because
in absence of curing events, there is no transition from state i to state j < i because the
number of infected nodes is larger for state i than for state j . The infinitesimal gen-
erator Q for a graph with N nodes can also be constructed recursively in terms of the
infinitesimal generator of a graph with N −1 nodes and then adding one node [16].
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Figure 3.2: The structure of the infinitesimal generator Q for the SI process on a complete graph with N = 7
nodes.

The governing equation for the continuous-time Markov chain is

d sT (t )

d t
= sT (t )Q, (3.2)



3

36 3. ANALYTIC SOLUTIONS OF COMPARTMENTAL EPIDEMICS WITHOUT REINFECTIONS

whose solution is
sT (t ) = sT (0)eQt .

The solution can be further detailed as [56, p. 4]

s(t ) =π+
2N−1∑
i=1

eλi t
ni−1∑
m=0

ri ,m
t m

m!
, (3.3)

where ni denotes the multiplicity of eigenvalue λi , the vector ri ,m is related to the right-
and left-eigenvectors of Q, the initial condition s(0) and the steady-state vector π, which
equals π = (0,0, . . . ,0,1)T . Unfortunately, the infinitesimal generator Q is asymmetric
and is not even normal2, preventing further simplifications in Eq. (3.3).

The SI process is completely described by the set (3.2) of 2N linear differential equa-
tions. Frequently, an exponentially large state space is the fingerprint of a non-linear
process. In particular, SIS and SIR epidemics exhibit a phase transition around the epi-
demic threshold. Below the threshold, the epidemic dies out exponentially fast, whereas
above threshold, a non-zero fraction of the population remains infected over a long time.
On the contrary, the SI process does not exhibit a phase transition, because the SI pro-
cess always converges – given that the process does not start in the all-healthy state – to
the all-infected state, irrespective how small, but non-zero, the infection ratesβi j > 0 are.
For simple graphs with homogeneous transition coefficients3, like the complete graph or
the star graph, an exact analysis is possible [23] by exploiting symmetry of the graph [27].
Otherwise, exactly solving equation (3.2) for the SI process is infeasible for graphs with
N > 15 nodes and one resorts to numerical simulations to solve (3.2). One can simulate
the SI process by Monte Carlo simulations in discrete time [64] or in continuous time
using a Gillespie algorithm [55].

The general solution (3.3) contains the eigenvalues and eigenvectors of the infinites-
imal generator Q. The eigenvalues λi of the infinitesimal generator Q are of primary
importance in the solution (3.3), because the eigenvalues are inversely proportional to
the relaxation time of the corresponding eigenmode. The eigenvalue λi is therefore re-
lated to the average time for the SI process to make a transition from configuration i to
another configuration j . The next section further elaborates on the eigenvalues of the SI
process.

3.2.1. EIGENVALUES OF THE INFINITESIMAL GENERATOR Q
The 2N eigenvalues of the 2N × 2N infinitesimal generator Q of the SI Markov chain
have negative real part and at least one eigenvalue is zero [44]. Since the infinitesimal
generator of the SI process is upper triangular as illustrated in Figure 3.2, the eigenval-
ues of the SI process appear on the diagonal of the infinitesimal generator Q, hence,

λi = qi i = −∑2N

j=i+1 qi j for all i = 0,1, . . . ,2N −1. Prior to describing the physical signifi-
cance of the eigenvalue λi , we introduce some notation.

Each configuration i describes which nodes in the network are infected and which
nodes are susceptible. For a given configuration i , we partition the set of nodes N into

2An N ×N matrix A is normal if it commutes with its conjugate transpose: A A∗ = A∗A.
3Homogeneous infection rates are βkl =β for all nodes k, l , such that B =βA.
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two groups. The group Ii ⊆N defines the set of infected nodes in configuration i . Sim-
ilarly, Si contains the susceptible nodes in configuration i . Each node is either infected
or susceptible, so N = Ii ∪Si for all configurations i . We define the cut set as the set of
links with one node in Si and one node in Ii .

The eigenvalue λi is equal to the sum over all possible transitions from configura-
tion i to any other configuration j , where configuration j differs exactly one bit (one
node) from configuration i . Starting in configuration i , visualised in Figure 3.3, the pos-
sible configurations j are those where one susceptible node will be infected by one of
the already infected nodes. Hence, the eigenvalue λi equals (minus) the sum over all
weighted links in the S-I cut set;

λi =− ∑
k∈Ii

∑
l∈Si

β̃kl , (3.4)

or, following the notation of [44];

λi =−
N∑

k=1

N∑
l=1

xk (i )(1−xl (i ))β̃kl . (3.5)

If the underlying graph G has homogeneous link weights and β̃kl =βakl , where akl spec-
ifies whether a link exists between node k and l , then λi /β equals (minus) the number of
links in the S-I cut set.

Equation (3.4) provides the exact eigenvalue λi for every configuration i . The time-
dependent solution (3.3) shows the implication of the eigenvalues λi . If the eigenvalue
is large (in modulus), the corresponding state will converge exponentially fast to zero.
For small (in modulus) eigenvalues, the convergence is much slower. The SI process
can be regarded as a discovery process, that starts with a set of discovered nodes and
discovers adjacent nodes. If t →∞ on a connected graph, all nodes will be discovered.
Large (in modulus) eigenvalues have a small contribution to the total discovery time, but
small (in modulus) eigenvalues will have a significantly larger contribution to the total
discovery time in the SI process. In particular, a small (in modulus) eigenvalue λi of
a configuration i corresponds to a small weight of the S-I cut set (see Figure 3.3) and it
takes a long time to transfer the disease between these two groups of nodes. The minimal
eigenvalue (equivalent to find the minimum weighted cut in the graph) can be obtained
efficiently using the Stoer-Wagner algorithm [65].

Finally, equation (3.4) illustrates that eigenvalue λ = 0 occurs twice; the all-healthy
state (where Ii =;) and the all-infected state (where Si =;) have an empty cut set and
the corresponding eigenvalue is zero. Hence, the all-healthy state and the all-infected
are both steady states of the SI process. The all-healthy state is unstable, because adding
a single infected node will lead to more infected nodes, whereas the all-infected state is
stable.

Given a configuration i , then the number of infected nodes k in configuration i can
be calculated as

k =
N∑

l=1
xl (i ). (3.6)

For several underlying graphs, the eigenvalues can be computed analytically.
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Infected nodes Susceptible nodes

Figure 3.3: The cut set in SI epidemics on a graph with 9 nodes. The eigenvalueλi that belongs to configuration
i is (minus) the sum over all links in the cut set. The links in the cut set are illustrated by dashed lines.

For the complete graph with homogeneous infection rates, the eigenvalues are

λi =−βk(N −k), with multiplicity

(
N

k

)
where 0 ≤ k ≤ N is the number of infected nodes in configuration i . The SI process on the
complete graph with homogeneous infection rates and starting with a fixed number k of
infected nodes is presumably the easiest SI process, because in this case, the SI process
can be transformed to a birth and death process, whose time-dependent solution can be
calculated exactly [44, Ch. 16]. Starting from k infected nodes and ending with l infected
nodes, the total spreading time is distributed as the sum of independent exponential
random variables with parameters λm , where k ≤ m ≤ l − 1 represents the number of
infected nodes [62, 66].

For the star graph with homogeneous infection rates, the eigenvalues are

λi =
{
−β(N −1−k), if hub infected, multiplicity

(N−1
k

)
−βk, if hub healthy, multiplicity

(N−1
k

)
where 0 ≤ k ≤ N −1 is the number of infected leaf nodes in configuration i . In this case,
the eigenvalues can be simplified to the form λ = −βk with multiplicity 2

(N−1
k

)
for 0 ≤

k ≤ N −1.
For the cycle graph with homogeneous infection rates, the eigenvalues are

λi =−2βp(k, i ),

where p(k, i ) depends on the number of susceptible neighbours of the k infected nodes
in configuration i . Contrary to the complete graph and the star graph, the position of the
infected nodes is crucial in the cycle graph. Starting in configuration i with k infected
nodes, the k infected nodes can be grouped into p ≤ k connected, infectious compo-
nents. The total number of susceptible neighbours is 2p, because each infected com-
ponent connects to two susceptible neighbours. After infecting one of the susceptible
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neighbours, the number of connected, infected components either stays constant or re-
duces by one, because two components will merge if the in-between susceptible node
has been infected. In that case, the number of components reduces to p −1. The num-
ber of connected, infected components can therefore only decrease over time. Since the
eigenvalue λi only decreases (in modulus) over time, the discovery speed of the SI pro-
cess also slows down over time.

In the Erdős-Rényi graph [67] with homogeneous infection rates with weight β= 1,
links exist independent of other links with probability p. The eigenvalue probability dis-
tribution Pr[λ=−l ] of a random configuration i follows from the law of total probability;

Pr[λ=−l ] =
N∑

k=0
Pr[λ=−l | state i has k infected nodes]×Pr[state i has k infected nodes].

Suppose that configuration i consists of k infected nodes. Then the eigenvalue λi = −l
is (minus) the number of links in the cut set of configuration i . The cut set contains
maximally k(N − k) links, where each link exists independently of the other links with
probability p. Hence, the probability distribution is a Binomial distribution with k(N−k)
possible links and probability p;

Pr[λ=−l | state i has k infected nodes] =
(

k(N −k)

l

)
p l (1−p)k(N−k)−l .

The probability for configuration i to have k infected nodes is equal to the probability
for any graph with N nodes to have k infected nodes, which equals 2−N

(N
k

)
. Combining

all, we find

Pr[λ=−l ] =
(

p

1−p

)l

2−N
N∑

k=0

(
k(N −k)

l

)(
N

k

)
(1−p)k(N−k), (3.7)

with the convention that
(k(N−k)

l

)
is zero if l < 0 or l > k(N −k). Hence, the eigenvalue λ

is bounded between λ = 0 and λ = −k(N −k). We plot the exact solution (3.7) with nu-
merical simulations in Figure 3.4, which shows excellent agreement.

3.2.2. THE EXACT SI SOLUTION
A more explicit solution (3.3) of the SI process requires the computation of the eigenvec-
tors of the infinitesimal generator Q. We denote by v0,v1, . . .v2N−1 and w0,w1, . . .w2N−1
the corresponding right- and left-eigenvectors of Q, respectively. The left-eigenvector
w2N−1, corresponding to the all-infected state i = 2N − 1 with eigenvalue λ2N−1 = 0, is
equal to the steady-state vector π:

w2N−1 =π= (0,0, . . . ,0,1)T . (3.8)

The corresponding right-eigenvector is the all-ones vector v2N−1 = (1,1, . . . ,1)T . Since
there are no transitions possible to and from the all-healthy state i = 0 in the SI process,
we remove the all-healthy state from the Markov chain, which reduces the Markov chain
to 2N −1 states.
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Figure 3.4: The eigenvalue distribution of the infinitesimal generator Q of the SI process in an Erdős-Rényi
graph with N = 10 nodes and link-existence probability p = 0.36 averaged over 100,000 simulations. The exact
solution (3.7) is shown as a red dashed line. The simulation results do not follow the exact solution for λ≤−20
because the number of simulations is too small compared to the probability of occurrence of these eigenvalues.

The SI process for homogeneous transitions rates was recently solved by Merbis and
Lodato [60], thus we focus on heterogeneous infection rates βi j . In many practical ap-
plications, the weighted infection rates βi j are real numbers and we can safely assume
the following:

Assumption 3.1 The eigenvalues of the infinitesimal generator Q are distinct.4,5,6

Following Assumption 3.1, the infinitesimal generator Q is diagonalisable and the
left- and right eigenvectors from different eigenvalues are orthogonal: wT

i v j = δi j for all

1 ≤ i , j ≤ 2N−1, whereδ indicates the Kronecker delta function [5]. Then the solution s(t )
in Eq. (3.3) simplifies to

s(t ) =π+
2N−2∑
i=1

ci eλi t wi (3.9)

where the constant ci = s(0)T vi . We remark that (3.9) is equivalent to (2.5) from Chapter 2
for ε-SIS epidemics on the complete graph. Eq. (3.9) does not sum over the all-healthy
state i = 0, because the all-healthy state cannot be reached. Moreover, any infinitesimal

4The eigenvalues may also be degenerate, as long as the algebraic multiplicity equals the geometric multiplic-
ity for all eigenvalues. Then the matrix is diagonalisable and Eq. (3.9) holds. It is, however, unclear when the
algebraic and geometric multiplicities are equal for general graphs.

5Suppose that the weighted infection rates β̃i j are real and independently distributed, the probability that two
eigenvalues are equal is almost surely zero on a finite graph.

6All graphs with homogeneous transition rates do not satisfy Assumption 3.1. We know that in homogeneous
graphs, the eigenvalue equals the number of links in the cut set. Consider one infected node and all other
nodes susceptible, then the size of the cut set exactly equals the infected node’s degree. Since every connected
graph has at least two nodes with the same degree [5], at least one eigenvalue is degenerate.
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generator Q has row sum zero and thus a zero eigenvalue with corresponding all-one
right-eigenvector v2N−1 = u. The corresponding left-eigenvector w2N−1 is the steady-
state vector π, which we placed in front. All left-eigenvectors w (except w2N−1) are or-
thogonal to the right-eigenvector v2N−1 = u, which implies that each left-eigenvector
sums element-wise to zero [5, art. 140–142].

The set of nodes that are initially infected at time t = 0 remain infected for all times
t > 0, because nodes cannot cure. Consider a configuration i in the Markov graph. If
one of the initially infected nodes is susceptible in configuration i , then configuration i
cannot be reached from the initial state and configuration i can be removed from the
Markov graph.

Using Assumption 3.1 and exploiting the upper-triangular structure of the infinites-
imal generator Q, we can explicitly compute the eigenvectors. We say that state i can
reach state j (denoted as i ∼ j ) if there is a directed path in the Markov graph from state i
to state j .

Let us first consider the right-eigenvectors vi . For configurations i that correspond
to one infected node, its right-eigenvector is the basis vector ei . For configurations i
with two infected nodes, the right-eigenvector will have non-zero elements at the posi-
tions that correspond to all states that can reach state i (including state i itself). Let us
consider an example of a graph with N = 3 nodes, provided in Figure 3.5.

1

2 3

1 2

4

(a)

000

001 010 100

011 101 110

111

(b)

Figure 3.5: (a) Example of a weighted graph with N = 3 nodes and (b) the corresponding Markov graph. The
grey nodes can be removed from the Markov graph, because the SI process starts with node 1 infected (indi-
cated by the black node) and all grey nodes indicate configurations where node 1 is susceptible.

Example 3.2 The example graph in Figure 3.5a consists of 3 nodes. Node 1 is initially in-
fected whereas node 2 and 3 are susceptible. The Markov graph in Figure 3.5b is comprised
of only four states: (00), (01), (10) and (11), where (x3x2) represent the viral state of nodes 3
and 2, respectively. We have omitted the viral state of node 1, as node 1 is always infected.
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The infinitesimal generator Q equals

Q =


q00 q01 q02 0
0 q11 0 q13

0 0 q22 q23

0 0 0 0


where q00 = −3, q01 = 1, q02 = 2, q11 = −6, q13 = 6, q22 = −5, q23 = 5. For configuration
0=(00) with eigenvalue λ0 = q00 = −3, the right-eigenvector v0 equals the basis vector
e0 = (1,0,0,0)T . For configuration 1 = (01), the eigenvector can be computed using the
definition;

(Q −q11I )v1 = 0 ⇐⇒
q00 −q11 q01 q02 0 0

0 0 0 q13 0
0 0 q22 −q11 q23 0
0 0 0 −q11 0

 .

The last three rows reveal that (v1)2 = (v1)3 = 0. Now we choose (v1)1 = 1. Then the solution
follows as (v1)0 = q01

q11−q00
= − 1

3 . We conclude that v1 = (−1/3,1,0,0)T and the only non-
zero elements in v1 correspond to configurations that can reach configuration 1. Analo-
gously, we can find v2 = (−1,0,1,0)T . For v3, we obtain

(Q −q33I )v3 = 0 ⇐⇒


q00 q01 q02 0 0
0 q11 0 q13 0
0 0 q22 q23 0
0 0 0 0 0

 .

We choose (v3)3 = 1. Then the elements (v3)2 = − q23
q22

and (v3)1 = − q13
q11

. The element (v3)0

can be computed in the same manner and equals (v3)0 =− q01(v1)1+q02(v1)2
q00

. Here, the itera-
tive nature of the construction is clear; (v3)0 depends on (v3)1 and (v3)2. □

In general, the right-eigenvector vi of a certain configuration i can be constructed
iteratively;

(vi ) j = 0, if state j cannot reach state i

(vi )i = 1, by construction

(vi )h = qi h

λi −λh
=

N∑
l=1

β̃ml xl (h)

λi −λh
, if i −h = 2m ,m = 0,1, . . . , N −1

(vi )g =
2N−1∑
h=0

qhg

λi −λg
(vi )h , if h − g = 2n ,n = 0,1, . . . , N −1

...
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Configurations h and i differ only at position m, which corresponds to node m+1 being
infected in configuration i and susceptible in configuration h. Similarly, configuration g
and h differ only at position n corresponding to node n+1, etc. The iterative formulation
consists of at most N−1 steps, because at each iteration, one node turns from susceptible
into infected, there are N nodes in the graph and we start with at least one infected node.
We emphasise that the eigenvector construction is infeasible for degenerate eigenvalues.

The left-eigenvectors wi can be derived similarly, which leads to

(wi )h = 0, if state h cannot be reached, starting from state i

(wi )i = 1, by construction

(wi ) j =
qi j

λi −λ j
=

N∑
l=1

β̃ml xl ( j )

λi −λ j
, if j − i = 2m ,m = 0,1, . . . , N −1

(wi )k =
2N−1∑

j=0

q j k

λi −λk
(wi ) j , if k − j = 2n ,n = 0,1, . . . , N −1

...

By construction, the eigenvectors are orthonormal wT
i vi = 1 for all configurations i , be-

cause the eigenvectors have only one non-zero value in common, which is the 1 at po-
sition i . Using the right-eigenvectors vi and the left-eigenvectors wi , the solution (3.9)
can be computed explicitly.

3.2.3. COMPUTATIONAL FEASIBILITY
Irrespective of the application domain, the quantity of interest of the SI process should
be computable in a reasonable time. The 2N ×2N infinitesimal generator Q cannot be
computed nor stored if the number of nodes N ≥ 25. Fortunately, the exact solution s(t )
under Assumption 3.1 can be computed without explicitly constructing the infinitesimal
generator Q.

Only the eigenvalues and eigenvectors of the infinitesimal generator Q are required
in the solution (3.9). For a given configuration i , the eigenvalue λi can be computed
based on equation (3.5) in O(N 2) operations. To compute all 2N eigenvalues, we need
O(N 22N ) operations. The iterative procedure to compute a single left- and right-eigen-
vector takes O(N 2N ) operations if the eigenvalues are known. Since there are 2N eigen-
vectors, the total number of required operations to compute all eigenvectors is O(N 4N ).
Hence, for networks with N > 20 nodes, computing all eigenvalues and eigenvectors re-
mains infeasible.

Even though the computation of all eigenvalues and eigenvectors is infeasible for
large networks, for certain quantities of interest, not all eigenvalues or eigenvectors are
required. Here, we consider two exemplary scenarios. First, we consider the prob-
ability Pr[X2(t ) = 1] that node 2 is infected at time t . To compute Pr[X2(t ) = 1], we
sum over all states in S in which node 2 is infected. We introduce the 2N × 1 vector
m = (0,1,1,0,0,1, . . . ,1)T , which is 1 at position j if the binary representation of con-
figuration j has a 1 at position 2, and zero otherwise. Then Pr[X2(t ) = 1] = mT s(t ) and
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using (3.9), we find

Pr[X2(t ) = 1] = mTπ+
2N−2∑
i=1

ci eλi t mT wi . (3.10)

The inner product mTπ = 1, because node 2 will be infected after infinitely long time.
We know that each left-eigenvector wi sums element-wise to zero. Then for all config-
urations i for which the non-zero elements of the left-eigenvector wi overlap with the
non-zero elements of m, the inner product is zero. Only the states i that can be reached
from state 2 will have a zero inner product, which are 2N−1 states. Since ci is non-zero
for 2N−1 states, we conclude that the sum in (3.10) can be simplified from 2N −2 states
to 2N−2 states. Unfortunately, summing over 2N−2 states is still exponentially large and
solving for large networks remains impossible.

As a second example, we consider the probability that all nodes are infected at time t .
We multiply the solution s(t ) with the vector m = (0,0, . . . ,0,1)T , which is the all-zeros
vector, except the last element is one. Regarding the product mT wi in (3.10), we con-
clude that only the last element (wi )2N−1 is of importance. Unfortunately, computing
the last element of the left-eigenvector wi is as difficult as computing the whole vector,
because of the iterative construction of the eigenvector wi .

The provided examples consider two limit cases, namely the infection probability of
a single node and all nodes, respectively. For both examples, exponentially many eigen-
values and eigenvectors are required to build up the solution (3.9). The examples illus-
trate that calculating the exact, time-varying solution of the infection probability in SI
epidemics on large, arbitrary graphs, is generally infeasible.

Fortunately, as we concluded earlier, the large (in modulus) eigenvalues have a small
effect on the dynamics at large times. Presumably, the exact solution (3.9) can be accu-
rately approximated using a truncation method. The number of modes is truncated at
index m, such that the approximated solution s̃ equals

s̃(t ) ≈π+
m∑

i=1
ci eλi t wi . (3.11)

The approximation of Eq. (3.9) by Eq. (3.11) introduces the error

e(t ) = ∥s(t )− s̃(t )∥ =
∥∥∥∥∥ 2N−1∑

i=m+1
ci eλi t wi

∥∥∥∥∥≤
2N−1∑

i=k+1
eλi t∥ci wi∥,

where ∥·∥ is a vector norm and we used the triangle inequality ∥a+b∥ ≤ ∥a∥+∥b∥. Using
the fact that the eigenvectors are normalised, we find

e(t ) ≤
2N−1∑

i=m+1
eλi t∥ci wi∥ < eλm+1t

2N−1∑
i=m+1

|ci |,

such that the error scales as O(eλm+1t ). Similarly to ε-SIS dynamics (see Appendix A.4),
the truncation method performs poor for small times, see Figure 3.6. Only a fraction
of the eigenmodes does not accurately describe the dynamics. The main reason is as
follows. Suppose the SI epidemic starts at a single node that has only one link with a
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very small weight. Under the truncation approximation, the eigenmode corresponding
to the infection from the seed node to the second node will be disregarded, causing a
discrepancy between the true solution and the truncation approximation.
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Figure 3.6: The exact solution (solid line) and the truncated solution (dotted line) with m = N 2 out of 2N states
of the Markovian SI process on an Erdős-Rényi graph with N = 8 nodes. The infection rates βi j are chosen
uniformly at random between βmin = 0.9 and βmax = 1.1. Initially, node 1 is infected.

3.2.4. NUMERICAL SIMULATIONS

We illustrate the accuracy of our exact solution method in Figure 3.7 for two graphs: an
Erdős-Rényi graph with N = 10 nodes and link-connectivity p = 0.33 and a cycle graph
with N = 12 nodes. The simulations start with node 1 infected. The results are averaged
over 10,000 Monte Carlo simulations. We compare our exact solution and the Monte-
Carlo simulations with the N-Intertwined Mean-Field Approximation (NIMFA), which
assumes every pair of random variables is uncorrelated [29]. The exact solution coin-
cides with the Monte Carlo simulations, whereas the mean-field approximation vastly
overestimates the time-dependent prevalence [68].

3.2.5. EXTENSIONS OF MARKOVIAN SI EPIDEMICS

For Markovian SI processes on heterogeneous networks, we have derived the explicit so-
lution (3.9). Here, we extend our results on the SI process to non-Markovian epidemics,
temporal networks, simplicial contagion and the inclusion of self-infections. Addition-
ally, we briefly discuss the difficulties of computing the exact solution for general com-
partmental models.

NON-MARKOVIAN DYNAMICS

Most epidemic models assume a memoryless Markov process, i.e. the probability to in-
fect a neighbour is exponentially distributed over time. Non-Markovian effects in Markov
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(a) (b)

Figure 3.7: The exact solution (solid line), Monte Carlo simulations (asterisks) and the mean-field approxima-
tion (dashed line) of the Markovian SI process on (a) an Erdős-Rényi graph with N = 10 nodes and p = 0.33
and (b) a cycle graph with N = 12 nodes. The infection rates βi j are chosen uniformly at random between
βmin = 0.1 and βmax = 1.1. Initially, node 1 is infected. The mean-field approximation deviates in both cases
significantly from the exact solution.

chains can be taken into account using fractional calculus, as was recently derived by
Van Mieghem [69]. The governing equations (3.2) of the Markov chain change to

DαsT
α(t ) = sT

α(t )Qα, (3.12)

where Dα is the Caputo fractional derivative and 0 <α< 1. As derived by Van Mieghem
[69], the solution (3.9) becomes

s(t ) =π+
2N−1∑
i=1

ci Eα,1
(
(λi t )α

)
wi (3.13)

where Eα,1(z) is the Mittag-Leffler function [70] of the complex number z. Up to our
knowledge, Eq. (3.13) is the first exact solution of an epidemic, non-Markovian process
on an heterogeneous network. The exact solution (3.13) is plotted in Figure 3.8 for 0.5 ≤
α≤ 1. Decreasing α increases the prevalence at short times but slows down the disease
spread for large times. Compared to the Markovian case α = 1, decreasing α increases
the variance of the infection time distribution, causing a large probability of both very
slow and very fast infections. At short times, this results in a larger infection probability,
but it also takes much longer for all nodes to become infected.

TEMPORAL NETWORKS

So far, we have assumed that the network structure is fixed. In reality, networks are vary-
ing over time due to movements of individuals. Given a temporal graph G that changes
finitely many times in the interval [0,T ], each graph Gn in an interval [tn , tn+1] is rep-
resented by the adjacency matrix A(n). We assume that the graph remains connected
at all times. Then we may compute the eigenvectors and eigenvalues for each of those
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Figure 3.8: The exact solution of the non-Markovian SI process with Caputo fractional derivativeα on an Erdős-
Rényi graph with N = 10 nodes. The infection rates βi j are chosen uniformly at random between βmin = 0.9
and βmax = 1.1. Initially, node 1 is infected. The case α= 1 coincides with the Markovian case.

adjacency matrices A(n) and the solution becomes

s(t ) =π+
2N−1∑
i=1

c(n)
i eλ

(n)
i t w(n)

i , tn ≤ t ≤ tn+1 (3.14)

where c(n)
i = s(tn)v(n)

i . Within each interval tn ≤ t ≤ tn+1, the dynamics are equivalent to
the case of the fixed network. Going to the next time interval requires different eigen-
values and eigenvectors, and additionally, the initial condition of the new interval must
equal the final state of the previous interval. Although the eigenvectors and eigenvalues
may be different for each interval, the steady-state vector π is always the all-ones vec-
tor, representing the state in which all nodes are infected, because the graph remains
connected for all times.

SIMPLICIAL CONTAGION

In the study of opinion dynamics on networks, it was observed that multiple neighbours
of a node may be required to persuade a node to adopt a particular strategy or opinion.
Such higher-order spreading phenomena on networks are known as simplicial conta-
gion [71], which was first applied to the SIS model by Iacopini et al. [72]. The conceptual
idea is that, besides node-node interactions, connected infected triangles may increase
the probability of converting a particular node to the other opinion, even larger than the
sum of the individual infection rates. Adding simplicial contagion to the SI process does
not alter the structure of the infinitesimal generator Q, because simplicial infections re-
quire the existence of triangles in the original network structure, whose individual links
already had contributions to the infinitesimal generator. Instead, the link weights corre-
sponding to triangles are increased for certain configurations in the infinitesimal gener-
ator Q. The eigenvalues are no longer the weighted sum over all links in the S − I cut set,
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but additionally include the weighted sum over all 2-infected-1-susceptible-node trian-
gles in the graph. The eigenvectors can be computed in the usual way, such that the
time-dependent solution (3.9) can be recovered.

Figure 3.9: The exact solution of the SI process with simplicial contagion on an Erdős-Rényi graph with N =
8 nodes. The infection rates βi j are chosen uniformly at random between βmin = 0.2 and βmax = 1.0 and
the triangle interaction rate β∆ is taken equal to 0,3 and 100. Initially, node 1 is infected. The Monte Carlo
simulations are shown as red asterisks.

Figure 3.9 illustrates the impact of simplicial contagion on the classical SI process.
Adding the homogeneous simplicial infection rate β∆ increases the prevalence y , but
only up to a certain point, because some parts of the graph do not contain any triangles
and therefore nodes cannot be infected by higher-order simplexes.

SELF-INFECTIONS

Contrary to the standard SI process, where the spread or discovery of items is solely re-
lated to the underlying graph, some spreading phenomena can be triggered by external
processes, which are unrelated to the spread on the graph. For example, individuals or
companies may adopt a certain product or technology without any interference with
others. The situation in which a node becomes infected spontaneously without infer-
ence with other nodes, is described as a self-infection with rate ε. The Bass model de-
scribes the spread of direct infections and self-infections of new products used in com-
panies [12] and is actually equivalent to the SI process with self-infections [16].
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The infinitesimal generator Q of the ε-SI process equals

qi j = εm +
N∑

k=1
β̃mk xk (i ), if j = i +2m−1 (3.15)

with m = 1,2, . . . , N and xm(i ) = 0.

qi i =−
2N−1∑
k=0
k ̸=i

qki . (3.16)

Thus, adding self-infections can both increase the link weight and add more links in
the Markov graph. The resulting infinitesimal generator Q will remain upper-triangular,
because the total number of infected nodes can only increase. In this case, the eigenval-
ues λi describe the weighted sum of the links in the S-I cut set plus the total (possibly
weighted) sum of the self-infection rate of all susceptible nodes in configuration i .

Figure 3.10: The exact solution of the Markovian SI process with self-infections on an Erdős-Rényi graph with
N = 10 nodes. The infection rates βi j are chosen uniformly at random between βmin = 0.9 and βmax = 1.1.
The self-infection rate ε is taken equal to 0,0.3 and 0.7. Initially, node 1 is infected.

Adding the self-infection process to the SI process increases the prevalence signifi-
cantly, as is shown in Figure 3.10. In the limit where the self-infection process is much
larger than the infection process, each node adopts the innovation independent of all
other nodes with an exponential distribution and the total prevalence is just the sum of
N independent exponential random variables.
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3.3. THE SIR PROCESS
Contrary to the SI process, whose applicability is limited, network-based SIR epidemics
has a very rich and long history in modelling network epidemiology [6]. The SIR process
is a transient process, because after being infected, nodes will recover and can never be
re-infected.

We solve the SIR process on a heterogeneous network by proposing a labelling of the
state space based on trinary numerals. We introduce xk as the viral state of node k:

xk = 0, if node k is susceptible

xk = 1, if node k is infected

xk = 2. if node k is recovered

The viral state vector x = (xN , xN−1, . . . , x1)T describes the viral state of all nodes. Given
a particular vector x, we may compute the configuration number using the trinary nu-
merals;

i =
N∑

k=1
xk (i ) ·3k−1.

The trinary numbering ensures that each viral state vector x corresponds to a different
configuration number i , which ranges between i = 0 and i = 3N −1. We further introduce
the variable zk (i ), which equals one if node k is infected in configuration i and is zero
otherwise. Then the infinitesimal generator Q of the SIR process equals

qi j =
N∑

k=1
βmk zk (i ), if j = i +3m−1

with m = 1,2, . . . , N and xm(i ) = 0

qi j = δm zm(i ), if j = i +3m−1

with m = 1,2, . . . , N and xm(i ) = 1

qi i =−
3N−1∑

j=0
j ̸=i

q j i ,

where δm is the curing rate of node m. The Markov graph with 3N states is the graph cor-
responding to the infinitesimal generator Q and specifies all possible transitions. The
Markov graph for a complete graph with N = 3 nodes is shown in Figure 3.11. The ab-
sorbing states are indicated by shaded circles. We observe that the Markov graph is a
directed tree, i.e. a bipartite graph. Moreover, we can define the layer number l = I +2R,
where I represents the number of infected nodes and R the number of recovered nodes
in each configuration. Transitions can only take place from states in layer l to states in
layer l +1. Layers with odd number l do not contain any absorbing states, because an
odd layer number l implies that at least one node must be infected. If a configuration
contains one infected node, that node can always recover, ruling out the existence of
absorbing states in that layer.

Figure 3.12 shows all non-zero elements of the infinitesimal generator Q with N = 4
nodes. Some rows of Q are empty – these rows correspond to absorbing states in the
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Figure 3.11: The Markov graph of the SIR process on the complete graph with N = 3 nodes. Each state (x3x2x1)
encodes the configuration (viral state) of the nodes; susceptible (0), infected (1) and recovered (2). The config-
uration number i is shown in bold.

SIR process (the grey nodes in Figure 3.11). Although the infinitesimal generator Q has
dimensions 3N × 3N , the total number of transitions is much lower. For a given con-
figuration i , the number of possible transitions is given by N , because each node can
change its viral state to at most one other state. Taking into account the possibility of not
making any change, the number of non-zero elements in the infinitesimal generator Q
is upper bounded by (N +1)3N , which is much less than a dense matrix structure with
32N elements.

3.3.1. SIR EIGENVALUES

The eigenvalue λi of the infinitesimal generator Q that corresponds to configuration i
equals

λi =−
N∑

k=1

N∑
l=1

βkl zk (i )(1− zl (i ))−
N∑

k=1
δk zk (i ). (3.17)

The first component specifies the sum over the weighted links in the S-I cut set as in
(3.5), whereas the second part contains the total weighted curing rate of the infected
nodes in configuration i . Each configuration i that does not contain any infected nodes
(i.e. zk = 0 for all k) is an absorbing state and cannot be left. The total number of states
without infected nodes, thus only containing susceptible and recovered nodes, equals
2N . Hence, there are 2N absorbing states. The eigenvalue of an absorbing state equals
λ = 0 and eigenvalue λ = 0 has algebraic multiplicity 2N . To determine the geometric
multiplicity of eigenvalue λ = 0, i.e. solving Qv = 0, we investigate the structure of the
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Figure 3.12: The structure of the infinitesimal generator Q for the SIR process on a complete graph with N = 4
nodes.

infinitesimal generator Q in Figure 3.12. There are 2N rows with only zeros, allowing for
2N free variables in the right-eigenvector v. Hence, the algebraic multiplicity is equal to
the geometric multiplicity for λ= 0 and moreover, the eigenvectors with eigenvalue zero
can be chosen orthogonally.

It remains to verify the uniqueness of the non-zero eigenvalues. Similar as for SI epi-
demics, we require that all infection rates are different. For SIR epidemics, we addition-
ally require that the underlying graph is complete. Consider the non-complete graph G
from Figure 3.13 with a missing link between the orange and black node. Suppose the
black node is infected and the orange node is either susceptible or recovered. All other
nodes are considered susceptible (represented by the cloud). The eigenvalue λ in (3.17)
equals the SI cut set plus the curing rate of the black node. The fact that the orange node
is susceptible or recovered does not influence the eigenvalue λ, because the SI cut set
and the sum over the curing rates are equivalent in both cases. Thus, any non-complete
graph has one or more degenerate non-zero eigenvalues.

From simulations it appears that even in the case of missing links (and subsequently
degenerate eigenvalues), the corresponding eigenspace is of full rank and orthogonal
eigenvectors can be found. Explicit constructions for those eigenvectors are cumber-
some and are omitted here. Instead, we can set infection rates βkl > 0 arbitrarily small
for every non-existing link. The resulting graph is the complete graph with heteroge-
neous infection rates, which can accurately approximate any realistic situation at the
cost of a small error and avoids the computation of the complicated case of degenerate
eigenvalues.

3.3.2. SIR EIGENVECTORS
In a similar fashion as for the SI process in Section 3.2.2, the right- and left-eigenvectors
vi and wi of the SIR process can be constructed. We focus on the right-eigenvector vi ,
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Figure 3.13: The graph G is represented by a green cloud containing susceptible nodes, an infected black node
and the orange node. The link between the black and orange node is missing. Whether the orange node is
susceptible or recovered does not influence the computation of the eigenvalue λ from Eq. (3.17), thus the
eigenvalue λ is degenerate.

but the left-eigenvector wi can be constructed similarly.
For a configuration i that corresponds to one infected node, the right-eigenvector vi

is the basis vector ei . For a configuration i with two infected nodes, the right-eigenvector
vi will have non-zero elements at the positions that correspond to all states that can
reach state i (including state i itself). In fact, we follow the same procedure as for the
SI process. The only exception occurs when λi = 0, which is a degenerate eigenvalue.
Fortunately, for λ = 0 the algebraic and geometric multiplicity are equal, such that the
eigenspace is of full rank and we may choose the eigenvectors of the zero eigenvalues as
standard basis vectors: for configuration i with eigenvalue λi = 0, we choose vi = ei .

The right-eigenvector vi of a certain configuration i can be constructed iteratively;

If λi = 0; then vi = ei

If λi ̸= 0; then

(vi ) j = 0, if state j cannot reach state i

(vi )i = 1, by construction

(vi )h = qi h

λi −λh
=

N∑
l=1

β̃ml zl (h) ·1{xm (h)=0} +δm zm(h)

λi −λh
,

if i −h = 3m ,m = 0,1, . . . , N −1

(vi )g =
3N−1∑
h=0

qhg

λi −λg
(vi )h ,

if h − g = 3n ,n = 0,1, . . . , N −1

. . .

Configurations h and i differ only at position m (corresponding to node m +1), where
node m+1 is infected in configuration i and susceptible in configuration h or node m+1
is recovered in i and infected in h. Similarly, configuration g and h differ only at position
n, corresponding to node n, etc.
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3.3.3. SIR SOLUTION
After the derivation of the orthonormal eigenvectors for the zero and non-zero eigenval-
ues, the infinitesimal generator Q is diagonalisable and the time-dependent solution s(t )
becomes

s(t ) =
3N−1∑
i=0

ci eλi t wi , (3.18)

where ci = s(0)T vi and vi ,wi are the right and left-eigenvector of Q, respectively. Defin-
ing the 3N ×1 vector m, whose elements mi equal the number of infected nodes in con-
figuration i , the time-varying prevalence y(t ) follows as

y(t ) = 1

N

3N−1∑
i=0

ci eλi t mT wi ,

which can be simplified to

y(t ) =
2N−1∑
i=0

c̃i +
3N−2N−1∑

i=0
c̃i eλi t , (3.19)

where c̃i = 1
N ci mT wi . The first term in Eq. (3.19) contains all zero eigenvalues and

the second term contains all non-zero (negative) eigenvalues. Surprisingly, the time-
dependent prevalence y(t ) in (3.19) is just a function of the eigenvaluesλi and the (com-
plicated) variables c̃i .

We can further simplify (3.19). The contribution of all non-zero eigenvalues in the
second term of (3.19) converges exponentially fast to zero for t → ∞, whereas the first
term in (3.19) corresponding to the zero eigenvalues, is fixed. Since the prevalence y → 0
for t →∞, it follows that the first term must be zero. Hence, the solution (3.19) reduces
to

y(t ) =
3N−2N−1∑

i=0
c̃i eλi t . (3.20)

Figure 3.14 shows the exact solution (3.20) and Monte-Carlo simulations, which match
perfectly. For SI epidemics, we considered non-Markovian dynamics using fractional
derivatives, included time-varying contact networks, added higher-order simplicial con-
tagion and added self-infections. The same extensions can straightforwardly be applied
to SIR epidemics.

3.3.4. EPIDEMIC PEAK TIME IN SIR
A key property of SIR epidemics is the epidemic peak time, which is the time at which on
average most nodes are infected. Knowing when the number of infections reaches the
peak allows decision-makers to employ timely countermeasures. If the infection rate
in the SIR process is above the epidemic threshold, then an outbreak occurs with large
probability. After potentially a long time, the disease dies out, exhibiting a peak in the
number of cases at the epidemic peak time. Due to the heterogeneous infection and
curing rates, multiple local extrema may be observed [73].
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Figure 3.14: The exact solution of the Markovian SIR process on a complete graph with N = 7 nodes. The
infection rates βi j are chosen uniformly at random between βmin = 0.2 and βmax = 1.0 and the curing rates δi
are chosen uniformly between δmin = 0.1 and δmax = 0.6. Initially, node 1 is infected.

The epidemic peak can be derived explicitly for the Markovian SIR process. The
derivative of y(t ) in (3.20) equals

y ′(t ) =
3N−2N−1∑

i=0
c̃iλi eλi t . (3.21)

The epidemic peak time tpeak obeys y ′(tpeak) = 0. We determine the epidemic peak
time tpeak using the Newton-Raphson and second-order Newton-Raphson method (see
Appendix B.1 for the derivation). Methods like Newton-Raphson are ultimately suitable
for the determination of the epidemic peak time using our solution, since the derivatives
of y(t ) can be straightforwardly computed with high precision.

Starting with initial guess t̃0, the Newton-Raphson method finds a root t∗ of y ′(t )
iteratively as

t̃k+1 = t̃k −
y ′(t̃k )

y ′′(t̃k )
, (3.22)

and converges, provided that the initial point t̃0 is sufficiently close, to the root t∗. Per-
forming Newton-Raphson on Eq. (3.21) with starting point t̃0 = 0 yields for k ≥ 0:

t̃k+1 = t̃k −

3N−2N−1∑
i=0

c̃iλi eλi t̃k

3N−2N−1∑
i=0

c̃iλ
2
i eλi t̃k

.

The Newton-Raphson method converges quadratically to a local root, which is not nec-
essarily equal to the global maximum or minimum. Similarly, the second-order Newton-
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Raphson method is given by (see Appendix B.1)

t̃k+1 = t̃k +
−y ′′(t̃k )±

√
y ′′(t̃k )2 −2y ′(t̃k )y ′′′(t̃k )

y ′′′(t̃k )
. (3.23)

We verify the accuracy of both approaches by comparing the peak time estimate with
the true epidemic peak time tpeak as follows: On the complete graph with N = 7 nodes,
we repeat 100 times: Draw uniformly distributed βi j ∈ [0.05,0.25] and δi ∈ [0.3,0.5] and
compute for each set of parameters the exact peak time using Eq. (3.21) and the bisection
method. Figure 3.15a shows the time-varying prevalences y(t ) for each of the 100 trials.
The epidemic peak is approximately located at tpeak ≈ 2. Figure 3.15b shows the absolute
difference between the real peak time tpeak and the peak time estimated by the Newton-
Raphson method for k = 0, . . . ,5 iterations. For almost all trials, unfortunately, the error
did not converge to zero. Contrary, the error of the second-order Newton-Raphson (2nd-
NR) method in Figure 3.15c rapidly converges to zero for almost7 all trials. Due to the
cubic convergence of 2nd-NR, only three iterations suffice to accurately approximate
the true epidemic peak time tpeak.

There are multiple reasons why the Newton-Raphson method does not converge
to the true epidemic peak time tpeak. For example, for trials that satisfy y ′(0) > 0 and
y ′′(0) > 0 and starting at t̃0 = 0, Eq. (3.22) tells us that t̃1 < 0. Subsequent estimates t̃k

for k ≥ 1 will converge to even smaller (negative) values. For other trials, it holds that
y ′′(0) > 0 but y ′′(0) is very small. The Newton-Raphson estimate t̃1 is then so large, that
subsequent estimates t̃k will diverge to+∞, as t∗ =∞ is also a valid solution of y ′(t∗) = 0.
Additionally, the prevalence y(t ) can be non-monotonic and exhibits multiple peaks.
Figure 3.16 shows that such an effect can already appear in small graphs (although it is
not very pronounced).

Figure 3.16 additionally demonstrates that the mean-field approximation performs
very poorly. It is known that mean-field approximations perform poorly on small graphs
[74], but allowing for heterogeneous transition rates instead of homogeneous transition
rates leads to even worse mean-field estimates.

3.3.5. PROBABILITY OF k INFECTED NODES
Several properties of the SIR process can be derived from the time-dependent solu-
tion s(t ). For example, the probability that k nodes are simultaneously infected at time
t additionally characterises an epidemic outbreak and can be used to assess the maxi-
mum impact of the disease on the population. Given the solution s(t ), the probability of
k infected nodes can be computed by projecting on the vector m, whose elements mi = 1
if configuration i has k infected nodes. In practice, we count the number of ones in xi

to compute mi . Figure 3.17 shows the probability of k infected nodes in a graph with
7 nodes. At time t = 0, the probability of 1 infected node is 1, whereafter it converges
quickly to smaller values. In this example, the prevalence is rather high, implying that
many nodes can be infected simultaneously. Figure 3.17 illustrates the probability that
all nodes are infected simultaneously is 0.1 at its maximum value, which is very high.

7It might happen that divergence occurs if the third derivative y ′′′(t ) is almost zero, in which case a higher-
order Newton-Raphson should be implemented.
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Figure 3.15: (a) The time-varying prevalence y(t ) in SIR epidemics on the complete graph with N = 7 nodes
for 100 trials. Each trial randomly generated uniform random variables βi j ∈ [0.05,0.85] and δi ∈ [0.1,0.9]. (b)
The derivative of the prevalence y with respect to time t for each of the 100 trials. (c-d) The error of finding
the true epidemic peak using the (c) Newton-Raphson method and the (d) second-order Newton-Raphson
method with 0–5 iterations. Initially, t̃0 = 0. The minimal error for finding the peak time is 10−10, because
the “exact” peak is also determined numerically using the bisection method. Newton-Raphson in (c) does not
converge, whereas second-order Newton-Raphson in (d) almost always converges quickly.

3.3.6. PROBABILITY OF GROUP-LEVEL INFECTIONS
Many stochastic or deterministic models of epidemic on networks focus on the preva-
lence or the probability of k simultaneously infected nodes. The benefit of our exact
method is the ability to exactly determine the probability that any group of k nodes is
simultaneously infected:

y (k)(t ) = 1(N
k

) ∑
S⊆N ,|S |=k

Pr[Xi1 = 1, Xi2 = 1, . . . , Xik = 1].

For k = 1, we recover the prevalence y(t ). We know that y (1)(t ) ≥ y (2)(t ) ≥ . . . ≥ y (N )(t ),
because Pr[X = 1,Y = 1] ≤ Pr[X = 1] for any two random variables X and Y . Figure 3.18
shows the joint infection probability of k groups of nodes on a graph with N = 7 nodes.
All curves roughly exhibit their peak at the same epidemic peak time, but the height of
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Figure 3.16: The exact solution (solid line) and mean-field approximation (dashed line) for SIR epidemics on
the complete graph with N = 7 nodes. The heterogeneous mean-field approximation from Eq. (B.2) poorly
matches the exact solution. Additionally in this example, the Markovian prevalence y(t ) is not monotonic.
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Figure 3.17: The probability of k infected nodes in SIR epidemics on a complete graph with N = 7 nodes and
uniformly generated βi j ∈ [0.4,0.9] and δi ∈ [0.1,0.6]. The probability of 1 infected node starts at 1, whereas all
other curves start at 0.

the peak decreases with increasing k as expected.
The SIR epidemic model exhibits a phase transition around the epidemic thresh-

old. Below the epidemic threshold, the disease dies out exponentially fast and above the
threshold, the disease persists and infects a significant part of the population. It is con-
jectured that around the epidemic threshold, the probability of k groups being infected
is roughly equal for several values of k. The epidemic threshold τc for Markovian SIR
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Figure 3.18: The joint infection probability of k groups of nodes in SIR epidemics on a complete graph with
N = 7 nodes and uniformly generated βi j ∈ [0.4,0.9] and δi ∈ [0.1,0.6].

dynamics is not known, but lower-bounded by the mean-field threshold τ(1)
c , which is

given in Eq. (B.3) in Appendix B.2. Figure 3.19 shows the peak time in (a) and height of
the peak in (b). Around the epidemic threshold, which is approximated located at the
normalised effective infection rate x = τ/τ(1)

c = 1, we do not observe that all curves are
approximately of the same order of magnitude. Most likely, a graph with N = 7 nodes is
too small to exhibit a clear epidemic threshold.
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Figure 3.19: Finding the (a) time and (b) size of the epidemic peak for k groups of infected nodes in SIR epi-
demics on a complete graph with N = 7 nodes and uniformly generated βi j ∈ [0.4,0.9] and δi ∈ [0.1,0.6].
Around the x = 1, which lower-bounds the epidemic threshold, all curves do not have the same magnitude.
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3.3.7. THE LAPLACE TRANSFORM

In the limit of large networks, the solution (3.20) is composed of exponentially many
terms and cannot be computed. Fortunately, we can rewrite (3.20) using Abel summa-
tion in the limit N →∞ to find (see Appendix B.3 for the derivation):

y(t ) = t
∫ ∞

0
e−xt g (x)d x, (t > 0) (3.24)

and where

g (x) =
[λ−1(x)]∑

l=0
c̃l , (3.25)

where [x] indicates the integer part of x and λ−1(x) is the inverse eigenvalue function.

The function g (x) is the inverse Laplace transform of y(t )
t and contains all information

about the prevalence, but is expressed in the frequency x domain, rather than the time t
domain. For the complete graph with N = 7 nodes, Figure 3.20a shows that the con-
tribution of each frequency x exhibits a complicated structure of g (x). Even for a graph
with only 7 nodes, Figure 3.20b shows that the prevalence y(t ) from (3.24) approximately
agrees with the exact solution (3.19). Equation (3.24) is derived under the assumption
N →∞, which is accurate everywhere, except around t = 0. For a finite graph, the initial
condition y(0) = 1/N is a finite number, whereas for N →∞, the initial prevalence con-
verges to zero, causing a discrepancy between the two solutions. We conclude that for
most networks of a realistic size, Eq. (3.24) seems to be an accurate approximation of the
solution (3.18).
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Figure 3.20: (a) The function g (x) from Eq. (3.25) and (b) the exact prevalence (3.18) of the SIR process on a
graph with N = 7 nodes and uniformly generated βi j ∈ [0.4,0.9] and δi ∈ [0.1,0.6]. Additionally, (b) shows the
prevalence computed by the Laplace transform (Eq. (3.24)), the high-amplitude filter with cut-off amplitude
ϵ= 1 and low-pass filter with frequency x ∈ [0,2]. The low-pass filter uses approximately 330 out of 2059 non-
zero eigenvalues.

Instead of the whole function g (x), partial information on g (x) may be sufficient
to reconstruct the time-varying prevalence y(t ). We apply two techniques from signal
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processing to g (x). Method 1 performs a high-amplitude filter, keeping only frequencies
with amplitude larger than some bound ϵ and all other contributions are set to zero;

g1(x) =
{

g (x), g (x) ≥ ϵ
0. otherwise

Second, we employ a low-pass filter, only keeping the contributions of frequencies in the
interval [0, f0];

g2(x) =
{

g (x), x ≤ f0

0. otherwise

The main reason behind g2(x) is that small (in modulus) frequencies correspond to small
(in modulus) eigenvalues, which have the largest contributions in the Laplace transform
(3.24). Figure 3.20b shows the result of applying both filters to g (x). The low-pass filter
is superior to the high-amplitude filter, because small values of x have a more signifi-
cant contribution in the Laplace transform (3.24). Even for an amplitude cut-off ϵ = 1
in Figure 3.20b, which is relatively small, the low-pass filter better approximates the true
solution.

Interestingly, eigenmode truncation (as explained in Section 3.2.3) is only effective
for large times, as shown in Figure 3.21. Eigenmode truncation also maintains the small-
est (in modulus) eigenvalues, but apparently performs much worse compared to the
low-pass filter of the Laplace transform. The primary reason for this discrepancy is that
eigenmode truncation considers finite networks whereas the Laplace transform was de-
rived under the assumption of an infinitely large network. Even for a network with N = 7
nodes, the Laplace transform (3.24) performs better using the same number of eigen-
modes. The advantage of the latter is that the solution can no longer explode around
t = 0 because the t-term in (3.24) guarantees y(0) = 0.
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Figure 3.21: Eigenmode truncation in SIR epidemics on the complete graph with N = 7 nodes and uniformly
generated βi j ∈ [0.4,0.9] and δi ∈ [0.1,0.6]. Approximately 330 out of 2059 non-zero eigenvalues are used.



3

62 3. ANALYTIC SOLUTIONS OF COMPARTMENTAL EPIDEMICS WITHOUT REINFECTIONS

3.4. CONCLUSION
We investigated continuous-time Markovian compartmental models on networks. We
focussed on transient epidemic compartmental models such as SI and SIR, where re-
infections do not appear. Then the compartmental graph describing the transitions be-
tween compartments does not contain loops. We showed that such a continuous-time
Markovian compartmental model admits an analytic solution using eigendecomposi-
tion of the infinitesimal generator. We demonstrated our method on the SI and SIR pro-
cess. We derived the eigenvalues of the infinitesimal generators and showed that they
are related to cut-sets in the graph. Assuming that all non-zero eigenvalues are distinct,
we constructed the exact solution of the SI and SIR process on heterogeneous networks.
Additionally, we showed that the transient compartmental model can be extended by
adding self-infections, simplicial contagion, temporal networks and non-Markovian dy-
namics while maintaining an exact, analytic solution for the time-varying infection prob-
abilities of all nodes.

The advantage of our exact approach is twofold. First, the analytic solution on small
networks can serve as a calibration tool for (non)-Markovian compartmental simulators
on networks and subsequently allows researchers to determine the number of simula-
tion events to achieve a certain accuracy. Second, we showed that the underlying state
space scales exponentially with the number of nodes. Much effort is devoted to sim-
plify the state space, e.g. by aggregating states in the Markov graph. Our exact time-
dependent solution can assess the quality of the proposed aggregation methods in an
exact manner.

Finally, the advance in quantum computers and quantum algorithms may help to
exactly determine the time-varying prevalence for much larger networks. There is an
strong analogy between the viral state of a node in a network and a quantum state of
a particle in a quantum device. Also, the entire state space of a quantum system is
increasing exponentially in the number of qubits. Hence, we expect a computational
breakthrough and an unraveling of the SIR epidemic phase transition with the further
development of quantum computers.
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4
THE GENERALISED ADAPTIVE SIS

PROCESS

In the classical SIS model, a disease or infection spreads over a given, mostly fixed graph.
However, in many real complex networks, the topology of the underlying graph can change
due to the influence of the dynamical process. In this chapter, we assume that the net-
work adaptively changes its topology based on the presence of the virus in the network. An
entire class of link-breaking and link-creation mechanisms, which we name Generalised
Adaptive SIS (G-ASIS), is presented and analysed. For each instance of G-ASIS, the rela-
tion between the epidemic threshold and the effective link-breaking rate is determined to
be either linear, constant or remains unknown. We confirm our theoretical results with
numerical simulations.

This chapter is based on M. A. Achterberg, J. L. A. Dubbeldam, C. J. Stam and P. Van Mieghem, Classification of
link-breaking and link-creation updating rules in susceptible-infected-susceptible epidemics on adaptive net-
works, Physical Review E 101, 052302, May 2020 [75].
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4.1. INTRODUCTION
A major open problem in epidemiology is to understand the effect of people’s personal
responses to an epidemic outbreak. For example, an individual can decide to break con-
tact with other individuals to prevent themselves or others from contracting the disease.
In that case, the local contact network of the individual changes based on the spread
of the disease. Such networks are called coevolutionary or adaptive networks [76, 77],
because the contact network changes due to the spread of the disease in the population.

Many networks can be modelled as adaptive networks. For example, the brain con-
nectome is a highly adaptive network [78]. Opinion networks, in which opinions are
transferred between people, also adapt over time as people commonly prefer to contact
people with similar opinions [79]. Also, time-evolving contact patterns during epidemics
are highly adaptive [80].

One of the first adaptive epidemic models was introduced by Gross et al. [81], which
describes the spread of an SIS epidemic with a link-rewiring process. Each infected node
can infect its healthy neighbour with probability p. Independent of the infection pro-
cess, infected individuals can cure with probability r . To model the adaptive behaviour
of individuals, Gross et al. introduces a link rewiring process. Susceptible nodes may
rewire their link with an infectious neighbour to a randomly chosen susceptible node
with probability w . Gross’s model was analysed extensively [82, 83, 84, 85] and several
other rewiring schemes have been proposed [86, 87, 88, 89, 90]. Link-rewiring schemes
have also been investigated in other epidemic models, such as SIR [91, 92], SIRS models
[93] and on growing networks [94].

The seminal work of Gross et al. [81] allows for the rewiring of links in the network,
but the total number of links in Gross’s model is fixed. Actually, in real-world epidemics,
the number of links in the contact network varies over time, due to natural fluctuations
and disease countermeasures. Several studies have considered a time-varying number
of links. Tunc et al. [7] proposed to break links and automatically restore them after a
fixed time. Zhou et al. [95] investigated growing networks, in which links between sus-
ceptible and infected nodes can be broken. Sahneh et al. [96] considered the interplay
between the disease spread and the spread of awareness on the disease in a multilayer
network. Guo et al. [52] introduced the Adaptive SIS (ASIS) model , where links between
susceptible and infected nodes are not rewired, but broken. Independently, a broken
link between two susceptible nodes can be restored. Hence, the network evolves ac-
cording to two processes: a link-breaking and a link-recreation mechanism. Aside from
epidemiology, the methodology was successfully applied to model the spread of infor-
mation propagation in the Adaptive Information Diffusion (AID) model [97].

In order to gain understanding of how the link dynamics affect the overall dynamics
of adaptive networks, we propose the Generalised Adaptive SIS model (G-ASIS for short).
The versatile G-ASIS model comprises the Adaptive SIS (ASIS) [52] and Adaptive Infor-
mation Diffusion (AID) [97] model by allowing for all possible link-breaking and link-
creation mechanisms. The G-ASIS model assumes that the links between nodes can be
changed based on two processes. On the one hand, the links between two nodes can
be broken with a certain probability. Another rule describes the possibility for links to
be created between two disconnected nodes. The probability for the link-breaking and
link-creation process is dependent on the current viral state of the two end-nodes of the
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link. Hence, the underlying contact network adapts to the spread of the epidemic.
The G-ASIS model was developed independently by Kiss et al. [98]. The major differ-

ence is that they primarily focus on the mean-field approximation of the G-ASIS model,
which is the focus of our Chapter 5. On the other hand, our results in this chapter con-
cern the original Markovian G-ASIS model, which is significantly more complicated.
Moreover, we additionally derive all possible link-updating rules and upper and lower
bounds for the epidemic threshold.

The G-ASIS model assumes local awareness of the nodes on the disease (i.e. nodes
decide to break or create links based on the viral state of the neighbours). On the con-
trary, nodes may hear about reports of the number of infected cases on the news, lead-
ing to awareness on the viral prevalence in the global population, which is called global
awareness [10, 96]. The interplay between both types of awareness is an interesting and
active research area [99]. We further discuss awareness in epidemics in Chapter 6.

This chapter is structured as follows. In Section 4.2, we derive and explain the G-ASIS
model and discuss all possible updating rules of the network dynamics. In Section 4.3,
we derive a lower bound for the epidemic threshold for each of the G-ASIS instances. An
implicit relation for the epidemic threshold is also derived. Next, we present simulation
results in Section 4.4 and finally, we summarize and discuss our findings in Section 4.5.

4.2. GENERALISED ADAPTIVE SIS MODEL
Throughout this chapter, we primarily use terminology and notation from epidemiology
to introduce and explain various concepts, but the results also apply to general spreading
phenomena, ranging from gossips, political preferences, opinions, information spread
in the human brain, raising awareness about a particular event, innovation spread, cas-
cading failures and other spreading processes.

4.2.1. MODEL DESCRIPTION

We consider the spread of a disease over a graph G(N ,L) where N is the set of N nodes
and L is the set of L links. Every node i represents an individual which can be in two
states: infected or healthy. The viral state of node i is denoted by the Bernoulli random
variableXi (t ), which equals Xi (t ) = 1 if node i is infected at time t and Xi (t ) = 0 if node
i is healthy, but susceptible to the disease. An infected node i can infect a neighbouring
susceptible node j via a Poisson process with rate βi j if the two nodes are connected
ai j (t ) = 1 at time t . Independently, an infected node i can recover from the disease with
Poisson rate δi . Thus, the state Xi of the node i changes as follows

d E[Xi (t )]

d t
= E

[
−δi Xi (t )+ (1−Xi (t ))

N∑
j=1

βi j X j (t )ai j (t )
]

. (4.1)

The right-hand side of (4.1) consists of two parts: an infected node i cures with rate δi

and a susceptible node i can be infected by each of its neighbouring infected nodes j
with rate βi j .

Besides the evolution of the spreading process, the graph evolves over time as well.
Here, we present the Generalised Adaptive SIS (G-ASIS) model, which assumes that the
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link ai j between node i and j changes based on two independent processes: (i) a link-
creation process fcr with Poisson rate ξi j and (ii) a link-breaking process fbr with Poisson
rate ζi j . Both the link-breaking and the link-creation process depend on the viral state
of the two nodes attached to the link. Similar to the viral state Xi (t ), the link ai j between
node i and j is also modelled as a Bernoulli random variable. We assume that the in-
teraction between node i and j is symmetric, such that the adjacency matrix A(t ) with
elements ai j (t ) remains symmetric for all times t .

Not all links necessarily adhere to the link-breaking and link-creation mechanisms.
Instead, some links may be (non)-existent permanently. We denote the set of perma-
nently non-existing links in the network by L0 and the set of permanently existing links
by L1. These links do not adhere to the link-creation and link-breaking mechanisms but
instead are always non-existent and existent, respectively, for all times. The remaining
set of linksLadaptive =L\{L0∪L1} evolve according to the link-creation and link-breaking
mechanisms. We denote the number of links of each type by L0,L1 and Ladaptive, respec-
tively.

Then the governing equation for the link ai j is given by

d E[ai j (t )]

d t
=


E
[
−ζi j ai j (t ) fbr(Xi (t ), X j (t ))

+ξi j (1−ai j (t )) fcr(Xi (t ), X j (t ))
]

, if (i , j ) ∈Ladaptive

0, otherwise

(4.2)

where fbr and fcr are the link-breaking and link-creation mechanism, respectively. If the
link-breaking rate ζi j = 0 and the link-creation rate ξi j = 0 for all nodes i , j , then the
process simplifies to the SIS process on a static network. On the other hand, if fbr =
fcr = 1, the network dynamics is decoupled from the disease dynamics and the network
is a temporal network that evolves randomly. An extensive analysis of the decoupled,
non-adaptive case is provided by Kiss et al. [98]. We emphasise that general temporal
networks are not necessarily governed by independent link-breaking and link-creation
mechanisms, but instead follow more complex patterns, including temporal correlations
and cluster formation.

We proceed in the next section by deriving all possible link-breaking and link-creation
mechanisms. We drop the explicit time-dependence of the random variables Xi and ai j

in the remainder of this chapter for clarity.

4.2.2. DERIVATION OF THE UPDATING RULES
The link-breaking mechanism fbr and link-creation mechanism fcr in G-ASIS depend
on the viral state Xi (t ) and X j (t ) of node i and j , but not on ai j (t ) nor explicitly on the
time t . We next determine all possible updating rules for fbr and fcr. For convenience,
a rule is denoted by f and applies to fbr as well as to fcr. Each rule f of a link between
node i and j has Bernoulli random variables Xi and X j as input. Each rule f is a linear
or quadratic function of Xi and X j that evaluates to zero or one, similar to a logical gate.

We classify the updating rules according to the number of possible inputs that give
f = 1. Consider for example the rule f = Xi X j , which is visualised in Figure 4.1. Then,
f = 1 only for Xi = X j = 1. Any other input for Xi and X j yields f = 0. The number of
permutations of this type can be computed as follows. There are four possible inputs
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(combinations of Xi and X j ) and one positive outcome:
(4

1

) = 4. The complying rules
are:

Xi X j , (1−Xi )X j ,

(1−Xi )(1−X j ), Xi (1−X j ).

There are also rules for which two combinations of Xi and X j yield f = 1. As an example,

i j

i j

i j

i j

Figure 4.1: Schematic overview of two connected nodes. Grey nodes are infected nodes, white nodes are
healthy nodes. The decision to break or create the link between node i and j depends on the viral states
Xi and X j . In this example, the link is broken only if Xi = X j = 1, which corresponds to link-breaking rule
fbr = Xi X j .

consider the rule f = (Xi −X j )2. Then f = 1 if Xi is not equal to X j . There are six rules of

this type, because there are four inputs and two combinations;
(4

2

)= 6. These 6 rules are:

(Xi −X j )2, Xi , X j ,
1− (Xi −X j )2, (1−Xi ), (1−X j ).

Thirdly, there are rules for which three combinations of Xi and X j yield f = 1. For ex-
ample, consider f = 1− Xi X j . The function’s result is one if Xi = 0 or X j = 0. The only

situation to find f = 0 occurs when Xi = X j = 1. All four rules of this type, namely
(4

3

)= 4,
are:

1−Xi X j , 1− (1−Xi )X j ,

1− (1−Xi )(1−X j ), 1−Xi (1−X j ).

Two trivial rules have not yet been specified. The trivial rules f = 1 (which occurs in(4
4

)= 1 case) and f = 0 (also in
(4

0

)= 1 case) are independent of the viral state of nodes Xi

and X j . Including the trivial rules, the total number of possible rules is
∑4

k=0

(4
k

)= 24 = 16.

Each of the 16 possibilities for the function f can be rewritten, using the binomial
property E[X 2

i ] = E[Xi ], in the following parametrised form:

f (Xi , X j ) = a +bXi + b̃X j + c Xi X j , (4.3)

where the parameters a,b, b̃,c ∈ Z. Since the assumed network is undirected, the func-
tion f must be symmetric in Xi and X j , which implies that b̃ = b in (4.3). This removes
eight asymmetric updating rules from the original derivation and simplifies (4.3) to

f (Xi , X j ) = a +b(Xi +X j )+ c Xi X j , (4.4)
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where the parameters a,b,c ∈Z.
The trivial updating rules f = 0 and f = 1 are not particularly relevant. Choosing the

updating rule f = 0 for either the link-breaking or link-creation mechanism removes the
mechanism entirely from the governing equation (4.2). Hence, there is an exponentially
fast convergence to the steady-state topology, without any dependence on the SIS pro-
cess. The updating rule f = 1 is also a non-adaptive rule which is independent of the
viral state of Xi and X j . Hence, for our analysis of the epidemic threshold in the G-ASIS
model, the non-adaptive rules are not incorporated.

After the removal of the non-adaptive and non-symmetric rules for the function f ,
only six updating rules remain. Therefore, the link-breaking mechanism fbr and link-
creation mechanism fcr each have six updating rules in the G-ASIS model. Since the
link-breaking mechanism fbr and the link-creation mechanism fcr can be chosen inde-
pendently, and for each of them six updating rules are available, in total 36 Markov pro-
cesses for topology updating are contained in G-ASIS. Each G-ASIS instance contains
two mechanisms: a link-breaking mechanism fbr and a link-creation mechanism fcr,
which are given in general form by equation (4.4). An overview1 of all updating rules is
presented in Table 4.1.

Table 4.1: All updating rules for the link-breaking and the link-creation mechanism in the G-ASIS model. The
rules for the link-breaking and link-creation mechanisms are structured. The inverse of any rule f is 1− f . Also,
taking the multiplication of two rules is equivalent to taking the intersection between the number of times a
positive result for the rules is found.

rule f a b c gate

Xi X j 0 0 1 AND
1−Xi X j 1 0 -1 NAND

(1−Xi )(1−X j ) 1 -1 1 NOR
1− (1−Xi )(1−X j ) 0 1 -1 OR

(Xi −X j )2 0 1 -2 XOR
1− (Xi −X j )2 1 -1 2 XNOR

As an example, we consider the Adaptive SIS model, where the link between a sus-
ceptible node and an infected node is broken to prevent the spreading of the disease.
Hence, the link-breaking mechanism fbr is equal to the updating rule fbr = (Xi − X j )2

and the corresponding parameters in (4.4) are (abr,bbr,cbr) = (0,1,−2). When both end
nodes of a link are susceptible, the link between the nodes is restored. The link-creation
mechanism is therefore fcr = (1−Xi )(1−X j ) with parameters (acr,bcr,ccr) = (1,−1,1).

We assume that the infection, curing, link-breaking and link-creation processes are
all independent Poisson processes, whose combined dynamics can be described by a
continuous-time Markov chain. A schematic overview of the G-ASIS model is shown in
Figure 4.2.

1The number of updating rules can also be derived by regarding power sets. For any updating rule f for the
link ai j , we write the symmetric nodal input as {Xi , X j }. All possible symmetric input combinations for the
rule f are X = {{0,0}, {0,1}, {1,1}}. Each element in X can be zero or one, depending on whether the link can
be changed. The total number of combinations is then given by the power set of X , denoted as 2X , which
contains 23 = 8 elements. Two elements from 2X correspond to the trivial rules f = 0 and f = 1. After removal
of the trivial rules, we find six updating rules for each link-updating mechanism.
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Figure 4.2: An overview of the processes in the G-ASIS model. We show a random example for the link-breaking
and link-creation mechanisms, where the link is broken between susceptible and infected nodes and is cre-
ated between two susceptible nodes. All possible updating rules for the link-breaking and link-creation mech-
anisms are specified in Table 4.1.

We confine ourselves in the remainder of this chapter to homogeneous curing, in-
fection, link-breaking and link-creation rates. Furthermore, we assume that the set of
permanently existing links L1 is empty and the set of adaptive links Ladaptive forms a
connected graph Gadaptive. If the connectivity constraint of the adaptive links is not sat-
isfied, the analysis must be repeated for each component individually. Despite the fact
that we make these assumptions for analytic feasibility only, we expect that the conclu-
sions and insights also hold for heterogeneous rates.

4.3. THEORETICAL RESULTS
One of the main concepts in epidemiology is the epidemic threshold τc . The epidemic
threshold τc in a finite graph specifies a small interval for the effective infection rate
τ=β/δ in which the process quickly changes from the disease-free phase to the endemic
phase [6]. The epidemic threshold τc can be defined as the largest value of the effective
infection rate τ for which the prevalence y exponentially decays to zero over sufficiently
large time [100]. Finding an analytical expression for the epidemic threshold is generally
infeasible due to the complexity of the process. It is, however, possible to derive lower
and upper bounds for the epidemic threshold.

4.3.1. LOWER BOUND ON THE EPIDEMIC THRESHOLD
Following [101], the epidemic threshold τc can be bounded from below. This methodol-
ogy was also successfully applied to the static SIS model [44, Theorem 17.3.1]. We state
one of our main results in Theorem 4.1.

Theorem 4.1 The epidemic threshold τc for the G-ASIS model is bounded from below by

τc ≥ 1

λ1

(
1+ ω(1{abr=0,bbr=1,cbr=−1})− (1{acr=1,bcr=0,ccr=−1}∪{acr=0,bcr=1,ccr=−2})

(1−1{acr=1,bcr=−1,ccr=1})+δ/ξ

)
, (4.5)

where λ1 is the spectral radius (the largest eigenvalue) of the adjacency matrix of adaptive
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graph Gadaptive, ω= ζ/ξ is the effective link-breaking rate and 1x is the indicator function
which is one if condition x is satisfied, and zero otherwise.

Proof. See Appendix C.1. □

For the SIS process on static graphs, it holds that τc ≥ 1
λ1

where λ1 is the spectral
radius of the adjacency matrix [51, 56]. Compared to the static case, Theorem 4.1 states
that the lower bound for the epidemic threshold τc can both increase and decrease by
introducing adaptive link-breaking and link-creation mechanisms. If the link-breaking
coefficients satisfy abr = 0,bbr = 1,cbr = −1 (corresponding to link-breaking rule fbr =
1− (1−Xi )(1−X j )), then the epidemic threshold τc in (4.5) has a non-zero dependence
on the effective link-breaking rate ω, regardless of the choice of the link-creation rule.
Hence, for 6 out of the 36 instances of G-ASIS, the epidemic threshold τc increases at
least linearly with the effective link-breaking rate ω. For the remaining 30 instances in
G-ASIS, satisfying fbr ̸= 1− (1− Xi )(1− X j ), the lower bound in (4.5) is independent of
the effective link-breaking rate ω and is similar to the lower bound of the classical SIS
epidemic threshold. In epidemiology, a high epidemic threshold is preferable, because
the disease only develops into an endemic for higher infection rates. Other areas of ap-
plication, such as information spreading and human brain interactions, benefit from a
low epidemic threshold as fast communication is advantageous for these phenomena.

4.3.2. UPPER BOUND ON THE EPIDEMIC THRESHOLD

We denote the fraction of infected nodes by Z = 1
N

∑N
i=1 Xi . Above the epidemic thresh-

old τc , the process remains for a long time in the metastable state, which was defined in
Chapter 2. In the metastable state, stochastic variables are denoted with an asterisk (*).
We denote by y = E[Z∗] the prevalence in the metastable state. Combining (4.1) and
(4.2), an analytic, implicit quadratic relationship for the metastable prevalence y can be
obtained, similarly as in [52] and [97].

Theorem 4.2 If the adaptive graph Gadaptive is the complete graph, i.e. all links adhere to
the link-breaking and link-creation mechanisms, the metastable prevalence y satisfies the
quadratic equation

y2 +
(

2bcrNτ− (2bcr + ccr)τ+ cbrω+ ccr

ccrNτ

)
y +

(
(N −1)acr

ccrN
− abrω+acr

ccrN 2 E

[
N∑

i=1
d∗

i

]

+Var(Z∗)− (2bbr + cbr)ω+2bcr + ccr

ccrN 2 E

[
N∑

i=1
d∗

i X ∗
i

])
= 0.

(4.6)

Proof. See Appendix C.2. □

The quadratic formula (4.6) for the prevalence y leads to an exact, implicit expression
for the epidemic threshold τc :

Theorem 4.3 If the adaptive graph Gadaptive is the complete graph, i.e. all links adhere to
the link-breaking and link-creation mechanisms, the epidemic threshold τc in the G-ASIS
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model is implicitly given by

τc =
cbr

ccr
ω+1

2
bcr

ccr
(1−N )+1−N h(ω,ξ,τc )

, (4.7)

where h(ω,ξ,τc ) is defined in (C.19) in Appendix C.3. Moreover, for 27 instances of G-ASIS,
the epidemic threshold τc is upper-bounded by a linear function in ω and for 9 instances,
the epidemic threshold is upper-bounded by a constant.

Proof. See Appendix C.3. □
Theorem 4.1 and 4.3 enable us to classify the instances of G-ASIS: some instances

have a linear relation between the epidemic threshold τc and the effective link-breaking
rateω= ζ/ξ and for the other instances, the epidemic threshold τc is independent of the
effective link-breaking rate ω. Comparing the results of Theorem 4.1 and 4.3, two strik-
ing differences appear. First, the lower bound for the epidemic threshold τc in (4.5) is
explicit, whereas (4.7) depends implicitly on the function h(ω,ξ,τc ). Second, the lower
bound in (4.5) concludes that six instances have a linear relation between the epidemic
threshold τc and the effective link-breaking rate ω, which contrasts the upper bound in
Theorem 4.3 which has 27 linear-scaling instances. Subsequently, 27−6 = 21 instances
have an undetermined relation: their lower bound is independent of ω, whereas their
upper bound scales linearly in ω. In Section 4.4, simulation results indicate that unde-
termined relations can exhibit both linear and constant behaviour. The relation between
the epidemic threshold τc and the effective link-breaking rate ω can be summarised as
follows:

6 instances: linear in ω,

9 instances: constant in ω,

21 instances: undetermined.

4.4. NUMERICAL SIMULATIONS
The time in the governing equations (4.1) and (4.2) of the G-ASIS Markov process can be
rescaled by the curing rate δ; hence, we always take δ= 1. For the simulations in this sec-
tion, the continuous-time G-ASIS Markov process is approximated by a sampled-time
Markov chain [44] with a sufficiently small time step ∆t = 0.05. All simulations assume
a complete adaptive graph and start initially with a complete graph and all nodes in-
fected. Each diagram is created by simulating a single simulation for 106 time units. The
metastable prevalence y is obtained by averaging over all times in the interval [105,106].
In all simulations, a small self-infection rate ε has been added, to ensure the G-ASIS pro-
cess does not converge to the absorbing, all-healthy state.

4.4.1. PHASE TRANSITIONS
The relation between the prevalence y and the effective infection rate τ shows a phase
transition from the all-healthy state to the endemic state around the epidemic thresh-
old τc . Such phase transitions are shown for various instances of the G-ASIS model in
Figure 4.3.
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Figure 4.3: The relation between the effective infection rate τ and prevalence y for various instances of the G-
ASIS model. We have taken N = 40, δ= 1, ε= 0.001 and a complete initial network for all models. For (a,b,d,f),
we have taken ζ= ξ= 1, for (c) ζ= 0.5,ξ= 0.1 and for (e) ζ= ξ= 0.1.

The numerical results for the prevalence y in the ASIS model are presented in Fig-
ure 4.3a. Below the epidemic threshold τc ≈ 0.05, the prevalence y is zero. For effective
infection rates τ > τc the prevalence increases rapidly. The growth saturates as the ef-
fective infection rate τ increases and the prevalence y asymptotically increases to 1 as
τ→∞.

The Adaptive Contagious SIS (ACSIS) model is a variation on the ASIS model, where
links are not only broken between susceptible and infected nodes, but also between two
infected nodes. The reasoning behind ACSIS is that two people suffering from a disease
are more likely to stay at home, effectively breaking links with each other. The epidemic
threshold of ASIS (Figure 4.3a) and ACSIS (Figure 4.3b) are nearly equivalent, although
the metastable prevalence y is generally lower in the ACSIS model. Due to the extra link-
breaking rule in the ACSIS model, the disease is able to spread less quickly, causing the
prevalence to decrease.

In contrast to the ASIS and ACSIS model, the Adaptive Information Diffusion (AID)
model describes the spreading of information. In the AID model, nodes represent people
and links their social interactions. The link between two susceptible nodes can be bro-
ken, because both nodes are not aware of the information and are no longer interested to
upkeep their relationship. The link between susceptible and infected nodes can be cre-
ated to enhance the propagation of information. Figure 4.3c shows that the metastable
prevalence y heavily oscillates above the epidemic threshold τc . The reason is that the
AID process is bistable, where both the all-healthy state and the endemic state are stable.
Since Figure 4.3c is produced by a single iteration, a simulation may stay for a long time
in either of the stable states, causing large differences across simulations with different
infection rates τ. We further explain this phenomenon in Chapter 5.

The Adaptive Brain Network (ABN) model describes information transport in the hu-
man brain. Nodes represent different regions in the human brain and links specify the
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connections between the brain regions. The nodes can be active (infected) or inactive
(healthy) at any time T . From a control system point of view, the human brain incor-
porates two brain operational principles: (a) Hebbian learning, where two actively com-
municating nodes continuously try to improve their communication channel (i.e. in-
creasing the weight of their link, known as their synaptic strength) and (b) homeostatic
plasticity [102], which reduces the interaction strength between two connected nodes
to prevent a positive coupling generated by Hebbian learning. The ABN model consid-
ers homeostatic plasticity to be the primary link-adaptation mechanism. Other G-ASIS
instances may be used to describe Hebbian learning. Thus, new links can be created be-
tween two inactive nodes and existing links can be removed when both nodes are active.
When one node is infected and one is healthy, the link between the nodes is preserved.
The phase transition in Figure 4.3d is comparable to the ASIS model, although the epi-
demic threshold τc is smaller and the ascent of the prevalence y is steeper around the
epidemic threshold.

Another instance of the G-ASIS model is the Scientific Collaboration Model (SCM),
where nodes represent researchers showing interest (or not) in a particular research area.
Links represent collaborations between researchers. Researchers can spread their inter-
est to collaborating, connected researchers. Independently, researchers can lose, forget
or do not pay attention to the research area. Besides the infection process, the network
is evolves in the following way. Researchers can break their link if both are not interested
in the research area. Since there is a potential collaboration between susceptible and
infected researchers, their link persists. Finally, the link can be created between two re-
searchers who are both interested, but are not yet collaborating. The phase diagram in
Figure 4.3e is comparable to the ABN model in Figure 4.3d, however, the ascent of the
prevalence y is very steep around the epidemic threshold τc .

The Adaptive Fake News Diffusion (AFND) model describes the spread of fake news
in a social network. The nodes in the AFND model represent people who either believe
or do not believe a fake news item. People are connected to other people over adap-
tive links. Infected nodes try to persuade healthy, neighbouring nodes to believe the
fake news item. Simultaneously, infected nodes may ‘cure’ from the fake news. Links in
the AFND model can be broken between susceptible and infected nodes based on so-
cial awareness against fake news. Simultaneously, two healthy nodes have no interest in
keeping their relationship regarding the fake-news item, so their link can be broken. Ad-
ditionally, links are assumed to be created between healthy and susceptible nodes since
fake news items are mostly sensational and may trigger interest between the two peo-
ple to connect with each other. Hence, the spreading of fake news causes links between
susceptible and infected nodes to be created and broken simultaneously. The phase di-
agram of the AFND model, shown in Figure 4.3f, is similar to that of the ASIS and ACSIS
model in Figure 4.3a and 4.3b respectively.

4.4.2. RELATION BETWEEN THRESHOLD AND LINK-BREAKING RATE

Although the epidemic threshold was shown for various G-ASIS instances in Figure 4.3,
the quantitative effect of the link-updating mechanisms on the spreading of the disease
remains unclear. Thus, we investigate the relation between the epidemic threshold τc

and the effective link-breaking rate ω for various G-ASIS instances in Figure 4.4. The
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Figure 4.4: The epidemic threshold τc as a function of the effective link-breaking rateω for four instances of the
G-ASIS model. The data points are obtained from simulations and the solid line represents the lower bound
from Theorem 4.1. The theory predicts a constant relationship (b) or is undetermined (a,c,d). We have taken
N = 40, δ= ξ= 1, ε= 0.001 and a complete initial network.

dots represent numerical simulations whereas the solid line represents the lower bound
from Theorem 4.1. The result from Theorem 4.3 is not shown in Figure 4.4 because (4.7)
is merely an implicit relation for the epidemic threshold τc . The AID model in Figure 4.4b
shows nearly constant behaviour, which is in agreement with Theorem 4.3. For the ASIS,
SCM and ABN models, shown in Figure 4.4a, 4.4c and 4.4d, respectively, the theory was
not conclusive about the relation between the epidemic threshold τc and the effective
link-breaking rate ω. Figure 4.4a shows a clear linear relationship and Figure 4.4d de-
picts a nearly constant relationship. In contrast, the relation in Figure 4.4c appears to be
linear, but the relatively small slope indicates a weak relationship between the effective
link-breaking rate ω and the epidemic threshold τc .

4.4.3. THE METASTABLE TOPOLOGY

In the G-ASIS model, the topology of the underlying graph is constantly changing over
time. Nevertheless, the graph remains approximately constant in the metastable state.
The characteristics of the metastable graph are of interest and contribute to the under-
standing of the interplay between disease spreading and topology updating. Any graph
metric can be measured in the metastable state, but we focus here on the easiest metric:
the number of links L. When the effective infection rate τ is smaller than the epidemic
threshold τc , the metastable prevalence y is zero and the average number of links E[L]
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Figure 4.5: The relation between the effective infection rate τ and the average fraction of links E[L]/( 1
2 N (N−1))

for two instances of the G-ASIS model. We have taken N = 40, δ = 1, ε = 0.001 and a complete initial network
for all models. Subfigure (a) shows the ASIS model with ζ = ξ = 1 and (b) illustrates the AID model with ζ =
0.5,ξ= 0.1.

equals

E[L] =
{

acr
abrω+acr

1
2 N (N −1), for acr ̸= 0 or abr ̸= 0

c, otherwise
(4.8)

for any c ∈ [0,1]. Equation (4.8) follows from (4.6) by substituting an all-healthy popula-
tion y = 0. However, the number of metastable links in the endemic state τ> τc cannot
be computed from neither (4.6) nor (4.7) in closed form. Thus, we resort to simulations
to obtain the average number of links in the metastable state.

Figure 4.5 illustrates the fraction of links in the metastable state for two instances of
G-ASIS. The ASIS model in Figure 4.5a starts with a completely connected graph at τ= 0,
because the prevalence is zero and the link-breaking mechanism between susceptible
and infected nodes is rarely used. If the effective infection rate τ is larger than the epi-
demic threshold τc , the prevalence y is non-zero (see Figure 4.3a) and the link-breaking
mechanism reduces the fraction of links. As the effective infection rate τ increases up to
infinity, the prevalence y increases to 1 and the link-creation mechanism between two
susceptible nodes is rarely activated. Hence, the fraction of links decreases to zero. For
the AID model in Figure 4.5b, we observe opposite behaviour. If the effective infection
rate τ is smaller than the epidemic threshold τc , the prevalence y is zero. In the AID
model, links are broken between susceptible nodes and created between susceptible-
infected pairs. If the prevalence is zero, there are no infected nodes and if a node gets
infected, the node removes all connections to neighbouring nodes. Thus, the metastable
graph does not contain any links. In the endemic state τ> τc , the prevalence y increases,
which enables the creation of links in the network. As the effective infection rate τ ap-
proaches infinity, the prevalence increases to 1. Then the fraction of links also converges
to 1 as τ → ∞, because the link-breaking rule between susceptible nodes in the AID
model is rarely used, as there are hardly any susceptible nodes.

4.4.4. SUMMARY
Table 4.2 summarises the obtained results in this chapter. For the ACSIS model, the
epidemic threshold τc is a linear function of the effective link-breaking rate ω and the
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metastable state always exists. The AID model, which has a constant relation between
the epidemic threshold τc and the effective link-breaking rate ω, possesses a bistable
state above the epidemic threshold. Unfortunately, the relation between τc and ω in the
ASIS, AFND, ABN and SCM models could not be determined. The simulations support
the hypothesis that the lower bound is strict for the ABN model and the linear bound is
correct for the ASIS, AFND and SCM model, indicating that both the upper and lower
bound can be tight for different instances of the G-ASIS model.

Table 4.2: A selected set of instances from the G-ASIS model and their properties. The table assumes δ= 1. The
variable λ1 denotes the spectral radius of the adjacency matrix of the adaptive graph Gadaptive.

Model name
and

appearance in
literature

Updating rules

(link-breaking)
(link-creation)

Bistable
state

Lower bound
epidemic

threshold τc

Upper bound
epidemic

threshold τc

ASIS model (Xi −X j )2
No

1

λ1
Linear

[7, 52, 97] (1−Xi )(1−X j )

ACSIS model
1− (1−Xi )(1−X j )

No
1

λ1
(1+ωξ) Linear

(1−Xi )(1−X j )

AID model [97]
(1−Xi )(1−X j )

Yes
1

λ1

(
1

1+ξ
)

Constant
(Xi −X j )2

ABN model
Xi X j No

1

λ1
Linear

(1−Xi )(1−X j )

SCM model
(1−Xi )(1−X j )

No
1

λ1
Linear

Xi X j

AFND model
1−Xi X j No

1

λ1

(
1

1+ξ
)

Linear
(Xi −X j )2

4.5. CONCLUSION
The Generalised Adaptive SIS (G-ASIS) model was introduced in this chapter to describe
the spread of contagious processes on adaptive networks. The G-ASIS model consists of
two adaptive mechanisms: links between nodes can be broken and created, based on
the viral state of the nodes. We showed that for each mechanism, six updating rules are
available. Hence, the G-ASIS model contains 36 adaptive processes. For all 36 instances,
we derived a relation for the prevalence in the metastable state. We also showed that
the relation between the epidemic threshold τc and the effective link-breaking rate ω is
linear for 6 instances and constant for 9 instances, but could not be determined for the
remaining 21 instances.



4.5. CONCLUSION

4

79

One possible method to further determine the relation between the epidemic thresh-
old τc and the effective link-breaking rate ω, is using mean-field approximations. The
next chapter explores mean-field approximations of the G-SIS model in further detail.





5
THE GENERALISED ADAPTIVE SIS

PROCESS – MEAN-FIELD

The Generalised Adaptive SIS (G-ASIS) model from Chapter 4 extends the classical SIS con-
tagious process to a time-evolving network. The network is assumed to change based on
decisions of nodes to create or break connections with their susceptible or infected neigh-
bours. Unfortunately, the complexity of the Markovian G-ASIS model is high and analytic
results are scarce. To overcome the high complexity, we focus in this chapter on mean-
field approximations. Our contribution is fourfold. First, we rigorously derive the first-
order and second-order mean-field approximations from the continuous-time Markov
chain. Second, we illustrate that the first-order mean-field approximation fails to ap-
proximate the epidemic threshold of the Markovian G-ASIS model accurately. Third, we
show that the second-order mean-field approximation is a qualitative good approxima-
tion of the Markovian G-ASIS model. Finally, we show that the AID model exhibits a
bistable metastable state, which contrasts most other G-ASIS instances that show a sta-
ble metastable state. Our theoretical results are supported by numerical simulations.

This chapter is based on M. A. Achterberg and P. Van Mieghem, Moment closure approximations of susceptible-
infected-susceptible epidemics on adaptive networks, Physical Review E 106, 014308, Jul 2022 [103].
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5.1. INTRODUCTION
The Generalised Adaptive SIS (G-ASIS) model was introduced in Chapter 4 to describe
the spread of contagious phenomena on an adaptive network. Besides exact lower bounds
on the epidemic threshold and implicit solutions for the metastable prevalence, no ex-
act results could be derived for the Markovian G-ASIS model. Even though the G-ASIS
model is a Markov chain, which is a linear process, exact solutions are scarce due to the
exponentially large number of states in the Markov chain.

Several methods are known in the literature to approximate exponentially large state
spaces. One important method are mean-field approximations, which assume that the
states of (groups of) nodes are uncorrelated [104]. Mean-field models were widely pop-
ularised in network epidemiology by Pastor-Satorras and Vespignani in 2001, when they
illustrated that in scale-free networks, the epidemic threshold converges to zero for in-
finitely large networks [8]. Ever since, many mean-field methods have been proposed for
the static SIS model, including first-order mean-field [30, 56] and second-order mean-
field approximations [105, 106]. The accuracy of the first-order mean-field approxima-
tion for the static SIS model has been investigated [32], but the determination of the ac-
curacy of higher order mean-field approximations remains a challenging open problem
[107].

Mean-field approximations in the G-ASIS model have already been explored by Kiss
et al. [98], but no rigorous derivation from the Markovian model was given. Szabó et al.
[108] provided a detailed bifurcation analysis for the second-order mean-field approxi-
mation of the G-ASIS model, but only for the case that links cannot be broken nor created
between two infected nodes. Szabó et al. additionally proved that the number of steady
states is maximally three and derived conditions when such number of steady states ex-
ists. A variation on the second-order mean-field approximation of the ASIS model has
been studied by Szabó-Solticzky et al. [109].

In this chapter, we complement the aforementioned analysis by providing rigorous
derivations by applying a first-order and second-order mean-field approximation to the
Markovian G-ASIS model. Section 5.2 recalls the G-ASIS model. Section 5.3 discusses
the first-order mean-field approximation for the G-ASIS model and shows that the first-
order mean field fails to mimic the Markovian G-ASIS model. Contrary to the first-order
mean field, the second-order mean-field approximation, derived in Section 5.4, is shown
to be considerably more accurate. In Section 5.5, the first- and second-order mean-field
approximations are compared with the Markovian G-ASIS model by numerical simula-
tions. Finally, we present our conclusion and outlook in Section 5.6.
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5.2. THE G-ASIS MODEL
Recall that the governing equations for the G-ASIS model are given by

d E[Xi ]

d t
= E

[
−δi Xi + (1−Xi )

N∑
j=1

βi j X j ai j

]
, (5.1a)

d E[ai j ]

d t
=

E
[
−ζi j ai j fbr(Xi , X j )+ξi j (1−ai j ) fcr(Xi , X j )

]
, if (i , j ) ∈Ladaptive

0, otherwise

(5.1b)

where fbr and fcr specify the link-breaking and link-creation mechanisms, respectively.
All six non-trivial updating rules for the link-breaking fbr and link-creation fcr mecha-
nisms have been identified in Table 4.1 and can be written in the form

f (Xi , X j ) = a +b(Xi +X j )+ c Xi X j , (5.2)

where a,b,c ∈Z. The parameters a, b and c of the six non-trivial updating rules are listed
in Table 4.1. Using Eq. (5.2), the governing equations (5.1) become

d E[Xi ]

d t
= E

[
−δi Xi + (1−Xi )

N∑
j=1

βi j X j ai j

]
, (5.3a)

d E[ai j ]

d t
=


E
[
−ζi j ai j (abr +bbr(Xi +X j )+ cbrXi X j )

+ξi j (1−ai j )(acr +bcr(Xi +X j )+ ccrXi X j )
]

, if (i , j ) ∈Ladaptive

0. otherwise

(5.3b)

Equations (5.3a) and (5.3b) describe the most general version of the G-ASIS model with
heterogeneous infection, curing, link-breaking and link-creation rates. The fact that
some links do not adhere to the link-breaking and link-creation dynamics (that either
remain existent or non-existent for all times), is reflected by the last line of Eq. (5.3b).

5.3. FIRST-ORDER MEAN-FIELD APPROXIMATION
Even though the Markovian G-ASIS model (5.3) is a simple description of spreading pro-
cesses on adaptive networks, its analysis is difficult. Each of the 36 instances of the G-
ASIS model can be described by a Markov chain with 2N+Ladaptive states, which makes the
computation for any connected graph with more than N = 20 nodes infeasible. Only in
some special cases, like the adaptive complete graph and the adaptive star graph [110],
the huge state space can be exactly reduced using equitable partitions [111].

For all other graphs, the huge state space of the Markov chain can be approximated
using mean-field approximations. Mean-field approximations constitute of one or more
closure relations, which describe how the higher-order moments of the random vari-
ables in the process are approximated by lower-order moments of these random vari-
ables [112]. In contrast to the linear Markovian equations, the resulting mean-field equa-
tions are non-linear. Mean-field approximations induce an error, but also significantly
reduce the dimensionality of the process [53].
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A common mean-field approximation for static networks is the Heterogeneous Mean-
Field (HMF) approximation [8], which is a first-order mean-field approximation that ad-
ditionally considers a topological approximation by aggregating all nodes with the same
degree in the same group. The HMF approximation is extended to adaptive networks
by Marceau et al. [85] for a link-rewiring model and by Demirel et al. [94] for growing
networks. The approximation by Marceau et al. not only considers the number of neigh-
bours of each node, but also includes the number of infected neighbours in the mean-
field approximation, thereby improving on the standard HMF approximation. We expect
that a similar HMF approximation can be derived for the G-ASIS model using the frame-
work of Devriendt and Van Mieghem [30].

However, the HMF approximation appears inferior [74] to the first-order mean-field
approximation without any topological approximation, also known as the N -Intertwined
Mean-Field Approximation (NIMFA) [29]. Thus, we focus on NIMFA from here onwards.
NIMFA assumes that any pair of random variables Xi , X j and ai j is independent (hence,
uncorrelated):

E[Xi X j ] = E[Xi ]E[X j ],

E[Xi ai j ] = E[Xi ]E[ai j ],

E[Xi X j ai j ] = E[Xi ]E[X j ]E[ai j ],

for all i ̸= j . The first-order mean-field equations for G-ASIS are then given by

d E[Xi ]

d t
=−δi E[Xi ]+ (1−E[Xi ])

N∑
j=1

βi j E[X j ]E[ai j ], (5.4a)

d E[ai j ]

d t
=


−ζi j E[ai j ](abr +bbr(E[Xi ]+E[X j ])+ cbrE[Xi ]E[X j ])

+ξi j (1−E[ai j ])(acr +bcr(E[Xi ]+E[X j ])+ ccrE[Xi ]E[X j ]), if (i , j ) ∈Ladaptive

0. otherwise

(5.4b)

Although the number of equations in Eq. (5.4) is N +Ladaptive and not N , we call (5.4) the
adaptive N -Intertwined Mean-Field Approximation (aNIMFA), because of the analogy to
the NIMFA equations for static networks [29]. Contrary to the NIMFA equations for the
static SIS model, aNIMFA is not necessarily an upper bound for the Markovian dynamics
[68].

The steady state of the NIMFA equations and the metastable state of the Markov pro-
cess show similar behaviour for sufficiently large networks and for effective infection
rates τ = β/δ above the epidemic threshold [113]. For adaptive networks, however, we
will show that the steady state of aNIMFA and the metastable state of the Markov pro-
cess can deviate significantly. One of the reasons is as follows. The curing process in the
SIS model only involves the state of the node itself. Any mean-field method will there-
fore exactly capture the curing process, because the assumed independence of random
variables is irrelevant for the curing process. On the contrary, the joint probability of in-
fection of n nodes in the network depends on the joint probabilities of infection of n +1
nodes. Any mean-field method, irrespective of its order (smaller than N ), will approxi-
mate the infection process and induce an approximation error. On the other hand, the
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link-breaking and link-creation processes involve the state of a link plus the states of the
adjacent nodes. By using a first-order mean-field approximation, the link-creation and
link-breaking processes will be approximated. In Section 5.4, we will construct a second-
order mean-field approximation that only involves the approximation of the infection
process and exactly captures the link-breaking and link-creation processes.

5.3.1. FIRST-ORDER MEAN FIELD ON THE COMPLETE GRAPH
The inaccuracy of the first-order mean-field approximation is exemplified by the easi-
est case, in which the infection, curing, link-breaking and link-creation rates are homo-
geneous parameters and the adaptive graph Ladaptive is the complete graph, such that
L0 =L1 =;. Then, the aNIMFA equations become

d E[Xi ]

d t
=−δE[Xi ]+β(1−E[Xi ])

N∑
j=1, j ̸=i

E[X j ]E[ai j ], (5.5a)

d E[ai j ]

d t
=−ζE[ai j ](abr +bbr(E[Xi ]+E[X j ])+ cbrE[Xi ]E[X j ])+

ξ(1−E[ai j ])(acr +bcr(E[Xi ]+E[X j ])+ ccrE[Xi ]E[X j ]).
(5.5b)

If the initial prevalence is the same for every node and the initial link-density is the same
for every link, Eq. (5.5) can be simplified. Introducing the average fraction of infected
nodes, also known as the prevalence, as y = 1

N

∑N
i=1 E[Xi ], the average link density z =

1

N (N −1)

N∑
i=1

N∑
j=1

E[ai j ], rescaling time by t̃ = tδ, defining τ = β/δ, ζ̃ = ζ/δ, ξ̃ = ξ/δ and

introducing the normalized effective infection rate x = τ(N −1), we obtain (dropping the
tildes)

d y

d t
=−y +x(1− y)y z, (5.6a)

d z

d t
=−ζz(abr +2bbr y + cbr y2)+ξ(1− z)(acr +2bcr y + ccr y2). (5.6b)

After substituting one of the 36 instances of the G-ASIS model, the two differential equa-
tions (5.6) with 3 parameters τ,ζ and ξ provide a first-order mean-field description of the
G-ASIS model. The steady-state prevalence y∞ and the steady-state link density z∞ of
Eq. (5.6) are given in Theorem 5.1.

Theorem 5.1 The steady states (y∞, z∞) of equation (5.6) are the real-valued solutions of
the cubic equation

ccrx y3
∞+ (2bcrx − ccrx + ccr + cbrω) y2

∞+
(2bcr +acrx −2bcrx +2bbrω) y∞+ (acr +abrω−acrx) = 0

(5.7)

where ω= ζ/ξ is the effective link-breaking rate and z∞ follows as

z∞ = 1

x(1− y∞)
, (5.8)
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or the steady state equals the trivial (all-healthy) steady state

y∞ = 0 and z∞ =
{

acr
abrω+acr

, if acr ̸= 0 or abr ̸= 0

c, otherwise
(5.9)

for any c ∈ [0,1].

Proof. See Appendix D.1. □
Although for abr = acr = 0, there are infinitely many steady states with prevalence

y∞ = 0 and link density z∞, we will continue to call those states the trivial steady state,
in line with classical SIS epidemics on static networks.

The existence of the trivial steady state y∞ = 0 is illustrated by Theorem 5.1. In addi-
tion to the trivial steady state, we show in Theorem 5.2 that at least one non-trivial steady
state exists for all instances in the G-ASIS model.

Theorem 5.2 For each instance of the G-ASIS model, there is a non-empty (x,ω)-region
where at least one non-trivial steady state exists.

Proof. See Appendix D.2. □
Theorem 5.2 guarantees that the introduction of link-breaking and link-creation mech-

anisms to the standard SIS model is not able to destroy the endemic state completely.
Moreover, the following relation for the mean-field epidemic threshold τ(1)

c follows from
the proof of Theorem 5.2.

Corollary 5.3 For G-ASIS instances whose link-breaking fbr(y) and link-creation fcr(y)
mechanisms do not have coinciding zeros (see part (ii) in Proof 1 in Appendix D.2 for de-
tails), the first-order mean-field epidemic threshold equals

τ(1)
c = 1

N −1

acr +abrω

acr
.

In the sequel, we consider some example instances of the G-ASIS model.

5.3.2. THE ASIS MODEL
The Adaptive SIS (ASIS) model describes the tendency of healthy people to prevent them-
selves from contracting the disease by avoiding contact with infected individuals. In the
ASIS model, links can be broken between susceptible and infected nodes to prevent the
disease from spreading and links can be created between susceptible nodes. Substitut-
ing the model parameters of ASIS (see Table 4.1) in equation (5.7) yields

x y3
∞+ (1−3x −2ω) y2

∞+ (−2+3x +2ω) y∞+ (1−x) = 0. (5.10)

The solution y∞ = 1 is not a valid steady state (according to Eq. (5.6a)) and can be re-
moved. Dividing the polynomial in Eq. (5.10) by y∞−1, reduces to the quadratic equa-
tion

x y2
∞+ (1−2x −2ω) y∞+ (x −1) = 0,
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whose solutions are

y∞ = 1− 1−2ω

2x
±

√(
1−2ω

2x

)2

+ 2ω

x
. (5.11)

The positive branch of (5.11) is infeasible, because y∞ would be larger than one. For the
steady-state solution y∞ to exist, the expression under the square root in (5.11) must be
non-negative and y∞ must be bounded between zero and one. If one of these criteria
is exactly satisfied, thus the expression under the square root is zero or y∞ is either zero
or one, the resulting condition exactly specifies when the solution y∞ exists or not. In
other words, the existence of y∞ is described by a bifurcation parameter, also known as
the epidemic threshold. Using the relation x = τ(N −1), the epidemic threshold for the
ASIS model follows as

τ(1),ASIS
c = 1

N −1
,

and is independent of the effective link-breaking rate ω. To summarise, the solution is

y∞ =
1− 1−2ω

2τ(N−1) −
√(

1−2ω
2τ(N−1)

)2 + 2ω
τ(N−1) , τ≥ τ(1),ASIS

c = 1
N−1

0. always
(5.12)

The steady-state solutions y∞ are shown for various ω-values in Figure 5.1. Applying
linear stability analysis (see Chapter 6 for details), we find that the all-healthy state y∞ =
0 is stable for τ ≤ τc and is unstable otherwise. If the endemic state exists, it is always
stable.

Figure 5.1: The transcritical bifurcation in the first-order mean-field ASIS model with N = 40 and ξ= 0.5. The
epidemic threshold τc is fixed for varying effective link-breaking rates ω, which contrasts the Markovian ASIS
model, where the epidemic threshold τc appears to scale linearly with the effective link-breaking rate ω.

5.3.3. THE AID MODEL
The Adaptive Information Diffusion (AID) model describes the spread of information
among people. Links are created between susceptible (informationless) nodes and in-
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fected (informative) nodes to enhance the spread of the news. Links are removed be-
tween susceptible nodes because both nodes are no longer interested to upkeep their
relationship. Substituting the parameters from the AID model (see Table 4.1) into equa-
tion (5.7) yields

−2x y3
∞+ (4x −2+ω) y2

∞+ (2−2x −2ω) y∞+ω= 0.

As before, the solution y∞ = 1 is an invalid steady state. By removing y∞ = 1, the cubic
equation simplifies to the quadratic equation

2x y2
∞+ (−2x +2−ω)y∞+ω= 0,

whose solutions are

y∞ = 2x +ω−2±
√

(2x +ω−2)2 −8xω

4x
. (5.13)

The epidemic threshold τc can be determined by checking when the steady-state solu-
tion y∞ is bounded between zero and one and is real-valued. The epidemic threshold
follows as

τ(1),AID
c =

1
2 (ω+2)+p

2ω

N −1
. (5.14)

The bifurcation diagram for the AID model is shown in Figure 5.2. The main difference
between the ASIS and the AID model is that the epidemic threshold in the AID model
increases for increasingω, whereas the epidemic threshold remains constant for the ASIS
model. The steady-state solution y∞ is zero below the epidemic threshold and is non-
zero at the epidemic threshold:

y∞
(
τ(1),AID

c

)= ω+p
2ω

ω+2+p
8ω

.

To summarise, the solution is

y∞ =
{

2τ(N−1)+ω−2±
p

(2τ(N−1)+ω−2)2−8τ(N−1)ω
4τ(N−1) , τ≥ τ(1),AID

c =
1
2 (ω+2)+p2ω

N−1

0. always
(5.15)

The bifurcation diagram in Figure 5.2 shows two non-trivial steady states, of which one
the upper one is stable (solid line) and the other is unstable (dashed line). The stability
of each branch was determined using linear stability analysis. The trivial steady state
is always stable in the AID model. The existence of the two non-trivial steady states is
illustrated in Figure 5.3 using different initial conditions.

An intriguing observation is that the prevalence y of the AID model below the epi-
demic threshold τc is zero, whereas the prevalence is non-zero while approaching the
epidemic threshold from above. Similar behaviour was e.g. observed in rewiring models
for SIR epidemics [114].
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Figure 5.2: The saddle-node bifurcation in the first-order mean-field AID model with N = 40 and ξ= 0.5. The
epidemic threshold τc moves over the blue line as the effective link-breaking rate ω increases. The Markovian
AID model has a nearly constant epidemic threshold τc , but the mean-field AID threshold linearly depends on
the effective link-breaking rate ω.

5.3.4. THE ABN MODEL
The ABN model describes the spread of information in the human brain. Each region
is active (infected) or inactive (susceptible). The ABN model assumes that links can be
created between susceptible (inactive) nodes and links are removed between infected
(active) nodes. Substituting the parameters of the ABN model (see Table 4.1) yields

x y3
∞+ (1−3x +ω) y2

∞+ (3x −2) y∞+ (1−x) = 0. (5.16)

Unfortunately, like many instances of the G-ASIS model, the cubic equation (5.16) can-
not be further simplified. Using Corollary 5.3, the epidemic threshold τc follows as

τ(1),ABN
c = 1

N −1
, (5.17)

which agrees with the numerical results from Figure 5.4. The results are similar to the
static SIS and ASIS model, which show the existence of a stable endemic steady state
above the epidemic threshold. The stability of the all-healthy state changes at the epi-
demic threshold τc from stable to unstable, leading to a transcritical bifurcation, as vi-
sualised in Figure 5.4.

5.4. SECOND-ORDER MEAN-FIELD APPROXIMATION
The first-order mean-field approximation, discussed in Section 5.3, assumes that any
pair of random variables is uncorrelated. In this section, we derive a higher-order mean-
field approximation, which assumes that pairs, triplets, etc. of random variables are un-
correlated.

Confining ourselves to homogeneous infection, curing, link-breaking and link-creation
rates and all links in the graph adhering to the link-breaking and link-creation mecha-
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Figure 5.3: Numerical solutions of the first-order mean-field AID model using different initial conditions for
the fraction of infected nodes, z(0) = 0.5, ξ = ζ = 0.1 and τ = 3

N−1 . As indicated by the bifurcation diagram in
Figure 5.2, there are two stable steady states: y∞ = 0 and y∞ ≈ 0.5. There is also an unstable steady state at
y∞ ≈ 0.35.

nisms, the governing equations (5.3) simplify to

d E[Xi ]

d t
= E

[
−δXi +β(1−Xi )

N∑
j=1

X j ai j

]
, (5.18a)

d E[ai j ]

d t
= E

[
−ζai j (abr +bbr(Xi +X j )+ cbrXi X j )

+ξ(1−ai j )(acr +bcr(Xi +X j )+ ccrXi X j )
]

.
(5.18b)

Using the closure relation
E[Xi X j ] ≈ E[Xi ]E[X j ], (5.19)

the following governing equations can be derived (see Appendix D.3 for the derivation)

d y

d t
= τN −1

2
zSI − y,

d zSS

d t
= zSI −τ(N −2)zSSI +ξSS

(
N

N −1
(1− y)2 − 1

N −1
(1− y)− zSS

)
−ζSSzSS,

d zII

d t
= τzSI +τ(N −2)zISI −2zII +ξII

(
N

N −1
y2 − 1

N −1
y − zII

)
−ζIIzII,

d zSI

d t
=−(1+τ)zSI +τ(N −2)zSSI −τ(N −2)zISI +2zII +ξSI

(
2N

N −1
y(1− y)− zSI

)
−ζSIzSI,

(5.20)

where y denotes the fraction of infected nodes, zSS, zSI and zII denote the fraction of
links in the graph between susceptible-susceptible (S-S), susceptible-infected (S-I) and
infected-infected (I-I) pairs of nodes, respectively. Finally, zSSI and zISI denote the fraction
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Figure 5.4: The transcritical bifurcation in the first-order mean-field ABN model with N = 40 and ξ= 0.5. The
epidemic threshold τc remains constant as the effective link-breaking rate ω increases, which is in agreement
with the Markovian ABN model.

of connected S-S-I and I-S-I triples in the graph, respectively. Any other triples are irrel-
evant, because S-S pairs and S-I pairs can only be infected by an external infected node,
not by an external susceptible node. The external infected node must be connected to
one of the susceptible nodes in the original node pair, leading to the triplet S-S-I or I-S-I.

Many possible closure relations exist, but in Eq. (5.20), the advantage of our closure
relation (5.19) becomes clear: The unknown variables zSSI and zISI are related to the ef-
fective infection rate τ only. Using other closure relations than Eq. (5.19) would lead
to an additional approximation of the link-breaking and link-creation processes, which
undoubtedly increases the approximation error.

As closure relations for zSSI and zISI, we use the closure relations from the static SIS
model [27, 81, 98, 105], which is derived as follows. We assume that the number of I-S-I
triplets equals the number of links between susceptible and infected (S-I) nodes, multi-
plied by the average number of links between the susceptible node from the considered
S-I pair and the remaining infected nodes in the network. The latter equals the number
of S-I links divided by the number of susceptible nodes;

1

2
N (N −1)(N −2)zISI ≈ 1

2
N (N −1)zSI ·

1
2 N (N −1)zSI

N (1− y)
.

The same holds for zSSI, except that the infected node can connect to both susceptible
nodes of the S-S node pair;

1

2
N (N −1)(N −2)zSSI ≈ 1

2
N (N −1)zSS ·

1
2 N (N −1)zSI

1
2 N (1− y)

,
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which can be simplified to

zISI ≈ 1

2

N −1

N −2

z2
SI

1− y
,

zSSI ≈ N −1

N −2

zSSzSI

1− y
.

(5.21)

Using the closure relations (5.21), we obtain a second-order mean-field approximation
of the G-ASIS model:

d y

d t
= τN −1

2
zSI − y,

d zSS

d t
= zSI −τ(N −1)

zSSzSI

1− y
+ξSS

(
N

N −1
(1− y)2 − 1

N −1
(1− y)− zSS

)
−ζSSzSS,

d zII

d t
= τzSI

(
1+ N −1

2

zSI

1− y

)
−2zII +ξII

(
N

N −1
y2 − 1

N −1
y − zII

)
−ζIIzII,

d zSI

d t
=−(1+τ)zSI +τ(N −1)

zSI

1− y

(
zSS − 1

2
zSI

)
+2zII +ξSI

(
2N

N −1
y(1− y)− zSI

)
−ζSIzSI.

(5.22)

We would like to intuitively justify equation (5.22), whereby we focus on the equation for
the fraction of links between S-S pairs zSS; the other equations follow analogously. The
term ξSS

( N
N−1 (1− y)2 − 1

N−1 (1− y)− zSS

)
was added for the following reason. The number

of S-S links in the network increases with Poisson rate ξSS based on the number of non-
existing links between pairs of susceptible nodes. Given the number of susceptible nodes
N (1−y), the maximum number of S-S links is 1

2 (N (1−y))(N (1−y)−1). Knowing that the
maximum number of links equals 1

2 N (N −1), the maximum fraction of S-S links equals
N

N−1 (1−y)2− 1
N−1 (1−y). However, we should subtract the fraction of currently active S-S

links, which is given by zSS. Additionally, by breaking S-S links with Poisson rate ζSS, the
number of S-S links should decay exponentially to zero, so we subtract ζSSzSS. The other
terms are related to the curing and infection process, which we will not explain here.

We derived the second-order mean-field model (5.22) from the original Markovian
model (5.18) by the following three steps: (i) we considered homogeneous parameters
and a complete adaptive graph, (ii) we assumed that the states of any pair of nodes Xi

and X j are independent (see Eq. (5.19)) and (iii) we approximated the infection process
according to Eq. (5.21). The variables zISI and zSSI describe three connected I-S-I and S-S-I
triplets, consisting of three random variables for the nodal states and two random vari-
ables for the intermediate links. Then zISI and zSSI are approximated in Eq. (5.21) by zSI

and y , which are composed of three and one random variable, respectively. Thus, ap-
proximation (iii) is a third-order approximation. At first sight, approximation (ii) in Eq.
(5.19) seems to be a first-order closure relation, because we assume no correlation be-
tween any two random variables connected to each other by a link. However, the states
Xi and X j of the two nodes i and j do not directly influence each other, but can only
propagate via the intermediate link ai j , which itself is a stochastic variable. Thus, we
argue that (ii) is actually a second-order closure relation. We conclude that our approxi-
mation (5.22) is a second-order adaptive mean-field approximation.
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5.4.1. SECOND-ORDER MEAN-FIELD APPROXIMATIONS IN THE LITERATURE
Our second-order mean-field approximation (5.22) is not new, but was introduced by
Kiss et al. [98] and further analysed in [108, 109]. Our contribution constitutes of a rigor-
ous derivation of this second-order approximation, starting from the 2N+Ladaptive Markov
equations (5.18) towards the second-order mean-field approximation, which we pre-
sented in Appendix D.3 and in the previous subsection. We additionally analyse spe-
cific instances of the G-ASIS model in detail by comparing their first- and second-order
mean-field approximations.

Our notation for the second-order mean-field equations (5.22) differs from other no-
tations from the literature [81, 98, 109]. Most works use [SS], [I I ] and [SI ] to represent
(twice) the average number of links between susceptible-susceptible, infected-infected
and susceptible-infected nodes, respectively. First, we believe that definitions should be
intuitive and should describe the actual number of links; not twice that value. Second,
to bring the definitions of zSS, zII and zSI in line with the definition of the prevalence y ,
which is the average fraction of infected nodes, we have chosen to normalise all defi-
nitions in (D.6) by the maximum number of links, such that zSS, zII and zSI specify the
fraction of links rather than the number of links.

Our second-order mean-field approximation (5.22) is equivalent to the formulation
in Kiss et al. [98]. This follows by introducing [I ] and [S] as the number of infected (sus-
ceptible) nodes and [SS] and [I I ] as twice the number of links between S-S and I-I node
pairs, [SI ] as the number of S-I links, the link-breaking rate ω, link-creation rate α, cur-
ing rate τ and applying the following transformations to Eqs. (4.1) - (4.4) from Kiss et al.
[98]

[I ] := N y,

[S] := N (1− y),

[SS] := N (N −1)zSS,

[SI ] := 1

2
N (N −1)zSI,

[I I ] := N (N −1)zII,

ωab := ζab ,

αab := ξab ,

γ := 1,

where a,b are any combination of S and I . Then we exactly recover the second-order
mean-field approximation (5.22).

A small difference between [98] and our work is the chosen closure relation. Kiss et
al. [98] and also Szabó et al. [108] consider

[ABC ] ≈ n −1

n

[AB ][BC ]

[B ]
,

where A,B and C are random variables and n is the average number of links per node.
We consider the simple case where n is sufficiently large, such that (n −1)/n ≈ 1.

A similar second-order adaptive model, with different nomenclature and terminol-
ogy, was developed by Heesterbeek and Metz [115]. Their model considers the possibil-
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ity of adding and removing of links between nodes with the same and different disease
states. However, Heesterbeek and Metz [115] allow at most one connection to each node
simultaneously, whereas we allow for each node to connect to all other nodes. Although
the assumption of maximally one connection is rather restrictive, the resulting govern-
ing equations (S1) and (S2) of Heesterbeek and Metz [115] for the SIS process are similar
to Eq. (5.22) under several transformations.

Leung and Diekmann [116] considered a similar situation, in which each node can
establish a maximum number of connections, i.e. the maximum degree of each node is
bounded. The connections can be established between nodes of similar and different
disease states, however, the link-creation rate is assumed to be independent of the dis-
ease states of the nodes. We believe that Equation (3.1) in Leung and Diekmann [116]
can be straightforwardly extended to allow for adaptive link-breaking and link-creation
mechanisms. Still, the key difference is the boundedness of the maximum degree, which
is not present in the G-ASIS model.

5.4.2. ANALYSIS OF THE SECOND-ORDER MEAN FIELD
We proceed our analysis of the second-order mean-field approximation by computing
the steady states of Eq. (5.22).

Theorem 5.4 The steady states of system (5.22) are the all-healthy state

y∞ = zII,∞ = zSI,∞ = 0, zSS,∞ =
{

ξSS
ζSS+ξSS

, if ζSS ̸= 0 or ξSS ̸= 0

c, otherwise
(5.23)

for any c ∈ [0,1], or are the solution of the cubic equation

α1 y3
∞+α2 y2

∞+α3 y∞+α4 = 0 (5.24)

where the coefficients α1,α2,α3 and α4 depend on the effective infection rate τ, the link-
breaking rate ζ, the link-creation rate ξ and the choice of the link-breaking and link-
creation mechanisms and are given in Eq. (D.17) in Appendix D.4.

Proof. See Appendix D.4. □
Although our model (5.22) is equivalent to Szabo et al. [108], we find a cubic equation

(5.24) for the non-trivial steady states whereas [108] finds a fourth-order equation (see
Eq. (11) in [108]). Actually, the trivial steady state x = 0 is a solution of their Eq. (11). After
removing x = 0, their Eq. (11) simplifies to our Eq. (5.24).

Equation (5.23) was obtained earlier for the Markovian G-ASIS model below the epi-
demic threshold (recall Eq. (4.8)) and for the mean-field model in Section 5.3. Hence,
the all-healthy state from all mean-field approximations is in compliance with the all-
healthy state of the Markovian G-ASIS model.

Unfortunately, equation (5.24) cannot be further simplified without considering spe-
cific link-breaking and link-creation mechanisms. Thus, performing stability analysis or
constructing steady-state solutions is hard for the general case. For the case ζII = ξII = 0,
Szabó et al. [108, Theorem 2] derived a formula for the epidemic threshold:

τc = ζSI +ξSI +1

(N −1) ξSS
ξSS+ζSS

+NξSI

.



5.4. SECOND-ORDER MEAN-FIELD APPROXIMATION

5

95

For specific instances of the G-ASIS model, we will provide an extensive analysis as fol-
lows. We use Maple to analytically compute the steady states of the cubic equation (5.22)
for each of the 36 instances in the G-ASIS model. If the solutions remain very tedious,
we determine the (three) steady states numerically.

5.4.3. THE ASIS MODEL

We revisit the ASIS model, in which links can be broken between infected-susceptible
pairs and links can be created between susceptible nodes. Hence, the link-breaking rule
is fbr = (Xi − X j )2 and the link-creation rule is fcr = (1− Xi )(1− X j ). Or, in the formu-
lation of this section, ζSI = ζ,ξSS = ξ and ζII = ζSS = ξII = ξSI = 0. Substituting the model
parameters of the ASIS model into Eq. (5.24), we find

(Nτ) y3
∞+ (−3Nτ+τ+ξω+1−2ω) y2

∞
+ (3Nτ−2τ−2ξω−2−2ω) y∞+ (−Nτ+τ+ξω+1) = 0.

(5.25)

Equation (5.25) has y∞ = 1 as a solution, which is an invalid steady state according to Eq.
(5.22). We can remove the solution y∞ = 1 from Eq. (5.25) to find

(Nτ) y2
∞+ (−2Nτ+τ+ξω+1−2ω) y∞+ (Nτ−τ−ξω−1) = 0,

whose solution is

y∞ = 1− τ+1+ξω−2ω

2τN
± 1

2τN

√
(τ+1+ξω−2ω)2 +8τNω. (5.26)

As before, the solution y∞ must be real-valued and bounded between zero and one.
Then only the negative branch of Eq. (5.26) appears a valid solution. Moreover, we can
derive the epidemic threshold as

τ(2),ASIS
c = 1+ξω

N −1
. (5.27)

To sum up, we find

y∞ =
{

1− τ+1+ξω−2ω
2τN − 1

2τN

√
(τ+1+ξω−2ω)2 +8τNω, for τ≥ τ(2),ASIS

c = 1+ξω
N−1

0. always
(5.28)

For various values of the effective link-breaking rate ω, Figure 5.5 shows the bifurca-
tion diagram for the steady-state prevalence y∞. The epidemic threshold τc in Eq. (5.27)
scales linearly in the effective link-breaking rate ω= ζ/ξ, which is also illustrated in Fig-
ure 5.5. In contrast to the first-order mean-field threshold τ(1),ASIS

c = 1
N−1 , the second-

order mean-field threshold τ(2),ASIS
c = 1+ξω

N−1 appears to show the correct linear scaling
of the Markovian epidemic threshold. Hence, the second-order mean-field approxima-
tion is superior to the first-order mean-field approximation for estimating the epidemic
threshold τc . We further elaborate on this observation in Section 5.5.
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Figure 5.5: The transcritical bifurcation in the second-order mean-field ASIS model with N = 40 and ξ = 0.5.
The epidemic threshold τc increases linearly with the effective link-breaking rate ω, which is in compliance
with the Markov model.

5.4.4. THE AID MODEL
As a second example, we revisit the Adaptive Information Diffusion (AID) model. Similar
to the ASIS model, we derive the steady states of Eq. (5.22) by inserting the parameters
of the AID model. After the removal of the invalid steady state y∞ = 1, we obtain the
following solutions for the steady-state prevalence:

y∞ =


1− 2Nτ−ξω+2−ω±

p
(2Nτ+ξω−2+ω)2−8Nτω

2Nτ(2−ξω) , for 0 <ω<ωAID
c and τ≥ τ(2),AID

c (ωAID
c )

1− 2Nτ−ξω+2−ω−
p

(2Nτ+ξω−2+ω)2−8Nτω
2Nτ(2−ξω) , for ω≥ωAID

c and τ> τ(2),AID
c

0, always

(5.29)

where we used the effective link-breaking rate ω= ζ/ξ. We emphasise that ζ> 0 and ξ>
0, otherwise the G-ASIS model would not be adaptive. We may compute the epidemic
threshold τc explicitly in terms of the effective link-breaking rate ω

τ(2),AID
c (ω) =


1+ ω

2 − ξω
2 +√

ω (2−ξω)

N
, for 0 <ω≤ωAID

c

1+ 1
ξ

N
, for ω>ωAID

c

(5.30)

and the steady-state prevalence y∞ at the epidemic threshold equals

y∞(τ= τ(2),AID
c ) =

1− 4−2ξω+2
p
ω(2−ξω)

(2+ω−ξω+2
p
ω(2−ξω))(2−ξω)

, for 0 <ω≤ωAID
c

0. for ω>ωAID
c

(5.31)

The critical point ωc follows by solving limω↑ωc τ
(2),AID
c (ω) = limω↓ωc τ

(2),AID
c (ω) in (5.30),

which leads to

ωAID
c (ξ) = 2

ξ(ξ+1)
. (5.32)
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Figure 5.6: The bifurcation diagram for the second-order mean-field AID model with N = 40 and ξ= 0.5. The
critical effective link-breaking rate equals ωAID

c = 8
3 ≈ 2.67. For 0 <ω ≤ωc , there is a saddle-node bifurcation

at τc and a transcritical bifurcation at x = 3. For ω>ωc , the bifurcation type is a transcritical. The blue line is
a parametric curve from 0 to ωc , where ωc is given by equation (5.32).

Figure 5.6 depicts, as shown by the solution (5.29), three regions of solutions: (I) For
ω < ωAID

c and τ < τ(2),AID
c , the only steady state is the trivial, all-healthy state. Then (II),

by applying a fixed 0 <ω<ωAID
c , there are three steady states for τ(2),AID

c ≤ τ≤ τc (ωAID
c ),

of which the upper and lower stable branches are shown in solid lines and the unstable
middle branch by dotted lines. Furthermore, there is only one non-trivial stable state for
large infection rates τ> τc (ωAID

c ). Finally (III) we consider the caseω>ωc . For τ≤ τc the
only steady state is the all-healthy state. The location of the epidemic threshold is fixed
(in terms of the effective link-breaking rate ω). Above the threshold τ> τc , the only sta-
ble steady state is the endemic state. Mostly importantly, the second-order mean-field
AID model states that the epidemic threshold τ(2),AID

c converges to a constant value while
the effective link-breaking rate ω→∞. This contrasts the first-order mean-field approx-
imation from Section 5.3, where the epidemic threshold τc increased up to infinity in the
limit of the effective link-breaking rate ω to infinity. Further considerations are given in
Section 5.5.

5.4.5. COMPARISON OF AID IN MEAN-FIELD AND MARKOV MODELS

The second-order mean-field approximation was primarily derived to gain a deeper un-
derstanding of the Markovian AID model. Trajanovski et al. [97] observed spurious oscil-
lations for the Markovian AID model, indicating some kind of instability of the stochas-
tic process. We argue here, albeit hand-waving in nature without providing any rigorous
proof, that the metastable state in the Markovian AID model does not fail to exist, but
there actually exist two metastable states simultaneously.

Our first reason to believe in the existence of two metastable states, is that the numer-
ical evaluation of the exact, quadratic formula of the prevalence y , provided in Eq. (4)
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from [97], reveals that not zero, but two non-trivial solutions y1 and y2 exist for the
metastable prevalence y . We plot the prevalence y and the computed prevalences y1

and y2 in Figure 5.7, where y and y1 overlap nearly perfectly in the metastable state. We
emphasise that the computed prevalences y1 and y2 are only exact in the metastable
state (when all time-derivatives are zero) and not in the transient regime. Our second
reason is more technical and is provided in Appendix D.5.

The behaviour before arrival at the steady state is characterised by the bi-metastability
phenomenon; the probability to leave the all-healthy state and the endemic state is both
very low. Hence, we believe that the two Markovian prevalences y1 and y2 from Fig-
ure 5.7 are similar to the two non-trivial prevalences of the second-order mean-field ap-
proximation from Figure 5.6, where y1 corresponds to the stable upper branch and y2 to
the unstable (dashed) lower branch of the second-order mean-field approximation.

Figure 5.7a shows that, starting the process near the endemic state, results in a fast
convergence towards the endemic state. Additionally, the infection probability distri-
bution in Figure 5.7b depicts a bell-shaped curve around y ≈ 0.85. On the other hand,
starting with half of the population infected and an empty graph, Figure 5.7c shows that
the convergence towards the endemic state takes a longer time. At t = 500, the process
from Figure 5.7c has not yet converged, because the infection probability distribution in
Figure 5.7d is not yet equal to Figure 5.7b.

We provide an example of a much longer convergence time in Figure 5.8. Since our
simulations involve only N = 40 nodes, we believe that for larger networks for some
parameter values, the convergence time1 might be longer than any feasible simulation
time. The long convergence times in the AID model contrast the static SIS model and
most other instances of the G-ASIS model, whose convergence times are generally much
shorter. The consequence is that most AID epidemic outbreaks on large networks never
arrive at the metastable state. Hence, the AID model cannot be fully understood from
its steady-state distribution alone and research should focus on its time-dependent be-
haviour.

Figure 5.8a additionally shows y(t )±σ(t ), where σ(t ) is the standard deviation of the
prevalence y(t ) at time t . The spread around the prevalence y is large, because the time-
dependent infection probabilities Pr[y = j /N ], plotted in Figure 5.8b, depicts a compo-
sition of two bell-shaped curves; one at y = 0 and another at y ≈ 0.7.

The metastability of the all-healthy state is caused by the link-breaking and link-
creation mechanism of the AID model, which break links between susceptible nodes
and create links between susceptible-infected pairs. The all-healthy state corresponds
to zero infected nodes and an empty graph. For an outbreak to occur, links must be cre-
ated and the disease must spread simultaneously, whereas outbreaks in the SIS, ASIS and
ABN model are initiated with a single infected node and a completely connected graph,
which allows for an easier spread of the disease, because the links already exist in the
graph.

We finalise our analysis of the second-order mean-field AID model by showing the

1To analyse the exact average convergence time, one possible method is to analyse the eigenvalues of the un-
derlying Markov chain, as was performed for ε-SIS dynamics on static networks in Chapter 2. Unfortunately,
an eigenvalue analysis for the Markovian G-ASIS model is infeasible due to the exponentially large state space,
not even for the complete adaptive graph [110].
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Figure 5.7: Illustration of the two metastable states in the AID model with N = 40, τ= 0.25,ζ= 0.5 and ξ= 0.1
for (a,c) the time-varying prevalence y(t ) and (b,d) the prevalence distribution Pr[y(t ) = j /N ] at time t = tend
where j is the number of infected nodes. The upper plots (a,b) start with a complete graph and all nodes
infected whereas the bottom row (c,d) initiates with an empty graph and half of the population infected. The
results are averaged over 1,000 simulations and the computed prevalences y1 and y2 are based on the quadratic
equation (4) from [97], but are only exact in the endemic state. We believe that y1 is stable and y2 is an unstable
solution, analogous to the second-order mean-field solution from Figure 5.6. We refer to Section 5.5 for a
description of our simulation method.

phase diagram in Figure 5.9. In region (I), the only steady state is the disease-free state.
Region (II) is the bistable region, where one endemic state and the all-healthy state are
stable and another unstable endemic state exists. In region (III), there is a unique, stable
steady state and the all-healthy state is unstable.

5.4.6. THE ABN MODEL
The steady states of the Adaptive Brain Network (ABN) model satisfy the cubic equation

(Nτξω+2Nτ) y3
∞+ (−3Nτξω−6Nτ+2τξω+2τ−2τω+2+2ω) y2

∞+
(3Nτξω+6Nτ−4τξω−4τ+2τω−ξω−4) y∞+ (−Nτξω−2Nτ+2τξω+2τ+ξω+2) = 0.
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(a) (b)

Figure 5.8: An example of very long convergence times in the AID model with N = 40, τ= 0.18,ζ= 0.5 and ξ=
0.1. The simulations are initiated with an empty graph and a single infected node and the results are averaged
over 1,500 simulations. Subfigure (a) shows the time-dependent prevalence y(t ), the computed solutions y1
and y2 and the black curves indicate the prevalence y(t ) plus/minus one standard deviation σ(t ). Subfigure
(b) shows the prevalence distribution at t = 1000 and t = 5000.

Unfortunately, the cubic equation cannot be further simplified. A numerical approxima-
tion of the steady-state prevalence y∞ is shown in Figure 5.10. The epidemic threshold τc

is approximately located at τc ≈ 1/(N −1) for all network sizes N , link-breaking rates ζ
and link-creation rates ξ.
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Figure 5.10: The transcritical bifurcation in the second-order mean-field ABN model with N = 40 and ξ= 0.5.
The epidemic threshold is constant for varying ω (different lines) but also for changing ξ (not shown).

5.5. NUMERICAL SIMULATIONS
In this section, we compare the Markovian G-ASIS model with the first-order mean-
field approximation from Section 5.3 and second-order mean-field approximation from
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Figure 5.9: The phase diagram for the second-order mean-field AID model with N = 40 and ξ= 0.5. In region (I)
only the disease-free state exists, in (III) there exists a unique stable endemic state (and the disease-free state
is unstable) and in (II), there are two non-trivial steady states, of which one is stable and the other unstable.
The all-healthy state is stable as well.

Section 5.4. We perform many independent Monte Carlo simulations of the Marko-
vian G-ASIS model, whereby we use the sampled-time Markov chain [44] with time step
∆t = 0.05. At each discrete time step, we compute the probability for each node and
each link to change its state. If the probability is larger than a random number between
zero and one, the state is changed, and is left unchanged otherwise. We use a small self-
infection rate ε = 10−3 for all simulations [16]. Each simulation starts at t = 0 and ends
at t = 500, unless specified otherwise. The metastable prevalence y is determined by av-
eraging over all simulations and over all prevalences from t = 100 to t = 500. We focus
on the relation between the epidemic threshold τc and the effective link-breaking rateω
and illustrate this relation for the ASIS, AID and ABN model.

The phase diagram for the ASIS model in Figure 5.11 illustrates that the static SIS
model, shown in blue, has a similar accuracy for both the first-order and second-order
mean-field approximation. For the ASIS model, however, the simulations are closer to
the second-order mean-field approximation than the first-order mean-field approxima-
tion, both in terms of the average distance between the two curves as well as the location
of the epidemic threshold. If we estimate the epidemic threshold τc from the simula-
tions as the smallest effective infection rate τ for which the steady-state prevalence y∞
exceeds 1/N , then the estimated threshold τc is much closer to the second-order mean-
field threshold τ(2),ASIS

c than the first-order mean-field threshold τ(1),ASIS
c .

The phase diagram of the AID model is depicted in Figure 5.12. The inaccuracy of the
first-order mean-field approximation is large for the AID model. The first-order mean-
field approximation predicts a continuously increasing epidemic threshold τc , whereas
the second-order mean-field approximation predicts a slightly increasing but strictly
bounded threshold. The simulations in Figure 5.12 show that the epidemic threshold τc

indeed increases a little, but seems to converge to a finite value for increasing effective
link-breaking rates ω. The first-order mean field for ζ = 25 is not shown in Figure 5.12,
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Figure 5.11: The phase diagram for the ASIS model on a complete network with N = 40 nodes and ξ = ζ =
0.5,δ= 1 for the first-order and second-order mean-field approximations and the Markovian result is averaged
over 1,000 simulations.

because τ(1),AID
c is located approximately at x = 10, which is far outside of the figure. Thus

for ζ = 25, the second-order approximation is much more accurate than the first-order
approximation.
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Figure 5.12: The phase diagram for the AID model on a complete network with N = 40 nodes and ξ= 0.5,δ= 1
for ζ= 1 and ζ= 25 for the first-order and second-order mean-field approximations and the Markovian result is
averaged over 1,000 simulations. The first-order and second-order mean-field for static SIS are indistinguish-
able.

For the ABN model, both the first-order and second-order mean-field approximation
correctly predict a fixed epidemic threshold, which is exemplified in Figure 5.13. In other
words, both mean-field approximations correctly capture the epidemic threshold.
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Figure 5.13: The phase diagram for the ABN model on a network with N = 40 nodes and ξ= 0.5,ζ= 0.5,δ= 1 for
the first-order and second-order mean-field approximations and the Markovian result is averaged over 1,000
simulations.

5.6. CONCLUSION
In this chapter, we considered various mean-field approximations for the Markovian
Generalised Adaptive Susceptible-Infected-Susceptible (G-ASIS) model. We rigorously
derived the first-order and second-order mean-field approximations of the G-ASIS model.
We discussed two instances of G-ASIS in particular; the ASIS model where nodes prevent
themselves from contracting the disease by breaking connections with infected nodes
and the AID model that describes the tendency of unaware (healthy) individuals to con-
nect to nodes that are aware (infected) of the gossip or news. We showed that the relation
between the epidemic threshold and the effective link-breaking rate is qualitatively cap-
tured correctly by the second-order mean-field approximation whereas it is not by the
first-order mean-field approximation.

A summary of our results for all possible updating rules for the link-breaking and
link-creation mechanisms is presented in Table D.2 in Appendix D.6. In particular, Ta-
ble D.2 discusses on the relation between the epidemic threshold τc and the effective
link-breaking rate ω. The first-order approximation is able to predict 6 correct relations
and yields 9 wrong relations, whereas the second-order approximation predicts 14 cor-
rect relations and only 1 incorrect relation. For the remaining 21 instances, the exact
scaling has not been determined in the Markovian model. Overall, we conclude that
the second-order approximation is much better at correctly estimating the relation be-
tween the epidemic threshold and the effective link-breaking rate, although not for all
instances of the G-ASIS model.

Finally, we showed that the Markovian AID model shows opposite behaviour to the
classical SIS model in the sense that the convergence time towards the metastable state
can be very large, even though the effective infection rate τ is way above the epidemic
threshold τc . The reason is that both the all-healthy state and the endemic state are
stable, causing the system to remain in one of the two metastable states for a significant
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amount of time. The bi-metastability phenomenon is in compliance with the second-
order mean-field approximation, which also exhibits the bistability phenomenon.

We see several directions for future research on the G-ASIS model. So far, three out
of 36 instances of the G-ASIS model have been analysed in detail, but the remaining
models remain largely unexplored. Further investigation on the remaining models, es-
pecially those models whose relation between the epidemic threshold and the effective
link-breaking rate in Table D.2 remains unclear, may enhance our understanding of the
interplay between the disease spreading, network topologies and human decision mak-
ing. Another underestimated research topic is related to the time-varying graph in adap-
tive epidemics. Most research focusses on the determination of the number of infected
cases, but limited attention is devoted to the properties of the time-varying network it-
self. Even though we believe mean-field methods constitute a powerful tool to enhance
our understanding of Markovian epidemic processes, many properties of the underlying
network are not captured by mean-field models, complicating the direct analysis of the
underlying, time-varying network.

Finally, the G-ASIS model can be extended to include simplicial contagion [72]. Be-
sides the usual spread of an infection over a link, simplicial contagion assumes that the
existence of higher-order interactions in the network may speed up or slow down the
spread over the links. For example, the 2-simplex considers the interaction between
three nodes (a full triangle), of which two nodes are infected and one node is susceptible.
The rate at which the susceptible node becomes infected, is no longer the sum of the in-
dividual infection rates, but the existence of the triangle creates an additional infection
rate, effectively infecting the susceptible node at a higher rate. In addition to extending
the SIS equations (4.1) to simplicial contagion, the topology updating rule (4.4) can also
be generalised to link-breaking and link-creation mechanisms between D-dimensional
simplices.



6
A MINIMAL MODEL FOR ADAPTIVE

SIS EPIDEMICS

Even though the first-order mean-field approximation was proven to be a poor approxi-
mation of the Markovian G-ASIS model in Chapter 5, the model is astonishingly simple
and yet describes the interplay between disease dynamics and personal risk perception.
We propose a generalisation of the first-order mean field, called aNIMFA, for general link-
breaking and link-creation functional responses. The original aNIMFA model from Chap-
ter 5 was derived from the Markovian G-ASIS model, which imposes natural constraints
on the link-breaking and link-creation rules. In this chapter, we drop those constraints
and consider the most general version. For simplicity, we focus on the homogeneous case
and a complete graph. We derive an explicit form for the basic reproduction number and
guarantee the existence of at least one endemic equilibrium, for all possible functional re-
sponses. Moreover, we show that for all functional responses, limit cycles do not exist. This
means that our minimal model is not able to reproduce consequent waves of an epidemic,
and more complex disease or behavioural dynamics are required to reproduce epidemic
waves.

This chapter is based on M. A. Achterberg and M. Sensi, A minimal model for adaptive SIS epidemics, Nonlinear
Dynamics, May 2023 [117].
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6.1. INTRODUCTION
Investigating the interplay between disease dynamics and the effect of human responses
on the epidemic is in general a complicated task. The G-ASIS model and its mean-field
approximations from Chapter 5 illustrated that even under the simplest disease dynam-
ics (a simple SIS model) and extremely simple link-adaptation rules (link-breaking and
link-creation) exact analytical results are scarce.

Many models on adaptive epidemics in the literature do also not admit analytical
solutions. For example, Sahneh et al. [96] developed a multilayer approach, where one
layer describes the disease transmission and the second layer describes the awareness
of individuals about the disease. Gross et al. [81] proposed a rewiring mechanism, which
rewires the link between a pair of susceptible-infected nodes to two susceptible nodes.
Jolad et al. [118] assumes that all individuals have a preferred number of neighbours,
subject to random link addition and removals. The preferred degree is taken to be a
function of the current number of infected nodes in the network. Brauer [119] discusses
an SIR model in which a certain percentage of the links is removed. The removal percent-
age is larger if the link is connected to infected nodes rather than susceptible nodes. All
abovementioned models capture a particular aspect of human behaviour on disease dy-
namics, but most are so complicated that an exact analysis is completely infeasible. The
reason is that the models often involve a large amount of individuals or equations, or the
infection probabilities involve the computation of many dependent random variables.

In this chapter, we propose a minimal model consisting of two differential equations,
one for the viral prevalence in the population using the NIMFA equations [29], and one
for the link density of the contact network. Our model is minimal in terms of the num-
ber of equations and parameters, while still capturing key aspects of behavioural disease
dynamics. We model the creation and removal of links as an overall increase or decrease
of the link density of the contact network. We call the model adaptive NIMFA (aNIMFA),
in line with the first-order mean-field approximation from Chapter 5. The novel aspect
of aNIMFA are the functional responses of individuals to create or break links in the net-
work, based on the current number of infected people. In predator-prey systems like
Volterra-Lotka dynamics, Holling introduced functional responses to describe the food
intake by predators as a function of the number of available prey [120]. We define similar
functional responses to describe the change in the link density, based on the prevalence
of the disease in the population.

The aNIMFA model is not limited to modelling epidemic spread, but can be utilised
for describing general spreading phenomena, including opinion dynamics, Maki-Thomp-
son rumour spread, innovation spread and epileptic seizures in the human brain. If the
dynamics evolve over a network structure and the link density can be modelled by link-
breaking and link-creation dynamics, the aNIMFA model can be generalised to such
models. In the context of epidemics, one would expect the removal (resp. creation) of
links to be directly (resp. inversely) proportional to the prevalence. For other spreading
phenomena, such as rumor spreading, this might not be the case, and other choices for
the functional responses can be made. The simplicity of the aNIMFA model makes it a
promising tool for future generalisations and for the integration of more complex mech-
anisms.

This chapter is structured as follows. We introduce the aNIMFA model in Section 6.2
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and provide a thorough analysis in Section 6.3. Then we consider several examples of
functional responses in Section 6.4. Finally, we conclude in Section 6.5.

6.2. THE ANIMFA MODEL
Consider a well-mixed population of N individuals, subject to the spread of a disease.
The governing equation for the prevalence y of the SIS process for a well-mixed popula-
tion is given by

d y

d t
=−δy +βy(1− y)z, (6.1)

where the curing process is denoted by its rate δ, the infection process by the corre-
sponding rate β and z is the link density of the contact network, i.e. the average fraction
of connections between all individuals compared to the total amount of possible con-
nections. In the classical model, the link density z is not varying over time. In the first
term on the right-hand side of Eq. (6.1), the prevalence decreases proportional to the
current number of infected cases. The second term on the right-hand side in Eq. (6.1)
increases the prevalence because of contact between infected y and susceptible 1− y
nodes. Because of the homogeneous mixing, we multiply with the link density z to ob-
tain the average number of contacts. Equation (6.1) is equivalent to the N-Intertwined
Mean-Field Approximation (NIMFA) of a Markovian SIS process on a complete static
graph with link weights z, equal initial conditions for all nodes and homogeneous infec-
tion and curing rates [29].

Contrary to the static SIS process, we assume that the link density z(t ) is varying over
time and its dynamics is governed by a link-breaking and a link-creation process. Then
the link density z(t ) changes over time as

d z

d t
=−ζz fbr(y)+ξ(1− z) fcr(y), (6.2)

where ζ is the link-breaking rate, ξ the link-creation rate and fbr(y) and fcr(y) are the
functional responses to the link-breaking and link-creation process, respectively. The
breaking (resp. creation) of links translates into decreasing (increasing) the link density z
in Eq. (6.2), implying that fbr and fcr must be non-negative. We assume the parameters
δ, β, ζ, ξ to be O(1) and positive. The link density z has been normalised, such that z = 1
is the maximum link density (corresponding to a complete graph) and z = 0 corresponds
to an empty graph (no connections, so the link density is zero).

Equations (6.1) and (6.2) can be simplified by introducing the scaled time t̃ = δt .
We additionally introduce the effective infection rate τ=β/δ. Using the transformations
ζ̃ = ζ/δ and ξ̃ = ξ/δ, the well-mixed adaptive NIMFA (aNIMFA) equations are obtained
(after dropping the tildes, for ease of notation)

d y

d t
=−y +τy(1− y)z, (6.3a)

d z

d t
=−ζz fbr(y)+ξ(1− z) fcr(y), (6.3b)

feasible region 0 ≤ y ≤ 1,0 ≤ z ≤ 1.
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The initial conditions y(0) ∈ [0,1] and z(0) ∈ [0,1] describe the initial prevalence and
link-density, respectively. We assume that the functional responses fbr(y) and fcr(y) are
non-negative, sufficiently regular functions on the interval 0 ≤ y ≤ 1. We exclude the
possibility that fbr(y) = 0 and fcr(y) = 0 for all y , as in this case, the link density z is not
affected by fbr and fcr and remains constant over time.

Comparing (6.3) with (5.6), we see the same equations, but here we use general func-
tional responses for the link-breaking and link-creation process, whereas (5.6) is limited
to rules derived from the G-ASIS model.

6.3. ANALYSIS OF THE MODEL
Prior to confining ourselves to specific link-breaking and link-creation functions fbr and
fcr, we first derive general results for the aNIMFA model.

Lemma 6.1 Consider a solution of system (6.3) starting at (y(0), z(0)) ∈ [0,1]2. Recall that
fbr(y), fcr(y) ≥ 0 for all y ∈ [0,1]. Then, (y(t ), z(t )) ∈ [0,1]2 for all t ≥ 0, meaning [0,1]2 is
forward invariant for system (6.3).

Proof. We calculate

d y

d t

∣∣∣
y=0

= 0,
d y

d t

∣∣∣
y=1

=−1 < 0,

d z

d t

∣∣∣
z=0

= ξ fcr(y) ≥ 0,
d z

d t

∣∣∣
z=1

=−ζ fbr(y) ≤ 0,

which proves the forward invariance of [0,1]2. □

6.3.1. DISEASE-FREE EQUILIBRIUM
The aNIMFA model always has one steady state y0 = 0, which corresponds to the situa-
tion in which no infected individuals are present in the population. We call this steady
state the disease-free equilibrium (DFE) or all-healthy state. The DFE of the mean-field
equations (6.3) equals

y0 = 0,

z0 =
{ fcr(0)
ω fbr(0)+ fcr(0) , if fbr(0) ̸= 0 or fcr(0) ̸= 0

c, if fbr(0) = fcr(0) = 0

for any c ∈ [0,1] and we introduced the effective link-breaking rate ω= ζ/ξ.

6.3.2. ENDEMIC EQUILIBRIA
Depending on the choice of the functional responses fbr and fcr, multiple additional
steady states may exist, which are called the endemic equilibria (EE). Recall that ω =
ζ/ξ is the effective link-breaking rate of system (6.3). The endemic equilibria are the
solutions of the generally non-linear equation

ω fbr(y∞) = (τ−1) fcr(y∞)−τy∞ fcr(y∞), (6.4)
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and the corresponding steady-state link density z∞ follows as

z∞ = 1

τ(1− y∞)
. (6.5)

We remark that the solution y∞ = 1 is never a valid EE for any functional responses fbr

and fcr, which follows immediately from substituting y∞ = 1 into Eq. (6.4). Hence, if an
EE exist, the steady-state prevalence y∞ must be in the open interval (0,1). We further
investigate the existence of endemic equilibria in Section 6.3.4.

6.3.3. LINEAR STABILITY ANALYSIS
We analyse the linear stability of the steady states by computing the Jacobian of Eq. (6.3)
as

J =
( −1+τ(1−2y∞)z∞ τy∞(1− y∞)
−ζz∞ f ′

br(y∞)+ξ(1− z∞) f ′
cr(y∞) −ζ fbr(y∞)−ξ fcr(y∞)

)
. (6.6)

Evaluating (6.6) in the disease-free equilibrium y∞ = 0, z∞ = z0, we find

J (0, z0) =( −1+τz0 0
−ζz0 f ′

br(0)+ξ(1− z0) f ′
cr(0) −ζ fbr(0)−ξ fcr(0)

)
.

(6.7)

Since the Jacobian for the disease-free equilibrium is lower-triangular, the eigenvalues
areλ1 =−1+τz0 andλ2 =−ζ fbr(0)−ξ fcr(0). The eigenvalues are always real, so (un)stable
spirals cannot be observed. We now consider several cases.

1. Case fbr(0) = 0 and fcr(0) = 0
The eigenvalues are λ1 = −1+τz0 and λ2 = 0, which makes the stability undeter-
minable using linear stability analysis.

2. Case fbr(0) = 0 and fcr(0) > 0
The eigenvalues are λ1 = −1+τ and λ2 = −ξ fcr(0). Thus the disease-free equilib-
rium is a stable node if τ< 1 and an unstable node if τ> 1. For τ= 1, the stability
is undetermined. In this case, z0 = 1.

3. Case fbr(0) > 0 and fcr(0) = 0
The eigenvalues are λ1 = −1 and λ2 = −ζ fbr(0), thus the DFE is a stable node. In
this case, z0 = 0.

4. Case fbr(0) > 0 and fcr(0) > 0

The eigenvalues are λ1 =−1+τ fcr(0)
ω fbr(0)+ fcr(0) and λ2 =−ζ fbr(0)−ξ fcr(0). Eigenvalue

λ2 < 0, thus the stability solely depends on λ1. The disease-free equilibrium is a

stable node if τ< ω fbr(0)+ fcr(0)
fcr(0) , an unstable node if τ> ω fbr(0)+ fcr(0)

fcr(0) and is undeter-
mined otherwise.

Unfortunately, we cannot directly analyse the stability of the endemic equilibria, be-
cause (i) we do not know y∞ nor z∞ and (ii) we require the functions fbr and fcr and
its derivatives f ′

br and f ′
cr to determine the stability. Moreover, the existence of multiple
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endemic equilibria rules out the possibility of finding a Lyapunov function to prove the
global stability of system (6.3). Nevertheless, for specific functional responses fbr and fcr

that have only a single EE, one could attempt to construct a Lyapunov function, which is
outside the scope of this thesis.

6.3.4. BASIC REPRODUCTION NUMBER
The basic reproduction number R0 is the number of secondary infections produced by
one average infected individual in a completely susceptible population. At the point
R0 = 1, the disease-free equilibrium loses stability and an endemic equilibrium emerges.
The point R0 = 1 coincides with the epidemic threshold τc .

We compute the basic reproduction number R0 using the next generation matrix
method, which was first introduced in [121], then generalised in [122] (see also [123]).
Even though the compartmental component of system (6.3) is one-dimensional (the
equation for the link density z does not count, as the link density z is not related to
individuals) and the analysis could also be performed by local stability analysis (see
Section 6.3.3), we have chosen for the next generation matrix method due to its widely
spread use.

We rewrite the first entry of (6.7) as J11 = M11 −V11, with M11,V11 > 0. The only such
splitting possible, assuming fcr(0) > 0, is

M11 = τz0, V11 = 1.

Then, the basic reproduction number R0 is M11V −1
11 , i.e.

R0 = τ fcr(0)

ω fbr(0)+ fcr(0)
. (6.8)

For fcr(0) = 0, equation (6.8) does not apply, because the disease-free equilibrium re-
mains stable for all parameter values (recall Section 6.3.3). In case fcr(0) = 0, we will
define the basic reproduction number R0 in an alternative way, which will be specified
later.

We use the definition (6.8) of R0 to prove the following theorem.

Theorem 6.2 If fcr(0) > 0 and R0 > 1, system (6.3) admits at least one endemic equilib-
rium.

Proof. It follows from the second equation of system (6.3) that, at equilibrium,

z∞ = fcr(y∞)

ω fbr(y∞)+ fcr(y∞)
.

Moreover,
dy

dt

∣∣∣
y=1

=−1 < 0.

Hence, if we prove that there exists a ε> 0 such that

dy

dt

∣∣∣
y=ε

> 0,
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the intermediate value theorem ensures the existence of at least one positive (i.e. en-
demic) equilibrium value for y . This coincides with requiring

−ε+τε(1−ε)
fcr(ε)

ω fbr(ε)+ fcr(ε)
> 0.

Simplifying by ε on both sides and rearranging the terms, we obtain

τ
fcr(ε)

ω fbr(ε)+ fcr(ε)
> 1

1−ε . (6.9)

Inequality 6.9 coincides with the assumption R0 > 1 for ε= 0; hence, by continuity, there
exists an ε> 0 such that the desired inequality is satisfied. This concludes the proof. □

Theorem 6.2 is a more general version of Theorem 5.2 from Chapter 5, where we also
proved the existence of at least one endemic equilibrium. The difference is that Theo-
rem 6.2 considers general link-breaking and link-creation functional responses, whereas
Theorem 5.2 only considers the functional responses generated by the G-ASIS model.

6.3.5. GLOBAL STABILITY
Before proving global stability, we first consider limit cycles of the aNIMFA model, for
which we invoke the Bendixson-Dulac theorem.

Theorem 6.3 (Bendixson-Dulac) If there exists a C 1-function φ(y, z) such that the ex-
pression

F (y, z) = ∂(φ f )

∂y
+ ∂(φg )

∂z
(6.10)

has the same sign ( ̸= 0) almost everywhere in a simply connected region R, then the planar
autonomous system

d y

d t
= f (y, z),

d z

d t
= g (y, z),

has no non-constant periodic solutions lying entirely within the region R.

A proof of Theorem 6.3 can be found in [124], or in [125] for the N -dimensional case. We
now apply Theorem 6.3 to prove that system (6.3) admits no periodic solutions.

Theorem 6.4 System (6.3) admits no non-trivial periodic solutions.

Proof. We verify the Bendixson-Dulac criterion using φ(y, z) = 1
y z for our system (6.3) in

the region R = (0,1)2. We find

φ f =−1

z
+τ(1− y),

φg =−ζ fbr(y)

y
+ξ fcr(y)

y z
−ξ fcr(y)

y
.
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Filling in Eq. (6.10) gives

F (y, z) =−τ−ξ fcr(y)

y z2 .

Since y, z > 0 and fcr(y) is a non-negative function, we conclude that F < 0 in the whole
region R = (0,1)2 and there cannot exist any limit cycles. □

We finalises the theoretical analysis with a statement about global stability of the
aNIMFA model. Recall that the DFE is locally (hence, globally) unstable when R0 > 1.
From Theorem 6.2, we can conclude the following.

Corollary 6.5 Assume that R0 > 1 and that the DFE is on the repelling part of the z-axis
{y = 0, z > 1

τ }. Then, the endemic equilibrium, if it is unique, is globally asymptotically
stable. If multiple endemic equilibria exist, or the DFE is in the attracting part of the z-
axis, i.e. {y = 0, z < 1

τ }, no general conclusions can be drawn.

Proof. We can exclude the possibility of homoclinic orbits to the DFE, whose stable man-
ifold is the z-axis. Under our assumptions, the corollary is an immediate consequence
of Theorem 6.4. □

6.4. EXAMPLES
In the previous section, we derived several general results for the aNIMFA model. How-
ever, certain properties, like the number and stability of the endemic states, could not
be determined for general functional responses. Here, we investigate several examples
of functional responses fbr and fcr, whereby we primarily focus on epidemiological ap-
plications. Then, by assumption, the link-breaking rule fbr(y) is likely to be increasing
with the prevalence y and the link-creation rule fcr(y) is exactly opposite. The aNIMFA
model is, however, more versatile and can be applied to other spreading phenomena, in-
cluding opinion dynamics, cascading failures and information transport in the human
brain. These spreading phenomena are often more complex than SIS epidemics, thus
requiring more complex (maybe even non-monotone) functional responses fbr and fcr.

6.4.1. EXAMPLE 1: RANDOM LINK-ACTIVATION DEACTIVATION
Presumably the easiest functional responses are those that are totally unaffected by the
current number of infected cases. Then the network density evolves independently of
the epidemic prevalence. This model is known as the Random Link-Activation Deactiva-
tion (RLAD) model [98]. In the RLAD model, each link in the underlying network can be
randomly created or broken, with rates ξ and ζ respectively. Mathematically, we require
that the functional responses fbr and fcr are constant and for simplicity, we consider
fbr(y) = fcr(y) = 1, and hence system (6.3) becomes

d y

d t
=−y +τy(1− y)z, (6.11a)

d z

d t
=−ζz +ξ(1− z). (6.11b)

Then, the basic reproduction number as defined in Eq. (6.8) is R0 = τ
1+ω . In this simple

example, the governing equation (6.3b) for the link-density z(t ) is decoupled from the
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prevalence y(t ) and can be solved directly;

z(t ) = 1

1+ω +
(

z0 − 1

1+ω
)

e−(ξ+ζ)t ,

where the effective link-breaking rate ω= ζ/ξ. If the exponential decays sufficiently fast
(i.e. ξ+ ζ is large), the network density quickly converges to z = 1/(1+ω). Substituting
z = 1/(1+ω) into Eq. (6.3a) and solving yields the famous logistic equation [126] for the
prevalence;

y(t ) = y∞
1+e−K (t−t0)

, (6.12)

where y∞ = 1− 1+ω
τ is the steady-state prevalence, K = τ−1 is the growth rate and t0 =

1
K ln

(
y∞
y0

−1
)

is the inflection point, better known as the epidemic peak. Formula (6.12)

only holds if y0 ̸= y∞ and the solution equals y(t ) = y0 if y0 = y∞.
The time-varying prevalence y(t ), given by Eq. (6.12), converges to a unique, non-

zero, steady-state prevalence y∞ > 0 if τ> 1+ω. Otherwise, for τ< 1+ω, the prevalence
decreases exponentially to zero. The same result follows from linear stability analysis.
The DFE, given by (y∞, z∞) = (0, 1

1+ω ), is asymptotically stable for τ< 1+ω, unstable for
τ > 1+ω and undetermined for τ = 1+ω. The unique endemic equilibrium is given by
(y∞, z∞) = (

1− 1+ω
τ , 1

1+ω
)
, which is in the biologically feasible region only if R0 > 1, and

coincides with the DFE when R0 = 1. The Jacobian of the EE is

J =
(
1− τ

1+ω (1+ω)
(
1− 1+ω

τ

)
0 −ζ−ξ

)
.

The eigenvalues are λ1 = 1− τ
1+ω and λ2 = −ζ− ξ < 0. Thus the EE is a stable node if

R0 > 1, unstable node if R0 < 1 and undetermined for R0 = 1. As remarked above, the
case R0 < 1 leads to y∞ < 0 which is biologically infeasible. The steady states and their
behaviour of the RLAD model are shown in Table 6.1.

Table 6.1: The equilibria of Example 1 and their local stability.

Example 1: fbr(y) = fcr(y) = 1 R0 ≤ 1 R0 > 1

Disease-free state
(
0, 1

1+ω
)

stable node unstable node

Endemic equilibrium
(
1− 1+ω

τ , 1
1+ω

)
unstable node stable node

Since the link-dynamics is decoupled from the disease dynamics in the RLAD model,
the behaviour of the RLAD model is very similar to the static SIS model and undergoes
the usual transcritical bifurcation, except that the basic reproduction number R0 is a
function of the effective link-breaking rate ω. For other functional responses fbr and fcr,
we expect different behaviour, which will be investigated in the upcoming examples.

6.4.2. EXAMPLE 2: EPIDEMICS: fbr(y) = y , fcr(y) = 1
Contrary to the randomly evolving links in Example 1, we expect that genuine epidemic
outbreaks affect the number of contacts of people. We consider the simple case where
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the link-breaking process fbr(y) = y is a linear function of the prevalence, but the link-
creation process remains independent from the total number of infections [ fcr(y) = 1].
Then, the governing equations become

d y

d t
=−y +τy(1− y)z, (6.13a)

d z

d t
=−ζz y +ξ(1− z). (6.13b)

The basic reproduction number as defined in Eq. (6.8) is R0 = τ. The disease-free equilib-
rium (y∞, z∞) = (0,1) is a stable node if τ< 1, an unstable node if τ> 1 and is otherwise

undetermined. The unique EE follows from Eq. (6.4) as (y∞, z∞) =
(
τ−1
τ+ω , τ+ω

τ(1+ω)

)
and ex-

ists in the biologically feasible region for τ> 1.
We now show that the unique EE is locally stable for this specific choice of fbr and fcr.

The Jacobian around the EE equals

J =
(−1+τ(1−2y∞)z∞ τy∞(1− y∞)

−ζz∞ −ζy∞−ξ
)
=


− τ−1

1+ω
τ(τ−1)(ω+1)

(τ+ω)2

−ζ τ+ω
τ(1+ω)

−ζ τ(ω+1)

ω(τ+ω)

 .

For τ> 1 and ζ,ω> 0, we have J1,1, J2,1, J2,2 < 0 and J1,2 > 0; hence, tr(J ) < 0 and det(J ) > 0,
which implies that the real parts of its eigenvalues are negative. Hence, the EE is locally
stable. Following Corollary 6.5, the EE is also globally asymptotically stable for R0 > 1,
which is a consequence of the absence of limit cycles guaranteed by Bendixson-Dulac
and the fact that the DFE is unstable for R0 > 1.

We summarize the stability of the two equilibria in Table 6.2 and present simulations
of the two possible behaviours of system (6.13) in Figure 6.1. Comparing this example to
Example 1, the behaviour is different in two ways. First, the basic reproduction number
R0 = τ does not depend on the link-breaking rate ζ and link-creation rate ξ, whereas R0

is a linear function ofω= ζ/ξ in Example 1. Second, the unique endemic equilibrium for
R0 > 1 converges in a spiral, whereas Example 1 converges without spiral behaviour.

Table 6.2: The equilibria of Example 2 and their local stability.

Example 2: fbr(y) = y, fcr(y) = 1 R0 ≤ 1 R0 > 1

Disease-free state (0,1) stable node unstable node

Endemic equilibrium

(
1− 1

τ

1+ω
τ

,
1+ω

τ
1+ω

)
unstable spiral stable spiral

6.4.3. EXAMPLE 3: THE ADAPTIVE SIS MODEL
The adaptive SIS (ASIS) model was explained in Chapter 4 and describes the response of
individuals to an on-going pandemic. In particular, the ASIS model assumes that links
are broken between susceptible and infected nodes and (re)created between susceptible
nodes. The aNIMFA approximation of the ASIS model was already analysed in Chap-
ter 5 and the functional responses were derived as fbr(y) = 2y(1− y) and fcr(y) = (1− y)2.
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(a) R0 = 0.8
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(b) R0 = 5.4

Figure 6.1: Dynamics for Example 2. Starting point: asterisk; stable equilibrium: black dot; unstable equilib-
rium: red dot. (a) If R0 < 1, any initial condition converges to the DFE. (b) If R0 > 1, the unique EE is globally
stable. The other parameters are, for simplicity, ζ= ξ= 1.

The link-breaking response is similar to Example 2, but the term 1− y was added to ac-
count for the fact that for large epidemic outbreaks, the susceptible population may be
depleted and the possibility to break links between susceptible and infected individuals
decreases, simply because of the lack of susceptible individuals. The factor 2 is a conver-
sion factor from the original Markovian model; we keep this factor for consistency with
Chapter 5. The link-creation response fcr is more intuitive; we expect many links to be
created if the disease is almost nonexistent. Hence, we are considering the governing
equations

d y

d t
=−y +τy(1− y)z, (6.14a)

d z

d t
=−2ζz y(1− y)+ξ(1− z)(1− y)2. (6.14b)

The basic reproduction number as defined in Eq. (6.8) is, once again, R0 = τ. The disease-
free equilibrium (0,1) is a stable node for R0 < 1, unstable node for R0 > 1 and is un-
determined otherwise. The unique endemic equilibrium follows from (6.4) and has y-
coordinate (recall (5.12))

y∞ = 1− 1−2ω

2τ
−

√(1−2ω

2τ

)2
+ 2ω

τ
,

and the EE becomes
(

y∞, 1
τ(1−y∞)

)
. Using basic arithmetic, it can be verified that τ > 1

implies 0 < y∞ ≤ 1− 1
τ , which ensures that the EE is contained in the physical region

(0,1)2. Thus, the EE exists for R0 > 1.
The calculations needed for the stability of the EE become extremely cumbersome;

however, the Bendixson-Dulac theorem, the uniqueness of the EE, the boundedness of
solutions (see Lemma 6.1) and the instability of the DFE ensure that the EE is globally
asymptotically stable when R0 > 1 (recall Corollary 6.5).
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We summarize the stability of the two equilibria in Table 6.3 and present simulations
of the two possible behaviours of system (6.14) in Figure 6.2.

Table 6.3: The equilibria of Example 3 and their local stability.

Example 3: fbr(y) = 2y(1− y), fcr(y) = (1− y)2 R0 ≤ 1 R0 > 1

Disease-free state (0,1) stable node unstable node

Endemic equilibrium
(

y∞, 1
τ(1−y∞)

)
unstable spiral stable spiral
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(a) R0 = 0.8
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(b) R0 = 2.0

Figure 6.2: Dynamics for Example 3. Starting point: asterisk; stable equilibrium: black dot; unstable equilib-
rium: red dot. (a) If R0 < 1, any initial condition appears to converge to the DFE. (b) If R0 > 1, the unique EE is
globally stable. The other parameters are, for simplicity, ζ= ξ= 1.

6.4.4. EXAMPLE 4: INFORMATION SPREAD

Besides epidemiological applications, we also revisit the AID model from Trajanovski et
al. [97]. The functional responses of the AID model have been derived in Chapter 4, and
are given by fbr(y) = (1− y)2 and fcr(y) = 2y(1− y). The link-breaking response reduces
the links in the network when the gossip prevalence is low. On the other hand, the link-
creation response increases the link density for low prevalence, based on the fact that
gossip is appealing and links are established to spread the news. The factor 2 in fcr is
again a conversion factor from the Markovian G-ASIS model. To summarise, the govern-
ing equations are given by:

d y

d t
=−y +τy(1− y)z, (6.15a)

d z

d t
=−ζz(1− y)2 +2ξy(1− z)(1− y). (6.15b)
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The disease-free equilibrium (0,0) is stable for all τ > 0. The y-coordinates of the two
endemic equilibria follow from (6.4) and are equal to (see Eq. (5.13))

(y∞)1,2 = 2τ+ω−2±
√

(2τ+ω−2)2 −8τω

4τ
(6.16)

and the EE become
(

y∞, 1
τ(1−y∞)

)
. The basic reproduction number R0 cannot be deter-

mined in the traditional way using Eq. (6.8), as the disease-free equilibrium does not
lose stability. Instead, we define the basic reproduction number as the point where the
two endemic equilibria are born (i.e. where (6.16) has non-complex solutions). Then the
basic reproduction number follows as

R0 = 2τ

ω+2+p
8ω

. (6.17)

The dynamics of the AID model is plotted in Figure 6.3. For R0 < 1, the solution con-
verges to (0,0). For R0 > 1, the solution may converge to the disease-free state (0,0), but
can also converge to the stable endemic equilibrium, depending on the initial condition.
The dependence of the basic reproduction number R0 on the effective link-breaking
rate ω is non-linear, which contrasts all earlier examples, that were either independent
or linearly dependent on the effective link-breaking rate ω. Lastly, since the DFE lies in
the attracting part of the z-axis, we cannot rule out the existence of a homoclinic orbit
from the DFE.

We summarize the stability of the three equilibria in Table 6.4 and present simula-
tions of the two possible behaviours of system (6.15) in Figure 6.3.

Table 6.4: The equilibria of Example 4 and their local stability.

Example 4: fbr(y) = (1− y)2, fcr(y) = 2y(1− y) R0 < 1 R0 ≥ 1

Disease-free state (0,0) stable node stable node

Endemic equilibrium
(
(y∞)1, 1

τ(1−(y∞)1)

)
non-existent unstable node

Endemic equilibrium
(
(y∞)2, 1

τ(1−(y∞)2)

)
non-existent stable node

The basin of attraction of each stable equilibrium can be determined using a Lya-
punov function. Such Lyapunov functions distinguish for which initial conditions the
system will converge to either the DFE or the stable EE. However, up to the best of our
knowledge, no exact Lyapunov function can be constructed for system (6.3) nor for most
choices of the link-breaking and link-creation mechanisms.

However, the Lyapunov function can be approximated by considering a linearisation
around a fixed point. For example, for the DFE (0,0), its Jacobian equals

J(0,0) =
(−1 0

2ξ −ζ
)

.

According to Khalil [127, p. 73–80], we can obtain an approximate Lyapunov function V̂
by solving for the matrix P in the following matrix equation

P J + J T P =−I ,
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(a) R0 = 0.27
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Figure 6.3: Dynamics for Example 4. Starting points: asterisks; stable equilibrium: black dot; unstable equilib-
rium: red dot. (a) If R0 < 1, any initial condition converges to the DFE. (b) If R0 > 1, solutions may converge to
the stable endemic equilibrium or the disease-free state, depending on the initial condition. The other param-
eters are, for simplicity, ζ= ξ= 1.

and the Lyapunov function follows as

V̂ (y, z) =
(

y
z

)T

P

(
y
z

)
.

The estimated Region of AttractionΩ is then determined by the largest c > 0 for which

Ωc := {(y, z) ∈ [0,1]2 |V̂ (y, z) ≤ c},

is such that

Ω := max
c>0

{
d

d t
V̂ (Ωc ) < 0

}
.

For Example 4, the estimated Lyapunov function around (0,0) becomes

V̂ (y, z) = 1

2ζ
z2 + 1

2
y2 + 2ξ

ζ(1+ζ)
y z + 2ξ2

ζ(1+ζ)
y2

which is a tedious formula, but it is clear that V̂ > 0 in the biologically relevant region
[0,1]2. Unfortunately, the derivative d

d t V̂ is extremely complicated, even in such a simple
case. Hence, we derive the largest possible approximate region of attraction numerically,
which is shown in Figure 6.4. The approximate regions of attraction for the disease-free
equilibrium (0,0) and the stable endemic equilibrium are shown in orange, whereas the
exact boundary separating the two regions, and thus the actual basins of attraction of
the two equilibria, is shown as a light-blue curve. The estimated regions of attraction
often poorly match with the true regions of attraction [127], which is especially true for
the stable EE in Figure 6.4. On the other hand, the region of attraction for the DFE is
reasonably accurate.
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Figure 6.4: Regions of attraction for Example 4. The two attraction regions are separated by the numerically de-
termined light-blue curve, which is the stable manifold of the unstable equilibrium. The approximate regions
of attraction for the disease-free equilibrium and the stable endemic equilibrium are shown in orange. Black
dots denote the stable equilibria and the red dot the unstable equilibrium. The parameters are, for simplicity,
τ= 3, ζ= ξ= 1.

6.5. CONCLUSION
In this chapter, we developed a minimal model for SIS disease dynamics with personal
risk perception, called adaptive NIMFA (aNIMFA). We investigated local and global sta-
bility of the model and showed that limit cycles cannot exist. The non-existence of
limit cycles implies that epidemic waves cannot occur in the SIS model based on dis-
ease and behaviour dynamics alone and time-varying parameters are required to exhibit
epidemic waves. Furthermore, we analysed various examples in detail, from epidemic
contagion to information spread.

In this chapter, we assumed an homogeneous mixing of the population. In reality,
some people contact each other frequently while other people never meet. Thus, the
population exhibits very heterogeneous contact patterns. We expect that one can ex-
tend the current results to a heterogeneous network with N nodes. While considering
a network, one must decide whether the link-breaking and link-creation functional re-
sponses act on the local prevalence of the node or on the global prevalence of the whole
network. From a modelling perspective, we see possibilities for both approaches, or a
mix of these.

We see several other interesting directions for future research. For example, is it pos-
sible to provide, besides continuity, conditions on fbr and fcr such that we can limit/bound
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the number of endemic equilibria from Eq. (6.4)? Can we determine for which fbr and
fcr the endemic equilibrium is unique?

The aNIMFA model is derived under SIS dynamics, but other compartmental mod-
els can be augmented with the link-breaking and link-creation functional responses as
well. The extension of aNIMFA towards other, more realistic compartmental models
is straightforward and we expect several interesting phenomena to occur based on the
link-breaking and link-creation functional responses.

As a final comment, we mention the possibility to include delays into the knowledge
about the current prevalence. As the COVID-19 pandemic exemplified, testing an indi-
vidual typically takes several hours or days before the result is communicated. Moreover,
the daily reported cases by governmental agencies typically run a few days behind. One
modelling approach is to convert the aNIMFA model into a delay-differential equation,
which typically complicates the analysis significantly. We leave these possibilities as an
outlook for future works.
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7
FORECASTING THE SPREAD OF

COVID-19

In this last chapter, we turn our focus towards a practical case: forecasting the spread
of the Coronavirus Disease 2019 (COVID-19). Researchers from various scientific disci-
plines have attempted to forecast the spread of COVID-19. The proposed epidemic pre-
diction methods range from basic curve fitting methods and traffic interaction models to
machine-learning approaches. If we combine all these approaches, we obtain the Net-
work Inference-based Prediction Algorithm (NIPA). In this chapter, we analyse a diverse
set of COVID-19 forecast algorithms, including several NIPA variants. Among the diverse
set of algorithms that we evaluated, the original NIPA performs best on forecasting the
spread of COVID-19 in Hubei, China and in the Netherlands. In particular, we show that
network-based forecasting is superior to any other forecasting algorithm.

This chapter is based on:
B. Prasse, M. A. Achterberg, L. Ma and P. Van Mieghem, Network-inference-based prediction of the COVID-19
epidemic outbreak in the Chinese province Hubei, Applied Network Science 5:35, Jul 2020 [128]
and
M. A. Achterberg, B. Prasse, L. Ma, S. Trajanovski, M. Kitsak and P. Van Mieghem, Comparing the accuracy
of several network-based COVID-19 prediction algorithms, International Journal of Forecasting, 38:2, Apr–Jun
2022 [129].
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7.1. INTRODUCTION
In December, 2019, the SARS-CoV-2 virus suddenly emerged in the Chinese province
Hubei. The SARS-CoV-2 virus causes the Coronavirus Disease 2019 (COVID-19), which
is a contagious respiratory disease. The number of COVID-19 cases in China rose dra-
matically to almost 80,000 at the end of February 2020. From China, COVID-19 quickly
spread over the world, with almost ten million reported cases at the end of June, 2020.
Many countries imposed a nation-wide lockdown to slow down the spread of COVID-
19. A reliable forecast of the pandemic is key for deploying targeted and effective disease
countermeasures, which aim at reducing the impact of the disease on the population.

Just like weather forecasts, predicting the future course of an epidemic outbreak is
subject to fundamental limits [130]. First, the availability of reported data is limited, be-
cause the data is often reported only on a daily basis and carrying out medical tests on a
large scale is challenging, especially if the testing capacity is limited. Second, forecasting
the number of infected cases, especially in the starting phase, is highly sensitive to initial
perturbations [131].

Nevertheless, many algorithms have been developed for forecasting the spread of
COVID-19. One of the simplest approaches fits the number of infections using nonlinear
regression to a sigmoid curve, such as the logistic function [126, 132], Hill function [133]
or Gompertz function [134]. Other methods have been developed using Kalman filter-
ing [135], Bayesian approaches [136], using aeroplane networks, daily commute traffic or
cell phone traffic [137], machine learning algorithms such as adaptive neuro-fuzzy infer-
ence system [138] or Long Short-Term Memory (LSTM) [139] or are based on parameter
estimation of the SIR [139, 140] or the SEIR model [141].

Many of the aforementioned methods implicitly assume that the number of infected
cases is a certain region is independent of the other regions. In reality, the traffic be-
tween regions is of vital importance to transmit the disease across regions. Networks are
a natural way to capture such interactions. We describe the interactions by a network
G with N nodes. Each node i in the network G represents a particular region (coun-
try, province, municipality or city) and the link ai j ∈ {0,1} represents the existence of an
interaction from region j to region i . The link weight βi j describes the infection proba-
bility from region j to region i . The self-infection probability within a region i is given by
βi i , which is expected to be dominant over the other infection probabilities βi j , because
the interaction within a region is stronger than the interaction with other regions. The
N ×N infection probability matrix B , with elements βi j is, however, not known.

We propose the Network-Inference-based Prediction Algorithm (NIPA) which fore-
casts the spread of the disease in three steps. First, the reported number of infected cases
are preprocessed to remove outliers. As a second step, the unknown infection probabil-
ity matrix B with elements βi j is estimated based on past observations using a machine-
learning algorithm. Finally, using the estimated infection probability matrix B̂ and an
SIR model, NIPA provides short-term forecasts on the number of infected cases.

In this chapter, we compare a diverse set of methods to forecast the spread of COVID-
19, ranging from fitting closed-form epidemic curves and comprehensive machine-lear-
ning algorithms to network-based approaches, including NIPA. We focus on the spread
of COVID-19, but we emphasise that all methods can be applied to general epidemic
outbreaks. We focus on the outbreak in the initial stage, i.e. without access to vaccina-
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tions and with a single dominant COVID-19 variant. Then we can safely assume that
all disease parameters remain constant over the whole time period. We show that pure
machine-learning, network-based algorithms or epidemiological models are inferior to
algorithms that combine multiple approaches. In particular, the Network Inference-
based Prediction Algorithm (NIPA) is shown to be superior to any other algorithm that
we have evaluated. Section 7.2 introduces eight different forecast algorithms for predict-
ing the future number of COVID-19 cases. We evaluate the accuracy of each algorithm
in Section 7.3 in two selected regions: Hubei (China) and the Netherlands. The strengths
and weaknesses of each algorithm is also discussed. Finally, we conclude in Section 7.4.

7.2. PREDICTION ALGORITHMS
The spread of COVID-19 can be measured in terms of the daily number of reported cases.
Throughout this chapter, the “number of infected cases” is understood as the “number
of cases reported by local authorities”. The asymptomatic individuals, who do not feel
sick and do not even know that they are infected and infectious, are not reported and
can infect others unnoticed. To gain understanding of the percentage of asymptomatic
cases, one possibility is to test the population at random. For COVID-19, the portion
of asymptomatic cases is estimated to be as large as 80% [142]. Since the number of
asymptomatic cases cannot be determined on a daily basis, we confine ourselves to the
number of reported cases.

At the foundation of our prediction model lies the SIR compartmental model. We
denote the discrete time by k = 1, ...,n where n is the total number of days since the
first reported case on day k = 1. Contrary to the other chapters in this thesis, we use a
discrete-time SIR model instead of a continuous-time process. The main reason is that
nearly all authorities report the COVID-19 infections on a daily basis, thus using a time
step of 1 day follows as a natural choice. The influence of the chosen time step on the
prediction accuracy is investigated in Appendix E.9.

The SIR epidemic model with time-varying spreading parameters is given by:

Definition 7.1 (Discrete-time SIR model [143, 144])
The viral state vi [k] = (Si [k],Ii [k],Ri [k])T of every region i evolves in discrete time k =
1,2, ...,n according to

Ii [k +1] = (1−δi )Ii [k]+ (1−Ii [k]−Ri [k])
N∑

j=1
βi j [k]I j [k], (7.1a)

Ri [k +1] =Ri [k]+δiIi [k] (7.1b)

and the fraction of susceptible individuals follows as

Si [k] = 1−Ii [k]−Ri [k], (7.2)

where βi j [k] ≥ 0 denotes the infection probability from region j to region i at time k and
δi > 0 denotes the curing probability of region i .

We further define Icum,i [k] =∑k
l=1Ii [l ] as the cumulative fraction of infected cases in

region i up to time k. Each forecasting algorithm aims to find the best possible forecast
Îcum,i [k] for the cumulative number of infected cases Icum,i [k] for every region i and
time k. In the sequel, we discuss the prediction methods in detail.
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7.2.1. NIPA
Network-based approaches take into account the interactions between different regions.
However, the contact network G is unknown (and consequently also the infection prob-
abilities βi j ) and must be inferred from the epidemic outbreak. The methodology be-
hind the Network Inference-based Prediction Algorithm (NIPA) was originally proposed
in [144] to predict the future number of infected cases in a theoretical scenario. We ap-
ply the NIPA method to predict the outbreak of COVID-19, which consists of three steps.
First, the raw data on the number of reported cases is preprocessed to obtain an SIR
time series. Second, based on the SIR time series, we obtain estimates δ̂i and β̂i j of the
unknown spreading parameters δi and βi j of the SIR model (7.1). In the third step, the

estimates δ̂i and β̂i j are used by iterating the SIR model for k days. The outcome of the
SIR model serves as the prediction of the future evolution of the COVID-19 outbreak. We
now describe the NIPA method in more detail.

STEP 1: DATA PREPROCESSING

Most governments report the number of infected cases Nrep,i [k] in region i at every
day k. Using the number of inhabitants Ni of a region i , we obtain the report frac-
tion of infected cases Irep,i [k]. Based on the fraction of reported infections Irep,i [k] in
region i , our goal is to obtain an SIR viral state vector vi [k] = (Si [k],Ii [k],Ri [k])T for
every region i at any time k = 1, ...,n. The fraction of susceptible individuals follows as
Si [k] = 1−Ii [k]−Ri [k] at any time k ≥ 1. Hence, it suffices to determine the fraction of
infectious individuals Ii [k] and recovered individuals Ri [k].

The fraction of infectious individuals Ii [k] follows from the reported fraction of in-
fections Irep,i [k]. To be precise, the reported data is the fraction Irep,i [k] of individu-
als that are detected to be infected by COVID-19. Upon detection of the infection, the
respective individuals are hospitalised or self-quarantined and are therefore no longer
able to infect other individuals. We consider the reported fraction of infections Irep,i [k]
as an approximation for the number of infectious individuals Ii [k].

We do not know the fraction of removed individuals Ri [k]. At the initial time k = 1,
it is realistic to assume that Ri [1] = 0 holds for every region i . For any time k ≥ 2, the
fraction of removed individuals Ri [k] can be obtained from (7.1), if the curing probabil-
ities δi were known. However, we do not know the curing probabilities δi either. Instead,
we consider 50 equidistant candidate values for the curing probabilities δi , ranging from
δmin = 0.01 to δmax = 1. We define the set of candidate values as Ω = {δmin, ...,δmax}.
For every candidate value δi ∈Ω, the fraction of removed individuals Ri [k] follows from
(7.1) at all times k ≥ 2. Thus, we obtain 50 potential sequences Ri [1], ...,Ri [n], each of
which corresponding to a candidate value δi ∈Ω. We estimate the curing probability δi ,
and hence the sequence Ri [1], ...,Ri [n], as the element in Ω that resulted in the best fit
of the SIR model (7.1) to the reported number of infections.

The raw time series Irep,i [1], ...,Irep,i [n] exhibits erratic fluctuations. To reduce the
fluctuations, we apply a moving average, provided by the Matlab command smoothdata,
to the time series Irep,i [1], ...,Irep,i [n] of every region i . The preprocessed time series
Ii [1], ...,Ii [n] equals the output of smoothdata.
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STEP 2: NETWORK INFERENCE

For every region i , the curing probability δi is estimated as one of the candidate values in
the setΩ, as outlined above. The remaining task is to estimate the infection probabilities
βi j . The goal of network inference [145, 146, 147] is to estimate the matrix B of infection
probabilities from the SIR viral state observations vi [1], ..., vi [n]. The matrix B can be
interpreted as the weighted adjacency matrix of a contact network. We adapt a network
inference approach [144], which is based on formulating a set of linear equations and
the least absolute shrinkage and selection operator (LASSO) [148].

The crucial observation from the SIR governing equations (7.1) is that βi j appears
linearly, whereas the state variables Si , Ii and Ri do not. Equation (7.1) can be rewritten
in the following linear equation

Vi = Fi

βi 1
...

βi N

 (7.3)

for all regions i = 1, ..., N . Here, the (n −1)×1 vector Vi and the (n −1)×N matrix Fi are
defined as

Vi =

 Ii [2]− (1−δi )Ii [1]
...

Ii [n]− (1−δi )Ii [n −1]

 (7.4)

and

Fi =

 Si [1]I1[1] ... Si [1]IN [1]
...

. . .
...

Si [n −1]I1[n −1] ... Si [n −1]IN [n −1]

 . (7.5)

If the SIR model (7.1) were an exact description of the COVID-19 spread, then the linear
system (7.3) would hold with equality. However, the viral state vector vi [k] in region
i does not exactly follow the SIR model (7.1). Instead, the evolution of the viral state
vector vi [k] is described by

vi [k +1] = fSIR(v1[k], ..., vN [k])+wi [k],

where the 3×1 vector fSIR(v1[k], ..., vN [k]) denotes the right-hand sides of the SIR model
(7.1), and the 3×1 vector wi [k] denotes the unknown model error of region i at time k.
The model errors originate from the fact that (i) cases are only reported once per day,
whereas the true epidemic evolves in continuous time and (ii) social distancing, nation-
wide lockdowns and the availability of vaccinations are not captured by the simple SIR
model (7.1).

Due to the existence of model errors wi [k], the linear system (7.3) only holds approx-
imately. Thus, we resort to estimating the infection probabilities βi j by minimising the
deviation of the left side and the right side of (7.3). We infer the network by the LASSO
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[148] as follows:

min
βi 1,...,βi N

∥∥∥∥∥∥∥Vi −Fi

βi 1
...

βi N


∥∥∥∥∥∥∥

2

2

+ρi

N∑
j=1, j ̸=i

βi j

s.t. 0 ≤
N∑

j=1
βi j ≤ 1, j = 1, ..., N .

(7.6)

The first term in the objective function of (7.6) measures the deviation of the left side
and the right side of (7.3). The second term in the objective of (7.6) is an ℓ1–norm regu-
larisation term which avoids overfitting. We choose to not penalise the probabilities βi i ,
since we expect the infections among individuals within the same region i to be domi-
nant compared to infections across regions. The regularisation parameter ρi > 0 is set
by cross–validation.

We emphasise that an accurate prediction of an SIR epidemic outbreak does not re-
quire accurate network inference [144, 149]. The main reason is that the dynamics evolve
over a small subspace of the total N -dimensional space, requiring a few eigenvectors for
an accurate reconstruction of the underlying network. For further details on the deriva-
tion of (7.6), we refer to Appendix E.3.

STEP 3: PREDICTION

Using the obtained estimates δ̂i for the curing probabilities and β̂i j for the infection

probabilities, we iterate the SIR equations (7.1) to obtained a forecast Îi [k] for the num-
ber of reported cases for every region i at time k.

7.2.2. NIPA ON EACH REGION SEPARATELY
As a benchmark model, we apply NIPA on each region separately, which we name NIPA
separate. NIPA separate is a machine-learning method based on the SIR model, but does
not consider the interaction between different regions.

7.2.3. NIPA STATIC PRIOR
The standard NIPA approach considers the most extreme case, where no knowledge is
available on the contact network. In practice, estimations of the contact network are
often available (but may not be very accurate). We introduce NIPA static prior, which
uses an estimate of the contact network as a prior distribution in the NIPA algorithm. We
use a time-independent traffic network (with the corresponding traffic intensity matrix
M) to obtain a prior for the infection probability matrix B as

Bprior = diag(c1, ...,cN ) M . (7.7)

We explain our motivation for the prior infection matrix Bprior in Appendix E.4. The pos-
itive scalars c1, ...,cN are unknown and are set by cross-validation. We assume that the
true infection matrix B is normally distributed around the prior infection matrix Bprior.
Based on the prior infection matrix Bprior and the observations of the COVID-19 spread,
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we obtain the Bayesian estimate B̂ by solving the optimisation problem

B̂ = argmax
B

Pr
[
B

∣∣I[1], ...,I[n]
]

(7.8)

s.t.
N∑

j=1
βi j ≤ 1, i = 1, ..., N ,

where I[k] is the observed N × 1 infection vector I[k] = (I1[k], ...,IN [k])T at all times
k = 1, ...,n. Using the estimated infection matrix B̂ and the estimated curing probabilities
δ̂i for every region i , we forecast the outbreak by iterating the SIR model. For details on
NIPA static prior, we refer to Appendix E.5.

7.2.4. NIPA DYNAMIC PRIOR
Many governments imposed some kind of lockdown, during which the movement of its
citizens is significantly restricted. Thus, the true contact network G varies over time. We
use a time-varying traffic matrix M [k] as an approximation for the prior infection matrix
Bprior[k], whose entries equal

Bprior[k] = diag(c1, ...,cN ) M [k] (7.9)

for all times k. The positive scalars c1, ...,cN are unknown and are set by hold-out vali-
dation. We propose a Bayesian approach called NIPA dynamic prior to estimate the true
infection matrix B [k] from the time series of infected cases Ii [k] and the prior infection
matrix Bprior[k]. Using the estimated time-varying infection matrix B̂ [k] and the curing
probabilities δ̂i for each region i , we forecast the outbreak by iterating the SIR model.
Appendix E.6 explains the technical details of NIPA dynamic prior.

A challenge to NIPA dynamic prior is the unavailability of the contact network in the
future. Hence, we assume the traffic matrix to remain constant after the last observation
point n: Bprior[n +k] = Bprior[n] for all k > 0.

7.2.5. SIGMOID CURVES
Epidemiological models such as the SIR model admit exact solutions for the fraction
of infected nodes (recall Chapter 3). Such solutions often have the shape of a sigmoid
curve. Out of all sigmoid curves, the logistic function is of particular interest, because
the logistic function is the (approximate) solution for the number of infected cases in the
SIS epidemic model [100, 126, 150] and the cumulative number of infected cases in the
SIR epidemic model [131]. The logistic function assumes that the cumulative number of
infected cases Icum,i [k] in region i at time k equals

Icum,i [k] = I∞,i

1+e−Ki (k−t0,i )
, (7.10)

where I∞,i is the long-term fraction of infections, Ki is the logistic growth rate and t0,i

is the inflection point, also known as the epidemic peak. The parameters y∞,i , Ki and
t0,i are estimated for each region separately using a nonlinear curve fitting procedure,
which is explained in Appendix E.8. Two other sigmoid curves, namely the Hill function
and Gompertz function, are also discussed in Appendix E.8.
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7.2.6. LSTM
Recurrent neural networks [151] (RNNs) have been used in various tasks related to se-
quences [152], time series analysis, forecasting, speech recognition and natural language
processing [153]. Long Short-term Memory (LSTM) networks [154] are specific types of
RNNs that resolved the long-standing problem for long-term dependencies caused by
the difference in input growth which in turns leads to vanishing or exploding gradients
in neural networks backpropagation. LSTM introduces additional input, output and op-
tional forget gates as interfaces with additional weights on top of the standard input data
and hidden weights in the standard RNN. There are several variations [155, 156] for the
LSTM networks, just to mention few: with or without forget gate and a “peephole con-
nection"; that perform better in one or another task [157]. For the internal mechanism
between the gates and the exact mathematical relations, we refer to [156] or [158]. In
this chapter, we utilize the most common one – an LSTM with a forget gate. In the sim-
ulations, we use an LSTM with sequence and hidden sizes both equal to four in a single
LSTM layer (e.g. it is possible to stack few LSTM layers which leads to more overfitting),
a learning rate of 0.1 and Adam optimizer [159], with mean square error loss in 2000
epochs of training.

Table 7.1: All algorithms discussed in this chapter. *If the algorithm is based on a phenomenological epidemic
process, like the SIR model. **If the algorithm is able to forecast small perturbations in the global trend. ***If
the spread between different regions is considered.

Algorithm Epidemiology* Flexible** Network***
NIPA ✓ ✓ ✓
NIPA separate ✓ ✓ ×
NIPA static prior ✓ ✓ ✓
NIPA dynamic prior ✓ ✓ ✓
Logistic function ✓ × ×
Hill function ✓ × ×
Gompertz function ✓ × ×
LSTM × ✓ ×

7.3. EVALUATION OF THE PREDICTION PERFORMANCE
We evaluate the prediction accuracy of the methods discussed in Section 7.2 by forecast-
ing the spread of COVID-19 in a selected number of regions. We set the maximal forecast
horizon to six days, because of the difficulty of predicting epidemic outbreaks [131].

Each prediction algorithm produces a forecast Îcum,i [k] for the cumulative fraction
of infected cases Icum,i [k] for every region i at time k. To quantify the prediction error at
time k, we use the Symmetric Mean Absolute Percentage Error (sMAPE)

esMAPE[k] = 1

N

N∑
i=1

|Icum,i [k]− Îcum,i [k]|
(Icum,i [k]+ Îcum,i [k])/2

, (7.11)

which is commonly used in forecasting [160]. Furthermore, we quantify the Percentage
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Error (PE)

ePE,i [k] = Icum,i [k]− Îcum,i [k]

Icum,i [k]
, (7.12)

for every region i and time k to investigate over- and underestimations. We consider the
spread of COVID-19 in two regions: The cities in Hubei, China and the provinces in the
Netherlands. These regions cannot be regarded as full representatives of the spread of
COVID-19, let alone for general infectious diseases. Rather, these two regions illustrate
the strengths and weaknesses of NIPA and the other algorithms.

7.3.1. HUBEI, CHINA
We first evaluate the prediction accuracy on the Chinese province Hubei. In December
2019, the first case of COVID-19 was detected in Wuhan, the capital of Hubei. The first
case outside Wuhan was reported on January 21. From January 24 onwards, the whole
province Hubei was under lockdown, prohibiting any non-urgent travels. On February
15, the local government in Hubei changed the diagnosing policy, causing an erratic in-
crease in the number of reported cases on February 15. Therefore we restrict ourselves
to the period from January 21 to February 14. The number of reported cases are provided
by the Health Commission of Hubei [161] and are shown in Appendix E.2. We normalise
the reported cases for each region by the number of inhabitants of each region, which
are also reported in Appendix E.2.

The majority of COVID-19 patients were reported in Wuhan, as shown in Figure 7.1.
We have removed Shennongjia from our analysis, because of the small number of infec-
tions in that region. Moreover, there is an outlier in Wuhan at time k = 8 (January 28),
which we replaced by Irep,1[8] = (Irep,1[7]+Irep,1[9])/2. The outlier is most likely due to
the increase in the maximum testing capacity in Wuhan, which increased1 from 200 to
2000 people per day as of January 27, 2020.

Figure 7.1: The left figure shows the geographical map of Hubei. The darker the region, the more infections
per 100,000 inhabitants on during the time period January 21 – February 14. The three cities with the most
infections on February 14 are displayed on the right.

For NIPA static prior, we require a traffic network describing the interactions between
the regions in Hubei. The Chinese company Baidu provides an estimate of the number

1See https://m.chinanews.com/wap/detail/zw/sh/2020/01-28/9071697.shtml (in Chinese).

https://m.chinanews.com/wap/detail/zw/sh/2020/01-28/9071697.shtml
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of commuters between all regions in Hubei on a daily basis [162]. The static prior is set
proportional to the traffic network on January 21, which corresponds to day k = 1.

Figure 7.2 shows the prediction accuracy over time for different forecast algorithms.
The horizontal axis shows the date d . We have forecasted the disease several days ahead
in time, using all available information from January 22 until d . For example, the right-
most point in Figure 7.2a includes data from January 22 to February 13 to forecast the
situation on February 14.

The sMAPE error in Figure 7.2 tends to decrease as time evolves, because a growing
amount of data is available. Furthermore, the total number of infected cases quickly in-
creases, whereas the daily infected cases increase at a lower rate, indicating sub-exponen-
tial growth [131, 163]. Sub-exponential growth will inevitably reduce the sMAPE error,
because sMAPE is a relative error metric. On the other hand, the prediction accuracy de-
creases rapidly if the forecast horizon is enlarged. Especially for five and six days ahead
in time around February 1 cannot be predicted accurately, which is illustrated by Figure
7.2e and 7.2f, respectively.

The logistic function performs generally worse than the other algorithms, for which
several reasons exist. First, by fitting a logistic curve, we assume the number of cases to
follow the SIR model closely [131, 4]. Hence, we do not allow any individual or govern-
mental responses to COVID-19, which typically flattens the (logistic) curve. Second, the
logistic function ignores the spread between regions, which further deteriorates the pre-
diction accuracy. Third, the logistic function is symmetric around the epidemic peak at
k = t0; the increase and decrease of the number of cases around the peak is equal. Most
epidemic outbreaks of COVID-19 show a rapid increase and a more gradual decrease of
the daily number of cases. A possible reason is that most lockdowns are enforced imme-
diately, whereas lockdown measures are lifted gradually. Occasionally, the Hill function
[133] and Gompertz function [134] are used to predict epidemic outbreaks, because they
allow asymmetry around the epidemic peak. We focus in the remainder of this chapter
on the logistic function, but report in the conclusion in Table 7.2 on the accuracy of the
Hill and Gompertz function.

The performance of LSTM is moderately good, but LSTM fails to find an accurate
forecast around January 31. Since the time series is the shortest at the left part of Figure
7.2, less data is available to train LSTM. Pure machine-learning algorithms are known to
yield a lower prediction accuracy than other methods if the time series is short [164].

The prediction accuracy of all NIPA methods in Figure 7.2 is similar, although NIPA
static prior is considerably worse around February 4 for the prediction of three or more
days ahead in time. A possible reason is as follows. The impact of the nation-wide lock-
down on January 24 is captured incorrectly by the static prior, whereas the original NIPA
method has more freedom to adjust its contact network accordingly and NIPA dynamic
prior receives a more tailored prior to the current epidemiological situation. Another
reason is that the prior network (dynamic or static) may deviate significantly from the
true infection matrix. We emphasise that under ideal circumstances, namely when the
epidemic outbreak exactly follows the SIR model, NIPA static prior outperforms NIPA,
see Appendix E.7.

Figure 7.2 also shows that by neglecting the interaction between regions, as done
by NIPA seperate, decreases the prediction accuracy compared to the original NIPA. We
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conclude that a network-based approach appears beneficial for forecasting. We sum-
marise the results in Section 7.4.
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Figure 7.2: The prediction accuracy for the situation in Hubei, China. The subplots show the prediction ac-
curacy for a forecast horizon of (a) 1 day, (b) 2 days, (c) 3 days, (d) 4 days, (e) 5 days and (f) 6 days for the
prediction algorithms from Section 7.2.

Another interesting topic is forecast bias: The tendency to systematically overesti-
mate or underestimate the true number of infected cases. Using the Percentage Error
(PE) we estimate the bias for all prediction algorithms for region i at time k. The sur-
face error plots in Figure 7.3 show the Percentage Error as a function of time for a 4-days
ahead prediction. The logistic function and LSTM show the largest deviation around the
mean, especially around February 1, which is in agreement with Figure 7.2. Furthermore,
Figure 7.3 illustrates that the logistic function and LSTM systematically underestimate
the true number of cases. On the other hand, NIPA static prior appears to overestimate
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the true number of cases. A possible reason is the following. The static network is taken
to be proportional to the traffic flow before the lockdown measures. When the lockdown
is introduced, the static prior remains constant, so the algorithm overestimates the true
result. After some days, the newly collected data shows evidence that the prior is not very
accurate, so NIPA static prior ignores the prior and more closely follows the data instead,
which improves the forecast accuracy.

(a) NIPA (b) NIPA separate

(c) NIPA static prior (d) NIPA dynamic prior

(e) Logistic function (f) LSTM

Figure 7.3: The surface plots for the relative prediction error for a 4-days forecast horizon over time. The
subfigures show (a) NIPA, (b) NIPA separate, (c) NIPA static prior, (d) NIPA dynamic prior, (e) Logistic function
and (f) LSTM.

7.3.2. THE NETHERLANDS
As a second case study, we investigate the spread of COVID-19 in the Netherlands. The
first case in the Netherlands was diagnosed on February 27. After February 27, the num-
ber of cases grew rapidly, as depicted in Figure 7.4. The epidemic peak was observed at
the end of March, and the daily number of cases slowly decreased from that time on-
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wards. We consider the spread of COVID-19 on a provincial level, for which data is avail-
able from the Rijksinstituut voor Volksgezondheid en Milieu (RIVM) [165]. The Nether-
lands is subdivided into twelve provinces, for which the RIVM reports the daily number
of new infections. Since the number of infected cases increases more gradually in the
Netherlands than in Hubei, China, the total epidemic period is longer and more data
points are available. A more gradual increase in the number of cases should be benefi-
cial for the prediction accuracy.

Figure 7.4: The left figure shows the geographical map of the Netherlands. The darker the province, the more
infections per 100,000 inhabitants on May 19. The four provinces with the most infections on May 19 are
displayed on the right.

For NIPA static prior, we require a traffic network as an approximation for the inter-
action between the provinces. Statistics Netherlands (Centraal Bureau voor de Statistiek)
reports the number of people mi j working in province i and living in province j , aver-
aged over one year [166]. We use the Google Mobility Data “Workplaces" to estimate the
time-varying traffic network for each province in the Netherlands [167]. Google reports
the percentage decrease of traffic pi [k] on day k in province i compared to an ordinary
day between January 3 and February 6, 2020. During the lockdown, we expect pi [k] < 1
because of the lockdown measures. Then we construct the time-dependent traffic ma-
trix as follows: mi j [k] = mi j ·pi [k].

The prediction accuracy for the Netherlands is outlined in Figure 7.5. Before April 1,
the situation in the Netherlands is similar to Hubei, where the NIPA methods perform
better, but there exist large deviations in the prediction accuracy. After April 1, the accu-
racy of all NIPA methods is nearly identical. In other words, the influence of the initial
static/dynamic network on the prediction is small. The main reason is that the NIPA al-
gorithms are trained on a growing amount of infection data as time advances, naturally
implying that the algorithm focusses more on the data rather than the given initial prior.
Among the best performing methods over the whole period are original NIPA and NIPA
separate, whereas the logistic function and LSTM show the worst performance.

The prediction accuracy of NIPA separate and NIPA are comparable, except at the
left-hand side of Figure 7.5. A possible reason is that the spread of COVID-19 is at the be-
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ginning dominated by interprovincial interactions. After imposing the lockdown at the
end of March, the interaction between the provinces is lowered significantly, resulting in
a spreading process that dominantly takes place within each province.
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Figure 7.5: The prediction accuracy for the situation in the Netherlands. The subplots show the prediction
accuracy (a) 1 day ahead, (b) 2 days ahead, (c) 3 days ahead, (d) 4 days ahead, (e) 5 days ahead and (f) 6 days
ahead.

7.4. CONCLUSION
We have compared the prediction accuracy of eight algorithms to forecast the spread
of COVID-19. We summarise the results in Table 7.2. The error in Table 7.2 is obtained
by averaging over all sMAPE forecast errors for forecast horizons between one and six
days and over all regions and all times. Fitting a sigmoid curve, like the logistic function,
performs the worst of all methods. The main reasons for the low prediction accuracy
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are the imposed symmetry around the epidemic peak and the negligence of the interac-
tion between regions. Other sigmoid curves, such as the Hill function and the Gompertz
function, perform slightly better than the logistic function, but perform worse than most
other algorithms. The machine-learning algorithm Long Short-Term Memory (LSTM) is
not based on any phenomenological epidemic processes nor considers provincial inter-
actions. Table 7.2 shows that the prediction accuracy of LSTM is comparable to the Hill
and Gompertz functions.

The Network Inference-based Prediction Algorithm (NIPA) is a combination of ma-
chine learning, phenomenological epidemics (SIR model) and considers the interaction
between different regions. After preprocessing the data, NIPA infers the contact net-
work as an intermediate step. Using the obtained contact network, the prediction is
computed based on an SIR model. Table 7.2 illustrates that the average prediction ac-
curacy of NIPA is better than any other algorithm. Applying NIPA to each region sep-
arately (NIPA separate) yields a forecast error which is comparable to LSTM. We con-
clude that network-based approaches are beneficial for accurate forecasts. We have also
shown that choosing a time-varying or static prior close to the true contact network may
improve the forecast accuracy of NIPA. Surprisingly, the inclusion of a time-varying or
static prior in NIPA on real infection data is not beneficial for the forecast accuracy for
the considered regions. Among several reasons, the chosen prior might be an inaccurate
estimate of the true contact network.

Our discrete-time SIR model (7.1) was derived under the assumption that the force-
of-infection is small [168, 169]. Although the number of simultaneously infected people
during the COVID-19 pandemic is relatively small compared to the total population and
the approximation is therefore reasonable, we believe that the application of the gen-
uine force-of-infection may help to ameliorate the forecasting results obtained in this
chapter.

In a practical setting, such as the COVID-19 pandemic, policymakers might prefer
to anticipate to a worst-case scenario. In that case, an asymmetric error metric that pe-
nalises underestimations more significantly than overestimations may be more suitable.

Table 7.2: All algorithms discussed in this chapter. The Netherlands is abbreviated as NL. The sMAPE error is
averaged over all forecast horizons, all regions and all times. *As input, each algorithm requires the population
size Ni of each region i and a time series of the fraction of reported cases Irep,i [k] in each region i at every
time k.

Algorithm Additional input* Error (Hubei) Error (NL) Bias
NIPA - 0.122 0.0381
NIPA separate - 0.129 0.0487
NIPA static prior static network 0.135 0.0384 over
NIPA dynamic prior dynamic network 0.129 0.0429
Logistic function - 0.186 0.0735 under
Hill function - 0.142 0.0531
Gompertz function - 0.141 0.0528
LSTM - 0.160 0.0570 under





8
CONCLUSION

In this thesis, we investigated several aspects of the spread of epidemics on networks.
Just as the SIS and SIR models played a central role in the history of epidemiology, they
have also played a central role in this thesis. In this conclusion, we first present an
overview of our obtained results and subsequently provide several interesting research
directions in the field of network epidemiology.

8.1. MAIN CONTRIBUTIONS
We started in Chapter 2 with a thorough investigation of the spectrum of the transition
matrix of the Markovian ε-SIS process on the complete graph. The tridiagonal transi-
tion matrix of the ε-SIS process was already known, but we derived exact results for the
eigenvalues in the limit of large infection rates, large self-infection rates and small self-
infection rates. Even though the eigenvalues of the ε-SIS process are strictly distinct,
we observed nearly degenerate eigenvalues for some parameter values, indicating that
for those parameter values, the effect of the infection process and the self-infection pro-
cess are almost equally strong. We additionally devised a novel estimate of the epidemic
threshold in the Markovian ε-SIS process, which is defined as the effective infection rate
for which the third-largest eigenvalue of the transition matrix is minimal.

Chapter 3 focussed on general compartmental models, where the population is split
into c compartments. If the compartmental graph does not contain any cycles, we ex-
actly computed the time-varying solution on heterogeneous networks. We exemplified
the exact solution in the SI and SIR model and also provided several extensions, e.g. on
temporal networks, added self-infection rates, included non-Markovian dynamics and
added simplicial contagion. Our novel observation is that the Markov graph, which con-
sists of all possible states in the Markov chain, can be represented by an infinitesimal
generator that is a triangular matrix. Using an iterative method, the exact solution can be
computed, even for heterogeneous transition rates. Using the exact solution, we investi-
gated one of the key elements in epidemiology: the location of the epidemic peak. Using
a second-order Newton-Raphson method, we accurately determined the epidemic peak
time with only a few iterations.
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Overcoming the unrealistic assumption that contact graphs are static, we proposed
the Generalised Adaptive SIS (G-ASIS) model in Chapter 4, which assumes that the con-
tact graph changes based on the presence of the virus in the population. More specifi-
cally, the link-breaking and link-creation mechanism describe how nodes break or create
links with their neighbours, based on the viral state of their neighbours. We derived the
entire set of link-updating rules, leading to 36 instances in the G-ASIS model. We pro-
ceeded by deriving lower and upper bounds for the epidemic threshold as a function of
the link-breaking rate. Several instances of the G-ASIS model were investigated in detail,
including the ASIS (disease), AID (gossip) and ABN (brain activity) model.

The huge state space in the Markovian G-ASIS model prevented us from deriving fur-
ther properties of the G-ASIS model. In Chapter 5, we derived the first-order and second-
order mean-field approximation of the G-ASIS model. We showed that the first-order
mean-field approximation performs poorly and is inadequate for extracting properties
of the Markov process. On the other hand, the second-order mean-field approximation
performs much better and is mostly able to qualitatively recover the epidemic thresh-
old. The main reason is that the second-order approximation only approximates the
infection process, but exactly preserves the link-breaking and link-creation processes,
whereas the first-order approximation approximates all these processes.

Building on the idea of the G-ASIS model, we extended the mean-field approxima-
tion from Chapter 5 to general link-breaking and link-creation rules in Chapter 6. The
primary difference is that the mean-field approximation from Chapter 5 is derived from
the G-ASIS model, whereas the aNIMFA model from Chapter 6 includes general link-
breaking and link-creation rules, which are not necessarily limited to knowledge about
the local prevalence around a node, but can also be based on global knowledge of the
disease prevalence in the whole population. The link adaptation rules are reminiscent
of functional responses in Lotka-Volterra equations, which describe the intake of preda-
tors based on the number of available prey. For all possible functional responses, we
computed the epidemic threshold and proved that limit cycles do not exist. The non-
existence of limit cycles implies that the SIS process with adaptive link dynamics cannot
reproduce COVID-19 waves and more complicated models are required to replicate the
COVID-19 waves.

In Chapter 7, we shift our focus to modelling the spread of COVID-19. We derived
the Network-Inference-based Prediction Algorithm (NIPA), which consists of three steps.
First, the daily number of reported cases is preprocessed into an SIR time series. As
an intermediate step, the contact graph is estimated from the SIR time series using a
machine-learning algorithm. Using the inferred contact graph, a short-term forecast for
the number of reported cases is obtained. We also extended NIPA by including static
and dynamic prior information on the contact graph, which was based on traffic net-
works. We compared NIPA and its variants to several well-known prediction models and
concluded that NIPA, as a hybrid method including epidemiological, network-based and
machine-learning aspects, performs as one of the best methods to forecast the spread of
COVID-19.
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8.2. DIRECTIONS FOR FUTURE RESEARCH
The exact solution of the SIR model in heterogeneous populations from Chapter 3 is
both surprising and intriguing. Unfortunately, the exponential size of the state space
prevents computations on networks of realistic sizes. The commonly-used mean-field
approximation performed poorly, hence novel approximation methods are required to
better understand the SIR process. A promising method involves the clustering of the
exponentially large Markov graph by aggregating states with similar properties. Such a
clustering drastically reduces the size of the Markov graph, while preserving the most
important dynamical properties.

The G-ASIS model from Chapter 4 describes the spread of a disease over an adaptive
network. We focussed in this thesis on the derivation of the epidemic threshold, which
is related to the spread of the disease. An important, but a less frequently researched
topic, involves the time-varying topology itself. By understanding the time-varying con-
tact graph in the G-ASIS model, further inside into the characteristics of adaptive epi-
demics can be obtained. The first-order and second-order mean-field approximations
from Chapter 5 are unsuitable for this task, because the relevant metrics of the time-
varying contact graph are not explicitly computed under the mean-field approximation.
Hence, research must either focus on the Markovian, stochastic model or novel mean-
field approximations must be derived, which are devised for capturing one particular
metric of the time-varying topology.

The G-ASIS model was derived to describe the contact avoidance of individuals dur-
ing an epidemic, in which one type of functional response to the disease is prescribed.
Other sociological models for human-disease interaction may be used as an alternative
for adaptive disease modelling. Additionally, we mention that we applied contact avoid-
ance to SIS epidemics, but the link-breaking and link-creation mechanisms are model-
agnostic and can be applied to any compartmental epidemic model, including models
aimed at describing the spread of real-world infectious diseases. We believe novel effects
will appear by combining other compartmental models with the link-breaking and link-
creation dynamics and subsequent derivations of the epidemic threshold and mean-
field approximations will help to shed light on the interplay between disease spread and
contact avoidance.

The simple adaptive SIS model from Chapter 6 was only defined on a complete graph,
but can easily be extended towards general graphs. Of key interest is the interplay be-
tween intrinsically different regions, as occurred during the COVID-19 pandemic. Each
country has a different culture, climate and population structure, and had therefore in-
vented its own disease countermeasures against COVID-19. It would be curious to un-
derstand how the different decisions of each country affect the propagation of the dis-
ease within and across countries. A key question is whether the simple model from
Chapter 6 is able to replicate similarities and differences in disease prevalences across
heterogeneous populations in an applied setting such as the COVID-19 pandemic.

The COVID-19 pandemic thought us many lessons on the modelling of epidemics.
One particular effect is currently underestimated or not even considered in many epi-
demiological models: the compliance of individuals to the social distancing rules. Be-
sides the spreading of the disease and the breaking and creation of links in the contact
graph, we believe a third, relevant process must be considered; the spread of misinfor-
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mation regarding the spread of the disease. The propagation of misinformation is hard
to measure, but we believe that the effect of compliance is crucial and including misin-
formation in the epidemic model is ultimately able to ameliorate our understanding and
forecast accuracy of real-world epidemic outbreaks.
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A.1. SIMPLIFYING THE TRANSITION MATRIX P
To prove that the (asymmetric) transition matrix P has real eigenvalues, we show that P
is similar to a symmetric matrix. Here, we follow [44, Appendix A.6.3]. We omit the tildes
on the scaled birth rate Ξk and scaled death rate µk in this appendix for readability. Let
H be a diagonal matrix with values (h1,h2, . . . ,hN+1) on the diagonal. Then the similarity
transform P̃ = HPH−1 equals

P̃ =



−Ξ0 Ξ0
h1
h2

µ1
h2
h1

−(Ξ1 +µ1) Ξ1
h2
h3

µ2
h3
h2

−(Ξ2 +µ2)
. . .

. . .

. . .

µN−2
hN

hN−1
−(ΞN−1 +µN−1) ΞN−1

hN
hN+1

µN−1
hN+1

hN
−µN


.

(A.1)
To assure the symmetry P̃ = P̃ T , we require that P̃i j = P̃ j i for all 1 ≤ i , j ≤ N +1. Then we
find the following condition

hk+1

hk
µk = hk

hk+1
Ξk−1 (A.2)

for all k = 2, . . . , N +1. Solving recurrence relation (A.2) and taking h1 = 1, we find that

hk =
√√√√k−1∏

i=1

Ξi−1

µi
,
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which implies that P̃ = HPH−1 is a symmetric matrix. The transformed matrix P̃ equals

P̃ =



−Ξ0
√
Ξ0µ1√

Ξ0µ1 −(Ξ1 +µ1)
√
Ξ1µ2√

Ξ1µ2 −(Ξ2 +µ2)
. . .
. . .
. . .

−(ΞN−1 +µN−1)
√
ΞN−1µN√

ΞN−1µN −µN


.

The transformed matrix P̃ is symmetric and has therefore real eigenvalues. Since the
similarity transform preserves the eigenvalues, we conclude that P has real eigenvalues.

For the numerical computation of the eigenvalues of the transition matrix P , the best
practice is to consider the transformed matrix P̃ instead of the original matrix P , because
symmetric matrices have favourable properties for most eigenvalue algorithms [170]. We
further improve the numerical procedure by removing the steady state π corresponding
to the eigenvalue λ= 0. Here, we follow [47, Section 3 and 4]. Given the transition matrix
P , we define P̄ as the reduced N×N -matrix with entries p̄i j = p j i−p0i for i , j = 1,2, . . . , N .
We now prove that the eigenvalues of P̄ are equal to the eigenvalues of P , except for
the removed eigenvalue zero. Let λ be an eigenvalue of P and v = (v0, v1, . . . , vN ) the
corresponding eigenvector. Furthermore, we denote u as the (N +1)×1 all-ones vector.
Since Pu = 0, it follows that

P̄ T (v̄− v0ū) =λ(v̄− v0ū),

where v̄ = (v1, . . . , vN ) and ū the N ×1 all-ones vector. Thus λ is also an eigenvalue of P̄ ,
unless v̄−v0ū = 0, which is only true if v̄ is constant, thus corresponding to λ= 0. Hence,
the eigenvalues of P̄ equal the eigenvalues of P , and the matrix P̄ equals

P̄ =



−(Ξ0 +Ξ1 +µ1) µ2 −Ξ0 −Ξ0 . . . −Ξ0 −Ξ0 −Ξ0

Ξ1 −(Ξ2 +µ2) µ3

. . .

. . .
ΞN−2 −(ΞN−1 +µN−1) µN

ΞN−1 −µN


.

The reduced matrix P̄ can be transformed into a tridiagonal matrix. Let T be the the
upper triangular matrix with ones at and above the diagonal, and the remaining terms
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are zero. Then

T =



1 1 1 . . . 1 1
1 1 . . . 1 1

. . .
...

...
. . .

...
...

1 1
1


, T −1 =


1 −1

1 −1
. . .

. . .
1 −1

1

 ,

such that the reduced, transformed matrix ¯̄P = T P̄T −1 equals

¯̄P =



−(Ξ0 +µ1) µ1

Ξ1 −(Ξ1 +µ2) µ2

Ξ2 −(Ξ2 +µ3)
. . .
. . .
. . .

−(ΞN−2 +µN−1) µN−1

ΞN−1 −(ΞN−1 +µN )


.

The reduced, transformed matrix ¯̄P is asymmetric and can be converted to a symmetric

matrix
˜̄̄

P using the same transformation matrix H as for the original transition matrix

P . The main advantages of the reduced, transformed, symmetric matrix
˜̄̄

P compared to
the original transition matrix P are that numerical methods to obtain eigenvalues (i) are
more efficient because the matrix is symmetric, (ii) prevent complex eigenvalues due to
symmetry and (iii) are less prone to rounding errors as the zero eigenvalue is removed.

A.2. EQUAL METASTABLE AND STEADY-STATE PREVALENCE
The time-dependent behaviour of the ε-SIS process, which is illustrated in Figure 2.2,
shows that the final steady-state prevalence y∞ can be lower or higher than the preva-
lence y in the metastable state. For a given network size N and effective infection rate τ,
we believe that there always exists some ε∗ > 0 for which the prevalence in the metastable
state and the steady-state prevalence y∞ are equal. We numerically determine this self-
infection rate ε∗ and depict the result in Figure A.1. We only show effective infection
rates τ above the epidemic threshold τc , because the metastable state does not exist be-
low the threshold. If the effective infection rate τ is sufficiently large, Figure A.1 depicts
a power-law decay with exponent α=−27.6.

We find an explanation for this result in Theorem 4 by Van Mieghem [21], which
states that the epidemic threshold τc for sufficiently small ε∗ is bounded by

1

e

(
10−s

ε∗(N −1)!

) 1
N−1 < τc <

(
10−s

ε∗(N −1)!

) 1
N−1

,

where 10−s specifies an agreed fraction of infected nodes that determines whether an
outbreak has taken place. Considering that the final steady-state prevalence y∞ is of
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Figure A.1: Illustration of the effective self-infection rate ε∗ for which the metastable prevalence y and the

steady-state prevalence y∞ are equal. The power-law tail is observed for τ > 0.3 ≈ 9τ(1)
c and the results are

obtained on a graph with N = 30 nodes.

order 1, we choose s = 0. Naturally, the equation can be rewritten in terms of the effective
self-infection rate ε∗:

1

e1−N (N −1)!
τ1−N ≤ ε∗ ≤ 1

(N −1)!
τ1−N . (A.3)

Considering the example in Figure A.1 with N = 30 nodes, our estimation (A.3) states
that

10−19τ−29 ≤ ε∗ ≤ 10−31τ−29. (A.4)

The bounds in (A.4) are very similar to the fit in Figure A.1. Only for larger effective self-
infection rates ε∗, the approximated solution (A.4) starts to deviate.

A.3. MEAN-FIELD ε-SIS
The well-known N-Intertwined mean-field approximation (NIMFA) [29] assumes that
any two stochastic variables X and Y are uncorrelated: E[X Y ] = E[X ]E[Y ]. Applying the
mean-field approximation to the ε-SIS process on the complete graph, the governing
equations become [44, p. 462]

dsMF(t )

d t
= εu− (δ+ε)sMF(t )+diag(u−sMF(t )) B̃sMF(t ) (A.5)

where sMF(t ) = (s1(t ), ..., sN (t ))T is the N × 1 viral state vector, u = (1, ...,1)T the N × 1
all-ones vector and B̃ = β(uuT − I ) where I is the N ×N identity matrix. Cator and Van
Mieghem [68] showed that NIMFA upperbounds the Markovian SIS process. As an upper
bound to Eq. (A.5), we consider the ε-NIMFA process with self-loops, thus βi i = β > 0.
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Furthermore, we rescale time t̃ = δt , and introducing the effective infection rate τ=β/δ,
the effective self-infection rate ε∗ = ε/δ, we find after dropping the tildes

dsMF(t )

d t
= ε∗u− (1+ε∗)sMF(t )+diag(u−sMF(t ))BsMF(t ) (A.6)

where B = τuuT . We adopt the approach in [48] to obtain the solution of the ε-SIS pro-
cess on the complete graph. Since the Markovian ε-SIS process is non-negatively cor-
related [68] and we introduced self-loops βi i > 0, the solution of (A.6) is a strict upper
bound for Markovian ε-SIS dynamics.

Proof of Theorem 2.4. We prove Theorem 2.4 in three steps. First, in Subsection A.3.1,
we show that the viral state sMF(t ) is in a two-dimensional subspace at every time t .
More specifically, we show that sMF(t ) = c1(t )z1 + c2(t )z2 for two N ×1 agitation modes
z1, z2 and two scalar functions c1(t ), c2(t ) ∈R. Second, in Subsection A.3.2, we obtain the
closed-form expression for the function c1(t ). Third, given the function c1(t ), we obtain
the function c2(t ) in Subsection A.3.3.

A.3.1. THE VIRAL STATE IS IN A TWO-DIMENSIONAL SUBSPACE

With the definition of the agitation mode z1 in (2.8), we can write the infection rate ma-
trix B as

B = τN z1zT
1 .

Thus, ε-NIMFA on the complete graph (A.6) becomes

dsMF(t )

d t
= ε∗

p
N z1 − (1+ε∗)sMF(t )+diag

(p
N z1 −sMF(t )

)
τN z1zT

1 sMF(t ).

Suppose that (2.7) holds at time t . Then, we obtain that

dsMF(t )

d t
=ε∗

p
N z1 − (1+ε∗)c1(t )z1 − (1+ε∗)c2(t )z2

+diag
((p

N − c1(t )
)

z1 − c2(t )z2

)
τN z1zT

1 (c1(t )z1 + c2(t )z2) .

Since zT
1 z1 = 1 and zT

1 z2 = 0, it follows that

dsMF(t )

d t
=

(
ε∗

p
N − (1+ε∗)c1(t )

)
z1 − (1+ε∗)c2(t )z2

+τN c1(t )diag
((p

N − c1(t )
)

z1 − c2(t )z2

)
z1,

which is equivalent to

dsMF(t )

d t
=

(
ε∗

p
N − (1+ε∗)c1(t )

)
z1 − (1+ε∗)c2(t )z2

+τN
(p

N c1(t )− c2
1 (t )

)
diag(z1)z1 −τN c1(t )c2(t )diag(z2)z1.
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From the definition of the agitation mode z1 in (2.8), we obtain that diag(z1)z1 = z1/
p

N
and diag(z2)z1 = z2/

p
N . Thus, we arrive at

dsMF(t )

d t
=

(
ε∗

p
N − (1+ε∗)c1(t )

)
z1 − (1+ε∗)c2(t )z2

+τ
p

N
(p

N c1(t )− c2
1 (t )

)
z1 −τ

p
N c1(t )c2(t )z2,

which simplifies to

dsMF(t )

d t
=

(
ε∗

p
N + (τN −1−ε∗)c1(t )−τ

p
N c2

1 (t )
)

z1

−
(
1+ε∗+τ

p
N c1(t )

)
c2(t )z2.

(A.7)

Hence, the N ×1 viral state vector sMF(t ) is equal to the linear combination (2.7) of only
two agitation modes z1, z2 at every time t . Thus, solving ε-NIMFA on the complete graph
simplifies to obtaining a closed-form expression for the functions c1(t ) and c2(t ).

A.3.2. FIRST AGITATION MODE
Since

dcl (t )

d t
= zT

l

dsMF(t )

d t
(A.8)

for both l = 1,2, we obtain for the scalar function c1(t ) from (A.7) that

dc1(t )

d t
= ε∗

p
N + (τN −1−ε∗)c1(t )−τ

p
N c2

1 (t ). (A.9)

The differential equation (A.9) is separable,

dc1(t )

−τpN c2
1 (t )+ (τN −1−ε∗)c1(t )+ε∗pN

= d t .

Hence, it follows that

dc1(t )

c2
1 (t )+µ1c1(t )−µ2

=−τ
p

N d t (A.10)

with the constants

µ1 = 1+ε∗−τN

τ
p

N
(A.11)

and

µ2 = ε∗

τ
. (A.12)

We obtain from (A.10) that∫
dc1(t )

c2
1 (t )+µ1c1(t )−µ2

=−τ
p

N t +K (c1(0))
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for some constant K (c1(0)) ∈R. By integration, it follows that

2√
−4µ2 −µ2

1

tan−1

 µ1 +2c1(t )√
−4µ2 −µ2

1

=−τ
p

N t +K (c1(0)),

which yields that

µ1 +2c1(t )√
−4µ2 −µ2

1

= tan

(
1

2

√
−4µ2 −µ2

1

(
−τ

p
N t +K (c1(0))

))
.

We isolate for c1(t ) and arrive at

c1(t ) =−1

2
µ1 + 1

2

√
−4µ2 −µ2

1 tan

(
1

2

√
−4µ2 −µ2

1

(
−τ

p
N t +K (c1(0))

))
.

With the imaginary unit i =p−1, it follows that

c1(t ) =− 1

2
µ1 + 1

2
i
√
µ2

1 +4µ2 tan

(
1

2
i
√
µ2

1 +4µ2

(
−τ

p
N t +K (c1(0))

))
.

Finally, with the relation itan(i x) =− tanh(x) of the tangent and hyperbolic tangent and
with − tanh(x) = tanh(−x) for all x ∈R, we arrive at

c1(t ) =− 1

2
µ1 + 1

2

√
µ2

1 +4µ2 tanh

(
1

2

√
µ2

1 +4µ2

(
τ
p

N t −K (c1(0))
))

. (A.13)

To further simplify (A.13), we obtain with the definition of the constants µ1 and µ2 in
(A.11) and (A.12) that

√
µ2

1 +4µ2 =
√

(1+ε∗−τN )2

τ2N
+4

ε∗

τ
,

which simplifies to √
µ2

1 +4µ2 = 1

τ
p

N
wε∗ , (A.14)

where we define the viral slope wε∗ for ε-NIMFA as

wε∗ =
√

(1+ε∗−τN )2 +4ε∗τN .

If ε∗ = 0, then the viral slope wε∗ equals wε∗ = |w |, where w is the viral slope of the
NIMFA model, defined in [150]. With (A.14) and the definition of µ1 in (A.11), the func-
tion c1(t ) in (A.13) becomes

c1(t ) =1

2

τN −1−ε∗
τ
p

N
+ 1

2

1

τ
p

N
wε∗ tanh

( wε∗

2
t +Υ1,ε∗ (c1(0))

)
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with the constantΥ1,ε∗ (c1(0)) =− 1
2

1
τ
p

N
wε∗K (c1(0)). Thus, it holds that

c1(t ) = 1

2τ
p

N

(
τN −1−ε∗+wε∗ tanh

( wε∗

2
t +Υ1,ε∗ (c1(0))

))
. (A.15)

The initial condition of the projection c1(t ) is given by c1(0) = zT
1 sMF(0), which yields for

the constantΥε∗ (c1(0)) that

Υ1,ε∗ (c1(0)) = arctanh

(
1

wε∗

(
2τ

p
N zT

1 sMF(0)−τN +1+ε∗
))

.

A.3.3. SECOND AGITATION MODE
From (A.8) for l = 2, it follows with (A.7) that the scalar function c2(t ) obeys

dc2(t )

d t
=−

(
1+ε∗+τ

p
N c1(t )

)
c2(t ). (A.16)

The closed-form expression for the function c1(t ) is given in (A.15), and the differential
equation (A.16) becomes

dc2(t )

d t
=− (

1+ε∗)
c2(t )− 1

2

(
τN −1−ε∗+wε∗ tanh

( wε∗

2
t +Υ1,ε∗ (c1(0))

))
c2(t )

=− 1+ε∗+τN

2
c2(t )− wε∗

2
tanh

( wε∗

2
t +Υ1,ε∗ (c1(0))

)
c2(t ).

The remaining steps are similar to [48, Proof of Theorem 4]. Since

d log(c2(t ))

d t
= 1

c2(t )

dc2(t )

d t
,

we obtain that

d log(c2(t ))

d t
=− 1+ε∗+τN

2
− wε∗

2
tanh

( wε∗

2
t +Υ1,ε∗ (c1(0))

)
. (A.17)

The integral of the hyperbolic tangent equals [171]∫
tanh(ξ)dξ= log(cosh(ξ))+C

for an arbitrary constant C ∈R, where cosh(ξ) denotes the hyperbolic cosine. Hence, we
obtain with the chain rule from (A.17) that

log(c2(t )) =− 1+ε∗+τN

2
t − wε∗

2

2

wε∗
log

(
cosh

( wε∗

2
t +Υ1,ε∗ (c1(0))

))
+C

for some constant C ∈R. Thus, exponentiation yields that the function c2(t ) equals

c2(t ) =exp(C )exp

(
−1+ε∗+τN

2
t

)(
cosh

( wε∗

2
t +Υ1,ε∗ (c1(0))

))−1

=Υ2,ε∗ (c2(0))exp

(
−1+ε∗+τN

2
t

)
sech

( wε∗

2
t +Υ1,ε∗ (c1(0))

)
,



A.4. EIGENMODE TRUNCATION OF THE ε-SIS PROCESS

A

151

where we denote the hyperbolic secant by sech(ξ) = cosh(ξ)−1. The constantΥ2,ε∗ (c2(0))
follows from the initial condition c2(0) = zT

2 sMF(0) as

Υ2,ε∗ (c2(0)) = zT
2 sMF(0)cosh

(
Υ1,ε∗ (c1(0))

)
. (A.18)

□

A.4. EIGENMODE TRUNCATION OF THE ε-SIS PROCESS
If the metastable state exists, Figure 2.2 depicts roughly three regimes for the time-varying
prevalence: (I) initial phase, (II) metastable behaviour and (III) convergence to the steady
state. Since the behaviour is rather limited, we expect that the time-dependent dynamics
of the ε-SIS process can be accurately approximated. Apart from the largest eigenvalue
λ1 = 0 and the second-largest eigenvalue λ2, the majority of the eigenvalues is largely
clustered. The N +1-sized linear process (2.1) can perhaps be approximated accurately
with only m ≪ N +1 eigenvalues and eigenvectors. Eigenmode approximation has been
applied successfully for the mean-field SIS model around the epidemic threshold [150],
but to the best of our knowledge, no results have been obtained for the Markovian SIS
process.

We approximate the solution (2.5) by considering only the m largest eigenvalues and
corresponding eigenvectors:

s̃(t ) =
m∑

k=1
ck eλk t wk , (A.19)

where ck = vT
k s(0). Approximating the exact solution (2.5) by the approximation (A.19)

introduces an error;

e(t ) = ∥s(t )− s̃(t )∥ =
∥∥∥∥∥ N+1∑

k=m+1
ck eλk t wk

∥∥∥∥∥≤
N+1∑

k=m+1
eλk t∥ck wk∥,

where ∥ · ∥ denotes a vector norm and we used the vector inequality ∥a+b∥ ≤ ∥a∥+∥b∥.
Further, since eigenvectors are normalized with norm 1,

e(t ) ≤
N+1∑

k=m+1
eλk t∥ck wk∥ < eλm+1t

N+1∑
k=m+1

|ck |.

Thus the error scales as e(t ) = O(eλm+1t ). Figure A.2 shows the solution (2.5) and the
approximation (A.19) for various choices of m. The original solution (2.5) is recovered
accurately using only m = 8 from the total of 31 eigenvalues.

We define the critical number of eigenvalues m∗ as the smallest m for which |y(0)−
ỹ(0)| ≤ 10−3, where y(0) and ỹ(0) describe the initial prevalence of the exact solution (2.5)
and approximated solution (A.19), respectively. The critical number m∗ is an integer be-
tween 1 and N +1. Figure A.3 shows an apparent linear relationship between the critical
number m∗ and the network size N . Even though an accurate approximation is possible,
the number of required eigenvalues grows linearly with the network size N , effectively
rendering the approximation method infeasible for large networks. This contrasts results
for mean-field ε-SIS process with arbitrary initial conditions but homogeneous param-
eters, where the number of required equations reduces to only two (see Appendix A.3).
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Figure A.2: The time-varying prevalence y(t ) for the complete graph with N = 30 nodes, effective infection rate

τ= 2.5τ(1)
c and effective self-infection rate ε∗ = 10−6. The solid line indicates the solution (2.5) and the dashed

lines show the approximation (A.19) for various values of m.

A.5. EIGENVALUE APPROXIMATIONS AND BOUNDS
This section contains the proofs for the eigenvaluesλk of the transition matrix P in equa-
tion (2.2) in several parameters limits. Most proofs use the symmetric transition ma-
trix P̃ , which is derived in Appendix A.1. We start by presenting Theorem A.1.

Theorem A.1 (Based on [172, pp. 366 - 372] and [173, pp. 303-321]) Given an Hermitian
matrix P = A+αB where A and B are Hermitian matrices andα is a small parameter, such
that the element ai j is strictly larger than αbi j for all α and all 1 ≤ i , j ≤ N . We assume

that the eigenvalues λ(0)
k and eigenvectors x (0)

k of the unperturbed matrix A can be com-
puted easily.

(a) If an eigenvalueλ(0)
k of A is simple, then the eigenvalueλk of P is up to fourth order;

λk =λ(0)
k +αWkk +α2

N∑
l=1
l ̸=k

|Wlk |2
λ(0)

k −λ(0)
l

+α3
N∑

l=1
l ̸=k

(Wl l −Wkk )

(
Wkl

λ(0)
k −λ(0)

l

)2

+α3
N∑

l=1
l ̸=k

N∑
m=1
m ̸=k
m ̸=l

Wkl WlmWmk

(λ(0)
k −λ(0)

l )(λ(0)
k −λ(0)

m )
+O(α4),

where Wi j = (x (0)
i )T B x (0)

j .

(b) If an eigenvalue λ(0)
k of A is 2-fold single degenerate1, then the eigenvalue λk of P

1An eigenvalue λ of the matrix A is 2-fold single degenerate if the eigenvalue λ appears twice in the spectrum
of A and is no longer degenerate after adding the first correction term.
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Figure A.3: The relation between the critical number of eigenvalues m∗ and the number of nodes N in the
graph. The critical number m∗ is defined as the smallest integer m for which the initial prevalence ỹ(0) of the
approximated solution (A.19) differs at most 10−3 from the initial prevalence y(0) of the exact solution (2.1).

is up to third order;

λk =λ(0)
k +αλ(1)

k +α2
N∑

l=1
l ̸=k1
l ̸=k2

|W ′
lk |2

λ(0)
k −λ(0)

l

+O(α3),

where the eigenvalues λ(1)
k are determined from the eigenvalue equation(

Wk1,k1 Wk1,k2

Wk2,k1 Wk2,k2

)(
αk

βk

)
=λ(1)

k

(
αk

βk

)
, (A.20)

where Wi j = (x (0)
i )T B x (0)

j . The indices k1 and k2 correspond to the degenerate eigenvalues

λ(0)
k = λ(0)

k1
= λ(0)

k2
. The corrected zero-order eigenvectors are x ′(0)

k = αk1 x (0)
k1

+βk2 x (0)
k2

. The

second-order correction term requires the W’ matrix, which has elements W ′
i j = (x ′(0)

i )T B x ′(0)
j .

(c) If an eigenvalue λ(0)
k of A is 2-fold double degenerate2, then the eigenvalue λk of P

is up to third order;

λk =λ(0)
k + α

2

(
Wk1,k1 +Wk2,k2 ±

√
(Wk1,k1 −Wk2,k2 )2 +4Wk1,k2Wk2,k1

)
+ α2

2

(
Mk1,k1 +Mk2,k2 ±

√
(Mk1,k1 −Mk2,k2 )2 +4Mk1,k2 Mk2,k1

)
+O(α3),

2An eigenvalueλ of the matrix A is 2-fold double degenerate if the eigenvalueλ appears twice in the spectrum
of A and is no longer degenerate after adding the second-order correction term.
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where Wi j = (x (0)
i )T B x (0)

j and

Mi j =
N∑

m=1
m ̸=i
m ̸= j

Wi ,mWm, j

λ(0)
i −λ(0)

m

.

Sketch of the proof. Instead of providing a proof, we sketch the idea of the proof here. An
actual proof can be based on [172] and/or [173].

The primary goal of this theorem is to approximate the eigenvalues of a matrix P , for
which exact computations are generally infeasible. Defining a small variable α, we split
up the Hermitian (or here, symmetric) matrix P into P = A +αB , where A is a diagonal
matrix and B contains the remaining, symmetric terms. We emphasise that both A and
B may contain functions of α, as long as the element ai j is larger than αbi j for all i , j in
the limit α→ 0. The division of P into A and B is generally not unique, but the number
of choices is heavily restricted by the small parameter α.

If the eigenvalue λk of the matrix A is non-degenerate, one can perform an ordinary
eigenvalue expansion which can be found in any textbook covering perturbation expan-
sions of linear operators (part (a)). Some eigenvalues may appear multiple times in the
spectrum of A, which complicates the analysis. In our case, each eigenvalue exists at
most twice, thus we confine ourselves to two-fold degeneracy. The procedure can be
easily generalised to n-fold degeneracy.

If the eigenvalues λ(0)
k are two-fold degenerate, the corresponding eigenvectors are

not determined up to a scalar value, but are only known to be in the span of two vec-
tors. We can choose the eigenvectors freely, as long as they belong to the span and are
orthonormal to each other. If the eigenvalues are distinct at the first order, that is, the
degeneracy is lifted at the first order (part (b)), we can determine the zeroth-order eigen-
vectors and use that basis as if we would perform a regular expansion as in part (a), with
the exception that the summation over all terms excludes both the current index k as
well as the index k ′ corresponding to the same zero-order eigenvalue λ(0)

k =λ(0)
k ′ and that

we use the zeroth-order eigenvectors x ′(0)
k instead of the original x (0)

k .
If the first-order correction of the eigenvalue still maintains the degeneracy, the second-

order correction of the eigenvalues must be computed (part (c)). As before, if the eigen-
values are no longer degenerate after adding the second-order correction, the zeroth-
order eigenvectors can be determined. The procedure can be repeated up to higher or-
ders, which is outside of the scope of this theorem. □

A.5.1. THE LIMIT ε∗ →∞
Proof. The symmetric transition matrix P̃ from equation (A.1) can be rewritten as

P̃ = Ã+ B̃

where Ã is a diagonal matrix with elements

Ãkk =−ε∗(N −k), for k = 0,1, . . . , N ,
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and B̃ is a symmetric, tridiagonal matrix with elements

B̃kk =−τk(N −k)−k,

B̃k−1,k =
√

k(N −k +1)((k −1)τ+ε∗).

We define the small parameter α = 1p
ε∗

(which is small, because ε∗ → ∞), such that

α2P̃ = A+αB , where we defined A =α2 Ã and B =αB̃ . The matrix A is a diagonal matrix
with elements

Akk =−(N −k)

and the matrix B is then tridiagonal with elements

Bkk =−αk(τ(N −k)+1),

Bk−1,k =
√

k(N −k +1)((k −1)τα2 +1).

The eigenvalues of A are simply ak = −(N −k) for k = 0,1, . . . , N and the corresponding
eigenvector xk = ek , where ek is the (N +1)×1 all-zeros vector, except at entry k where it
is one. Since xk = ek , we immediately find that Wl k = xT

l Bxk = Bkl . In the same manner,
we find ak −al = k − l . Given the uniqueness of the eigenvalues ak , we follow part (a) of
Theorem A.1 to find

α2λk =−(N −k)+αBkk +α2
N∑

l=1
l ̸=k

(Bkl )2

k − l
+α3

N∑
l=1
l ̸=k

(Bl l −Bkk )

(
Bl k

k − l

)2

+α3
N∑

l=1
l ̸=k

N∑
m=1
m ̸=k
m ̸=l

Blk Bml Bkm

(k − l )(k −m)
+O(α4).

The value Bkl is only non-zero if l ∈ {k −1,k,k +1}. We conclude that Blk Bml Bkm = 0 if
k ̸= l ̸= m. Thus

α2λk =−(N −k)+αBkk +α2
N∑

l=1
l ̸=k

(Bkl )2

k − l
+α3

N∑
l=1
l ̸=k

(Bl l −Bkk )

(
Blk

k − l

)2

+O(α4).

The α2-term can be worked out as follows

N∑
l=1
l ̸=k

(Bkl )2

k − l
=

(
B 2

k,k−1

k − (k −1)
+

B 2
k,k+1

k − (k +1)

)

= (τα2(k −1)+1)(N −k +1)k − (τα2k +1)(N −k)(k +1)

= τα2 ((k −1)(N −k +1)k −k(N −k)(k +1))+ ((N −k +1)k − (N −k)(k +1))

= τα2k (3k −2N −1)+ (2k −N ) .
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The α3-term can be worked out as follows

N∑
l=1
l ̸=k

(Bl l −Bkk )

(
Blk

k − l

)2

=α
(

(2τk −τN −τ−1)
B 2

k,k−1

(k − (k −1))2 + (2τk −τN +τ−1)
B 2

k,k+1

(k − (k +1))2

)

=α(2τk −τN −τ−1)(τα2(k −1)+1)(N −k +1)k

+α(2τk −τN +τ−1)(τα2k +1)(N −k)(k +1)

=−8α3k3τ2 +3α3k2τ2 +3α3k2τ−6αk2τ+9α3k2Nτ2 −α3kτ2 −α3kτ

+2αk −2α3kN 2τ2 −α3kNτ2 −2α3kNτ+6αkNτ−αN 2τ+αNτ−αN

=−6αk2τ+2αk +6αkNτ−αN 2τ+αNτ−αN +O(α3).

Assembling the results, we find

α2λk =−(N −k)+α2 (−τk(N −k)−k)+α2 (
τα2k (3k −2N −1)+ (2k −N )

)
+α4 (−6k2τ+2k +6kNτ−N 2τ+Nτ−N

)+O(α4).

Using α2 = 1/ε∗, we find

λk =−ε∗(N −k)− (τk(N −k)+k)+
(

1

ε∗
τk (3k −2N −1)+ (2k −N )

)
+ 1

ε∗
(−6k2τ+2k +6kNτ−N 2τ+Nτ−N

)+O
(

1

ε∗

)
.

The index k = 0,1, . . . , N can be transformed as to make sure that the eigenvalues λk are
descending: 0 = λ1 > λ2 > . . . > λN+1. We define the index k̂ = N − k + 1, which takes
values in k̂ = 1,2, . . . , N +1 such that we recover

λk̂ =−(k̂ −1)ε∗

− (k̂ −1)(τ(N +1− k̂)+1)

+ (
τ(2N +2k̂N −2−5k̂ −3k̂2)+N −2−2k̂

) 1

ε∗

+O
(

1

ε∗

)
,

which concludes our proof. Presumably the O(α4)-terms will bring additional terms for
the O

( 1
ε∗

)
-term in the final solution, thus our estimate is only correct up to O

( 1
ε∗

)
. □

A.5.2. THE LIMIT τ→∞
If the effective infection rate τ tends to infinity, then the dynamics of the ε-SIS process
simplifies to an SI process. Metastability cannot be observed in the SI process, because
the number of infected nodes only increases, until all nodes are infected. Further infor-
mation on the SI process is provided in Chapter 3.

Proof. The symmetric transition matrix P̃ from equation (A.1) can be rewritten as

P̃ = Ã+ B̃
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where Ã is a diagonal matrix with elements

Ãkk =−τk(N −k), for k = 0,1, . . . , N ,

and B̃ is a symmetric, tridiagonal matrix with elements

B̃kk =−ε∗(N −k)−k,

B̃k−1,k =
√

k(N −k +1)((k −1)τ+ε∗).

We define the small parameter α= 1p
τ

(which is small, because τ→∞), such that α2P̃ =
A +αB , where we defined A = α2 Ã and B = αB̃ . The matrix A is then diagonal with
elements

Akk =−k(N −k)

and the matrix B is then tridiagonal with elements

Bkk =−α(ε∗(N −k)+k),

Bk−1,k =
√

k(N −k +1)(k −1+ε∗α2).

The eigenvalues of A are simply ak =−k(N −k) for k = 0,1, . . . , N and the corresponding
eigenvector xk = ek , where ek is the (N +1)×1 all-zeros vector, except at entry k where
it is one. We distinguish between networks with even and odd sizes and treat the case
ε∗ = 1 with special care.

Case 1: Even size N
Consider a graph with an even number of nodes N . Then the matrix A has one simple
eigenvalue ak with index k = N /2. The remaining eigenvalues are 2-fold degenerate.
Let ak and aN−k be a pair of degenerate eigenvalues. Then the eigenvalue equation is
according to part (b) from Theorem A.1;(

Bk,k Bk,N−k

BN−k,k BN−k,N−k

)(
αk

βk

)
=λ(1)

k

(
αk

βk

)
. (A.21)

Since the number of nodes N is even, we know that Bk,N−k = BN−k,k = 0 for all k ̸= N /2.
Thus the eigenvalue correction equals

λ(1)
k = Bk,k =−α(ε∗(N −k)+k),

λ(1)
N−k = BN−k,N−k =−α(ε∗k + (N −k)),

which are different for all k ̸= N
2 and all even network sizes N , except when ε∗ = 1. If

ε∗ ̸= 1, the eigenvectors (αk βk )T equal the elementary vectors ek , which implies3 that
part (a) from Theorem A.1 can be used instead of part (b).

3Please consult the sketch of the proof of Theorem A.1 for the complete reasoning.
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Applying part (a) from Theorem A.1, we find

α2λk = ak +αBkk +α2
N∑

l=1
l ̸=k

(Bl k )2

ak −al
+O(α3)

=−k(N −k)−α2(ε∗(N −k)+k)+α2
(

(Bk−1,k )2

ak −ak−1
+ (Bk+1,k )2

ak −ak+1

)
+O(α3)

=−k(N −k)+α2
(
−ε∗(N −k)+ k(N +1)(N −k)

(2k −N −1)(2k −N +1)

)
+O(α3).

Using α2 = 1
τ , we find the following relationship for the eigenvalues;

λk =−τk(N −k)+
(
−ε∗(N −k)+ k(N +1)(N −k)

(2k −N −1)(2k −N +1)

)
+O

(
1p
τ

)
. (A.22)

For k = N
2 we simply find

λN /2 =−τN 2

4
− N

2

(
ε∗+ N

2
(N +1)

)
+O

(
1p
τ

)
. (A.23)

From Eq. (A.23), we may conclude that (A.22) is only valid if τ> 2ε∗
N and τ> N +1.

Case 2: Odd size N and ε∗ ̸= 1
For odd network sizes N , all eigenvalues ak are two-fold degenerate. All eigenvalues can
be computed using (A.22) provided that ε∗ ̸= 1. However, special attention is required for
eigenvalues ak with indices k = N+1

2 and k = N−1
2 . In that case, the eigenvalue equation

(A.20) becomes−α
2 (ε∗(N +1)+N −1) N+1

2

√
N−1

2 +ε∗α2

N+1
2

√
N−1

2 +ε∗α2 −α
2 (ε∗(N −1)+N +1)

(
α(N−1)/2

β(N−1)/2

)
=λ(1)

(N−1)/2

(
α(N−1)/2

β(N−1)/2

)
whose eigenvalues are distinct:

λ(1)
(N−1)/2 =

α(N −ε∗)

2
±

√(
α(N −ε∗)

2

)2

+ 1

8
(N +1)2(N −1).

The corresponding eigenvectors are

(
α(N−1)/2

β(N−1)/2

)
=

α(N −ε∗)±
√
α2(N −ε∗)2 + (N +1)2

( N−1
2 +ε∗α2

)
(N +1)

√
N−1

2 +ε∗α2

 .

We will not continue our analysis for the O(α2) terms, because the computations are
tedious. Our final result is

α2λ(N−1)/2 =−N −1

2

N +1

2
+αα(N −ε∗)

2
±

√(
α(N −ε∗)

2

)2

+ 1

8
(N +1)2(N −1)+O(α2).
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Using α2 = 1
τ , we find the following relationship for the eigenvalues;

λ(N−1)/2 =−1

4
τ(N −1)(N +1)±p

τ(N +1)

√
N −1

2
+O(1). (A.24)

The relation (A.24) is a valid perturbation expansion if τ> 8
N−1 . Since the computations

of the second-order terms are tedious, we have omitted them here. The key observation
is that the eigenvalue λ(N−1)/2 scales with an O(

p
τ) term, which is not the case for even-

sized networks. We have not found any physical or intuitive reasoning why this is the
case.

Case 3: Even size N and ε∗ = 1
We construct the M-matrix for k ̸= N /2:

M =
(

Mkk Mk,N−k

MN−k,k MN−k,N−k

)
where

Mk,N−k =
N∑

m=1
m ̸=k

m ̸=N−k

Wk,mWm,N−k

λ(0)
k −λ(0)

m

.

We find

Mkk = k(N −k)(N +1)

(2k −N −1)(2k −N +1)
+k +α2 k2 + (N −k)2 +N

(2k −N −1)(2k −N +1)
.

In most cases Mk,N−k = 0 because the product Wk,mWm,N−k is only non-zero for m =
k −1 or m = k +1, and m = N −k +1 or m = N −k −1. Hence, the product is only non-
zero if k = N

2 −1. Thus, for k ̸= N
2 −1, the second-order correction of the eigenvalues is

unique and the eigenvalues follow as

α2λk =−k(N −k)−α2N+

α2
(

k(N −k)(N +1)

(2k −N −1)(2k −N +1)
+k +α2 k2 + (N −k)2 +N

(2k −N −1)(2k −N +1)

)
+O(α3)

Using α2 = 1
τ , we find the following relationship for the eigenvalues;

λk =−τk(N −k)+k −N + k(N −k)(N +1)

(2k −N −1)(2k −N +1)
+O

(
1p
τ

)
. (A.25)

For k = N
2 −1, additional work is required because the off-diagonal terms are non-zero.

The M-matrix is in this case

M =
 1

12 (N −2)(N 2 +3N +8) N
2

( N
2 +1

)√( N
2 −1+α2

)( N
2 +α2

)
N
2

( N
2 +1

)√( N
2 −1+α2

)( N
2 +α2

) 1
12 (N +2)(N 2 −N +4)

 ,

whose eigenvalues are

λ(2)
k = N 3

12
+ N 2

12
+ N

6
− 1

3
±

√
1+

(
N

2

)3 (
N

2
+1

)2 (
N

2
−1

)
.
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Thus the total eigenvalue expansion equals

λk =−τ
(

N

2
−1

)(
N

2
+1

)
+ N 3

12
+ N 2

12
− 5N

6
− 1

3
±

√
1+

(
N

2

)3 (
N

2
+1

)2 (
N

2
−1

)
.

Case 4: Odd size N and ε∗ = 1
For the case k ̸= N−1

2 , the eigenvalues follow from (A.25) and the result for k = N−1
2 is

described in (A.24).
Finally introducing k̃ = k +1, such that the index k̃ runs from 1 to N +1 finalises the

proof. □

A.5.3. LIMIT ε∗ → 0
For self-infection rates ε∗ < 1

N , Gershgorin’s circle theorem leads to a tight bound for the
smallest eigenvalue λN+1. The case τ> τc appeared earlier in [56, Corollary 3].

Proof. We denote the (not necessarily ordered) eigenvalues λ1, . . . ,λN+1 of the tran-
sition matrix P from equation (2.2). Given the scaled birth rate Ξ̃k and death rate µ̃k ,
Gershgorin’s circle theorem provides the following bounds for the eigenvalues

|λk + Ξ̃k + µ̃k | ≤ Ξ̃k−1 + µ̃k+1.

Substituting the scaled birth rate Ξ̃k = (τk +1)(N −k) and scaled death rate µ̃k = k, we
find

f (k) ≤λk ≤ 1+ε∗+τ(2k −N −1), (A.26)

where the lower bound f (k) equals

f (k) =−τ [(k −1)(N −k +1)+k(N −k)]−ε∗ [2N −2k +1]− [2k +1] . (A.27)

The lower bound f (k) is negative for all k = 1, . . . , N+1. The upper bound is most negative
for k = 1, hence mink λk ≤ 1+ ε∗−τ(N − 1). Using τ = xτ(1)

c = x
N−1 , we find mink λk ≤

1− x + ε∗ < 0 above the epidemic threshold (x > 1). For the remaining eigenvalues λk ,
the upper bound is larger than zero, which is not confining. Simulations also indicate
that the upper bound is very loose. Instead, we focus on the lower bound f (k).

ABOVE THE EPIDEMIC THRESHOLD

The lower bound f (k) is the smallest when d f
dk = 0, and we find4

d f

dk
(k̂) =−τ(

2N −4k̂ +2
)+2ε∗−2 = 0. (A.28)

Solving for k̂ gives

k̂ = 1−ε∗
2τ

+ N +1

2
.

4We assume here that the function f (k) is varying slowly, which means that the difference between f (k +1)
and f (k) is small for all k. Since the function f (k) is a quadratic function in k, the function f (k) indeed varies
sufficiently slow.
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Since we consider the case ε∗ < 1
N , the effective self-infection rate ε∗ can be neglected;

k̂ = 1

2τ
+ N +1

2
. (A.29)

Hence, k̂ is at least larger than N /2. The lower bound becomes

f (k̂) =− 1

2τ
− 3

2
−N − τN (N −1)

2
+ε∗

[
1

τ
−N

]
.

Using the normalised effective infection rate x = τ(N −1), we approximately find

f (k̂) ≈−
(

1

2x
+1+ x

2

)
N +

(
1

2x
− 3

2

)
. (A.30)

The lower bound (A.30) holds for all eigenvalues λk where 1 ≤ k ≤ N +1. Thus we may
conclude that

λN+1 ≳−
(

1

2x
+1+ x

2

)
N .

BELOW THE EPIDEMIC THRESHOLD

If τ< τ(1)
c = 1

N−1 , the lower bound f (k) is the smallest for k̂ = N −1. We find

f (k̂) =−τ(3N −5)−2N +1.

Using τ= x
N−1 and x < 1, we find approximately

f (k̂) ≈−2N +1−3x. (A.31)

Equation (A.31) holds for all eigenvalues λk , with 1 ≤ k ≤ N +1, thus we conclude that

λN+1 ≳−2N .

□

A.5.4. THE LIMIT τ→ 0
If the effective infection rate τ = 0, then the ε-SIS model reduces to a birth and death
process with linear rates, that can be solved exactly for any time t and any number of
initially infected nodes [33]. The eigenvalue ratioρ in the limit of small effective infection
rates τ is approximately ρ =λ3/λ2 ≈ 3/2, because the second-largest eigenvalue λ2 ≈−2
and λ3 ≈−3. Thus, metastability cannot be observed for small effective infection rates τ.

A.5.5. FINAL CONSIDERATIONS
Apart from limit cases and bounds, the second-largest eigenvalue λ2 can be computed
using the following approach.

Theorem A.2 (Van Doorn et al. [47]) The convergence rate −λ2 equals

max
d>0

min
1≤k≤N

αk =−λ2 = min
d>0

max
1≤k≤N

αk (A.32)
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where d = (d1, . . . ,dN ), and di > 0 for i = 1, . . . , N and

αk = τ
[(

dk+1

dk
−1

)
k2 +

(
1− dk+1

dk

)
kN +2k −N −1

]
+ε∗

[(
dk+1

dk
−1

)
k +

(
1− dk+1

dk

)
N +1

]
+

[(
1− dk−1

dk

)
k + dk−1

dk

]
for k = 1, . . . , N and d0 = dN+1 = 0.

Theorem A.2 associates the computation of the second-largest eigenvalue λ2 of the
transition matrix P to the finding of a suitable, positive vector d. Equation (A.32) illus-
trates that choosing any positive vector d directly provides lower and upper bounds for
the convergence rate λ2. Unfortunately, simply generating random values for the vector
d does not provide sharp bounds for the second-largest eigenvalue λ2.

As an example, we consider d = u where u is the N ×1 all-ones vector. According to
Theorem A.2, the convergence rate λ2 is then bounded by

−τ(N −1)+1+ε∗ ≤−λ2 ≤ τ(N −1)+1+ε∗ (A.33)

If the effective infection rate τ is larger than the mean-field epidemic threshold τ(1)
c =

1
N−1 , the lower bound in (A.33) is negative and therefore not confining. For τ < τc , the
lower bound in (A.33) appears to be a loose bound. In the limit τ→ 0, the convergence
rate equals −λ2 = 1+ε∗, which agrees with Theorem 2.5. The upper bound is positive in
both cases, and is at least one, but appears to be a loose bound as well.
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B.1. NEWTON’S ROOT-FINDING METHOD
We shortly explain Newton’s method of finding the root t∗ of a function f (t ). In our case,
we are interested in the root of y ′(t ) at tpeak, but we write f (t ) and t∗ for generality.

B.1.1. FIRST-ORDER NEWTON-RAPHSON

The Taylor expansion of the function f (t∗) around t∗ = t equals

f (t∗) = f0(t )+ (t∗− t ) f1(t )+ (t∗− t ) f2(t )+O((t∗− t )3), (B.1)

where we defined

fk (t ) = f (k)(t )

k !
.

Since t∗ is a zero of f (t ), we find f (t∗) = 0. Only using terms up to first order in (B.1), we
find

0 = f0(t )+ (t∗− t ) f1(t )+O((t∗− t )2),

which can be rewritten as

t∗ = t − f0(t )

f1(t )
+O((t − t∗)2).

Taking t∗ = t̃k+1, t = t̃k and neglecting the second-order terms, we find the Newton-
Raphson iterative scheme:

t̃k+1 = t̃k −
f0(t̃k )

f1(t̃k )
.

The Newton-Raphson method is known to have quadratic convergence.
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B.1.2. SECOND-ORDER NEWTON-RAPHSON

Instead of using only first-order terms, we can also use second-order terms in (B.1).
Again using f (t∗) = 0, we find

0 = f (t )+ (t∗− t ) f1(t )+ (t∗− t )2 f2(t )+O((t∗− t )3).

Neglecting the third-order terms, we can solve for t∗;

t∗ = t + − f1(t )±
√

f1(t )2 −4 f0(t ) f2(t )

2 f2(t )
.

Using t∗ = t̃k+1 and t = t̃k , we find the second-order Newton-Raphson iterative scheme:

t̃k+1 = t̃k +
− f1(t̃k )±

√
f1(t̃k )2 −4 f0(t̃k ) f2(t̃k )

2 f2(t̃k )
.

Substituting f (t ) = y ′(t ) gives Eq. (3.23). The major advantage of the second-order Newton-
Raphson method is that the radius of convergence seems larger than Newton-Raphson
and the speed of convergence is faster.

B.2. MEAN-FIELD EQUATIONS
The heterogeneous mean-field approximation of the stochastic SI(S) process is known
as the N-Intertwined Mean-Field Approximation (NIMFA) [29] and equals

d vi

d t
=−δi vi + (1− vi )

N∑
j=1

v j β̃i j

where vi (t ) is the probability that node i is infected at time t and β̃i j =βi j ai j .
Similarly, the heterogeneous individual mean-field approximation for the SIR pro-

cess is given by [143]

d si

d t
=−

N∑
j=1

β̃i j si v j ,

d vi

d t
=

N∑
j=1

β̃i j si v j −δi vi ,

(B.2)

where si (t ) and vi (t ) represent the probabilities that node i is susceptible or infected at
time t , respectively.

The mean-field SIS and SIR threshold is [122]

τ(1)
c =λmax(S−1B), (B.3)

where S = diag(δ1, . . . ,δN ) is the N ×N curing rate matrix and B is the N ×N infection
rate matrix, whose elements are β̃i j .
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B.3. ABEL SUMMATION
A finite-n-analysis on the sum

∑n
k=m ak bk , where n ≥ m, illustrates interesting formal

manipulations dealing with partial sums, sk = ∑k
l=m al where k ≥ m, attributed to Niels

Abel.
The basic observation is that ak = sk − sk−1 for k > m. Thus,

n∑
k=m

ak bk = am bm +
n∑

k=m+1
(sk − sk−1)bk

= am bm +
n∑

k=m+1
sk bk −

n−1∑
k=m

sk bk+1

= am bm +
n−1∑

k=m+1
sk (bk −bk+1)+ sn bn − sm bm+1.

Since sm = am , we arrive at Abel’s partial summation valid for any integer m ≤ n,

n∑
k=m

ak bk =
n−1∑
k=m

(
k∑

l=m
al

)
(bk −bk+1)+bn

(
n∑

l=m
al

)
. (B.4)

A reversal of the k- and l-sum again returns to the sum at left-hand side.
As an application of Abel summation, we consider the sum hn (t ) = ∑n

k=0 ak e−λk t ,
where 0 ≤ Re(λ0) ≤ Re(λ1) ≤ ·· · ≤ Re(λn), that can appear as a solution of n +1-th order
linear differential equation. Abel summation (B.4) yields

hn (t ) =
n−1∑
k=0

(
k∑

l=0
al

)
(e−λk t −e−λk+1t )+e−λn t

(
n∑

l=0
al

)
.

Invoking −t
∫ λk
λk+1

e−xt d x = e−λk t −e−λk+1t , we obtain

hn (t ) = t
n−1∑
k=0

∫ λk+1

λk

(
k∑

l=0
al

)
e−xt d x +e−λn t

(
n∑

l=0
al

)
.

Let the function y = λ (x) define the sequence {λk }0≤k≤n by λ (k) = λk at integer values
of x. The inverse function x =λ−1

(
y
)

maps the index to k =λ−1 (λk ). Since k ≤λ−1 (x) <
k +1 for λk ≤ x < λk+1, the integer part [.] of

[
λ−1 (x)

]= k for λk ≤ x < λk+1 and we have
that

n−1∑
k=0

∫ λk+1

λk

(
k∑

l=0
al

)
e−xt d x =

n−1∑
k=0

∫ λk+1

λk

e−xt
[λ−1(x)]∑

l=0
al d x =

∫ λn

λ0

e−xt
[λ−1(x)]∑

l=0
al d x,

which leads to

hn (t ) = t
∫ λn

λ0

e−xt
[λ−1(x)]∑

l=0
al d x +e−λn t

(
n∑

l=0
al

)
. (B.5)

Relation (B.5) shows for t = 0 that hn (0) =∑n
l=0 al for all n (also when n →∞).
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However, if λn →∞ for n →∞ and λ0 = 0, then the last sum in (B.5) vanishes for all
positive t > 0 and

h∞ (t )

t
= 1

t

∞∑
k=0

ak e−λk t =
∫ ∞

0
e−xt g (x)d x, (t > 0) (B.6)

is the Laplace transform of the sum g (x) = ∑[λ−1(x)]
l=0 al . When t tends to zero as t = c

λn

in the limit n → ∞, then e−λn t = e−c , which is a constant, and the first term in (B.5)
vanishes, but the second term remains and e−c = 1 so that h∞ (0) = ∑∞

l=0 al , which is a
prerequisite for continuity for t ≥ 0 as well. Hence, the point t = 0 needs care1.

Observe from g (x) = ∑[λ−1(x)]
l=0 al in the limit n →∞ where λn →∞, that g (0) = a0 =

limt→∞ h∞ (t ), while limx→∞ g (x) =∑∞
l=0 al = h∞ (0). The inverse Laplace transform is

g (x) =
[λ−1(x)]∑

l=0
al =

1

2πi

∫ c+i∞

c−i∞
h∞ (t )

t
ext d t . (c > 0)

The infinitesimal generator Q is minus a weighted Laplacian matrix and the smallest
eigenvalue of any Laplacian matrix is zero. Hence, λ0 = 0 is satisfied, but λn is always
finite for any finite graph with n nodes. Only if the graph is sufficiently large, then the
Laplace transform (B.6) is exact for t > 0, while hn (0) =∑n

l=0 al for all n.

1If h∞ (0) = 0, then the limit limt→0
h∞(t )

t = h′∞ (0) and (B.6) shows that
∫ ∞

0 g (x)d x = h′∞ (0).
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C.1. PROOF OF THEOREM 4.1
We follow the method of [101]. The governing equation of E[ai j Xi ] can be computed
analogous to (4.1) and (4.2) and equals

d E[ai j Xi ]

d t
= ai j (0)

(
(acr +bcr)ξE[Xi ]− (abrζ+bbrζ+acrξ+bcrξ+δ)E[ai j Xi ]

+ (bcr + ccr)ξE[(1−ai j )Xi X j ]− (bbr + cbr)ζE[ai j Xi X j ]+βE

[
(1−Xi )ai j

N∑
k=1

ai k Xk

])
,

(C.1)

where we used the notation that ai j (0) = 1 if (i , j ) ∈Ladaptive and ai j (0) = 0 otherwise. In
this proof, the governing equations of E[Xi ] from (4.1) and E[ai j Xi ] from (C.1) are used.
The governing equations (4.1) and (C.1) are rewritten in terms of E[Xi ] and E[ai j Xi ], and
the remaining terms are denoted by W . Our goal is to define W such that it is negative.
For equation (C.1), we rewrite the infection term with coefficient β as

βE

[
(1−Xi )ai j

N∑
k=1

ai k Xk

]
=β

N∑
k=1

E
[

ai k Xk −Xi ai k Xk ai j − (1−ai j )ai k Xk

]
.

Then equation (C.1) can be rewritten as

d E[ai j Xi ]

d t
= ai j (0)

(
(acr +bcr)ξE[Xi ]− (abrζ+bbrζ+acrξ+bcrξ+δ)E[ai j Xi ]

+βE

[
N∑

k=1
ai k Xk

]
+WA

)
,

(C.2)
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where the remaining terms of the network WA are

WA = (bcr + ccr)ξE[(1−ai j )Xi X j ]− (bbr + cbr)ζE[ai j Xi X j ]

−β
N∑

k=1
E
[

Xi Xk ai k ai j + (1−ai j )ai k Xk

]
.

Similarly for E[Xi ]:
d E[Xi ]

d t
=−δE[Xi ]+β

N∑
k=1

E[ai k Xk ]+WX , (C.3)

where the remaining terms for the nodes WX are

WX =−β
N∑

k=1
E[Xi ai k X j ].

The remaining term WX is always negative, whereas WA is only negative in some cases.
Each positive term in WA is merged with other terms to ensure that WA is negative. The
term WA is surely negative when each of the individual components is negative. The
term with infection rate β is negative. For the link-breaking rate ζ, the case bbr+cbr =−1
is a potential problem. By applying bbr + cbr =−1, Table 4.1 illustrates that abr +bbr = 1.
Then we combine terms from (C.2) with WA in the following way:

−(abr +bbr)ζE[ai j Xi ]− (bbr + cbr)ζE[ai j Xi X j ] =−ζE[ai j Xi (1−X j )], if bbr + cbr =−1.

Therefore we propose the following changes to ensure that WA is negative for the link-
breaking coefficients ζ:

In (C.2): − (abr +bbr)ζE[ai j Xi ] → −ζ1{abr=0,bbr=1,cbr=−1}E[ai j Xi ],

In WA : −(bbr + cbr)ζE[ai j Xi X j ] → −ζ(1{abr=0,bbr=0,cbr=1} +1{abr=1,bbr=−1,cbr=2})E[ai j Xi X j ]

−ζ(1{abr=1,bbr=0,cbr=−1} +1{abr=0,bbr=1,cbr=−2})E[ai j Xi (1−X j )].

where 1 f is the indicator function, which is 1 if the link-breaking rule fbr satisfies f and
is zero otherwise. We repeat the procedure for the link-creation term ξ, except that we
apply an extra trick: we add zero to equation (C.2), where ε> 0 is small:

−εE[Xi (1−ai j )]+εE[Xi ]−εE[ai j Xi ] = 0,

such that

In (C.2): (acr +bcr)ξE[Xi ], → {ξ(1−1{acr=1,bcr=−1,ccr=1})+ε}E[Xi ]

In WA :

(bcr + ccr)ξE[(1−ai j )Xi X j ] → −ξ(1{acr=1,bcr=0,ccr=−1} +1{acr=0,bcr=1,ccr=−2})E[(1−ai j )Xi X j ]

−ξ(1{acr=0,bcr=0,ccr=1} +1{acr=1,bcr=−1,ccr=2})E[ai j Xi X j ]

−ξ(1{acr=0,bcr=0,ccr=1} +1{acr=1,bcr=−1,ccr=2})E[Xi (1−X j )]

−εE[Xi (1−ai j )],

0 ·E[ai j Xi ] → −εE[ai j Xi ].
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The differential equations (C.2) and (C.3) can be written in matrix notation. Given a
sequence of matrices A1, . . . , An , define A =⊕n

i=1 Ai to be the block diagonal matrix with
Ai on its block diagonals; Ai does not necessarily have to be square. The matrix A can
be visualised as

A =


A1 0 0 . . .
0 A2 0 . . .
...

. . .
. . .

. . .
. . . 0 0 An

 .

Define the vectors qi = col
j : ai j (0)=1

(
E[ai j Xi ]

)
and q = col

1≤i≤N

(
qi

)
. Moreover, we define Ti as

the row vector satisfying
Ti q = ∑

k : ai k (0)=1
E[aki Xk ].

Here Ti is a boolean row vector containing ones when an initial link is present between
node i and node j (where j is the j ’th element of Ti ) and zero otherwise. The dimen-
sion of Ti is therefore 1×2Ladaptive where Ladaptive is the number of links in the adaptive

graph Gadaptive. Then define the matrix T = col
1≤i≤N

(
Ti

)
. Also define the matrix J =⊕n

i=11di

where di is the number of degrees of node i in the initial network. Finally, define the ma-

trix S = col
1≤i≤N

(
1di ⊗Ti

)
where ⊗ is the Kronecker product. To summarise, the following

parameters have been defined;

qi = col
j : ai j (0)=1

(
E[ai j Xi ]

)
,

q = col
1≤i≤N

(
qi

)
,

Ti q = ∑
k : ai k (0)=1

E[aki Xk ],

T = col
1≤i≤N

(
Ti

)
,

J =⊕n
i=11di ,

S = col
1≤i≤N

(
1di ⊗Ti

)
.

The differential equations (C.2) and (C.3) can be formulated in the following way:

d

d t

(
E[Xi ]

E[ai j Xi ]

)
= M

(
E[Xi ]

E[ai j Xi ]

)
+

(
WX

WA

)
, (C.4)

where

M =
( −δI βT
{ξ(1−1{acr=1,bcr=−1,ccr=1})+ε}J βS − (ζ1{abr=0,bbr=1,cbr=−1} +acrξ+bcrξ+δ+ε)I

)
.

(C.5)
Since the remaining terms WX and WA are negative by construction, it follows that

d

d t

(
E[Xi ]

E[ai j Xi ]

)
≤ M

(
E[Xi ]

E[ai j Xi ]

)
. (C.6)
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If the eigenvalues of the matrix M are smaller than zero, the solution is bounded by an
exponentially decaying function. Then the solution dies out over sufficiently large time.
The point where one of the eigenvalues of M becomes zero, changes the solution from
an exponentially decaying function to an exponentially growing function. This bifur-
cation point is commonly known as the epidemic threshold. To derive a bound for the
epidemic threshold, the eigenvalues of M are investigated. Specifically, the largest (real)
eigenvalue is of interest and can be determined by using the Perron-Fröbenius theory.

Lemma C.1 Given a positive eigenvector x of M, its corresponding eigenvalue is the largest
eigenvalue of M.

Proof. The adaptive network Gadaptive was taken to be connected. Since the network
is undirected, it is also strongly connected. Ogura and Preciado (2016) proved that the
matrix M is irreducible when the initial network is strongly connected [101, Appendix A].
Then, by Perron-Fröbenius theory for irreducible matrices, the statement follows [174,
Theorem 8.4.4]. □

Based on Lemma C.1, our approach is to construct a positive eigenvector for the ma-
trix M . Using the positive eigenvector, a lower bound for the epidemic threshold is com-
puted.

Proof of Theorem 4.1. First a positive eigenvector is constructed for the matrix M .
Since the adaptive network is strongly connected, there exists a positive eigenvector v
corresponding to eigenvalue λ1 (the spectral radius) [101]. We define the vector w =

col
1≤i≤N

(
vi 1di

)
. Using the definition of Ti , it follows that

Ti w = ∑
k : ai k (0)=1

wki =
∑

k : ai k (0)=1
vk = (Av)i =λ1vi . (C.7)

So T w =λ1v. Equivalently, it follows that Sw =λ1w and Jv = w.

Define the vector x =
(

zv
w

)
where z ∈R, which is an eigenvector of M . Indeed,

M

(
zv
w

)
=

( −δI βT
{ξ(1−1{acr=1,bcr=−1,ccr=1})+ε}J βS − (1{abr=0,bbr=1,cbr=−1}ζ+acrξ+bcrξ+δ)I

)(
zv
w

)
=

(
(βλ1 − zδ)v

{ξ(1−1{acr=1,bcr=−1,ccr=1})+ε}z +βλ1 − (1{abr=0,bbr=1,cbr=−1}ζ+acrξ+bcrξ+δ))w

)
=µ

(
zv
w

)
,

where the eigenvalue µ corresponds to the eigenvector x . Since v and w are positive,
the eigenvector x is positive if and only if z > 0. To guarantee that z > 0, a system of
equations for z and µ is obtained;

zµ=βλ1 − zδ, (C.8a)

µ= {ξ(1−1{acr=1,bcr=−1,ccr=1})+ε}z +βλ1 − (1{abr=0,bbr=1,cbr=−1}ζ+acrξ+bcrξ+δ+ε).
(C.8b)
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Define X = ξ(1−1{acr=1,bcr=−1,ccr=1})+ε and Y =−βλ1+1{abr=0,bbr=1,cbr=−1}ζ+(acr+bcr)ξ+
δ+ε and notice that X > 0. Then (C.8a) and (C.8a) simplify to

z(µ+δ) =βλ1, (C.9a)

µ= z X −Y . (C.9b)

Inserting (C.9a) into (C.9b), we find a quadratic equation for z:

X z2 + (δ−Y )z −βλ1 = 0. (C.10)

Based on (C.10), we find that z1 < 0, z2 > 0. The corresponding values for µ can be ob-
tained using (C.9a), which can be rewritten as

µ= βλ1

z
−δ.

Since β,δ,λ1 > 0, for z1 < 0 it follows that µ1 < 0. For z2 > 0, the sign of µ cannot be de-
termined. However, we require that z2 > 0 to have a positive eigenvector and we require
µ2 < 0 for stability. From the system given by (C.9a) and (C.9b), the quadratic equation
for µ can be derived:

µ2 + (δ+Y )µ+ (δY −βλ1X )︸ ︷︷ ︸
constant term

= 0.

We have concluded earlier that µ1 < 0. The eigenvalues of M are required to be negative,
hence µ2 < 0. When µ1,µ2 are negative, the constant term of the quadratic equation is
positive, which leads to the condition

δY −βλ1X > 0.

Substitution of the definition of X and Y and rewriting yields

β

δ
< 1{abr=0,bbr=1,cbr=−1}ζ+acrξ+bcrξ+δ+ε

λ1(ξ(1−1{acr=1,bcr=−1,ccr=1})+δ+ε)
,

such that the final form becomes

τ< 1

λ1

(
1+ 1{abr=0,bbr=1,cbr=−1}ω− (1{acr=1,bcr=0,ccr=−1}∪{acr=0,bcr=1,ccr=−2})

(1−1{acr=1,bcr=−1,ccr=1})+δ/ξ+ε/ξ

)
. (C.11)

Since we did not assume any value for ε, we take limε→0. Eq. (C.11) is a required condi-
tion for the process to exponentially decay to zero over sufficiently large time. Therefore
the epidemic threshold τc needs to be larger than those τ-values, which proves Theo-
rem 4.1. □

C.2. PROOF OF THEOREM 4.2
We follow the method of [52]. Using (4.2) and the general formulation of any updating
rule of the G-ASIS model in (4.4), we find

d E[ai j ]

d t
= E

[
−ζai j (abr+bbr(Xi +X j )+cbrXi X j )+ξ(1−ai j )(acr+bcr(Xi +X j )+ccrXi X j )

]
.
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Using that the expectation operator is a linear operator, we find

d E[ai j ]

d t
= acrξ+bcrξE[Xi ]+bcrξE[X j ]− (abrζ+acrξ)E[ai j ]+ ccrξE[Xi X j ]

− (bbrζ+bcrξ)E[ai j Xi ]− (bbrζ+bcrξ)E[ai j X j ]− (cbrζ+ ccrξ)E[ai j Xi X j ].

Taking the sum over all j ̸= i and using the degree di =∑N
j=1, j ̸=i ai j and ai i = 0, we obtain

d E[di ]

d t
= acrξ(N −1)+bcrξ(N −1)E[Xi ]+bcrξ

N∑
j=1, j ̸=i

E[X j ]− (abrζ+acrξ)E[di ]

+ ccrξE

[
Xi

N∑
j=1, j ̸=i

X j

]
− (bbrζ+bcrξ)E[di Xi ]− (bbrζ+bcrξ)E

[
N∑

j=1
ai j X j

]

− (cbrζ+ ccrξ)E

[
N∑

j=1
ai j Xi X j

]
.

Two terms need to be investigated in more detail. The following relations hold:

(N −1)E[Xi ]+
N∑

j=1, j ̸=i
E[X j ] = ((N −2))E[Xi ]+

N∑
j=1

E[X j ],

E

[
Xi

N∑
j=1, j ̸=i

X j

]
= E

[
Xi

(
N∑

j=1
X j −Xi

)]
= E

[
Xi

N∑
j=1

X j

]
−E[Xi ],

where in the last equation, for the last equality, we used the Bernoulli property E [X 2
i ] =

E [Xi ]. Substituting these back yields

d E[di ]

d t
= acrξ(N −1)+ (bcrξ(N −2)− ccrξ)E[Xi ]+bcrξ

N∑
j=1

E[X j ]− (abrζ+acrξ)E[di ]

+ ccrξE

[
Xi

N∑
j=1

X j

]
− (bbrζ+bcrξ)E[di Xi ]− (bbrζ+bcrξ)E

[
N∑

j=1
ai j X j

]

− (cbrζ+ ccrξ)E

[
N∑

j=1
ai j Xi X j

]
.

Up to now only the network equations from (4.2) have been used. We intend to use the
epidemic equations in (4.1) to remove the largest correlation term. Hence, we rewrite
(4.1) as

E

[
N∑

j=1
ai j Xi X j

]
=− 1

β

d E[Xi ]

d t
− 1

τ
E[Xi ]+E

[
N∑

j=1
ai j X j

]
,
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where τ = β/δ is the effective infection rate. Inserting this back into the previous result
gives

d E[di ]

d t
= acrξ(N −1)+ (bcrξ(N −2)− ccrξ)E[Xi ]+bcrξ

N∑
j=1

E[X j ]− (abrζ+acrξ)E[di ]

+ ccrξE

[
Xi

N∑
j=1

X j

]
− (bbrζ+bcrξ)E[di Xi ]− (bbrζ+bcrξ)E

[
N∑

j=1
ai j X j

]

− (cbrζ+ ccrξ)

(
− 1

β

d E[Xi ]

d t
− 1

τ
E[Xi ]+E

[
N∑

j=1
ai j X j

])
.

Taking all time-derivatives to the left and dividing every term by ζ, we obtain

d

d t
E

[
di

ζ
− cbr + ccrω

−1

β
Xi

]
= acrω

−1(N −1)+
(
bcrω

−1(N −2)− ccrω
−1 + cbr + ccrω

−1

τ

)
E[Xi ]

+bcrω
−1

N∑
j=1

E[X j ]− (abr +acrω
−1)E[di ]+ ccrω

−1E

[
Xi

N∑
j=1

X j

]

− (bbr +bcrω
−1)E[di Xi ]− (bbr +bcrω

−1 + cbr + ccrω
−1)E

[
N∑

j=1
ai j X j

]
.

Using 2L =∑N
i=1 di where L is the number of links, we sum over all 1 ≤ i ≤ N to find

d

d t
E

[
2L

ζ
− cbr + ccrω

−1

β

N∑
i=1

Xi

]

= acrω
−1N (N −1)+

(
bcrω

−1(N −2)− ccrω
−1 + cbr + ccrω

−1

τ

) N∑
i=1

E[Xi ]

+bcrω
−1N

N∑
j=1

E[X j ]− (abr +acrω
−1)E

[
N∑

i=1
di

]
+ ccrω

−1E

[
N∑

i=1
Xi

N∑
j=1

X j

]

− (bbr +bcrω
−1)

N∑
i=1

E[di Xi ]− (bbr +bcrω
−1 + cbr + ccrω

−1)E

[
N∑

j=1
d j X j

]
.
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Using the fraction of infected nodes Z = 1
N

∑N
i=1 Xi , we can simplify this to

d

d t
E

[
2L

ζ
− cbrN + ccrω

−1N

β
Z

]
= acrω

−1N (N −1)+
(
bcrω

−1N (N −2)− ccrNω−1 + cbrN + ccrω
−1N

τ

)
E[Z ]

+bcrω
−1N 2E[Z ]− (abr +acrω

−1)E

[
N∑

i=1
di

]
+ ccrω

−1N 2E[Z 2]

− (bbr +bcrω
−1 +bbr +bcrω

−1 + cbr + ccrω
−1)E

[
N∑

j=1
d j X j

]
.

When the derivative on the left-hand side vanishes (in the metastable state, which we
denote by as asterisk ∗) we have

(
bcrω

−1N (N −1)−bcrNω−1 +bcrω
−1N 2 − ccrNω−1 + cbrN + ccrω

−1N

τ

)
E[Z∗]

− (abr +acrω
−1)E

[
N∑

i=1
d∗

i

]
+ ccrω

−1N 2E[(Z∗)2]+acrω
−1N (N −1)

− (2bbr +2bcrω
−1 + cbr + ccrω

−1)E

[
N∑

j=1
d∗

j X ∗
j

]
= 0.

Using Var[Z∗] = E[(Z∗)2]−E[Z∗]2 and the prevalence y = E[Z∗], we finally find

ccrω
−1N 2 y2 +

(
2bcrω

−1N (N −1)− ccrNω−1 + cbrN + ccrω
−1N

τ

)
y

+acrω
−1N (N −1)− (abr +acrω

−1)E

[
N∑

i=1
d∗

i

]
+ ccrω

−1N 2Var[Z∗]

− (2bbr +2bcrω
−1 + cbr + ccrω

−1)E

[
N∑

i=1
d∗

i X ∗
i

]
= 0

which is a quadratic equation in y . Since ccr is never zero, every term can be multiplied
by ω

ccrN 2 , which proves Theorem 4.2. □
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C.3. PROOF OF THEOREM 4.3
The quadratic equation for the prevalence y from (4.6) can be rewritten in more compact
form by defining

V =−2bcrNτ− (2bcr + ccr)τ+ cbrω+ ccr

2ccrNτ
, (C.12)

H = (N −1)acr

ccrN
− abrω+acr

ccrN 2 E

[
N∑

i=1
d∗

i

]
+Var[Z∗]

− (2bbr + cbr)ω+2bcr + ccr

ccrN 2 E

[
N∑

i=1
d∗

i X ∗
i

]
,

(C.13)

such that (4.6) can be written as

y2 −2V y +H = 0. (C.14)

The two possible solutions are

y =V ±
√

V 2 −H . (C.15)

The quadratic equation (C.14) for the prevalence y can be rewritten as

V = 1

2

(
H

y
+ y

)
. (C.16)

Using the definition of V from (C.12), (C.16) can be rewritten as

−bcr

ccr
+ (2bcr + ccr)

2ccrN
− cbrω+ ccr

2ccrNτ
= 1

2

(
H

y
+ y

)
,

which can be rearranged to

τ= cbrω+ ccr

2ccrN
(
− bcr

ccr
+ (2bcr+ccr)

2ccrN − 1
2

(
H
y + y

)) . (C.17)

Taking1 the limit y → 0, we find an implicit relationship for the epidemic threshold;

τc =
cbr

ccr
ω+1

2
bcr

ccr
(1−N )+1−N lim

y↓0

H

y

. (C.18)

Since cbr,ccr ̸= 0, equation (C.18) is an explicit relation between the epidemic thresh-
old τc and the effective link-breaking rate ω. The function H defined in (C.13) depends
on ω,ξ and τ and H = 0 zero if y = 0. Since we have taken limy↓0, we have H(ω,ξ,τc ),

1We implicitly assume here that the metastable state exists, because we consider the limit of y → 0 from above.
During numerical simulations, we have observed that the quadratic equation for the prevalence may have one
or two solutions, depending on the choice of the link-breaking and link-creation mechanisms. Thus, taking
the limit y → 0 is allowed, because there always exist non-zero solutions for the metastable prevalence y .
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which makes equation (C.18) an implicit relation for the epidemic threshold τc . Our
main effort will be to show the dependence of the epidemic threshold τc on the effective
link-breaking rate ω by bounding H(ω,ξ,τc ). Due to the continuity of H , we may define

h(ω,ξ,τc ) ≡ lim
y↓0

H

y
, (C.19)

such that the epidemic threshold τc becomes

τc =
cbr

ccr
ω+1

2
bcr

ccr
(1−N )+1−N h(ω,ξ,τc )

, (C.20)

which proves the first part of Theorem 4.3. Next the function h(ω,ξ,τc ) must be bounded.
Based on the sign of H , we split up the remainder of the proof of Theorem 4.3 into
Lemma C.2 and Lemma C.3.

Lemma C.2 Let τc be the epidemic threshold from (C.20) and assume H ≥ 0. Then τc is
bounded by a linear function in ω or by a constant.

Proof. The only instances of G-ASIS which do not satisfy H ≥ 0, are instances satisfying
acr
ccr

< 0 and correspond to the link-creation rule fcr = 1− Xi X j . These instances are not
included in this lemma, but are taken care of by Lemma C.3. This means 30 out of 36
instances of G-ASIS are treated in this lemma. We follow the approach of [97].

Step 1. The prevalence y is real.
The solutions of the quadratic equation (C.14) for the prevalence y need to have a pos-
itive discriminant in order to be real solutions. From (C.15), it is required that H ≤ V 2.
Since H ≥ 0, it is sufficient to show that

p
H ≤V . Inserting the definition of V from (C.12)

brings

−
p

H ≥ 2bcrNτ− (2bcr + ccr)τ+ cbrω+ ccr

2ccrNτ
,

which can be rearranged as

cbrω+ ccr

2ccrτN
≤

2 bcr
ccr

+1

2N
− bcr

ccr
−
p

H . (C.21)

In the metastable state, the right-hand side of (C.21) is positive, such that

τ≥
cbr

ccr
ω+1

2
bcr

ccr
(1−N )+1−2N

p
H

.

This holds for the metastable state, i.e. for all τ≥ τc . Hence

cbr

ccr
ω+1

2
bcr

ccr
(1−N )+1−N h(ω,ξ)

= τc ≥ τ∗ =
cbr

ccr
ω+1

2
bcr

ccr
(1−N )+1−2N

p
H

. (C.22)
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We conclude that
0 ≤ 2

p
H ≤ h(ω,ξ).

Furthermore, since τc is bounded for cbr
ccr
ω+1 > 0, the denominator of (C.20) should be

non-zero. In other words,

0 ≤ 2
p

H ≤ h(ω,ξ) < bcr

ccr

1−N

N
+ 1

2N
, for

cbr

ccr
ω+1 > 0. (C.23)

In (C.23), the function h(ω,ξ) is bounded for some ω values, but not all. The remaining
ω values are taken care of by Step 2.

Step 2. Bounding h(ω,ξ) for the other ω values.

Step 2A. Case cbr
ccr

< 0. (ASIS,AID)
Out of the 30 instances considered in this lemma, 15 are part of this case.
For the limit of ω ↑ − ccr

cbr
, the epidemic threshold τc given in (C.20) should still be non-

negative, or at least not suddenly become zero. This can only be assured when the de-
nominator in (C.20) becomes zero as well. This continuity argument shows that equality
holds for (C.23), which is

lim
ω↑− ccr

cbr

h(ω,ξ) = bcr

ccr

1−N

N
+ 1

2N
.

For ω > − ccr
cbr

, the epidemic threshold τc in (C.20) should be positive as well, so using
(C.22) one finds

h(ω,ξ) > bcr

ccr

1−N

N
+ 1

2N
for ω>− ccr

cbr
.

We now consider the situation where the effective link-breaking rate ω increases up
to infinity. Suppose a node i is infected. The link between node i and its neighbours
j is removed (as ω is high) when the link-breaking rule allows for that. The link can be
recreated only when (I) the link-creation rule fcr creates the link between node i and
j when either i or j is infected (these updating rules are fcr = 1− Xi X j , fcr = 1− (1−
Xi )(1− X j ) and fcr = (Xi − X j )2) and (II) the link-breaking rule fbr does not break the
link between susceptible and infected nodes (these updating rules are fbr = Xi X j , fbr =
(1− Xi )(1− X j ) and fbr = 1− (Xi − X j )2). Only when (I) and (II) are satisfied, spreading
in the network continues despite the link-breaking rate ω increasing up to infinity. This
allows for a split-up into two classes: Class A and B.

(Class A) (AID) The epidemic threshold remains constant.
The only eligible instances for this class have been listed above. Some of these are still
invalid, because they do not obey H ≥ 0 (e.g. the link-creation rule fcr = 1− Xi X j ) or
do not obey cbr

ccr
≥ 0 (which is Step 2B). These constraints yield six instances having any

combination of the following link-breaking rules: fbr = Xi X j , fbr = (1− Xi )(1− X j ) and
fbr = 1− (Xi − X j )2 and for the link-creation rules: fcr = 1− (1− Xi )(1− X j ) and fcr =
(Xi − X j )2. These instances have in common that, whilst increasing ω, the epidemic
threshold τc barely increases. In other words, the limit of ω→∞ of τc is finite. So define

lim
ω→∞τc (ω,ξ) =C1 > 0.
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We continue to prove that h(ω,ξ) is linear in ω for large ω. The epidemic threshold can
be rewritten in terms of h;

h(ω,ξ) = 2
bcr

ccr

1−N

N
+ 1

N
−

cbr

ccr
ω+1

Nτc (ω,ξ)
. (C.24)

Then we may compute the following

1

NC1
= 1

N limω→∞τc (ω,ξ)
= lim
ω→∞

1

Nτc (ω,ξ)

de f .= lim
ω→∞

−h(ω,ξ)+ 1
N +2 bcr

ccr

1−N
N

cbr
ccr
ω+1

l’hôpital= − ccr

cbr

∂h

∂ω

∣∣∣∣
ω→∞

=C2.

Since C1 > 0, we conclude C2 > 0. Hence, h(ω,ξ) is a linear function in ω for all instances
in Class A.

(Class B) (ASIS) The epidemic threshold scales linearly in ω.
The remaining 15− 6 = 9 instances not belonging to Class A are part of this class. For
each instance in this class, the link-breaking rule is dominant in the sense that spreading
between susceptible and infected nodes cannot take place (forω→∞ and fixed τ,ξ) be-
cause the link between susceptible and infected nodes is removed immediately. Hence
the epidemic threshold τc must increase along ω to keep spreading the disease (in the
limit of ω→∞). This proves that the epidemic threshold scales linearly in ω.

Step 2B. Case
cbr

ccr
≥ 0.

(Class C) (ABN) The remaining 30− 15 = 15 instances of G-ASIS follow this constraint.
Table 4.1 shows that the ratio cbr

ccr
is strictly positive. Therefore the relation in (C.23) holds

for allω≥ 0. So h(ω,ξ) is strictly bounded by a constant, also in the limit ofω→∞. Then
the epidemic threshold τc scales linearly in ω, which proves the lemma. □

Lemma C.3 Let τc be the epidemic threshold from (C.20) and assume H < 0. Then h(ω,ξ)
is bounded by a linear function in ω or by a constant.

Proof. The only instances of G-ASIS satisfying H < 0 are instances which have link-
creation rule fcr = 1− Xi X j . Therefore we substitute acr = 1,bcr = 0,ccr = −1 in (C.13)
to find

H = 1

N
−1+ abrω+1

N 2 E

[
N∑

i=1
d∗

i

]
+Var[Z∗]+ (2bbr + cbr)ω−1

N 2 E

[
N∑

i=1
d∗

i X ∗
i

]
.

We have derived that y =V ±
p

V 2 −H . Since H < 0, the prevalence y has two solutions:
y1 > 0 and y2 < 0. Our focus lies on the physical solution y1.

Step 1. The prevalence y1 is bounded by 1.
This provides the constraint

V +
√

V 2 −H ≤ 1. (C.25)
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The sign of V is not determined. The equation above can be rewritten, so

V 2 −H ≤ 1−2V +V 2.

Removing V 2 and inserting the definition for V from (C.12), we find

−H ≤ 1−2

(
1

2N
+ cbrω−1

2Nτ

)
,

where the values of acr,bcr and ccr have been substituted already. The last equation can
be rewritten as

1− cbrω

1−N h(ω,ξ)
= τc ≥ τ∗ = 1− cbrω

1−N −N H
. (C.26)

The denominator is positive, so this constraint is confining for cbr < 0 and for (cbr > 0
and ω< 1

cbr
). In either case, we conclude that

0 ≤ 1+H ≤ h(ω,ξ) < 1

N
. (C.27)

implying that h(ω,ξ) is always positive.

Step 2. Bounding h(ω,ξ) for all other ω-values. This step is analogous to step 2 from
Lemma C.2.

Step 2A. Case cbr > 0. Since τc is positive forω< 1
cbr

, by taking limω↑ 1
cbr

, the limit must

be finite and non-zero. This implies

lim
ω↑ 1

cbr

h(ω,ξ) = 1

N
.

For the relation in (C.26) to be meaningful (τc should be non-negative) for ω > 1
cbr

, it is
required that

h(ω,ξ) > 1

N
, for ω> 1

cbr
.

It remains to analyse the behaviour of h(ω,ξ) when the effective link-breaking rate ω

approaches infinity. For increasing ω and fixed τ, the link-breaking process occurs al-
most immediately. Nodes become isolated and cure without having any links. There is,
however, another possibility. The link-creation mechanism is here fcr = 1−Xi X j , which
implies a link is created between a susceptible and an infected node. In case the link-
breaking process does not include the updating rule where the link is broken between
a susceptible and an infected node, the spreading continues despite ω→∞. There are
two possibilities.

(Class D) The epidemic threshold remains constant.
The link-creation process is fcr = 1− Xi X j and as link-breaking rule, we require either
fbr = Xi X j , fbr = (1− Xi )(1− X j ) or fbr = 1− (Xi − X j )2. These updating rules have in
common that, whilst increasing ω, the epidemic threshold barely increases. In other
words, the following limit holds;

lim
ω→∞τc (ω,ξ) =C1 > 0.
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Then h(ω,ξ) scales linearly with ω in a way analogous to Lemma C.2, Step 2A, Class A.
(Class E) The epidemic threshold is constant.

No updating rules belong to this class, as the only eligible do not comply with cbr > 0.

Step 2B. Case cbr < 0.
(Class F) In this case the relationship (C.27) holds for all ω. So h(ω,ξ) is bounded by a
constant for all ω. This implies τc scales linearly in ω, which proves the lemma. □

Combining the result of Lemma C.2 and C.3 proves Theorem 4.3.
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D.1. PROOF OF THEOREM 5.1
Proof. The steady states of any dynamical system can be computed by setting the time
derivatives to zero. This reduces (5.6a) and (5.6b) to

y∞ = x(1− y∞)y∞z∞, (D.1a)

ζz∞
(
abr +2bbr y∞+ cbr y2

∞
)= ξ(1− z∞)

(
acr +2bcr y∞+ ccr y2

∞
)

. (D.1b)

Equation (D.1a) shows that y∞ = 0 is a solution. Inserting y∞ = 0 into Eq. (D.1b), we
obtain

ζz∞abr = ξ(1− z∞)acr.

If acr = abr = 0, any value for z∞ is a steady-state solution. Otherwise, we find

z∞ = acr

abrω+acr
.

Now suppose that y∞ > 0, so y∞ can be removed from Eq. (D.1a). Using the effective
link-breaking rate ω= ζ/ξ, (D.1a) and (D.1b) become

1 = x(1− y∞)z∞, (D.2a)

ωz∞(abr +2bbr y∞+ cbr y2
∞) = (1− z∞)(acr +2bcr y∞+ ccr y2

∞). (D.2b)

Equation (D.2a) shows that y∞ ̸= 1. Before making any further claims about y∞, we
present the following Lemma.

Lemma D.1 Consider an updating rule f with corresponding parameters a, b and c from
Table D.1. Then the following function is strictly positive on the interval 0 < y∞ < 1:

g (y∞) = a +2by∞+ c y2
∞.
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Table D.1: All G-ASIS updating rules.

rule f a b c quadratic form zeros gate

Xi X j 0 0 1 y2∞ y∞ = 0 (2x) AND
1−Xi X j 1 0 -1 (1− y∞)(1+ y∞) y∞ = 1, y∞ =−1 NAND

(1−Xi )(1−X j ) 1 -1 1 (1− y∞)2 y∞ = 1 (2x) NOR
1− (1−Xi )(1−X j ) 0 1 -1 y∞(2− y∞) y∞ = 0, y∞ = 2 OR

(Xi −X j )2 0 1 -2 2y∞(1− y∞) y∞ = 0, y∞ = 1 XOR
1− (Xi −X j )2 1 -1 2 y2∞+ (1− y∞)2 y∞ ∈C XNOR

Proof. There are six updating rules for the link-creation mechanism fcr and six for the
link-breaking mechanism fbr, which are listed in Table D.1. Each of these updating rules
can be written in a quadratic form. Since 0 < y∞ < 1, all quadratic forms are strictly
positive. □

Based on Lemma D.1, we may rewrite (D.2b) in terms of z∞;

z∞ = acr +2bcr y∞+ ccr y2∞
acr +2bcr y∞+ ccr y2∞+ω(abr +2bbr y∞+ cbr y2∞)

. (D.3)

Substituting (D.3) into (D.2a) gives

1 = x(1− y∞)
acr +2bcr y∞+ ccr y2∞

acr +2bcr y∞+ ccr y2∞+ω(abr +2bbr y∞+ cbr y2∞)
. (D.4)

Rewriting (D.4) gives equation (5.7). □

D.2. PROOF OF THEOREM 5.2
We present two proofs. The first proof is specifically tailored towards the G-ASIS model
and results in Corollary 5.3, whereas the second proof is more general and encompasses
a larger class of spreading processes.

Proof 1. We show that Eq. (5.7) has at least one solution. We split up the proof in two
parts.

(i) Consider Eq. (D.3) in Appendix D.1. Equation (5.7) can be simplified if the zeros
of the link-breaking and link-creation mechanisms coincide. The coinciding zeros are
either unphysical (e.g. y∞ = −1 or complex y∞) or it is redundant (the solution y∞ = 0
was already provided in Theorem 5.1) or the solution is invalid (e.g. y∞ = 1, which follows
by inserting the solution y∞ = 1 into equation (5.6a)). The resulting equation is quadratic
in y∞ and can be readily solved. Further working out the details, one can prove that at
least one of the solutions is valid in a certain (x,ω)-region.

(ii) For the remaining instances without coinciding zeros, we define the function
G(y∞) as the expression on the left-hand side in Eq. (5.7). Filling in the two limit cases
y∞ = 0 and y∞ = 1, we find

G(0) = acr +abrω−acrx,

G(1) =ω (abr +2bbr + cbr)+ (acr +2bcr + ccr) .
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The expression G(1) is positive, provided that at least one of the two terms is non-zero.
The link-creation and link-breaking mechanisms that violate G(1) > 0 are actually con-
tained in case (i), thus we may safely assume that G(1) > 0. Furthermore, G(0) < 0 if

acr +abrω< acrx.

The case acr = 0 is contained in case (i), thus we assume acr ̸= 0. Thus we can write

x > acr +abrω

acr
. (D.5)

Equation (D.5) describes the condition under which G(0) < 0. Given that G(1) > 0, the In-
termediate Value Theorem states that there must be some 0 < y∞ < 1 for which G(y∞) =
0, which proves the theorem. □

Proof 2. We prove Theorem 5.2 by showing that the reverse cannot hold, i.e. we look
for functions fbr and fcr for which no solution exists for all (x,ω)-values. We define

h(y∞) =ω fbr(y∞)+ fcr(y∞)−x(1− y∞) fcr(y∞),

where fbr(y∞) is the link-breaking rule and fcr(y∞) is the link-creation rule. If h(y∞) = 0,
the equation simplifies to Eq. (5.7). The function h is differentiable, because h is the
composite of such functions fbr and fcr. According to the Intermediate Value Theorem,
if there exists y∞ and y ′∞ such that h(y∞) > 0 and h(y ′∞) < 0, then there must exists some
y ′′∞ for which holds that h(y ′′∞) = 0. To guarantee that solutions do not exist, we must
prove that either h(y∞) > 0 or h(y∞) < 0 for all y∞. We focus on the first case, the other
case goes analogously. The function fcr is non-negative and non-trivial (see Table D.1),
thus there must exist some y ′∞ such that fcr(y ′∞) > 0. To ensure that h(y ′∞) > 0, we find
the condition

ω fbr(y ′
∞)+ fcr(y ′

∞) > x(1− y ′
∞) fcr(y ′

∞).

Suppose fbr(y ′∞) = 0, then the equation simplifies to

1 > x(1− y ′
∞),

which is not satisfied unconditionally, that is, for all values of x, except if we would allow
y ′∞ = 1 as a solution (which is, fortunately, excluded as a steady-state solution, see (5.6)).
If fbr(y ′∞) > 0, the condition can also not be satisfied unconditionally. We conclude that
there is always a non-empty (x,ω)-region where at least one solution exists. □
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D.3. DERIVATION SECOND-ORDER MEAN-FIELD APPROXIMATION
Prior to the derivation of the second-order mean-field equation, we define the following
variables:

y = 1

N

N∑
i=1

E[Xi ],

zSS = 1

N (N −1)

N∑
i=1

N∑
j=1
j ̸=i

E[(1−Xi )(1−X j )ai j ],

zSI = 1

N (N −1)

N∑
i=1

N∑
j=1
j ̸=i

E[(Xi (1−X j )+ (1−Xi )X j )ai j ],

zII = 1

N (N −1)

N∑
i=1

N∑
j=1
j ̸=i

E[Xi X j ai j ],

zISI = 2

N (N −1)(N −2)

N∑
i=1

N∑
j=1
j ̸=i

N∑
k=1
k ̸=i
k ̸= j

E[(1−Xi )X j Xk ai j ai k ],

zSSI = 2

N (N −1)(N −2)

N∑
i=1

N∑
j=1
j ̸=i

N∑
k=1
k ̸=i
k ̸= j

E[((1−Xi )(1−X j )Xk +Xi (1−X j )(1−Xk ))ai j ai k ],

(D.6)

where y denotes the fraction of infected nodes, zSS, zSI and zII denote the fraction of
links in the graph between susceptible-susceptible (S-S), susceptible-infected (S-I) and
infected-infected (I-I) pairs of nodes, respectively. Finally, zSSI and zISI denote the frac-
tion of connected S-S-I and I-S-I triples in the graph, respectively. Any other triples are
irrelevant, because S-S pairs and S-I pairs can be infected by an external infected node I.
The external, infected node must be connected to one of the susceptible nodes in the
original node pair, leading to the triplet S-S-I or I-S-I.

Using the definitions (D.6), the average fraction of links z in the graph is given by

z = zSS + zSI + zII. (D.7)

We derive the governing equation for zII; the remaining equations can be derived analo-
gously. The governing equation for E[Xi X j ai j ] is given by

d E[Xi X j ai j ]

d t
=−2δE[Xi X j ai j ]+βE[(1−Xi )X j ai j ]+βE[Xi (1−X j )ai j ]

+β
N∑

k=1
k ̸=i
k ̸= j

E[(1−Xi )X j ai j Xk ai k ]+β
N∑

k=1
k ̸=i
k ̸= j

E[Xi (1−X j )ai j Xk a j k ]

−ζIIE[Xi X j ai j ]+ξIIE[Xi X j (1−ai j )].

(D.8)
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The G-ASIS model is a Markov chain, where each state encodes which nodes are infected
or susceptible and which links are existent or non-existent in the graph. The possible
transitions to and from state Xi = 1, X j = 1, ai j = 1 are as follows: One of the two infected
nodes cures (first term on the right-hand side of Eq. (D.8)), node j infects node i (second
term), node i infects node j (third term), there is an infection from outside (term four
and five), the link is broken between node i and node j (term six) or the link is created
between node i and node j (term seven) are the possible transitions to and from the
state Xi = 1, X j = 1, ai j = 1. The variable ζII is defined as ζII = ζ(abr + 2bbr + cbr) and
indicates the link-breaking rate between two infected nodes. Similarly, ξII = ξ(acr+2bcr+
ccr) indicates the link-creation rate between two infected nodes. Analogously, we define:

delete S-S link ζSS = ζabr create S-S link ξSS = ξacr

delete S-I link ζSI = ζ(abr +bbr) create S-I link ξSI = ξ(acr +bcr)

delete I-I link ζII = ζ(abr +2bbr + cbr) create I-I link ξII = ξ(acr +2bcr + ccr)

By summing over i and j ̸= i in equation (D.8), multiplying all terms by 1
N (N−1) and using

the definitions (D.6), we find

d zII

d t
=−2δzII +βzSI +β(N −2)zISI −ζIIzII −ξIIzII +ξII

1

N (N −1)

N∑
i=1

N∑
j=1
j ̸=i

E[Xi X j ].

The last term needs to be rewritten;

N∑
i=1

N∑
j=1
j ̸=i

E[Xi X j ] =
N∑

i=1

N∑
j=1

E[Xi X j ]−
N∑

i=1
E[X 2

i ]

=
N∑

i=1

N∑
j=1

(
Cov[Xi , X j ]+E[Xi ]E[X j ]

)
−

N∑
i=1

E[Xi ]

=
N∑

i=1

N∑
j=1

Cov[Xi , X j ]+N 2 y2 −N y

≈ N 2 y2 −N y,

where we have made the approximation that the covariance between the state Xi and X j

is zero. Then we finally obtain

d zII

d t
=−2δzII +βzSI +β(N −2)zISI −ζIIzII +ξII

(
N

N −1
y2 − 1

N −1
y − zII

)
.

Finally, we rescale time t̃ = δt and using τ=β/δ, ζ̃= ζ/δ, ξ̃= ξ/δ, we obtain

d zII

d t̃
=−2zII +τzSI +τ(N −2)zISI − ζ̃IIzII + ξ̃II

(
N

N −1
y2 − 1

N −1
y − zII

)
.

The governing equations for y, zSS and zSI are derived in a similar manner. After dropping
the tildes for the time t , link-breaking rate ζ and link-creation rate ξ, we obtain Eq. (5.20).
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D.4. PROOF OF THEOREM 5.4
The steady states of equations (5.22) are computed by setting the derivatives to zero,
such that

y∞ = τN −1

2
zSI,∞, (D.9a)

(N −1)τ
zSS,∞zSI,∞

1− y∞
= zSI,∞+ξSS

(
N

N −1
(1− y∞)2 − 1

N −1
(1− y∞)− zSS,∞

)
−ζSSzSS,∞,

(D.9b)

2zII,∞ = τzSI,∞
(
1+ N −1

2

zSI,∞
1− y∞

)
+ξII

(
N

N −1
y2
∞− 1

N −1
y∞− zII,∞

)
−ζIIzII,∞,

(D.9c)

(1+τ)zSI,∞ = τ(N −1)
zSI,∞

1− y∞

(
zSS,∞− 1

2
zSI,∞

)
+2zII,∞,

+ξSI

(
2N

N −1
y∞(1− y∞)− zSI,∞

)
−ζSIzSI,∞. (D.9d)

By taking all zII,∞-terms in (D.9c), substituting zII,∞ into (D.9d), we obtain

y∞ = τN −1

2
zSI,∞, (D.10a)

(N −1)τ
zSS,∞zSI,∞

1− y∞
= zSI,∞+ξSS

(
N

N −1
(1− y∞)2 − 1

N −1
(1− y∞)− zSS,∞

)
−ζSSzSS,∞,

(D.10b)

(1+τ)zSI,∞ = τ(N −1)
zSI,∞

1− y∞

(
zSS,∞− 1

2
zSI,∞

)

+2
τzSI,∞

(
1+ N−1

2
zSI,∞
1−y∞

)
+ξII(

N
N−1 y2∞− 1

N−1 y∞)

2+ξII +ζII

+ξSI

(
2N

N −1
y∞(1− y∞)− zSI,∞

)
−ζSIzSI,∞.

(D.10c)

For readability, we define the positive constant α1 = 2
2+ξII+ζII

. We substitute (D.10a) into
the other equations, such that

(N −1)τ
zSS,∞zSI,∞

1−τN−1
2 zSI,∞

= ξSS

(
N

N −1

(
1−τN −1

2
zSI,∞

)2

− 1

N −1

(
1−τN −1

2
zSI,∞

)
− zSS,∞

)
+ zSI,∞−ζSSzSS,∞, (D.11a)

(1+τ)zSI,∞ = τ(N −1)
zSI,∞

1−τN−1
2 zSI,∞

(
zSS,∞− 1

2
zSI,∞

)
+α1τzSI,∞

(
1+ N −1

2

zSI,∞
1−τN−1

2 zSI,∞

)

+α1ξII

(
τ2 N (N −1)

4
z2

SI,∞− τ

2
zSI,∞

)
+ξSI

(
τN zSI,∞

(
1−τN −1

2
zSI,∞

)
− zSI,∞

)
−ζSIzSI,∞.

(D.11b)

One solution of equation (D.11b) is the all-healthy state y∞ = zSI,∞ = zII,∞ = 0. By in-
serting the all-healthy state into the original equations (D.9), we obtain the steady-state
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fraction of S-S links zSS,∞ given in the theorem. To remove the all-healthy solution, we
divide Eq. (D.11b) by zSI,∞, such that

(N −1)τ
zSS,∞zSI,∞

1−τN−1
2 zSI,∞

= ξSS

(
N

N −1

(
1−τN −1

2
zSI,∞

)2

− 1

N −1

(
1−τN −1

2
zSI,∞

)
− zSS,∞

)
+ zSI,∞−ζSSzSS,∞, (D.12a)

(1+τ) = τ(N −1)
1

1−τN−1
2 zSI,∞

(
zSS,∞− 1

2
zSI,∞

)
+α1τ

(
1+ N −1

2

zSI,∞
1−τN−1

2 zSI,∞

)

+α1ξII

(
τ2 N (N −1)

4
zSI,∞− τ

2

)
+ξSI

(
τN

(
1−τN −1

2
zSI,∞

)
−1

)
−ζSI.

(D.12b)

Rewriting (D.12a) in terms of zSS,∞ and rearranging (D.12b) while introducing α2 = (1+
ζSI +ξSI)+ (1−α1 + α1

2 ξII −NξSI)τ,α3 = ξSS +ζSS, we find

zSS,∞ = zSI,∞+ξSS

( N
N−1 (1−τN−1

2 zSI,∞)2 − 1
N−1 (1−τN−1

2 zSI,∞)
)

(N −1)τzSI,∞+α3(1−τN−1
2 zSI,∞)

(
1−τN −1

2
zSI,∞

)
,

(D.13a)

α2 = τ(N −1)
zSS,∞

1−τN−1
2 zSI,∞

+ (α1 −1)τ
N −1

2

zSI,∞
1−τN−1

2 zSI,∞

+ τ2N (N −1)

4
(α1ξII −2ξSI) zSI,∞.

(D.13b)

Substituting (D.13a) into (D.13b), we obtain

α2 = τ(N −1)
ξSS +

(
τ
2ξSS −NτξSS +1

)
zSI,∞+ξSS

(N−1)2

4 τ2z2
SI,∞

α3 + (1− 1
2α3)τ(N −1)zSI,∞

+ (α1 −1)τ
N −1

2

zSI,∞
1−τN−1

2 zSI,∞
+ τ2N (N −1)

4
(α1ξII −2ξSI) zSI,∞.

(D.14)

Defining α4 = (N − 1)τξSS,α5 = τ(N − 1)
(
τ
2 −Nτ

)
ξSS + (N − 1)τ,α6 = ξSS

(N−1)3

4 τ3,α7 =
τ2N (N−1)

4 (α1ξII −2ξSI) and α8 = (1− 1
2α3)τ(N −1), we find

α2 =
α4 +α5zSI,∞+α6z2

SI,∞
α3 +α8zSI,∞

+ (α1 −1)τ
N −1

2

zSI,∞
1−τN−1

2 zSI,∞
+α7zSI,∞. (D.15)

Multiplying (D.15) with 1−τN−1
2 zSI,∞ gives

α2 =
α4 + (α5 −τN−1

2 α4)zSI,∞+ (α6 −τN−1
2 α5)z2

SI,∞−τN−1
2 α6z3

SI,∞
α3 +α8zSI,∞

+
(
τ

N −1

2
(α1 −1+α2)+α7

)
zSI,∞−α7τ

N −1

2
z2

SI,∞.

(D.16)
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Multiplying (D.16) with α3 +α8zSI,∞ and rearranging, gives us the cubic equation

0 =
(
τ

N −1

2
α6 +α7α8τ

N −1

2

)
z3

SI,∞

+
(
τ

N −1

2
α5 −α6 −α8

(
τ

N −1

2
(α1 −1+α2)+α7

)
+α3α7τ

N −1

2

)
z2

SI,∞

+
(
α2α8 +τN −1

2
α4 −α5 −α3

(
τ

N −1

2
(α1 −1+α2)+α7

))
zSI,∞

+ (α2α3 −α4) .

(D.17)

Using the identity y∞ = τN−1
2 zSI,∞, we obtain the required cubic equation for y∞. □

D.5. TWO METASTABLE STATES IN THE MARKOVIAN AID MODEL
Trajanovski et al. [97] proved that the metastable state of the Markovian AID model does
not exist if Var[Z∗] > 1/4, where Z∗ is the metastable fraction of infected nodes (see Eq.
(4) in [97]). Even though Var[Z∗] > 1/4 is a sufficient condition for the non-existence of
the metastable state, Lemma D.2 demonstrates that Var[Z∗] > 1/4 is never satisfied.

Lemma D.2 For the static and adaptive Markovian SIS model, it holds that Var[Z∗] < 1
4 ,

where Z∗ is the metastable fraction of infected nodes.

Proof.

Var[Z∗] = E[(Z∗)2]−E[Z∗]2 = 1

N 2 E

[(
N∑

i=1
X ∗

i

)2]
− y2 = 1

N 2 E

 N∑
i=1

(X ∗
i )2 +

N∑
i=1

N∑
j=1
j ̸=i

X ∗
i X ∗

j

− y2

= 1

N 2 E

[
N∑

i=1
X ∗

i

]
+ 1

N 2 E

 N∑
i=1

N∑
j=1
j ̸=i

X ∗
i X ∗

j

− y2 = y

N
− y2 + 1

N 2

N∑
i=1

N∑
j=1
j ̸=i

E
[

X ∗
i X ∗

j

]
∆≤ y

N
− y2 + 1

N 2

N∑
i=1

N∑
j=1
j ̸=i

E
[

X ∗
i

]= y

N
− y2 + N −1

N 2

N∑
i=1

E
[

X ∗
i

]
= y(1− y),

where the inequality ∆ follows from

E[X ∗
i X ∗

j ] = Pr[X ∗
i = 1∩X ∗

j = 1] = Pr[X ∗
j = 1|X ∗

i = 1]Pr[X ∗
i = 1] ≤ Pr[X ∗

i = 1] = E[X ∗
i ].

Since the prevalence y is bounded between zero and one, Var[Z∗] is bounded between 0
and 1

4 , thus proving our claim. □
The hypothesis in [97] of the non-existence of the metastable state and the non-

convergence of the time-varying prevalence y(t ) was implicitly based on the assumption
of a fast convergence towards the metastable state. Thus, we believe that Figure 2(b) in
[97] is merely a result of a short simulation period, in which the process has not yet con-
verged to the steady state.
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D.6. TABLE OF ALL G-ASIS INSTANCES

Table D.2: All 36 instances from the G-ASIS model and the relation between the epidemic threshold τc and the
effective link-breaking rate ω in the Markovian, stochastic model. The lower bound is obtained from Theo-
rem 4.1 and the upper bound follows from Theorem 4.3. The columns MF 1 and MF 2 represents the relation
under the first-order and second-order mean-field approximation, respectively. The first-order mean-field
approximation predicts 6 correct relations and 9 wrong relations, whereas the second-order mean-field ap-
proximation predicts 14 correct relations and 1 incorrect relation. Unfortunately, the remaining 21 relations
could not be determined. If a relation is specified by “other”, further details on the mean-field approximation
results are given in Appendix D.7.

Rules
(link-breaking)
(link-creation)

Model
name

Lower
bound

epidemic
threshold τc

Upper
bound

epidemic
threshold τc

MF 1 MF 2

Xi X j 1

λ1
Linear Linear Other

Xi X j

Xi X j 1

λ1

(
1

1+ξ
)

Constant Constant Constant
1−Xi X j

Xi X j ABN model
1

λ1
Linear Constant Constant

(1−Xi )(1−X j )

Xi X j 1

λ1
Constant Constant Constant

1−(1−Xi )(1−X j )

Xi X j 1

λ1

(
1

1+ξ
)

Constant Constant Constant
(Xi −X j )2

1−Xi X j 1

λ1
Linear Constant Constant

1− (Xi −X j )2

1−Xi X j 1

λ1
Linear Linear Linear

Xi X j

1−Xi X j 1

λ1

(
1

1+ξ
)

Linear Linear Linear
1−Xi X j

1−Xi X j 1

λ1
Linear Linear Other

(1−Xi )(1−X j )

1−Xi X j 1

λ1
Linear Linear Linear

1−(1−Xi )(1−X j )

1−Xi X j AFND 1

λ1

(
1

1+ξ
)

Linear Linear Linear
(Xi −X j )2 model

1−Xi X j 1

λ1
Linear Linear Linear

1− (Xi −X j )2

(Continues on next page)
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Rules
(link-breaking)
(link-creation)

Model
name and

appearance
in literature

Lower
bound

epidemic
threshold τc

Upper
bound

epidemic
threshold τc

MF 1 MF 2

(1−Xi )(1−X j )
SCM model

1

λ1
Linear Other Constant

Xi X j

(1−Xi )(1−X j ) 1

λ1

(
1

1+ξ
)

Constant Linear Constant
1−Xi X j

(1−Xi )(1−X j ) 1

λ1
Linear Linear Linear

(1−Xi )(1−X j )

(1−Xi )(1−X j ) 1

λ1
Constant Other Constant

1−(1−Xi )(1−X j )

(1−Xi )(1−X j ) AID 1

λ1

(
1

1+ξ
)

Constant Linear Constant
(Xi −X j )2 model [97]

(1−Xi )(1−X j ) 1

λ1
Linear Other Constant

1− (Xi −X j )2

1−(1−Xi )(1−X j ) 1

λ1

(
1+ ω

1+1/ξ

)
Linear Linear Other

Xi X j

1−(1−Xi )(1−X j ) 1

λ1

(
1+ ω−1

1+1/ξ

)
Linear Constant Linear

1−Xi X j

1−(1−Xi )(1−X j ) ACSIS 1

λ1
(1+ωξ) Linear Constant Linear

(1−Xi )(1−X j ) model

1−(1−Xi )(1−X j ) 1

λ1

(
1+ ω

1+1/ξ

)
Linear Linear Linear

1−(1−Xi )(1−X j )

1−(1−Xi )(1−X j ) 1

λ1

(
1+ ω−1

1+1/ξ

)
Linear Linear Linear

(Xi −X j )2

1−(1−Xi )(1−X j ) 1

λ1

(
1+ ω

1+1/ξ

)
Linear Constant Linear

1− (Xi −X j )2

(Continues on next page)
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Rules
(link-breaking)
(link-creation)

Model
name and

appearance
in literature

Lower
bound

epidemic
threshold τc

Upper
bound

epidemic
threshold τc

MF 1 MF 2

(Xi −X j )2 1

λ1
Linear Linear Linear

Xi X j

(Xi −X j )2 1

λ1

(
1

1+ξ
)

Linear Constant Linear
1−Xi X j

(Xi −X j )2 ASIS model 1

λ1
Linear Constant Linear

(1−Xi )(1−X j ) [7, 52, 97]

(Xi −X j )2 1

λ1
Linear Linear Linear

1−(1−Xi )(1−X j )

(Xi −X j )2 1

λ1

(
1

1+ξ
)

Linear Linear Linear
(Xi −X j )2

(Xi −X j )2 1

λ1
Linear Constant Linear

1− (Xi −X j )2

1− (Xi −X j )2 1

λ1
Linear Linear Other

Xi X j

1− (Xi −X j )2 1

λ1

(
1

1+ξ
)

Constant Linear Constant
1−Xi X j

1− (Xi −X j )2 1

λ1
Linear Linear Constant

(1−Xi )(1−X j )

1− (Xi −X j )2 1

λ1
Constant Linear Constant

1−(1−Xi )(1−X j )

1− (Xi −X j )2 1

λ1

(
1

1+ξ
)

Constant Linear Constant
(Xi −X j )2

1− (Xi −X j )2 1

λ1
Linear Linear Constant

1− (Xi −X j )2
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D.7. MEAN-FIELD RESULTS
Figure D.1 and D.2 show the relation between the epidemic threshold τc and the effective
link-breaking rate ω under the first-order and second-order mean-field approximation.
Figure D.1 and D.2 are based on a preliminary analysis and have been included in this
thesis to serve as an initial step towards understanding all 36 instances of the G-ASIS
model, but may not be completely accurate in describing the rich, versatile behaviour of
every individual instance in the G-ASIS model.

Rela�on , in 1st order MF

= = + =
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* Only ≤ ≤

(2,6) for > 5
(6,2)

(3,1) SCM
(3,4)

(3,6)

Figure D.1: The relation between the epidemic threshold τc and the effective link-breaking rate ω under the
first-order mean-field approximation for all 36 instances of the G-ASIS model. We categorise the instances
under three main pillars: Constant (left), Linear (middle) and Other (right). Within each pillar, several further
distinctions are given. Each G-ASIS instance is specified by the pair (i , j ), where i specifies the link-breaking
rule and j represents the link-creation rule. The number 1 represents the link-updating rule from the 1st row
from Table 4.1, the number 2 the second row, etc.
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Rela�on , in 2nd order MF

= = + Other
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(2,3)

Figure D.2: The relation between the epidemic threshold τc and the effective link-breaking rate ω under the
second-order mean-field approximation for all 36 instances of the G-ASIS model. We categorise the instances
under three main pillars: Constant (left), Linear (middle) and Other (right). Within each pillar, several further
distinctions are given. Each G-ASIS instance is specified by the pair (i , j ), where i specifies the link-breaking
rule and j represents the link-creation rule. The number 1 represents the link-updating rule from the 1st row
from Table 4.1, the number 2 the second row, etc.
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E.1. SIR EPIDEMIC MODEL
The SIR epidemic model is defined in Definition 7.1. The COVID-19 pandemic does not
exactly follow the SIR epidemic model. Instead, at every time k, the fraction of COVID-19
infections in region i obeys

Ii [k +1] = (1−δi )Ii [k]+Si [k]
N∑

j=1
βi j [k]I j [k]+wi [k] (E.1)

where wi [k] denotes the model error of region i at time k. Under Assumption E.1, the
model errors wi [k] are identically distributed at all times k and for every region i :

Assumption E.1 The model error wi [k] is normally distributed as

wi [k] ∼N
(
0,σ2

w

)
. (E.2)

Furthermore, the model errors wi [k], w j [k̃] are stochastically independent for all times
k ̸= k̃ and regions i ̸= j .

Assumption E.2 For every node i , the curing probabilities satisfy δi ≤ 1, and, at every
time k ∈N, the infection probabilities βi j [k] satisfy

N∑
j=1

βi j [k] ≤ 1. (E.3)

Under Assumption E.2, the fractions Si [k], Ii [k] and Ri [k] remain in [0,1] at every
time k as stated by Lemma E.3, which is inspired by [175, Lemma 1].

Lemma E.3 Suppose that Ii [1] ≥ 0, Ri [1] ≥ 0 and Ii [1]+Ri [1] ≤ 1 for every node i . Then,
under Assumption E.2, it holds that Ii [k] ≥ 0,Ri [k] ≥ 0 and Ii [k]+Ri [k] ≤ 1 at every time
k ∈N for every node i .
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Proof. We prove Lemma E.3 by induction with respect to time k. The base case at the
initial time k = 1, i.e. Ii [1] ≥ 0, Ri [1] ≥ 0 and Si [1] ≥ 0, is satisfied by assumption.

For the inductive step, suppose that at time k it holds that Ii [k] ≥ 0, Ri [k] ≥ 0 and
Si [k] ≥ 0 for all nodes i . Since Si [k] = 1−Ii [k]−Ri [k], we obtain

0 ≤ Ii [k]+Ri [k] ≤ 1. (E.4)

Under Assumption E.2, it holds that 0 ≤ δi ≤ 1 and βi j [k] ≥ 0. Thus, we obtain from the
SIR governing equations (7.1) and from (E.4) that both Ii [k + 1] and Ri [k + 1] equal a
sum of merely positive terms, implying that Ii [k+1] ≥ 0 and Ri [k+1] ≥ 0 for all nodes i .
Then it remains to show that Si [k +1] ≥ 0.

Adding the two SIR equations in (7.1), we find that

Ii [k +1]+Ri [k +1] = Ii [k]+Ri [k]+ (1−Ii [k]−Ri [k])
N∑

j=1
βi j [k]I j [k] (E.5)

for every node i . From (E.4) and Ri [k] ≥ 0, we find that Ii [k] ≤ 1, such that

N∑
j=1

βi j [k]I j [k] ≤
N∑

j=1
βi j [k] ≤ 1 (E.6)

where the last inequality follows from Assumption E.2. We conclude that Ii [k + 1] +
Ri [k +1] ≤ 1, since the right side of (E.5) is a convex combination of 1 and Ii [k]+Ri [k]
with coefficient

∑N
j=1βi j [k]I j [k] ∈ [0,1]. □

E.2. DATA OF THE COVID-19 OUTBREAK IN HUBEI
Table E.1 shows the cities of the province Hubei and the population size Ni for every
city i , which is obtained from the Hubei Statistical Yearbook [176]. The time series of the
reported number of infections Nrep,i [k] is shown in Table E.2.

E.3. DETAILS OF NIPA
Algorithm 1 describes the NIPA prediction method in pseudocode. In line 3, the Matlab
command smoothdata removes erratic fluctuations of the raw data Irep,i [k]. We denote
the N ×1 infection state vector by I[k] = (I1[k], ...,IN [k])T at any time k. The loop start-
ing in line 7 iterates over all candidate values of the curing probability δi in the set Ω.
Algorithm 1 calls the Network_inference method, whose pseudocode is given in Al-
gorithm 2. For a fixed curing probability δi , the network inference in line 11 returns an
estimate for the infection probabilities βi j [k] (δi ) for all j = 1, ..., N . Furthermore, the
network inference returns the mean squared error MSE(δi ), which corresponds to the
first term in the objective of (7.6). The smaller the mean squared error MSE(δi ), the
better the fit of the SIR model (7.1) to the data Ii [1], ...,Ii [n]. In line 13, the final es-
timate δ̂i for the curing probability is obtained as the minimiser of the mean squared
error MSE(δi ). The estimate δ̂i determines the final estimates β̂i 1, ..., β̂i N for the infec-
tion probabilities in line 14. From line 16 to line 26, the SIR model (7.1) is iterated, which
results in the predicted fraction of infections Îi [n +1], ..., Îi [n +npred] for all nodes i .
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Algorithm 1 Network-Inference-based Prediction Algorithm (NIPA)

1: Input: reported fraction of infections Irep,i [1], ...,Irep,i [n] for all nodes i ; prediction
time npred

2: Output: predicted fraction of infections Îi [n +1], ..., Îi [n +npred] for all nodes i

Step 1 - Data preprocessing

3: Ii [1], ...,Ii [n] ← smoothdata(Irep,i [1], ...,Irep,i [n]) for all nodes i = 1, . . . , N
4: I[k] ← (I1[k], ...,IN [k])T for all k = 1, ...,n

Step 2 - Network inference

5: for i = 1, ..., N do
6: Ri [1] ← 0
7: for δi ∈Ω do
8: Ri [k] ←Ri [k −1]+δiIi [k −1] for all k = 2, ...,n
9: Si [k] ← 1−Ii [k]−Ri [k] for all k = 1, ...,n

10: vi [k] ← (Si [k],Ii [k],Ri [k])T for all k = 1, ...,n
11:

(
βi 1[k](δi ), ...,βi N [k](δi ),MSE(δi )

)← Network_inference
(
δi ,

vi [1], ..., vi [n],I[1], ...,I[n]
)

12: end for
13: δ̂i ← argmin

δi∈Ω
MSE(δi )

14: (β̂i 1[k], ..., β̂i N [k]) ←βi 1[k]
(
δ̂i

)
, ...,βi N [k]

(
δ̂i

)
15: end for

Step 3 - Iterating SIR model

16: for i = 1, ..., N do
17: Îi [n] ← Ii [n]
18: R̂i [1] ← 0
19: R̂i [k] ← R̂i [k −1]+ δ̂iIi [k −1] for all k = 2, ...,n
20: end for
21: for k = n +1, ...,n +npred do
22: for i = 1, ..., N do
23: Îi [k] ← (

1− δ̂i
)
Îi [k −1]+ (

1− Îi [k −1]−R̂i [k −1]
)∑N

j=1 β̂i j [k −1]Î j [k −1]

24: R̂i [k] ← R̂i [k −1]+ δ̂i Îi [k −1]
25: end for
26: end for
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Identifier i City Population Ni

1 Wuhan 10,607,700
2 Huanggang 6,291,000
3 Jingzhou 5,705,900
4 Xiangyang 5,614,000
5 Xiaogan 4,878,000
6 Xiantao 1,155,000
7 Yichang 4,115,000
8 Shiyan 3,383,000
9 Enshi (autonomous prefecture) 3,327,000

10 Jingmen 2,896,300
11 Xianning 2,507,000
12 Huangshi 2,458,000
13 Suizhou 2,190,800
14 Ezhou 1,059,500
15 Tianmen 1,292,000
16 Qianjiang 958,000

Table E.1: The regions (prefecture-level divisions) in the province Hubei. We do not consider the city Shen-
nongjia, since the number of SARS-CoV-2 infections in Shennongjia is very small.

To determine the regularisation parameter ρi in the LASSO (7.6), we consider 100
candidate values, specified by the set Θi = {ρmin,i , . . . ,ρmax,i }. In line 4 of Algorithm 2,
the maximum value is set to ρmax,i = 2∥F T

i Vi∥∞. If ρi > ρmax,i , then the solution to the
LASSO (7.6) is βi j = 0 for all regions j . For every value of the regularisation parameter
ρi ∈Θi , we compute the mean square error MSE (δi ,ρi ) by 3-fold cross-validation [177].
For every fold, the rows of the matrix Fi and the vector Vi are divided into a training set
Fi ,train,Vi ,train and a validation set Fi ,val,Vi ,val. We compute the solution βi 1, . . . ,βi N to
the LASSO (7.6) on the training set of every fold Fi ,train,Vi ,train. The mean squared error
MSE (δi ,ρi ) then equals ∥∥∥∥∥∥Vi ,val −Fi ,val

βi 1

. . .
βi N

∥∥∥∥∥∥
2

2

,

averaged over all folds. Finally, we set the regularisation parameter ρi equal to the case
where the MSE (δi ,ρi ) is minimised. The final estimate βi 1(δi ), . . . ,βi N (δi ) for the in-
fection probabilities is obtained by solving the LASSO (7.6) on the whole matrix Fi and
vector Vi . To solve the LASSO (7.6) numerically, we use the Matlab command quadprog.

E.4. MOTIVATION FOR THE STATIC AND DYNAMIC PRIOR

We intend to give a short motivation for (7.7). Suppose that each person has on average
〈d〉 contacts (here 〈·〉 denotes the average) in the population. If a person is infected and
its contacts are healthy, the person can infect any of its contacts independently with
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Algorithm 2 Network inference for NIPA

1: Input: curing probability δi ; viral state vi [k] for k = 1, ...,n; infection state vector
I[k] for k = 1, ...,n

2: Output: infection probability estimates βi 1(δi ), ...,βi N (δi ); mean squared error
MSE(δi )

3: Compute Vi and Fi by Eqs. (7.4) and (7.5)
4: ρmax,i ← 2∥F T

i Vi∥∞
5: ρmin,i ← 10−4ρmax,i

6: Θi ← 100 logarithmically equidistant values from ρmin,i to ρmax,i

7: for ρi ∈Θi do
8: estimate MSE(δi ,ρi ) by 3-fold cross-validation on Fi ,Vi and solving (7.6) on the

respective training set
9: end for

10: ρopt,i ← argmin
ρi∈Θi

MSE
(
δi ,ρi

)
11: (βi 1(δi ), ...,βi N (δi )) ← the solution to (7.6) on the whole data set Fi ,Vi for ρi = ρopt,i

12: MSE(δi ) ← MSE(δi ,ρopt,i )

probability p. Hence, the total number of infections follows a Bernoulli distribution

Pr[m] =
(
〈d〉
m

)
pm(1−p)〈d〉−m . (E.7)

In case 〈d〉 is large and λ ≡ p〈d〉 is small, we can approximate (E.7) by a Poisson distri-
bution

Pr[m] = e−λ
λm

m!
. (E.8)

If there are N visiting, infected individuals, which may all infect the population inde-
pendently, the resulting distribution is the sum of independent, identically distributed
Poisson distributions, which is again a Poisson distribution with 〈m〉 = Nλ.

We denote the number of people living in region j and travelling for work to region
i by mi j . Each individual has 〈d〉 contacts and can infect each individual with proba-
bility p. Then region j has on average mi j 〈d〉p new infections, provided that no two
individuals who visit the same region j have contact to the same people. In particular,
the fraction of new infections that region i gets from region j is given by

βi j =
mi j 〈d〉p

Ni
. (E.9)

If we define ci = 〈d〉p
Ni

, we obtain equation (7.7).

E.5. DETAILS ON NIPA STATIC PRIOR
We assume that the infection matrix B is normally distributed around the prior Bprior,
whose elements equal bprior,i j = ci mi j :
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Assumption E.4 Every non-diagonal element βi j , where i ̸= j , of the matrix B is nor-
mally distributed as

Pr
[
βi j

]=
αi

1p
2πσi

exp

(
− 1

2σ2
i

(
βi j − ci mi j

)2
)

, if 0 ≤βi j ≤ 1

0. otherwise
(E.10)

Here ci denotes the proportionality constant, and the constant αi is set such that∫
R

Pr
[
βi j

]
dβi j = 1. (E.11)

The normal distribution (E.10) is cut off for values outside of [0,1], since the infection
probability βi j cannot be outside the interval [0,1]. The standard deviation σi is a mea-
sure for the accuracy of the prior distribution (E.10). Both the proportionality constant ci

and the standard deviation σi are unknown. Assumption E.4 does not hold for the diag-
onal elements βi i of the matrix B . Instead, we assume that βi i are uniformly distributed
in the interval [0,1].

We obtain the estimate Bposterior of the contact network by a Bayesian approach.
Given the observed N×1 infection vector I[k] = (I1[k], ...,IN [k])T at all times k = 1, ...,n,
we pose the optimisation problem

B̂ = argmax
B

Pr
[
B

∣∣I[1], ...,I[n]
]

(E.12)

s.t.
N∑

j=1
βi j ≤ 1, i = 1, ..., N .

With the constraint in (E.12), we ensure that the predictions of the infections satisfy 0 ≤
Ii [k] ≤ 1, see Lemma E.3 in Appendix E.1.

The Bayesian estimate B̂ is obtained by solving a constrained linear least-squares
problem defined in Proposition E.5.

Proposition E.5 Under Assumptions E.1 and E.4, the Bayesian estimation problem (E.12)
is equivalent to solving the optimisation problem

min
βi 1,...,βi N

∥∥∥∥∥∥∥Vi −Fi

βi 1
...

βi N


∥∥∥∥∥∥∥

2

2

+ρi

N∑
j=1, j ̸=i

(
βi j − ci mi j

)2

s.t. 0 ≤βi j ≤ 1, j = 1, ..., N ,

N∑
j=1

βi j ≤ 1,

(E.13)

for every region i , where the penalisation parameter equals ρi =σ2
w /σ2

i and Vi and Fi are
defined in Eqs. (7.4) and (7.5).
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Proof. The objective function of the optimisation problem (E.12) is equivalent to

B̂ = argmax
B

log(Pr[B ])+
n∑

k=2
log

(
Pr

[
I[k]

∣∣I[k −1],B
])

. (E.14)

In the following, we rewrite the two terms in (E.14). First, with (E.10), it holds that

log(Pr[B ]) =


∑N

i=1

∑N
j=1 log(αi )− log

(p
2πσi

)− 1

2σ2
i

(
βi j − ci mi j

)2 , if 0 ≤βi j ≤ 1

−∞. otherwise

(E.15)

Neither the term log(αi ) nor the term log
(p

2πσi
)

depend on the matrix B . Furthermore,
the prior log(Pr[B ]) is finite only if 0 ≤ βi j ≤ 1 for all regions i , j . Thus, the optimisation
problem (E.14) is equivalent to

B̂ = argmax
B

N∑
i=1

N∑
j=1

− 1

2σ2
i

(
βi j − ci mi j

)2 +
n∑

k=2
log

(
Pr

[
I[k]

∣∣I[k −1],B
])

s.t. 0 ≤βi j ≤ 1, i = 1, ..., N , j = 1, ..., N .

(E.16)

Since the model errors wi [k] are stochastically independent for different regions i , we
can rewrite the second term in the objective of (E.16) as

log
(
Pr

[
I[k]

∣∣I[k −1],B
])= N∑

i=1
log

(
Pr

[
Ii [k]

∣∣I[k −1],B
])

(E.17)

=
N∑

i=1
log(Pr[wi [k] =∆i [k]]) , (E.18)

where the second equality follows from (E.1) and by defining

∆i [k] = Ii [k]− (1−δi )Ii [k −1]+Si [k −1]
N∑

j=1
βi jI j [k −1]. (E.19)

Under Assumption E.1, the model error wi [k] follows the normal distribution. Thus, it
holds that

log(Pr[wi [k] =∆i [k]]) =− log
(p

2πσw

)
− 1

2σ2
w
∆2

i [k]. (E.20)

The term log
(p

2πσw
)

is independent of the matrix B . Thus, it follows from (E.17) and
(E.20) that the second term in the objective of (E.16) can be replaced by

N∑
i=1

n∑
k=2

1

2σ2
w
∆2

i [k] =
N∑

i=1

1

2σ2
w

∥∥∥∥∥∥∥Vi −Fi

βi 1
...

βi N


∥∥∥∥∥∥∥

2

2

, (E.21)
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where the equality follows from the definition of the vector Vi and the matrix Fi in (7.4)
and (7.5), respectively. Hence, the optimisation problem (E.16) becomes

B̂ = argmin
B

N∑
i=1

1

2σ2
w

∥∥∥∥∥∥∥Vi −Fi

βi 1
...

βi N


∥∥∥∥∥∥∥

2

2

+
N∑

i=1

1

2σ2
i

N∑
j=1

(
βi j − ci mi j

)2

s.t. 0 ≤βi j ≤ 1, i = 1, ..., N , j = 1, ..., N .

(E.22)

The problem (E.22) can be optimised independently for every region i . Thus, we obtain,
after multiplication with 2σ2

w , the equivalent optimisation problems for every region i
as

min
βi 1,...,βi N

∥∥∥∥∥∥∥Vi −Fi

βi 1
...

βi N


∥∥∥∥∥∥∥

2

2

+ σ2
w

σ2
i

N∑
j=1

(
βi j − ci mi j

)2

s.t. 0 ≤βi j ≤ 1, j = 1, ..., N .

(E.23)

By introducing ρi = σ2
w /σ2

i , we obtain that (E.23) with the constraint
∑N

j=1βi j ≤ 1 is
equivalent to the constrained linear least-squares problem (E.13). □

The first term in the objective of (E.13) measures the fit to the observed epidemic
data. The second term measures the deviation of the infection probabilities βi j from the
prior (E.10). The scalar parameter ρi balances the two terms: if the prior (E.10) is very
accurate or the model errors wi [k] are large, then ρi should be large. The optimal value
of the parameter ρi equals to the ratio of the unknown variancesσ2

w andσ2
i of the model

errors wi [k] and the prior (E.10), respectively. The optimisation problem (E.13) is convex
and can be solved efficiently [178]. To obtain the solution to (E.13) numerically, we use
the Matlab command lsqlin.

We stress the similarity of the optimisation problem (E.13) to the LASSO [148], which
is the basis of original NIPA (recall Appendix E.3). Original NIPA and NIPA static prior
can be interpreted as Bayesian estimation approaches [149]. The main difference is the
inclusion of the prior information on the network in NIPA static prior, whereas original
NIPA favours a sparse graph. The second difference is that the second term in the objec-
tive of (E.13) contains a least-square term, whereas original NIPA contains an ℓ1-norm
penalisation term of the form

ρi

N∑
j=1, j ̸=i

∣∣βi j
∣∣ . (E.24)

E.5.1. PSEUDOCODE
To solve the optimisation problem (E.13) for the infection probabilities βi 1, ..., βi N , we
must specify three unknown variables, namely the curing probability δi , the parameter
ρi and the proportionality constant ci for every region i . The three unknown variables
δi , ρi and ci are all determined using cross-validation.

Algorithmically, NIPA static prior is similar to original NIPA, except for two alter-
ations. First, we solve the constrained linear least-squares problem (E.13) instead of
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LASSO. Second, additionally to the parameter ρi and the curing probability δi , for NIPA
static prior there is one more unknown variable, namely the proportionality constant ci ,
which is a parameter of the prior distribution (E.10). To determine the constant ci , we
consider 50 logarithmically equidistant candidate values in the set Ψ = {cmin, ...,cmax}.
The minimal and the maximal values are set to cmin = 0.01 and cmax = 100, respectively.
To obtain the epidemic outbreak prediction of Bayesian NIPA, we execute Algorithm 1,
but instead of using the NIPA network inference algorithm 2, we use Algorithm 3.

Algorithm 3 Network inference for NIPA static prior

1: Input: curing probability δi ; viral state vi [k] for k = 1, ...,n; infection state vector
I[k] for k = 1, ...,n

2: Output: infection probability estimates βi 1(δi ), ...,βi N (δi ); mean squared error
MSE(δi )

3: Compute Vi and Fi

4: ρmax,i ← 2∥F T
i Vi∥∞

5: ρmin,i ← 10−4ρmax,i

6: Θi ← 100 logarithmically equidistant values from ρmin,i to ρmax,i

7: Ψ← 50 logarithmically equidistant values from cmin = 0.01 to cmax = 100
8: for ρi ∈Θi do
9: for ci ∈Ψ do

10: estimate MSE(δi ,ρi ,ci ) by 3-fold cross–validation on Fi ,Vi and solving (E.13)
on the respective training set

11: end for
12: end for
13: (ρopt,i ,copt,i ) ← argmin

ρi∈Θi ,ci∈Ψ
MSE

(
δi ,ρi ,ci

)
14: (βi 1(δi ), ...,βi N (δi )) ← the solution to (E.13) on the whole data set Fi ,Vi for ρi = ρopt,i

and ci = copt,i

15: MSE(δi ) ← MSE(δi ,ρopt,i ,copt,i )

E.6. DETAILS ON NIPA DYNAMIC PRIOR
We assume that the time-varying infection probabilities βi j [k] are proportional to the
known population flow mi j [k]. More precisely, we assume that the infection probabili-
ties βi j [k] for all regions i , j , when i ̸= j , equal

βi j [k] = ci mi j [k] (E.25)

for some unknown proportionality constant ci > 0. Furthermore, we assume the self-
infection probabilities βi i do not change over time k. With (E.25), the SIR model in Def-
inition 7.1 becomes

Ii [k +1] = (1−δi )Ii [k]+βi iSi [k]Ii [k]+ ciSi [k]
N∑

j=1, j ̸=i
mi j [k]I j [k]+wi [k]. (E.26)
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E.6.1. MAXIMUM-LIKELIHOOD ESTIMATION
To predict the infectious state Ii [k] with (E.26), we must estimate the constants ci , the
self-infection probabilities βi i and the curing probabilities δi . We define the N ×1 vec-
tors c = (c1, ...,cN )T and b = (β11, ...,βN N )T . We pose the estimation problem in a maximum-
likelihood sense as

max
c,b

Pr
[
I[1], ...,I[n]

∣∣c,b
]

s.t. ci ≥ 0, i = 1, ..., N ,

βi i ≥ 0, i = 1, ..., N ,

βi i + ci

N∑
j=1, j ̸=i

mi j [k] ≤ 1 i = 1, ..., N ,k = 1, ...,n.

(E.27)

The last constraint in (E.27) ensures that the predictions of the infections satisfy Ii [k] ≤
1, see Lemma E.3. From the maximum likelihood problem (E.27), we derive in a similar
fashion as Proposition E.5 the LASSO optimisation problem as

min
ci ,βi i

n−1∑
k=1

(
Ii [k +1]− (1−δi )Ii [k]−βi iSi [k]Ii [k]− ciSi [k]

N∑
j=1, j ̸=i

mi j [k]I j [k]

)2

+ρi (βi i + ci )

s.t. ci ≥ 0,

βi i ≥ 0,

βi i + ci

N∑
j=1, j ̸=i

mi j [k] ≤ 1, k = 1, ...,n

(E.28)

for every region i . Here, we denote the regularisation parameter by ρi ≥ 0, which aims
to avoid overfitting. The greater the parameter ρi , the smaller the estimates of the coef-
ficients βi i ,ci . If the regularisation parameter ρi = 0, then solving the LASSO (E.28) for
every node i is equivalent to solving the maximum-likelihood problem (E.27).

To solve the optimisation problem (E.28) for the constants ci and βi i , we must spec-
ify two unknown variables. First, the curing probability δi of region i , which determines
the fractions Si [k] and Ri [k] of susceptible and recovered individuals, respectively. Sec-
ond, we must specify the parameter ρi . We perform hold-out cross-validation to set the
unknown variables δi and ρi : The training set follows from the first 80% of the obser-
vations, and the validation set equals the last 20% of the observations. In pseudocode,
NIPA dynamic prior is given by Algorithm 4.

E.7. NIPA STATIC PRIOR UNDER PERFECT CONDITIONS
The original NIPA method is known to provide accurate predictions when the epidemic
perfectly follows the SIR model [128, Supplementary Material 1]. Here, we intend to
show that NIPA static prior performs even better if the prior matrix is close to the real
infection matrix.
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Algorithm 4 Network inference for NIPA dynamic prior

1: Input: curing probability δi ; viral state vi [k] for k = 1, ...,n; infection state vector
I[k] for k = 1, ...,n

2: Output: infection probability estimates βi 1(δi ), ...,βi N (δi ); mean squared error
MSE(δi )

3: Compute Vi and Fi

4: ρmax,i ← 2∥F T
i Vi∥∞

5: ρmin,i ← 10−4ρmax,i

6: Θi ← 100 logarithmically equidistant values from ρmin,i to ρmax,i

7: for ρi ∈Θi do
8: estimate MSE(δi ,ρi ) by hold–out cross–validation on Fi ,Vi and solving (E.28) on

the respective training set
9: end for

10: ρopt,i ← argmin
ρi∈Θi

MSE
(
δi ,ρi

)
11: (βi 1(δi ), ...,βi N (δi )) ← the solution to (E.28) on the whole data set Fi ,Vi for ρi = ρopt,i

12: MSE(δi ) ← MSE(δi ,ρopt,i )

We generate data from an SIR epidemic as in Definition 7.1 on a network with N = 10
nodes with the same curing probability δi = 0.2 for every node i . We set the curing prob-
ability δi in the NIPA algorithms equal to the exact curing probabilities δi = 0.2, such
that both NIPA and NIPA static prior always exactly recover the exact curing probabili-
ties. We generate uniformly distributed infection probabilities βi j in the interval (0,1).
The effective reproduction number R0 can be computed as [122]

R0 = maximum eigenvalue of

(
B ·diag

(
1

δ1
, ...,

1

δN

))
. (E.29)

We normalise B element-wise such that the basic reproduction number R0 equals 2.0.
Furthermore, we set the population size Ni for each region i equal to a uniformly dis-
tributed number in the interval [105,106] and start with initially 100 infected cases in
node 1 and all other nodes are healthy. Most importantly, we set the prior infection ma-
trix Bprior equal to the exact infection matrix B , multiplied by some noise

Bprior,i j =βi j wi j . (E.30)

Here, wi j is uniformly distributed in the interval [1,2]. The other parameters are the
same as in the main article.

The result in Figure E.1 is clear: NIPA static prior is able to capture the dynamics
much better than NIPA. Hence, we conclude that NIPA static prior in combination with
a good prior yields a better prediction accuracy than the original NIPA method.

E.8. SIGMOID CURVES
In epidemiology, sigmoid curves are commonly used to forecast the future number of
infected cases.
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(a) NIPA (b) NIPA static prior

Figure E.1: The prediction for (a) NIPA and (b) NIPA static prior with generated SIR data based on Definition 7.1
on a 10-node network.

The logistic function was developed by Verhulst in 1845 to explain population growth
in a specific region [126]. The logistic function is the most commonly used sigmoid
curve in epidemiology, because the logistic function is the (approximate) solution
of the SIS and SIR model [131]. The logistic function assumes the cumulative frac-
tion of infected cases Icum,i [k] in region i and at time k to follow

Icum,i [k] = I∞,i

1+e−Ki (k−t0,i )
, (E.31)

where I∞,i is the long-term fraction of infections, Ki is the logistic growth rate and
t0,i is the inflection point, which is also known as the epidemic peak.

The Hill function was introduced in 1910 to describe the binding of molecules on sur-
faces [133]. Later, it was successfully applied to describe the spread of epidemics
[179]. The Hill function assumes the cumulative fraction of infected cases Ii [k] in
region i at time k to follow

Icum,i [k] = I∞,i

1+
(

Ki
k−t0,i

)ni
, (E.32)

where I∞,i is the long-term fraction of infections, Ki is the Hill growth rate, ni is
the Hill coefficient and t0,i is the inflection point, also known as the epidemic peak.

The Gompertz function was introduced in 1825 to describe mortality in human popu-
lations [134]. The Gompertz function was also successfully used to describe the
spread of epidemics [180]. The Gompertz function assumes the cumulative frac-
tion of infected cases Icum,i [k] in region i at time k to follow

Icum,i [k] = I∞,i e−ci e−ai k
, (E.33)

where I∞,i is the long-term fraction of infections, ci is a displacement factor (com-
parable to the inflection point) and ai is the Gompertz growth rate.

We describe the curve-fitting procedure here for the logistic function, but the param-
eters for any curve can be estimated analogously. Suppose that we have a time series of
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the cumulative fraction of reported cases Irep,i [k] for k = 1, . . . ,n and for every region i .
Then we minimise the Mean Square Error for each region i separately;

(ŷ∞,i , K̂i , t̂0,i ) = min
(y∞,i ,Ki ,t0,i )

n∑
k=1

(
Irep,i [k]− I∞,i

1+e−Ki (k−t0,i )

)2

,

s.t. 0 ≤ I∞,i ≤ 1,

Ki ≥ 0,

t0,i ≥ 0.

(E.34)

Naturally, we have imposed that the cumulative fraction of reported cases Ii [k] for ev-
ery region i at time k is always smaller than the total normalised population for ev-
ery region i . We evaluate the nonlinear minimisation problem (E.34) by the command
GlobalSearch in Matlab. As initial conditions, we set I∞,i = Icum,i [tobs],Ki = 1, t0,i =
tobs where tobs is the observation time, i.e. the time at which the forecast is made. The
parameters (y∞,i ,Ki ,ni , t0,i ) for the Hill function and (y∞,i ,ci , ai ) for the Gompertz func-
tion are estimated analogously.

E.9. THE INFLUENCE OF THE TIME STEP ON THE ACCURACY
In the discrete-time SIR model (7.1), we use the time step ∆t = 1 day. By approximating
a continuous-time process (the COVID-19 pandemic) by a discrete-time process (SIR
model (7.1)) we make a model error. We investigate the influence of the time step on the
prediction accuracy, by comparing the NIPA prediction accuracy for various time steps,
ranging from∆t = 0.5 days to∆t = 3 days. Since the number of infected cases is reported
once a day, the data for the time step ∆t = 0.5 days is obtained by linearly interpolating
the number of cumulative cases Icum,i [k]. For a time step ∆t = 1 day and ∆t = 0.5 days,
we smooth the raw data before calling the NIPA algorithm.

For the time steps ∆t = 2 days and ∆t = 3 days, there are two possible methods.
Method (A) assumes that the cumulative number of cases Icum,i [k] is reported every
two (or three) days and is unreported on the intermediate days. Then we smooth the re-
maining data, whereafter the NIPA algorithm is used. Thus, we simply omitted the data
on the intermediate days. In contrast, method (B) first smooths all raw data. Thereafter,
we only use the cumulative number of cases Ii [k] every two or three days for a time step
of two or three days, respectively. The main difference is that method (A) completely ne-
glects the data on intermediate days, whereas method (B) first applies a smoother and
then neglects the intermediate data. We emphasise that the procedure for the time step
∆t = 1 day and ∆t = 0.5 days is equal for method (A) and (B).

Figure E.2 shows an exemplary situation from the Netherlands for three initial dates.
In the beginning of the COVID-19 outbreak, as shown in Figure E.2a and E.2b, the pre-
diction accuracy is similar for all time steps. The small amount of available data and
the rapidly increasing number of cases hampers accurate forecasting. As the epidemic
evolves, method (A) and method (B) start to deviate. By omitting data as in method (A),
the sMAPE error in Figure E.2c and E.2e increases for two and three days quicker than for
smaller time steps. Hence, removing data causes the prediction accuracy to decrease. On
the other hand, method (B) in Figures E.2d and E.2f shows similar behaviour for all time
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steps. We conclude that the choice of the time step has limited effect on the prediction
accuracy and we keep the time step ∆t = 1 for convenience.

(a) Method A, 18 March (b) Method B, 18 March

(c) Method A, April 5 (d) Method B, April 5

(e) Method A, April 23 (f) Method B, April 23

Figure E.2: The NIPA prediction accuracy for the situation in the Netherlands for varying time steps ∆t . The
subplots show the forecast for (a-b) March 18, (c-d) April 5 and (d-e) April 23 and show the situation for method
(A) in (a,c,e) and method (B) in (b,d,f). For the time step ∆t = 2 days or ∆t = 3 days, the data is first smoothed
and then removed.
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