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Abstract

Radar technology has evolved into a versatile and robust tool for critical air traffic control, mete-

orology, surveillance, and defence applications. In surveillance radar, the need for continuous

monitoring of large areas, often cluttered by ground or sea reflections, presents significant chal-

lenges for multitarget detection. This clutter can obscure true targets, complicating detection in

environments where standard radar noise assumptions fall short.

This thesis introduces a novel implementation based on the relevance vector machine (RVM)

to address the complexities of multitarget detection in cluttered environments. Unlike conven-

tional approaches that assume white Gaussian noise, the proposed method jointly estimates a

clutter covariance matrix, allowing it to adapt to the estimated clutter model over subsequent

iterations. Performance evaluations using simulated data in one-dimensional (range or angle) and

two-dimensional (range-angle) settings demonstrate that the framework achieves accurate AR

parameter estimation. Results indicate a marked improvement in reducing false and missed de-

tections compared to the white-noise-based model. Notably, the framework performs multitarget

detection without prior knowledge of target locations and the need for guard cells, underscoring

its adaptability to real-world scenarios.
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1
Introduction

Radar technology, initially developed in the years preceding World War II, advanced rapidly during

the war, evolving into a vital tool across numerous applications, from air traffic control to meteo-

rology. While various radar types and specific frequency bands, such as S-band radar, enable

radar systems to operate reliably across diverse weather conditions [1], the whole has proven

invaluable for applications requiring consistent performance under challenging environmental

conditions. Beyond these roles, radar’s ability to monitor large areas and penetrate adverse

weather has made it a cornerstone technology in surveillance, defence, and scientific observation

[2].

Surveillance radar, in particular, is designed to continuously monitor extensive areas, including

land, sea, or a combination of both, where it must detect and track multiple targets in real time.

This capability is critical in border security, airspace monitoring, and maritime safety, where an

up-to-date awareness of numerous moving targets is essential. Yet, the environments where

surveillance radar operates are often cluttered with unwanted reflections, known as clutter, caused

by the ground, waves, vegetation, weather phenomena, and even artificial structures. This clutter

complicates target detection by masking or distorting the radar returns from actual targets [3].

Despite these complex environments’ challenges, radar scenes are typically sparse regarding

actual targets, as relatively few objects of interest are usually present at any given time. Recog-

nizing this sparsity allows us to improve detection methods by focusing only on relevant targets

and limiting false positives. Recent developments in machine learning, particularly in sparse

predictive modelling, have opened new avenues for multitarget detection. The support vector

machine (SVM), a well-established algorithm in machine learning [4], led to the development of

the relevance vector machine (RVM) technique [5], also referred to as sparse Bayesian learning

(SBL) [6], which inherently promotes sparsity in estimations. These models have shown promise

in multitarget detection tasks by efficiently modelling scenes with sparse target distributions [7].

However, a significant obstacle for surveillance radar systems is volume or surface clutter

from precipitation or ground or sea reflections, which can vary dynamically with environmental

changes. For example, wind-blown vegetation and moving sea waves create clutter, making it

harder to differentiate actual targets from background noise. Standard RVM and SBL approaches

commonly assume that noise is white and Gaussian, an assumption that does not align with

the complex, non-Gaussian characteristics of surface clutter. Conversely, space-time adaptive

processing (STAP) methods can handle non-Gaussian clutter by estimating clutter characteristics

from secondary data considered free of targets. However, data with certainty free of targets can

be scarce, leading to poor estimates of the clutter characteristics [8].

This thesis addresses these challenges by presenting a novel RVM-based framework for

multitarget detection within cluttered environments. Specifically, the research focuses on appli-

cations in surveillance radar settings, such as land-based or downward-looking airborne radar

1



2 Chapter 1. Introduction

systems, which encounter significant surface clutter from land or sea. The proposed framework

will jointly estimate the clutter covariance matrix and detect multiple targets simultaneously, mak-

ing it adaptable to environments varying over time without requiring pauses in radar operation.

By utilizing the sparsity of RVM, the framework will effectively manage the low-density target

distributions commonly encountered in wide-area surveillance, focusing on accurate detections

while minimizing false positives.

This research will use simulated data to validate the framework’s versatility and effectiveness.

It will examine its performance across multiple scenarios, including one-dimensional (range

and angle) and two-dimensional (range-angle) settings. This approach ensures feasibility while

providing insights into the framework’s potential applicability in real-world environments.

This research aims to achieve its goal by answering the following three research questions:

How can a framework be developed to effectively perform joint multitarget detection

and clutter covariance estimation in a cluttered environment, which is stationary within a

single burst but can vary over time?

Research Question 1

Can incorporating clutter covariance estimation in the detection model reduce false and

missed detections?

Research Question 2

How can this framework be applied across various scenarios, including both one-

dimensional (range or angle) and two-dimensional (range-Doppler) cases?

Research Question 3

1.1. Research contributions and outline
The main contributions of this research can be summarized as follows:

• The thesis also presents an efficient approach to simultaneous clutter covariance estimation

and multitarget detection by imposing a structured model on the covariance matrix. This

model reduces the number of required parameters to P × 2 + 1, where P represents the

order of the AR model, greatly enhancing computational efficiency for models where the

measurement length N � P .

• One of the main contributions of this thesis is the novel derivation of Burg’s method for

autoregressive (AR) parameter estimation within an Expectation-Maximization (EM) frame-

work. Integrating Burg’s method into an EM setting allows for iterative estimation of the AR

model parameters and other components in the system.

The following sections outline the work surrounding these contributions:

Chapter 2 introduces foundational concepts in radar detection, explicitly focusing on range

detection and direction-of-arrival (DoA) estimation using uniform linear arrays. The chapter also

briefly explores how the measurement model used for DoA estimation can be adapted for Doppler

processing, providing flexibility across different radar applications. Additionally, it introduces

autoregressive (AR) processes, which are crucial for clutter modelling in complex environments,

setting the stage for later discussions on their integration within the proposed framework.
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Chapter 3 explains the basics of the Relevance Vector Machine (RVM) framework, including

the modifications needed to extend its capabilities for complex-valued data processing. This

chapter addresses the limitations of the original framework’s white noise assumption, explaining

why a full covariance matrix for the clutter is essential in cluttered environments. It also highlights

the benefits of AR clutter modelling, particularly in reducing the parameters necessary for accurate

target detection. It motivates the need for adaptive clutter modelling within the RVM framework.

Chapter 4 presents the derivation of the clutter covariance matrix update within an Expectation-

Maximization (EM) framework. The chapter details how the covariance update depends on the

residual of the measurement vector minus the estimated model and the summation terms related

to the basis functions. This derivation forms the core of the proposed approach for integrating

clutter covariance estimation with target detection, preparing the ground for the AR parameter

estimation discussed in the next chapter.

Chapter 5 develops the use of Burg’s method for AR parameter estimation, along with an

extension for handling multiple segments. This chapter explains why Burg’s method is particularly

well-suited for integration into the RVM-based detection framework, focusing on its computational

efficiency and compatibility with the joint processing of target and clutter. The chapter thus

provides a practical means of implementing AR parameter estimation to maximize the results

derived in Chapter 4.

Chapter 6 presents simulations across various scenarios, including one-dimensional and

two-dimensional settings, to demonstrate the general applicability and performance improvements

of the proposed RVM-based framework over the original implementation. This chapter assesses

the framework’s effectiveness in enhancing detection accuracy and discusses potential pitfalls

within the RVM framework, offering insights and suggestions on mitigating these challenges in

future implementations.

The final chapter summarizes the research findings, emphasizing the framework’s advantages

in cluttered environments. It also outlines potential directions for future work, including the

exploration of advanced detection methods to further reduce false detections and missed targets,

enhancing the framework’s robustness and adaptability for real-world radar applications.





2
Background

2.1. Pulse radar waveforms
In this thesis, we apply the proposed framework to radar data from a radar surveillance perspective.

One possible operating mode of a surveillance radar is to transmit periodic pulses and, in between

these pulses, listen to the reflections of the transmission coming back to the radar. This form of

operation is called a pulsed radar system, which is contrary to continuous-wave radars, which

are to receive their information simultaneously while transmitting.

Pulsed radar operates by emitting short, high-power pulses of radio waves and then listening

for echoes that reflect off objects, allowing for the measurement of distance based on the time

delay between pulse transmission and echo reception. A matched filter is typically used to

maximise the signal-to-noise ratio (SNR), aligning the received signal with the transmitted pulse

through cross-correlation to improve detection accuracy [9]. However, more extensive detection

ranges generally require longer pulses, but this reduces the range resolution and is therefore

undesired [10]. Pulse compression addresses this by modulating longer pulses with frequency or

phase, enabling high-energy transmissions that, after compression, achieve finer range resolution

similar to shorter pulses [11]. This technique thus enhances both range and resolution capabilities,

making pulsed radar effective for detecting distant and closely spaced objects.

A standard pulse compression method sends a modulated waveform, which further sharpens

the signal’s response. This thesis will look at pulse-compressed linear frequency modulated

(LFM) waveforms. These waveforms, also called chirps, are characterised by the frequency

being either increased or decreased during the pulse transmission. The difference in frequency

between the start and the end of the pulse is the bandwidth B.

For a pulse of duration T and bandwidth B surrounding the centre frequency fc, we transmit

the following signal

s(t) =

{
exp

{
j2π

((
fc − B

2

)
t+ B

2T t
2
)}

if 0 ≤ t < T

0 otherwise
(2.1)

The reflected signal then incurs a delay due to the flight time on the return trip to and from the

target. If we denote this return delay as τ , the return signal is

r(t) =

{
exp

{
j2π

((
fc − B

2

)
(t− τ) + B

2T (t− τ)2
)}

if τ ≤ t < τ + T

0 otherwise
(2.2)

After taking the convolution of the transmitted and received signals, we end up with the pulse-

compressed LFM waveform. Figure 2.1 shows an example of this waveform.

Within this work, we will consider a single pulse-compressed LFM waveform as a template

response that we expect from a target located at a given distance.
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Figure 2.1: The pulse-compressed LFM waveform for a target at two kilometres from a pulse radar.

The real and imaginary components are drawn in blue and yellow, respectively.

2.2. Direction-of-arrival estimation
Radar systems do not necessarily have to be composed of a single transmission and receive

element. Array antennas, consisting of multiple antenna elements, can transmit or receive in

parallel. Based on knowledge of the array structure, it is possible to perform a direction-of-arrival

(DoA) estimation of a plane wave received by the array [12].

Based on the transmitted signal’s carrier frequency, the return signal’s arrival direction, and

the distance between the antenna elements, you will experience a phase shift of the received

signal from one element to the next. As this phase shift is relative, it is common to take one

element as a reference element and express the difference relative to this reference element for

each element in the array. For a sensor array of M elements, we can write the expected phase

change vector a ∈ C1×M as [13]

a(θ) =
[
1 ejk e2jk . . . e(M−1)jk

]T
(2.3)

where the phase delay k is determined based on the interelement spacing and the carrier

wavelength as

k =
2πd

λ
sin θ (2.4)

Commonly, the interelement spacing is set at half of the carrier wavelength, as this is the max-

imum distance the elements can be separated by to still correctly estimate a signal perpendicular

to the sensor array, similar to the Nyquist-Shannon sampling theorem for aliasing.

Figure 2.2 shows how the phase change per antenna element looks for three different arrival

directions.

Whenever we examine DoA estimation in this thesis, we use the phase delay vector corre-

sponding to a certain angle as an estimation template.
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Figure 2.2: The phase difference experienced per sensor relative to the first sensor for some

different angles of arrival

2.2.1. Translation to Doppler processing
In this work, we use the direction-of-arrival setting to show the framework’s applicability to

estimating the angles at which certain targets are present based on the data. However, the model

in Equations 2.3 and 2.4 can be translated into Doppler processing by changing the phase delay

definition to depend on the Doppler shift incurred due to the Doppler velocity. The relation of

Doppler shift and Doppler velocity will be modelled through

ej2πvDt (2.5)

where vD is the Doppler shift incurred from a target. An example of how this can be expanded

into basis functions is shown in [14].

2.3. Autoregressive models
An autoregressive (AR) model represents a type of random process that specifies the output

to be dependent on a linear combination of previous values of the same process and noise.

Autoregressive processes are considered to be of a certain order P , which describes the amount

of previous values considered in the process. A discrete AR(P) model can be expressed as

x[n] =

P∑
i=1

aix[n− i] + εn (2.6)

where εn is white noise.

Therefore, generating an autoregressive process is as simple as synthesising a white noise

sequence of the desired length and coherently weighting and summarising its values.

Alternatively, the AR(P) model can be written as a rational transfer function between the input

and output sequences as an infinite impulse response (IIR) filter. Therefore, you can write the

AR(P) model in the z-domain as

X(z) =
1

1 + a1z−1 + · · ·+ aP z−P
E(z) (2.7)
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The definition above for the AR model and its AR coefficients ap is the one we will use

throughout the thesis whenever we reference the coefficients used to generate an AR process or

when the coefficients have been estimated.

The likelihood of this autoregressive process, for a process vector x of length N , is given as

[15]

p(x) =
1

πN det (Qn)
exp

{
xHQ−1

n x
}

(2.8)



3
Relevance vector machine

The relevance vector machine (RVM) framework, originally described by Tipping in [5], is a

Bayesian treatment of the support vector machine (SVM). Both the SVM and the RVM make an

estimation of a measured vector based on the weighted combination [16]:

y(x;w) =
N∑
i=1

wiK(x,xi) + w0 (3.1)

where K(x,xi) is what we call a basis function. Basis functions are sample responses from a

predefined location of interest. The wi denotes the weight of how each basis function is applied

to the estimation.

Although SVM has been successfully applied to many tasks, Tipping identified a couple of

disadvantages in the methodology [16]. One of these was that SVM only outputs point estimates,

where ideally, we desire an estimate of the conditional distribution p(t|x), as this captures our
uncertainty in the current estimation. Additionally, SVM results are relatively sparse but can still

contain a fairly large set of basis functions to minimize the estimation error. Lastly, SVM imposes

conditions that have to be satisfied on the specific kernel function.

Tipping proposed the RVM method as a fully probabilistic framework to mitigate these limita-

tions. A desirable feature of RVM is that it achieves a comparable generalization performance

to SVM while using dramatically fewer basis functions. This translates well to our radar-based

problem, as any additional basis functions used correspond to additional false detections from

the data.

3.1. Tipping’s real-valued relevance vector machine
The main model behind the relevance vector machine considers a data set of input-target pairs

{xn, tn}Nn=1 with real-valued target functions, and the assumption that the targets are samples

from the following model with additive noise:

tn = y(xn;w) + εn (3.2)

Here, the εn are assumed to be independent samples from a zero-mean Gaussian noise process,

with variance σ2, i.e. N (0, σ2). This results in the likelihood

p(tn|x) = N (tn|y(xn), σ2) (3.3)

where the function y(xn) is as it has previously been defined in Equation 3.1.

For our relevance vector machine, however, we define our basis vectors by determining a

discrete grid where possible targets are present and generating a sample response for when a

9



10 Chapter 3. Relevance vector machine

target would be present at this point in the grid. A single basis function essentially represents

a kernel function as defined previously: φi(x) ≡ K(x,xi). From here, we arrive at the following

form:

t = Φw+ n (3.4)

where t ∈ RN is the target vector, Φ ∈ RN×M is our matrix consisting of M basis vectors, one

for each grid point we modelled our target response for, w ∈ RM is the vector of weights for

each of the basis functions, and the additional noise process n ∼ N (0, σ2I). This then leads to a

likelihood of the complete data set as [5], [16]

p(t|w, σ2) =
(
2πσ2

)−N
2 exp

{
−1

2

∥∥t−Φw
∥∥2} (3.5)

A prior probability distribution is defined over the weight vector w to prevent over-fitting in a model

with many parameters. A preference for less complex functions is encoded by defining the prior

as a zero-mean Gaussian distribution:

p(w|α) =
M−1∏
i=0

N
(
wi|0, α−1

i

)
(3.6)

where α is a vector of so-called hyperparameters associated independently with a single weight

value. Another hyperparameter is added for the noise variance σ2, with β ≡ σ−2.

For these hyperparameters, priors are chosen as Gamma distributions:

p(α) =

M−1∏
i=0

Gamma (αi|a, b)

p(β) = Gamma (β|c, d)

(3.7)

where

Gamma (α|a, b) = Γ(a)−1baαa−1e−ba (3.8)

with Γ(a) being the Gamma function. Tipping, however, advocates the use of uniform scale priors

with a = b = c = d = 0, as this results in a uniform prior distribution to these hyperparameters,

which creates a form of scale-invariance: estimations are independent of linear scaling of both

t and the basis functions [16]. Formulating prior distributions like this is a form of automatic

relevance determination (ARD) as previously described by MacKay [17] and Neal [18].

With the priors defined, the posterior over all unknowns given the data can then be defined

using Bayes’ theorem:

p(w,α, σ2|t) = p(t|w, σ2)p(w|α)

p(t|α, σ2)
(3.9)

= (2π)−
N
2 |Σ|−

1
2 exp

{
−1

2
(w− µ)T Σ−1 (w− µ)

}
(3.10)

where

Σ =
(
ΦTBΦ+ A

)−1
(3.11)

µ = ΣΦTBt (3.12)

where A = diag(α0, α1, . . . , αM−1) and B = σ−2I.
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The specific formulation here is chosen in favour of the more regular form of the posterior

formula, using p(t) as the denominator, as the computation of

p(t) =

∫
p(w|t,α, σ2)p(w,α, σ2)dwdαdσ2 (3.13)

cannot be performed analytically.

By integrating away the weights in the formulation of Equation 3.10, we arrive at the marginal

likelihood over the defined hyperparameters:

p(t|α, σ2) = (2π)−
N
2
∣∣σ2I+ΦA−1ΦT

∣∣− 1
2 exp

{
−1

2
tT
(
σ2I+ΦA−1ΦT

)−1
t

}
(3.14)

The relevance vector machine, just like sparse Bayesian learning in general, can now be

formulated as a type-II maximum likelihood procedure, where the objective is to maximize the

above marginal likelihood, or equivalently its logarithm L(α, σ2), for the hyperparameters α and

β [19]:

L(α) = log p(t|α, σ2) = −1

2

[
N log 2π + log |C|+ tTC−1t

]
(3.15)

with C = σ2I+ΦA−1ΦT .

3.2. Fast marginal likelihood maximization
Tipping’s original implementation [5] initializes with allM basis functions included in the model. By

iteratively updating the hyperparameters, certain basis functions would be discarded as not being

relevant to describe the measurement, which accelerated the subsequent iterations. However,

at the start, the algorithm would still require to perform in the order of O
(
M3
)
computations.

However, due to the work of [19], [20] presented a fast RVM algorithm that initializes with an

empty set of basis functions in the model and, with each iteration, tries to add basis functions to

the model and/or update their respective weights to maximize the marginal likelihood.

This is done by writing the expression of Equation 3.15 into a decomposed form as

L(α) = L(α−i) + `(αi) (3.16)

in which the marginal likelihood with the basis function φi is excluded is contained in L(α), and
`(αi) now isolates all the terms related to αi for the basis function φi. The analysis in [19] also

shows that there is a unique maximum for L(α) with respect to αi, as defined for as follows [19]:{
αi =

s2i
q2i −si

if q2i > si

αi =∞ if q2i ≤ si
(3.17)

where si, referred to as the ’sparsity factor’, indicates if the basis function φi has a certain similarity

with the functions already included in the model. qi, referred to as the ’quality factor’, indicates

how well the basis function φi corresponds with the error of the current model with φi not included.

These quantities can be calculated from

si =
αiSi

αi − Si
qi =

αiQi

αi − Si
(3.18)

where si = Si and qi = Qi when αi =∞. The quantities Si and Qi are defined as

Si = φT
i B

−1
−iφi − φT

i BΦΣΦTBφi

Qi = φT
i B

−1
−i t− φT

i BΦΣΦTBt
(3.19)
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with C−1
−i = σ2I+

∑
m6=i α

−1
m φmφT

m as the matrix C without the contribution of basis function φi.

The quality and sparsity factors qi and si can be calculated for all M available basis functions

at any iteration. This allows us to determine which basis function improves the marginal likelihood

the most and specifically add this to the model (or update its weight if it was already included).

When adding a new basis function, the delta to the marginal likelihood can be calculated as [20]:

∆L =
1

2

(
Q2

i − Si

Si
+ log Si

Q2
i

)
(3.20)

When a basis function is already present in the model, its delta to the marginal likelihood can

be calculated using the previous hyperparameter αi and the updated hyperparameter α̃i. The

formula then becomes:

∆L =
1

2

(
Q2

i

Si +
[
α̃−1
i − α−1

i

]−1 − log
{
1 + Si

[
α̃−1
i − α−1

i

]})
(3.21)

3.3. Relevance vector machine for complex-valued input
The relevance vector machine as described by Tipping concerns itself with real-valued inputs

and basis functions. However, in radar scenarios, we instead commonly work with data that

is complex-valued. To allow for this, we need to update the previously defined formulas to

accommodate this. Our model description of Equation 3.4 can stay the same, being

t = Φw+ n (3.22)

However, now t ∈ CN is our complex-valued target vector,Φ ∈ CN×M the basis matrix of complex-

valued basis functions, w ∈ CM the complex-valued weight vector. We now also assume that our

noise samples are drawn from a circularly symmetric central complex Gaussian distribution, i.e.

n ∼ CN (0,Qn). With this, we now update the likelihood of the complete data set from Equation

3.5 as

p(t|w,Qn) =
1

πN det (Qn)
exp

{
(t−Φw)H Q−1

n (t−Φw)
}

(3.23)

Similarly, for the prior probability distribution over the weight vector of Equation 3.6, we now also

update this to be a circularly symmetric central complex Gaussian distribution:

p(w|α) =

M−1∏
i=0

CN (wi|0, α−1
i I) (3.24)

In defining the posterior over all unknowns given the data, we essentially only need to update

the regular matrix transposes in Equations 3.10, 3.11, 3.12 to use the Hermitian transposes. This

results in the following relations for the posterior on the weights:

p(w,α,Qn|t) = (2π)−
N
2 |Σ|−

1
2 exp

{
−1

2
(w− µ)HΣ−1(w− µ)

}
(3.25)

Σ =
(
ΦHBΦ+ A

)−1
(3.26)

µ = ΣΦHBt (3.27)

where still A = diag(α0, α1, . . . , αM−1) but now B = Q−1
n .

Similarly, we need to update our quality and sparsity measures Qi and Si from Equation 3.19.
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Here, we now have

Si = φH
i B

−1
−iφi − φH

i BΦΣΦHBφi

Qi = φH
i B

−1
−i t− φH

i BΦΣΦHBt
(3.28)

from which we can conclude that Si will stay a real-valued quantity, even when using complex-

valued data. Qi, on the other hand, has now become a complex-valued quantity as well. This

has some consequences on Equations 3.17, 3.20 and 3.21, where the square of either the qi or
Qi term is used. Updating these equations gives us the following results for the maximum of the

marginal likelihood with respect to αi{
αi =

s2i
qiq∗i −si

if qiq
∗
i > si

αi =∞ if qiq
∗
i ≤ si

(3.29)

and the deltas to the marginal likelihood of adding and updating a basis function

∆L =
1

2

(
QiQ

∗
i − Si

Si
+ log Si

QiQ∗
i

)
(3.30)

∆L =
1

2

(
QiQ

∗
i

Si +
[
α̃−1
i − α−1

i

]−1 − log
{
1 + Si

[
α̃−1
i − α−1

i

]})
(3.31)

respectively.

3.4. Clutter estimation in RVM
The RVMmodel in Equation 3.4 assumes a white noise term in the measurement model. However,

this assumption is unrealistic in a real-world surveillance radar setting, especially one directed

downward. Alongside the target reflections, the radar will also pick up surface clutter; reflections

from the ground or sea. Ground reflections may appear stationary when observed over land,

but movement from wind in trees or crops introduces Doppler shifts in the signal. Similarly, sea

clutter is influenced by surface waves, which also cause Doppler shifts in the reflections.

Our measurement model must drop the white noise assumption by incorporating the clutter

covariance matrix to account for this surface clutter. This implies that in our complex-valued

model (Equation 3.22):

t = Φw+ n, n ∼ CN (0,Qn) (3.32)

we no longer assume Qn = σ2I. Instead, we will work with a full clutter covariance matrix to better

capture the characteristics of non-white, structured noise in our environment.

3.4.1. Full covariance estimation in Sparse Bayesian Learning
Several efforts have been made to include a clutter covariance matrix into RVM or other sparse

Bayesian learning (SBL) implementations. However, clutter is not always defined in the same

way. An example is [21] and [22], which have clutter defined as certain discrete scatterers on the

same grid used for the targets in the SBL formulation. Also, [23] utilises some form of sparse

clutter definition, although this is only sparse in the range domain as opposed to the range-angle

domain of the other works. Alternatively, [24] also estimates a clutter covariance matrix. However,

this is defined in a compressive sensing setting. For this work, however, we aim to look at the

homogeneous clutter that occurs throughout a certain range bin and can (and is assumed to)

span over multiple range bins.
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In [25], the authors claim to do a structured covariance matrix recovery using SBL. Here,

however, the noise is still assumed to be normally distributed, with the authors arguing that SBL

still leads to a form of a Toeplitz matrix recovery.

Some works looked into providing an estimate for the homogeneous clutter covariance. For

example, [26] provides an EM-based clutter covariance matrix estimate. However, this is based

on the space-time-adaptive-processing (STAP) procedure, similar to [21], [22]. The problem with

STAP-related implementations, however, is their need for pilot segments, in which the assumption

is made that there is no target present in the data. This can, however, run into multiple problems.

The covariance matrix is estimated based on the assumption that there was no target present in

the pilot segment. However, if a target was present here, this would now be wrongfully seen as

part of the clutter environment and most likely stay as missed detections during actual operation.

Also, the clutter covariance is due to the movement of windswept trees or sea surface waves.

This also implies that the clutter process is nonstationary [27]. As a result, even if the estimates

could have been initially made without target presence, these estimations made during the pilot

segment need to be updated over time, causing ’blind’ time for the radar, if even applicable, or

even unable to perform another pilot due to target presence.

[28] and [29] also present methods to determine clutter, both based on a certain cell-under-test

(CUT) principle. This makes the assumption that the neighbours of the cell under test are free

of targets, which is an assumption that doesn’t necessarily need to hold, especially not when

considering extended targets.

Therefore, this work aims to create a joint estimation algorithm for multi-target detection and

clutter covariance estimation within the same scan. This allows us to perform a new estimate of the

clutter covariance matrix in every scan separately, therefore not hindered by any nonstationarity

of the clutter in subsequent scans. Within a single scan, the clutter process is assumed to be

stationary. Also, the proposed framework can do clutter covariance estimation in scans with

targets present and thus is not dependent on data segments where no targets are present, leading

to poor estimations whenever this data is scarce. Also, by dropping the constraint that the adjacent

cells need to be free of targets, we can provide an option for targets to be closely separated in

range bins and not be considered in the clutter covariance estimation.

3.4.2. Benefit of autoregressive modelling of clutter
Most mentioned methods try to produce an estimate of the full covariance matrix directly without

utilizing any knowledge of the internal structure of the covariance matrix.

As described by [27], radar clutter can often be represented as a sum of complex exponentials,

translating well into its Fourier spectrum. Autoregressive (AR) processes can approximate such

Fourier spectra efficiently, making them effective for modelling dynamic clutter. Previous studies

[27], [30]–[32] have shown that ground clutter and sea clutter can be modelled using low-order

AR processes (typically of order two or three).

Given our knowledge of our clutter process, we can leverage this known covariance matrix

structure to simplify the covariance matrix estimation. Especially given the understanding of the

low-order autoregressive process that can be used to model the clutter, we can drastically reduce

the number of variables that need to be estimated. If no structure is imposed on the covariance

matrix, this results in N2 variables being estimated, where N is the length of your measurement.

However, we only need to estimate seven parameters for a clutter process of length N and order

3, being the real and complex part of each of the AR coefficients and the residual prediction error.

This reduced complexity enables more efficient use of this estimated covariance matrix in the

iterative process of jointly performing multi-target detection and clutter covariance estimation.
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Autoregressive (AR) parameter estimation models a signal as a function of its past values

plus noise, helping capture temporal dependencies in time series data. AR models are crucial

in fields like signal processing and radar, where accurately modelling temporal patterns aids in

forecasting and noise reduction. Several key methods exist for estimating AR parameters:

• Yule-Walker Equations: This method uses autocorrelation of the observed signal to

estimate coefficients, offering simplicity and efficiency, especially for stationary data, though

it can be sensitive to noise and small samples. [33]

• Burg’s Method: An iterative approach, Burg’s method [34] minimizes both forward and

backward prediction errors, providing high-resolution estimates even for short data se-

quences. Its stability and noise robustness make it ideal for applications like radar. [35],

[36]

• Least Squares Estimation: By minimizing squared differences between observed and

predicted values, this method provides precise estimates, particularly useful for large

datasets. However, it can be sensitive to noise and outliers. [37]

• Maximum Likelihood Estimation (MLE): MLE maximizes the likelihood of the data given

the model, often yielding optimal estimates if the data is Gaussian. Though computationally

intensive, it performs well under complex or noisy conditions. [38], [39]

• Alternative implementations: Other works, like, for example, [40], attempt to make other

implementations, like linear prediction, perform similarly to the methods detailed above

while limiting the computational complexity needed.

Each method offers distinct advantages based on data length, noise levels, and computational

demands, with choices depending on application-specific requirements.





4
Updating hyperparameters using EM

The (re)estimation of the hyperparameters to maximise the marginal likelihood of the relevance

vector machine is equivalent to an expectation-maximisation (EM) update, which is guaranteed to

locally maximise L as defined in Equation 3.15 [16]. This means that we equivalently maximise

Ew|t,α,Qn
[log p(t|w,Qn)p(w|α)p(α)p(Qn)] (4.1)

This expectation can then be split into two independent terms that can be equivalently maximised.

For the hyperparameters for the RVM weights, we get

Ew|t,α,Qn
[log p(w|α)p(α)] (4.2)

for which [16] shows that this gives an update equation as:

αi =
1 + 2a

µ2
i +Σii + 2b

(4.3)

Independently of the update of α, we have the expectation term concerning the clutter

covariance matrix as

Ew|t,α,Qn
[log p(t|w,Qn)p(Qn)] (4.4)

Based on this expectation maximisation, we will now derive an updating strategy for the clutter

covariance matrix.

4.1. Derivation of clutter covariance matrix update
During this work, we focus on the maximisation of the conditional likelihood, the p(t|w,Qn) term.

The full expectation maximisation in regards to Qn should include maximization of log p(Qn) as
well, the prior defined on the covariance matrix. This prior could potentially be set up in a similar

noninformative way as with the original p(β) definition in Equation 3.7, enabling scale-invariance.

This could possibly be achieved by defining an inverse Wishart prior [41], but the consequences

of defining this prior would have to be studied in further work.

Focussing on the conditional likelihood, we know from Equation 3.23 that it is defined as

p(t|w,Qn) =
1

πN det (Qn)
exp

{
(t−Φw)H Q−1

n (t−Φw)
}

(4.5)

Taking the logarithm of this term yields the following expression

log p(t|w,Qn) = −N log π − log det (Qn) + (t−Φw)HQ−1
n (t−Φw) (4.6)

17
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We can, therefore, write the expected value for the first term as

Ew|t,α,Qn
[log {p(t|w,Qn)}] = −N log π

−E [log det (Qn)] + E
[
(t−Φw)HQ−1

n (t−Φw)
] (4.7)

where the w|t,α,Qn subscript is left out from subsequent expectation operators for notational

convenience. We then start to write the second expectation term into a more convenient form by

first expanding and separating the expectation into three separate terms

E
[
(t−Φw)HQ−1

n (t−Φw)
]

= E
[
tHQ−1

n t− 2tHQ−1
n Φw+wHΦHQ−1

n Φw
]

= E
[
tHQ−1

n t
]
− 2E

[
tHQ−1

n Φw
]
+ E

[
wHΦHQ−1

n Φw
] (4.8)

For the third expectation term, we rewrite the product by utilizing the cyclic property of a matrix

trace

wHΦHQ−1
n Φw = (Φw)H Q−1

n Φw

= tr
(
wHΦHQ−1

n Φw
)

= tr
(
ΦHQ−1

n ΦwwH
) (4.9)

From here, we can now simplify the expectation to

E
[
(t−Φw)HQ−1

n (t−Φw)
]

= tHQ−1
n t− 2tHQ−1

n ΦE [w] + tr
(
ΦHQ−1

n ΦE
[
wwH

]) (4.10)

For our determined weights, we have the following expectations:

E [w] = µ̂, E
[
wwH

]
= µ̂µ̂H + Σ̂ (4.11)

where µ̂ and Σ̂ are respectively the posterior mean and covariance of the estimated weights

of the RVM. Note here that µ̂ and Σ̂ are as large as the amount of basis functions included in

the model, i.e. µ̂ ∈ C1×K and Σ̂ ∈ RK×K , where K is the amount of basis functions included.

Therefore we can update and further derive our expectation term as follows

E
[
(t−Φw)HQ−1

n (t−Φw)
]

= tHQ−1
n t− 2tHQ−1

n Φµ̂+ tr
(
ΦHQ−1

n Φ
(
µ̂µ̂H + Σ̂

))
= tHQ−1

n t− 2tHQ−1
n Φµ̂+ µ̂HΦHQ−1

n Φµ̂+ tr
(
ΦHQ−1

n ΦΣ̂
)

= (t−Φµ̂)HQ−1
n (t−Φµ̂) + tr

(
ΦHQ−1

n ΦΣ̂
)

(4.12)

4.2. Derivation of trace to segments
We want to be able to jointly estimate the covariance matrix Qn within the RVM framework.

Therefore we rewrite the trace term in Equation 4.12 above to arrive at a more convenient

expression for this estimation. We do this by decomposing our RVM posterior covariance matrix

Σ̂ using the Cholesky decomposition, Σ̂ = LLH . As a result, we can now rewrite our trace term

as follows
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tr
(
ΦHQ−1

n ΦΣ̂
)
= tr

(
ΦHQ−1

n ΦLLH
)

= tr
(
LHΦHQ−1

n ΦL
) (4.13)

Using C = ΦL, this simplifies to

tr
(
LHΦHQ−1

n ΦL
)
= tr

(
CHQ−1

n C
)

(4.14)

The trace of the matrix dot product can also be written as the summation of inner products of the

separate columns of the C matrix.

tr
(
CHQ−1

n C
)
=

K∑
k=1

cHk Q
−1
n ck (4.15)

Therefore, we can now write the full expectation for the complex-valued model as

E
[
(t−Φw)HQ−1

n (t−Φw)
]
= (t−Φµ̂)HQ−1

n (t−Φµ̂) +

K∑
k=1

cHk Q
−1
n ck (4.16)

4.2.1. Alternative derivation using eigendecomposition

In the decomposition of the RVM posterior covariance matrix Σ̂ of Equation 4.13, we made use

of the Cholesky decomposition. However, a similar result can also be obtained by using the

eigendecomposition instead. In this case, we would decompose the covariance matrix as

Σ̂ = UΛUH (4.17)

To obtain the same structure as we had in Equation 4.14, we need to split the diagonal eigenvalue

matrix into its square root:

Σ̂ = U
√
Λ
√
Λ

H
UH (4.18)

From this, we end up at

tr
(
ΦHQ−1

n ΦΣ̂
)
= tr

(
ΦHQ−1

n ΦU
√
Λ
√
Λ

H
UH
)

= tr
(√

Λ
H
UHΦHQ−1

n ΦU
√
Λ
)

= tr
(
RHΦHQ−1

n ΦR
)

= tr
(
CHQ−1

n C
)

(4.19)

where we used R = U
√
Λ and C = ΦR. This means we can construct our C matrix through either

of the decompositions described above.





5
Applying Burg’s method to EM

To solve our EM-update for the covariance matrix Qn, we need to find a way to maximise a

term of the form (t−Φw)H Q−1
n (t−Φw). Attempting to maximise this term directly would lead

to a nonlinear optimisation that needs to be performed [38]. Therefore, it is common to use

recursive schemes to solve this maximisation [34], [38], [42]. Burg’s method [34] is a favourable

implementation to solve this maximisation, as this guarantees the estimated model to be both

stable and have residual variances that lie close to the actual value [35], [36]. Compared to the

maximum likelihood estimation (MLE) methods, performing as part of a joint processing step

alongside the RVM on every iteration is also computationally feasible due to the lower computation

complexity. This lower complexity in comparison is also shown by [42], which remarks that Burg’s

method does not consider the log det (Qn) term of Equation 4.7, which we did not account for

yet in our derivation. Given Burg’s method being a favourable method for complexity, we will

also therefore not consider the maximization of this log det (Qn) term, and leave investigation of

the feasibility of implementing this using the full MLE as possible future work. In this work, we

therefore apply Burg’s method to perform the maximization of the expectation of Equation 4.16.

Burg’s method, also occasionally referred to as the maximum-entropy method (MEM), is

described initially in [34]. It is a recursive algorithm that estimates the autoregressive parameters

by determining reflection coefficients k. These reflection coefficients are later converted to the

actual AR parameters by utilising the Levinson-Durbin recursion [43], [44].

5.1. Burg’s maximum entropy method
The main idea of Burg’s method is to maximise the entropy of the process in an information-

theoretic sense, ensuring that no information is added as a result of the prediction process [31].

The algorithm bases itself on the forward and backward prediction errors for a pth order AR model,

with data measurements {x(n)} , n = 1, 2, . . . , N , defined as [45]

fp(n) = x(n) +

P∑
i=1

âi,px(n− i), n = p+ 1, . . . , N (5.1)

bp(n) = x(n− p) +

P∑
i=1

â∗i,px(n− p+ i), n = p+ 1, . . . , N (5.2)

Burg’s method recursively estimates the AR(p) model for p = 1, . . . , P , utilising the p − 1
estimated reflection coefficients k̂1, . . . , k̂p−1 determined from the forward and backward prediction

errors up to that point. The forward and backward prediction errors for stage p can then be

21
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calculated using:

fp(n) = fp−1(n) + k̂pbp−1(n− 1) (5.3)

bp(n) = bp−1(n− 1) + k̂∗pfp−1(n) (5.4)

The estimate for the reflection coefficient for the pth order is then calculated as:

k̂p =
−2
∑N

n=p+1 fp−1(n)b
∗
p−1(n− 1)∑N

n=p+1

[
|fp−1(n)|2 + |bp−1(n− 1)|2

] (5.5)

5.2. Extension to multiple segments

In our situation, however, we must not only maximise for the (t−Φw)H Q−1
n (t−Φw) term but

also the summation
∑K

k=1 c
H
k Q

−1
n ck. This is a collection of vectors subject to the same covariance

matrixQn. These vectors are, however, all other realisations of this similar autoregressive process

and can, therefore, not be concatenated into a single data vector to process using Burg’s method.

To still end up with a single estimate for Qn, we utilise the reformulation of Burg’s method that can

be applied to separate data segments [46]. This allows us to process all our vectors, both the

(t−Φµ̂) vector and the vectors from the C matrix, into a single estimate in one go. This updated

estimate of Qn is our variable update in the expectation-maximisation setting. After this updated

estimate of Qn has been computed, an update to the weight hyperparameters α will be done

again to iterate until convergence of both sets of parameters.

However, once we have S separate data segments, say x[s](n), s = 1, . . . , S, all of the same

length, we can apply the extension of [46] to the respective formulas above. Simply put, all the

references x, fp and bp now get their respective superscripts denoting to which segment they

belong: x[s], f
[s]
p and b

[s]
p , respectively. The reflection coefficient for the pth order, based on all

available segments, now becomes [46]

k̂p =
−2
∑S

s=1

∑N
n=p+1 f

[s]
p−1(n)b

∗[s]
p−1(n− 1)∑S

s=1

∑N
n=p+1

[∣∣∣f [s]
p−1(n)

∣∣∣2 + ∣∣∣b[s]p−1(n− 1)
∣∣∣2] (5.6)

We will work with a variable total amount of segments S for our implementation inside the

expectation-maximisation iterations. We will start with an empty set of included basis functions

based on the fast marginal likelihood maximisation scheme defined in Section 3.2. As a result,

we will not even have a C matrix as defined in Equation 4.14 to begin with. Once the iterations

start and the amount of included basis functions increases, the size of the C matrix increases as

well, increasing the total amount of segments being processed.

5.3. From reflection coefficients to AR parameters and covariance

matrix
By utilising the Levinson-Durbin recursion, we can convert the estimated reflection coefficients

for all the orders p = 1, . . . , P into their respective AR parameters [31], [44], [45]

âpi =

{
âp−1
i + k̂pâ

p−1,∗
p−i 1 ≤ i ≤ p− 1

k̂p i = p
(5.7)

Once we’ve obtained the AR parameters for the AR(p) model, we need to convert this infor-

mation into our estimated clutter covariance matrix. This covariance matrix can be decomposed
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into a Toeplitz matrix of AR coefficients and a diagonal matrix containing the prediction error

variances [42], [47]:

Q−1
n (a, r0,σ

2) = AnD
−1
n AH

n (5.8)

where a =
[
a11 a21 a22 . . . app−1 app

]T
, the AR parameters up to order p. The Toeplitz N ×N

matrix An is then constructed based on these parameters as

An =


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1
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1
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0
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0 · · · 0 1

0



(5.9)

and Dn is the N ×N diagonal matrix

Dn =
1

σ2
p

diag
(
σ2
0, σ

2
1, σ

2
2, . . . , σ

2
p, σ

2
p, . . . , σ

2
p

)
(5.10)

where ρi is the prediction error power for the AR model of order i. This prediction error is also

computed using the Levinson recursion as [31]:

σ2
p = (1− |kp|2)σ2

p−1 (5.11)

This means that to finish the construction of our clutter covariance matrix, we at least need the

value of σ2
0. This is the variance of the data measurement vector x, calculated as [42]

σ2
0 =

1

N
xHx (5.12)

In our multisegment cases, where there have been more basis functions included, we determine

this value by taking the (t−Φµ̂) vector for the x vector in Equation 5.12 above. This is done as

(t−Φµ̂) can be seen as the ”residual” of our measurement vector after subtracting our predicted

model. This vector is consistently present in the multiple segments we supply using Burg’s method

for segments.





6
Simulation-based performance analysis

Three different simulation scenarios have been created to evaluate how the proposed method

based on the clutter covariance estimation works in relation to the original implementation with

white noise assumption. The first scenario is a one-dimensional scenario where targets are

distributed along the range axis. This is a fictitious example that helps to visualize the process and

show some of the key concepts in the usage of the framework. The second scenario implements

a direction-of-arrival (DoA) estimation problem based on a uniform linear array (ULA) of antenna

elements. In the third scenario, we expand on the second scenario to implement a two-dimensional

estimation of range and angle for a homogeneous clutter in range assumption.

All of the simulations in this chapter have been implemented in Python 3.11.10, utilizing the

popular scientific computing packages NumPy [48] and SciPy [49].

6.1. Algorithm
All simulations performed in this chapter are the results of the same algorithm implementation.

The following chapter will show the results of the white noise assumption and the proposed

framework. These results have been made by executing the relevance vector machine on the

same measurement vector twice, where once the B matrix is composed in the way Tipping does,

and once it is composed by performing the EM-maximisation using Burg’s method for segments

as proposed in Chapter 5. To provide a fair comparison between the two implementations, for

the original implementation using white noise, the estimated white noise variance is updated

based on the residual in every iteration as well. For either implementation, the remainder of the

algorithm remains the same. This is outlined in pseudocode in Algorithm 1.

6.2. One-dimensional range-only scenario
We work with multiple targets distributed along the range dimension for the initial simulated

scenario. To simulate this, we start by defining an array of distances where we assume the target

could be present. For each of these points, we then generate the expected return signal. Each

return signal becomes a single basis function in our dictionary. For these return signals, we will

use the pulse-compressed linear frequency modulated (LFM) waveform that was discussed in

Section 2.1. These waveforms are stored as a separate basis function in the dictionary for each

point. This could be seen as a parallel to the radar range resolution. In that case, a basis function

is implemented for every range resolution cell of the radar.

The measurement is then simulated as a certain number of targets at different ranges from the

radar, each with its own relative amplitude. The noiseless measurement vector can be created

by simply summing over these basis functions. To generate our noisy measurement, which has

been corrupted with noise, our autoregressive process is generated by filtering a white noise

25
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Algorithm 1: RVM with EM-Burg implementation

Input: Measurement vector t, dictionary matrix Φ, AR model order P
Initialize:

Estimate reflection coefficients k, prediction error σ2 on t using (5.5) and (5.11)

Construct B = Q−1
n using (5.8)

Calculate which basis function maximalizes marginal likelihood using (3.30)

Set this function as initial basis

Calculate Σ̂, µ̂ using (3.26) and (3.27)

Iterate until convergence:

for iteration i← 1 to stopping criteria do

Calculate which basis function maximalizes marginal likelihood using (3.30) and (3.31)

Estimate reflection coefficients k, prediction error σ2 on t−Φµ̂ using (5.6) and (4.19)

Construct B = Q−1
n using (5.8)

Update included basis with additional basis function or updated weight

Calculate Σ̂, µ̂ using (3.26) and (3.27)

end

Output: y = Φŵ

signal with the desired AR coefficients and added to the noiseless measurement vector.

This initial scenario is a fictitious example, implying some form of autoregressive clutter would

be present in the range domain after pulse compression, for which no evidence could be found.

It, therefore, simply serves to paint a picture that can be fairly easily understood in terms of basis

functions, the defined grid points, and the implications of orders of the autoregressive process.

More realistic scenarios will be discussed in Sections 6.3 and 6.4.

6.2.1. Simple AR(1) scenario
For our initial testing and visualisation, we implemented a first-order autoregressive noise process

on top of the pulse-compressed LFM responses of four different targets. These targets are located

1 km, 2.5 km, 5 km, and 6 km from the radar, with amplitudes of 0.5, 0.3, 1.0, and 0.5, respectively.

The distance between the grid points for the basis functions is 100 meters, placing the targets at

the range bins 10, 25, 50 and 60. The autoregressive clutter process is a first-order AR process,

generated using the complex AR coefficient a11 = −0.95 ×
(

1
2
√
2
+ 1√

2
j
)
. The generated noisy

vector is then stored and processed using the original white noise assumption implementation

from [20] and the new proposed method of covariance estimation. The results of these simulations

are shown in Figures 6.1 and 6.2.

Those figures show a very drastic difference between the two implementations. The total of 4

targets present in the measurement are described by the original RVM implementation using 21

basis functions. This effectively corresponds to 17 false detections being made. The weights

of the false detections differ, for which one could argue that a weight below 0.1 might be viable

to be discarded. However, the difference between the weight associated with the actual target

located at 2.5 km and the false detection at 1.5 km becomes more difficult to decide between,

as well as the false detection at 7.1 km. The proposed method, however, manages to correctly

detect the 4 basis functions corresponding to the targets, not resulting in any false detections.
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Figure 6.1: The results of using a relevance vector machine (RVM) with a white noise assumption for

a scenario with four targets located at 1000, 2500, 5000, and 6000 meters (range bins 10, 25, 50, and

60, respectively). The left image shows the predicted target vector amplitude based on the estimated

weights for the basis functions in the dictionary. The right image displays the amplitude of the weights

with which each of the 21 basis functions is included in the estimation. Additionally, a clutter

autoregressive (AR) process of order 1 with coefficient a11 = −0.95×
(

1
2
√
2
+ 1√

2
j
)
is added to the

measurement. The RVM used these 21 basis functions to predict the measurement vector.
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Figure 6.2: The results of using the proposed relevance vector machine (RVM) with clutter

covariance matrix estimation based on Burg’s method for a scenario with targets at 1000, 2500, 5000,

and 6000 meters (range bins 10, 25, 50, and 60, respectively). The left image shows the predicted

target vector amplitude based on the estimated weights for the basis functions in the dictionary, while

the right image displays the amplitude of the weights for each basis function included in the estimation.

Only 4 basis functions were required to generate this estimation. The clutter autoregressive (AR)

process is the same realization of the first-order AR process as in Figure 6.1. The proposed method

successfully predicted the targets in the measurement vector using these 4 basis functions.

The differences between the two implementations are not always as stark. In Figures 6.3 and

6.4, the results are shown for the case where the same target vector is now embedded into a

clutter AR process with AR coefficient a11 = −0.65×
(√

3
2 + 1

2j
)
. Still, the white noise assumption

results in a estimation with additional vectors, but the amount has now significantly been reduced.

The estimation based on the white noise assumption now utilizes 10 basis functions instead of

the 4 still used by the proposed method.

There are even situations where there is no difference to be noted between the original and

the proposed implementations. An example of this is when encountered while updating the

clutter process to be generated using an AR coefficient of a11 = 0.4 ×
(√

3
2 −

1
2j
)
. The figures
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Figure 6.3: The results of using a relevance vector machine (RVM) with a white noise assumption for

a scenario with the same target structure as in Figures 6.1 and 6.2. The left image shows the

predicted target vector amplitude based on the estimated weights for the basis functions in the

dictionary, while the right image displays the amplitude of the weights for each basis function included

in the estimation. A total of 10 basis functions were used to create this estimation. In this case, the

clutter process realization is based on an autoregressive (AR) coefficient of a11 = −0.65×
(√

3
2 + 1

2j
)
.

The RVM used these 10 basis functions to predict the measurement vector.
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Figure 6.4: The results of using the proposed relevance vector machine (RVM) with clutter

covariance matrix estimation based on Burg’s method, applied to a scenario with the same target

structure as Figures 6.1 and 6.2. The left image shows the predicted target vector amplitude based

on the estimated weights for the basis functions in the dictionary, while the right image displays the

amplitude of the weights for each of the 4 basis functions used in the estimation. The clutter

autoregressive (AR) process is the same realization of the first-order AR process as in Figure 6.3.

The proposed method successfully predicted the targets in the measurement vector using these 4

basis functions.
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corresponding to this case, Figures A.1 and A.2, are included in Appendix A for reference. Here,

both implementations were capable of perfectly reconstructing the expected target vector. This

is most likely due to the quality factor being determined within the RVM framework, where the

basis functions no longer provide a good enough quality match with the clutter to be considered a

viable option. This happens due to the AR process ”changing shape” due to the difference in the

AR coefficient. Therefore, the actual benefit of the proposed framework relative to the original

implementation somewhat depends on the characteristics of the AR process that clutters the

measurement.

6.2.2. Order selection
Using Burg’s method, you can recursively estimate the AR coefficients up to a given model

order. Based on the estimated reflection coefficients for every order, the coefficients are also

determined recursively, as described in Section 5.3. In the following scenario, we investigate the

consequence of setting up Burg’s method with a higher predicted order than the actual process.

In this scenario, we again placed four targets at different ranges, this time at 1.2 km, 3.0 km,

4.8 km and 5.6 km, with amplitudes of 0.5, 1.0, 0.3 and 0.8, respectively. Added to the targets is

an AR(1) process with again a coefficient of a11 = −0.95×
(

1
2
√
2
+ 1√

2
j
)
.

Figure 6.5 shows the result of processing this signal using a 3rd order assumption in Burg’s

method. It misses the target located at 4.8 km of the radar but manages to match the other three

targets closely without any false detections. The output of Burg’s method for the different AR

coefficients is as follows:

â31 = −0.355− 0.723j

â32 = −0.056 + 0.042j

â33 = 0.025 + 0.024j

(6.1)

The actual AR(1) coefficient, using the same notation of complex numbers, is given as

a11 = −0.336− 0.672j (6.2)

From this, we can see that Burg’s method has fairly accurately managed to estimate the correct

coefficient for the first lag, and also came to the conclusion that there is hardly any dependency

on the second and third lags in the AR process, concluding from the â32 and â33 coefficients being
close to zero.

However, when we use the knowledge that the AR process should be of the first order and

therefore limit Burg’s method only to predict the AR coefficient of the first order, we obtain the

result as shown in Figure 6.6. Here, we can see that the RVM now resolved all four targets in the

measurement. The predicted AR coefficient with the limited AR order in Burg’s method is now

given as

â11 = −0.328− 0.691j (6.3)

which is a closer representation of the actual AR coefficient when compared to â31 of Equation 6.1.

The difference between these coefficients is explained by the recursion in Equation 5.7, where

the residual reflection coefficients of the higher orders cause an update of all of the coefficients

besides the last one.

The improved estimate of the AR coefficient helps better explain the experienced noise

process, resulting in the RVM’s ability to discern the additional target that was initially left buried in

the noise. This advocates the benefit that the framework has by having a form of order selection

built into it, which could be based on the Aikake information criterion (AIC) [50] or any alternative,
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Figure 6.5: The results of using the proposed method with a higher order assumption in Burg’s

method than the actual AR process model order. The target vector is made out of four targets located

at 1.2, 3.0, 4.8 and 5.6 km. The target vector is embedded in an autoregressive clutter process of

order 1, with AR coefficient a11 = −0.95×
(

1
2
√
2
+ 1√

2
j
)
. The expected model order given to Burg’s

method is set to 3. The figures above show how the proposed method with the wrong model order

assumption is not able to resolve the small target at 4.8 km.

of which [36] presents an overview of in relation to Burg’s method and certain model orders. This

has not been implemented here and is left as possible future work. For the remainder of this work,

we will assume that we have the correct knowledge of the AR model order available as an input

into Burg’s method.
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Figure 6.6: The results of using the proposed method with the correct order assumption in Burg’s

method based on the actual AR process model order. The measurement vector is the exact same

realisation as shown in Figure 6.5. The expected model order given to Burg’s method is now set to 1.

The figures above show how the proposed method now is able to resolve the small target at 4.8 km

due to having the correct order assumption.

6.2.3. Off-grid analysis in RVM
The relevance vector machine is inherently a grid-based technique due to its way of defining the

basis functions on a pre-specified grid of possible locations. However, in any real measurement,

there is no guarantee that the location of these targets perfectly align with the pre-defined grid. To

show this situation, we have simulated a scenario where the actual target is in between two grid

points. To make this easier, the spacing between the grid points is doubled, resulting in a grid with

available locations for targets spaced 200 meters apart. Again, a 4-target measurement vector

is created, with targets present at ranges of 800 meters, 3.05 km, 4.8 km and 6.3 km. These
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Figure 6.7: The figures above show the differences in the estimation made by the proposed

framework whenever a target is located off-grid versus on-grid. The targets located at 3.05 km and

6.3 km do not align perfectly with the predefined grid. These targets were moved to 3.0 km and 6.4

km for the on-grid data shown. The figure clearly shows the destructive effect it can have on the

estimation, especially when a target is in the middle of two grid points, like with the 4th target, which

now only gets an amplitude of 0.3 assigned, while in reality, it was the strongest target present.

targets have been assigned an amplitude of 0.9, 0.4, 0.6 and 1.0, respectively. This implies that

we have two targets that do not perfectly align with the grid: the second target is off by 50 meters,

a quarter of the distance between grid points, and the fourth target is perfectly in the middle, 100

meters away from the nearest grid point. For the clutter process, a first-order AR process with

AR coefficient a11 = −0.95 is generated and added to the targets.

The results of this scenario are shown in Figure 6.7. From these figures, we can clearly see

the effect that an off-grid target location has on the estimation. The first thing we can note is the

difference in the weight assigned by the RVM to the basis function of the second target. It is still

estimated correctly that there is a target present at around 3.0 km, but the estimated weight is

seen as only around 0.3, where the actual value should be 0.4. For the last target, the results are

even more extreme. As the target is placed precisely between the two grid points, the estimation

is now made that there is a target present in both of these nearest range bins. As a result, less

than half of the actual weight is assigned to the individual ranges, which makes the strongest

reflection in the return signal be estimated on the same level as the other off-grid target at 3

kilometres.

To better visualize the difference that the off-grid location makes relative to an on-grid target,

the comparison with the on-grid estimation is shown in the same figures of Figure 6.7. For these,

the off-grid targets have been moved to exactly 3.0 km and 6.4 km, respectively. It can then

clearly be seen how the weights are now assigned as would be expected from the targets that

are present in the measurement vector.

In the remainder of this work, we will not consider the case of off-grid targets any further.

Multiple works, for example, [25], [51], [52], have discussed the off-grid problem in different

settings before, allowing us to compensate for these situations. As possible future work, the

proposed framework could be extended to incorporate these solutions to ensure the performance

stays satisfactory in these kinds of situations.

6.2.4. Higher order AR models
So far, we have only investigated the simple first-order AR(1) models. However, as shown in

Section 3.4.2, surface clutter is often fairly accurately defined as an autoregressive process of

the second or third order. Therefore, we will now also investigate some scenarios to see how the

proposed method compares to the original method for that kind of clutter process.
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Simple AR(2) scenario

For this test case, we have embedded our four targets in a second-order autoregressive clutter

process, with the autoregressive coefficients

a21 = −0.95

a22 = 0.4×

(√
3

2
− 1

2
j

)
(6.4)

The targets are located at 800 m, 3.0 km, 4.8 km and 6.3 km, with amplitudes of 0.9, 0.4, 0.6 and

1.0, respectively. The results of the original implementation using white noise assumption are

shown in Figure 6.8, and the proposed method is shown in Figure 6.9. From these results, we

can see that the implementation using the white noise assumption had a great deal of difficulty

in trying to find the correct basis functions. Especially the target located at 4.8 km, where we

can see the RVM used a lot of basis functions from consecutive range bins with lower weights

to attempt to match the measurement. Also, some false detections are present at around 2.4

km and around 7.0 km. In the end, the original implementation utilized 13 vectors to make the

estimation of the measurement.

For the proposed method, we set up the AR parameter estimation using Burg’s method to

now estimate a second order, assuming the correct knowledge of the model order in advance as

discussed in Section 6.2.2. The output of the proposed method, as shown in Figure 6.9, only

consists of the expected 4 basis functions, having a false detection at 500 meters. Also, the target

present at 3 km happens to be predicted in the adjacent range bin instead of its correct one. We

also see this come into effect in the sense that the estimated weight of the corresponding basis

function is a fair way off of the intended value of 0.4. However, even with these slight deviations

from a perfect estimation, the proposed method manages to drastically reduce the amount of

false detections in the output. The AR coefficients that were estimated by the proposed method

were

â21 = −0.893− 0.079j

â22 = 0.305− 0.141j
(6.5)

which is a decent approximation of the expected values of a2 =
[
−0.95 0.346− 0.200j

]
. Even

though the estimation of the AR coefficients is not perfect, we do see that it helps the relevance

vector machine almost completely remove all of the false detections, as well as provide more

certainty of the estimated targets.

AR(2) scenario with low SCR

To also investigate how well the proposed method could work under more extreme clutter condi-

tions, the following tests were performed with a signal-to-clutter ratio (SCR) of -6 dB. Again, we

take a second-order AR clutter process, this time with different AR coefficients

a21 = 0.95×
(

1

2
√
2
+

1√
2
j

)
a22 = −0.5

(6.6)

and the targets were distributed at 1.1 km, 2.4 km, 5.0 km and 5.6 km, with amplitudes of 0.5,

0.7, 0.3 and 1.0. The different estimations made by the two implementations can be seen in

Figures 6.10 and 6.11. Again, the original implementation is able to correctly recognise the four

targets in the clutter. However, it has some trouble in explaining the rest of the noise, leading to

an estimated model in which 15 basis functions are included, leading to false detections around
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Figure 6.8: The results of processing an AR(2) process using the original RVM implementation with

white noise assumption. The targets are located at 800 m, 3.0 km, 4.8 km and 6.3 km. The clutter

process is generated using the AR coefficients a21 = −0.95 and a22 = 0.4×
(√

3
2 −

1
2j
)
. We see the

predicted target vector amplitude based on the estimated model on the left. On the right, we see the

amplitude of the weights that compose the estimated model. The RVM used 13 basis functions to

predict the target vector based on the measurement.
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Figure 6.9: The results of processing the same AR(2) process as in Figure 6.8 using the proposed

RVM implementation based on AR modelling. Again, we see the predicted target vector amplitude

based on the estimated model on the right and the amplitude of the weights composing the model on

the right. The proposed RVM implementation used 4 basis functions to predict the target vector

based on the measurement.
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Figure 6.10: The results of processing an AR(2) process using the original RVM implementation with

white noise assumption. Here the signal to clutter ratio (SCR) is reduced to -6dB. The targets are

located at 1.1 km, 2.4 km, 5.0 km and 5.6 km. The clutter process is generated using the same AR

coefficients as before, a21 = −0.95 and a22 = 0.4×
(√

3
2 −

1
2j
)
. We see the predicted target vector

amplitude based on the estimated model on the left. On the right, we see the amplitude of the weights

that compose the estimated model. The RVM used 15 basis functions to predict the target vector

based on the measurement.

3.5 km and around 7.0 km with similar amplitudes as the target at 5.0 km. The proposed method,

however, manages to create an estimated model without any of these false detections. The

predicted AR coefficients are

â21 = 0.381 + 0.596j

â22 = −0.408 + 0.001j
(6.7)

which are a fair approximation of the actual coefficients a2 =
[
0.336 + 0.672j −0.5

]
. Burg’s

method correctly estimates that the second AR coefficient is a purely real parameter, although

the magnitude is off somewhat. It is not a perfect reflection of the autoregressive clutter process,

but it enables the relevance vector framework to find enough quality in certain basis functions to

include only the correct targets in the estimation.

To see how well both methods fare under even worse SCR conditions, another simulation

was performed where the SCR was further reduced to -12 dB. The AR coefficients for the clutter

were defined as

a21 = 0.8×

(
−
√
3

2
+

1

2
j

)
= −0.693 + 0.4j

a22 = 0.3

(6.8)

These results are shown in Figures 6.12 and 6.13. From these figures, we see how the original

implementation is now unable to detect two of the targets, only providing an estimate for two of

the four targets. For the proposed method, we see this is able to uncover one additional target by

using the estimated clutter, leaving only one target as a missed detection. The AR coefficients

estimated by the proposed method are

â21 = −0.651 + 0.432j

â22 = 0.217− 0.001j
(6.9)

which is an accurate estimate of the known AR coefficients.
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Figure 6.11: The results of processing the same AR(2) process as in Figure 6.10 using the proposed

RVM implementation based on AR modelling. Again, we see the predicted target vector amplitude

based on the estimated model on the right and the amplitude of the weights composing the model on

the right. The proposed RVM implementation used 4 basis functions to predict the target vector

based on the measurement.
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Figure 6.12: The results of processing 4 targets buried in AR(2) clutter using the original RVM

implementation, where the signal-to-clutter (SCR) ratio is -12 dB. The targets are still located at 1.1

km, 2.4 km, 5.0 km and 5.6 km. The AR(2) clutter process was generated using the AR coefficients

a21 = 0.8×
(
−

√
3
2 + 1

2j
)
and a22 = 0.3. From the figures above, we see that the RVM used 2 basis

functions to predict the target vector based on the measurement, leading to two missed detections.
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Figure 6.13: The results of processing the same AR(2) process as in Figure 6.12 using the proposed

RVM implementation based on AR modelling. Again, we see the predicted target vector amplitude

based on the estimated model on the left and the amplitude of the weights composing the model on

the right. The proposed RVM implementation used 3 basis functions to predict the target vector

based on the measurement, leading to a missed detection of the lowest amplitude target.

Low SCR scenario with AR(3)

To complete the tests with higher-order autoregressive clutter processes, the same SCR of -12

dB as before is used in conjunction with a third-order autoregressive clutter. For this test, the

clutter parameters are taken as

a31 = −0.5×

(√
3

2
− 1

2
j

)
= −0.433 + 0.5j

a32 = −0.15
a33 = 0.05

(6.10)

with the same target distribution and amplitudes as in the previous low SCR AR(2) test. The

results of this test case are presented in Figures 6.14 and 6.15. Again, we managed to reduce the

number of false detections and return the actual targets embedded in the measurement vector.

For the autoregressive process, the following set of coefficients was estimated:

â31 = −0.451 + 0.499j

â32 = −0.127 + 0.014j

â33 = 0.042− 0.013j

(6.11)

This shows us that Burg’s method is able to provide a reasonable estimate of the autoregressive

parameters, at least up to an autoregressive model order of 3. By using this estimate, the

proposed framework is able to reduce the amount of false detections and/or recover targets that

are otherwise buried in the clutter.

6.3. One-dimensional direction-of-arrival scenario
As we already eluded to in Section 6.2, the previous examples have been fairly fictitious ones

to simplify the visualisation of certain aspects of the relevance vector machine framework in

general, as well as the consequences the proposed method can have on the estimation being

formed. However, we also want to show the framework’s applicability to a common surveillance

radar-related problem that actually incurs a clutter that can be modelled as an autoregressive

process.
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Figure 6.14: The results of processing 4 targets using the original RVM implementation, this time

buried in AR(3) clutter. The targets are located at 1.5 km, 2.1 km, 5.7 km and 6.3 km, with amplitudes

of 0.4, 1.0, 0.5 and 0.7, respectively. The signal-to-clutter ratio (SCR) is still -12 dB. The AR(3) clutter

process was generated using AR coefficients a31 = −0.5×
(√

3
2 −

1
2j
)
, a32 = −0.15 and a33 = 0.05.

From the figures above, we see that the RVM used 2 basis functions to predict the target vector

based on the measurement.
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Figure 6.15: The results of processing the same AR(3) process as in Figure 6.14 using the proposed

RVM implementation based on AR modelling. Again, we see the predicted target vector amplitude

based on the estimated model on the left and the amplitude of the weights composing the model on

the right. The proposed RVM implementation used 3 basis functions to predict the target vector

based on the measurement, leading to a missed detection of the lowest amplitude target.
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Figure 6.16: The results of the original implementation for DoA-estimation in a measurement vector

containing 4 targets embedded in AR(1) clutter. The measurement contains 4 targets at 4°, 18°,

-56°and -74°. The measurement is embedded in an AR(1) clutter process with AR coefficient

a11 = −0.95. From the figures above, we can see the original RVM implementation fails to properly

resolve one of the four angles present, so it chose a low-weight combination of four other angles

instead. In total, the model consists of 7 angles.

For this reason, we implement a multi-target direction-of-arrival (DoA) detection problem.

Instead of a measurement vector corresponding to different points in time, we will work with a

vector where every value corresponds to the received signal at every antenna element on a

uniform linear array (ULA) at a single point in time. We use the expected phase change vectors

described in Section 2.2 as our basis functions. The dictionary is then composed by generating

these basis functions for all angles in the range θl ∈ [−90°, 90°] with the grid points being spaced

by ∆θ = 2°.

For these tests, a random selection would be made of 4 angles available in the dictionary,

and a measurement would be generated by taking a constant definition of amplitude and phase

delay for four different targets with randomly assigned directions of arrival. This results in a vector

of target directions defined as

θt =


0.7exp

{
j 12π

}
exp {jk0}

0.6exp {j2π}exp {jk1}
0.1exp {j2π}exp {jk2}
1.0exp {j1π}exp {jk3}

 (6.12)

where ki, i = 0, . . . , 3 is determined using Equation 2.4 based on a random angle in the dictionary.

This target vector is then embedded in the first-order autoregressive clutter process vector, with

AR coefficient a11 = −0.95.

Figures 6.16 and 6.17 show the result for a measurement where the angles of the the targets

were generated to be φ =
[
72 26 −10 −16

]
, in degrees.

We can note that both implementations could provide an estimate of the directions of arrival

with varying accuracy. The original implementation based its estimation on 7 angles while missing

the actual targets that were located at 26 and -10 degrees, therefore having 5 false detections and

two missed detections. The proposed framework could estimate 3 angles, which corresponded

correctly to the different targets, but also had a missed detection for the target located at -10

degrees. The AR(1) coefficient estimated by Burg’s method was â11 = −0.927 + 0.015j, which is

a good estimate given the few samples that are available.



6.3. One-dimensional direction-of-arrival scenario 39

0 5 10 15 20 25 30
Sensor index

0.5

1.0

1.5

2.0

2.5

Am
pl

itu
de

measurement estimation

80 60 40 20 0 20 40 60 80
Angle of arrival (degrees)

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
t a

m
pl

itu
de

actual estimated

Figure 6.17: The results of the proposed method for the DoA-estimation shown in Figure 6.16. Here,

we see that the model contains three correctly predicted targets, but a missed detection for the target

located at 18°. In total, only three angles were included in the model.

In this first example, the proposed method did a fairly decent job of performing an estimate.

However, we did encounter that it was hardly ever the case in general. More commonly, the

proposed method would only predict a single target to be present in the data and then leave

the estimation untouched over the next iterations of the algorithm. An example of this is shown

in Figures 6.18 and 6.19. In this case, the angle vector used to create the measurement was

φ =
[
−18° −68° 44° 36°

]
. A different realisation of the same AR process as before was used,

so the AR(1) coefficient still was a11 = −0.95.

From the Figures 6.18 and 6.19, we see that both implementations fail to handle this specific

case well. However, the original implementation at least manages to create an estimation based

on the basis functions that resemble the measurement in terms of amplitude, albeit by using 13

vectors. The 13 basis functions comprise three perfect estimations for the targets -18°, 36°and

44°. The last target, at -68°, is missed. The remaining signal is then estimated using some angles

with very extreme weights, way exceeding the expected amplitude of 1.0.

On the other hand, the proposed method only estimated a single direction. After selecting this

angle and estimating the autoregressive parameter, the estimation would no longer be updated by

adding other angles for the entire iteration process. We can also see this effect in the estimated

autoregressive coefficient:

â11 = 0.353− 0.607j (6.13)

which is not even remotely close to the clutter process’s actual autoregressive coefficient. This

occurs very commonly, independently of the exact locations where the targets would be simulated.

The same problem also persists for the higher-order AR(2) and AR(3) clutters that were tested.

The problem at hand can be described by the autoregressive nature of the basis functions

we are processing in this scenario. Figure 6.20 shows the autocorrelation function of the basis

functions for three different angles for lags 0 through 5. From this, we can see that we can

commonly expect a fairly high autocorrelation value at low lags. This also implies that at least

an approximation of the basis function can be made by trying to model it as an autoregressive

process. Especially when we are supplied a summation of these basis functions alongside an

already present autoregressive process, this causes issues where the autoregressive parameters

are incorrectly estimated due to the influence of the targets in the measurement vector.

To mitigate this problem, we propose an extension to handle multiple measurement vectors.

The idea is that the amount of targets present is sparse, therefore there will be plenty of range

bins present with no target presence. Using this information as additional segments in the Burg’s
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Figure 6.18: DoA-estimation using the original implementation for another measurement vector

containing 4 targets embedded in AR(1) clutter, similar to the measurement in Figure 6.16. The

targets are located at -18°, -68°, 44°and 36°. The original implementation manages to estimate 3

angles correctly but also includes very strong false detections in an attempt to estimate the large

target.
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Figure 6.19: The same DoA-estimation as Figure 6.18 for a measurement vector containing 4 targets

embedded in AR(1) clutter, using the proposed method. We see how the proposed method

completely fails to resolve three out of four targets, classifying them as the AR clutter process instead.
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Figure 6.20: The values of the autocorrelation function for three different basis functions

corresponding to angles of 0°, 10°and 66°.

method for segments algorithm, we can provide a better estimate of the clutter, mitigating the

case where the target itself is classified as clutter.

6.4. Two-dimensional range-angle scenario
For the multiple measurement vector setup, we create a single measurement vector as per Section

6.3 above. We also generate 19 separate clutter realisations using the same AR parameters,

which holds for the assumption that the clutter is homogeneous over the range bins considered.

The complete measurement vector is made by stacking all these vectors into a single column

vector.

Beforehand we are unaware at which range we expect the targets to be present. Therefore,

to allow for all of these options, the dictionary used by RVM is expanded. We start off by taking

the additional dictionary, as also used in the single measurement case before, but extend each

basis function with zeros to match the now longer length of the measurement vector. To allow

for any arbitrary range bin to contain a measurement from a certain angle, we also replicate the

zero-padded dictionary as many times as we have measurement vectors, shifting the samples to

make the basis function correspond to a target in a different range bin. As a result, our dictionary

that used to be Φ ∈ CM×L, with M the number of antenna elements in the array and L the

number of angles being considered, now has become Φ ∈ C(MN)×(LN), where N is the number

of measurement vectors available.

This setup allows us to apply the RVM without any prior knowledge of the presence of a target

in any specific range bin, as the dictionary contains basis functions for all range bins. One change

needs to be made to the processing, however, in regards to how the clutter AR parameters are

being estimated. The original implementation supplied the entire measurement vector minus the

estimated model, t−Φµ̂ to Burg’s method, along with the additional segments from the C matrix.

In the current case, however, with the measurement vectors being stacked, our vector now spans

multiple shorter clutter process realisations. Within these separate range-bin-specific realisations,

the same clutter covariance matrix is valid. But this does not apply to the large stacked vector.

Therefore, to ensure the clutter AR parameters are estimated correctly, the vector is separated
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Figure 6.21: The estimation of targets by the original implementation. Four well-separated targets

are present in the range bin with index 2. The original implementation failed to resolve any of the

targets, yielding 5 false detections and 4 missed detections.

into separate vectors per range-bin before it is being processed by Burg’s method for multiple

segments, which now has N times as many segments to process.

The initial results of using this framework to process multiple range bins are shown in Figures

6.21 and 6.22. In this case, four targets are still contained within the measurement vector, similar

to the single vector cases in 6.3. Here, we have our targets present in the range bin with index 2,

with targets present at angles -74°, -46°, 34°and -14°, with amplitudes of 0.7, 0.6, 0.3 and 1.0,

respectively. The clutter process in which the targets are embedded, as well as the clutter-only

realisations for the other range bins, is an AR(1) process with AR coefficient a11 = −0.95.
In Figure 6.21 we see that the original implementation fails to find the targets in the second

range bin, and ends up estimating 5 targets in total distributed across the available range bins.

The proposed method ends up estimating even more targets, 11 in total, which is shown in Figure

6.22. However based on the additional knowledge of the clutter process, the proposed method

now is able to perfectly resolve the targets present in the second range bin. The weights have not

been estimated perfectly, for example the target at -14°should have been bright yellow, but their

presence and approximate values are estimated correctly. The proposed method does end up

with seven false detections in the other range bins however. This is most likely due to the same

similarity between the basis functions and the clutter, which leads to the RVM optimizing the error

between the actual clutter parameter and the estimated clutter parameter using the available

basis functions. Most notably, the 0°basis function can be used as a bias term, and other low

angle basis functions can be utilised to ’detrend’ the data, which is possibly why RVM ends up

adding these to the estimated model. However, the estimated AR coefficient for this case was

fairly accurate, being estimated at â11 = 0.951− 0.015j.

Using this method, however, the proposed method cannot perfectly reconstruct the target

vector every time. This is shown in Figures 6.23 and 6.24. Here, the targets are located at range

bin index 5, with the targets present at angles 60°, 52°, 6°and 88°. The amplitudes are distributed
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Figure 6.22: The estimation of targets by the proposed method. It perfectly reconstructs the four

targets in the second range bin. It, however, also estimates some false detections at other ranges,

resulting in an estimated model consisting of 11 targets.

in the same order as before: 0.7, 0.6, 0.3 and 1.0, respectively. The clutter process is still the same,

an AR(1) process with coefficient a11 = −0.95. Again, the original implementation fails to resolve

any of the targets correctly. In the proposed framework, we do get 4 targets being estimated

in the 5th range bin, however only the two at 52°and 60°actually were correct. The targets at

6°88°have been placed at angles close to their actual values. This is probably due to the error

that is made in the estimation of the AR coefficient, which is estimated at â11 = −0.900 + 0.008j.
As a result of this mismatch, it probably attempts to resolve some of the clutter alongside the

target and estimates a target at an angle near the actual angle.

Similar problems arise when there are targets very closely separated in angles. In Figures

6.25 and 6.26, there are 3 targets in the range bin index 2, located at angles of -16°, -18°and

-78°, with amplitudes of 0.7, 1.0 and 0.3, respectively. The clutter process remains the same

AR(1) process as for the previous multiple range-bin cases. Again, the original implementation

seems unable to locate the actual angles of arrival in the dataset. The proposed method correctly

manages to estimate the angle of the target at -78°. The two targets at -16°and -18°, however,

pose a problem, where the proposed method actually estimates targets on either side of the two

intended angles but not exactly on either one of them.

6.4.1. Range-angle with targets in multiple range bins
One nice feature of the framework is that it does not need any prior information regarding the

target presence in a certain range bin, nor needing any guard cells around a cell under test with

the assumption that the remainder of the ranges are free of targets. Therefore, in Figures 6.27

and 6.28, the results are shown of placing two targets at different ranges. We still use N = 20
range bins, resulting in 18 target-free clutter realisations alongside the measurements.

In this scenario, the two targets are present in the range bins 6 and 15. The target in range

bin 6 is located at an angle of -82°, with an amplitude of 1.0. The target in range bin 15 is located
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Figure 6.23: The estimation of the second multiple vector case using the original implementation.

Four targets are present in the 5th range bin. They are located at 60°, 52°, 6°and 88°. The clutter

present across all ranges was the same AR(1) process as in Figures 6.21 and 6.22. Again, the

original implementation could not resolve any of the actual targets.
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Figure 6.24: The estimation as performed by the proposed framework on the same setup as Figure

6.23. The proposed method manages to estimate four targets in the 5th range bin but is not precisely

accurate on the angle estimates for the targets at 6°and 88°. Besides the actual targets, 2 additional

false detections were estimated.
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Figure 6.25: The estimation result of the original implementation when faced with three targets

present in the 2nd range bin, at -16°, -18°and -78°. Again, the original implementation fails to resolve

any of the present targets correctly.
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Figure 6.26: The estimation by the proposed framework for the same scenario as in Figure 6.25. The

isolated target at -78°is resolved well, but the framework has troubles resolving the two targets in

adjacent angle cells correctly. The final estimation consists of three angles surrounding the two actual

values. Besides this, the proposed method also estimates another 5 targets in other range bins.
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Figure 6.27: The estimation by the original implementation when given two targets separated in two

different range bins. The targets are located in the 6th range bin, at -82°, and at the 15th range bin, at

30°. The targets have an amplitude of 1.0 and 0.7, respectively. The original implementation

manages to resolve the target in the 6th range bin correctly but misses the target located in the 15th

range bin. Additionally, 6 false detections were present in the estimation.

at an angle of 30°, with an amplitude of 0.7. Both implementations were able to correctly resolve

the single target present in the 6th range bin. The original RVM however did not manage to

correctly place the target at the 15th range bin, estimating a weaker target at a different angle

instead. The proposed method did manage to locate both targets perfectly. The estimation of

the AR coefficient resulted in an estimate of â11 = −0.874 + 0.012j, which led to 5 additional false

detections being present in the estimated result.

As the process is agnostic of the target’s position relative to each other but simply relies on

enough clutter-only range bins being present to allow for the AR parameter estimation, it is also

possible to perform processing on targets being present in subsequent range bins without any

additional difficulty. This scenario is shown in Figures 6.29 and 6.30. Now, the targets are all in

range bins 10 and 11. In the 10th range bin, three targets are present at angles 50°, 74 °and -62°,

with amplitudes of 0.7, 1.0 and 0.3, respectively. In the 11th range bin, two targets are present

at 46°and -62°. These have amplitudes of 0.7 and 0.6, respectively. The original framework is

able to resolve only one of these targets. The proposed method is able to accurately resolve all 5

targets, with an estimated AR coefficient of â11 = −0.916− 0.011j.
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Figure 6.28: The estimation as performed using the proposed implementation for the two separated

target case of Figure 6.27. The proposed method correctly estimates both targets in the two different

range bins. The estimate contains 5 additional false detections.
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Figure 6.29: The estimation performed by the original implementation for the case where there are 5

targets present in two adjacent range bins. The targets in the 10th range bin are located at 50°,

74°and -62°. The two targets in the 11th range bin are located at 46°and -62°. The original

implementation managed to correctly resolve the target at 74°but missed the remaining 4 targets. 6

additional false detections were included in the estimation.
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Figure 6.30: The estimation by the proposed framework for the adjacent range-bin scenario of Figure

6.29. The proposed method correctly resolved all 5 targets across the two different range bins.

Additionally, there are 7 false detections included, however, across the range bins that didn’t contain

any targets.



7
Conclusions

In conclusion, this work presents an enhanced RVM-based framework for multitarget detection in

cluttered environments, leveraging autoregressive parameter estimation to adapt effectively to

dynamic clutter. The proposed method accurately determines AR parameters within a low number

of iterations, enabling it to function efficiently as a joint process within the RVM framework. Through

this joint estimation of target presence and clutter covariance, the framework demonstrates

significant improvements in reducing false and missed detections compared to the traditional

model based on white noise assumption.

This framework presents a promising step forward for multitarget detection in variable and

cluttered environments, demonstrating potential applicability across various surveillance and

defence radar systems.

7.1. Conclusions
The conclusions of this thesis will be drawn by reiterating and answering the research questions

posed in Section 1.

How can a framework be developed to effectively perform joint multitarget detection

and clutter covariance estimation in a cluttered environment, which is stationary within a

single burst but can vary over time?

Research Question 1

By deriving the expectation-maximization update for a full covariance matrix in the RVM

framework and applying Burg’s method to perform this maximization, a joint framework is created

that iteratively updates the estimated targets present in the data along with the clutter covariance

matrix that is estimated from the residual. This enables the framework to assess the character-

istics of the clutter experienced within that specific measurement and utilize this to explain the

experienced noise better when performing an update of the estimated targets in the next iteration.

By leveraging Burg’s method, which is guaranteed to provide a stable autoregressive model and

a good approximation of the autoregressive parameters, efficient joint processing is created. This

results in a joint processing framework that generally only needs roughly as many iterations as

the amount of included targets in the estimation.
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Can incorporating clutter covariance estimation in the detection model reduce false and

missed detections?

Research Question 2

The proposed framework is able to improve the amount of missed detections as well as false

detections in multiple situations. As demonstrated through multiple simulated scenarios, the

original model of Tipping using a white noise assumption fails to correctly resolve the correct

targets from the measurement, leading to many missed detections and false detections, depending

on the exact scenario. Although still not always perfect, the proposed method showed a significant

improvement in the number of faults that were made in estimating the model, lowering the amount

of missed detections in scenarios with very bad signal-to-clutter ratio and improving the number of

false detections when the signal to clutter ratio was more favourable. The improvement that could

be achieved also differed per different autoregressive clutter models and, therefore, deserves to

be investigated further to express this into quantifiable results.

How can this framework be applied across various scenarios, including both one-

dimensional (range or angle) and two-dimensional (range-angle) cases?

Research Question 3

As the proposed method leverages the RVM framework for estimation, it can be directly

applied to diverse scenarios depending on the model definition. In this thesis, we’ve shown its

applicability to a more fictitious range-only example and a realistic range-angle scenario. As

also mentioned in Chapter 2, an update can be made to the phase delay expression to allow

Doppler shifts to be estimated, making the framework also directly applicable to range-Doppler

processing.

In this work, however, we also saw how the similarity of the provided basis functions and

the autoregressive process can pose problems in the angle-only scenario. This can cause the

intended framework to attempt to estimate autoregressive parameters based on the received

signals with additional clutter, causing faulty estimations. However, we’ve also shown how these

situations can be mitigated by supplying multiple measurement vectors with the same clutter

process. Without the need for any knowledge of which vectors contain actual targets and which

are pure clutter, the proposed method is able to perform a decent approximation in both estimated

targets as well as autoregressive parameters. This allows for great flexibility in scenarios where

it is known that only a few measurements will contain targets, but no knowledge beforehand is

present as to which measurements will remain target-free.

7.2. Future work
Based on the work performed in this thesis, some future work can also be noted. First and

foremost, additional investigation can be done to quantify the gain of the proposed method and

the criteria for when this gain can be experienced. The initial results shown in this thesis showed

very promising results but also showed big differences in how much better the proposed method

performs compared to the original implementation, depending on AR parameters and the definition

of the basis functions. Extensive simulations, possibly using Monte Carlo simulation, could provide

insight into both the quantifiable gain the proposed method can yield and the bounds on the AR

process regarding model order or parameter values for where to expect these gains.

Another topic that was shown to be relevant in the simulation was the assumed model order

used in Burg’s method to perform the expectation maximization. As an incorrect assumption
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of the model order can lead to missed results, the framework would benefit from having some

form of order selection implemented to ensure it can perform the maximization properly without

needing to know this model order beforehand.

Another suggestion for future work is to incorporate a proper detector into the framework to

reduce false detections further. Especially in the range-angle simulations, it became apparent that

while the proposed framework was very good at resolving the targets in the different range bins,

it would also come up with additional targets to minimize the error between the measurement

and the estimated autoregressive clutter process. While improving the accuracy of the clutter

parameter estimate will probably also aid in reducing this error, implementing a detector, for

example, based on a likelihood ratio test, could also prove valuable in assigning if the estimated

targets are likely or not.
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Figure A.1: The results of using a relevance vector machine (RVM) with a white noise assumption for

a scenario with four targets located at 1000, 2500, 5000, and 6000 meters (range bins 10, 25, 50, and

60, respectively). The left image shows the predicted target vector amplitude based on the estimated

weights for the basis functions in the dictionary. The right image displays the amplitude of the weights

with which each of the 18 basis functions is included in the prediction. Additionally, a clutter

autoregressive (AR) process of order 1 with coefficient a11 = −0.95×
(

1
2
√
2
+ 1√

2
j
)
is added to the

measurement. The RVM used these 18 basis functions to predict the measurement vector.
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Figure A.2: The results of using a relevance vector machine (RVM) with a white noise assumption for

a scenario with four targets located at 1000, 2500, 5000, and 6000 meters (range bins 10, 25, 50, and

60, respectively). The left image shows the predicted target vector amplitude based on the estimated

weights for the basis functions in the dictionary. The right image displays the amplitude of the weights

with which each of the 18 basis functions is included in the prediction. Additionally, a clutter

autoregressive (AR) process of order 1 with coefficient a11 = −0.95×
(

1
2
√
2
+ 1√

2
j
)
is added to the

measurement. The RVM used these 18 basis functions to predict the measurement vector.
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