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In this paper, we give necessary and sufficient conditions for a cylindrical continuous local
martingale to be the stochastic integral with respect to a cylindrical Brownian motion. In
particular, we consider the class of cylindrical martingales with closed operator-generated
covariations. We also prove that for every cylindrical continuous local martingale M there
exists a time change τ such that M ◦ τ is Brownian representable.
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1. Introduction

In the fundamental work,7 Doob showed that a real-valued continuous local mar-
tingale can be represented as a stochastic integral with respect to a real-valued
Brownian motion if and only if this local martingale has an absolutely continuous
quadratic variation. Starting from this point, for a Banach space X the follow-
ing problem appears: find necessary and sufficient conditions for an X-valued local
martingale M in order that there exist a (cylindrical) Brownian motion W and
a stochastically integrable function g such that M =

∫ ·
0 g dW (we then call M

Brownian representable.) For some special instances of Banach spaces X , Brownian
representation results are well known. The finite-dimensional version was derived in
Refs. 14 and 29 and a generalization to the Hilbert space case was obtained using
different techniques in Refs. 4, 18 and 23. But for a general Banach space X some
problems arise. For instance, one cannot define a quadratic variation of a Banach
space-valued continuous martingale in a proper way (we refer the reader to Ref. 6,
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where a notion of quadratic variation is defined which, however, is not well-defined
for some particular martingales) and therefore it seems difficult to find appropriate
necessary conditions for an arbitrary martingale to be Brownian representable.
Nevertheless, quite general sufficient conditions (which are also necessary when the
Banach space is a Hilbert space) were obtained by Dettweiler in Ref. 5.

In order to generalize the above-mentioned results one can work with so-called
cylindrical continuous local martingales (see Refs. 12, 21, 22, 19, 28 and 33), defined
for an arbitrary Banach space X as continuous linear mappings from X∗ to a linear
space of continuous local martingales Mloc equipped with the ucp topology. Using
this approach together with functional calculus arguments, Ondreját21,22 has shown
that if X is a reflexive Banach space, then a cylindrical continuous local martingale
M is Brownian representable under appropriate conditions. More precisely, he shows
that M is Brownian representable if there exist a Hilbert space H and a scalarly
progressively measurable process g with values L(H,X) such that∫ t

0

‖g‖2 ds <∞ a.s. ∀ t > 0, [Mx∗]t =
∫ t

0

‖g∗x∗‖2 ds a.s. ∀ t > 0. (1.1)

The definition of a quadratic variation of a cylindrical continuous local martingale
given in Ref. 33 was inspired by this result.

In this work, we show that if [Mx∗] is absolutely continuous for each x∗ ∈ X∗,
then there exist a Hilbert space H , an H-cylindrical Brownian motion WH defined
on an enlarged probability space with an enlarged filtration, and a progressively
scalarly measurable process G with values in space of (possibly unbounded) linear
operators from X∗ to H such that Mx∗ =

∫ ·
0
Gx∗ dWH for all x∗ ∈ X∗. Moreover,

necessary and sufficient conditions for a so-called weak Brownian representation of
an arbitrary X-valued continuous local martingale are established.

It is well known (see Ref. 13) that each R-, Rd-, or H-valued continuous local
martingale M admits a time change τ such that M ◦ τ is Brownian representable.
This assertion is tied up to the fact that [M ◦ τ ] = [M ] ◦ τ , which makes the
choice of τ evident. The same can be easily shown for a cylindrical continuous local
martingale with a quadratic variation (see Ref. 33). Here we prove that such a time
change exists for arbitrary cylindrical continuous local martingales.

To conclude this introduction we would like to point out the techniques devel-
oped by Ondreját in Refs. 21 and 22, in particular results developing a bounded
Borel calculus for bounded operator-valued functions. Quite a reasonable part of
this paper is dedicated to applying and extending these techniques to a closed
operator-valued g. Of course statements as (1.1) do not make sense then, but thanks
to closability of g it is still possible to prove some results on stochastic integrability
for such g.

2. Preliminaries

We denote [0,∞) by R+.
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The Lebesgue–Stieltjes measure of a function F : R+ → R of bounded variation
is the finite Borel measure µF on R+ defined by µF ([a, b)) = F (b) − F (a) for
0 ≤ a < b <∞.

Let (S,Σ) be a measurable space and let (Ω,F ,P) be a probability space. A
mapping ν : Σ × Ω → [0,∞] will be called a random measure if for all A ∈ Σ,
ω �→ ν(A,ω) is measurable and for almost all ω ∈ Ω, ν(·, ω) is a measure on (S,Σ)
and (S,Σ, ν(·, ω)) is separable (i.e. the corresponding L2-space is separable).

Random measures arise naturally when working with continuous local martin-
gales. Indeed, for almost all ω ∈ Ω, the quadratic variation process [M ](·, ω) of a
continuous local martingale M is continuous and increasing (see Refs. 13, 19 and
24), so we can associate µ[M ](·, ω) with it.

Let (S,Σ, µ) be a measure space. Let X and Y be Banach spaces. An operator-
valued function f : S → L(X,Y ) is called scalarly measurable if for all x ∈ X and
y∗ ∈ Y ∗ the function s �→ 〈y∗, f(s)x〉 is measurable. If Y is separable, by the Pettis
measurability theorem this is equivalent to the strong measurability of s �→ f(s)x
for each x ∈ X (see Ref. 10).

Often we will use the notation A �Q B to indicate that there exists a constant
C which only depends on the parameter(s) Q such that A ≤ CB.

3. Results

3.1. Cylindrical martingales and stochastic integration

In this section, we assume that X is a separable Banach space with a dual space
X∗. Let (Ω,F ,P) be a complete probability space with filtration F := (Ft)t∈R+ that
satisfies the usual conditions, and let F := σ(

⋃
t≥0 Ft). We denote the predictable

σ-algebra by P .
A scalar-valued process M is called a continuous local martingale if there exists

a sequence of stopping times (τn)n≥1 such that τn ↑ ∞ almost surely as n → ∞
and 1τn>0M

τn is a continuous martingale.
Let Mloc be the class of all continuous local martingales. On Mloc define the

translation invariant metric given by

‖M‖Mloc =
∞∑

n=1

2−nE

[
1 ∧ sup

t∈[0,n]

|M |t
]
.

One can easily check that the topology generated by this metric coincides with
the ucp topology (uniform convergence on compact sets in probability). Moreover,
Mn → 0 in Mloc if and only if for every T ≥ 0, [Mn]T → 0 in probability (see
Proposition 17.6 of Ref. 13).

Let X be a separable Banach space, Mloc(X) be the space of X-valued contin-
uous local martingales. Mloc(X) is complete under the ucp topology generated by
the following metric:

‖M‖Mloc(X) =
∞∑

n=1

2−nE

[
1 ∧ sup

t∈[0,n]

‖M‖t

]
.
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The completeness can be proven in the same way as in Part 3.1 of Ref. 33.
IfH is a Hilbert space andM ∈ Mloc(H), then we define the quadratic variation

[M ] as a compensator of ‖M‖2, and one can show that a.s.

[M ] =
∞∑

n=1

[〈M,hn〉],

where (hn)∞n=1 is any orthonormal basis ofH . For more details we refer to Chap. 14.3
of Ref. 19.

Remark 3.1. One can show that convergence in the ucp topology on Mloc(H) is
equivalent to convergence of quadratic variation in the ucp topology. This fact can
be shown analogously to the scalar case, see Proposition 17.6 of Ref. 13.

Let X be a Banach space. A continuous linear mapping M : X∗ → Mloc

is called a cylindrical continuous local martingale. We will write M ∈ Mloc
cyl(X).

Details on cylindrical martingales can be found in Refs. 12 and 33. For a cylindrical
continuous local martingale M and a stopping time τ we define M τ : X∗ → Mloc

by M τx∗(t) = Mx∗(t ∧ τ). In this way M τ ∈ Mloc
cyl(X) again.

Let Y be a Banach space such that there exists a continuous embedding j :
Y ∗ ↪→ X∗ (e.g., X is densely embedded in Y ). Then define M |Y : Y ∗ → Mloc by
y∗ �→M(jy∗). Obviously M |Y ∈ Mloc

cyl(Y ).

Example 3.2. (Cylindrical Brownian motion) Let X be a Banach space and
Q ∈ L(X∗, X) be a positive self-adjoint operator, i.e. ∀x∗, y∗ ∈ X∗ it holds that
〈x∗, Qy∗〉 = 〈y∗, Qx∗〉 and 〈Qx∗, x∗〉 ≥ 0. Let WQ : R+ × X∗ → L0(Ω) be a
cylindrical Q-Brownian motion (see Chap. 4.1 of Ref. 4), i.e.

• WQ(·)x∗ is a Brownian motion for all x∗ ∈ X ,
• EWQ(t)x∗WQ(s)y∗ = 〈Qx∗, y∗〉min{t, s}, ∀x∗, y∗ ∈ X∗, t, s ≥ 0.

The operator Q is called the covariance operator of WQ. (See more in Chap. 1 of
Ref. 20 or Chap. 4.1 of Ref. 4 for a Hilbert space-valued case and Chap. 5 of Ref. 32
or of Ref. 25 for the general case). Then WQ ∈ Mloc

cyl(X).
If X is a Hilbert space and Q = I is the identity operator, we call WX := W I

an X-cylindrical Brownian motion.

Let X,Y be Banach spaces, x∗ ∈ X∗, y ∈ Y . We denote by x∗ ⊗ y ∈ L(X,Y ) a
rank-one operator that maps x ∈ X to 〈x, x∗〉y.

Remark 3.3. Notice that the adjoint of a rank-one operator is again a rank-one
operator and (x∗ ⊗ y)∗ = y ⊗ x∗ : Y ∗ → X∗. Also for any Banach space Z and
bounded operator A : Y → Z we have that A(x∗ ⊗ y) = x∗ ⊗ (Ay).

1850013-4
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The process f : R+×Ω → L(X,Y ) is called elementary progressive with respect
to the filtration F = (Ft)t∈R+ if it is of the form

f(t, ω) =
N∑

n=1

M∑
m=1

1(tn−1,tn]×Bmn
(t, ω)

K∑
k=1

x∗k ⊗ ykmn,

where 0 ≤ t0 < · · · < tn < ∞, for each n = 1, . . . , N , B1n, . . . , BMn ∈ Ftn−1 ,
(x∗k)K

k=1 ⊂ X∗ and (ykmn)K,M,N
k,m,n=1 ⊂ Y . For each elementary progressive f we

define the stochastic integral with respect to M ∈ Mloc
cyl(X) as an element of

L0(Ω;Cb(R+;Y )):∫ t

0

f(s) dM(s) =
N∑

n=1

M∑
m=1

1Bmn

K∑
k=1

(M(tn ∧ t)x∗k −M(tn−1 ∧ t)x∗k)ykmn. (3.1)

Often we will write f ·M for the process
∫ ·
0
f(s)dM(s).

Remark 3.4. Notice that the integral (3.1) defines the same stochastic process
for a different form of finite-rank operator

∑K
k=1 x

∗
k ⊗ ykmn. Indeed, let (Amn)mn

be a set of operators from X to Y such that (Amn)mn = (
∑K

k=1 x
∗
k ⊗ ykmn)mn.

Then f ·M takes its values in a finite-dimensional subspace of Y depending only on
(Amn)mn. Let Y0 = span(ran(Amn))mn. For each fixed y∗0 ∈ Y ∗

0 , m and n one can
define �mn ∈ X∗, x �→ 〈y∗0 , Amnx〉. In particular, �mn(x) =

∑K
k=1〈x∗k〈y∗0 , ykmn〉, x〉.

Then because of linearity of M〈
y∗0 ,
∫ t

0

f(s) dM(s)
〉

=
N∑

n=1

M∑
m=1

1Bmn

K∑
k=1

(M(tn ∧ t)x∗k −M(tn−1 ∧ t)x∗k)〈y∗0 , ykmn〉

=
N∑

n=1

M∑
m=1

1Bmn(M(tn ∧ t) −M(tn−1 ∧ t))

×
(

K∑
k=1

x∗k〈y∗0 , ykmn〉
)

=
N∑

n=1

M∑
m=1

1Bmn(M(tn ∧ t) −M(tn−1 ∧ t))�mn,

where the last expression does not depend on the form of (Amn)mn. Then since Y0

is finite-dimensional, the entire integral does not depend on the form of (Amn)mn.

We say that M ∈ Mloc
cyl(X) is Brownian representable if there exist a Hilbert

space H , an H-cylindrical Wiener process WH on an enlarged probability space
(Ω,F,P) and g : R+ × Ω × X∗ → H such that g(x∗) is F-scalarly progressively
measurable and a.s.

Mx∗ =
∫ ·

0

g∗(x∗)dWH , x∗ ∈ X∗. (3.2)

We call that M ∈ Mloc
cyl(X) is with an absolutely continuous covariation (or

M ∈ Mcyl
a.c.c.(X)) if for each x∗, y∗ ∈ X∗ the covariation [Mx∗,My∗] is absolutely

1850013-5
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continuous a.s. Note that by Proposition 17.9 of Ref. 13 this is equivalent to [Mx∗]
having an absolutely continuous version for all x∗ ∈ X∗.

3.2. Closed operator representation

In view of the results of Theorem 2 of Ref. 21, the natural problem presents itself
to extend this theorem to the case of an unbounded operator-valued function g.
Such a generalization will be proven in the present subsection.

For Banach spaces X,Y define Lcl(X,Y ) as a set of all closed densely defined
operators from X to Y , Lcl(X) := Lcl(X,X).

LetM ∈ Mloc
cyl(X) be Brownian representable. We say thatM is closed operator-

Brownian representable (or simply M ∈ Mcyl
cl (X)) if there exists G : R+ × Ω →

Lcl(H,X) such that for each fixed x∗ ∈ X∗, G∗x∗ is defined (P × ds)-a.s. and it is
a version of corresponding g∗(x∗) from (3.2).

Definition 3.5. Let X be a Banach space with separable dual, M ∈ Mloc
cyl(X).

Then M has a closed operator-generated covariation if there exist a separable
Hilbert space H and a closed operator-valued function G : R+ ×Ω → Lcl(H,X)
such that for all x∗ ∈ X∗, G∗x∗ is defined (P × ds)-a.s. and progressively measur-
able, and for all x∗, y∗ ∈ X∗ a.s.

[Mx∗,My∗]t =
∫ t

0

〈G∗x∗, G∗y∗〉ds, t ≥ 0. (3.3)

Notice that the last assumption is equivalent to the fact that [Mx∗] =∫ ·
0
‖G∗x∗‖2 ds a.s. for all x∗ ∈ X∗.

Proposition 3.6. Let H be a separable Hilbert space, M ∈ Mloc
cyl(H) has a closed

operator-generated covariation. Let G : R+ × Ω → Lcl(H) be the corresponding
covariation family. Then for each scalarly progressively measurable f : R+×Ω → H

such that G∗f is defined (P × ds)-a.e. and ‖G∗f‖ ∈ L2
loc(R+) a.s. one can define

the stochastic integral
∫ ·
0
fdM, and a.s.[∫ ·

0

fdM
]

T

=
∫ T

0

〈G∗(s)f(s), G∗(s)f(s)〉ds, T > 0. (3.4)

Proof. Applying the stopping time argument one can restrict the proof to the case
E[
∫∞
0 〈G∗f,G∗f〉ds] <∞. First of all it is easy to construct the stochastic integral

if ran(f) ⊂ H0, where H0 is a fixed finite-dimensional subspace of H , since in this
case by redefining G∗ one can assume that G∗h is well-defined for all h ∈ H0, so
we just work with a finite-dimensional martingale for which (3.4) obviously holds
according to the isometry Chap. 14.6 of Ref. 19.

The general case can be constructed in the following way. Let (hi)i≥1 be an
orthonormal basis of H . For each k ≥ 1 set Hk = span(h1, . . . , hk). Then by
Lemma A.5 one can construct scalarly progressively measurable P̃k : R+ × Ω →
L(H), which is an orthogonal projection onto G∗(Hk), and a scalarly progressively

1850013-6
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Brownian representations

measurable Lk : R+ ×Ω → L(H,Hk) such that G∗Lk = P̃k. Let fk = LkG
∗f . Then

from (3.4) for fk, the fact that ‖G∗fk‖ = ‖P̃kG
∗f‖ ↗ ‖G∗f‖ and ‖G∗fk−G∗f‖ → 0

(P× ds) a.s., dominated convergence theorem, Proposition 17.6 of Ref. 13 and the
fact that ran fk ⊂ Hk one can construct stochastic integral

∫ ·
0 fdM and (3.4) holds

true.

Remark 3.7. Using the previous theorem one can slightly extend Remark 31 of
Ref. 21 in the following way: let Ψ : R+ × Ω → L(H) be progressively scalarly
measurable such that G∗Ψ∗ ∈ L(H) a.s. for all t ≥ 0 and ‖G∗Ψ∗‖ ∈ L2

loc(R+) a.s.
Then one can define N ∈ Mloc

cyl(H) as follows:

Nh =
∫ ·

0

Ψ∗h dM.

Moreover, then for each progressively measurable φ : R+ × Ω → H such that
‖G∗Ψ∗φ‖ ∈ L2

loc(R+) a.s. one has that∫ ·

0

φdN =
∫ ·

0

Ψ∗φdM. (3.5)

Theorem 3.8. Let X be a separable reflexive Banach space, M ∈ Mloc
cyl(X). Then

M is closed operator-Brownian representable if and only if it has a closed operator-
generated covariation.

Let n ≥ 1, X1, . . . , Xn be Banach spaces, Ak ∈ Lcl(Xk, Xk+1) for 1 ≤ k ≤ n−1.
Then we say that An−1 . . . A1 is well-defined if ran(Ak−1 . . . A1) ∈ dom(Ak) for each
2 ≤ k ≤ n− 1.

Proof. Suppose that M is closed operator-Brownian representable. Let a separa-
ble Hilbert space H , an H-cylindrical Brownian motion WH and G : R+ × Ω →
Lcl(H,X) be such that a.s. Mx∗ =

∫ ·
0
G∗x∗dWH for each x∗ ∈ X∗. Then according

to Theorem 4.27 of Ref. 4 a.s.

[Mx∗,My∗] =
∫ ·

0

〈G∗x∗, G∗y∗〉ds, x∗, y∗ ∈ X∗.

To prove the other direction assume that there exist such a separable Hilbert
space H and G : R+ × Ω → Lcl(H,X) that (3.3) holds. The proof that M is
Brownian representable will be almost the same as the proof of Theorem 2 of
Ref. 21, but one has to use Lemma A.1 instead of Proposition 32 of Ref. 21 and
apply Proposition 3.6 of Ref. 22 for general Banach spaces.

Suppose first that X is a Hilbert space (one then can identify H , X and X∗).
Let WX be an independent of M X-cylindrical Wiener process on an enlarged
probability space (Ω,F,P) with the enlarged filtration F = (F t)t≥0. Let (0,∞) =⋃∞

n=1Bn be a decomposition into disjoint Borel sets such that dist(Bn, {0}) > 0
for each n ≥ 1. Define functions ψn(t) = t−11Bn , t ∈ R, n ≥ 1, and ψ0 = 1{0}.
Let us also denote Cn = 1Bn , n ≥ 1, and C0 = ψ0. By Lemma A.1 for each n ≥ 1
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ψn(G∗G) and Cn(G∗G) are L(X)-valued strongly progressively measurable, and
since

‖G∗Gψn(G∗G)‖L(X) = ‖Cn(G∗G)‖L(X) ≤ ‖1Bn‖L∞(R) = 1, n ≥ 1,

‖ψ0(G∗G)‖L(X) ≤ ‖1{0}‖L∞(R) = 1,

then ran(ψn(G∗G)) ⊂ dom(G∗G) ⊂ dom(G) (see p. 347 of Ref. 26), so Gψn(G∗G)
is well-defined, and according to Problem III.5.22 of Ref. 15 Gψn(G∗G) ∈ L(X) P×
ds-a.s., therefore for each x∗ ∈ X∗ by Proposition 3.6 Gψn(G∗G)x∗ is stochastically
integrable with respect to M and one can define

Wn(x∗) =
∫ ·

0

Gψn(G∗G)x∗ dM, n ≥ 1, W0 =
∫ ·

0

ψ0(G∗G)x∗ dWX .

Then by (3.4) [Wn(x∗),Wm(y∗)] = 0 for each x∗, y∗ ∈ X∗ and 0 ≤ n < m and
[Wn(x∗)] =

∫ ·
0 ‖Cn(G∗(s)G(s))x∗‖2 ds, so for each t ≥ 0

∞∑
n=0

[Wn(x∗)]t =
∞∑

n=0

∫ t

0

‖Cn(G∗G)x∗‖2 ds =
∞∑

n=0

∫ t

0

〈Cn(G∗G)x∗, x∗〉ds

=
∫ t

0

〈x∗, x∗〉ds = t‖x∗‖2.

Let us define W (x∗) =
∑∞

n=0Wn(x∗). Thanks to Proposition 28 of Ref. 21 this
sum converges in C([0,∞)) in probability. It is obvious that W : X∗ → Mloc,
x∗ �→ W (x∗) is an H-cylindrical Brownian motion. Moreover, for each h ∈ X∗

one has that by the definition of G∗ the H-valued function G∗h is stochastically
integrable with respect to WH , and [G∗h ·W ] = [Mh] =

∫ ·
0
G∗(s)h ds a.s. So, to

prove thatMh and G∗h·W are indistinguishable it is enough to show that a.s. [G∗h·
W,Mh] =

∫ ·
0
G∗(s)h ds. By Remark 3.7 and the fact that a.s. ‖G∗Gψn(G∗G)‖ ≤

1R+ ∈ L2
loc(R+) one can apply (3.5) so for each n ≥ 1[∫ ·

0

G∗h dWn,Mh

]
=
[∫ ·

0

Gψn(G∗G)G∗h dM,

∫ ·

0

h dM
]

=
∫ ·

0

〈G∗Gψn(G∗G)G∗h,G∗h〉ds.

On the other hand W̃ and M are independent so [G∗h ·W0,Mh] = 0. To sum up
one has that a.s.

[G∗h ·W,Mh] =
∞∑

n=1

∫ ·

0

〈Cn(G∗G)G∗h,G∗h〉 =
∫ ·

0

‖G∗h‖2 ds,

which finishes the proof for a Hilbert space case.
Now consider a general reflexive Banach space X . Let a separable Hilbert space

H , j : X → H be defined as in p. 154 of Ref. 17. Let WH be constructed as above
but for M |H . Fix x∗ ∈ X∗ and find (hn)n≥1,⊂ H such that limn→∞ j∗hn = x∗ and
[M(j∗hn)−M(x∗)]T vanishes almost everywhere for each T > 0. By the definition
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of G one has
∫ T

0
‖G∗(j∗hn − x∗)‖2 ds → 0 in probability for all T > 0, so since

M(j∗hn) → M(x∗) uniformly on all compacts in probability and by Theorem 4.27
of Ref. 4, Proposition 17.6 of Ref. 13 and Proposition 3.6 M(x∗) and G∗x∗ ·WH

are indistinguishable.

Thanks to this representation theorem we obtain the following stochastic inte-
grability result.

Theorem 3.9. Let X be a reflexive separable Banach space, M ∈ Mloc
cyl(X) be

closed operator-Brownian representable, G : R+ × Ω → Lcl(H,X) be the corre-
sponding operator family. Let f : R+ × Ω → X∗. Suppose there exist elementary
progressive fn : R+ × Ω → X∗, n ≥ 1, such that fn → f(P × ds)-a.s. Assume also
that there exists a limit N := limn→∞ fn ·M in the ucp topology. Then f ∈ ran(G∗)
(P × ds)-a.s., G∗f is progressively measurable and

[N ] =
∫ ·

0

‖G∗f‖2 ds. (3.6)

We then call f stochastically integrable and define

f ·M =
∫ ·

0

f dM := lim
n→∞ fn ·M,

where the limit is taken in the ucp topology.

Proof. Formula (3.6) is obvious for elementary progressive f by (3.4). Since [fn ·M ]
is absolutely continuous and fn ·M tends to N in ucp, by Lemma B.1 and the fact
that [N ] is a.s. continuous one can prove that [N ] is absolutely continuous, hence
by Lemma 3.10 of Ref. 33 its derivative in time v : R+ × Ω → R is progressively
measurable. Let a Hilbert space H and an H-cylindrical Brownian motion WH be
constructed for M by Theorem 3.8. Assume that (hn)n≥1 ⊂ H is a dense subset of
a unite ball in H . Then [N,WHhn] is a.s. absolutely continuous, and has a progres-
sively measurable derivative vn for each n ≥ 1. Moreover, since by Proposition 17.9
of Ref. 13 |µ[N,WHhn]|(I) ≤ µ

1/2
[N ](I)µ

1/2
[WHhn](I) for each interval I ⊂ R+ and thanks

to Theorem 5.8.8 of Ref. 2 one has that vn ≤ v1/2‖hn‖ (P × ds)-a.s. Then thanks
to linearity, boundedness and denseness of span(hn)n≥1 in H , we obtain that there
exists a progressively measurable process V : R+ × Ω → H such that vn = 〈V, hn〉
(P× ds)-a.s. Let Ñ = V ·WH . Then [N,Φ·WH ] = [Ñ ,Φ·WH ] for each stochastically
integrable Φ : R+×Ω → H , hence [N, Ñ ] = [Ñ ] and [N, fn·M ] = [Ñ, fn ·M ] for each
natural n. Without loss of generality one can suppose that limn→∞[N−fn ·M ]T = 0
a.s. for each T > 0, therefore a.s.

lim
n→∞

∫ T

0

‖G∗fn − V ‖2 ds = lim
n→∞[Ñ − fn ·M ]T

= lim
n→∞([Ñ ]T − [Ñ , fn ·M ]T )+ ([fn ·M ]T − [N, fn ·M ]T )

= ([Ñ ]T − [Ñ,N ]T ) + ([N ]T − [N ]T ) = 0,

1850013-9
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so, Ñ is a version of N . Also by choosing a subsequence one has that G∗fnk
→ V

as k → ∞, which means that f ∈ dom(G∗) (P × ds)-a.s. and (3.6) holds.

Remark 3.10. It follows from Theorem 3.9 and Proposition 17.6 of Ref. 13 that
for any finite-dimensional subspace Y0 ⊂ Y the definition of the stochastic integral
can be extended to all strongly progressively measurable processes Φ : R+ × Ω →
L(X,Y0) that satisfy (G∗Φ∗)∗ ∈ L2(R+;L(H,Y0)) a.s. (or equivalently (G∗Φ∗)∗ is
scalarly in L2(R+;H) a.s.). Moreover, then Φ ·M = (G∗Φ∗)∗ ·WH .

We proceed with a result which is closely related to [31, Theorem 3.6]. In order
to state it we need the following terminology.

A Banach space X is called a UMD Banach space if for some (or equivalently,
for all) p ∈ (1,∞) there exists a constant β > 0 such that for every n ≥ 1,
every martingale difference sequence (dj)n

j=1 in Lp(Ω;X), and every {−1, 1}-valued
sequence (εj)n

j=1 we haveE

∥∥∥∥∥∥
n∑

j=1

εjdj

∥∥∥∥∥∥
p

1
p

≤ β

E

∥∥∥∥∥∥
n∑

j=1

dj

∥∥∥∥∥∥
p

1
p

.

The infimum over all admissible constants β is denoted by βp,X .
There is a large body of results asserting that the class of UMD Banach spaces is

a natural one when pursuing vector-valued generalizations of scalar-valued results
in harmonic and stochastic analysis. UMD spaces enjoy many pleasant properties,
among them being reflexive. We refer the reader to Refs. 3, 10 and 27 for details.

Let (γ′n)n≥1 be a sequence of independent standard Gaussian random variables
on a probability space (Ω′,F ′,P′) and let H be a Hilbert space. A bounded operator
R ∈ L(H,X) is said to be γ-radonifying if for some (or equivalently for each)
orthonormal basis (hn)n≥1 of H the Gaussian series

∑
n≥1 γ

′
nRhn converges in

L2(Ω′;X). We then define

‖R‖γ(H,X) :=

E′

∥∥∥∥∥∥
∑
n≥1

γ′nRhn

∥∥∥∥∥∥
2


1
2

.

This number does not depend on the sequence (γ′n)n≥1 and the basis (hn)n≥1, and
defines a norm on the space γ(H,X) of all γ-radonifying operators from H into
X . Endowed with this norm, γ(H,X) is a Banach space, which is separable if X is
separable. For a Hilbert space X , the space γ(H,X) is isometrically isomorphic to
the space of all Hilbert–Schmidt operators from H to X . If (S,A, µ) is a measure
space and X = Lp(S), then γ(H,Lp(S)) = Lp(S;H) up to equivalence of norms.

For all R ∈ γ(H,X) it holds that ‖R‖ ≤ ‖R‖γ(H,X). Let H be another
Hilbert space and let Y be another Banach space. Then the so-called ideal prop-
erty (see Ref. 11) holds true: for all S ∈ L(H,H) and all T ∈ L(X,Y ) we have

1850013-10
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TRS ∈ γ(H,Y ) and

‖TRS‖γ(H,Y ) ≤ ‖T ‖‖R‖γ(H,X)‖S‖. (3.7)

Let X,Y be Banach spaces, and let A ∈ Lcl(X,Y ). A linear subspace X0 ⊂
dom(A) is a core of A if the closure of an operator A|X0 : X0 → Y is A (see details
in Ref. 15). Let (S,Σ, µ) be a measure space, and let F : S → Lcl(X,Y ) be such
that Fx is a.s. defined and measurable for each x ∈ X . Then F has a fixed core
if there exists a sequence (xn)n≥1 ⊂ X such that span(xn)n≥1 is a core of F a.s.
(Notice, that in this particular case the core has a countable algebraic dimension).

Theorem 3.11. Let X be a reflexive Banach space, Y be a UMD Banach space,
M ∈ Mcyl

cl (X), G : R+ × Ω → Lcl(H,X) be the corresponding operator family. Let
G∗ have a fixed core. Then for a strongly progressively measurable process Φ: R+ ×
Ω → L(X,Y ) such that G∗Φ∗ ∈ L(Y ∗, H) a.s. which is scalarly in L2(R+;H) a.s.
the following assertions are equivalent :

(1) There exist elementary progressive processes (Φn)n≥1 such that :

(i) for all y∗ ∈ Y ∗, limn→∞G∗Φ∗
ny

∗ = G∗Φ∗y∗ in L0(Ω;L2(R+;H));
(ii) there exists a process ζ ∈ L0(Ω;Cb(R+;Y )) such that

ζ = lim
n→∞

∫ ·

0

Φn(t) dM(t) in L0(Ω;Cb(R+;Y )).

(2) There exists an a.s. bounded process ζ : R+ × Ω → Y such that for all y∗ ∈ Y ∗

we have

〈ζ, y∗〉 =
∫ ·

0

Φ∗(t)y∗ dM(t) in L0(Ω;Cb(R+)).

(3) (G∗Φ∗)∗ ∈ γ(L2(R+;H), Y ) almost surely;

In this case ζ in (1) and (2) coincides and for all p ∈ (0,∞) we have

E sup
t∈R+

‖ζ(t)‖p �p,Y E‖(G∗Φ∗)∗‖p
γ(L2(R+;H),Y ). (3.8)

Proof. Let Ψ : R+ × Ω → L(H,Y ) be such that Ψ∗ = G∗Φ∗ (recall that UMD
spaces are reflexive). Then equivalence of (2) and (3) and the formula (3.8) are just
particular cases of corresponding parts of Theorem 5.9 of Ref. 31 and Theorem 5.12
of Ref. 31 for Ψ thanks to Remark 3.7 (for (2) one also has to apply Theorem 3.9).

It remains to prove that (1) for Φ and M and (1) for Ψ and WH are equivalent.
(Notation: (1,Φ) ⇔ (1,Ψ)).

(1,Φ) ⇒ (1,Ψ) Since Φn ·M exists and the range of Φn is in a certain fixed
finite-dimensional space of Y , n ≥ 1, then by Remark 3.10 (G∗Φ∗

n)∗ is stochasti-
cally integrable with respect to WH , so by Theorem 5.9 of Ref. 31 there exists a
sequence (Ψnk)k≥1 of elementary progressive L(H,Y )-valued functions such that
Ψ∗

nky
∗ → G∗Φ∗

ny
∗ in L0(Ω;L2(R+;H)) for each y∗ ∈ Y ∗, and Ψnk ·WH → Φn ·M

1850013-11
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in L0(Ω;Cb(R+;Y )) as k → ∞. Knowing (1,Φ) one can then find a subse-
quence {Ψk}k≥1 := {Ψnkk}k≥1 such that limk→∞ Ψ∗

ky
∗ = G∗Φ∗y∗ = Ψ∗y∗ in

L0(Ω;L2(R+;H)) for each y∗ ∈ Y ∗ and Ψk ·WH converges in L0(Ω;Cb(R+;Y )),
which is (1) for Ψ and WH .

(1,Ψ) ⇒ (1,Φ) Let (x∗k)k≥1 ⊂ X∗ be such that U := span(x∗k)k≥1 is a fixed
core of G∗. For each k ≥ 1 define Uk = span(x∗1, . . . , x

∗
k). Then due to Lemma A.5

consider P̃k : R+ × Ω → L(H) and Lk : R+ × Ω → L(H,X∗) such that P̃k is an
orthogonal projection ontoG∗(Uk) andG∗Lk = P̃k (P×ds)-a.s. Consider a sequence
(Ψn)n≥1 of elementary progressive functions in L0(Ω, γ(L2(R+;H), Y )) constructed
thanks to Proposition 2.12 of Ref. 31 such that Ψn → Ψ in L0(Ω, γ(L2(R+;H), Y )).
Let P̃0 : R+ × Ω → L(H) be an orthogonal projection onto ran(G∗). Then by the
ideal property (3.7), a.s. we have

‖(G∗Φ∗)∗ − ΨnP̃0‖γ(L2(R+;H),Y ) = ‖((G∗Φ∗)∗ − Ψn)P̃0‖γ(L2(R+;H),Y )

≤ ‖(G∗Φ∗)∗ − Ψn‖γ(L2(R+;H),Y ),

which means that by Theorem 3.6 of Ref. 31 ΨnP̃0 is stochastically integrable
with respect to WH and ΨnP̃0 ·WH → (G∗Φ∗)∗ ·WH in L0(Ω, γ(L2(R+;H), Y )).
Therefore, one can define Ψ̃n := (P̃0Ψ∗

n)∗.
Set Φnk := (LkP̃kΨ̃∗

n)∗. Notice that U =
⋃

k Uk is a core of G∗, so ran(G∗) =
G∗(U), therefore P̃k → P̃0 weakly and by Proposition 2.4 of Ref. 31 (G∗Φ∗

nk)∗ =
(P̃kΨ̃∗

n)∗ → Ψ̃n in L0(Ω, γ(L2(R+;H), Y )) as k → ∞, so one can find a subsequence
Φn := Φnkn such that (G∗Φ∗

n)∗ → Ψ in L0(Ω, γ(L2(R+;H), Y )) as n→ ∞. Now fix
n ≥ 1. Since Ψn is elementary progressive, then it has the following form: for each
t ≥ 0 and ω ∈ Ω

Ψn(t, ω) =
M∑

m=1

L∑
l=1

1(tm−1,tm]×Blm
(t, ω)

J∑
j=1

hj ⊗ yjlm.

Hence by Remark 3.3

Φn(t, ω) =
M∑

m=1

L∑
l=1

1(tm−1,tm]×Blm
(t, ω)

J∑
j=1

(Lkn P̃knhj) ⊗ yjlm.

Therefore, Φn takes its values in a fixed finite-dimensional subspace Yn of Y , and so
by Remark 3.10 one can construct simple approximations of Φn then (1,Φn) holds.
This completes the proof.

Remark 3.12. As the reader can see, the existence of a fixed core of G∗ is needed
only for (1) in Theorem 3.11. Without this condition one can still show that parts
(2) and (3) are equivalent and that estimate (3.8) holds.

3.3. General case of Brownian representation

In the preceding subsection, it was shown that a quite general class of cylindrical
martingales with absolutely continuous covariation can be represented as stochastic

1850013-12
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integrals with respect to WH , and we proved some results on stochastic integrability
for them (Proposition 3.6 and Theorem 3.9). Unfortunately, such results do not hold
in the general case, and it will be shown in Example 3.15 that G from (3.3) does
not always exists. The construction in this example uses two simple remarks on
linear operators. For linear spaces X and Y we denote the linear space of all linear
operators from X to Y by L(X,Y ), L(X) := L(X,X).

Remark 3.13. Let (xα)α∈Λ ⊂ X be a Hamel (or algebraic) basis of X (see Prob-
lem 13.4 of Ref. 16 or Ref. 9). Then one can uniquely determine A ∈ L(X,Y ) only by
its values on (xα)α∈Λ. Indeed, for each x there exist unique N ≥ 0, α1, . . . , αN ∈ Λ,
and c1, . . . , cN ∈ R such that x =

∑N
n=1 cnxαn , so one can define Ax as follows:

Ax :=
∑N

n=1 cnAxαn .

Remark 3.14. Any linear functional � : X0 → R defined on a linear subspace X0

of a Banach space X can be extended linearly to X using the fact that X has a
Hamel basis (see Part I.11 of Ref. 30, also Ref. 1). The same holds for operators:
if A ∈ L(X0, Y ), where X0 is a linear subspace of X , one can extend A to a linear
operator from X to Y using the Hamel basis of X . Surely this extension is not
unique if X0 � X .

Example 3.15. We will show that for a Hilbert spaceH there existsM ∈ Mloc
cyl(H)

which is not closed operator-Brownian representable. Let (Ω,F ,P) be a probability
space with a filtration F = (Ft)t≥0 satisfying the usual conditions, W : R+×Ω → R
be a Brownian motion. Without loss of generality suppose that F is generated byW .
Let H be a separable Hilbert space with an orthonormal basis (hn)n≥1. Let (ξn)n≥1

be the following sequence of random variables: for each fixed n ≥ 1, ξn ∈ L2(Ω) is
a measurable integer-valued function of W (2−n+1) −W (2−n) such that

P(ξn = k) = 2−n+112n−1≤k<2n , k ∈ N.

It is easy to see that (ξn)n≥1 are mutually independent and each ξn is F2−n+1-
measurable. For all n ≥ 1 set cn = 2

n
4 . Consider linear functional-valued function

� : R+ × Ω → L(H,R) defined as

�(h) =
∞∑

n=1

cn〈h, hξn〉 (3.9)

for all h ∈ H such that
∑∞

n=0 |cn〈h, hξn〉| converges, and extended linearly to the
whole H thanks to Remark 3.14. Fix h ∈ H . Let h̃ =

∑∞
n=1 |〈h, hn〉|hn and a =∑∞

n=0

∑2n−1
k=2n−1 2−

3n
4 hk ∈ H . Then

E
N∑

n=0

|cn〈h, hξn〉| =
N∑

n=0

2n−1∑
k=2n−1

cn|〈h, hk〉|
2n−1

=
N∑

n=0

2n−1∑
k=2n−1

2−
3n
4 |〈h, hk〉|

2
≤ 1

2
〈h̃, a〉.
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Hence by the dominated convergence theorem limN→∞
∑N

n=0 |cn〈h, hξn〉| exists a.s.,
so, for each fixed h ∈ H formula (3.9) holds a.s. Consider the stochastic integral

Mt(h) =
∫ t

0

1[1,2](s)�(h)dWs,

since integrand is predictable. Moreover, due to the mutual independence of (ξn)n≥1

E
∫

R+

1[1,2](s)(�(h))2ds = E(�(h))2 ≤ E(�(h̃))2

= E

( ∞∑
n=1

cn|〈h, hξn〉|
)2

= E
∞∑

n=1

∞∑
m=1

cncm|〈h, hξn〉||〈h, hξm〉|

=
∞∑

n=1

c2n

2n−1∑
k=2n−1

|〈h, hk〉|2
2n−1

+ 2
∑
n�=m

cncm

2n−1∑
k=2n−1

2m−1∑
l=2m−1

|〈h, hk〉||〈h, hl〉|
2n−12m−1

≤ ‖h‖2 +
∞∑

n,m=1

2n−1∑
k=2n−1

2m−1∑
l=2m−1

|〈h, hk〉||〈h, hl〉|
2n−12m−1

= ‖h‖2 +

( ∞∑
n=1

2n−1∑
k=2n−1

cn|〈h, hk〉|
2n−1

)2

= ‖h‖2 +
1
4
〈h̃, a〉2 ≤

(
1 +

1
4
‖a‖2

)
‖h‖2,

so thanks to Lemma 17.10 of Ref. 13 Mt(h) is an L2-martingale. But the above
computations also show that by Proposition 17.6 of Ref. 13 M(h) → 0 in the ucp
topology as h→ 0, which means that M is a cylindrical martingale as a continuous
linear mapping from H to Mloc.

Now our aim is to prove that M is not closed operator-Brownian representable.
Suppose that there exist anH-cylindrical Brownian motionWH : R+×Ω → R on an
enlarged probability space (Ω,F ,P) with an enlarged filtration F = (F t)t≥0 (we may
use the same Hilbert space H since all separable infinite-dimensional Hilbert spaces
are isometrically isomorphic) and a closed operator-valued H-strongly measurable
function G : R+ × Ω → Lcl(H) such that Mt(h) =

∫ t

0
(G∗h)∗dWH .

Since M |[0,1] = 0 we can assume that G∗|[0,1] = 0. Because of the structure of
M , for each pair of vectors h, g ∈ H there exist F1-measurable a, b ∈ L0(Ω) such

1850013-14
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that a = �(g) and b = −�(h) and aMt(h) + bMt(g) = 0 a.s. for all t ≥ 0. As a, b are
F1-measurable, then for t ≥ 1 one can put a, b under the integral:

0 = aMt(h) + bMt(g) = a

∫ t

1

(G∗h)∗dWH + b

∫ t

1

(G∗g)∗dWH

=
∫ t

1

(aG∗h+ bG∗g)∗dWH =
∫ t

0

(aG∗h+ bG∗g)∗dWH ,

and by the Itô isometry (Proposition 4.20 of Ref. 4) aG∗h+ bG∗g = 0(P⊗ ds)-a.s.
This means that G∗h and G∗g are collinear (P⊗ ds)-a.s. if a and b are nonzero a.s.
If for instance a = �(g) = 0 on a set of positive measure A ∈ F1, then M(g)1A = 0,
and consequentlyG∗g1A = 0 (P⊗ ds)-a.s., henceG∗h andG∗g are collinear (P⊗ ds)-
a.s.

Taking an orthonormal basis (hi)i≥1 of H it follows that (P⊗ ds)-a.s. G∗hi and
G∗hj are collinear for all i, j, and by the closability of G∗ one has that ran(G∗)
consists of one vector (P ⊗ ds)-a.s. But this means that G∗ is a projection on a
one-dimensional subspace, so there exist h′G, h

′′
G : R+ × Ω → H such that G∗h =

〈h, h′G〉h′′G.
Since the derivative of an absolutely continuous function is defined uniquely,

P-a.s. for a.e. t ∈ [1, 2]

[Mhi]′t = �(hi)2 = ‖G∗(t)hi‖2 = ‖h′′G(t)‖2〈hi, h
′
G(t)〉2.

But the series of positive functions
∑∞

i=1 ‖h′′G‖2〈hi, h
′
G〉2 = ‖h′G‖2‖h′′G‖2 converges

(P⊗ ds)-a.s., which does not hold true for
∑∞

i=1 �(hi)2 (because linear functional �
is unbounded (P × ds)-a.s. thanks to the choice of {cn}n≥1).

Remark 3.16. Using the previous example and Example 3.22 of Ref. 33 one can
see that in general for a separable Hilbert space H the following proper inclusions
hold:

Mloc
a.c.v.(H) � Mcyl

bdd(H) � Mcyl
cl (H) � Mcyl

a.c.c.(H),

where Mloc
a.c.v.(H) is the subspace of Mcyl

loc(X) with an absolutely continuous
quadratic variation (the quadratic variation of a cylindrical continuous local mar-
tingale was defined in Ref. 33), and Mcyl

bdd(H) is the linear space of cylindrical
continuous local martingales with a bounded operator-generated covariation (con-
sidered for instance in Refs. 21 and 22).

In the general case one can still represent a cylindrical martingale with an
absolutely continuous covariation as a stochastic integral with respect to WH , but
then one has to use linear operator-valued functions instead of Lcl(H,X)-valued,
and some important properties are lost.

Theorem 3.17. Let X be a Banach space with separable dual, and let M ∈
Mloc

cyl(X). Then M is Brownian representable if and only if it is with an absolutely
continuous covariation.
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We will need the following lemma.

Lemma 3.18. Let H be a separable Hilbert space, and let M : R+ × Ω → H

be a continuous local martingale such that 〈M,h〉 has an absolutely continuous
variation for all h ∈ H a.s. Then [M ] also has an absolutely continuous version.
Moreover, there exists scalarly measurable positive Hilbert–Schmidt operator-valued
Φ : R+ × Ω → L(H) such that a.s. [〈M,h〉, 〈M, g〉] =

∫ ·
0
〈Φh,Φg〉ds.

Proof. Since H is a separable Hilbert space one sees that

[M ]t =
∞∑

n=1

[〈M, en〉]t a.s ∀ t ≥ 0 (3.10)

for any given orthonormal basis (en)n≥1 of H . Let fn : R+ ×Ω → R+ be such that
[〈M, en〉]t =

∫ t

0 fn(s)ds a.s. ∀n ≥ 1, t ≥ 0. Then thanks to (3.10) and the domi-
nated convergence theorem

∑∞
n=1 fn converges in L1

loc(R+) a.e. Let f :=
∑∞

n=1 fn.
Then [M ]t =

∫ t

0 f(s)ds a.s. for all t ≥ 0, which means that [M ]t is absolutely
continuous a.s.

The second part is an easy consequence of Theorem 14.3(2) of Ref. 19.

Proof of Theorem 3.17. One direction is obvious. Now let M be with an abso-
lutely continuous covariation. First suppose that X is a Hilbert space. Consider
a Hilbert–Schmidt operator A with zero kernel and dense range. For instance set
Ahn = 1

nhn for some orthonormal basis (hn)n≥1 of X . Then according to Theo-
rem A of Ref. 12 M(A(·)) admits a local martingale version, namely there exists
a continuous local martingale M̃ : R+ × Ω → X such that M(Ax) and 〈M̃, x〉
are indistinguishable for each x ∈ X . Notice that M̃ has an absolutely continuous
quadratic variation by Lemma 3.18. Also by Theorem 8.2 of Ref. 4 there exists an
enlarged probability space (Ω,F ,P) with an enlarged filtration F = (F t)t≥0 such
that there exist an X-cylindrical Brownian motion WX : R+ ×Ω×X → R and X-
strongly progressively measurable Φ : R+ × Ω → L(X) such that M̃ =

∫ ·
0
Φ∗dWX .

Now fix h /∈ ran(A). Let (xn)n≥1 be a Q-span of (hn)n≥1. Denote by fh, fnh

the derivatives of [Mh] and [Mh,WXxn] in time, respectively. For each n ≥ 1
and for each segment I ⊂ R+ |µ[Mh,WXxn]|(I) ≤ µ

1/2
[Mh](I)µ

1/2
[WX xn](I) a.s. by

Proposition 17.9 of Ref. 13. So, according to Theorem 5.8.8 of Ref. 2, |fnh(t)| ≤
(fh(t))

1
2 ‖xn‖ a.s. for almost all t ≥ 0. One can modify fnh on (xn)n≥1 in a linear

way, so it defines a bounded linear functional on span(hn)n≥1. Therefore, there
exists scalarly progressively measurable ah : R+ ×Ω → X such that fnh = 〈ah, xn〉
a.s. for almost all t ≥ 0.

Now consider N =
∫ ·
0
a∗hdWX . Then [Mh,WXg] = [N,WXg] for all g ∈ H ,

and consequently [Mh,Φ ·WH ] = [N,Φ ·WH ] for each F-progressively measurable
stochastically integrable Φ : R+ × Ω → H , and so [Mh,Mg] = [N,Mg] for all
g ∈ ran(A) and [Mh,N ] = [N ]. Let (gn)n≥1 ⊂ ran(A) be such that gn → h. Then

1850013-16
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[Mh−Mgn] → 0 in ucp, and so

[N −Mgn] = [N ] + [Mgn] − 2[N,Mgn]

= ([N ] − [N,Mgn]) + ([Mgn] − [Mh,Mgn])

→ ([N ] − [N,Mh]) + ([Mh] − [Mh]) = 0

in ucp, and therefore N and Mh are indistinguishable.
For a general Banach space X , define a Hilbert space H and a dense embedding

j : X ↪→ H as in p. 154 of Ref. 17. Let (hα)α∈Λ be a Hamel basis of H and
(x∗β)β∈∆ ∪ (hα)α∈Λ be a Hamel basis of X∗ (thanks to the embedding H ↪→ X∗

and Theorem 1.4.5 of Ref. 8). Let WH be a Brownian motion constructed as above
for M |H ∈ Mcyl

loc(H), i.e. for each α ∈ Λ there exists progressively measurable
ahα : R+ ×Ω → H such that Mhα and

∫ ·
0
a∗hα

dWH are indistinguishable. Using the
same technique and the fact that j∗ : H ↪→ X∗ is a dense embedding, for each β ∈ ∆
one can define progressively measurable ax∗

β
: R+ × Ω → H such that Mx∗β and∫ ·

0
a∗x∗

β
dWH are indistinguishable. Using Remark 3.13, we can now define an X∗-

strongly progressively measurable operator-valued function F : R+×Ω → L(X∗, H)
such that for each x∗ ∈ X∗ a.s. Mx∗ =

∫ ·
0
(Fx∗)∗ dWH .

The next theorem is an obvious corollary of Theorem 3.6 of Ref. 31 and Theo-
rem 5.13 of Ref. 31.

Theorem 3.19. Let X be a UMD Banach space, H be a Hilbert space, WH :
R+ × Ω × H → R be an H-cylindrical Brownian motion, M ∈ Mloc

cyl(X), and
Φ : R+ ×Ω → L(X∗, H) be scalarly predictable measurable with respect to filtration
FWH generated by WH such that M =

∫ ·
0
Φ dWH . Then there exists an X-valued

continuous local martingale M̃ : R+ × Ω → X such that Mx∗ = 〈M̃, x∗〉 for each
x∗ ∈ X∗ if and only if Φ ∈ L(X∗, H) (P× ds)-a.s. and Φ∗ ∈ γ(L2(R+;H), X) a.s.

3.4. Time change

A family τ = (τs)s≥0 of finite stopping times is called a finite random time change
if it is nondecreasing and right-continuous. If F is right-continuous, then by to
Lemma 7.3 of Ref. 13 the induced filtration G = (Gs)s≥0 = (Fτs)s≥0 (see Chap. 7
of Ref. 13) is right-continuous as well. M ∈ Mloc

cyl(X) is said to be τ-continuous if
a.s. for each x∗ ∈ X∗, Mx∗ (and thanks to Problem 17.3 of Ref. 13 equivalently
[Mx∗]) is a constant on every interval [τs−, τs], s ≥ 0, where we set τ0− = 0.

Remark 3.20. Note that if M ∈ Mloc
cyl(X) is τ -continuous for a given time

change τ , then M ◦ τ ∈ Mloc
cyl(X). Indeed, for each given x∗ ∈ X∗ one concludes

thanks to Proposition 17.24 of Ref. 13Mx∗◦τ is a continuous local martingale. Also
for a given vanishing sequence (x∗n)n≥1 ⊂ X∗ one can easily prove that Mx∗n◦τ → 0
in the ucp topology by using the stopping time argument and the fact thatMx∗n → 0
in the ucp topology by the definition of Mloc

cyl(X).
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The following natural question arise: does there exist a suitable time change
making a given M ∈ Mloc

cyl(X) Brownian representable? The answer is given in the
following theorem.

Theorem 3.21. Let X be a Banach space with a separable dual space, M ∈
Mloc

cyl(X). Then there exists a time change (τs)s≥0 such that M ◦ τ is with an
absolutely continuous covariation, i.e., Brownian representable.

Proof. Let (x∗n)n≥1 ⊂ X∗ be a dense subset of the unit ball of X∗. Consider
the increasing predictable process F : R+ × Ω → R+ given by F (t) = t(1 +∑∞

n=1
1
2n arctan([Mx∗n]t)), and consider the time change τs = inf{t ≥ 0 : Ft > s}

for s ≥ 0. This time change is finite since limt→∞ F (t) = ∞.
For each fixed ω ∈ Ω and n ≥ 1 one has µ[Mx∗

n] � µF . Then by Lemma B.1
one sees that µ[Mx∗] � µF a.s. for each x∗ ∈ X∗, so M is τ -continuous. Moreover,
for each x∗ ∈ X∗ a.s. one has µ[Mx∗◦τ ] = µ[Mx∗]◦τ � µF◦τ , where the last measure
is a Lebesgue measure on R+, so by Remark 3.20 M ◦ τ ∈ Mloc

cyl(X) is with an
absolutely continuous covariation.

Let X be a separable Banach space, and let M̃ ∈ Mloc(X). Then M̃ is weakly
Brownian representable if there exist a Hilbert space H , an H-cylindrical Brow-
nian motion WH and a function G : R+ × Ω → L(X∗, H) such that for each
x∗ ∈ X∗ the function Gx∗ is stochastically integrable with respect to WH and
〈M̃, x∗〉 =

∫ ·
0 Gx

∗ dWH a.s. Thanks to Part 3.3 of Ref. 33 there exists an associated
cylindrical continuous local martingale M ∈ Mloc

cyl(X), so the following corollary of
Theorem 3.21 holds.

Corollary 3.22. Let X be a Banach space with a separable dual space, and let
M̃ : R+×Ω → X be a continuous local martingale. Then there exists a time change
(τs)s≥0 such that M̃ ◦ τ is weakly Brownian representable.

Remark 3.23. Unfortunately we do not see a way to prove an analogue of The-
orems 3.9–3.11 in the present general case even for an X∗-valued integrand. The
main difficulty is the discontinuity of the corresponding operator-valued function.
One of course can prove such an analogue for integrands with values in a given
finite-dimensional subspace of X∗, but this would amount to a stochastic integral
with respect to an Rd-valued continuous local martingale for some d ≥ 1; the theory
for this has been developed by classical works such as e.g., Ref. 19.

Appendix A. Technical Lemmas on Measurable Closed
Operator-Valued Functions

The following lemma shows that a Borel bounded function of a closed operator-
valued scalarly measurable function is again an operator-valued scalarly measurable
function.
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Lemma A.1. Let (S,Σ) be a measurable space, H be a separable Hilbert space, and
f : S → Lcl(H) be such that (hi)∞i=1 ⊂ dom(f∗(s)) for each s ∈ S and (f∗hi)i≥1 are
measurable for some fixed orthonormal basis (hi)i≥1 of H. Let g : R → R be finite
Borel measurable. Then g(f∗f) : S → L(H) is well-defined and scalarly measurable,
‖g(f∗f)(s)‖ ≤ ‖g‖L∞(R) for each s ∈ S.

To prove this lemma we will need two more lemmas.

Lemma A.2. Let H be a Hilbert space, and let T ∈ Lcl(H). Then T ∗T ∈ Lcl(H).

Proof. According to Chap. 118 of Ref. 26 there exists a bounded positive operator
B ∈ L(H) such that B = (1+T ∗T )−1 and ran(B) = dom(T ∗T ). Since kerB = {0}
by the construction, T ∗T is densely defined. Furthermore since B is closed, by
Proposition II.6.3 of Ref. 34 T ∗T = B−1 − 1 is also closed.

Lemma A.3. Let H be a Hilbert space, A ⊂ Lcl(H) be such that (hn)∞n=1 ⊂
dom(A∗) for a certain orthonormal basis (hn)∞n=1 of H. For each n ≥ 1 let Pn ∈
L(H) be the orthogonal projection onto span(h1, . . . , hn), and set An := PnA. Then

(i) the operators ((i+ A∗
nAn)−1)n≥1, (i+A∗A)−1 are bounded;

(ii) (i+A∗
nAn)−1h→ (i+A∗A)−1h weakly for each h ∈ H.

Using Problem III.5.26 of Ref. 15 we note that An ⊂ (A∗Pn)∗ ∈ Lcl(H) for
all n.

Proof. The first part is an easy consequence of Theorem XI.8.1 of Ref. 34. To
prove the second part we use the formula

((i+A∗
nAn)−1 − (i+A∗A)−1)h

= (i+ A∗A)−1(A∗A−A∗
nAn)(i+A∗

nAn)−1h, h ∈ H,

which follows from the fact that for each n ≥ 1 there exists h̃ ∈ H such that
h = (i + A∗

nAn)h̃. Thanks to p. 347 of Ref. 26 ran(A∗A − i)−1 ⊂ dom(A∗A), and
therefore for each h, g ∈ H and n ≥ 0

〈((i+A∗
nAn)−1 − (i+A∗A)−1)h, g〉

= 〈(i+A∗A)−1(A∗A−A∗
nAn)(i+A∗

nAn)−1h, g〉
= 〈(A∗A−A∗

nAn)(i+A∗
nAn)−1h, (A∗A− i)−1g〉

= 〈A(i+A∗
nAn)−1h,A(A∗A− i)−1g〉

− 〈An(i+A∗
nAn)−1h,An(A∗A− i)−1g〉

= 〈(A−An)(i+A∗
nAn)−1h,A(A∗A− i)−1g〉

− 〈An(i+A∗
nAn)−1h, (An −A)(A∗A− i)−1g〉
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= 〈(i+A∗
nAn)−1h, (I − Pn)A∗A(A∗A− i)−1g〉

− 〈An(i+A∗
nAn)−1h, (An −A)(A∗A− i)−1g〉.

Let Hn = span(h1, . . . , hn). Note that (A∗A − i)−1g ∈ dom(A∗A) ⊂ dom(A) (see
p. 347 of Ref. 26) and ran(A−An) ⊥ Hn, so (An−A)(A∗A−i)−1g ∈ ran(An−A) ⊥
Hn. Also An(i+A∗

nAn)−1h ∈ ran(An) ⊂ Hn. Therefore, for each n ≥ 1

〈An(i+A∗
nAn)−1h, (An −A)(A∗A− i)−1g〉 = 0,

and for the sequence (Qn)n≥1 := (I − Pn)n≥1 ⊂ L(H) that vanish weakly

〈((i+A∗
nAn)−1 − (i+A∗A)−1)h, g〉 = 〈(i+A∗

nAn)−1h,QnA
∗A(A∗A− i)−1g〉

≤ ‖(i+A∗
nAn)−1h‖‖QnA

∗A(A∗A− i)−1g‖,
which vanishes as n tends to infinity, where according to Example VIII.1.4 of Ref. 34
‖(i+A∗

nAn)−1‖ ≤ 1 for each n ≥ 1.

Proof of Lemma A.1. First of all, one can construct g(f∗f) (without proving
measurability property) by guiding Chap. 120 of Ref. 26 by constructing a spectral
family of f∗f(s) for each fixed s ∈ S, and further using bounded calculus (Chap. 126
of Ref. 26) for the corresponding spectral family.

To prove scalar measurability we have to plunge into the construction of the
spectral family. Let us first prove that (i + f∗f)−1 is scalarly measurable. Notice
that by Theorem XI.8.1 of Ref. 34 (i+ f∗f(s))−1 ∈ L(H) for each s ∈ S. We will
proceed in two steps.

Step 1. Suppose that f(s) is bounded for all s ∈ S. Fix k ≥ 1. Consider
span((i + f∗f)hi)1≤i≤k. This is a k-dimensional subspace of H for each s ∈ S

since i + f∗f is invertible. Let P̃k be defined as an orthogonal projection onto
span((i + f∗f)hi)1≤i≤k, (gi)1≤i≤k be obtained from ((i + f∗f)hi)1≤i≤k by the
Gram–Schmidt process. These vectors are orthonormal and measurable because
(〈(i + f∗f)hi, (i + f∗f)hj〉)1≤i,j≤k are measurable, so P̃k is scalarly measurable.
Moreover, the transformation matrix C = (cij)1≤i,j≤k such that

gi =
k∑

j=1

cij(i+ f∗f)hj , 1 ≤ i ≤ k,

has measurable elements and invertible since by Theorem XI.8.1 of Ref. 34 ker(i+
f∗f) = 0. So, one can define the scalarly measurable inverse (i+ f∗f)−1P̃k:

(i+ f∗f)−1P̃kg =
k∑

j=1

dij〈g, gj〉hj ,

where D = {dij}1≤i,j≤k = C−1.
Now fix s ∈ S, g ∈ H . Let xk = (i+f∗(s)f(s))−1P̃k(s)g. Since (i+f∗(s)f(s))−1

is a bounded operator and limk→∞ P̃kg = g (because by Theorem XI.8.1 of Ref. 34
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ran(i+f∗(s)f(s)) = H), then (i+f∗(s)f(s))−1g = x := limk→∞ xk. So (i+f∗f)−1g

is measurable as a limit of measurable functions.

Step 2. In general case one can consider the function fk = Pkf for each k ≥
1, where Pk ∈ L(H) is an orthogonal projection onto span(h1, . . . , hk). Then by
Lemma A.3 and thanks to Step 1 applied to fk one can prove that (i+f∗(s)f(s))−1h

is a weak limit of measurable functions (i+f∗
k (s)fk(s))−1h, so, since H is separable,

it is measurable.
For the same reason (f∗f − i)−1 is scalarly measurable, therefore (1 +

(f∗f)2)−1 = (i+ f∗f)−1(f∗f − i)−1 is scalarly measurable.
Now guiding by the construction in Chap. 120 of Ref. 26 one can consider the

sequence of orthogonal Hilbert spaces {Hi(s)}i≥1 depending on s such that orthog-
onal projection PHi onto Hi is scalarly measurable (thanks to Proposition 32 of
Ref. 21 and the fact that PHi = 1( 1

i+1 , 1i ]((1 + (f∗f)2)−1)). Then by Chap. 120 of
Ref. 26 f∗(s)f(s)PHi(s) is bounded for each s. Moreover, ran(f∗(s)f(s)PHi(s)) ⊂
Hi(s) ∀s ∈ S, so PHif

∗fPHi = f∗fPHi and g(f∗fPHi) : S → L(H,Hi) is
well-defined and thanks to Proposition 32 of Ref. 21 scalarly measurable. Finally,
since ‖g(f∗fPHi)‖ ≤ ‖g‖L∞ and H = ⊕iHi, then one can define g(f∗f) :=∑∞

i=1 g(f
∗fPHi) as in Chap. 120 of Ref. 26, which is scalarly measurable and by

Chap. 120 of Ref. 26 ‖g(f∗f)‖ ≤ ‖g‖L∞ as well.

Corollary A.4. Let (S,Σ, µ) be a measure space, H be a separable Hilbert space,
f : S → Lcl(H) be such that f∗h is a.s. defined and measurable for each h ∈ H.
Let g : R → R be finite Borel measurable. Then g(f∗f) : S → L(H) is well-defined
and scalarly measurable, ‖g(f∗f)(s)‖ ≤ ‖g‖L∞(R) for almost all s ∈ S.

The following lemma can be proved in the same way as the second part of
Lemma A.1 of Ref. 33.

Lemma A.5. Let (S,Σ, µ) be a measure space, H be a separable Hilbert space, and
let X be a Banach space. Let X0 ⊆ X be a finite dimensional subspace. Let F :
S → Lcl(X,H) be a function such that Fx is defined a.s. and strongly measurable
for each x ∈ X. For each s ∈ S, let P̃ (s) ∈ L(H) be the orthogonal projection
onto F (s)X0. Then P̃ is strongly measurable. Moreover, there exists a strongly
measurable function L : S → L(H,X) with values in X0 such that FL = P̃ .

Appendix B. Lemmas on Absolute Continuity of Quadratic
Variations

The main result of this subsection provides a surprising property of a limit in the
ucp topology.

Lemma B.1. Let (Mn)n≥1, M be real-valued continuous local martingales, and
F : R+ × Ω → R be a continuous progressively measurable nondecreasing process
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such that µ[Mn] � µF a.s. for each n ≥ 0. Let Mn → M in ucp. Then µ[M ] � µF

a.s.

We will need the following lemma.

Lemma B.2. Let (Mn)n≥1 be a sequence of real-valued continuous local mar-
tingales starting from 0 such that [Mn] is a.s. absolutely continuous for each
n ≥ 0. Then there exist a Hilbert space H, an H-cylindrical Brownian motion WH

on an enlarged probability space (Ω,F ,P) and a sequence of functions (Fn)n≥1,

Fn : R+ × Ω → H, n ≥ 1 such that

Mn = Fn ·WH , n ≥ 1.

Proof. For each k ≥ 0 we consider separately (Mn(t)−Mn(k))n≥1, k ≤ t < k+ 1.
(The resulting cylindrical Brownian motions W k

H can be glued together thanks to
the independence of Brownian motion increments).

It is enough to consider the case k = 0. For each n ≥ 1 one can find a nonzero
real number an such that

P
{

sup
0≤t≤1

|anMn(t)| > 1
2n

}
<

1
2n
,

P
{

[anMn]1 >
1
2n

}
<

1
2n
.

Without loss of generality redefine Mn := anMn. Let H be a separable Hilbert
space with an orthonormal basis (hn)n≥1. Then

∑∞
n=1Mnhn converges uniformly

a.s. Therefore,
∑∞

n=1Mnhn converges in ucp topology, and M :=
∑∞

n=1Mnhn :
[0, 1] × Ω → H is an H-valued continuous local martingale. Moreover, thanks to
Lemma 3.18 [M ] =

∑∞
n=1[Mn] a.s. and [M ] is absolutely continuous as a countable

sum of absolutely continuous nondecreasing functions. Now using H-valued ana-
logue of Brownian representation results one can find an H-cylindrical Brownian
motion WH on an enlarged probability space (Ω,F ,P), operator-valued function
Φ : R × Ω → L(H) such that

〈M,h〉 = Φh ·WH , h ∈ H.

In particular,

Mn = 〈M,hn〉 = Φhn ·WH , h ∈ H.

Proof of Lemma B.1. Without loss of generality suppose that F (0) = 0 and
F (t) ↗ ∞ as t→ ∞ a.s. Otherwise redefine

F (t) := F (t) − F (0) + t, t ≥ 0.

Also by choosing a subsequence set Mn converges to M and [Mn] converges to [M ]
uniformly on compacts a.s. as n goes to infinity.
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Let (τs)s≥∞ be the following time change:

τs := inf{t ≥ 0 : F (t) > s}, s ≥ 0.

Then for each n ≥ 1 by Proposition 17.6 of Ref. 13 and the fact that µ[Mn] � µF

a.s., Mn is τ -continuous (see Chap. 7 of Ref. 13). Since Mn is τ -continuous and Mn

converges to M uniformly on compacts a.s., then M is τ -continuous, and one can
then define local martingales

Nn : = Mn ◦ τ, n ≥ 1,

N : = M ◦ τ,
which are defined on a probability space (Ω,F ,P) with an induced filtration G =
(Gs)s≥0 = (Fτs)s≥0 (see Chap. 7 of Ref. 13). Also by Theorem 17.24 of Ref. 13
[Nn] = [Mn] ◦ τ a.s., hence since µ[Mn] � µF

µ[Nn] = µ[Mn]◦τ � µF◦τ = λ,

so by Lemma B.2 there exist a separable Hilbert space H , an H-cylindrical Brown-
ian motionWH on an enlarged probability space (Ω,F ,P) with an enlarged filtration
G and a sequence of functions (Fn)n≥1, Fn : R+ × Ω → H , n ≥ 1 such that

Nn = Fn ·WH , n ≥ 1.

But we know that Nn → N uniformly on compacts a.s. since τs → ∞ a.s. as
s → ∞, so there exists a progressively measurable function R : R+ × Ω → R+,
t �→ supn≥1 |Nn|(t) + t, which is nondecreasing continuous a.s. For each natural k
define a stopping time ρk := inf{t ≥ 0 : R(t) > k}. Then Nρk

n → Nρk uniformly on
compacts a.s. But Nρk

n , Nρk are bounded by k, hence they are L2-martingales, and
the convergence holds in L2. Hence using the cylindrical case of the Itô isometry
(Remark 30 of Ref. 21) one can see that (Fn1[0,ρk])n≥1 converges to a function F k

in L2(R+ × Ω;H). Therefore, Nρk = F k ·WH , so [Nρk ] = [N ]ρk =
∫ ·
0 ‖F k(s)‖2 ds

is absolutely continuous. Taking k to infinity and using the fact that ρk → ∞ as
k → ∞ one can see that [N ] is absolutely continuous. Then

µ[M ] = µ[N ]◦F � µλ◦F = µF .
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18. D. Lépingle and J.-Y. Ouvrard, Martingales browniennes hilbertiennes, C. R. Acad.
Sci. Paris Sér. A-B, 276 (1973) A1225–A1228.

19. M. Métivier and J. Pellaumail, Stochastic Integration, Probability and Mathematical
Statistics (Academic Press 1980).

20. D. Nualart, Malliavin Calculus and its Applications, CBMS Regional Conference
Series in Mathematics, Vol. 110 (Amer. Math. Soc. 2009).

21. M. Ondreját, Brownian representations of cylindrical local martingales, martingale
problem and strong Markov property of weak solutions of SPDEs in Banach spaces,
Czechoslovak Math. J. 55 (2005) 1003–1039.

22. M. Ondreját, Integral representations of cylindrical local martingales in every sep-
arable Banach space, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 10 (2007)
365–379.

23. J.-Y. Ouvrard, Représentation de martingales vectorielles de carré intégrable à valeurs
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