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Introduction

1.1. Background

In the ever-evolving landscape of drone technology, where these devices are finding utility in various
domains such as aerial photography, agricultural monitoring, and human transport, the exploration of
their versatility is a continuing endeavor. While drones have demonstrated effectiveness in passive
tasks, the scientific community is increasingly drawn to a specialized variant — the aerial manipulator.
Comprising drones with attached manipulators, these systems extend beyond passive roles, engaging
in activities like contact-based inspection, valve turning, and the intriguing prospect of aerial perching.

Aerial perching, allowing drones to strategically land on or beneath objects, holds promise for pro-
longing mission durations by conserving energy. Applications range from environmental monitoring
seen in research by Zheng et al.[1] to innovative recharging methods, such as using power line cables
demonstrated by lversen et al. [2].

However, the achievement of successful aerial perching comes with challenges, notably in the pre-
cise localization of suitable perching sites. Common sensors like cameras or LiDAR are employed for
this purpose, but issues arise in low-light conditions or when the gripper obstructs the camera, leading
to inaccuracies in object estimation. Addressing these uncertainties requires, among other methods,
exploring new modalities to enhance the aerial manipulator’s accuracy in perch planning.

Once such modality comes in the form of tactile perception, which has been used extensively in
the world of fixed-base robotics. Tactile perception is sensing via touch and can be employed for a
variety of tasks such as in-hand manipulation, grasp evaluation and object localization [3]. In the field
of aerial manipulators, tactile perception has only been investigated as tactile navigation in the form of
contour-following by Bodie et al [4] and Hamaza et al [5]. However, this modality can be used for much
more.

Taking inspiration from fixed-base robotics, this thesis explores the possibility of extending the ap-
plicability of tactile feedback within aerial manipulation to object localization. Research on this has
previously been conducted by Bredenbeck et al. [6]. To achieve this, a three-fingered, bio-inspired
robotic gripper with tactile sensing capabilities is designed and affixed to a quadcopter drone. The
subsequent development of a tactile navigation algorithm and a grasp evaluator aims to enhance the
aerial manipulator’s ability to perform object localization and subsequent aerial perching.

1.2. Research Goal

The thesis within this document seeks to illustrate the practicality of incorporating tactile feedback for
drones, particularly in navigating landing scenarios. Additionally, it aims to validate the efficacy of
evaluating tactile information. To substantiate these claims, the following questions have been posed:

» Does employing tactile feedback in grasping applications offer a significant advantage over re-
maining in open loop?

1. To what extent does the use of tactile feedback increase the allowable object uncertainty
compared to scenarios without tactile feedback?
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2 1. Introduction

2. How does the success rate of an open-loop perch compare with the performance of tactile-
based aerial perching?

3. In what manner is the time-before-landing influenced by the utilization of tactile feedback?

* What is the magnitude of the improvement in the likelihood of a successful perch when utilizing
a tactile grasp evaluator?

1.3. Report Outline

This report unfolds in three main chapters. The fist chapter presented here has given a brief background
on the topic of aerial manipulators and tactile feedback. The second chapter houses the scientific pa-
per, designed to address the research questions articulated in the project’s objectives. Finally, the third
chapter encompasses a comprehensive literature study conducted before commencing the actual the-
sis. This study delves into the intricacies of both aerial manipulators and tactile feedback, showcasing
the diverse methods currently employed to achieve various objectives. The literature review concludes
by identifying a knowledge gap in the existing literature, specifically centered around the use of tactile
feedback in aerial grasping, aligning with the research goal.
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Aerial Perching via Active Touch:
Embodying Robust Tactile Grasping on Aerial Robots

A.V. Jadoenathmisier

Abstract—Aerial manipulators, characterized by their ability
to actively engage with the environment, are gaining popularity
for their versatility in performing diverse tasks. This research
focuses on augmenting the capabilities of aerial manipulators
through the integration of tactile feedback, specifically employing
a compliant bio-inspired three-fingered manipulator equipped
with tactile capacitive sensors on each finger. The manipulator is
affixed to a drone, enabling tactile-guided navigation for precise
object localization, subsequent grasping, and perching.

Additionally, a grasp evaluator assesses grasp quality, allowing
the system to adapt by suggesting alternative grasp locations after
an initial attempt is unsuccessful. A comparative analysis between
the system’s performance using tactile feedback and open-loop
perching/grasping in perching scenarios demonstrates that the
grasp evaluator improves the perching success rate by 55%-point
and increases the allowable object uncertainty by 0.14 [m]. These
findings highlight the efficacy of this approach in advancing aerial
manipulator capabilities.

I. INTRODUCTION

The increasing popularity of drones across various indus-
tries, such as aerial photography, industrial inspection, and
agriculture, fuels a growing interest in drone development
[1, 2]. Initially employed for passive tasks without active
interaction with the environment, there has been a shift towards
developing aerial manipulators capable of actively engaging
with their surroundings. These manipulators undertake tasks
like object grasping, surface perching, and even valve manip-
ulation [3, 4, 5].

Among actively interactive tasks, perching stands out due to
its potential to help drones conserve energy and extend mission
time [6]. For instance, in remote monitoring, multi-copter
drones can perch on tall structures, enabling them to perform
monitoring tasks without constant flight [7, 8]. Additionally,
perching on power line cables offers an opportunity for drones
to recharge their batteries [9].

As the demand for aerial manipulators grows, there is a
pressing need to enhance their capabilities, particularly in
terms of localization and precise flight trajectory towards
objects [1]. Enhancing these capabilities enables aerial ma-
nipulators to perform tasks more safely and accurately.

Aerial manipulators typically consist of robotic elements,
and inspiration from their fixed-base counterparts is a logical
starting point for improving current designs. Object localiza-
tion in fixed-base robotics has involved tactile feedback, where
tactile sensors integrated within the manipulator accurately
determine the object’s location based on touch feedback.
Tactile feedback has proven valuable in various applications,
including object localization, contour following, and grasp
evaluation [10, 11, 12, 13].

i

Fig. 1: The aerial manipulator using tactile-based navigation
is depicted perching on an object.

In the realm of aerial manipulators, tactile sensing has found
applications in contour following and surface detection [14,
15, 16]. However, the existing literature on the use of tactile
feedback for object localization is relatively limited, with a
modest amount of research conducted thus far, notabl by
[17]. Touch localization in aerial robotics becomes particularly
valuable in conditions where vision-based localization faces
challenges, such as object occlusion, low-light conditions, or
constrained computational power. Additionally, tactile sensing
provides valuable feedback on the quality of a grasp [11].

Research into tactile feedback can involve various sensors,
such as vision-based tactile sensors, piezoresistive sensors,
traditional force/torque sensors, and capacitive sensing [18].
Capacitive sensing, in particular, stands out as a viable option,
due to their weight and low cost[18].

While popular tactile sensors like the Gelsight tactile sensor
[19] or the Syntouch Biotac' are commonly used in literature
[18], their high price points make them less viable for all situ-
ations. In contrast, capacitance sensors such as the MPR1212,
despite providing less valuable information compared to high-
end sensors, offer a cost-effective alternative that requires less
data processing.

In this work, the development of an aerial manipulator that
utilizes tactile feedback from an MPR121 capacitance sensor

Uhttps://syntouchinc.com/
https://www.adafruit.com/product/1982



to position itself for grasping or perching tasks is presented,
as depicted in Figure 1. The main contributions of this work
are as follows:

o Designing a semi-rigid tendon-driven manipulator with
an interior structure manufactured from PLA and exte-
rior silicon pads to enable compliant grasping behavior.
Tactile sensing electrodes are embedded into the silicon
finger pads.

o Developing a tactile feedback controller that utilizes
touch localization to compute reference positions for the
aerial manipulator to plan grasps or perches.

o Designing a grasp evaluator that utilizes tactile sensor
output to assess whether a grasp will lead to a stable
grip. If the grasp is deemed unsuccessful, the controller
plans for a new grasp that will lead to success.

« Testing the robustness of the controller through extensive
trials under varying amounts of object uncertainty. Addi-
tionally, demonstrating that the controller can perform its
task until it finds a stable perch.

II. METHODOLOGY
A. Manipulator Design

The manipulator attached to the drone comprises a three-
finger system designed for both stable grasping and perching.

Each finger consists of three phalanges of varying length,
the sizing and shape of which was inspired by the anatomy
of the human finger. The phalanges can be categorized as
proximal, intermediate and distal . The proximal phalange
is located closest to the base of the gripper while the distal
phalange is furthest away. Having the gripper on top of the
drone enables grasping objects from below and perching in the
form of hanging. This design is inspired by a similar design
seen in [7], other designs that involve the gripper on top of
the drone include [20, 9].

The fingers are attached to a revolute joint which is in
turn mounted on top of a base plate. The frame of each
finger is made from PLA and was manufactured using 3D
printing. On each phalange of the finger a silicon pad is
attached. This combination allows the system to carry loads
effectively while also offering a degree of compliance during
grasping. Additionally, the silicon pads feature a rougher
texture compared to PLA, which enhances grip stability due
to the increased friction coefficient.

A rendering of the fingers can be seen in Figure 2 .

To optimize space allocation for the fingers, servos, and
flight computer, a stacked base design was selected. This
choice was driven by the constrained space available on
the drone. The stacked configuration comprises three bases,
with the bottom base serving to house and shield the flight
computer. The second base is designed to accommodate three
servos and provide ample room for electronic components.
Lastly, the top base is dedicated to attaching the fingers to the
system. The stacked configuration is shown in Figure 2

For controlled finger movement, a tendon-driven mechanism
is employed, where each finger is linked to a servo through

a tendon routed from the servo to the top of the finger. This
approach, chosen over a single servo system, minimizes me-
chanical complexity. Passive closure is achieved by integrating
torsional springs at each joint, considering the drone’s passive
perching capability at its maximum take-off weight and under
the maximum load of the actuators. The full system in both
open and closed state can be seen in Figure 2

The forward kinematics of the manipulator are used to
determine the position of each phalanges at a specific joint
angle. These are obtained by the matrices found in Equation 1.

[cos(qo) —sin(gy) 0 0

Ty = sin(gp) cos(qop) 0 O

0 0 1 0

Lo 0 01
cos(qn) —sin(q1) 0 Ly

Tyy = sin(q1)  cos(qr) 0 0

0 0 1 0

0 0 0 1

- . = (1

cos(q2) —sin(q2) 0 Lo

Ty = sin(g2) cos(gz) 0 O

3 0 0 1 0
Lo 0 0 1)
cos(qz) —sin(qgs) 0 Ls

Tes — sin(gs) cos(gs) 0 O

o 0 0 1 0
0 0 0 1]

Each ¢; represents the rotation of joint ¢, where joint O is
located on the base of the gripper and joint 4 on the distal
phalange. The length of each phalange is given by L;. The
forward kinematics Tp4 can then be obtained using Equation 2.

Tog = To1 - T1g - T3 - T3 ()

The transformation Tp4 given by Equation 3. Where cgi23
and sgp123 are the cosine and sine of the sum of all joint
angles respectively. Using this transformation, the localization
of phalanges can be obtained.

co123 —so123 0 coraLz + co1 L2+ oLl
S ¢ 0 sgiols + sg1 L2+ soll
Tys = 0(1)23 0(1)23 X 012L3 001 0 3)
0 0 0 1

B. Tactile Sensing Pads

To implement embodied sensing on the manipulator, copper
electrodes are integrated into the silicon pads, enabling a tactile
sensor to detect changes in capacitance and provide touch-
sensing capabilities. The electrodes are connected to the sensor
using electrical wiring, which are soldered on to the copper.To
ensure that the electrodes do not detach of the silicon, metal
pins were jointed to the copper over which the silicon could be
casted. Using this method, all sensing pads were manufactured.
A robotic finger with all components can be seen in Figure 3.

The tactile sensor, a MPRI121, works by measuring the
potential between a sensing terminal on the sensor and a
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Fig. 2: (a) Renders of the bio-inspired fingers attached to a base, on the left is a side view showing the tendon routing needed
to actuate the finger. On the right is a full view of the finger, including the sensing pads. The phalanges are numbered and
color coded(b) Rendering of the stack configuration that is mounted atop the drone. Each base is numbered and color coded.
(c) Renders of the drone in both closed state (top) and open state (bottom).

Fig. 3: The manufactured finger with sensing pads, electrical
wiring and tendon.

electrode connected to it. The touch data obtained from the
sensor comprises capacitive measurements that are indirectly
measured by charging an electrode and measuring the resulting
potential after a defined amount of time. By using a baseline
capacitive measurement, a touch event can be defined as the
event in which the difference between the current measurement
and the baseline measurement exceeds a certain threshold. The
lower this threshold the more sensitive the sensor will be.

The trade-off being that false positives become more likely
to occur.

C. Aerial Platform

For this research a custom built quadcopter drone was used.
The drone consists of a SpeedyBee 45A BL32 4inl ESC which
controls 4 Emax ECO II Series 2207 motors. The drone is
powered by a 4S battery. The full takeoff weight of the drone,
with battery, is 1,01 kg.

D. Flight Stack

The flight stack onboard the drone consists of a flight
controller, an onboard computer, a tactile sensor and a micro-
controller for the servos.

Communication between the various subsystems is achieved
using a ROS2 network, which offers a flexible way to au-
tonomously command the drone while simultaneously giving
the option to log the data in a synchronized matter.

The flight controller is a Pixracer R15 running the PX4
v1.14 autopilot software [21]. The on-board flight computer is
a RaspberryPi 4.0 running Raspian Jesse. The on-board flight
computer is responsible for orchestrating the flight profile of
the drone. Besides being the interface between ROS2 and PX4,



the RaspberryPi receives data from the touch sensor and sends
commands to the motor driver of the servos.

Touch data is obtained from a MPR121 tactile sensor, which
sends its data directly to the onboard computer for further
processing.

The grippers are controlled by a Teensy 4.0 micro controller
which communicate with the Feetech STS3032 servos over
UART. The Teensy is able to send commands to the servos,
but also receives position feedback. The Teensy receives
commands from the onboard computer which are send over
its serial port.

The full system is shown in Figure 4.

Touch Sensors.

MPR121

= Within ROS2 Network
-

/" Robotic Finger Actuators ™

.

\_ Feetech STS3032

/" Electronic Speed Controller " Drone Motors

_
i
) \_ SpeedyBee 45ABLI2 4In 1 ESC

\_EMax Eco series II 1700KV /

Fig. 4: Onboard drone communication depicted through the
flight stack architecture. Defined communication protocols
govern interactions between subcomponents, a distinction is
made between components within the ROS2 network and
outside of it.

E. Tactile Control Algorithm

The tactile control algorithm utilizes touch data obtained
from the tactile sensor to facilitate object grasping or perching
maneuvers by the drone. The algorithm involves the calcula-
tion of position set-points, taking into account the location of
the drone at the touch event and an offset determined by a
tactile mapping function.

The reference positions £,y send to drone are calculated
by first determining a goal position 4,4 using Equation 4 .

-i'goa,l = Ttouch + -%offset (4)

Here Zioucn 1S the location of the drone at the touch event,
while &, rse; is determined based on mapping F given in
Equation 5 where 7 is tactile sensor that registers a touch
event. As the location of each sensor pad is know a priori,
Zg40a1 Will be a reference position that aligns the drone with
the lateral position of the object to be grasped.

F.r— jjoffset (5)

The tactile mapping function F is determined based on the
spatial arrangement of the tactile sensing pads, as illustrated
in Figure 5. The corresponding distances for each pad are

y1 :
: 6 7
y2 :

y3

v

Fig. 5: The gripper configuration and the location of each
sensor pad. The sensor mapping F for each sensor pad i,
ranging from 0 to 8, can be obtained by taking the distances
of each pad from the center.

TABLE I: Tactile sensor mapping

T|Ax | Ay Az
0 x1 -yl Zbase
1 x1 -y2 Zbase
2 x1 'y3 Zbase
3 0 yl Zbase
4 0 }’2 Zbase
5 0 y3 Zbase
6 -x1 -yl Zbase
7 -x1 -y2 Zbase
8 -x1 -y3 Zbase

presented in Table I. The vertical offset Az is based on the
height of the manipulator base with respect to the drone zpgse-

Once a goal position has been calculated, the reference
positions Z,.; are generated using the linear interpolation
given in Equation 6.

i'ref = -'itouch + ttraj (-’igoal - i’touch)v (6)

where v and t;,,; are the velocity and time since the start of
the trajectory respectively.

F. Tactile Grasp Evaluator

Upon reaching the calculated position, the drone initiates a
grasping maneuver, and the stability of the grasp is determined
based on the tactile output following the grasping action.

The optimal grasp configuration occurs when all touch pads
register a touched state. However, for the sake of achieving a
stable grasp, it is not mandatory for all pads to be touched.
During the correction maneuver, the objective is to attain a
touch state II that is sufficient for deeming the grasp as stable.
It was empirically determined that the minimum required
touch state should be:

m=[1 0010010 0



where each column i of II represents sensor pad i.
If the grasp is confirmed to be stable, the drone has the
option to either transition to a perching state or continue with
the ongoing grasping maneuver. Conversely, if the grasp is
assessed as unstable, the grasp evaluator triggers a correction
maneuver.
The correction maneuver is determined based on the current
tactile state obtained after the grasp.
If no tactile output is registered, i.e
m=[0 0000000 0
the controller determines a new grasp position based on
the assumption that the grasp manoeuvre has aligned the
lateral components of the object and drone. Therefore only
the vertical component needs to change. Thus, the correction
maneuver involves the drone moving up towards the bar by a
set amount as described in Equation 7 .
inew = i‘current + [0 0 AZ}T

(7

If no output is registered on the either of the side fingers
ie
T
Hz[OOOlOOlOO}
or .
H:[IOOIOOOOO}
it is assumed that the drone is at the endpoint of an object
and must thus shift laterally in either the positive or nega-
tive x-direction. The correction manoeuvre is then given by
Equation 8
T
] ®)
Finally if II does not equal any of the aforementioned
states, the grasp is tried again without any changes in the goal
position.

Tnew = Teurrent + [AZE 00

G. State Machine

To facilitate the dynamic adjustments in flight behavior
required across various phases of the drone’s mission, a state
machine is developed.

From the envisioned flight mission for this research the fol-
lowing distinct states are defined for the state machine: Takeoff,
Searching, Touched, Grasping, Evaluating, and Landing. Each
state is defined as follows:

1) Takeoff: In this initial state, the drone ascends from
the ground, maintaining a hovering position at a speci-
fied altitude. After a predetermined duration, the drone
receives an estimated location of the target object for
perching or grasping, with an assigned offset. It then
transitions to the Searching mode.

2) Searching: The drone undertakes a predefined search
trajectory around the object’s position. Throughout the
search, the drone actively listens for touch events relayed
by the touch sensors. Upon detecting a touch event, the
state transitions to Touched.

3) Touched: Having localized the object to be grasped or
perched, the drone computes an initial optimal grasp
trajectory based on the tactile control algorithm’s output.
Upon reaching the calculated grasp position, the state
transitions to Grasping.

4) Grasping: In this state, the drone executes the grasp
maneuver, subsequently transitioning to the Evaluating
phase.

5) Evaluating: Following an executed grasp, the drone
awaits feedback from the tactile sensors. The grasp eval-
uator assesses this feedback, determining the success of
the grasp. If successful, the state transitions to Landing;
otherwise, the state machine reverts to Grasping with a
newly calculated grasp location from the grasp evaluator.

6) Landing: With a confirmed stable grasp, the drone
gradually decelerates its motors and proceeds to shut
down entirely.

Figure 6 shows the state machine with the conditions that

trigger a transition.

Obiject position
known?
No

Yes

Yes
Touch event

Searching 4@7\
No
/\Yes
Succes?

Fig. 6: Flowchart of the state machine

At position?

No No

III. FLIGHT EXPERIMENTS

To test whether the developed algorithm led to improved
perching performance various experiments are conducted in
which this is evaluated.

A. Experimental Setup

Each experiment consisted of the drone having to perch
on a conductive rod with a radius of 2.5 [cm]. In all experi-
ments, Optitrack motion capture was employed for drone state
estimation. To be able to search for the object using tactile
feedback, the drone executed either an elliptical or zigzag
trajectory around and below the perching object, as illustrated
in Figure 7. The offset distances defined in Table I are given
by Table II

TABLE II: Offset values used during the experiments

Offset | Value in [m]

Azl 0.035
Ayl 0.05
Ay2 0.08
Ay3 0.11
Azl 0.08

The offsets are obtained by assessing the distance between
the base of the drone and the sensing pad. Given that the
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Fig. 7: Elipse and zigzag search trajectories used in the
searching state of the tactile state machine.

sensing pads cover the entire phalange, it was decided to
measure from the midpoint of each pad.

B. Open and closed loop perching experiments

The perching performance assessment involved evaluating
the aerial manipulator’s ability to sustain a hanging position
for over 10 seconds post-perch execution. Two types of ex-
periments were conducted: an open-loop perching experiment
and a closed-loop one.

In the open-loop experiment, a predefined position marked
a potentially successful grasp. The aerial manipulator moved
toward the perching object, and perch success was visually
confirmed. Varying the offset to the goal position allowed
correlating perch success rates with changing distances. The
closed-loop experiment involved the manipulator utilizing tac-
tile feedback for perching. Using the tactile controller, the
drone detected the object and, based on touch localization,
executed a perching maneuver. Furthermore, if the perch was
deemed unsuccessful by the grasp evaluator the controller
would plan for a new perch. Visual confirmation verified the
perch success rate.

In Figure 8 the states during the flight mission for both the
open loop and closed loop are shown.

To compare perching performance with and without tactile
feedback, success rates for a given perch at a specific offset
were averaged and plotted in Figure 9.

C. Touch-Based Navigation

The drones ability to align itself with an object after a touch
event, was verified by running similar experiments as in the
aforementioned subsection. In Figure 11, the drone’s trajectory
and tactile sensor outputs are plotted for a single experiment.
Initially, upon touching the object, the drone plans a perch
aligning with the object’s position.

Multiple runs of this experiment were run to determine the
behaviour of the system. In Figure 12 the convergence towards
the perching object can be visualized. Here, both the location
of the drone at which a touch event occurs and its location
for grasping are connected to show how the drone changes its
location based on touch events. This data was obtained from
28 experiments using various offsets from the center of the
bar and searching trajectories.

D. Comparison between searching trajectories

Various factors influence the perching performance of the
drone, these include the state estimation uncertainty and the
perch location. The grasp evaluator is used to aid the drone to
still reach a successful perch even after these limiting factors.
In Figure 13 it is shown how the drone first performs an
unsuccessful perch and then subsequently tries to perform
one again. Statistical analysis is performed to determine the
grasping behaviour of the system. 20 trials were run, with
10 trials using an ellipse trajectory while the other 10 were
using a zigzag trajectory. This is to test whether a difference
in searching trajectory led to any significant performance
changes. The average amount of tries before success for the
ellipse trajectory is determined to be 3.5 and the average speed
is found to be 49.9 [s]. For the zigzag trajectory the average
amount of tries is 2.3 and the average speed is 39.9 [s]. Both
the distribution for the amount of tries and time before landing
are found in Figure 10

IV. DISCUSSION
A. Touch-based perching performance

The integration of tactile feedback significantly improves
the perching performance of the aerial manipulator after
a touch event, showcasing a notable advancement over its
open-loop counterpart. As depicted in Figure 9, the use of
tactile feedback consistently yields higher success rates across
diverse offsets in object location. Furthermore, this integration
extends the perching range of the aerial manipulator, effec-
tively leveraging the full length of the gripper’s fingers and
accommodating uncertainties in the actual object location.

In open-loop experiments, failed perches primarily stem
from instances where the manipulator engages the perching
object with only the top phalanges or experiences inherent
misalignments in the experimental setup. Conversely, closed-
loop experiments reveal that unsuccessful perches often re-

Touched Grasping Evaluate
N 5 NNy \W p

AN Ay Ay
i

v

;:

Fig. 8: Illustration of experiment trajectories and states. The
top figure depicts state transitions during an experiment incor-
porating tactile feedback, while the bottom figure showcases
the drone attempting an open-loop perch.
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Fig. 9: The perching performance of an aerial manipulator,
assessing its grasping capabilities without and with tactile
feedback, is depicted. The evaluation focuses on lateral (y)
uncertainty in the perching object’s position. For each y offset
(0, 0.05, and 0.14), five trials were conducted for both open-
loop and closed-loop implementations, resulting in a total of
15 trials. The left plot illustrates performance without tactile
feedback, while the right plot displays performance with tactile
feedback.

sult from challenges in aligning the aerial manipulator for
the initial perch. Gripper closure timing errors, influenced
by state estimation inaccuracies, contribute to unsuccessful
alignments and occasional collisions that necessitate additional
refinement. The prospect of introducing supplementary tactile
sensors, particularly on the back of the fingers, presents an
avenue for collision detection and mitigation.

B. Robustness of the grasp evaluator

From the various experiments that were performed, it can
be determined that the robustness of the evaluator ensured
that the system was able to perch successful in various
trails. From Figure 10, it can be observed that the combined
probability of an initial successful perch is 20% across varying
distances and searching trajectories. The aerial manipulator,
upon encountering an unsuccessful perch, demonstrates an
improvement in its success rate by 75% when attempting
new perches. This improvement is calculated by considering
the difference between the total attempts and failed attempts.
Consequently, the evaluator increases the chances of achieving
a successful perch by 55%-point.

While the grasp evaluator introduces enhanced robustness to
grasping capabilities, it does necessitate a trade-off with speed
when contrasted with open-loop grasping. In open-loop sce-
narios, the time until landing remains minimal and is subject
to operator discretion. In contrast, tactile grasping mandates
a preliminary phase wherein the aerial manipulator locates
the object and subsequently plans grasps until a successful
execution.This approach, while marginally slower, does aug-
ment adaptability and success rates in dynamic and uncertain
environments. It can be noted that on average utilizing a zigzag
searching trajectory yields a faster convergence to a stable
landing compared to using a ellipse trajectory. Thus indicating
that future work could focus on optimizing trajectories to find
objects faster.

V. FUTURE WORK
A. Force control for increased compliance

The tactile sensors utilized in this study were limited
to detecting touch events exclusively on each sensing pad,
lacking information about the applied force during grasping
maneuvers. The absence of force-related data could be par-
ticularly valuable, especially when evaluating the success of
a grasp. Previous studies have successfully demonstrated the
capability to infer forces from capacitive measurements.

Integrating force measurements into the tactile sensing
system holds promise for enhancing the manipulator’s com-
pliance. This additional information not only provides insights
into the force exerted during grasping but also contributes to
making the manipulator more delicate in its interactions. The
ability to gauge and adapt to the forces involved in a grasp
adds a layer to the manipulator’s control, ultimately improving
its overall performance in delicate and precise tasks.

B. Pose estimation of perching object

In this study, the aerial manipulator assumes that a touch
event implies the pose of the object to be grasped aligns
with the front of the drone. Consequently, the current motion
planning for the grasp does not account for any yaw compo-
nent. Recognizing that real-world scenarios may deviate from
this ideal alignment, it becomes imperative to integrate yaw
movements within the tactile motion planner.

One viable approach involves leveraging a top-view camera
mounted on the drone to visually servo the aerial manipulator.
This allows the manipulator to align itself with the axis of the
object to be perched. This method, successfully demonstrated
in other research, introduces a visual feedback mechanism to
enhance the precision of the manipulator’s orientation.

Alternatively, expanding the degrees of freedom of the 3-
hinge manipulator offers another avenue. The current design,
utilizing pivot hinges, confines motion to a 2D plane. Intro-
ducing alternative joint types, such as universal joints, could
empower the manipulator to perform sweeping motions. By
incorporating servo feedback, these sweeping motions enable
the fingers to gather information about the orientation of the
object’s axis, allowing for a more adaptable and accurate
manipulation strategy.

C. Increased resolution of touch location

The manipulator designed for this research was equipped
with sensing pads in only 9 locations, resulting in instances
where the drone failed to register touch despite colliding with
an object intended for grasping. To enhance touch detection
reliability, an improvement can be achieved by augmenting
the number of sensing pads distributed across the manipula-
tor. This augmentation provides the drone with an increased
capability to detect touch events along its manipulator.

Strategic locations for additional sensing pads include the
back of the fingers. This addition addresses situations where
the drone might become entangled due to the back of the
fingers colliding with an object, preventing the drone from
reaching a specified target position. Furthermore, incorporating
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Fig. 10: Distribution plots comparing the perching performance of the aerial manipulator utilizing two distinct searching
trajectories: one employing an elliptical path and the other employing a zigzag path. Each trajectory is assessed through 10
trials. The left plot illustrates the distribution of the number of attempts the aerial manipulator makes before achieving a
successful perch. On the right, the plot displays the distribution of the time taken by the aerial manipulator to successfully
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Fig. 11: The behavior of the system throughout a single trial is
depicted, showcasing the dynamic changes in its state based on
events. The state machine transitions are visualized, providing
insights into the system’s response to various cues. Addition-
ally, the state of the tactile sensing pads at the conclusion of
the trial is presented at the end of the plot.

sensing pads at the base of the manipulator proves beneficial,
particularly for detecting objects slim enough to pass between
the fingers. Without these additional sensors, such objects
might escape detection.

By expanding the coverage of sensing pads, especially to
critical areas like the back of the fingers and the base of the
manipulator, this enhancement ensures a more comprehensive
touch detection capability, minimizing instances of undetected
collisions and contributing to the manipulator’s overall effec-
tiveness.

VI. CONCLUSION

In this study, an aerial manipulator was developed with
capabilities tailored for perching. The manipulator utilized a
tactile sensor to obtain tactile feedback from objects around
it. A tactile-navigation controller and a grasp evaluator were
designed with which the aerial manipulator was able to find
objects and plan for perches.
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Fig. 12: The overall response pattern of the controller follow-
ing a touch event is illustrated. The drone transitions to an
“open” state upon detecting a touch event, and to a “closed”
state when attempting a grasp. The depicted drone flight paths
consistently converge toward the bar after a touch event. This
data is derived from 28 individual trials involving varied
offsets to the bar and searching trajectories.

Utilizing various search trajectories, the aerial manipula-
tor efficiently identifies objects. Once detected, the system
strategically plans perches to ensure successful outcomes.
The inclusion of a grasp evaluator uses tactile feedback to
assess the stability of a designated perch. In instances of
compromised stability, a set of correction maneuvers has
been devised, guaranteeing subsequent grasp attempts result
in success.

Results demonstrated that implementing the tactile con-
troller extended the perching range under object uncertainty by
14 [cm]. Furthermore the introduced grasp evaluator improved
the reliability of perching by 55%-point.

While the platform functions as intended, opportunities for
improvement exist to enhance its capabilities under uncer-
tainty. Increasing the amount of tactile sensors on the platform
provides the aerial manipulator with a more comprehensive
understanding of its surroundings through embodied sensing.
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Fig. 13: The drone’s capability to assess a grasp and adapt its
goal position is demonstrated. Following each unsuccessful
attempt, the grasp evaluator elevates the drone’s altitude,
continuing until the evaluator identifies a successful grasp.
The concluding segment of the plot displays the final tactile
configuration attained by the system.

Additionally, increasing the degrees of freedom on the fingers
enables the incorporation of yaw control in the tactile con-
troller, such that the drone is able to perch objects that are at
various angles from it. Finally, the integration of force control
into the design facilitates more compliant grasping, guiding
the drone to handle more delicate objects.
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Literature Review

3.1. Introduction

This chapter serves as an introduction to a literature review on the applications of tactile feedback and
aerial manipulation. Initially, background information will be provided on the current state of aerial ma-
nipulators and tactile feedback. From this overview, a research question will be formulated, which will
be divided into several sub-questions to guide the literature review. Finally, an outline of the document
will be presented, detailing the topics covered in each chapter.

3.1.1. Background

The growing popularity of drones in various fields such as industry, academia, and consumer use has
led to an increase in demand for drones capable of performing a wider range of tasks. Drones are now
being used for tasks such as food delivery, agricultural monitoring, and in various conservation projects
[7]. These tasks are classified as passive interaction, as there is no physical interaction between the
drone and the environment it is interacting with. Active interaction, on the other hand, is a relatively
new type of interaction between drones and objects, which involves the drone physically interacting
with the object [8].

Active interaction with the environment is beneficial as it expands the range of tasks that drones
can perform in industry. Unlike mobile manipulators (or ground robots), aerial drones have a larger
workspace, but the trade-off is that more advanced control systems are needed to ensure stability as
forces and moments cannot be transferred back to the ground. Drones that perform active interaction
tasks are called aerial manipulators [7].

The advancement of aerial manipulators has resulted in more sophisticated designs that enable a
wider range of tasks. The first generation of aerial manipulators consisted of drones equipped with
basic gripper designs that could perform simple pick and place operations [9]. However, recent ad-
vancements have introduced aerial manipulators with robotic arms capable of performing more complex
tasks, such as door opening, valve turning, and pick and place operations [10, 11, 12]. The designs of
both the gripper and drone have seen various changes as both under-actuated and fully-actuated sys-
tems are utilized. Furthermore, the use of more compliant grippers in the form of flexible and semi-rigid
grippers has seen aerial manipulators being able to more safely interact with objects [7].

Tactile feedback, also known as haptic feedback, refers to the sense of touch that is artificially pro-
vided to a user or a robot through the use of sensors. Tactile feedback sensors are typically embedded
in robotic grippers or end-effectors to provide information about the physical interaction between the
robot and its environment [3].

The main function of tactile feedback is to allow the robot to detect and respond to forces and vi-
brations that it encounters while interacting with its environment [3]. This can include information about
the surface properties of an object, such as texture, shape, and stiffness [13], as well as information
about the amount of force being applied to an object [14].

Tactile feedback in robotics enhances the ability to grasp, manipulate, and navigate objects, as
demonstrated by various applications. In grasping and manipulation, it helps detect object slippage
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and adjust the grip accordingly. Navigating with tactile feedback involves following contours on diverse
shapes, or using tactile output to guide the gripper towards a desired grasp configuration through tactile
servoing. In this process, the gripper’s tactile output determines the offset between its current and
desired configuration, enabling the robot to make adjustments to reach the target state [15, 16, 17].

Tactile feedback in the field of aerial robotics has seen limited usage. Studies performed by Bodie
et al. [4] and Nava et al. [18] have demonstrated the benefits of adding a force sensor to the end-
effector of drones, allowing for better regulation of force applied to objects and the tracking of complex
contours. The use of tactile feedback provides aerial manipulators with a greater degree of precision
in their interactions with objects, leading to improved performance and dependability.

This literature study aims to explore the integration of tactile feedback on aerial manipulators. De-
spite the increasing use of tactile feedback, there is still a gap in understanding the full extent of its
potential applications. In particular, grasping tasks would benefit from the introduction of tactile feed-
back as low-light conditions can increase the difficulty for the drone to grasp an object based purely
on visual input [8]. Furthermore, the gripper itself might cause occlusion of objects to be grasped,
further decreasing the usability of the vision system. Tactile feedback has the potential to serve as a
more robust form of navigation in these situations due to the usage of tactile servoing. Additionally,
incorporating tactile feedback on a gripper can enhance the compliance of the interaction between the
object and drone. Tasks that such an aerial manipulator could accomplish include compliant grasping
of semi-deformable round objects (e.g. fruits).

Hence, the question that will be answered in this literature study is Can integrating tactile sensors
on a semi-rigid gripper of a quadrotor aerial manipulator improve its grasping ability on semi-
deformable round objects (e.g. fruits) through enhanced compliance and grasp configuration
via tactile servoing compared to no feedback grasping?

3.1.2. Breakdown of the Research Question
To answer the question posed in the previous section, it will be broken down into several subquestions.
The main question is broken down into three subquestions:

» How are the grippers, for grasping operations, currently implemented on aerial manipulators?

— How do different designs limit or enable the applicability of the gripper?

— What type of control systems are currently used to control these grippers on an aerial ma-
nipulator?

— How does the type of gripper affect the performance of the aerial manipulator during grasp-
ing?

» At what stages of a grasping operation can the use of tactile feedback enhance the performance
of the aerial manipulator?

What are the various phases that occur during grasping by an aerial manipulator?

How could tactile feedback be integrated on a gripper to aid in grasping operations?

Which feedback systems are currently used by aerial manipulators during grasping opera-
tions?

How do current feedback systems compare in respect to robustness and accuracy?

» How is tactile feedback utilized by mobile robots to improve their ability to grasp round and semi-
deformable objects?

— What are the benefits of incorporating tactile feedback in mobile robots for grasping round
and semi-deformable objects?

— What are the current technologies and approaches used to integrate tactile feedback in
mobile robots for grasping tasks?

— How does the integration of tactile feedback in mobile robots compare to other methods for
grasping round and semi-deformable objects?
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3.1.3. Document Outline

This document will explore the various research questions that were posed in this chapter. In section 3.2
various principles that should be taken into account when designing an aerial manipulator will be taken
into account. A breakdown of the various uses of tactile perception will be given in section 3.3, this
breakdown will include the types of sensors that are typically used and their various applications in
both mobile and aerial robotics. Furthermore, the various control methods that are used to be able to
have an autonomous robot perform various task will be explained in section 3.4. Finally, in section 3.5
a general conclusion will be given on the method proposed to answer the research question and how
to achieve it.

3.2. Aerial Manipulator Design

Aerial manipulators are robotic devices that are designed to perform various tasks such as pick-and-
place operations, assembly or disassembly, and even more complex tasks such as valve turning or
door opening [7]. These devices come in various designs and sizes, tailored to suit the specific task
they are meant to accomplish.

In this chapter, the different designs and types of aerial manipulators will be discussed in detail.
Firstly, the various types of aerial platforms that are commonly used for aerial manipulation will be
explored. This includes examining the different types of drone platforms, and the reasons for why they
are used.

Next, the different design principles that are used when determining the type of gripper for an aerial
manipulator will be discussed. These principles include the Degrees of Freedom (DOF), compliance,
morphology, and attachment to the drone. These design principles are essential in ensuring that the
aerial manipulator is able to perform its tasks effectively and efficiently.

Finally, this chapter will conclude with a proposal for the best design that can be used to answer the
question that was posed in the introduction.

3.2.1. Aerial Platform Design

The use of aerial manipulators has been an active area of research for several years and various drone
concepts have been experimented with. Initially, multicopters such as quadrotors and helicopters were
used as platforms for the grippers [7]. Quadrotors are particularly popular as test beds because their
dynamics are well understood, and a lot of literature on various control techniques is available. They
have been demonstrated to be capable of performing various manipulation tasks such as pick-and-
place operations and perching [8].

In recent years, there has been a shift towards the use of hexacopters and tilt-rotor drones, due to
their fully actuated nature. Fully actuated drones have the advantage of being able to maneuver in any
direction without changing their orientation, making them useful for tasks that require fine movement
and their easier implementation of impedance control[4]. They have been used in aerial manipulators
tasked with interacting with objects that are prone to move, and for contour following [4, 18]. The
disadvantage of these systems is that they are usually less agile compared to quadrotor and require
more complex modelling [8].

More sophisticated designs have also been demonstrated, such as morphing drones and drones
that collaborate to achieve a desired task. These designs have the potential to improve the performance
and capabilities of aerial manipulators [8].

3.2.2. Design Configurations for Manipulators

To enable an aerial manipulator to interact with its environment, various manipulator designs have been
developed. These designs can be distinguished by their number of degrees of freedom (DOFs), the
type of gripper they use (rigid or semi-rigid), and their morphology.

Degrees of Freedom

The Degrees of Freedom (DOF) of a gripper refers to the number of independent ways in which it
can move. A higher number of DOF allows for a greater range of movement and increased dexterity,
allowing the gripper to perform a wider range of tasks. However, this increased flexibility comes at the
cost of a heavier and more complex design.
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Figure 3.1: From left to right, An omnicopter developed by Bodie et al. [4] that is able to trace contours on a wall, a morphing
drone developed by Zhao et al. which can be used for various applications [19] and a quadrotor manipulator developed by
Korpela et al. that is opening a valve [10].

Aerial manipulators with 4- and 6-DOF have been used in various tasks such as pick-and-place
operations and valve turning [20, 10]. These grippers offer a high degree of flexibility and precision,
allowing them to perform a wide range of tasks.

Another type of aerial manipulator is the flying hand, which directly attaches the gripper to the body
of the drone. This design significantly reduces the modeling and control efforts required to operate the
gripper. However, the trade-off is that these types of grippers are limited in their workspace, and are
mainly used for pick-and-place operations [21, 9].

When designing an aerial manipulator, it is important to consider the specific requirements of the
task at hand and the trade-offs between the number of DOF and the weight, complexity, and workspace
of the gripper. It's worth noting that, in some cases, having a lower number of DOF may not be a
limitation, but rather an advantage in the sense that it can make the system more robust and less
complex.

Compliance of the Gripper

Compliance refers to the ability of a gripper to adjust its shape and conform to the object it is grasping.
In order to have more compliance during the interaction between the manipulator and the object, the
gripper can be designed to be semi-rigid. Semi-rigid grippers have a rigid interior which can hold the
load, while a softer exterior is used to increase compliance. Additionally, using a rougher material on
the exterior of the gripper can increase the grip and reduce the chance of slipping [2].

Fully flexible grippers, also known as "soft grippers” have also been developed. These types of
grippers are usually made out of a form of silicon which can wrap around an object to be grabbed.
They are able to adapt to the shape of the object and redistribute the force, which is beneficial for
grasping delicate or irregularly shaped objects [12].

When designing a gripper, it is important to consider the type of objects that it will be grasping and
the environment in which it will be operating. Grippers with a high degree of compliance can be useful
for grasping delicate or irregularly shaped objects, while those with a lower degree of compliance may
be better suited for task that require handling of heavier loads.

Gripper Morphology
The morphology of the gripper impacts the drones’ ability to perform certain tasks. For example, a
single surface magnetic gripper can be used to pick up magnetic objects, while the use of multiple
surfaces allows for more manipulation of the object being grasped. Additionally, the type of gripper
used can also affect the overall weight and size of the drone.

Aerial manipulators often utilize grippers that have a compact design, as they need to be able to fit
within the limited space available on the drone. Some popular types of grippers for aerial manipulators
include:

» Vacuum grippers: These grippers use a vacuum to suction onto an object, making them suitable
for grasping a wide range of materials [11].

» Pneumatic grippers: These grippers use compressed air to actuate the fingers, allowing them to
grip and release objects. They offer better compliance compared to other types of grippers and
are suitable for grasping objects of various shapes and sizes [12].
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» Electromagnetic grippers: These grippers use an electric current to generate a magnetic field
that attracts ferromagnetic objects. They are ideal for picking up metal objects but can’t grip
other materials [22].

» Mechanical grippers: These grippers use mechanical fingers to grip an object, similar to how a
human hand works. They offer a high degree of precision and dexterity, but they can be relatively
heavy and bulky [21].

Some of these grippers are shown in Figure 3.2

Controller,
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Figure 3.2: From left to right, A drone, developed by Garmella et al[22], utilizing a magnetic effector to pick up a magnetic object,
The layout of a drone, developed by Tsukagoshi et al. [11] that utilizes suction cups to be able to attach itself to a door, An
ultra-fast closing gripper developed by Mclaren et al. [21] that is used for both perching and handling object.

In addition to the gripper type, the size and shape of the gripper fingers also play a role in the
drone’s ability to grasp objects. Longer fingers provide a larger surface area for grasping, while shorter
fingers are more maneuverable due to their lower inertia. A gripper with multiple fingers allows for more
stability and control when grasping an object.

Integration on the Aerial Platform
Another design consideration is the location of the manipulator in relation to the drone. Some designs
have the manipulator attached to the top of the drone, while others have it attached to the bottom.
Attaching the manipulator on top of the drone, as proposed in a paper by Shimahara et al. [23], can
enable a drone to approach an object from below, which can be beneficial for tasks such as turning a
light bulb. However, when more Degrees of Freedom (DOF) are added to the system, attaching the
manipulator to the bottom of the drone can provide better stability [8].
The location of the manipulator in relation to the drone can affect the stability of the system, and it
also can affect the range of motion and the ability of the drone to access certain areas. Furthermore,
the location of the manipulator can also affect the payload capacity of the drone [8].

3.2.3. Proposed Design

For the purpose of this specific project, a quadrotor drone has been selected as the primary platform
for the aerial manipulator. The reason for this choice is due to the well-documented and understood
dynamics of quadrotor drones. In order to accomplish the task of grasping an object from below while
maintaining stability, the gripper will be attached to the top of the drone. This gripper will feature a
configuration that includes three fingers and one main palm. This particular design has been success-
fully implemented and tested in previous studies, such as by Mclaren et al. [21] and Miron et al. [24].
The finger morphology can either be interdigitated or the fingers can be spread 120 degrees apart. A
concept for this is shown in Figure 3.3.

To ensure a compliant interaction between the gripper and the object being grasped, the gripper
will consist of both a rigid interior and a semi-rigid exterior. The semi-rigid exterior will be made of a
specific type of silicon, which will increase the friction at the point of contact and thus reduce the force
required to stop the object from slipping.

The movement of the robotic fingers will be actuated by tendons, which will be driven by a servo
motor. This motor will enable the fingers to open and close, allowing for the grasping of objects. A
similar approach has been developed in a previous study by Mclaren et al. [21]. All tendons will be
connected to a single servo motor, ensuring that the fingers will move simultaneously.
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Figure 3.3: Different palm configurations that can be used during the design of the gripper [21]

In summary, the overall goal of this project is to design and develop an aerial manipulator that
is capable of grasping objects from below while remaining stable. This will be achieved by using a
quadrotor drone as the primary platform and incorporating a gripper that combines both rigid and semi-
rigid elements, as well as a servo motor to control the movement of the fingers.

3.3. Tactile Perception
Tactile perception in robotics, also known as touch sensing, is becoming an increasingly popular modal-
ity in the field of robotics due to the enhanced capabilities it can offer [3]. This chapter aims to provide
an overview of the current state of tactile perception in robotics.

First, the various sensors that can be used to obtain tactile feedback will be presented. These
sensors include capacitance sensors, piezoresistive sensors, optical sensors, and whiskered sensors.

Next, an overview will be given of the tasks that are currently executed by robots utilizing tactile
feedback. These applications include grasping, slip detection, object localization and classification,
and surface detection. The use of tactile feedback in these tasks can greatly improve the performance
and accuracy of the robot.

This chapter will also provide an overview of the use cases of tactile feedback in aerial robotics.

A breakdown of the various techniques used for tactile data processing will be given next. These
techniques include principal component analysis and autoencoders.

Finally, this chapter will conclude with a concept on how tactile feedback will be incorporated in
the proposed project. This will include the selection of appropriate sensors and techniques for data
processing, as well as the integration of tactile feedback into the overall system design.

3.3.1. Types of Tactile Sensors

Tactile sensors are devices that detect changes in physical properties such as pressure, force, and
temperature. They play an important role in robotics, automation, and human-machine interfaces, as
they allow machines to perceive and respond to their environment in a more human-like way.

When selecting a tactile sensor, it is important to consider certain metrics such as spatial resolution,
sensitivity, and cost. Spatial resolution refers to the ability of the sensor to distinguish between different
points of contact. Sensitivity is a measure of the sensor’s ability to detect small changes in the property
being measured. And cost is a factor that can affect the overall budget for a project.

There are several types of tactile sensors, each with their own unique characteristics and applica-
tions. Some examples include [25]:

» Whiskered tactile sensors: These sensors mimic the tactile sensing capabilities of animals, such
as rats and cats, that use their whiskers to sense their environment.

+ Optical tactile sensors are specialized sensors that use light to detect changes in the proximity,
position, and motion of nearby objects.

» Piezoresistive sensors: These sensors rely on the piezoresistive effect to detect changes in pres-
sure.

» Capacitance sensors: These sensors rely on the change in capacitance that occurs when an
object comes into contact with the sensor.

These sensors will be elaborated upon in the following sections.
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Piezoresistive Tactile Sensors
The piezoresistive effect causes some materials to change their electrical conductivity when subjected
to stress [3]. This effect has seen use is various tactile sensors.

The BioTac sensor, developed by Syntouch, is an anthropomorphic finger-like device that can mea-
sure a wide range of modalities including temperature, pressure, and force. It features 19 electrodes
surrounded by an elastic skin that contains an incompressible, conductive fluid. The displacement of
this fluid when the sensor comes into contact with an object leads to changes in the impedance of the
electrodes (due to the piezoresistive effect), which allows for the measurement of force and pressure.
Temperature is measured using a thermistor embedded within the skin [14].

BioTac sensors can be used to estimate contact force as demonstrated in a paper by Su et al. [14].
Here various methods were used that map the changes in impedance to tri-axial forces (F, F,,, F;). Both
changes in electrical impedance and normal force were measured, and based on the assumption that
only normal forces cause changes in impedance, a regression model is fitted to estimate the tri-axial
forces. To fit the data, a linear regression, locally weighted projection regression, and a neural network
model were used.

This sensor has been utilized in various research studies to enhance the grasping capabilities of
robotic hands [14, 26, 27, 28]. However, its high cost is one of the main drawbacks of the BioTac
sensor. Despite its cost, the BioTac sensor offers a highly realistic and accurate representation of the
human finger and its ability to measure multiple modalities makes it a valuable tool for researchers and
engineers in the field of robotics.

Rigid Core wi Hydroacoustic Fluid
Integrated Elecironics Pressure Transducer

Thermistor  Fingernail

Incompressible -
External Texture Impadance  Conductive  Clastomeric Skin
Fingerprints Sensing Fluid
Electrodes

Figure 3.4: Left: A robotic hand with BioTac sensors attached to its fingertips [14]. Right: The internals of the BioTac sensor.
[14]

Other sensors that utilize the piezoresistive effect are found in a paper by Li et al. [15], where a
conductive foam changes its resistance when subjected to a force. Utilizing an array of tactile sensing
elements (called tactels), accurate information on the forces applied, and their location could be inferred
from the tactile image obtained with the output of the tactels. Similar techniques to obtain tactile images
using piezoelectric sensors are found in research by Chebotar et al. [28] and Chen et al. [29]

Capacitance Tactile Sensors
A popular type of tactile sensors is the capacitance sensor, which detects touch due to changes in local
capacitance [3]. The changes in capacitance can be induced due to electrodes being pushed closer
together or conductive materials interfering with the electric field generated by the sensors. 2 examples
of popular capacitive sensors, the ICub sensor and Adafruit MPR121, are shown in Figure 3.5

The iCub sensor is a tactile sensor that utilizes capacitive technology to detect touch [30]. The
sensor is designed to mimic human skin and consists of soft dielectric transducers sandwiched between
electrodes. When the sensor comes into contact with an object, the distance between the electrodes
changes, resulting in a change in capacitance. This change in capacitance is then used to register
touch. One of the key benefits of the iCub sensor is its flexibility. The sensor is fully flexible, which allows
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for greater freedom in designing the end-effector of the robot. This sensor has been demonstrated on
the iCub robot, which is a humanoid robot, by having it interact with a plastic cup.

Another type of capacitive touch sensor is the Adafruit MPR121, which is a touch sensor that can be
connected to microcontrollers . The Adafruit MPR121 is a versatile tool that can be used to detect touch
on conductive objects. When connected to a power source, the sensor generates an electric field that
can be modified by the presence of conductive materials. This change in the electric field is measured
via capacitance, allowing the sensor to detect touch. To ensure accurate readings, a threshold value
can be set to filter out any noise. The Adafruit sensor has 12 sensing electrodes that can be connected
to conductive objects via electrical wire. These electrodes are capable of detecting touch on a given
conductive object, providing a reliable and efficient solution for a wide range of applications.

Figure 3.5: Left: The ICub sensor developed by Schmitz et al. [30] attached to a robotic hand. Right: the Adafruit sensor being
utilized to detect touch when fruit are being held.

The disadvantage of these types of sensors is their low sensitivity, furthermore since different object
have a different conductive measure recalibration of the sensors is needed when being used in a new
environment. This can be done by collecting initial measurements whenever the robot starts operating
to account for standard variations in capacitance. This calibration step is crucial for the sensor to
function properly and provide reliable results [30].

Whiskered Tactile Sensors

Whiskered tactile sensors, also known as whisker-based tactile sensors, are a type of tactile sensor
that mimic the sensing capabilities of animal whiskers [13]. These sensors consist of thin, flexible,
and elongated sensors, similar in shape and size to an animal’s whisker. They are typically made of
materials such as silicon, metal, or carbon fibers

Whisker sensors work by measuring the deflection of the sensor when it comes into contact with
an object. The amount of deflection and the direction of the deflection can be used to infer information
about the object, such as its shape, size, and texture.

One of the main advantages of whisker sensors is their ability to sense objects in limited visibil-
ity environments. Unlike cameras and other optical sensors, whisker sensors do not rely on light to
function, which makes them useful in environments with low light or complete darkness [13].

Whisker technology has been demonstrated in a paper by Huet et al. [13], where the strain of the
whisker at the base is converted to tactile information that is used to navigate a robotic car.

Other whisker like technology is found in the BIOTACT whisker tactile sensors are developed in the
Bristol Robotics Laboratory lab. Touch is detected due to the movement of a small magnet at the base
of the vibrissae which induces a voltage due to the Hall-effect [25]. The BIOTACT whisker sensor is
shown in Figure 3.6

The main disadvantage of whisker sensors is that their outputs can be prone to noise, due to hu-
midity and airflow, and extra data processing steps are required to be able to obtain a good output.
Furthermore, compared to other tactile sensors, their spatial resolution is limited [31]

Optical Sensors
Optical tactile sensors, also known as optical touch sensors, work by detecting the deflection of sensory
elements using cameras [3]. The sensory elements can be made of various materials such as optical

1https ://learn.adafruit.com/adafruit-mprl21-12-key-capacitive-touch-sensor-breakout-tutorial


https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-tutorial

3.3. Tactile Perception 23

Figure 3.6: The BIOTACT Whisker Tactile sensor developed at Bristol Robotic Laboratory [25].

fibers, thin film, or transparent membranes. When a force is applied to the sensory elements, it causes
them to deflect. The deflection can be detected by cameras that are typically placed behind or near the
sensory elements.

The cameras capture images of the deflected sensory elements and use algorithms to analyze the
images and extract information about the touch event [31]. The amount of deflection and the direction
of the deflection can be used to infer the direction and magnitude of the touch. The sensor can also
detect multiple touch points simultaneously and track the position of the touch points over time [32].

The Tactip sensor, created by the Bristol Robotics Laboratory, uses a camera to track the movement
of pins within its membrane. When the sensor comes into contact with a surface, the position and
orientation of an object can be determined based on the deflection of the pins. However, external light
can sometimes interfere with the accuracy of the pin readouts, so a preprocessing step is necessary
before using the data [32].

The sensor has been used by Lepora et al. [33, 16] for tactile exploration. By continuously tapping
across a surface, pose estimations can be generated and from these estimations the robot is able to
navigate. Both the Tactip sensor and the output it generates are shown in Figure 3.7

Figure 3.7: Left: The TacTip sensor as shown in [16]. Right: The corresponding output which can be obtained by tapping across
various surfaces.

Optical sensors, while precise, are sensitive to lighting conditions making them not the most reliable
in outdoor settings [31]. Furthermore, the added complexity that is needed to process output from the
sensor might not make it the most ideal candidate on smaller robotics.

3.3.2. Applications in Mobile Robotics

The use of tactile feedback in mobile robotics is gaining popularity as it can improve the interaction be-
tween a robot and its environment. Tactile feedback allows robots to gather detailed information about
the objects they are interacting with, such as shape, texture, and force distribution. This information
can be used to improve a wide range of tasks, such as grasping, slip-detection, object-localization,
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object-recognition, and surface detection [3]. In this section, an overview will be given of these key
applications of tactile feedback in mobile robotics.

Tactile-Based Grasping
Proper grasping is an important in robotics, as the ability to grasp objects securely and robustly is
essential for many applications. Traditional vision-based grasping methods often lead to a high rate of
failed attempts, as they struggle to accurately estimate the properties of local contact areas [3].
Tactile feedback, on the other hand, allows robots to gather more detailed information about contact
points, which can be used to predict whether or not a grasp will be successful. This is usually done
by using a known object model, from which successful grasps can be obtained. The classification and
subsequent changes in robot pose when the grasp is deemed unsuccessful are further explained in
section 3.4.
Research has shown that incorporating tactile feedback in grasping can lead to significant improve-
ments in grasping success rate, especially in unstructured environments and with objects of unknown
shape or texture [34, 35].

Tactile-Based Slip-Detection

Slip-detection is another key application of tactile feedback in mobile robotics. When a robot grasps an
object, it is important to detect when the object starts slipping from its grasp, as this can lead to loss of
control and potential damage to the object or the robot.

Using tactile data, researchers have been able to classify whenever an object starts slipping from a
robotic hand [8]. Various modalities that are obtained from the contact location can be used to determine
slippage. For example, there has been research on analyzing the vibrations at the contact location,
using the Fourier Transform, to be able to predict when an object starts slipping [36]. In other research, a
simple heuristic based on the derivative of tangential force at the contact location was used to determine
to classify when slipping occurred [14].

Other modalities that can be used for slip detection include temperature, as changes in relative
temperature can indicate slippage due to the friction heat that results from the slipping [8]. Slip-detection
is an active area of research and new techniques are being developed to improve the accuracy and
reliability of these methods.

Tactile-Based Object Localization

Object localization is another important application of tactile feedback in mobile robotics. The ability to
localize objects during in-hand manipulation is crucial for many tasks, such as manipulation, grasping,
and sorting [3].

From the tactile readings, robots are able to infer where an object is located on their end-effector
and the pose it has. This information is difficult to obtain using vision-based sensors, since the gripper
itself is occluding the object in is holding. The sensors used to perform object localization are typically
large arrays consisting of multiple tactels [15]. The tactile data, obtained from the tactels, must be
first be processed in various steps such that useful information can be obtained. These steps are
explained in subsection 3.3.4. Once the data is processed, typical vision-based techniques are used
to determine object pose. A demonstration of how tactile feedback can be utilized for localization is
shown in Figure 3.8

Research has shown that incorporating tactile feedback in object localization can lead to significant
improvements in localization accuracy, especially in unstructured environments and with objects of
unknown shape or texture.

Tactile-Based Object Classification

Object classification is another key application of tactile feedback in mobile robotics. It refers to the
ability of a robot to determine the type of object it is holding without relying on visual cues. Blind object
classification has been demonstrated in a number of studies [35, 26, 14]

In these studies, the robot uses its tactile output as well as its joint angles, to classify the type of
geometric primitive it is holding. This approach has several advantages over traditional visual-based
object classification methods. For instance, it removes the need for expensive depth cameras, which
can be prone to error and limited in their field of view. Furthermore, it allows the robot to obtain better
grasps by classifying the object and selecting the best grasping strategy accordingly [35].
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Figure 3.8: An example of how tactile feedback can be used to be able to perform tactile-based localization [15]. On the left,
an image of a screwdriver on top of a tactile sensor pad is shown. While on the right the corresponding tactile image output is
displayed.

Tactile-Based Surface Detection

Surface detection is another key application of tactile feedback in mobile robotics. It refers to the ability
of a robot to determine the properties of a surface it is interacting with, such as roughness, texture, and
friction coefficient [8].

Using tactile data, researchers have been able to infer various surface properties based on the
readouts from the sensors. This can be used to aid the robot in motion planning, by selecting routes
that are better suited for the surface, or to improve grasping by finding grooves or other features on the
surface [25, 37].

3.3.3. Applications in Aerial Robotics

Tactile feedback within the world of aerial robotics has not been a topic that has been explored thor-
oughly. Most research focuses on contact-based task, where drones are tasked with remaining in
contact with a surface to trace out shapes or perform Non-Destructive-Testing (NDT) [4].

In a paper by Nava et al. [18], a fully-actuated aerial manipulator is supplied with a force sensor on
the end of its end-effector. By using an impedance controller, the aerial manipulator is able to remain
in contact with the wall due to the fact that it is tasked to apply a specific force on the wall. In a similar
work by Bodie et al. [4] a tactile force sensor is used to ensure that a drone remains in contact with a
surface.

Other uses of tactile feedback, to the authors’ knowledge, do not exist and there remains a knowl-
edge gap as to the extent in which tactile feedback can be utilized. Within aerial manipulation, tactile
feedback could be used to allow for finer manipulation capabilities. Since the manipulator would obtain
information at the contact level, a better estimate could be obtained on the force applied and the exact
location of these forces.

3.3.4. Tactile data Processing

Tactile data, obtained from various sensors located on the surface of a robotic gripper, is a valuable
source of information for grasping and manipulation tasks. However, the data obtained from these sen-
sors can be complex and highly correlated, making it difficult to extract useful information. To overcome
this challenge, typically the data is mapped to a so-called latent space [38]. There exists various meth-
ods to achieve this, for example Principal Component Analysis (PCA) is commonly used to reduce the
dimensionality of the data and filter out any noise [27]. Another way to extract information is by using
machine learning models [39]. One popular model is the autoencoder. Both PCA and the autoencoder
will be elaborated upon next.

Principal Component Analysis
PCA is a mathematical technique that finds the input variables that lead to the largest variances in the
output data. The first step in PCA is to obtain the covariance matrix C;, from the output data. Then the
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principal components of the data can be obtained using the decomposition described in Equation 3.1
[40]

Cy = EAE" (3.1)

Where E are the unit norm eigenvectors of €y, and A is a diagonal matrix with the eigenvalues
of Cy as its elements. By sorting the eigenvectors scaling them with their respective eigenvalues, the
principal components can be found with the largest eigenvalues belonging to the 1 principal component.

By reducing the data into its principal components, a variety of object properties can be inferred from
the tactile data, such as compliance, object shape, and stiffness [31]. Compliance can be quantified by
using both motor joint angle and tactile sensor readings. Furthermore, an estimation of the object shape
can be obtained which can be used for grasping and manipulation planning. Moreover, by analyzing
the principal components of the tactile data, an estimate of the object’s center of mass and orientation
can be obtained. This information can be used for precise control of the object during manipulation,
such as keeping it balanced or rotating it to a specific orientation.

Autoencoder Networks

An autoencoder neural network is a type of machine learning model that is designed to reduce high
dimensional data into a compressed, lower dimensional representation, known as the encoded data.
The encoded data is then passed through a decoder, which is trained to reconstruct the original data as
closely as possible. This process is known as dimensionality reduction, and it enables the autoencoder
to identify and extract the most important features of the data [41, 39].

In the field of tactile sensing, autoencoder networks have been used to extract and identify features
from tactile data obtained from various sensors. For example, in a study conducted by Polic et al. [39],
an autoencoder network was trained on data obtained from a TacTip sensor. The training data included
tactile data from a variety of shapes, obtained from various depths and angular and radial locations,
and under varying applied forces. The network was able to extract features such as object shape and
applied force, as well as localize itself on different objects.

In another study conducted by Hoof et al. [41], a robot was trained to balance the pitch and roll of a
rotating pole using tactile data from its end-effector. The control policy was learned through reinforce-
ment learning, and the data input to the controller was obtained from an autoencoder. By reducing the
high-dimensional tactile data to a lower-dimensional representation, the autoencoder enabled the con-
troller to learn its control policies more effectively. This approach is similar to the one in the research
by Loncarevic et al. [38], in which a robot’s motor states are used to train the reinforcement learning
policy, but in this case no use of tactile data is made.

3.3.5. Tactile Perception in this Project

In this project, the aim is to experiment with the capabilities that tactile feedback can offer to enhance the
performance of aerial manipulators. Tactile perception has not been widely used in aerial manipulators,
and this project aims to explore its potential benefits. Cost and accessibility of sensors are important
factors to consider, given the time and resources allocated to this project.

After reviewing various sensors, the Adafruit MPR121 was identified as the most accessible and
cost-effective option. Multiple sensors can be used to increase the amount of tactile sensing pads.
However, a disadvantage of using these sensors is that they do not directly measure force. Unlike
the ICub sensors, which rely on displacing electrodes, the Adafruit sensors only detect changes in the
electric field generated by the sensor. The rate of capacitance change does not always scale linearly
with the amount of force applied, as material properties and other factors also play a role.

In order to infer force from the Adafruit sensors, a similar technique used in mobile phones could
be employed [42]. By measuring the amount of normal force applied on a mobile phone and the cor-
responding change in capacitance on the screen, a mapping can be obtained between changes in
capacitance and changes in normal force. However, it is unclear whether it is possible for this mapping
to include tri-axial forces. One way to improve this mapping could be to use the manipulator joint angles
as an extra feature.

The Adafruit MPR121 sensors can be stacked together and placed on the drone. Electrical wires
can then be used to connect the sensor to various sensing pads distributed around the robotic hand,
such that capacitive measurements can be performed. This allows for touch to be registered on various
locations on the manipulator.
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In the case where more tactile sensors are needed, there may be too much data for the controller to
handle. To reduce the processing load, an autoencoder could be trained to detect necessary features
for stable grasping. This way, only the most relevant information is passed to the controller.

3.4. Control Frameworks

This chapter aims to provide an overview of the different control frameworks that are used in the con-
troller design of autonomous systems, specifically focusing on aerial manipulators.

First, an overview will be given of the current techniques that are used in position control. These
techniques include methods for tele-operation, off-board positioning, and on-board positioning. The
advantages and disadvantages of each technique will be discussed, as well as the specific tasks that
they are best suited for.

Next, force control and its implementation on both drones and robots will be discussed. Force
control is an important aspect of aerial manipulation tasks and is used to ensure that the robot can
apply the right amount of force to perform the task. The chapter will explore the different methods used
for force control and the advantages and disadvantages of each method.

Grasping is an important task that a robot or aerial manipulator must be able to perform, and grasp
control plays a crucial role in this task. This chapter will explain the various ways in which grasp control
is achieved and the different estimators that are used to predict the stability and adjustment of the
grasp.

Tactile feedback can also be used as a tool for local navigation, known as tactile servoing. The
chapter will dedicate a section to discuss the various ways in which tactile servoing is employed on
different robots, including Pose-Based and Image-Based Tactile Servoing.

Finally, the chapter will conclude with a proposed control method that can be used in both the
positioning and force control of an aerial manipulator utilizing tactile feedback. This proposed method
will take into consideration the different techniques discussed in the chapter and will aim to provide a
comprehensive solution for controlling aerial manipulators.

3.4.1. Position Control

To be able to ensure that a gripper is able to grasp an object, the gripper and object should be aligned
properly. Various methods exist to ensure a proper alignment. These can be classified in various
degrees of autonomy, tele-operated, off-board and on-board positioning

Tele-operated Positioning

A common approach towards alignment is to use a human operator to move the drone to the desired
position. The advantage of this approach is that no autonomous algorithms are necessary, and en-
ergy can be expended elsewhere. However, the problem with tele-operated aerial manipulators is that
operators controlling the drone require training and should, of course, be paid thus increasing the op-
erational cost. Furthermore, the telemetry signal between the operator and drone also imposes a limit
on the workspace [7].

To improve the human-drone interface, research has been done on incorporating various types of
haptic feedback to give the operator a sense of how the drone 'feels.” Furthermore, Head-Up Displays
(HUDs) are used such that the operator is able to see what the drone is seeing. This way the operator
can have a better understanding of the situation of the drone [8].

Since this study will focus on autonomous navigation, tele-operation will not be utilized for every
part of the mission. However, pre-alignment could be useful in giving the drone a head start. This way
the drone can reach the location faster and with a better accuracy.

Off-Board Positioning
Off-board strategies consist of methods where the processing is done off-board, meaning that a com-
puter computes the desired locations for where the gripper should be and sends this to the drone. The
drone then uses this signal as a control input and generates the necessary pose. The advantage of
this approach is that the drone is not limited to calculations that normally take a long time to calculate,
and thus more computationally expensive algorithms can be used [8].

A popular way to achieve motion capture is by using OptiTrack cameras 2, which are used to de-

2https://optitrack.com/



28 3. Literature Review

termine the location of the drone or an object to be grasped. By placing markers on both, software
techniques can be used to obtain live locations and these are then sent to the drone such that it can
align itself with an object. This technology has been demonstrated on several experiments with aerial
manipulators [43]. The disadvantage of this technology is that it can break down in poor lighting con-
ditions due to the fact that the markers will be less visible. Furthermore, the aerial manipulator is
constrained to work within the field of view of the OptiTrack cameras.

Another approach could be using GPS data to locate both the drone and the object [8]. GPS has
been used to perform pick-and-place operations for various research projects. GPS does not break
down given bad lighting conditions, however, in the vicinity of tall buildings or when used indoors the
signal can give unreliable outputs.

In this work, off-board alignment will be useful in initializing the drone location such that it can pre-
align itself before the tactile feedback takes over. This way the drone can reach the location faster and
with a better accuracy.

On-Board Positioning

On-board alignment strategies utilize algorithms that the drone computes on-board. Since the compu-
tational power of a drone is typically lower than that of a dedicated computer, the algorithms used are
less computationally expensive. The algorithms might involve heuristics that are based on the sensor
input of the drone [7].

A typical on-board strategy used by a drone is using visual input to align itself with a target object.
These vision algorithms range in varying complexity. In a paper by Shimahara [23], a monochrome
camera fixed to the base of the gripper was used to detect when the drone had to grasp. Since the
location of the gripper tips in the camera frame did not change over time, they were used as indicators
of when an object to be grasped was close. Whenever the tips were out of frame, it meant that an
object was there and therefore the grasp could commence.

Image-based visual servoing relies on comparing desired visual output with the current input and
minimizing the error between them. In a study conducted by Kim et al. [44] a blob detection algorithm
is utilized to determine where an object to be grasped is located. Once a blob has been located, its
location is compared with a desired blob location. From the error between the two images, a trajectory
can be generated to minimize the error between the two. This trajectory is generated using an image
Jacobian, which relates the changes in image features to changes in motor states.

Besides visual control, other sensors have been used to align a drone with an object. In a research
study from Iversen et al. [2] a method is developed in which a drone uses LiDAR sensors to align
itself with a power line cable. Using the feedback from 2 different LIDAR sensors, the drone is able to
determine its orientation relative to a power line and from this align itself with the power line cable.

3.4.2. Force Control

Force control enables a robot to interact in a more compliant way with an object. Whenever the object
to be held is known, forces can be computed beforehand so that the robot can ensure that it does not
damage the object. In cases where this information is unknown, typically impedance controllers are
used.

Impedance Control

In the field of aerial robotics, impedance controllers have seen their use in contact-based tasks [4,
45]. When a surface on which an aerial manipulator is applying force suddenly disappears, large
disturbances can happen. To counteract these disturbances, the interaction force between the surface
and the manipulator can be modeled as a mass-spring-damper system. The force can now be designed
to be large when the surface is present and small when it is not. In this way, compliant interaction has
been demonstrated.

An object-level impedance controller was developed in a paper by Li et al. [46]. This controller
works by estimating a Virtual Frame, which is an estimate of both the position and orientation of an
object. The frame is built using the position of the robotic fingertips as a reference. The dynamics
of the contact point of the robotic finger and origin of the Virtual Frame is modeled as a mass-spring-
damper system. The desired interaction force is calculated from the model. A schematic of the system
is shown in Figure 3.9. This concept was extended upon by Li et al. [47] where tactile readings are
included to obtain a better estimate for the controller gains. Using this controller, researchers were able
to obtain stable grasps with both known and unknown objects.



3.4. Control Frameworks 29

Figure 3.9: Left: The robot used by Li et al. [46] for their experiment with object-level impedance controllers. Right: A schematic
showing the distribution of fingertips and the location of the defined Virtual Frame

3.4.3. Grasp Control
The goal of grasp control is to find a grasping configuration around an object that maximizes the stability
of the object in hand.

Visual grasp control has been demonstrated in various studies [48, 49]. The goals here is to gen-
erate a bounding box around an object to be grasped. The manipulator is then tasked to ensure that
its grippers remain within the bounding box. This method has shown success, however, the bounding
boxes can usually only be generated when the lighting conditions are correct.

The advantage of using tactile feedback in grasp control is that there are no additional processing
steps required to determine if there is contact between the gripper and object. Contact is immediately
detected, and the question then becomes how to use that information to classify if the grasp was
successful and if unsuccessful how to plan for adjustments [3].

This process has been formulated by Laaksonen et al. [50] using a probabilistic framework in such
as shown in Equation 3.2

arg mGaxf P(S|G,0)P(0|Gey:e—1Teye—1)d0 (3.2)

Where S denotes the stability, G the grasp attributes (such as current grasp configuration), O the ob-
ject attributes (such as object pose) and T represents the on-line tactile measurements. The conditional
probabilities P(S|G,0) and P(0|Gy,..—1Tt,:c-1) represent a stability estimator and an object estimator
respectively, where the subscript t, : t — 1 indicates the time series information up until the current
time-step. The process of formulating a grasp controller can thus be broken down into finding these
two models.

Grasp Stability Estimators

Determining the stability of a grasp, using tactile feedback, has been an active area of research. One of
the early works in grasp stability estimation by Ferrari et al. [51], proposes a method to infer the quality
of a grasp by formalizing metrics based on the ratio between the maximum finger force and the total
force applied by each finger. These metrics are termed the force and form closure, which are defined
as the capability of the robot to hold the object while external forces are at work.

Using this metric Dang et al. [52], trained a Support Vector Machine (SVM) to classify whether a
grasp is successful or not. A feature vector containing states of tactile sensors and the hand kinemat-
ics is used as input to the system and using this feature vector the relative force closure is calculated.
Based on the value of the relative force closure, the grasp is classified as either successful or unsuc-
cessful. Similar approaches have been proposed in a paper by Bekiroglu et al. [34] and by Li et al.
[47].

Stability estimators can be trained using both simulation and real data. The Grasplt simulator [53]
has been used to simulate grasps and train stability classifiers with success. The Grasplt simulator
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consist of various different object and grippers that can be simulated using its physics engine. Both
tactile information and visual information can be simulated.

Other approaches to grasp stability estimation, includes the object-level impedance stability esti-
mator developed in a paper by Li et al. [46]. Here, a classifier was trained on only successful grasps
that were performed using an object-level impedance controller. It was argued that training a model on
unsuccessful grasps would lead to unwanted noise, therefore only successful grasps are used. Based
on the gain values of the impedance controller, the tactile outputs from tactile sensors and given the
fact that the grasp was successful, a model was trained to classify what states resulted in a stable

grasp.

Grasp Adjustment Using Object Estimators
By estimating the object attributes O from the current grasping configuration and tactile measurements,
a grasp adjustment leading to a stable grasp can be obtained.

In a study conducted by Dang et al. [35], a range of stable grasps for different geometrical primitives
(sphere, box, etc.) was stored in a database. When a grasp was classified as unsuccessful, the robot
queries stable grasps from the database. Grasps that resemble the current configuration best are
chosen to adjust the current grip. Similar grasps are found using a K-Nearest-Neighbours algorithm.

Another way of adjusting the gripper is demonstrated in a paper by Hyttinen et al [54]. Here, a
probabilistic model is developed that classifies a grasp as successful or unsuccessful by using the
current tactile output and the robotic hand configuration and comparing this with template objects. The
probabilistic model is a kernel logistic regression model, it was trained by performing various grasps
on the template objects.

During testing, an initial grasp is planned using a 3D model of the object to be grasped. The robotic
hand executes the suggested grasp and subsequently uses its hand kinematics and tactile output to
determine the success of the grasp. If successful, the process stops. When it is unsuccessful, new
actions are simulated and the most successful action is chosen. The new actions are simulated in the
vicinity of the current grasp.

Calandra et al. [37] performed an experiment where a Convolutional Neural Network (CNN) was
trained to determine what manipulator adjustment would lead to a stable grasp. Using both tactile
data obtained from a GelSight sensor and visual data obtained from a camera, the model was trained
on classifying successful grasps. During runtime, the robot was able to use its current sensor states
and simulate various random actions. The action that resulted in a stable grasp was chosen. To train
the model, various trials were performed in which the robot was tasked to perform different random
actions that resulted in either a successful or unsuccessful grasp. Whether a grasp was successful
was determined visually.

In a paper by Chebotar et al. [28], a reinforcement learning model was trained to first detect when
a grasp is unsuccessful and then adjust the current grasp to a grasp that is successful. The policies
for the reinforcement learning model were learned to use the various features in spatio-temporal data.
Based on the features, the grasp is adjusted. These methods demonstrate the potential of using object
estimators to improve the performance of aerial manipulators by adjusting the grasp based on the object
attributes, tactile feedback and grasping configuration.

Another approach was found by Schmitz et al. [30] where a simple algorithm was used for grasping
with a iCub humanoid robot. The robot was tasked with grasping various objects, and it accomplished
this by using its tactile sensors as an indication of when it was holding an object. The fingers on the
robotic hand would only stop closing when the robot detected touch on all its tactile sensors.

3.4.4. Tactile Servoing

Tactile servoing consists of using tactile feedback on a robot such that the robot is able to align itself
with an object to be grasped. It shares a lot of the concepts of visual servoing and can similarly be
distinguished in visual- and pose based tactile servoing.

Pose-Based Tactile Servoing

In Pose-Based Tactile Servoing (PBTS) the pose of the sensor is estimated using the current tactile
output. Based on the estimated pose, modifications are made that servo the sensor towards a desired
pose. Determining the pose of the sensor from tactile feedback is not a trivial task and only recently a
formalization of tactile servoing has been made [33].
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Aform of PBTS is demonstrated in a paper by Lepora et al. [16] where a robot was tasked to perform
a contour following task using only tactile feedback. To register tactile feedback, a TacTip sensor was
tasked to constantly tap across a 2D surface. A mapping between the sensor outputs and the radial
and angular position of the sensor was determined on various training sets. When the sensor would
output tactile information the manipulator was able to estimate its position on an object and servo its
sensor accordingly based on this mapping. This was extended upon in by the same researchers [33]
where a deep learning model called PoseNet is trained to map sensor outputs to the current sensor
pose.

Image-Based Tactile Servoing

The basic principles of Image-Based Tactile Servoing (IBTS) are related to Image-Based Visual Servo-
ing (IBVS) [29]. By defining a desired tactile image the controller is able to move the manipulator such
that it’s tactile output will match the desired image. The tactile images are obtained from the tactile
sensors and their resolution depends on the type and the amount of sensors used. An example of a
tactile image is shown in Figure 3.10
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Figure 3.10: Example of different tactile images [29] Left: Current tactile output, Right: Desired tactile output

IBTS, like its visual counterpart, relies on defining a Jacobian matrix that relates the changes in joint
angles (dq) to the changes in tactile image output (0F) as described in Equation 3.3 [29].

_9q
~ 9F

The Jacobian matrix, or tactile Jacobian matrix in tactile servoing, can be obtained in a variety of ways.
Both in a paper by Li et al. [15] and Chen et al. [29] the Jacobian was obtained empirically by measuring
both the changes in joint angles and tactile intensity and fitting the relationship using a linear regression
model. Using the tactile Jacobian, the joints of the robot can be steered towards a direction of desired
change.

A framework for IBTS is developed with which a variety of task can be accomplished by Li et al
in [15]. Their main approach is to estimate a required sensor twist such that the robot is aligned with
respect to a certain tactile feature. By utilizing a task-independent tactile Jacobian matrix and a task-
dependent projector matrix, the robot is able to move itself in specific ways based on its deviation from
a desired tactile image. The projector matrix ensures that only specific motors are used during the
motion. Using this framework, tasks such as object tracking and rolling were achieved.

Chen et al. [29] build on the concept of IBTS and coupled it with pressure based tactile sensors. By
defining a desired pressure distribution, a control algorithm was devised that took the current pressure
distribution as input and gave the change in joint states that moved towards the desired distribution as
output.

The work of Chen et al. [29] was further developed in [55]. Since in previous work it was assumed
that the relation between the changes in intensities and joint states was linear, the control algorithms

Je (3:3)
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broke down when the desired tactile image was too far removed from the current tactile image. To
solve this issue, instead of a tactile Jacobian, a CNN was trained to find the changes in joint states
when both the current and desired tactile intensities were given.

3.4.5. Proposed Control Method

The proposed control method for this project utilizes a quadrotor drone that has a 3-fingered semi-rigid
gripper attached on top. The gripper is embedded with tactile sensors that will be used for controlling
the aerial manipulators’ interaction with objects. The task is broken down into several subcomponents
to ensure stability during each step:

» Navigation towards the object to be grasped.

Detection of the object using tactile feedback.

Planning of an initial grasp.

Classification of the grasp as either successful or unsuccessful.
» Adjustment of the grasp if it is unsuccessful.
» Maintenance of a stable grasp once obtained.

» Execution of a twist-jerk motion to detach the object.

Stability maintenance after object detachment.

Safe landing of the drone.

Performing these steps can be achieved by defining various task vectors that contain the desired
tactile output and gripper configuration states. These vectors will include n tactile sensor states (s € R™)
and k motor states (m € R¥) such as shown in Equation 3.4.

xg=[s1 o sy omy oo mk]T (3.4)

Based on the error between the desired state (x;) and the current state (x) the aerial manipulator
must servo itself to reduce the error. Since a quadrotor is an under-actuated system, the changes in
drone motor state (g € R*) will be focused on vertical movement since this will make controlling the
interaction easier. A mapping between the error and the drone states (F(e) — q) can be obtained from
either a tactile Jacobian or a data-driven approach.

A tactile Jacobian can be defined as shown in Equation 3.5
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Using the definition of the tactile Jacobian the control that has to be performed by the drone can
then be calculated from Equation 3.6.

0q =] (xqg —x) (3.6)

The individual differentials have to be obtained experimentally using various grasping configurations
and measuring both the motor state of the drone, motors states the gripper and the capacitive sensor
states.

A data-driven approach could also be employed such as demonstrated by Chen et al. [55]. In the
case of the aerial manipulator, a neural network could be trained to produce a mapping between the
current drone state and the error between the desired output state and current output state to a control
action. Another data-drive approach would be to use reinforcement learning to predict a control policy
that reduces the output state error.
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Once initial contact has been made, the aerial manipulator must start planning for a grasp. For this,
two approaches can be taken. First it is possible to have the manipulator fly up until the sensor at the
palm detects touch. When touch is detected, the gripper will close around the object.

Another approach that can be taken is defining a sequence of grasp adjustments that gradually
lead to the final grasp. The tactile servoing approach explained above can be used to servo the aerial
manipulator towards the desired final configuration. Both approaches are shown in Figure 3.11
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Figure 3.11: Different approaches to grasp planning, sequence goes from top to bottom. Drone body in blue and the propellers
are in black. The capacitive sensors are on when the yellow circle is filled and off when it is not. The object to be grasped is in
green. Left: Once contact is established, the drone opens its grippers and moves up until the tactile sensors on the palm are
triggered. It then closes its grippers around the object. Right: Once contact is established the drone only move slightly up and
then does another grasp. It keeps doing this until a successful grasp is achieved.

Since the object to be grasped is known beforehand, the contact forces that are required for a stable
grasp can already be known. The controller then has to ensure that the forces at the contact points are
equal to this required force such that a stable grasp can be achieved.

Once the grasp is executed, and successful, the twist-jerk motion is performed to detach the object.
During the twist-jerk motion, the quadrotor will perform both a yaw and pull movement. Once the
object has been detached the sudden change in reaction force might lead to instabilities. To control
this interaction, an impedance controller will be used for a smoother transition between detaching and
detachment.

Completing the detachment of the object results in the final phase of the mission, which is landing
back safely. Due to the added weight of the grasped object, some changes in the gain values of the
attitude controller might be necessary.

3.5. Conclusion

In this chapter, a general conclusion will be made to answer the research question posed in the intro-
duction of this report.

First, a summary that concludes the report will be given, with a proposal as to how the research
question can be answered. This summary will provide a brief overview of the key findings and conclu-
sions of the report, and will present the proposed solution to the research question.

Following this, an explanation will be provided as to what the next steps are that should be taken
to experimentally validate the answer posed in the summary. These next steps will likely include the
design, construction, and testing of an experimental setup, as well as the collection and analysis of
data.

3.5.1. Summary

This work summarizes the combined research that has been done on both aerial manipulators and
tactile perception, with the aim of answering the question: Can integrating tactile sensors on a semi-
rigid gripper of a quadrotor aerial manipulator improve its grasping ability on semi-deformable
round objects (e.g. fruits) through enhanced compliance and grasp configuration via tactile
servoing compared to no feedback grasping?.

The current state of tactile perception research has focused on improving the grasping capabilities
of robots. Tactile feedback is used to enable robots to classify objects and assess the stability of their
grip. These stability estimations are typically based on data-driven models that use both the robot
hand motor states and the tactile output at that particular moment. When a grip is deemed unstable,
controllers exist that can move the robot to a more stable grip. These controllers can be based on
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policies learned through reinforcement learning or probabilistic models that estimate whether a certain
action will lead to a more stable situation.

Tactile navigation can be used to move the robot to more stable holds. A tactile reference image is
typically sent to the controller, and the controller must move the robot hand such that the actual tactile
output better resembles that reference output. This is similar to visual navigation, where a reference
feature is obtained, and the robot is tasked with moving towards that feature. Models can also be
trained to determine the current pose of the end-effector based on the tactile output, allowing the robot
to navigate around objects.

To interact with objects, aerial manipulators must first align themselves with the object. This can be
done in a variety of ways, including tele-operation, off-board, and on-board methods. One use case
for tactile feedback on aerial manipulators is in the alignment and subsequent grasping of objects. By
using tactile sensors on the grippers of a drone, a drone can servo itself towards correct alignment with
respect to the object, allowing for a successful grasp.

Hence, the integration of tactile sensors on the grippers of aerial manipulators will enable them to
plan for better grasps that are more stable and compliant compared to when there is no feedback at
all.
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