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Abstract

Artificial Intelligence has become a dominant part of our lives, however, complex artificial intelligence
models tend to use a lot of energy, computationally complex operations, and a lot of memory resources.
Therefore, it excluded a whole class of hardware in its applicability. Namely, relatively resource-
constrained low-cost hardware. This paper investigates learning methods that are potentially better
suited for these types of devices: the forward-forward algorithm and Hebbian learning rules. The re-
sults are compared to backpropagation with equivalent network configurations, training hyperparame-
ters and internal data types on different types of low-cost hardware. Backpropagation has consistently
outperformed other algorithms in various tests. It exhibits higher accuracy, faster training, and faster
inference compared to forward-forward models. However, forward-forward models can come close
to matching backpropagation’s performance, but they suffer from longer training times and decreased
performance with multi-layer networks. Additionally, a poorly trained forward-forward model is sensi-
tive to quantization, resulting in a significant drop in accuracy. On the other hand, forward-forward
models offer the benefit of independently training each layer, allowing for more flexibility in optimizing
the training process. Hebbian models were not found to be competitive, displaying performance below
the required threshold. Smaller models for MCU and FPGA would likely perform even worse.
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1
Introduction

In this fast-paced and technologically driven era, Artificial Intelligence (AI) has emerged as a ground-
breaking innovation that is transforming various aspects of our lives. Its wide-ranging applications and
potential have made it an indispensable part of our daily lives, influencing numerous industries and
sectors including healthcare, finance, transportation, education, and entertainment. As we navigate
the complexities of the 21st century, understanding the relevance of AI is essential to grasp the pro-
found impact it has on society, economy, and our future. The rapid advancements in computing power,
availability of vast amounts of data, and breakthroughs in algorithm development have accelerated the
progress of AI in recent years. AI systems are now capable of analyzing immense volumes of informa-
tion, recognizing patterns, and making complex decisions with remarkable accuracy and efficiency.
The relevance of AI extends beyond high-end computing systems and expensive hardware. In recent
years, there has been a significant effort to develop AI algorithms and techniques that can run effectively
on low-cost hardware. This trend has improved access to AI technologies, allowing a broader range of
individuals and organizations to leverage its benefits.
Low-cost hardware, such as single-board computers and edge devices, have become increasingly ca-
pable of performing AI tasks locally, making it possible to deploy AI applications directly on edge, without
relying heavily on cloud infrastructure. This shift towards edge computing has numerous advantages,
including reduced latency, improved privacy and security, and the ability to operate in environments
with limited or intermittent internet connectivity. This is especially relevant for the Internet of Things (IoT)
ecosystem [2]. As more devices become interconnected and generate vast amounts of data, running
AI algorithms on the edge allows for real-time data processing and intelligent decision-making at the
device level. This decentralized approach reduces the reliance on cloud infrastructure, minimizes net-
work congestion, and enhances the overall responsiveness and efficiency of IoT systems. However, it
is important to recognize the trade-offs associated with AI and hardware. Limited computational power
and memory constraints impose limitations on the complexity and scale of AI applications. One way to
tackle this problem is by optimizing algorithms. Backpropagation is a very popular training algorithm
for machine learning, however it has some shortcomings.
In this paper two alternatives to backpropagation will be investigated, with a focus on their application
on low-power devices, the forward-forward algorithm and Hebbian Learning. The forward-forward al-
gorithm was proposed by Hinton [15] and is suggested to be better suited for low-power applications.
Hebbian learning was proposed by Hebb [13]. This is based on the principle that neurons that fire
together, wire together. These two methods are both local learning methods, the benefit of this is that
it requires less computational resources than non-local methods, another benefit is that it is suggested
that in cortex learning is closer to local learning methods.
The requirements for this project are specified in Chapter 2. Chapter 3 provides some background in-
formation on neural networks, backpropagation, and the shortcomings thereof. Chapter 4 and Chapter
5 describe the forward-forward algorithm and Hebbian learning respectively. The methodology of the
research into the algorithms is laid out in Chapter 6. The results are shown in Chapter 7 and concluded
in Chapter 8.
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2
Programme of Requirements

The goal of this project is to investigate and implement local learning methods, such as forward-forward
and Hebbian, on low-power hardware. The implementation on a physical microcontroller will be done
by the MCU group The implementation on a FPGA will be done by the FPGA. Our goal is to research
these algorithms and to assist the other groups in implementing these algorithms on their hardware.

2.1. Mandatory Requirements
The final product will be neural network models using local learning methods, these networks will have
the following mandatory requirements:

2.1.1. Functional Requirements
• Implement neural networks using backpropagation
• Implement neural networks using local learning algorithms, the forward-forward algorithm or Heb-
bian learning

• Implement the neural networks using TensorFlow and Python
• Run the models on hardware using TensorFlow Lite
• The models must be able to fit in the memory of a Teensy 4.1 microcontroller
• A model must be provided which is able to run on a Teensy 4.1 microcontroller
• A model must be provided which is able to run on a Digilent ZedBoard FPGA

2.1.2. Non-Functional Requirements
• The accuracy of the models has to be at least 80% on the Fashion MNIST dataset
• The models have to fit on the microcontroller

2.2. Trade-off Requirements
For the trade-off requirements, we have the following in order of priority:

• Minimize the training time of the models
• Minimize the inference time of the models
• Maximize the test accuracy of the models on the Fashion MNIST dataset

Maximizing the accuracy of the models will often be in conflict with minimizing training time and in-
ference time. Our goal is first to minimize the training time and inference time, since these affect the
usability of the model the most. For some models, the accuracy will be maximized at the cost of training
and inference time, but for most models the training and inference time will take priority. Furthermore,
we want to have a wide variety of models to draw conclusions from. This allows us to draw conclu-
sions about the scaling behaviour of the different learning methods and investigate the effects different
hyperparameters have on the models.

2



3
Artificial Neural Networks

The basic building block of an Artificial Neural Network (ANN) is an artificial neuron, also called a per-
ceptron, which takes in multiple inputs, applies a set of weights to the inputs, and passes the weighted
sum through an activation function to produce an output. The activation function introduces non-linearity
into the network, allowing it to learn complex patterns and make non-linear predictions. Artificial Neural
networks are inspired by the brain, whether the human brain or the brain of another animal [8].
Neurons are organized into layers within a neural network. The simplest version of a neural network
is the feedforward neural network (FNN), Fig. 3.1 shows such a network. The first layer is the input
layer, which receives the initial data. The intermediate layers are called hidden layers, these layers
are each assigned a set of weights which is applied on the input data. The final layer is the output
layer, which produces the network’s predictions or outputs. During training, the neural network learns
to adjust the weights of its connections based on the input data and the desired outputs. This process
is typically done using an optimization algorithm, such as gradient descent, to minimize a loss function
that measures the discrepancy between the predicted outputs and the actual outputs. By iteratively
adjusting the weights, the network gradually improves its ability to make accurate predictions.
Other neural networks include convolutional neural networks (CNN), recurrent neural networks (RNN),
and more advanced architectures like long short-term memory (LSTM) networks and generative adver-
sarial networks (GANs). Each type has its own structure and is suitable for different types of tasks. The
focus in this paper will be on feedforward networks.
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Figure 3.1: Typical artificial feedforward neural network. [23]
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3.1. Backpropagation 4

3.1. Backpropagation
Backpropagation or backprop is a supervised learning algorithm for feedforward artificial neural net-
works. The backpropagation algorithm consists of a forward pass and a backward pass. In the forward
pass input data is fed into the network and propagated through the entire network, at the output layer a
loss or cost function is applied. The loss indicates how far the network output is from the desired output.
The operand used in calculating the relative errors back to the neuron weights is the gradient of the loss
function. The gradients, 3.1, are used to update the weights for every training iteration. Consequently,
a backward pass propagates back through the network and updates the weights with an optimizer. In
the FNN shown in Fig. 3.1 the loss is determined at the output layer. The hidden layers contain the
weights of the network. The weights of the neurons in these hidden layers are trained to minimize the
loss at the output layer.

∇⃗L =

(
∂L
∂w1

,
∂L
∂w2

, . . . ,
∂L
∂wn

)
(3.1)

3.1.1. Loss Function
Backpropagation uses a loss or cost function for verification and learning, which means it is a super-
vised algorithm. This function indicates how the desired values deviate from the value found by the
network. Categorical cross-entropy, CCE, is a commonly used loss function for multi-class classification
problems. This loss is defined as

LCCE(y, ŷ) = −
N∑
i=1

yi log(ŷi) (3.2)

with y the true labels, ŷ the predicted labels, and N the number of samples in y and ŷ.

3.1.2. Stochastic Gradient Descent
An optimizer is used to minimize this loss function in order to train the model. Stochastic gradient
descent, SGD, is a simple optimizer, this is an iterative optimization algorithm which looks for local
minima and changes the weights accordingly. The training of a model can be sped up with the use of
batches, instead of updating the weights based on the whole data set, smaller parts of the input data
are used to calculate intermediate weight updates. This speeds up the training process by providing
more frequent weight updates for a set of data, however, this gradient is not as accurate as a full epoch
gradient, but the training speed increment compensates for the slight inaccuracy. Before applying the
change to the weights, the sum of the gradient matrix with respect to the weight matrix Wt of the mini-
batch is divided by the batch size |B|. The learning rate η is a proportionality hyperparameter for the
training speed.

Wt+1 = Wt −
η

|B|
∑
∀s∈B

∇WtL(Wt) (3.3)

3.1.3. Momentum
A commonly used optimization technique is Momentum. This method provides a solution for the ten-
dency of SGD to zigzag, especially with a small batch size. It replicates the concept of momentum from
physics, in order to change the speed of a moving object, a certain force has to be applied for a certain
amount of time. In the case of SGD if the weights are changing in one specific direction, it is more
likely to keep moving in that direction. Providing the change of weight a direction of momentum makes
the training process in relation to the loss function more analogous to a physical ball rolling smoothly
into a valley rather than zigzagging towards the bottom. The weight update process with momentum
is described by

Wt+1 = Wt + Vt+1 (3.4)

where V is the velocity matrix, defined as

Vt+1 = µ · Vt −
η

|B|
∑
∀s∈B

∇WtL(Wt) (3.5)
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3.1.4. Learning rate decay
Learning rate decay is another technique to adjust the learning rate during the training process. The
learning rate determines how quickly the model parameters are updated in response to the error gradi-
ent calculated during backpropagation. The idea behind learning rate decay is to gradually reduce the
learning rate over time as the training progresses [32]. This allows the model to make more significant
updates in the beginning when the parameters are far from their optimal values, and smaller updates as
it gets closer to convergence. By doing so, learning rate decay can help improve convergence, prevent
overfitting, and lead to better model performance.

3.1.5. Forward and Backward Pass
Let the variables be defined as the following for the derivations and elaborations:
The loss function, denoted by L, quantifies the discrepancy between predicted and target values. The
learning rate of stochastic gradient descent (SGD) is represented by η and controls the step size during
weight updates. The set B refers to a batch of samples, and |B| represents the number of elements
in that set and s ∈ B each individual element of the set. The term (L) indicates the layer index of
the neural network and is placed in the right corner. For example, the weight matrix W(L) belongs to
layer (L). The weight matrix, denoted as W, contains the weights connecting the neurons in a neural
network. Each entry, Wij , represents a specific weight value.The bias vector, denoted as b, contains
the biases associated with the neurons in a neural network. Each entry, bi, represents a specific bias
value in this vector. The activation vector, represented by a, consists of the activations of the neurons
in a neural network. Each entry, ai, corresponds to the activation of a particular neuron. This is typical
an ReLU, softmax or sigmoid function:

ReLU(x) = max(0, x), softmax(xi) =
exi∑n
j=1 e

xj
, sigmoid(x) =

1

1 + e−x
(3.6)

The linear combination vector z combines the input, weights, and biases in a neural network as shown
in 3.7. Each vector component, zi, represents an entry of this combination. The input vector of the
neural network is denoted as x, with each vector component xi representing a specific input entry
value. The output vector of the neural network is represented by y, with each vector component entry
yi corresponding to an output value.
The first step of backprop is traversing the input data through the network like:

z(L−1) = W(L−1)a(L−2) + b(L−1) (3.7)

a(L−1) = σ(z(L−1)) (3.8)

With the first activation a(0) as the input vector x and the last activation vector is a(L) as the output
vector y as shown in Fig. 3.1. This could be recursively forwarded until the last layer in the network:

z(L) = W(L)a(L−1) + b(L) (3.9)

a(L) = σ(z(L)) (3.10)

Once the final output is obtained, the loss and gradient can be determined in relation to the weights.
First, the gradients of the weights of the most nearby layer will be determined as follows,

∂L
∂a

(L−1)
k

=

nL−1∑
j=0

∂z
(L)
j

∂a
(L−1)
k

∂a
(L)
j

∂z
(L)
j

∂L
∂a

(L)
j

(3.11)

This represents the summation of all chain rules between all possible paths from L toward a(L)
k . Here

nL represents the number of neurons of layer L. The following relation is also recursive by nature but
in the backwards direction, therefore backward pass with a shift in layer index form L to L− 1:

∂L
∂a

(L−1)
k

=

nL−1−1∑
j=0

∂z
(L−1)
j

∂a
(L−2)
k

∂a
(L−1)
j

∂z
(L−1)
j

∂L
∂a

(L−1)
j

(3.12)
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However, this backwards recursion can only continue when all the derivatives of the loss in relation
to all the activation functions of that specified layer are calculated. In this case ∂L

∂a
(L−1)
k

for all possible
index k in that layer L. This recursive relation continues until the first layer. In the end, the weights (or
bias) can be obtained for each layer while the backward pass progresses:

∂L
∂W

(L)
kn

=
∂z

(L)
j

∂W
(L)
kn

∂a
(L)
j

∂z
(L)
j

∂L
∂a

(L)
j

(3.13)

Both passes could potentially be more rigorously verified by a proof by induction. Using this result, the
local mini-batch stochastic gradient is described by:

W
(L)
ij,t+1 =W

(L)
ij,t − η

|B|
∑
∀s∈B

∂L
∂W

(L)
ij,t

(3.14)

Here, the weight matrix entry of layer number L,W (L)
ij,t is updated intoW (L)

ij,t+1 after the update iteration
with t as the discrete recursive iteration variable. The concept of this update mechanism is discussed
in section 3.1.2.

3.1.6. Problems With Backpropagation
Despite the success of backprop, the learning algorithm has some bottlenecks in application to resource-
constrained hardware. One is memory usage, backprop requires storage for all the intermediate values,
the input data, activations, and gradients for both the forward and backward pass. This can require
a significant amount of memory, especially for neural networks with many hidden layers. Resource-
constrained hardware, such as microcontrollers or embedded systems, often have limited memory
capacities, making it difficult to accommodate the memory-intensive computations of backpropagation.
Another one is computational complexity. Backprop involves computational intensive operations such
as matrix multiplication, vector multiplication or element-wise operations. These operations require
substantial computational power, including floating-point arithmetic and memory bandwidth. Resource-
constrained hardware, such as low-power devices or edge devices, typically have limited processing
capabilities and may not be optimized for these types of computations. Another problem is energy con-
sumption, training neural networks using backpropagation can be computationally demanding, leading
to high energy consumption. Resource-constrained hardware, particularly battery-powered devices,
aim for energy efficiency to maximize battery life. The energy requirements of backpropagation algo-
rithms may exceed the available energy budget, making them unsuitable for such hardware. Finally,
backprop is not biologically plausible [16],[11]. The algorithm learns global information rather than local
information. Furthermore, the back and forward pass does not resonate with how humans process
information, neurons learn based on the information that is provided by their environment. This is a
continuous process. Human perception does not stop or black out for a moment because the whole
cortex system has to backwards pass the errors obtained by the processed information in order to learn.

3.2. TinyML
TinyML refers to low-level machine learning frameworks for deployment on low-cost hardware [25]. It
enables the power of the machine learning world on smaller IoT devices. However, to implement those
models, a significant reduction of resolution is necessary to implement them on those small low-level
devices. This resolution reduction can be accomplished by quantization and pruning [25]. Quantization
has proven to be provided to perform equivalent to full resolution models [29]. It can be subdivided
into multiple methods. The first one is post-training quantization. Post-training quantization maps the
floating point values onto a fixed point 8-bit value, which gives significant power and computational
gains while potentially risking the neural network’s performance [12]. This method can reduce the
size by 4 times and speed up the inference process by 2 to 3 times. Another method is quantization-
awareness training which simulated the quantization in the learning process by clamping, fusion and
special layers. A relatively new method is banalized neural networks where the weight and activation
are reduced to only one bit which provides about 8.5 to 19 speed-ups and 8 timesmemory reduction [25].
Another reductionmethod is pruning, pruning is one suchmethod wherein unimportant parameters from
a trained model are removed to reduce model size [5]. In the case of pruning the weights, it can improve
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the speed about 4 times and memory about 5 to 10 times. Those compression and dimensionality
reduction methods could be utilized for better performance of the implementation.



4
Forward-Forward Algorithm

The forward-forward algorithm was proposed by Hinton [15] as an alternative to backpropagation. The
main benefits of forward-forward over backpropagation are that it may be a better representation of
biological learning and that it could be a suited algorithm for resource-constrained hardware.
Backpropagation has proven successful in deep learning [24], but its plausibility as a model for how
the cortex learns is questionable. Moreover, it requires explicit propagation of error derivatives and the
storage of neural activities for subsequent backward passes, which is not supported by evidence in the
cortex. These requirements pose challenges for implementing backpropagation on low-cost hardware,
which often has limited memory and computational resources.
The forward-forward algorithm offers a potential solution to these challenges. It replaces the forward
and backward passes of backpropagation with two forward passes, eliminating the need for explicit
error propagation and storage of neural activities. This feature makes the algorithm suitable for sce-
narios where low-cost hardware constraints limit the availability of resources for complex computations
and memory operations. In the forward-forward algorithm, each layer of the neural network has its
own objective function, aiming to maximize the goodness of positive, correct, data and minimize the
goodness of negative, incorrect, data generated by the network itself or provided by supervision. By
optimizing these objective functions through the forward passes, the algorithm adjusts the weights of
the network to improve its performance on positive data and suppress the generation of negative data.
A function that could be suited has been proposed by [15] for layer-based goodness determination:

p(positive) = σ

∑
j

y2j − θ

 (4.1)

However, other functions can be used as a ’goodness’ function or loss function.
Between the layers of the network, normalization is applied. This causes the second layer to only react
to the relative activation of the output. The first layer thereby does not spoil a high or low total activation
information for the second layer.
The forward-forward algorithm can be implemented in a supervised and unsupervised manner. The
approach for supervised learning used by [15] is to embed the label into the input data itself. In the
case of the MNIST dataset [6], this could be done by encoding the label into the upper left, see Fig. 4.1.
The same logic is applied after training. During inference, the input is copied and marked with all the
available labels in a one-hot encoded manner [16] and then fed into the network one by one. The input
with the encoded label that causes the highest activation over all the layers summed then corresponds
to the predicted output, see Fig. 4.2.

8
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Figure 4.1: Label encoding good vs bad. [9]

4.1. Analysis Of Existing Implementations
Multiple routes for implementation could be considered. However, this document focuses mostly on the
application of high-level frameworks of machine learning like TensorFlow. The framework has released
a low-level framework, TensorFlow Lite, which is a TinyML framework. TensorFlow has proven to be a
functional high-level module for neural network training. However, the degrees of freedom the module
has in regard to low-level implementation for non-standard algorithms in TensorFlow Lite has proven
to be not that flexible. Therefore, a list of implementations of the forward-forward algorithm have been
studied. Those are all supervised versions. One is the custom model by Keras for high-level implemen-
tation [22]. However, this model proved to be unsuited for implementation in TensorFlow lite. Therefore,
this custom object and layer-typed implementation were not suited for a microcontroller inference im-
plementation. TensorFlow Lite does not seem to be quite compatible with customized models, layers
and learning algorithms in general. Another implementation [1] which is based on a PyTorch implemen-
tation [21] of the same concept bypasses the tendency to train everything with backprop by pretending
that every layer of the forward-forward model is a model itself. This is technically not backprop because
it does not extend to multiple layers. It is single-layer-based gradient descent and not multi-layered,
which is the case in backprop. The algorithm trains by first training the first layer, then feeding forward
all the training data through the first layer and normalizes it to train the second layer and so on. This
implementation avoids the use of TensorFlow models and only uses layers. These are indeed convert-
ible to TensorFlow Lite, which is not the case for the other implementations. However, because every
layer has its own TensorFlow Lite model, these models have to be pipelined one after another on the
microcontroller. Consequently, normalization has to be implemented manually between the connection
of the layers. This approach might take away some of the optimization benefits that are embedded in
one multiple-layered model. This approach would result in a slight difference in implementation on the
microcontroller between the backprop models and the forward forward models because backprop will
be one model and forward multiple layer-based model placed one after the other manually.

4.2. Mathematical Derivation
In order to efficiently implement the supervised version of the forward-forward algorithm, it is important
to comprehend the concept behind the algorithm. This is especially useful for the other subgroups.
Therefore, a few high-level implementations have been studied for a more conceptual implementation
independent of high-level frameworks. This could be more suitable for low-level implementations, such
as on a MCU or FPGA. The studied implementations [1, 21, 22] thus far use Softplus (f(x) = ln(1+ex))
as a loss function with an input parameter ϕwhich is the defined by the sum of all the squared activations
averaged minus a constant θ:

L = ln(1 + eϕ), ϕ =
1

N

N∑
j

y2j − θ (4.2)

This is a deviation from the loss function proposed by Hinton [15, 17, 14], see equation 4.1.
This could be due to the inconvenient behaviour of the derivative of the sigmoid for large input val-
ues, which is not convenient in the case of forward forward due to the binary nature of the training
mechanism.
Those implementations solved the problem of positive data learning and negative data learning by
introducing two types of ϕ functions. One for the positive data and one for the negative data.
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The ϕpos will be defined as −ϕ and ϕneg will be defined as ϕ because this would force positive data
which is correctly labelled to iteratively converge to the positive side and visa-versa for the negative
data that is incorrectly labelled. See Fig. 4.1 for a clear difference between supervised ’positive’, ’good’,
correct data and ’negative’, ’bad’, incorrect data.

ϕpos = − 1

N

N∑
j

y2j,pos + θ, ϕneg =
1

N

N∑
j

y2j,neg − θ (4.3)

This gives for positive data (correctly labelled data) input xpos that results in the layer-based output ypos,
and for negative data input xneg (incorrectly labelled data) that results in the layer based output yneg,
resulting in a positive, and negative data combined loss where both are processed during training at
the same time:

L = ln(1 + eϕpos) + ln(1 + eϕneg ) (4.4)

However, theoretically, it could also be one after another.
Given a for the activation function, ψ for the linear combination of the weight inputs and biases:

yi = a(ψ), ψ =
∑
j

(wijxj + bj), (4.5)

This results in the following derivation for the gradient updates, where xpos and ypos are correctly la-
belled data and xneg and yneg are incorrectly labelled data:

∂L
∂wij

=
∂L
∂ϕ

· ∂ϕ
∂yi

· ∂yi
∂ψ

· ∂ψ
∂wij

= ∆Wij ∝ σ(ϕneg) ·a′(ψneg) ·xj,neg ·yi,neg+σ(ϕpos) ·a′(ψpos) ·xj,pos ·yi,pos
(4.6)

∂L
∂bi

=
∂L
∂ϕ

· ∂ϕ
∂yi

· ∂yi
∂ψ

· ∂ψ
∂bi

= ∆bi ∝ σ(ϕneg) · a′(ψneg) · yi,neg + σ(ϕpos) · a′(ψpos) · yi,pos (4.7)

The result clearly has some Hebbian characteristics due to the clear dependency on the in and outputs.
However, a is commonly a ReLU function. The derivative of the ReLU is a step function, resulting in
the following simplification because yi is a ReLU function that shadows the affect of a′ step function.

∆Wij ∝ σ(ϕneg) · xj,neg · yi,neg + σ(ϕpos) · xj,pos · yi,pos, ∆bj ∝ σ(ϕneg) · yi,neg + σ(ϕpos) · yi,pos (4.8)

Where ∆Wij and ∆bj are entries of the differences between in the weight matrix and bias vector for
each iteration. This generalizes to matrix and vector form:

∆W ∝ σ(ϕneg)ynegxTneg + σ(ϕpos)yposxTpos, ∆b ∝ σ(ϕneg)yneg + σ(ϕpos)ypos (4.9)

This result could be substituted into a SGD algorithm. Clearly, a Vanilla Hebbian element is embedded
in this theoretical derivation of the forward-forward algorithm. It seems to have Hebbian characteris-
tics during training when positive data is provided and anti-Hebbian when negative data is provided.
However, due to ϕ in the sigmoid function, it is not fully local but layer local as visualised in Fig. 4.2.
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Figure 4.2: Forward-Forward network with layer-based loss function. Adapted from [23].



5
Hebbian Learning

Hebbian learning is a learning rule in neuroscience and artificial neural networks that describes how
synaptic connections between neurons are strengthened or weakened based on their activity patterns
[13]. The fundamental idea behind Hebbian learning is often summarized as ”fire together, wire to-
gether” [28]. According to Hebb’s postulate, when a presynaptic neuron repeatedly and persistently
stimulates a postsynaptic neuron, the connection between them is strengthened. This strengthening
is believed to be the basis for learning and memory formation in the brain [27]. Hebbian learning is
typically described using a simple mathematical rule known as the Hebbian learning rule. The rule
states that if the presynaptic neuron consistently activates the postsynaptic neuron, then the strength
of the synaptic connection between them should be increased. Conversely, if the presynaptic neuron is
consistently inactive while the postsynaptic neuron fires, the synaptic connection should be weakened.
In artificial neural networks, Hebbian learning is often implemented as a form of unsupervised learning,
where the network adjusts its weights based solely on the correlation between input patterns and their
corresponding outputs. This type of learning is useful for tasks such as pattern recognition, clustering,
and self-organization. It is important to note that Hebbian learning is a simplified model of synaptic
plasticity, and there are other factors and mechanisms involved in real neural networks such as Spike-
timing-dependent-plasticity. However, this simplicity and the idea of learning by synaptic locality make
the Hebbian learning rules a good contender for a more biologically plausible and more local alternative
to backpropagation, especially in relation to resource-constrained hardware. Furthermore, there are
some indications that Hebbian learning in some specific cases could outperform backprop [11]. This
makes it an interesting algorithm for further investigation.

5.1. Spike Time Dependent Plasticity
Spike Time Dependent Plasticity (STDP) states that there is a timing relation between the pre and post-
synaptic neurons which causes the strengthening or weakening of the connection. This neurologically-
based approach could be modelled. General modelling of spike time-dependent neural networks is
done with spike trains [7]. Or a sum of Dirac delta functions for different time instances [7]. Presynaptic
neurons fire those time-dependent trains into the postsynaptic neuron. The postsynaptic neuron inte-
grates those over those values until a certain threshold is reached. Then the postsynaptic neuron fires
a spike itself. If this spike is slightly later than a respective presynaptic neuron, the weight increases and
vice versa when the postsynaptic neuron is slightly later than the postsynaptic neuron. This behaviour
of the pre and postsynaptic neuron is shown in Fig. 5.1.

12
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Figure 5.1: Behaviour STDP. [18]

5.2. Vanilla Hebbian
The tradition for of Hebbian learning is often expressed as∆Wij = η ·xi ·yj where xi is the presynaptic
neuron, yj is the postsynaptic neuron and ∆Wij weight update. It is not dependent on activation time
differences between the neurons, like in STDP. The model implies that the connection is strengthened
when both fire and reduced when they do not. However, one of the drawbacks of this learning method
is the unboundedness of the value of the weights [11]. It could theoretically grow indefinitely, and this
could cause problems in learning. Especially in resource-constrained hardware where the range of
numeric representations within the supported data types is relatively small. Therefore, it is important
for low-cost hardware to get some control over those potential weight ranges.

5.3. Oja's Learning rule
Oja’s rule tackles this problem:

∆Wij = η · yi · (xj − α ·Wijyi)

Here η and α are training hyperparameters. In regular circumstances, Oja’s rule aims to asymptotically
normalize these synaptic weights (

∑
j W

2
ij = 1) [28] and this normalization is done locally on neuron-

based level [4] which is more biologically plausible than the layer local nature of forward-forward which
has been discussed in Chapter 4. This makes Oja’s rule far more interesting for the application on
low-cost hardware than traditional vanilla.

5.4. Grossberg’s Instar Learning Rule
Another rule is Grossberg’s Instar Learning Rule which also prevents the problems of unbounded
weights. The rule is described as follows:

∆Wij = η · yi · (xj − α ·Wij)

The rule has the same training hyperparameters as Oja’s rule.

5.5. Sidenotes About Hebbian Learning
Due to its locality and simplicity, this learning method should be more suited for unsupervised learning.
However, it is hard to obtain some useful information about the input data in this manner because
it is unsupervised. One suggestion to make a Hebbian network supervised could be by adding a
last supervised layer on the network at the end, which maps the learned patterns and features to
corresponding correct labels. This last layer could be a one-layered backprop-trained network or a
supervised forward-forward one.



6
Methodology

This chapter describes the methodology used to collect the results. Only backpropagation and forward-
forward were tested using this methodology. Hebbian learning was not investigated, mainly due to time
constraints.
Preliminary testing was performed on Hebbian learning in the same way as for backpropagation and
forward-forward, however this preliminary testing showed that implementing and investigating Heb-
bian learning would be more challenging than forward-forward and likely would not perform as well
as backpropagation and forward-forward. The main issues found during preliminary testing were that
the available Hebbian implementations were very complex and often not in the form of a simple fully
connected neural network and thus would not be comparable to a simple backpropagation network or a
forward-forward network. Another consideration was the unexpected behaviour of the forward-forward
algorithm. After these tests it was decided to spend more time on investigating forward-forward in-
stead of trying to implement Hebbian learning. The results of the preliminary tests have been included
in Chapter 7.

6.1. Environment
The models have been made in Python using TensorFlow [19] and were converted via TensorFlow
Lite. TensorFlow is a machine learning framework, which allows the use of Keras [3]. TensorFlow
and Keras simplify the development of models. Although, the main reason TensorFlow is chosen over
other machine learning frameworks is TensorFlow Lite. TensorFlow Lite converts standard TensorFlow
models to a format which can be used to run inference on edge devices, other frameworks do not
offer similar functionality. TensorFlow Lite does not support on-edge training, this still has to be done
manually.

6.2. Fashion MNIST Dataset
The dataset used to train the models is the Fashion MNIST dataset [30]. This dataset has similar
characteristics to the MNIST dataset with handwritten [6], but is more challenging. These two datasets
offer a very large train and test set, and due to their popularity they also function as a way to benchmark
the results. A description of the classes of the dataset is provided in Table 6.1. For the models trained
on the Fashion MNIST dataset, a requirement of at least 80% was set. The accuracy requirement is
based on the published accuracy benchmark given in [30]. From the 129 entries, 83 are above 80%,
while only 37 out of 129 are above 85%. An accuracy of 80% is thus about average, although a result
of 99.7% was claimed by [26].

6.3. Metrics
The metrics that were used to compare the performances of the models to each other is shown in Table
6.3. Minimum amount of epochs required was used to limit the training time of the models for both
Google Colab and on hardware. 200 epochs was chosen as an arbitrary cut off, where it is expected
that the improvement from extra epochs has plateaued. From the plotted loss it is then determined how

14
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Label Description
0 T-shirt/top
1 Trouser
2 Pullover
3 Dress
4 Coat
5 Sandal
6 Shirt
7 Sneaker
8 Bag
9 Ankle boot

Table 6.1: A description of the Fashion MNIST classes. [31].

many epochs are required to get within 2% of the minimum validation loss. From preliminary testing it
was found that forward-forward trained models train significantly slower than backpropagation trained
models, for this reason the amount of epochs is reduced to 100. 100 epochs with forward-forward still
trains slower than 200 epochs of backpropagation, but it was also found during preliminary testing that
forward-forward requires more epochs to train. It is also mentioned by [15] that forward-forward takes
more epochs to reach a similar performance to backpropagation. The loss was used since the method
used to train the forward-forward models, train_on_batch(), only returns the loss. The model.fit()
function is able to return both the loss and the accuracy.
The results gathered from the models have been collected in Google Colab1 with automated note-
books. Google Colab was used to provide a test environment with fixed hardware for different users.
Google Colab does not allow the user to choose the hardware, but consistently provides a virtual
environment with comparable specifications, the different hardware configurations that were encoun-
tered are listed in Table 6.2. The most common configuration is the one listed in the first column,
the other configurations were very rarely encountered. The hardware configuration was collected via
either !cat /proc/cpuinfo or !lscpu. The metrics were collected under the assumption that all hard-
ware configurations have equal performance. Since Colab does not give the specific CPU model, only
Intel(R) Xeon(R) CPU, it was not possible to identify performance differences. The L3 cache size and
clock speed did show differences, however it cannot be assumed that performance differences are not
cancelled out by a more powerful CPU core.
A fixed hardware setup is necessary to accurately compare the training and inference time between the
models. After testing the standard TensorFlowmodels and the TensorFlow Lite models, the Lite models
were verified by running inference on a microcontroller, inference on the FPGA was done manually with
the weight and biases of the TensorFlow Lite model.
It is also possible to connect to a Colab environment with a NVIDIA Tesla T4 GPU, but these were often
unavailable, however TensorFlow did not make use of the GPU even when available, so the notebooks
were all run without a GPU.

CPU model Intel(R) Xeon(R) CPU Intel(R) Xeon(R) CPU Intel(R) Xeon(R) CPU
CPU frequency 2.20 MHz 2.30 MHz 2.00 MHz
CPU cores 1 core, 2 threads

L3 cache size 55 MB 45 MB 38.5 MB

Table 6.2: Google Colab hardware specifications.

6.4. Hardware Limitations
The hardware used to verify the models are a Teensy 4.1 microcontroller and a Digilent ZedBoard
with a Xilinx Zynq-7000 System-on-Chip. Google colab does not impose any hardware limitations for
developing and testing the models. The Teensy and the ZedBoard do have some hardware limitations
that have to be accounted for. The Teensy imposes a memory limit, running inference of pre-trained

1https://colab.research.google.com/
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Metrics Description
Accuracy The accuracy of the model on the test dataset

Training time The time to train the complete model
Inference Time The average time to predict one sample
Memory required The model size of the converted TensorFlow

Lite model, split into data buffer and non-data
buffer

Epochs required An estimate, based on the loss, of how many
epochs are required to get within approximately
2% of the minimum loss of the same model

trained for 200 epochs for backpropagation or
100 epochs for forward-forward with a limit for

the training time of 10 minutes.
Accuracy after minimum amount of epochs

required
The accuracy of the model after training for the

minimum amount of epochs required

Table 6.3: The metrics used to compare the models.

(a) The reported size of the TensorFlow Lite model for a single-layer network with 32 neurons.

(b) The model summary of a single-layer network with 32 neurons.

Figure 6.1: TensorFlow Lite model size (a) and the model summary (b) as reported by TensorFlow

models on these requires the model to be loaded into memory. The ZedBoard has 512 MB of DDR3
memory, while the Teensy only has 500 KiB of memory, which can only partially be used to load in the
model, the rest of the memory is taken up by the files needed to inference the model. The ZedBoard
does not have this memory limitation, but it is limited by its use of fixed point arithmetic, this limits its
capability in intensive multiplication operations.

6.4.1. Estimating the Model Size
When converting a TensorFlow model to a TensorFlow Lite model, the size of the resulting model is
also reported, shown in Fig. 6.1a, the size is made up of a data buffer and a non-data buffer. The
data buffer stores the weights and biases of the model. Fig. 6.1b shows the model summary given by
TensorFlow, the number of parameters in total, Total params, and per layer, Param #, represent the
amount of weights and biases of the model. Both of these are from the same single-layer network with
32 neurons. The total number of parameters can be found as

Total params =

n∑
i=1

Li,in × Li,out + Li,out (6.1)



6.5. Developing the Models 17

Layers Neurons per layer (BP) Neurons per layer (FF)
1 430 410
2 309 297
3 259 250

Table 6.4: The maximum hidden layer configuration that can fit in the microcontroller memory for backpropagation (BP) and
forward-forward (FF). The amount of neurons per layer is the same for each layer.

where n is the total number of layers, counting the hidden layers and the output layer, and Lin and Lout

are the input and output shape of layer i respectively. If the same amount of neurons is used for each
layer, this simplifies to 6.2 for Fashion MNIST, with n the amount of hidden layers and L the neurons
per layer.

Total params = (784 + n+ 10)× L+ (n− 1)× L2 + 10 (6.2)

Forward-forward does not require an output layer, this then simplifies to 6.3

Total params = (784 + n)× L+ (n− 1)× L2 (6.3)

For estimating the neurons per layer for the large models, a 5% margin was used. After loading the
required files into the Teensy memory, backpropagation leaves 351KiB of memory available, including
the 5%margin this leaves 334KiB for the model. For forward-forward this is 331KiB and 316KiB with
a 5%margin. The neurons per layer were then found by equating 6.2 or 6.3 to the available memory and
solving for L. Table 6.4 lists these values for the neurons per layer for a single-, two-, and three-layered
network.

6.5. Developing the Models
The models have been developed using existing implementations of the respective algorithms. For
backpropagation, the Fashion MNIST model from the TensorFlow Keras tutorial for classification was
used2. The forward-forward models were generated based on a PyTorch implementation by Pezeshki3
and a TensorFlow implementation by Rajabi4. For Hebbian learning the implementation by Miconi [20]
was used, this was also used by Gupta [11].
First some preliminary tests were done with these implementations, this consisted of first reproducing
the claimed results, after which some simple models were made, these provided more insight into train-
ing time and general performance to be expected, as a last step, these simple models were attempted
to be converted to a TensorFlow Lite model using default optimization, this gives a quantized model with
8-bit weights. The implementations that successfully passed these preliminary tests were then modi-
fied to include automated testing and to be more versatile in training different models. These were then
used to test models in TensorFlow and TensorFlow Lite and to inference on the Teensy microcontroller
and the ZedBoard FPGA.

2https://www.tensorflow.org/tutorials/keras/classification
3https://github.com/mohammadpz/pytorch_forward_forward
4https://github.com/amirrezarajabi/Tensorflow-Forward-Forward



7
Results

This chapter contains all the metrics collected from the developed models. Each model is tested in Ten-
sorFlow (TF) and TensorFlow Lite (TF Lite). All models except the forward-forward reference model,
due to model size limitations, have been inferenced on the Teensy microcontroller (MCU). Some back-
propagation models have also been inferenced on the Digilent ZedBoard (FPGA). Forward-forward
models could not be inferenced on the FPGA due to it requiring normalization of the output of the
layers, this was too computationally expensive for the FPGA.

7.1. Backpropagation
All results shown in this section have been provided with the notebook in Appendix B. The backpropa-
gation trained models consist of an input layer with a size of 784, a flattened Fashion MNIST sample,
and an output layer of 10 neurons, one neuron for each class of the dataset. The hidden layers refer
to the layers in between the input layer and the output layer. The models were converted into a model
with 8-bit integer input and outputs.

7.1.1. Reference Model
The reference model for backpropagation is a model with a single hidden layer with 128 neurons and
the default Adam optimizer, trained for 10 epochs. Table 7.1 shows the results of this model in TF,
TF Lite, on the MCU. Fig. 7.1a shows the loss during training over the epochs. Fig. 7.1b shows the
confusion matrix of the TF model. This model does not predict class 4 and class 6 well, it has a recall
for these classes of 68% and 63% respectively. This is shown in Fig. 7.1b where class 4 is predicted
incorrectly as class 2 for 205 out of 1000 samples. Class 6 is mostly misclassified as classes 0 or 2.
Fig. 7.1c shows the confusion matrix for the converted TF Lite model, a similar pattern can be observed
here. Fig. 7.1d shows the differences in predictions between the TF model and the TF Lite model, this
difference is due to the quantization when converting from a TF model to a TF Lite model.

TF TF Lite MCU
Epochs trained 10 -
Accuracy (%) 87.71 87.66 87.66

Training time (s) 91.61 -
Inference time per sample (µs) 121.59 46.45 248.25

Total model size (KiB) - 101.73 239.90
Data buffer (KiB) - 99.89 134.16

Non-data buffer (KiB) - 1.84 105.74

Table 7.1: The results of the reference model.
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(d) The differences between the predictions of the
TensorFlow and the TensorFlow Lite model.

Figure 7.1: The loss over the epochs and the confusion matrices for the reference model, a single layer model with 128
neurons in the hidden layer, trained for 10 epochs with backpropagation.

7.1.2. Small Single-Layer Model
For the small single-layer model, a size of 32 neurons for the hidden layer was chosen. This size was
chosen in relation to the two-layer model discussed in the next section. The hyperparameters used
for the other backpropagation models were changed from the reference model. Stochastic gradient
descent was used as the optimizer instead of Adam, this allows easier implementation for on-device
training. For the learning rate, the default value for stochastic gradient descent in TensorFlow, of 0.01,
was used. Other hyperparameters for the optimizer are momentum and learning rate decay, the default
optimizer does not use either of these. These are investigated in Section 7.1.4, 7.1.5, and 7.1.6. The
batch size was set to 16, this was empirically found to be the optimal learning rate for on the MCU. A
small batch was chosen as it allows faster learning, this is especially important on hardware with limited
computing power.
This model was first run for 200 epochs, the corresponding loss and accuracy is plotted in Fig. 7.2a
and 7.2b, these plots show that the loss and accuracy both peak between 30 and 40 epochs, after
which the model starts overfitting. The training performance keeps rising, but the test performance
starts to decrease. The amount of epochs required to achieve the minimum loss with a 2% margin is
30 epochs. The loss for the model trained for 30 epochs is shown in Fig. 7.3. Table 7.2 shows the
metrics collected for this model. This model was also used to convert to TF Lite for inference on the
MCU and FPGA, these results are included in Table. 7.2. Similar to the reference model, the accuracy
of the TF Lite model is slightly lower than the TF model due to quantization. The TF Lite model has
the same accuracy in Colab as on the MCU, this is expected, as they use the same TF Lite model for
inference. The accuracy on the FPGA is lower than the TF Lite accuracy, this is because the FPGA
does not use the TF Lite model for inference, instead it manually computes the output of the model via
the weights and biases. The inference time of the TF Lite model is lower than that of the TF model,



7.1. Backpropagation 20

this shows the reduction in complexity of the model after quantization by TensorFlow. The MCU is less
powerful than a computer, so as expected the inference time on the MCU is higher than the TF Lite
model inferenced in Colab. The size of the model listed is reported by PlatformIO, this is a development
tool provided with the microcontroller. The size reported by PlatformIO is significantly bigger than the
TF Lite model size, this is because it includes all the files necessary to run the TF Lite model on the
MCU.
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(a) The training and validation losses plotted over
200 epochs, the vertical lines indicate the required

epochs to train this model.
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Figure 7.2: The loss over the epochs for a single-layer model trained for 200 epochs (a) and the corresponding accuracy (b).
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Figure 7.3: The loss of the final model, trained for 30 epochs

TF TF Lite MCU FPGA
Epochs trained 30 -
Accuracy (%) 86.41 86.33 86.33 85.78

Training time (s) 142.2 -
Inference time per sample (µs) 65.02 34.62 70.19

Total model size (KiB) - 26.42 165.90
Data buffer (KiB) - 25.08 60.16

Non-data buffer (KiB) - 1.34 105.74

Table 7.2: The results of the single hidden layer model trained for 30 epochs.

7.1.3. Two-layer Model
The largest two-layer model that could be trained on the microcontroller is a model with two layers of
32 neurons each. This model was trained with the same hyperparameters as the single-layer model.
The loss of the model over 200 epochs is plotted in Fig. 7.4, the amount of epochs required for this
model was 22 epochs indicated by the orange dotted line. This model required less epochs to train
than the single-layer model, even though it has more weights to train. The single-layer model is likely
more restrictive in training, due to the low amount of neurons the optimizer can utilize. The results of
this model are listed in Table 7.3. The results display a similar behaviour as for the single-layer network,
the effect of TF Lite quantization is small and the TF Lite inference in Colab is equal to the inference
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on the MCU. The performance of the model has increased by about 1% for TF and TF Lite on both
platforms, while the size of the TF Lite file has increased 2.85 KiB.
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Figure 7.4: The loss of the two-layered model over 200 epochs, the dotted lines indicate the number of epochs where the 2%
threshold is reached.

TF TF Lite MCU FPGA
Epochs trained 22 -
Accuracy (%) 87.46 87.36 87.36 86.00
Training time 123.9 -

Inference time per sample (µs) 72.34 37.47 75.2
Total model size (KiB) - 28.53 166.90

Data buffer (KiB) - 26.20 61.16
Non-data buffer (KiB) - 2.33 105.74

Table 7.3: The results of two-layer model trained for 22 epochs.

7.1.4. Single-Layer with Momentum
The single-layer model in Section 7.1.2 did not utilize momentum and learning rate decay, however
these can be used to improve the training time. These two hyperparameters will be investigated in the
following three sections, starting with momentum, followed by learning rate decay, concluding with a
combination of learning rate decay and momentum. Fig. 7.5 shows the loss over 200 epochs for the
model trained with momentum. The epochs required to train this model is 12 epochs, this is significantly
lower than the base single-layer model, however it also overfits the training data at a higher rate. The
results for the model trained with 12 epochs is shown in Table 7.4. The accuracy of the trained model is
very similar to the base single-layer model, but the training time has been reduced by 41.7%. Another
notable result for this model is that the TF accuracy is 0.02% lower than the TF Lite model inferenced
in Colab, while the TF Lite model inferenced on the MCU has the same accuracy as the TF model.
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Figure 7.5: The loss over 200 epochs for a single-layer model with momentum.
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TF TF Lite MCU
Epochs trained 12 -
Accuracy (%) 86.43 86.45 86.43
Training time 82.88 -

Inference time per sample (µs) 69.10 24.83 70.35
Total model size (KiB) - 26.42 165.90

Data buffer (KiB) - 25.08 60.16
Non-data buffer (KiB) - 1.34 105.74

Table 7.4: The results of the single-layer model trained for 12 epochs with momentum.

7.1.5. Single-Layer with Learning Rate Decay
Similar to the model trained with momentum, this model uses the base model discussed in Section
7.1.2. Now a learning rate decay is added, starting from a learning rate of 0.1 decaying every 200
batches by 5%, until a minimum learning rate of 0.01. The loss of this model is plotted in Fig. 7.6.
The model requires 26 epochs to train. The results after 26 epochs are listed in Table 7.5. Looking at
the results, it performs on par with the other base single-layer model and the single-layer model with
momentum, however, its training time is significantly higher at 262.6 seconds, even though the amount
of epochs is lower. This could be attributed to the additional task of keeping track of the learning rate
and the number of batches.
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Figure 7.6: The loss of a single-layer model with learning rate decay.

TF TF Lite MCU
Epochs trained 26 -
Accuracy (%) 86.74 86.68 86.68
Training time 262.6 -

Inference time per sample (µs) 86.97 30.55 70.10
Total model size (KiB) - 26.42 165.90

Data buffer (KiB) - 25.08 60.16
Non-data buffer (KiB) - 1.34 105.74

Table 7.5: The results of the single-layer model trained for 26 epochs with learning rate decay.

7.1.6. Single-Layer with Learning Rate Decay and Momentum
This model combines the learning rate decay of Section 7.1.5 and the momentum of Section 7.1.4.
The loss is plotted in Fig. 7.7 and the results are given in Table 7.6. The plotted loss shows a very
different behaviour compared to the previously trainedmodels, it drops very fast and almost immediately
plateaus, however according to the epochs required metric defined in Chapter 6, this model requires
76 epochs to train, resulting in a training time over the limit of 10 minutes. Furthermore, the accuracy of
this model, even after 76 epochs, is significantly lower at 80.51%. It is then clear that this combination
of learning rate decay and momentum does not work. Another observation about this model is that,
similar to the model from Section 7.1.4, the TF Lite accuracy is higher than the TF accuracy and the
MCU inference result is again 0.02% lower than the TF Lite inference in Colab.
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Figure 7.7: The loss for the single-layer model with learning rate decay and momentum plotted over 200 epochs.
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Figure 7.8: The loss plotted over 100 epochs for a single-layer model with 430 neurons in the hidden layer.

TF TF Lite MCU
Epochs trained 76 -
Accuracy (%) 80.51 80.60 80.58
Training time 682.96 -

Inference time per sample (µs) 74.21 38.99 69.99
Total model size (KiB) - 26.42 165.90

Data buffer (KiB) - 25.08 60.16
Non-data buffer (KiB) - 1.34 105.74

Table 7.6: The results of the single-layer model trained for 76 epochs with learning rate decay and momentum.

7.1.7. Largest Single-Layer Model
The largest pre-trained single-layer backpropagation model that was estimated to fit into the available
memory of the MCU consists of one layer of 430 neurons. This model was trained with the same
hyperparameters as the single-layer model from Section 7.1.2. Fig. 7.8 shows the loss during training
again, this model was only trained until 100 epochs to save time, however it still shows that the test
loss goes up after 60 epochs. This model required 37 epochs to train, the results are given in Table 7.7.
The size on the MCU came out to be 475.9KiB, 24.1KiB short of the 500KiB memory on the MCU.

TF TF Lite MCU
Epochs trained 37 -
Accuracy (%) 87.6 87.72 87.73
Training time 530.81 -

Inference time per sample (µs) 137.95 49.48 819.45
Total model size (KiB) - 337.09 475.90

Data buffer (KiB) - 335.24 370.16
Non-data buffer (KiB) - 1.85 105.74

Table 7.7: The results of the largest single-layer model that fits on the MCU.
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7.1.8. Largest Two-Layer Model
The largest two layer model that can fit into the MCU memory was estimated to be two layers of 309
neurons each. This model trained faster than the Large single-layer model, requiring only 20 epochs
to train. The results of this model are shown in Table 7.8.

TF TF Lite MCU
Epochs trained 20 -
Accuracy (%) 88.13 88.18 87.73
Training time 322.11 -

Inference time per sample (µs) 143.11 50.83 819.45
Total model size (KiB) - 337.72 475.90

Data buffer (KiB) - 335.39 370.16
Non-data buffer (KiB) - 2.33 105.74

Table 7.8: The results of the largest two-layer model that fits on the MCU.

7.1.9. Largest Three-Layer Model
The largest three layer configuration that fits in the MCU memory was estimated at three layers of 259
neurons each. The results for this model are show n in Table 7.9.

TF TF Lite MCU
Epochs trained 16 -
Accuracy (%) 87.90 87.99 87.97
Training time 326.90 -

Inference time per sample (µs) 118.06 57.64 1010.86
Total model size (KiB) - 337.87 475.90

Data buffer (KiB) - 335.02 370.16
Non-data buffer (KiB) - 2.85 105.74

Table 7.9: The results of the largest three-layer model that fits on the MCU.

7.1.10. Summarizing the Backpropagation Results
The overall behaviour of the backpropagation models was very similar. The models did not require a
long training time and started overfitting when training for a high amount of epochs. The conversion
from TF to TF Lite consistently resulted in TF Lite models with a similar accuracy compared to the
original TF model, however for the small models the conversion resulted in a slight drop in accuracy,
while for the large models this resulted in a slight increase. The TF Lite models inferenced on the MCU
either had the same accuracy as the TF Lite file inference in Colab or were off by 0.02 percentage points.
This deviation is very likely the result of rounding errors on the MCU, as it only reports the accuracy
up to 2 decimals. The backpropagation model with the highest accuracy is the largest two-layer model
from Section 7.1.8, however the three-layer model is almost identical in performance and training time.
The performance of the large single-layer model is not far behind, but this model requires at least a
60% longer training time.

7.2. Forward-Forward
The results for the forward-forward algorithm follow a similar structure as the previous section. First
a reference model is provided as a baseline, then small models are presented that can be trained on
the MCU, finally, results of models are presented that maximize the memory of the MCU. In addition,
some experiments with different hyperparameters per layer have been done. The TF Lite models for
forward-forward have 32-bit float inputs and outputs, the inputs and outputs could not be converted to
8-bit integers.

7.2.1. Reference Models
For the forward-forward algorithm there are two reference models, the first reference model is the
model provided with the TensorFlow implementation of the forward-forward algorithm by [1]. This model
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consists of two layers of 500 neurons each. This model is trained with the default Adam optimizer, a
batch size of 1000, and 1000 epochs. The losses during training are shown in Fig. 7.9, since the
layers are trained independently, the losses are also independent per layer. The results for this model
are summarized in Table 7.10. The table also lists the accuracy of only the output of the first layer, since
the classification of forward-forward is based on the output of each layer it is possible to investigate
each layer separately.
For inference each input is encoded once with each label, the classification is then equal to the encoded
label that resulted in the highest accumulated goodness of all layers. Hinton [15] mentions that the
output of the first hidden layer should not be used for this, however this makes it impossible to test
single-layer models. For this reason the inference is kept as is in [1], where each layer contributes to
the accumulated goodness.
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(a) The positive and negative loss of the first layer
of the model.
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Figure 7.9: The positive and negative losses over the epochs for both layers of the reference model.

TF TF first layer only TF Lite TF Lite first layer only
Epochs trained 1000 -
Accuracy (%) 87.43 87.67 87.36 88.07
Training time 2435.13 -

Inference time per sample (µs) 2430.55 1416.96
Total model size (KiB) - 633.95 386.32

Data buffer (KiB) - 631.06 384.87
Non-data buffer (KiB) - 2.89 1.45

Table 7.10: The results of the forward-forward reference model.

The second reference model is the model described in [15], this is a network with four layers of 2000
neurons each. This model is trained for 60 epochs with a batch size of 500 and multiple learning
rates for different parts of the training. This model was first attempted to be trained using the same
hyperparameters as the first reference model with the TensorFlow implementation. However when
attempting to inference this model in Colab after training, the notebook crashes due to the inference
process exceeding the available ram in Colab.

7.2.2. Hyperparameters
For the forward-forward algorithm a few hyperparameters were adjusted, the batch size was increased
to 32 and the learning rate was increased to 0.1. From preliminary testing with the Teensy it was found
that with the hyperparameters used for backpropagation, the model cannot be trained on-edge. The
amount of epochs the models are trained for was also adjusted for forward-forward. Due to the need
for positive and negative data passes in combination with the small batch size, the training time has
significantly increased compared to the same model configurations in backpropagation. All forward-
forward models were trained with the amount of epochs estimated to take 10 minutes to train.
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7.2.3. Small Single-Layer Network
The first model that was trained was a small single layer network with 32 neurons, similar to the model
discussed in Section 7.1.2. The losses for the small single-layer model are plotted in Fig. 7.10, these
plots show that training up to 80 epochs would better minimize the losses, however this would take 36
minutes to train, as 100 epochs took 45 minutes to train. At 100 epochs the model reached an accuracy
of 85.13%. The results for the model trained for 20 epochs are listed in Table 7.11.
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(a) The positive and negative losses over 100
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Figure 7.10: The positive and negative losses for 100 epochs (a) compared to 20 epochs (b).

TF TF Lite MCU
Epochs trained 20 -
Accuracy (%) 82.43 68.9 69.66
Training time 584.73 -

Inference time per sample (µs) 604.1 8771.5 1065.4
Total model size (KiB) - 26.8 184.83

Data buffer (KiB) - 25.32 83.84
Non-data buffer (KiB) - 1.48 101.99

Table 7.11: The results of the single-layer forward-forward model.

Comparing this model to backpropagation, a lot of differences can be observed. Forward-forward
requires more epochs to train and each epoch takes longer to finish. The TF accuracy is almost 4
percentage points lower than backpropagation, but the TF Lite accuracies have dropped more than 15
points. This difference could be attributed to the effect of quantization, as the forward-forward model
has not been trained as well as the backpropagation model when comparing the losses. The less
trained forward-forward model could be more sensitive to the small perturbations of the weights as a
result of quantization. This effect can be observed by looking at the confusion matrices shown in Fig.
7.11 Both of the matrices originate from the same TF model, but the result from the model converted
to TF Lite is very different.
The last difference is the inference time. With how inference is performed, it is expected to have up
to a 10 times increase in inference time. However the inference time for TF Lite on computer is more
than 200 times higher compared to backpropagation.



7.2. Forward-Forward 27

0 1 2 3 4 5 6 7 8 9
Predicted label

0
1

2
3

4
5

6
7

8
9

Tr
ue

 la
be

l

812 4 24 74 4 4 54 0 24 0

3 934 13 43 5 0 0 0 2 0

9 3 798 11 128 0 39 0 12 0

30 14 16 894 19 0 23 0 3 1

1 2 175 59 711 0 45 0 7 0

0 0 0 1 0 887 0 60 10 42

193 3 169 69 139 0 393 0 34 0

0 0 0 0 0 36 0 916 0 48

2 1 12 18 1 3 7 4 951 1

0 0 0 1 0 9 0 42 1 947

TF confusion matrix

0

200

400

600

800

(a) The confusion matrix of the TF model.
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(b) The confusion matrix of the TF Lite model.

Figure 7.11: The confusion matrix of the TF model (a) and the TF Lite model (b).

7.2.4. Small Single-Layer with Momentum
The single-layer forward-forward model was also tested with momentum. Momentum proved to sig-
nificantly improve the training time of the standard single-layer backpropagation model. Learning rate
decay and learning rate decay with momentum were not tested, as those did not show the same level of
improvement over the standard single-layer model. The results are shown in Table 7.12. The accuracy
has increased slightly, however the TF Lite accuracies decreased.

TF TF Lite MCU
Epochs trained 20 -
Accuracy (%) 83.1 68.73 66.83
Training time 457.15 -

Inference time per sample (µs) 778.2 14222.3 1005.9
Total model size (KiB) - 26.17 185.83

Data buffer (KiB) - 24.72 83.84
Non-data buffer (KiB) - 1.45 101.99

Table 7.12: The results of the single-layer model with momentum.

7.2.5. Small Two-Layer Network
This two-layer network is similar to the model discussed in Section 7.1.3. This model was trained for
10 epochs. The results of this network are listed in Table 7.13. The losses of the layers are plotted in
Fig. 7.12. The losses of the first layer behave similar to that of the single-layer model, however, for the
second layer the loss barely changes. The next two sections will investigate two ways to increase the
loss reduction in the second layer.

TF TF first layer only TF Lite TF Lite first layer only MCU
Epochs trained 10 10 -
Accuracy (%) 79.46 79.61 59.79 72.10 52.87
Training time 570.06 -

Inference time per sample (µs) 1374.0 619.8 16075.0 8173.4 1200.87
Total model size (KiB) - 28.84 26.17 186.83

Data buffer (KiB) - 25.95 24.72 84.84
Non-data buffer (KiB) - 2.89 1.45 101.99

Table 7.13: The results of the small two-layer forward-forward model.
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(a) The losses of the first layer.
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(b) The losses of the second layer.

Figure 7.12

7.2.6. Small Two-Layer with Variable Epochs
For this experiment the second layer of the two-layer model was trained with an additional 10 epochs.
The layer configuration was unchanged from the two-layer network. For this test, the time limit was
not enforced to isolate the effect of this. To enforce the time limit the epochs of the first layer would
have to be reduced, this would obfuscate the effect of the additional epochs on the second layer. The
results are listed in Table 7.14. Adding 10 epochs to the second layer did not significantly increase the
performance of the model.

TF TF first layer only TF Lite TF Lite first layer only MCU
Epochs trained 10-20 10 -
Accuracy (%) 79.67 80.32 53.03 61.85 52.87
Training time 677.31 -

Inference time per sample (µs) 1999.11 690.98 14472.08 29368.37 1200.87
Total model size (KiB) - 28.84 26.17 186.83

Data buffer (KiB) - 25.95 24.72 84.84
Non-data buffer (KiB) - 2.89 1.45 101.99

Table 7.14: The results of the two-layer forward-forward model trained with 10 additional epochs for the second layer.

7.2.7. Small Two-Layer with Variable Learning Rate
Another way to reduce the loss in the second layer is to use a higher learning rate to train the second
layer. The training parameters for the first layer remain unchanged, only the learning rate of the second
layer was increased from 0.1 to 10. Themodel was trained for 10 epochs, similar to themodel in Section
7.2.5. The losses of this model are plotted in 7.13, the results are listed in Table 7.15.
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(a) The positive and negative losses over 10
epochs for the first layer with a learning rate of 0.1.
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Figure 7.13: The positive and negative losses for the first layer with the unmodified learning rate (a) and for the second layer
with the learning rate increased to 10 (b).
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TF TF first layer only TF Lite TF Lite first layer only MCU
Epochs trained 10 10 -
Accuracy (%) 79.74 80.18 73.81 76.19 75.87
Training time -

Inference time per sample (µs) 3102.70 729.827 27784.14 13319.48 1200.42
Total model size (KiB) - 28.84 26.17 186.83

Data buffer (KiB) - 25.95 24.72 84.84
Non-data buffer (KiB) - 2.89 1.45 101.99

Table 7.15: The results of the two-layer forward-forward model trained with a learning rate of 10 for the second layer.

7.2.8. Largest Single-Layer Model
The largest single-layer model that was estimated to fit on the microcontroller consists of a single layer
of 410 neurons. This model was trained with two different optimizers, Table 7.16 shows the model
trained with stochastic gradient descent, Table 7.17 shows the same model trained with the Adam
optimizer. The results show that the Adam optimizer achieved a higher accuracy, while training for less
total time, even though it was trained with five more epochs.
The losses of both models are plotted in Fig. 7.14, these plots show that the Adam optimizer reduces
the loss at a much faster rate compared to stochastic gradient descent.

TF TF Lite MCU
Epochs trained 15 -
Accuracy (%) 61.95 61.97 65.70
Training time 567.46 -

Inference time per sample (µs) 1114.07 9554.99 7675.65
Total model size (KiB) - 317.06 476.89

Data buffer (KiB) - 315.61 374.84
Non-data buffer (KiB) - 1.45 102.05

Table 7.16: The largest single-layer model that was estimated to fit on the MCU trained with stochastic gradient descent.

TF TF Lite MCU
Epochs trained 20 -
Accuracy (%) 85.64 85.66 86.85
Training time 474.20 -

Inference time per sample (µs) 699.32 13447.59 7648.63
Total model size (KiB) - 317.06 476.89

Data buffer (KiB) - 315.61 374.84
Non-data buffer (KiB) - 1.45 102.05

Table 7.17: The largest single-layer model that was estimated to fit on the MCU trained with the Adam optimizer.
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(b) The confusion matrix of the TF Lite model.

Figure 7.14: The losses of the model trained with the Adam optimizer.

7.2.9. Largest Two-layer Model
The largest two-layer model to fit in the MCU was estimated at two layers of 297 neurons. This model
has also been trained with both stochastic gradient descent and the Adam optimizer. Table 7.18 shows
the model trained with Stochastic gradient descent, Table 7.20 shows the model trained with the Adam
optimizer. Comparing the losses in Fig. 7.15 and Fig. 7.16 shows again that the Adam optimizer
minimizes the loss at a faster rate. Fig. 7.15b also shows an example where the negative losses are
increased to lower the total losses.

TF TF first layer only TF Lite TF Lite first layer only MCU
Epochs trained 8 8 -
Accuracy (%) 62.54 60.70 62.43 61.30 64.24
Training time 581.91 -

Inference time per sample (µs) 1451.01 1098.97 19458.95 9886.53 9714.12
Total model size (KiB) - 318.96 230.09 476.89

Data buffer (KiB) - 316.06 228.65 374.84
Non-data buffer (KiB) - 2.90 1.44 102.05

Table 7.18: The results of the two-layer forward-forward model trained with stochastic gradient descent.

TF TF first layer only TF Lite TF Lite first layer only MCU
Epochs trained 10 10 -
Accuracy (%) 83.11 83.81 83.24 83.76 83.90
Training time 490.32 -

Inference time per sample (µs) 1416.64 741.67 27784.14 13319.48 9590.32
Total model size (KiB) - 318.94 230.09 476.89

Data buffer (KiB) - 316.05 228.65 374.84
Non-data buffer (KiB) - 2.89 1.44 102.05

Table 7.19: The results of the two-layer forward-forward model trained with the Adam optimizer.
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Figure 7.15: The losses of the model trained with stochastic gradient descent.
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Figure 7.16: The losses of the model trained with the Adam optimizer plotted per layer.

7.2.10. Largest Three-Layer Model
The largest three-layer forward-forward model that fits on the MCU was estimated at three layers of
250 neurons. Table 7.20 shows the results of this model. This model is only shown trained with the
Adam optimizer, Section 7.2.8 and 7.2.9 have already proven that for these models, stochastic gradient
descent is inadequate. The training time is above the 10 minute limit, the amount of epochs to reach
this limit was overestimated.

TF TF Lite
Full model 1 layer 2 layers Full model 1 layer 2 layers MCU

Epochs trained 10 -
Accuracy (%) 81.03 81.77 81.22 81.13 81.82 81.22 82.54
Training time 644.20 -

Inference time per sample (µs) 2629.48 869.67 1592.97 28332.14 9512.58 19753.60 10227.29
Total model size (KiB) - 351.04 193.92 257.48 476.89

Data buffer (KiB) - 346.70 192.48 254.59 373.84
Non-data buffer (KiB) - 4.34 1.44 2.89 102.05

Table 7.20: The results of the two-layer forward-forward model trained with the Adam optimizer.

7.2.11. Summarizing the Forward-Forward Results
Compared to backpropagation, forward-forward needs more epochs to train and the time each epoch
takes is also longer. Regarding performance, the accuracy of backpropagation for the same model
topology is higher. The inference time is also much lower for backpropagation than for forward-forward.
A forward-forward network can fit more neurons in the hidden layers compared to backpropagation,
since it does not require an output layer, however this is canceled out on the MCU because it needs
more memory dedicated to the code to run inference.
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The best performing forward-forward model was the reference model, however this model was trained
for 1000 epochs and does not fit on the MCU. The next best performing model was the largest single-
layer model trained with Adam. However, the Adam optimizer is much more powerful than stochastic
gradient descent, this cannot be compared to the backpropagation models, which have all been trained
with stochastic gradient descent.
The best performing model using stochastic gradient descent was the small-single layer model trained
with momentum with an accuracy of 83.1%. The best performing TF Lite model trained with stochastic
gradient descent was the small single-layer model trained with a variable learning rate.

7.3. Hebbian Learning
For Hebbian learning only preliminary testing was done. The results claimed by [11] were reproduced
and some models were made for testing. This implementation was chosen as it is accessible and it
claimed to rival backpropagation in some scenarios. Because this was written in PyTorch, it would first
have to be rewritten in TensorFlow in order to convert to TensorFlow Lite. However, it was decided not to
proceed with Hebbian Learning. The main reason for this is time constraints, implementing on-device
training would likely not be possible in time, it was also expected that converting the whole code to
TensorFlow would lead to unexpected problems and delays. Another reason is that during preliminary
testing, it was found that the results were not as good as backpropagation and forward-forward.
The results of the preliminary testing are listed in Table 7.21. These results have also been collected
in Google Colab, however this was with the use of a GPU. The testing was done without modifications
of the hyperparameters and with the use of Instar rule for Hebbian learning.
Other implementations were considered, however most that were found showed similar shortcomings.
The most promising Hebbian learning implementation for this application was HebbNet [10]. HebbNet
was claimed to achieve an accuracy of 93% on the MNIST dataset with the aid of thresholding and
sparsity. However, HebbNet required a hidden layer of 2000 neurons and 200 epochs to train to achieve
this result. HebbNet could not be tested however, the original implementation was not available for use
and the attempts to reproduce it were unsuccessful.

Layer configuration Test Accuracy (%) Epochs trained Training Time (s)
100-196-400 68.82 100 1421.38
32-32-32 51.20 20 294.07
50-50-50 54.39 20 300.71

100-100-100 62.52 20 302.95
500-500-500 69.36 40 1385.25

Table 7.21: Preliminary test results for Hebbian Learning.

7.4. Online Learning
A few models have also been trained on the MCU and the FPGA, the results of this are included in
Appendix A. This will be referred to in Chapter 8.



8
Conclusion and Discussion

In all the tests that have been performed, backpropagation has proven to perform the best in all aspects
that have been measured. The accuracy of backpropagation in both TensorFlow and TensorFlow Lite
is higher than comparable forward-forward models, furthermore it trains faster, both in terms of epoch
required to train and time per epoch. Lastly, it inferences faster. However, forward-forward has the
capacity to rival backprop, in most cases it is only a few percentage points behind backpropagation.
The main problems found with forward-forward is that it takes significantly longer to train and multi-
layered forward-forward can decrease performance compared to a single-layer forward-forward net-
work. Another problem, specific to hardware applications, is that a sub-optimally trained forward-
forward model is very sensitive to quantization. After conversion to a TensorFlow Lite model the accu-
racy dropped by more than 10 percentage points in multiple cases. Although, on-edge training resulted
in similar accuracy as the model trained in TensorFlow.
The longer training time of forward-forward is the result of the positive and negative data requiring
multiple passes through the network. This training process did not prove beneficial in this application,
however it might perform better in a scenario with limited training data, where the benefit of making
negative data is not negated by an abundance of positive data.
A potential benefit of forward-forward over backpropagation is that the layers are trained independently.
This property was utilized in the forward-forward model with variable learning rate in Section 7.2.7. The
ability to change training parameters per layer offers more possibilities in optimizing the training process
compared to backpropagation.
Hebbian was not thoroughly investigated but it did not display the potential to rival backpropagation. The
results from preliminary testing showed a performance of below 70% on the Fashion MNIST dataset
on all tested configurations. This is 10 points below the requirement of 80%. This indicated that for
smaller models for the MCU and FPGA, the performance would likely be even lower.

8.1. Future Research
There is still a lot of research that can be done following from what has been done in this paper:

• For some specific scenarios, the subsequent layer of a forward-forward trained model did improve
accuracy. Which parameters and hyperparameters cause the subsequent layer of a multi-layered
model to increase performance?

• The independent training of forward-forward allows any kind of processing to happen in between
the layers. How would forward-forward perform when another model or black box was inserted
between the layers?

• How could hyperparameters customized per layer affect the performance of the forward-forward
algorithm?

• One of the biggest drawbacks of forward-forward is the training time. Can the training time of
forward-forward be accelerated with specialized hardware or on specialized hardware?
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A
Measurements Of All Subgroups

BP Single layer 32 Dual layer 32-32 !!! Single layer 32 + LR Decay Single layer 32 + Momentum + decay Single layer 32 + Momentum
LR = 0.01, Batch size = 16 LR = 0.01, Batch size = 16 LR = 0.1, Every 200 batches LR = LR*0.95, Min LR = 0.01, Batch size = 16 LR = 0.1, Every 200 batches LR = LR*0.95, Min LR = 0.01, Batch size = 16, Momentum = 0.9 LR = 0.01, Batch size = 16

Fashion MNIST TF (PC) TF Lite (PC) FPGA TF Lite (MCU) Local MCU TF (PC) TF Lite (PC) TF Lite (MCU) Local MCU FPGA TF (PC) TF Lite (PC) TF Lite (MCU) Local MCU TF (PC) TF Lite (PC) TF Lite (MCU) Local MCU TF (PC) TF Lite (PC) TF Lite (MCU) Local (MCU)
Datatype fp32 int8 int8 int8 fp32 fp32 int8 int8 fp32 int8 fp32 int8 int8 fp32 fp32 int8 int8 fp32 fp32 int8 int8 fp32
Accuracy on test set after 1 epoch 80.72 – – – 79.99 81.03 – – 80.06 84.17 – – 84.04 60.5 – – 84.57 83.05 – – 81.54
Accuracy on test set after 5 epoch 85 – – – 84.54 85.07 – – 85.69 85.8 – – 85.91 80.34 – – 85.81 85.95 – – 85.49
Accuracy on test set after 10 epochs 85.82 – – – 85.63 86.66 – – 86.84 86.23 – – 86.48 83.03 – – 86.46 86.94 – – 86.7
Epochs trained 30 – – – 10 22 – – 10 26 – – 10 76 – – 12 – – 10
Accuracy for given epochs 86.41 86.33 85.53 86.33 – 87.46 87.36 87.36 – 85.67 86.74 86.68 86.68 – 80.51 80.6 80.58 86.43 86.45 86.43 –
Memory required (KiB) (Variable | Code) – 25.68|1.34 25.08 | 1.34 60.16 | 105.74 265.22 | 99.90 – 26.20 | 2.33 61.16|105.74 278.47 | 102.02 – 25.08 | 1.34 60.16|105.74 265.22 | 99.90 25.08 | 1.34 60.16|105.74 265.2 | 100.5 – 25.08 | 1.34 60.16|105.74 265.22 | 100.52
Inference time per sample(us) 65.02 34.62 14.38 70.19 258.4 72.34 37.47 75.2 270.04 15.24 86.97 30.55 70.1 258.4 74.21 38.99 69.99 ?? 69.1 24.83 70.35 258.3
Training time (s) 142.2 – - – 372.9 123.9 – – 396.6 262.6 – – 372.9 682.96 – – ?? 82.88 – – 378.6
Training time per epoch (s) 4.74 – – – 37.29 5.63 – – 39.66 10.1 – – 37.29 8.99 – – ?? 6.91 – – 37.86
Energy / inference (mJ) – – 0.028 0.046 0.171 – – 0.05 0.179 0.029 – – 0.046 0.199 – – – ?? – – 0.047 0.171

FF Single layer 32 SL32 S. L. 104 Dual layer 32-32 lr=0.1 Dual layer 32-32 lr0.1 - 10 Single layer 32 + momentum
Fashion MNIST TF (PC) TF Lite (PC) TF Lite (MCU) Local MCU 32 Local MCU 16 FPGA quantized FPGA TF (PC) TF Lite (PC) TF Lite (MCU) Local MCU TF (PC) TF Lite (PC) TF Lite (MCU) Local MCU 32 Local MCU 16 TF (PC) TF Lite (PC) TF Lite (MCU) Local MCU
Accuracy on test set after 1 epoch 62.02 69.32 0.6187 70.29 59.52 70.02
Accuracy on test set after 5 epochs 76.68 82.26 0.6963 73.08 79.42 81.93
Accuracy on test set after 10 epochs 80.9 83.74 0.6979 73.68 81.21 82.06
Epochs trained 20 10 10 10 4 10 – – 10 10 20
Total training time (s) 584.73 570.06 – – 1063 457.15
On device training time per epoch (s) – 71.18 71.18 5.07-6.16s/epoch 57.006 – – 106.3 106.3
Accuracy after epochs trained 82.43 68.9 69.66 – 69.79 74.2 79.46 59.79 67.93 81.59 83.1 68.73 66.83
Memory required (kB) (Variable | Code) 25.32|1.48 57.06 | 105.18 318.19 | 98.09 267.06 | 98.09 256.5 (BRAM)???? 26.58|2.96 70.47 | 105.18 327.31 | 99.21 274.19 | 99.21 25.32|1.48 185.83|101.99
Inference time per example(us) (all labels) 604.1 8771.5 1065.4 2533.27 2533.27 100.46 1374 16065 1189.1 2794.27 2794.27 778.2 14222 1005.9
Energy / inference (mJ) 0.707 1.676 1.676 0.19 – – 0.79 1.848 1.848
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B
Model Generation and Testing

Notebooks

This appendix contains the notebooks that were developed during the project.

B.1. Backpropagation Notebook
This is the code used to generate, convert, and test models trained with backpropagation. The notebook
was converted to a .py file for ease of reading.

1 # -*- coding: utf-8 -*-
2 """bp_model_test.ipynb
3

4 Automatically generated by Colaboratory.
5

6 Original file is located at
7 https://colab.research.google.com/drive/15wB5w-aohAvIT4rnjqSIOEmWyTHYOH8q
8 """
9

10 import tensorflow as tf
11 from tensorflow import keras as keras
12 from keras.models import Sequential
13 from keras.layers import Dense, InputLayer
14 from keras.optimizers import Adam
15 from keras.datasets import mnist, fashion_mnist
16 from keras.utils import to_categorical
17 from keras.optimizers import SGD
18 from sklearn.metrics import confusion_matrix, classification_report
19 import matplotlib.pyplot as plt
20 import numpy as np
21 import time
22 import os
23 import pickle
24 import seaborn as sn
25 import pandas as pd
26 from tensorflow.lite.python.util import convert_bytes_to_c_source
27

28 !unzip bp_model_32_200-30ep_lr0.01_b16.zip -d /content
29

30 !nvidia-smi
31 !cat /proc/cpuinfo
32

37



B.1. Backpropagation Notebook 38

33 TRAIN = False # set to True to train the model, False to load the model from file
34

35 # hyperparameters
36 batch_size = 16
37 epochs = 200
38 learning_rate = 0.01
39 momentum = 0.0 #0.9
40

41 # dataset to use
42 dataset = {1: "mnist", 2: "fashion_mnist"}
43 # set the dataset to use
44 datanum = 2 # 1 for mnist, 2 for fashion mnist
45

46 layer_config = [40,20] # number of neurons in the hidden layers [x,y, ...] = 784->x->y->...->10
47

48 # location to save the model
49 saved_model_folder = "Meta_data_and_data_models"
50

51 file_path = os.getcwd() # os.path.dirname(os.path.realpath(__file__))
52 saved_model_path = file_path+"/"+saved_model_folder+"/"
53

54 # if folder does not exist, create it
55 if not os.path.exists(saved_model_path):
56 os.makedirs(saved_model_path)
57 print("---------------------------------------------------------")
58 print("Created directory: ", saved_model_path)
59 print("---------------------------------------------------------")
60 # write txt file with readme
61 txt = """ In this folder will the models and meta model files be stored.
62 regular model => .h5
63 lite model => .tflite
64 _his => training history information
65 _time => average time of one epoch when training
66 # base_name explained e.g: SGD_backprop_mnist_L32_B32_E5_LR0.01_M0.9
67 # L32: 32 neurons in the hidden layer
68 # B32: batch size 32
69 # E5: 5 epochs
70 # LR0.01: learning rate 0.01
71 # M0.9: momentum 0.9"""
72 with open(saved_model_path+"readme.txt", "w") as f:
73 f.write(txt)
74

75

76 # base_name explained e.g: SGD_backprop_mnist_L32_B32_E5_LR0.01_M0.9
77 # L32: 32 neurons in the hidden layer
78 # B32: batch size 32
79 # E5: 5 epochs
80 # LR0.01: learning rate 0.01
81 # M0.9: momentum 0.9
82 base_name = "SGD_backprop_"+dataset[datanum]+"_" + str("".join([f"L{x}" for x in layer_config]))+"_BS"+str(batch_size)+"_E"+str(epochs)+"_LR"+str(learning_rate)+"_M"+str(momentum)
83

84 # train is False if file exists
85 if os.path.isfile(saved_model_path+base_name) and os.path.isfile(saved_model_path+base_name+"_his.pickle") and os.path.isfile(saved_model_path+base_name+"_time.pickle") and os.path.isfile(saved_model_path+base_name+".tflite"):
86 TRAIN = False
87 print("---------------------------------------------------------")
88 print("Configurations of the model found, loading model...")
89 print("---------------------------------------------------------")
90 else:
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91 print("---------------------------------------------------------")
92 print("Configurations of the model not found, training model...")
93 print("---------------------------------------------------------")
94

95 # Load the MNIST dataset
96 (train_images, train_labels), (test_images, test_labels) = mnist.load_data() if datanum == 1 else fashion_mnist.load_data()
97

98 # Normalize pixel values to be between 0 and 1
99 train_images = train_images.astype(np.float32)/255

100 test_images = test_images.astype(np.float32)/255
101

102 train_images = train_images.reshape(-1, 784)
103 test_images = test_images.reshape(-1, 784)
104

105 # Convert labels to one-hot encoding
106 train_labels = to_categorical(train_labels)
107 test_labels = to_categorical(test_labels)
108

109 # Define the model architecture
110 if TRAIN:
111 model = Sequential([InputLayer(input_shape=(784,))]+[Dense(x, activation='relu') for x in layer_config]
112 +[Dense(10, activation='softmax')])
113 # Compile the model
114 model.compile(loss='categorical_crossentropy',
115 optimizer=SGD(learning_rate=learning_rate, momentum=momentum),
116 metrics=['accuracy'])
117 model.summary()
118 start = time.time()
119 his = model.fit(train_images, train_labels, epochs=epochs, batch_size=batch_size,
120 validation_data=(test_images, test_labels))
121 end = time.time()
122 training_time = (end-start)
123 # save model als pickle
124 model.save(saved_model_path+base_name)
125 # save history
126 train_acc = his.history['accuracy']
127 train_loss = his.history['loss']
128 val_loss = his.history['val_loss']
129 val_acc = his.history['val_accuracy']
130 # save train_acc and val_acc
131 pickle.dump([train_acc, val_acc], open(saved_model_path+base_name+"_acc.pickle", 'wb'))
132 pickle.dump([train_loss, val_loss], open(saved_model_path+base_name+"_loss.pickle", 'wb'))
133 pickle.dump(training_time, open(saved_model_path+base_name+"_time.pickle", 'wb'))
134

135 else:
136 # load the model
137 model = tf.keras.models.load_model(saved_model_path+base_name)
138 # load the history
139 train_acc, val_acc = pickle.load(open(saved_model_path+base_name+"_acc.pickle", 'rb'))
140 train_loss, val_loss = pickle.load(open(saved_model_path+base_name+"_loss.pickle", 'rb'))
141 training_time = pickle.load(open(saved_model_path+base_name+"_time.pickle", 'rb'))
142

143 #loss, tf_accuracy = model.evaluate(test_images, test_labels)
144

145 # first and fifth acc and loss of train and val
146 val_acc_e1 = val_acc[0]*100
147 val_acc_e5 = val_acc[5]*100
148 index_max_val = np.argmax(val_acc)
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149 index_max_train = np.argmax(train_acc)
150 max_val = val_acc[index_max_val]*100
151 max_train = train_acc[index_max_train]*100
152

153 print(f"\nMax training acc: {max_train}")
154 print(f"Max validation acc: {max_val}\n")
155

156 #plot loss over epochs
157 val_loss_idx = np.where(val_loss <= np.min(val_loss)*1.02)
158 train_loss_idx = np.where(train_loss <= np.min(train_loss)*1.02)
159 opt_epochs = train_loss_idx[train_loss_idx == val_loss_idx][0]
160

161

162 #plot accruacy over epochs
163 y_ax = range(1, epochs+1)
164 plt.plot(y_ax, train_loss, label='Training loss')
165 plt.plot(y_ax, val_loss, label='Validation loss')
166 plt.title('Loss over epochs')
167 plt.xlabel('Epochs')
168 plt.ylabel('Loss')
169 plt.legend()
170 plt.ylim([np.min(train_loss) - 0.1, np.max(train_loss) +0.1])
171 plt.savefig(f"bp_loss_epochs_{base_name}.eps")
172 plt.show()
173 print(f"training loss within 2% of minimum at epoch {train_loss_idx[0][0]},
174 validation loss {val_loss_idx[0][0]}")
175

176 # size of full model
177 tf_size = os.path.getsize(saved_model_path+base_name)
178 print(f"\nSize of full TF model: {tf_size} Bytes\n")
179

180 start = time.time()
181 tf_predictions = model.predict(test_images)
182 end = time.time()
183 tf_acc = sum(np.argmax(tf_predictions, axis=1) ==
184 np.argmax(test_labels, axis=1))/len(test_images) * 100
185 tf_pred_time = end-start
186 tf_pred_time_sample = tf_pred_time/len(test_images)*1e6
187

188 print(f"\nModel acc: {tf_acc}%\nTotal inference time: {tf_pred_time} s\nPrediction time per sample: {tf_pred_time_sample} us\n\n")
189 print(model.summary())
190

191 def convert_to_c(tflite_model, file_name):
192 source, header = convert_bytes_to_c_source(tflite_model, file_name)
193 with open(file_name + '.h', 'w') as h_file:
194 h_file.write(header)
195 with open(file_name + '.cpp', 'w') as cpp_file:
196 cpp_file.write(source)
197

198 # Convert the model to TensorFlow Lite format
199 if TRAIN:
200 converter = tf.lite.TFLiteConverter.from_keras_model(model)
201 # Apply post-training quantization
202 converter.optimizations = [tf.lite.Optimize.DEFAULT]
203 # quantize the weights to 8-bit integers
204 converter.target_spec.supported_types = [tf.int8]
205

206 def representative_data_gen():
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207 for input_value in tf.data.Dataset.from_tensor_slices(train_images).batch(1).take(100):
208 yield [input_value]
209 # provide a representative dataset to ensure we quantize correctly
210 converter.representative_dataset = representative_data_gen
211 converter.inference_input_type = tf.int8
212 converter.inference_output_type = tf.int8
213

214 # Convert the model
215 tflite_model = converter.convert()
216 # save the model
217 with open(saved_model_path+base_name+".tflite", 'wb') as f:
218 f.write(tflite_model)
219 convert_to_c(tflite_model, saved_model_path + base_name)
220 else:
221 tflite_model = open(saved_model_path+base_name+".tflite", 'rb').read()
222

223

224 # Analyze the tflite model
225 tf.lite.experimental.Analyzer.analyze(model_content=tflite_model)
226

227 # test inference on a images
228 # load the model
229 interpreter = tf.lite.Interpreter(model_path=saved_model_path+base_name+".tflite")
230 interpreter.allocate_tensors()
231

232 # time the inference
233 tfl_start = time.time()
234 tfl_predictions = []
235 tfl_acc = 0
236 for i, sample in enumerate(test_images):
237 interpreter.set_tensor(interpreter.get_input_details()[0]['index'],
238 (sample*255 - 128).astype(np.int8).reshape(1, 784))
239 interpreter.invoke()
240 output = interpreter.get_tensor(interpreter.get_output_details()[0]['index'])
241 output = np.argmax(output)
242 tfl_predictions.append(output)
243

244 tfl_end = time.time()
245 tfl_pred_time = tfl_end-tfl_start
246

247 tfl_acc = np.sum(tfl_predictions == np.argmax(test_labels, axis=1))/len(test_labels)
248

249 # mean inference time in us
250 tfl_pred_time_sample = tfl_pred_time / len(test_labels) * 1e6
251

252 tfl_size = os.path.getsize(saved_model_path+base_name+".tflite")
253

254 print(f"TF Lite acc: {tfl_acc*100}%")
255 print(f"TF Lite inference time: {tfl_pred_time} s")
256 print(f"TF Lite inference time per sample: {tfl_pred_time_sample} us")
257

258 print("---------------------------------------------------------")
259 print("Tensorflow model:")
260 print(f"Accuracy: {tf_acc:.2f}%, time per image: {tf_pred_time_sample:.2f}us, size: {tf_size:.2f}B,
261 Training time: {training_time:.2f}s")
262

263 # print(f"First epoch: Train acc: {first_train:.2f}%, Val acc: {first_val:.2f}%")
264 print(f"Max epoch: Train acc: {max_train:.2f}%, Val acc: {max_val:.2f}%")
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265 print(f"index max epoch: Train acc: {index_max_train}, Val acc: {index_max_val}")
266

267 # get the labels
268 labels = np.argmax(test_labels, axis=1)
269

270 print("Classification report TF model")
271 print(classification_report(labels, np.argmax(tf_predictions, axis=1)))
272

273 # get the confusion matrix
274 tf_cm = confusion_matrix(labels, np.argmax(tf_predictions, axis=1))
275 tf_df_cm = pd.DataFrame(tf_cm, index = [i for i in range(10)],
276 columns = [i for i in range(10)])
277 plt.figure(figsize = (10,10))
278 sn.heatmap(tf_df_cm, annot=True, fmt='g')
279 plt.title('TF model confusion matrix')
280 plt.xlabel("Predicted label")
281 plt.ylabel("True label")
282 plt.savefig(f"tf_cm_{base_name}.eps")
283 plt.show()
284

285

286 print("---------------------------------------------------------")
287 print("Tensorflow Lite model:")
288 print(f"Accuracy: {tfl_acc*100:.2f}%, Time of one image: {tfl_pred_time_sample:.2f}ms,
289 Size: {tfl_size:.2f}KB")
290

291 print("Classification report TF Lite model")
292 print(classification_report(labels, tfl_predictions))
293

294 tfl_cm = confusion_matrix(labels, tfl_predictions)
295 tfl_df_cm = pd.DataFrame(tfl_cm, index = [i for i in range(10)],
296 columns = [i for i in range(10)])
297 plt.figure(figsize = (10,10))
298 sn.heatmap(tfl_df_cm, annot=True, fmt='g')
299 plt.title('TF Lite model confusion matrix')
300 plt.xlabel("Predicted label")
301 plt.ylabel("True label")
302 plt.savefig(f"tfl_cm_{base_name}.eps")
303 plt.show()
304

305

306 print("---------------------------------------------------------")
307 print("Differences")
308 print(f"Accuracy: {tf_acc-tfl_acc*100:.2f}%, Time of one image:
309 {tf_pred_time_sample-tfl_pred_time_sample:.2f}ms, Size: {tf_size-tfl_size:.2f}KB")
310

311 d_cm = np.abs(tfl_cm - tf_cm)
312 d_df_cm = pd.DataFrame(d_cm, index = [i for i in range(10)],
313 columns = [i for i in range(10)])
314 plt.figure(figsize = (10,10))
315 sn.heatmap(d_df_cm, annot=True, fmt='g')
316 plt.title('TF Lite - TF differences')
317 plt.xlabel("Predicted label")
318 plt.ylabel("True label")
319 plt.savefig(f"d_cm_{base_name}.eps")
320 plt.show()
321

322 print(val_acc_e1)
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323 print(val_acc_e5)
324

325 !zip -r /content/bp_model_40-20_200-25ep_lr0.01_b16.zip /content/

B.2. Forward-Forward notebook
This is the code used to generate, convert, and test models trained with forward-forward. The notebook
was converted to a .py file for ease of reading.

B.3. Backpropagation Teensy Implementation

1 # -*- coding: utf-8 -*-
2 """ff_model_test.ipynb
3

4 Automatically generated by Colaboratory.
5

6 Original file is located at
7 https://colab.research.google.com/drive/1uKzSYca2N8vWdS3Fo0DzlMNBAQ2EaD3L
8 """
9

10 import os
11 os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
12 import numpy as np
13 import matplotlib.pyplot as plt
14 import tensorflow as tf
15 from tensorflow import keras as keras
16 from keras import datasets as kds
17 from keras import backend as K
18 from tqdm.auto import tqdm
19

20 import time
21 import seaborn as sn
22 import pandas as pd
23 import matplotlib.pyplot as plt
24 from tensorflow.lite.python.util import convert_bytes_to_c_source
25 from sklearn.metrics import confusion_matrix
26 from sklearn.metrics import classification_report
27

28 !nvidia-smi
29 !cat /proc/cpuinfo
30

31 TRAIN = True # set to True to train the model, False to load the model from file
32

33 RECONVERT = False # covert trained model again to tflite else load tf lite model from file
34

35 UINT8 = False # set to True to convert to uint8 else float32
36

37 evaluate_per_layer = True # run tfl evaluation to analyse contribution per additional layer
38

39 export_figs = True
40

41 # hyperparameters
42 BATCH_SIZE = 32
43 EPOCHS = 20
44 LEARNING_RATE = 0.1
45 MOMENTUM = 0.0 #0.9
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46

47 # dataset to use
48 DATASET = {1: "mnist", 2: "fashion_mnist"}
49 # set the dataset to use
50 DATANUM = 2 # 1 for mnist, 2 for fashion mnist
51

52 LAYER_CONFIG = [405] # number of neurons in the hidden layers [x,y, ...] = 784->x->y->...->10
53

54 nr_layers = len(LAYER_CONFIG)
55

56 # location to save the model
57 SAVED_MODEL_FOLDER = "Meta_data_and_data_models"
58

59 # helper functions
60 def edit_data(x, y, method="edit"):
61 """Overlays the label on the image"""
62 is_batch = x.ndim == 3
63 if method == "edit":
64 if is_batch:
65 x[:, 0, :10] = 0.0
66 for i in range(x.shape[0]):
67 x[i, 0, y[i]] = 1.0
68 else:
69 x[0, :10] = 0.0
70 x[0, y] = 1.0
71

72 def random_label(y):
73 """Returns random label"""
74 if type(y) != np.ndarray:
75 label = list(range(10))
76 del label[y]
77 return np.random.choice(label)
78 else:
79 label = np.copy(y)
80 for i in range(y.shape[0]):
81 label[i] = random_label(y[i])
82 return label
83

84 def FFLoss_with_threshold(threshold):
85 def FFLoss(y_true, y_pred):
86 g = K.pow(y_pred, 2)
87 g = K.mean(g, axis=1)
88 g = g - threshold
89 g = g * y_true
90 loss = K.log(1 + K.exp(g))
91 loss = K.mean(loss)
92 return loss
93 return FFLoss
94

95 def normalize_FF(x_):
96 """Normalize layer input"""
97 return x_ / (tf.norm(x_, ord=2, axis=1, keepdims=True) + 1e-4)
98

99 def normalize_FF_np(x):
100 """Normalize layer input using numpy isntead of tf"""
101 return x / (np.linalg.norm(x.astype(float), ord=2, axis=1, keepdims=True) + 1e-4)
102

103 def train_layer(layer, batch_size, nr_epochs, pos, neg):
104 """Train one layer of the FF model with positive and negative data"""
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105 y_pos = np.ones(batch_size) * -1
106 y_neg = np.ones(batch_size)
107 pos_loss = []
108 neg_loss = []
109 for ep in tqdm(range(nr_epochs)):
110 for b in range(pos.shape[0] // batch_size):
111 x = pos[b * batch_size: (b + 1) * batch_size]
112 pos_res = layer.train_on_batch(x, y_pos)
113 x = neg[b * batch_size: (b + 1) * batch_size]
114 neg_res = layer.train_on_batch(x, y_neg)
115 pos_loss.append(pos_res)
116 neg_loss.append(neg_res)
117 return pos_loss, neg_loss
118

119 def train_model(layer_list, x_train, y_train, batch_size, nr_epochs):
120 """Train the whole FF model"""
121 x_pos, x_neg = make_pos_neg(x_train, y_train)
122 pos_losses = []
123 neg_losses = []
124 for i, layer in enumerate(layer_list):
125 #layer_list[i] =
126 pos_loss, neg_loss = train_layer(layer, batch_size, nr_epochs, x_pos, x_neg)
127 if i != (len(layer_list) - 1):
128 x_pos = layer_list[i].predict(x_pos)
129 x_neg = layer_list[i].predict(x_neg)
130 x_pos = normalize_FF(x_pos)
131 x_neg = normalize_FF(x_neg)
132 pos_losses.append(pos_loss)
133 neg_losses.append(neg_loss)
134 return pos_losses, neg_losses
135

136 def make_model(dims, loss_threshold=2, optimizer=tf.keras.optimizers.legacy.Adam()):
137 """Contruct a FF model"""
138 model_layers = []
139 if (len(dims) - 1) > 0:
140 new_layer = tf.keras.Sequential([
141 tf.keras.layers.Dense(dims[1],
142 activation="relu",
143 input_shape=[dims[0]])],
144 name=f'layer_1')
145 model_layers.append(new_layer)
146 for d in range(len(dims) - 2):
147 new_layer = tf.keras.Sequential([
148 tf.keras.layers.Dense(dims[d + 2],
149 activation="relu",
150 input_shape=[dims[d + 1]])],
151 name=f'layer_{d + 2}')
152 model_layers.append(new_layer)
153

154 optimizer = optimizer
155

156 # Compile the model layers
157 for layer in model_layers:
158 layer.compile(loss=FFLoss_with_threshold(loss_threshold), optimizer=optimizer)
159 return model_layers
160

161 def predict_sample(z, layers):
162 """Returns prediction for a single sample"""
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163 z = z.reshape(1, 784)
164 zs = [np.copy(z) for _ in range(10)]
165 ans = 0
166

167 for i in range(10):
168 edit_data(zs[i], i)
169 for i, layer in enumerate(layers):
170 zs = [layer.predict(zs[i], verbose=0) for i in range(10)]
171 ans += np.array([np.mean(np.power(zs[i], 2)) for i in range(10)])
172 zs = [normalize_FF(zs[i]) for i in range(10)]
173 return np.argmax(ans)
174

175 def test_FF_model(z, layers):
176 """Runs prediction on a set of samples, returns the predicted label"""
177 anses = []
178

179 for i in tqdm(range(10)):
180 tmp = np.copy(z)
181 edit_data(tmp, np.ones((tmp.shape[0]), dtype=int) * i)
182 tmp = tmp.reshape(tmp.shape[0], -1)
183 ans = 0
184 for layer in layers:
185 tmp = layer.predict(tmp, verbose=0)
186 ans += np.mean(np.power(tmp, 2), axis=1)
187 tmp = normalize_FF(tmp)
188 anses.append(ans.reshape(-1, 1))
189 ans = np.concatenate(anses, axis=1)
190 return np.argmax(ans, axis=1)
191

192 def make_pos_neg(x_train, y_train):
193 pos = np.copy(x_train)
194 neg = np.copy(x_train)
195 edit_data(pos, y_train)
196 edit_data(neg, random_label(y_train))
197 pos = pos.reshape(pos.shape[0], -1)
198 neg = neg.reshape(neg.shape[0], -1)
199 return pos, neg
200

201 def convert_to_c(tflite_model, file_name):
202 source, header = convert_bytes_to_c_source(tflite_model, file_name)
203 with open(file_name + '.h', 'w') as h_file:
204 h_file.write(header)
205 with open(file_name + '.cpp', 'w') as cpp_file:
206 cpp_file.write(source)
207

208 def conv(model, save_path):
209 tflite_models = []
210 interpreters = []
211

212 def representative_data_gen():
213 for input_value in tf.data.Dataset.from_tensor_slices(train_images).batch(1).take(100):
214 yield[input_value]
215

216 for i, layer in enumerate(model):
217 converter = tf.lite.TFLiteConverter.from_keras_model(model[i])
218 converter.optimizations = [tf.lite.Optimize.DEFAULT]
219 converter.target_spec.supported_types = [tf.int8]
220 converter.representative_dataset = representative_data_gen
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221

222 tflite_model = converter.convert()
223 tflite_models.append(tflite_model)
224

225 tf.lite.experimental.Analyzer.analyze(model_content=tflite_model)
226

227 with open(f"{save_path}{i}.tflite", 'wb') as f:
228 f.write(tflite_model)
229

230 interpreter = tf.lite.Interpreter(model_path= (f"{save_path}{i}.tflite"))
231 interpreters.append(interpreter)
232 path = f"{save_path}_{i}"
233 convert_to_c(tflite_model, path)
234 return tflite_models, interpreters
235

236 def evaluate(model, x, y, nr_layers, datatype=0):
237 # Run predictions on every image in the "test" dataset.
238 prediction_digits = []
239 x = x.reshape(x.shape[0], -1)
240

241 interpreters = model[0:nr_layers]
242 print("Evaluating tfl model")
243 start = time.time()
244 for j, sample in enumerate(x):
245 # Pre-processing: add batch dimension and convert to uint8 to match with
246 # the model's input data format.
247

248 activation = []
249 for i in range(10):
250 # Test all labels
251 if datatype == 0:
252 pic_labeled = np.zeros((1, 784)).astype(np.float32)
253 else:
254 pic_labeled = np.zeros((1, 784)).astype(np.uint8)
255

256 pic_labeled[0, :] = sample.copy()
257 pic_labeled[0, 0:10] = 0.0
258 pic_labeled[0, i] = 1.0
259 res = 0
260 for interpreter in interpreters:
261 input_index = interpreter.get_input_details()[0]["index"]
262 output_index = interpreter.get_output_details()[0]["index"]
263

264 interpreter.allocate_tensors()
265 interpreter.set_tensor(input_index, pic_labeled)
266 # Run inference
267 interpreter.invoke()
268

269 # Post-processing: remove batch dimension and find the digit with highest
270 # probability.
271 layer_output = interpreter.get_tensor(output_index)
272 res += np.mean(np.power(layer_output[0], 2))
273 pic_labeled = normalize_FF(layer_output)
274

275 activation.append(res)
276 prediction_digits.append(np.argmax(activation))
277

278 # Compare prediction results with ground truth labels to calculate accuracy.
279 accurate_count = 0
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280 for index in range(len(prediction_digits)):
281 if prediction_digits[index] == y[index]:
282 accurate_count += 1
283 accuracy = accurate_count * 1.0 / len(prediction_digits)
284 end = time.time()
285 ev_time = end-start
286 print(f"time per sample tfl: {ev_time/len(x)}")
287 return accuracy, prediction_digits
288

289 def metrics(x, y, model, tfl_models, tfl_interp, model_path, base_name, export_figs=False):
290 class_names = [i for i in range(10)]
291 start = time.time()
292 predictions = test_FF_model(x, model)
293 end = time.time()
294 pred_time = end-start
295 print(f"time per sample: {pred_time/len(x)}")
296 # evaluate the normal model, confusion matrix, f-1, precision, recall
297 cm = confusion_matrix(y, predictions)
298 df_cm = pd.DataFrame(cm, index = [i for i in class_names],
299 columns = [i for i in class_names])
300 plt.figure(figsize = (10,10))
301 sn.heatmap(df_cm, annot=True, fmt='g')
302 plt.title('TF Lite confusion matrix')
303 plt.xlabel("Predicted label")
304 plt.ylabel("True label")
305 if export_figs:
306 plt.savefig(f"tf_cm_{base_name}.eps")
307 plt.show()
308 print("Classification report for TF model")
309 print(classification_report(y, predictions))
310

311 # evaluate tf lite model
312 tfl_acc, tfl_pred = evaluate(tfl_interp, x, y, len(tfl_models))
313 print(len(tfl_pred))
314 print(len(y.shape))
315 cm_lite = confusion_matrix(y, tfl_pred)
316 df_cm_lite = pd.DataFrame(cm_lite, index = [i for i in class_names],
317 columns = [i for i in class_names])
318 plt.figure(figsize = (10, 10))
319 sn.heatmap(df_cm_lite, annot=True, fmt='g')
320 plt.title('TF Lite model confusion matrix')
321 plt.xlabel("Predicted label")
322 plt.ylabel("True label")
323 if export_figs:
324 plt.savefig(f"tfl_cm_{base_name}.eps")
325 plt.show()
326 print("Classification report for TF Lite model.eps")
327 print(classification_report(y, tfl_pred))
328

329 # confusion matrix with the differnces
330 cm_delta = np.abs(cm_lite - cm)
331 df_cm = pd.DataFrame(cm_delta, index = [i for i in class_names],
332 columns = [i for i in class_names])
333 plt.figure(figsize = (10,10))
334 sn.heatmap(df_cm, annot=True, fmt='g')
335 plt.title('Confusion matrix with the differnces')
336 plt.xlabel("Predicted label")
337 plt.ylabel("True label")
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338 if export_figs:
339 plt.savefig(f"d_cm_{base_name}.eps")
340 plt.show()
341

342 train_acc = 0
343 test_acc = 0
344

345 train_pred = test_FF_model(train_images, model)
346 test_pred = test_FF_model(test_images, model)
347

348 train_acc = np.sum(train_pred == train_labels)
349 test_acc = np.sum(test_pred == test_labels)
350

351 train_acc = train_acc / train_labels.shape[0] * 100
352 test_acc = test_acc / test_labels.shape[0] * 100
353 # for tfl_model in tfl_models:
354 print("Tensorflow model accuracy:", test_acc)
355 # compare with original model
356 print("Tensorflow lite model accuracy:", tfl_acc*100)
357 # size of the model in bytes
358 model_size = 0
359 for i in range(nr_layers):
360 model_size += os.path.getsize(f"{model_path}{i}.tflite")
361 print(f"Model size: {model_size} bytes")
362

363 def import_tf_model(nr_layers, base_name, custom_objects):
364 model = []
365 for i in range(nr_layers):
366 tf_layer = tf.keras.models.load_model(f"{base_name}{i}", custom_objects = custom_objects)
367 model.append(tf_layer)
368 return model
369

370 def import_tfl_model(nr_layers, base_name):
371 model = []
372 interpreters = []
373 for i in range(nr_layers):
374 tfl_model = open(f"{base_name}{i}.tflite")
375 model.append(tfl_model)
376 interpreter = tf.lite.Interpreter(model_path= (f"{base_name}{i}.tflite"))
377 interpreters.append(interpreter)
378 nr_layers = i+1
379 return model, interpreters, nr_layers
380

381 FILE_PATH = os.getcwd() # for jupyter notebook
382

383 SAVED_MODEL_PATH = FILE_PATH+"/"+SAVED_MODEL_FOLDER+"/"
384

385 # BASE_NAME explained e.g: SGD_FF_mnist_L32_B32_E5_LR0.01_M0.9
386 # L32: 32 neurons in the hidden layer
387 # B32: batch size 32
388 # E5: 5 epochs
389 # LR0.01: learning rate 0.01
390 # M0.9: momentum 0.9
391

392 BASE_NAME= "SGD_FF_"+DATASET[DATANUM]+"_"+ str("".join([f"L{x}"for x in LAYER_CONFIG]))+"_BS"+str(BATCH_SIZE)+"_E"+str(EPOCHS)+"_LR"+str(LEARNING_RATE)+"_M"+str(MOMENTUM)+str("_UINT8" if UINT8 else "")
393

394 model_path = SAVED_MODEL_PATH + BASE_NAME
395



B.3. Backpropagation Teensy Implementation 50

396 # # Loading MNIST data
397

398 if os.path.isfile(SAVED_MODEL_PATH+BASE_NAME) and os.path.isfile(SAVED_MODEL_PATH+BASE_NAME+".tflite"):
399 TRAIN = False
400 print("---------------------------------------------------------")
401 print("Configurations of the model found, loading model...")
402 print("---------------------------------------------------------")
403 else:
404 print("---------------------------------------------------------")
405 print("Configurations of the model not found, training model...")
406 print("---------------------------------------------------------")
407

408 # load data
409 (train_images, train_labels), (test_images, test_labels) = keras.datasets.mnist.load_data() if DATANUM == 1 else keras.datasets.fashion_mnist.load_data()
410

411 # normalize
412 train_images = train_images.astype(np.float32)/255
413 test_images = test_images.astype(np.float32)/255
414

415 # convert to int8
416 train_images_int8 = train_images.astype(np.uint8)
417 test_images_int8 = test_images.astype(np.uint8)
418

419 if TRAIN:
420 models = make_model([784] + LAYER_CONFIG, loss_threshold=2) # , optimizer=tf.keras.optimizers.legacy.SGD(learning_rate=LEARNING_RATE, momentum=MOMENTUM))
421

422 for model in models:
423 model.summary()
424 start = time.time()
425 pos_loss, neg_loss = train_model(models, train_images, train_labels, BATCH_SIZE, EPOCHS)
426 end = time.time()
427

428 with open("pos_losses", "w") as fout:
429 fout.write(','.join(str(i) for i in pos_loss))
430 with open("neg_losses", "w") as fout:
431 fout.write(','.join(str(i) for i in neg_loss))
432

433 y_ax = range(1, EPOCHS+1)
434 for i in range(nr_layers):
435 plt.plot(y_ax, pos_loss[i], label='Positive data pass')
436 plt.plot(y_ax, neg_loss[i], label='Negative data pass')
437 plt.title(f"Loss over epochs for layer {i+1}")
438 plt.xlabel('Epochs')
439 plt.ylabel('Loss')
440 plt.legend()
441 if export_figs:
442 plt.savefig(f"loss_epoch_{BASE_NAME}.eps")
443 plt.show()
444 total_time = end-start
445 print(f"Training time: {end-start:.2f}s")
446

447 # save model
448 for i, model in enumerate(models):
449 model.save(f"{SAVED_MODEL_PATH}{BASE_NAME}{i}")
450

451 train_acc = 0
452 test_acc = 0
453
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454 print("Full model")
455 print("Predicting training data")
456 train_pred = test_FF_model(train_images, models)
457 print("Predicting test data")
458 test_pred = test_FF_model(test_images, models)
459 train_acc = np.sum(train_pred == train_labels)
460 test_acc = np.sum(test_pred == test_labels)
461 train_acc = train_acc / train_labels.shape[0] * 100
462 test_acc = test_acc / test_labels.shape[0] * 100
463 print(f"train acc : {train_acc:.2f}%")
464 print(f"test acc : {test_acc:.2f}%")
465

466 # print("Only first layer")
467 # print("Predicting training data")
468 # train_pred_1 = test_FF_model(train_images, [models[0]])
469 # print("Predicting test data")
470 # test_pred_1 = test_FF_model(test_images, [models[0]])
471 # train_acc_1 = np.sum(train_pred_1 == train_labels)
472 # test_acc_1 = np.sum(test_pred_1 == test_labels)
473 # train_acc_1 = train_acc_1 / train_labels.shape[0] * 100
474 # test_acc_1 = test_acc_1 / test_labels.shape[0] * 100
475 # print(f"train acc layer 1 : {train_acc_1:.2f}%")
476 # print(f"test acc layer 1: {test_acc_1:.2f}%")
477

478 # print("Only first and second layer")
479 # print("Predicting training data")
480 # train_pred_2 = test_FF_model(train_images, models[0:2])
481 # print("Predicting test data")
482 # test_pred_2 = test_FF_model(test_images, models[0:2])
483 # train_acc_2 = np.sum(train_pred_2 == train_labels)
484 # test_acc_2 = np.sum(test_pred_2 == test_labels)
485 # train_acc_2 = train_acc_2 / train_labels.shape[0] * 100
486 # test_acc_2 = test_acc_2 / test_labels.shape[0] * 100
487 # print(f"train acc layer 2 : {train_acc_2:.2f}%")
488 # print(f"test acc layer 2: {test_acc_2:.2f}%")
489

490 tfl_models, interpreters = conv(models, model_path)
491 else:
492 custom_objects = {"FFLoss": FFLoss_with_threshold}
493 models = import_tf_model(nr_layers, model_path, custom_objects)
494 tfl_models, interpreters, tfl_layers = import_tfl_model(nr_layers, model_path)
495 print(tfl_layers)
496

497 with open("pos_losses", "r") as fin:
498 line = fin.readline()
499 pos_loss = line.split(",")
500 with open("neg_losses", "r") as fin:
501 line = fin.readline()
502 neg_loss = line.split(",")
503

504 print("Predicting training data")
505 train_pred = test_FF_model(train_images, models)
506 print("Predicting test data")
507 test_pred = test_FF_model(test_images, models)
508

509 train_acc = np.sum(train_pred == train_labels)
510 test_acc = np.sum(test_pred == test_labels)
511
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512 train_acc = train_acc / train_labels.shape[0] * 100
513 test_acc = test_acc / test_labels.shape[0] * 100
514

515 print(f"train acc : {train_acc:.2f}%")
516 print(f"test acc : {test_acc:.2f}%")
517

518 metrics(test_images, test_labels, models, tfl_models, interpreters, model_path, BASE_NAME, export_figs=True)
519

520 # evaluate effects of each layer
521 if evaluate_per_layer:
522 for i in range(nr_layers):
523 tfl_acc, tfl_pred = evaluate(interpreters, test_images, test_labels, i+1)
524 print(f"accuracy : {tfl_acc*100:.2f}%")
525

526 !zip -r /content/ff_model_405_20.zip /content/



C
Teensy Tensorflow Lite

Implementation

C.1. Backpropagation Teensy Implementation

1 #include "tensorflow/lite/micro/micro_mutable_op_resolver.h"
2 #include "tensorflow/lite/micro/micro_interpreter.h"
3 #include "tensorflow/lite/micro/micro_log.h"
4 #include "tensorflow/lite/micro/system_setup.h"
5 #include "tensorflow/lite/schema/schema_generated.h"
6 #include "tensorflow/lite/micro/micro_utils.h"
7 #include "constants.h"
8 #include "model.h"
9 #include "output_handler.h"

10 #include <TensorFlowLite.h>
11 #include <Arduino.h>
12 // #include <SPI.h>
13 #include <SD.h>
14 #include <cstdint>
15

16 #define NN_INPUT_SIZE 784
17

18 #define NN_OUTPUT_SIZE 10
19 constexpr int kTensorArenaSize = 1024 * 10;
20 // Keep aligned to 16 bytes for CMSIS
21 alignas(16) uint8_t tensor_arena[kTensorArenaSize];
22

23 class tf{
24 public:
25

26 const tflite::Model* mod = nullptr;
27 tflite::MicroInterpreter* interpreter = nullptr;
28 // tflite::MicroMutableOpResolver<5> resolver;
29 TfLiteTensor* input = nullptr;
30 TfLiteTensor* output = nullptr;
31 TfLiteStatus allocate_status;
32 TfLiteStatus invoke_status;
33

34 float theta = 2.0;
35

36 int input_size;

53
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37 int output_size;
38 int label = 0;
39

40 tf(const unsigned char model[], int input_size, int output_size){
41 input_size = input_size;
42 output_size = output_size;
43

44 tflite::InitializeTarget();
45

46 mod = tflite::GetModel(model);
47 if (mod->version() != TFLITE_SCHEMA_VERSION) {
48 Serial.printf("Model schema version %d is not compatible with supported version %d\n",
49 mod->version(), TFLITE_SCHEMA_VERSION);
50 return;
51 }
52 static tflite::MicroMutableOpResolver<5> resolver;
53

54 resolver.AddQuantize();
55 resolver.AddDequantize();
56 resolver.AddFullyConnected();
57 resolver.AddRelu();
58 resolver.AddSoftmax();
59

60 static tflite::MicroInterpreter static_interpreter(mod, resolver, tensor_arena, kTensorArenaSize);
61 interpreter = &static_interpreter;
62

63 allocate_status = interpreter->AllocateTensors();
64 if (allocate_status != kTfLiteOk) {
65 Serial.println("AllocateTensors() failed");
66 return;
67 }
68

69

70 Serial.printf("Optimal tensor arena size: %d\n", interpreter->arena_used_bytes());
71 // Obtain pointers to the model's input and output tensors.
72 input = interpreter->input(0);
73 if (input->type == kTfLiteInt8) {
74 Serial.println("Model input type is kTfLiteInt8");
75 } else if (input->type == kTfLiteFloat32) {
76 Serial.println("Model input type is kTfLiteFloat32");
77 } else if (input->type == kTfLiteUInt8) {
78 Serial.println("Model input type is kTfLiteUInt8");
79 } else if (input->type == kTfLiteInt16) {
80 Serial.println("Model input type is kTfLiteInt16");
81 } else if (input->type == kTfLiteInt32) {
82 Serial.println("Model input type is kTfLiteInt32");
83 } else {
84 Serial.println("Model input type is unknown");
85 }
86 Serial.println("Model loaded successfully");
87

88 // print dimensions of input tensor
89 Serial.printf("Input tensor dimension count: %d\n", input->dims->size);
90 Serial.printf("Input tensor dimensions: {");
91 for (int i = 0; i < input->dims->size; i++) {
92 Serial.printf("%d", input->dims->data[i]);
93 if (i < input->dims->size - 1) {
94 Serial.printf(", ");
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95 }
96 }
97 Serial.printf("}\n");
98

99 output = interpreter->output(0);
100 if (output->type == kTfLiteInt8) {
101 Serial.println("Model output type is kTfLiteInt8");
102 } else if (output->type == kTfLiteFloat32) {
103 Serial.println("Model output type is kTfLiteFloat32");
104 } else if (output->type == kTfLiteUInt8) {
105 Serial.println("Model output type is kTfLiteUInt8");
106 } else if (output->type == kTfLiteInt16) {
107 Serial.println("Model output type is kTfLiteInt16");
108 } else if (output->type == kTfLiteInt32) {
109 Serial.println("Model output type is kTfLiteInt32");
110 } else {
111 Serial.println("Model output type is unknown");
112

113 }
114 // print dimensions of output tensor
115 Serial.printf("Output tensor dimension count: %d\n", output->dims->size);
116 Serial.printf("Output tensor dimensions: {");
117 for (int i = 0; i < output->dims->size; i++) {
118 Serial.printf("%d", output->dims->data[i]);
119 if (i < output->dims->size - 1) {
120 Serial.printf(", ");
121 }
122 }
123 Serial.printf("}\n");
124

125

126 }
127

128

129 float* get_output(){
130 switch (output->type) {
131 case kTfLiteFloat32:
132 return output->data.f;
133 case kTfLiteInt8:
134 return (float*)output->data.int8;
135 case kTfLiteUInt8:
136 return (float*)output->data.uint8;
137 }
138

139 }
140 void set_input(float* input_data){
141

142 for (int i = 0; i < this->input_size; i++) {
143 switch (input->type) {
144 case kTfLiteFloat32:
145 input->data.f[i] = input_data[i];
146 break;
147 case kTfLiteInt8:
148 input->data.int8[i] = (int8_t)input_data[i];
149 break;
150 case kTfLiteUInt8:
151 input->data.uint8[i] = (uint8_t)input_data[i];
152 break;
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153 }
154 }
155 }
156 float* get_input(){
157 // only callable after invoking inference
158 switch (input->type)
159 {
160 case kTfLiteFloat32:
161 return input->data.f;
162 case kTfLiteInt8:
163 // fixed point to float
164 return (float*) input->data.int8;
165 case kTfLiteUInt8:
166 return (float*) input->data.uint8;
167 }
168 }
169

170 void inference(){
171

172 TfLiteStatus invoke_status = interpreter->Invoke();
173 if (invoke_status != kTfLiteOk) {
174 Serial.printf("Invoke failed\n");
175 return;
176 }
177 output = interpreter->output(0);
178 }
179

180 };
181

182 void normalize(float* input_data, int input_size){
183 float sum = 0;
184 for (int i = 0; i < input_size; i++) {
185 sum += input_data[i];
186 }
187 for (int i = 0; i < input_size; i++) {
188 input_data[i] = input_data[i] / sum;
189 }
190 }
191

192 int argmax( int input_size, TfLiteTensor* output){
193 int max_index = 0;
194 float max_value = 0;
195 float value = -1000;
196 for (int i = 0; i < input_size; i++) {
197 switch (output->type) {
198 case kTfLiteFloat32:
199 value = output->data.f[i];
200 break;
201 case kTfLiteInt8:
202 value = (float) (output->data.int8[i] - output->params.zero_point) * output->params.scale;
203 break ;
204 case kTfLiteUInt8:
205 value= (output->data.uint8[i] - output->params.zero_point) * output->params.scale;
206 break;
207

208 }
209 if (value > max_value) {
210 max_value = value;
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211 max_index = i;
212 }
213

214 }
215 return max_index;
216 }
217

218

219 int label = 0;
220

221 int read_example(File &file, TfLiteTensor *input) {
222 // float pic[NN_INPUT_SIZE];
223 if (!file) {
224 Serial.println("File reading failed!");
225 return;
226 }
227

228 char buffer[NN_INPUT_SIZE + 1];
229 file.readBytes(buffer, NN_INPUT_SIZE+1); // Read a single label + example into buffer
230 label = (int) (uint8_t) buffer[0];
231 // Scale, quantize and copy data from buffer to input tensor
232 for (int i = 0; i < NN_INPUT_SIZE; i++) {
233 switch (input->type) {
234 case kTfLiteFloat32:
235 input->data.f[i] = ((float) (uint8_t) buffer[i+1]) / 255.0;
236 break;
237 case kTfLiteInt8:
238 input->data.int8[i] = (int8_t)(buffer[i+1] - 128);//tflite::FloatToQuantizedType<int8_t>(((float) (uint8_t) buffer[i+1]) / 255.0, input->params.scale, input->params.zero_point);
239 break;
240 case kTfLiteUInt8:
241 input->data.uint8[i] = (uint8_t)buffer[i+1];//tflite::FloatToQuantizedType<uint8_t>(((float) (uint8_t) buffer[i+1]) / 255.0, input->params.scale, input->params.zero_point);
242 break;
243 }
244 }
245 return label;
246 }
247

248

249 void encode_label(float *input_data, int label) {
250 for (int i=0; i < 10; i++) {
251 input_data[i] = label == i ? 1.0 : 0.0;
252 }
253 }
254

255 void setup() {
256 // tflite::InitializeTarget();
257 srand(millis());
258

259 if (!SD.begin(BUILTIN_SDCARD)) {
260 Serial.println("SD card initialization failed!");
261 while(true);
262 }
263

264 delay(5000);
265

266 }
267

268 void print_pic(float* pic){
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269 for (int i = 0; i < NN_INPUT_SIZE; i++) {
270 if (pic[i] > 0.01) {
271 Serial.print("X");
272 } else {
273 Serial.print(" ");
274 }
275 if ((i+1) % 28 == 0) {
276 Serial.println();
277 }
278 }
279 }
280

281 tf tf_model(g_model, NN_INPUT_SIZE, NN_OUTPUT_SIZE);
282 void loop() {
283 // Ask for mnist image input
284 Serial.println("Starting inference on test set");
285 File testFile = SD.open("fashion_mnist_test.bin");
286 int correct = 0;
287 int total = 0;
288 float tot_time = 0;
289 // Serial.println("start");
290

291 // Serial.println("model loaded");
292

293 while (testFile.available()) {
294 // Get a new entry from the file
295 label = read_example(testFile, tf_model.input);
296 float begin = micros();
297 tf_model.inference();
298 int predicted_label = argmax( NN_OUTPUT_SIZE, tf_model.output);
299 float end = micros();
300 tot_time += (end - begin);
301 if (predicted_label == label) {
302 correct ++;
303 }
304 total ++;
305 }
306 Serial.printf("------------------------------------------------------\n");
307 Serial.printf("SGD_backprop_fashion_mnist_L32_BS16_E76_LR0.1_M0.9\n");
308 Serial.printf("Accuracy: %f\n", ((float) correct) / (float) total);
309 Serial.printf("Average inference time (ms): %f\n", tot_time /total );
310 }

C.2. Forward-Forward Teensy Implementation

1 #include "tensorflow/lite/micro/micro_mutable_op_resolver.h"
2 #include "tensorflow/lite/micro/micro_interpreter.h"
3 #include "tensorflow/lite/micro/micro_log.h"
4 #include "tensorflow/lite/micro/system_setup.h"
5 #include "tensorflow/lite/schema/schema_generated.h"
6 #include "tensorflow/lite/micro/micro_utils.h"
7 #include "constants.h"
8 #include "model.h"
9 #include "output_handler.h"

10 #include <TensorFlowLite.h>
11 #include <Arduino.h>
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12 // #include <SPI.h>
13 #include <SD.h>
14 #include <cstdint>
15

16 #define NN_INPUT_SIZE 784
17 #define NN_HIDDEN_SIZE 297
18 #define NN_HIDDEN_SIZE_2 297
19 #define NN_OUTPUT_SIZE 250
20

21 int THETA = 2;
22

23 constexpr int kTensorArenaSize1 = 1024 * 10;
24 // Keep aligned to 16 bytes for CMSIS
25 alignas(16) uint8_t tensor_arena1[kTensorArenaSize1];
26

27 constexpr int kTensorArenaSize2 = 1024 * 10;
28 // Keep aligned to 16 bytes for CMSIS
29 alignas(16) uint8_t tensor_arena2[kTensorArenaSize1];
30

31 constexpr int kTensorArenaSize3 = 1024 * 10;
32 // Keep aligned to 16 bytes for CMSIS
33 alignas(16) uint8_t tensor_arena3[kTensorArenaSize1];
34

35

36 const tflite::Model* model1 = nullptr;
37 const tflite::Model* model2 = nullptr;
38 const tflite::Model* model3 = nullptr;
39 tflite::MicroInterpreter* interpreter1 = nullptr;
40 tflite::MicroInterpreter* interpreter2 = nullptr;
41 tflite::MicroInterpreter* interpreter3 = nullptr;
42 TfLiteTensor* input1 = nullptr;
43 TfLiteTensor* output1 = nullptr;
44 TfLiteTensor* input2 = nullptr;
45 TfLiteTensor* output2 = nullptr;
46 TfLiteTensor* input3 = nullptr;
47 TfLiteTensor* output3 = nullptr;
48

49

50 void normalize(float* input_data, int input_size){
51 float sum = 0;
52 for (int i = 0; i < input_size; i++) {
53 sum += pow(input_data[i], 2);
54 }
55 for (int i = 0; i < input_size; i++) {
56 input_data[i] = input_data[i] / (sqrt(sum)+ 0.0001);
57 }
58 }
59

60 int label = 0;
61

62 void print_values(float* input_data, int input_size){
63 for (int i = 0; i < input_size; i++) {
64 Serial.printf("%f ", input_data[i]);
65 if ((i+1) % 6 == 0) {
66 Serial.println();
67 }
68 }
69 Serial.println();
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70 }
71

72

73 int read_example(File &file, float* pic) {
74 // float pic[NN_INPUT_SIZE];
75 if (!file) {
76 Serial.println("File reading failed!");
77 return;
78 }
79

80 char buffer[NN_INPUT_SIZE + 1];
81 file.readBytes(buffer, NN_INPUT_SIZE+1); // Read a single label + example into buffer
82 label = (int) (uint8_t) buffer[0];
83 // Scale, quantize and copy data from buffer to input tensor
84 for (int i = 0; i < NN_INPUT_SIZE; i++) {
85 float scaled = ((float) (uint8_t) buffer[i+1]) / 255.0;
86 pic[i] = scaled;
87 }
88 return label;
89 }
90

91

92 void encode_label(float *input_data, int label) {
93 for (int i=0; i < 10; i++) {
94 if (label == i ) {
95 input_data[i] = 1.0;
96 }
97 else {
98 input_data[i] = 0.0;
99 }

100 }
101 }
102

103 void setup() {
104 // tflite::InitializeTarget();
105 srand(millis());
106

107 if (!SD.begin(BUILTIN_SDCARD)) {
108 Serial.println("SD card initialization failed!");
109 while(true);
110 }
111 tflite::InitializeTarget();
112

113 static tflite::MicroMutableOpResolver<4> resolver1;
114 static tflite::MicroMutableOpResolver<4> resolver2;
115 static tflite::MicroMutableOpResolver<4> resolver3;
116

117 resolver1.AddQuantize();
118 resolver1.AddDequantize();
119 resolver1.AddFullyConnected();
120 resolver1.AddRelu();
121

122 resolver2.AddQuantize();
123 resolver2.AddDequantize();
124 resolver2.AddFullyConnected();
125 resolver2.AddRelu();
126

127 resolver3.AddQuantize();
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128 resolver3.AddDequantize();
129 resolver3.AddFullyConnected();
130 resolver3.AddRelu();
131

132 model1 = tflite::GetModel(layer_1);
133 model2 = tflite::GetModel(layer_2);
134 model3 = tflite::GetModel(layer_3);
135

136 static tflite::MicroInterpreter static_interpreter1(model1, resolver1, tensor_arena1, kTensorArenaSize1);
137 static tflite::MicroInterpreter static_interpreter2(model2, resolver2, tensor_arena2, kTensorArenaSize2);
138 static tflite::MicroInterpreter static_interpreter3(model3, resolver3, tensor_arena3, kTensorArenaSize3);
139 interpreter1 = &static_interpreter1;
140 interpreter2 = &static_interpreter2;
141 interpreter3 = &static_interpreter3;
142

143 TfLiteStatus allocate_status1 = interpreter1->AllocateTensors();
144 if (allocate_status1 != kTfLiteOk) {
145 Serial.println("AllocateTensors() failed");
146 return;
147 }
148 TfLiteStatus allocate_status2 = interpreter2->AllocateTensors();
149 if (allocate_status2 != kTfLiteOk) {
150 Serial.println("AllocateTensors() failed");
151 return;
152 }
153 TfLiteStatus allocate_status3 = interpreter3->AllocateTensors();
154 if (allocate_status3 != kTfLiteOk) {
155 Serial.println("AllocateTensors() failed");
156 return;
157 }
158

159 input1 = interpreter1->input(0);
160 if (input1->type == kTfLiteInt8) {
161 Serial.println("Model input type is kTfLiteInt8");
162 } else if (input1->type == kTfLiteFloat32) {
163 Serial.println("Model input type is kTfLiteFloat32");
164 } else if (input1->type == kTfLiteUInt8) {
165 Serial.println("Model input type is kTfLiteUInt8");
166 } else if (input1->type == kTfLiteInt16) {
167 Serial.println("Model input type is kTfLiteInt16");
168 } else if (input1->type == kTfLiteInt32) {
169 Serial.println("Model input type is kTfLiteInt32");
170 } else {
171 Serial.println("Model input type is unknown");
172 }
173 input2 = interpreter2->input(0);
174 if (input2->type == kTfLiteInt8) {
175 Serial.println("Model input type is kTfLiteInt8");
176 } else if (input2->type == kTfLiteFloat32) {
177 Serial.println("Model input type is kTfLiteFloat32");
178 } else if (input2->type == kTfLiteUInt8) {
179 Serial.println("Model input type is kTfLiteUInt8");
180 } else if (input2->type == kTfLiteInt16) {
181 Serial.println("Model input type is kTfLiteInt16");
182 } else if (input2->type == kTfLiteInt32) {
183 Serial.println("Model input type is kTfLiteInt32");
184 } else {
185 Serial.println("Model input type is unknown");
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186 }
187 input3 = interpreter3->input(0);
188 if (input3->type == kTfLiteInt8) {
189 Serial.println("Model input type is kTfLiteInt8");
190 } else if (input3->type == kTfLiteFloat32) {
191 Serial.println("Model input type is kTfLiteFloat32");
192 } else if (input3->type == kTfLiteUInt8) {
193 Serial.println("Model input type is kTfLiteUInt8");
194 } else if (input3->type == kTfLiteInt16) {
195 Serial.println("Model input type is kTfLiteInt16");
196 } else if (input3->type == kTfLiteInt32) {
197 Serial.println("Model input type is kTfLiteInt32");
198 } else {
199 Serial.println("Model input type is unknown");
200 }
201

202 output1 = interpreter1->output(0);
203 if (output1->type == kTfLiteInt8) {
204 Serial.println("Model output type is kTfLiteInt8");
205 } else if (output1->type == kTfLiteFloat32) {
206 Serial.println("Model output type is kTfLiteFloat32");
207 } else if (output1->type == kTfLiteUInt8) {
208 Serial.println("Model output type is kTfLiteUInt8");
209 } else if (output1->type == kTfLiteInt16) {
210 Serial.println("Model output type is kTfLiteInt16");
211 } else if (output1->type == kTfLiteInt32) {
212 Serial.println("Model output type is kTfLiteInt32");
213 } else {
214 Serial.println("Model output type is unknown");
215 }
216 output2 = interpreter2->output(0);
217 if (output2->type == kTfLiteInt8) {
218 Serial.println("Model output type is kTfLiteInt8");
219 } else if (output2->type == kTfLiteFloat32) {
220 Serial.println("Model output type is kTfLiteFloat32");
221 } else if (output2->type == kTfLiteUInt8) {
222 Serial.println("Model output type is kTfLiteUInt8");
223 } else if (output2->type == kTfLiteInt16) {
224 Serial.println("Model output type is kTfLiteInt16");
225 } else if (output2->type == kTfLiteInt32) {
226 Serial.println("Model output type is kTfLiteInt32");
227 } else {
228 Serial.println("Model output type is unknown");
229 }
230 output3 = interpreter3->output(0);
231 if (output3->type == kTfLiteInt8) {
232 Serial.println("Model output type is kTfLiteInt8");
233 } else if (output3->type == kTfLiteFloat32) {
234 Serial.println("Model output type is kTfLiteFloat32");
235 } else if (output3->type == kTfLiteUInt8) {
236 Serial.println("Model output type is kTfLiteUInt8");
237 } else if (output3->type == kTfLiteInt16) {
238 Serial.println("Model output type is kTfLiteInt16");
239 } else if (output3->type == kTfLiteInt32) {
240 Serial.println("Model output type is kTfLiteInt32");
241 } else {
242 Serial.println("Model output type is unknown");
243 }
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244

245 Serial.printf("Input tensor dimension count: %d\n", input1->dims->size);
246 Serial.printf("Input tensor dimensions: {");
247 for (int i = 0; i < input1->dims->size; i++) {
248 Serial.printf("%d", input1->dims->data[i]);
249 if (i < input1->dims->size - 1) {
250 Serial.printf(", ");
251 }
252 }
253 Serial.printf("}\n");
254

255 // print dimensions of output tensor
256 Serial.printf("Output tensor dimension count: %d\n", output1->dims->size);
257 Serial.printf("Output tensor dimensions: {");
258 for (int i = 0; i < output1->dims->size; i++) {
259 Serial.printf("%d", output1->dims->data[i]);
260 if (i < output1->dims->size - 1) {
261 Serial.printf(", ");
262 }
263 }
264 Serial.printf("}\n");
265

266 // print dimensions of input tensor
267 Serial.printf("Input tensor dimension count: %d\n", input2->dims->size);
268 Serial.printf("Input tensor dimensions: {");
269 for (int i = 0; i < input2->dims->size; i++) {
270 Serial.printf("%d", input2->dims->data[i]);
271 if (i < input2->dims->size - 1) {
272 Serial.printf(", ");
273 }
274 }
275 Serial.printf("}\n");
276 // output2
277 // print dimensions of output tensor
278 Serial.printf("Output tensor dimension count: %d\n", output2->dims->size);
279 Serial.printf("Output tensor dimensions: {");
280 for (int i = 0; i < output2->dims->size; i++) {
281 Serial.printf("%d", output2->dims->data[i]);
282 if (i < output2->dims->size - 1) {
283 Serial.printf(", ");
284 }
285 }
286 Serial.printf("}\n");
287

288 // print dimensions of input tensor
289 Serial.printf("Input tensor dimension count: %d\n", input3->dims->size);
290 Serial.printf("Input tensor dimensions: {");
291 for (int i = 0; i < input3->dims->size; i++) {
292 Serial.printf("%d", input3->dims->data[i]);
293 if (i < input3->dims->size - 1) {
294 Serial.printf(", ");
295 }
296 }
297 Serial.printf("}\n");
298 // output3
299 // print dimensions of output tensor
300 Serial.printf("Output tensor dimension count: %d\n", output3->dims->size);
301 Serial.printf("Output tensor dimensions: {");
302 for (int i = 0; i < output3->dims->size; i++) {
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303 Serial.printf("%d", output3->dims->data[i]);
304 if (i < output3->dims->size - 1) {
305 Serial.printf(", ");
306 }
307 }
308 Serial.printf("}\n");
309

310

311 Serial.println("Model loaded successfully");
312 delay(1000);
313

314 }
315

316 void print_pic(float* pic){
317 for (int i = 0; i < NN_INPUT_SIZE; i++) {
318 switch ((int) (pic[i] * 10))
319 {
320 case 0:
321 Serial.printf(" ");
322 break;
323 case 1:
324 Serial.printf(".");
325 break;
326 case 2:
327 Serial.printf(":");
328 break;
329 case 3:
330 Serial.printf("o");
331 break;
332 case 4:
333 Serial.printf("O");
334 break;
335 case 5:
336 Serial.printf("0");
337 break;
338 case 6:
339 Serial.printf("&");
340 break;
341 case 7:
342 Serial.printf("8");
343 break;
344 case 8:
345 Serial.printf("%");
346 break;
347 case 9:
348 Serial.printf("#");
349 break;
350 case 10:
351 Serial.printf("@");
352 break;
353

354 default:
355 Serial.printf(" ");
356 break;
357 }
358 if ((i+1) % 28 == 0) {
359 Serial.println();
360 }
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361 }
362 }
363

364 void print_pic_num(float* pic){
365 for (int i = 0; i < NN_INPUT_SIZE; i++) {
366 Serial.printf("%f ", pic[i]);
367 if ((i+1) % 28 == 0) {
368 Serial.println();
369 }
370 }
371 }
372

373 float max(float* input_data, int input_size){
374 // max value of input_data
375 float max = 0;
376 for (int i = 0; i < input_size; i++) {
377 if (input_data[i] > max) {
378 max = input_data[i];
379 }
380 }
381 return max;
382 }
383

384 float min(float* input_data, int input_size){
385 // min value of input_data
386 float min = 0;
387 for (int i = 0; i < input_size; i++) {
388 if (input_data[i] < min) {
389 min = input_data[i];
390 }
391 }
392 return min;
393 }
394

395 float activation(float* input_data, int input_size){
396 float sum = 0.0;
397 for (int i=0; i < input_size; i++) {
398 float y = input_data[i];
399 sum += pow(y, 2);
400 }
401 return sum/input_size;
402 }
403

404 bool two_layers = true; // set to true if you want to use two layers
405 bool three_layered = false; // set to true if you want to use three layers
406 bool print_output = false;
407

408 void loop() {
409 // Ask for mnist image input
410 // tf tf_layer_2(static_interpreter1, NN_HIDDEN_SIZE, NN_OUTPUT_SIZE);
411 // tf tf_layer_1(static_interpreter2, NN_INPUT_SIZE, NN_HIDDEN_SIZE);
412

413 Serial.println("Starting inference on test set");
414 File testFile = SD.open("fashion_mnist_test.bin");
415 int correct = 0;
416 int total = 0;
417 float tot_time = 0;
418 while (testFile.available()) {
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419 // Get a new entry from the file
420 float pic[NN_INPUT_SIZE];
421 label = read_example(testFile, pic);
422 float begin = micros();
423 if (print_output) {
424 Serial.printf("Label: %d\n", label);
425 Serial.println("Input");
426 print_pic(pic);
427 Serial.println("Input num");
428 print_pic_num(pic);
429 float mn= min(pic, NN_INPUT_SIZE);
430 float mx= max(pic, NN_INPUT_SIZE);
431 Serial.printf("Min: %f, Max: %f\n", mn, mx);
432 }
433

434 int predicted_label = 0;
435

436 float max_goodness = -10;
437 float goodness = -10;
438

439 for (int i=0; i < 10; i++) {
440 // float embed[NN_INPUT_SIZE] = {0.0};
441

442 if (print_output) {
443 Serial.printf("Encoding label: %d\n", i);
444 }
445

446

447 float sum = 0.0;
448

449

450 // encode_label(embed, i);
451 for (int j = 0; j < NN_INPUT_SIZE-1; j++) {
452 if (j < 10){
453 if (j == i) {
454 input1->data.f[j] = 1.0;
455 }
456 else {
457 input1->data.f[j] = 0.0;
458 }
459 }
460 else {
461 input1->data.f[j] = pic[j];
462 }
463 }
464

465

466 if (print_output) {
467 Serial.println("Encoded label");
468 print_pic(input1->data.f);
469 Serial.println("Encoded label num");
470 print_pic_num(input1->data.f);
471 float mn= min(input1->data.f, NN_INPUT_SIZE);
472 float mx= max(input1->data.f, NN_INPUT_SIZE);
473 Serial.printf("Min: %f, Max: %f\n", mn, mx);
474 }
475

476
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477 interpreter1->Invoke();
478

479 if (print_output) {
480 Serial.println("First layer");
481 print_values(output1->data.f, NN_HIDDEN_SIZE);
482 }
483 sum+=activation(output1->data.f, NN_HIDDEN_SIZE);
484

485 if (two_layers) {
486

487 for (int i = 0; i < NN_HIDDEN_SIZE; i++) {
488 input2->data.f[i] = output1->data.f[i];
489 }
490 normalize(input2->data.f, NN_HIDDEN_SIZE);
491

492 if (print_output) {
493 Serial.println("Normalized layer");
494 print_values(input2->data.f, NN_HIDDEN_SIZE);
495 }
496

497 interpreter2->Invoke();
498

499 if (print_output) {
500 Serial.println("Second layer");
501 print_values(output2->data.f, NN_OUTPUT_SIZE);
502 }
503

504 sum += activation(output2->data.f, NN_HIDDEN_SIZE_2);
505

506 if (three_layered){
507 for (int i = 0; i < NN_HIDDEN_SIZE_2; i++) {
508 input3->data.f[i] = output2->data.f[i];
509 }
510 normalize(input3->data.f, NN_HIDDEN_SIZE_2);
511 if (print_output) {
512 Serial.println("Normalized layer");
513 print_values(input3->data.f, NN_HIDDEN_SIZE_2);
514 }
515 interpreter3->Invoke();
516 if (print_output) {
517 Serial.println("Third layer");
518 print_values(output3->data.f, NN_OUTPUT_SIZE);
519 }
520 sum += activation(output3->data.f, NN_OUTPUT_SIZE);
521 }
522 }
523

524 goodness = sum;
525

526 if (print_output) {
527 Serial.printf("Goodness: %f for label %d\n", goodness, i);
528 }
529

530

531 if (goodness >= max_goodness) {
532 max_goodness = goodness;
533 predicted_label = i;
534 }
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535 if (print_output) {
536 Serial.printf("Max goodness: %f for label %d\n", max_goodness, predicted_label);
537 }
538

539

540 }
541 float end = micros();
542 if (predicted_label == label) {
543 correct ++;
544 }
545 if (print_output) {
546 Serial.printf("Predicted label: %d, Actual label: %d\n", predicted_label, label);
547 delay(50000);
548 }
549

550

551 total ++;
552 tot_time += end - begin;
553

554 Serial.printf("----------------------------------------\n");
555 Serial.printf("SGD_FF_fashion_mnist_L297L297_BS32_E8_LR0.1_M0.0_0\n");
556 Serial.printf("SGD_FF_fashion_mnist_L297L297_BS32_E8_LR0.1_M0.0_1\n");
557 // Serial.printf("SGD_FF_fashion_mnist_L250L250L250_BS32_E6_LR0.1_M0.0_2\n");
558 Serial.printf("Accuracy: %f\n", ((float) correct) / (float)total);
559 Serial.printf("Average inference time (us): %f\n", tot_time / (float)total);
560

561 }
562 }
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