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long projects possible.

Delft, September 26, 2025
Quinten Voncken
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Executive Summary
Everyday ChatGPT use spans study and work, but surveys and usage logs capture different
parts of that behaviour. Organisations and educators need a clear picture not just of
how often people use ChatGPT, but also how people interact with it and for what tasks.
This thesis contributes three things: a clean, like-for-like comparison of surveys and
logs without linking individuals; a simple, auditable way to map prompts to tasks using
example prototypes; and practical guidance for measuring and monitoring everyday use.

We ran a short survey and invited optional data donation via the platform’s native export.
We did not link individual survey answers to donated logs. Analyses therefore compare
three independent groups: the full survey (S, N=93), a survey-donor subset (Sdon, n=24),
and a logs-donor cohort (Llogs, n=24). The sample is male-leaning and younger (about
two thirds aged 18–35). Results are descriptive; we do not make population estimates.

Survey items were designed in advance to mirror what we can derive from logs across
four facets: intensity (sessions per week, sessions per day, minutes per session), timing
(three broad dayparts on one time base), form (prompt-length bands), and portfolio (main
task families and their subtasks, with the option to select more than one). In the logs,
we mapped free-text prompts to the same task list with a compact codebook. We first
defined a handful of example prompts (“prototypes”) for each task, based on a quick
scan of donated prompts and recent studies. Each prompt was matched to the closest
prototypes with a simple similarity check; a small rule-based fallback handled borderline
ties. Validation shows that task-family results are reliable for prevalence comparisons,
while subtask results (Q12–Q17) are informative but not perfect and should be read as
directional.

Because the cohorts are unpaired and small, we compare full distributions rather than pairs.
We report differences in medians (for numeric measures) and differences in percentages
(for categories), each with 95% confidence intervals. We also account for making several
comparisons and keep the focus on effect sizes.

Two headline results follow. First, intensity aligns: typical-day activity and minutes
per session overlap, and weekly frequency is only modestly higher among survey donors
(about +2.5 sessions/week). Second, form and portfolio diverge. Survey donors more often
describe paragraph-length prompts (about +54 percentage points), while logs contain
many more one-liners (about −42 percentage points). The logs cohort also spans more
task families (median 4 vs. 2), especially Coding and Language/translation.

Taken together, self-reports give a workable signal for how much while donation-based
logs add detail on how people interact and for what. Short, one-line, iterative or technical
exchanges are easy to miss in surveys, so using both sources together gives a more
realistic picture for policy, training and procurement. Chapter 2 reviews prior work on
measurement and use patterns, and Chapters 3–6 implement, analyse and report the
comparisons [32, 31].
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Nomenclature
Abbrev. Meaning

AI Artificial intelligence
LLM Large language model
ECDF Empirical cumulative distribution function (distribution plots)
HL Hodges–Lehmann location shift (robust median difference)
MW–U Wilcoxon–Mann–Whitney rank-sum test (two-sample,

non-parametric)
KS Kolmogorov–Smirnov two-sample test (distributional shift)
CI Confidence interval (usually 95%)
IQR Interquartile range (P25–P75)
SMD Standardised mean difference (balance measure)
FDR False discovery rate
BH Benjamini–Hochberg procedure (FDR control)
∆p Difference in proportions; effect reported in percentage points
pp Percentage points
V (Cramér) Cramér’s V (strength of association in contingency tables)
OR Odds ratio (model output)
Macro-/Micro-
F1

F1-scores (example-based vs. label-based averaging)

TP/FP/FN True/False Positives/Negatives (label-wise counts)
PII Personally identifiable information
GDPR General Data Protection Regulation (EU)
JSON JavaScript Object Notation (ChatGPT export conversation.json)
UUID Universally Unique ID (generated when missing conversation_id)
Q + A Prompt–answer pair (single user→assistant exchange)
RQ / SQ Research question / Sub-question
MOT Management of Technology (programme context)
RMF (NIST) AI Risk Management Framework
CV Cross-validation (model tuning)
L2 Ridge penalty in logistic regression
ρ Spearman’s rank correlation (monotone association; [−1, 1])
η Correlation ratio (share of variance for numeric vs categorical)
r Rank-biserial correlation (two-sample rank effect; [−1, 1])
δ Cliff’s delta (two-sample rank effect; [−1, 1])
W1 1-Wasserstein (Earth-Mover’s) distance (distributional shift; ≥ 0)
H Hellinger distance for discrete mixes (0=identical, 1=maximally

different)
q (FDR) Target false-discovery-rate level in BH-FDR control (e.g., q=0.10)
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1
Introduction
1.1 Background

Large language models (LLMs) such as ChatGPT have moved from pilots to everyday
tools across study and work. Recent surveys report steady uptake among adults and
teenagers, and rapid experimentation in workplaces across roles and sectors [9, 10, 30,
12]. As organisations formalise policies and training, they need to know not only whether
people use these tools, but also how: how often, in which contexts, with what input styles,
and for which tasks. These details matter for governance (policy and compliance), resource
allocation (licensing and infrastructure), capability building (training and support), and
impact assessment (productivity and quality).

Measuring real-world use is challenging. Self-reports scale well and provide essential context
(plans, devices, roles), but decades of validation work show that reported behaviour often
diverges from logged behaviour in level, timing, and form; short or highly interactive use
is particularly easy to miss [32, 60]. Logs and platform exports provide time-resolved
evidence about when and how people interact, and they can characterise inputs (for
example, prompt length) that are hard to recall. By logs here we mean the chat history
a user can export from ChatGPT. We use that user-controlled export as our source of
interaction records (timestamps and messages). However, exports lack rich background
variables, and access depends on user consent [31].

Combined with a short survey, this lets us compare what people say with what their
exported history shows using group-level contrasts only (no one-to-one linkage).

A practical middle ground is user-centric data donation: participants export their own
records and choose to upload them. Combined with a short survey, this lets us compare
what people say and what their exported history shows using group-level contrasts only
(no one-to-one linkage). To make comparisons interpretable, survey items are designed in
advance to match simple export-derived frames: sessions per week and per day, minutes
per session, three broad dayparts on one time base, word-count bands for typical prompt
length, and a compact list of task families. With that alignment in place, we compare
two groups (survey donors and logs donors) using unpaired, distributional contrasts.

Two gaps motivate the study. First, few papers place survey responses and user-controlled
platform exports side by side on the same frames for everyday LLM use. Second, many
descriptions emphasise how much people use LLMs but say less about how they interact
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1 Introduction 2

(input form) and what for (portfolio breadth and mix), even though these dimensions
shape policy, training, and return on investment. This thesis addresses both gaps with a
donation-based comparison on the same frames and with uncertainty reported throughout.

1.2 Research objective and questions

The objective is to develop and apply a transparent measurement design that (i) aligns
survey frames with simple export analogues across four facets—intensity (sessions per
week, sessions per day, minutes per session), timing (dayparts), input form (prompt-length
bands), and task portfolio (main families and their subtasks); (ii) compares independent
survey-donor and logs-donor cohorts on those indicators; (iii) validates a compact way to
map free-text prompts to the same task list; and (iv) identifies where cohorts align or
diverge and which survey subgroups sit higher or lower on the divergent components.

Research question

How does ChatGPT usage observed in anonymised logs compare with what
users report in surveys?

We address this question through three focused sub-questions.

SQ1. Which underlying dimensions structure self-reported usage, and how are demo-
graphics and contexts related to them?

Here we use the survey only (full N=93 where relevant) to map associations across items,
reduce them to a small number of interpretable dimensions (for example, intensity of use,
study/work orientation, task breadth), and relate those dimensions to plan, device, status
and field.

SQ2. To what extent do survey constructs and their indicators correspond to log
indicators, viewed in terms of distributions and prevalence?

We build like-for-like indicators on both sides (intensity, timing, input style, and task
portfolios) and compare the survey-donor subset (n=24) with the logs-donor cohort (n=24)
at the level of distributions and shares rather than single means.

SQ3. Which components differ most strongly between the survey-donor subset and the
logs-donor cohort, and which survey subgroups are associated with higher or lower values
on these components?

We rank gaps and use survey-only models to characterise which profiles and contexts align
with higher or lower levels, without making causal claims.

Across all three, frames match the units and categories later defined in Chapter 4 to
ensure comparability between self-report and logs [60]. Details on the specific statistics
and interval conventions appear in section 5.4.

1.3 Linkage with the MOT programme

This work is a socio-technical measurement and governance study aligned with MOT’s focus
on managing innovation under real-world constraints. It (i) designs a simple measurement
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system that compares two separate datasets at the group level (platform-native export,
data minimisation, no one-to-one linkage), (ii) analyses technology adoption and use
with methods suited to small, non-probability samples (estimation-first, effect sizes with
intervals), and (iii) translates findings into actionable guidance for organisations (policy,
training, monitoring). The general approach is to align frames between sources and use
unpaired, distributional contrasts to compare independent cohorts. The emphasis on
system design, stakeholder trust, and evidence-based decision-making reflects core MOT
learning goals.

1.4 Academic and societal relevance

The thesis contributes a transparent, donation-based comparison of surveys and logs;
aligns survey frames with traceable log analogues; and validates a compact, multi-label
task taxonomy for everyday LLM use [32, 60, 61, 31]. Methods prioritise reproducibility
and small-sample robustness.

For practice, results offer realistic baselines about how ChatGPT is used (not only
whether). Surveys capture “how much” and profiles; exports add detail on input form
and task breadth. The setup keeps handling simple, store as little as needed and avoid
linking survey answers to donated files [20, 56], so comparison remains feasible for pilots
in education and the workplace. Teams can use the same frames (weekly/daily rates,
dayparts, prompt-length bands, compact task list) to monitor usage and target training.

1.5 Thesis structure

This report is structured as follows. Chapter 2 (Related Work) scopes sources and
reviews survey-versus-log measurement, task portfolios for LLMs, and outcomes context,
motivating a multi-aspect design that compares sources at the group level. Chapter 3
(Data Collection Methodology) covers population, recruitment, instrument, consent, and
the donation funnel (export of conversation.json); cohorts are independent by design
(no one-to-one linkage). Chapter 4 (Data Processing & Variable Derivation) details parsing
of exports into Q–A units; survey-aligned derivations (weekly and daily rates, dayparts,
prompt length); the hybrid task-coding pipeline; and validation. Chapter 5 (Statistical
Analysis Plan) sets unpaired, distributional contrasts with an emphasis on effect sizes and
intervals suited to small samples. Chapter 6 (Results) reports the survey landscape (SQ1),
survey–log convergence (SQ2), and the largest gaps and subgroup patterns (SQ3), with
sensitivity checks.



2
Related Work
This chapter situates the study in three strands of prior work and explains how each
strand informs the design choices implemented in Chapters 3–6. First, we review evidence
on measuring technology use with surveys versus digital traces, focusing on known gaps
between self-reports and logged behaviour and on practices for aligning frames so that
comparisons are interpretable [32, 60]. Second, we summarise what recent studies report
about what people do with general-purpose generative models, the main task families
and their subtasks, and why a multi-label view is necessary when uses blend [1, 18, 61].
Third, we cover outcomes that are often examined alongside usage (productivity, quality,
creativity) to anchor where our results fit in the broader debate without claiming causal
effects [12, 19, 53].

Throughout, we keep the frames consistent with the design constraints introduced later:
donation-based logs with privacy safeguards and no one-to-one linkage to survey records
(unpaired, distributional contrasts) [31]. Where operational or normative choices matter
(for example, data minimisation and masking of obvious identifiers), we rely on institutional
guidance and regulatory analyses. These grey sources justify handling choices; they are
not used to establish prevalence [20, 56, 17]. Peer-reviewed evidence anchors measurement
and usage patterns; grey literature supports the practical steps that make the study
possible and responsible.

The chapter proceeds as follows. §2.1 specifies scope and source selection, including how
recency and transparency thresholds differ across themes. §2.2 reviews measurement
work on surveys versus logs and introduces the alignment logic we adopt in Chapters 4
and 5. §2.3 synthesises evidence on task portfolios and usage settings and motivates the
multi-label approach used in our coding pipeline. §2.4 distils the implications for our
design. §2.5 summarises gaps and bridges to the research question and analysis plan.

2.1 Scope and source selection

Our objective is pragmatic: assemble a recent, method-transparent evidence base that (i)
sets credible expectations for survey versus log alignment, (ii) describes prevalent task
families for general-purpose models, and (iii) situates common outcome claims without
over-generalising beyond our convenience sample (Chapter 3). We screened English-
language publications across peer-reviewed venues, working papers, official guidance and
large-scale sector surveys, with inclusion criteria tuned per theme.
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2 Related Work 5

Table 2.1: Scope by theme: what we looked for and what counted as admissible evidence.

Theme Target constructs Admissible sources Recency focus

Measurement (survey
vs. logs)

Discrepancies; frame alignment; ses-
sion/prompt units

Peer-reviewed; working papers with
full methods

2020–2025 (plus
foundational)

Data donation &
ethics

Consent flow; minimisation; non-
probability sampling

Peer-reviewed; official guidance and
regulators

2019–2025

Task portfolios (multi-
label)

Main families; blended intents; sub-
task patterns

Peer-reviewed surveys and studies;
method-documented sector surveys

2023–2025

Outcomes and im-
pacts

Productivity, quality, creativity (de-
scriptive)

Peer-reviewed or working papers; sec-
tor reports

2023–2025

Sources and coverage

We searched across Google Scholar (broad coverage and forward citations), Web of
Science Core and Scopus (fieldable filters and metadata), SSRN and arXiv (fast access
to emerging methods), and the public sites of regulators and official bodies (ICO, UK
Government, FTC, OECD). Sector reports with documented methods (for example,
sampling frame and instrument) were included for adoption context [12, 30]. Regulator
and operational guidance informed handling choices (anonymisation and minimisation)
rather than prevalence claims [20, 56, 17].

Time windows

For AI usage and task portfolios we prioritised 2023–2025 because practices and interfaces
change rapidly [1, 18]. For data donation, recruitment and privacy handling we included
work from roughly 2019 onward [31, 36, 42]. For measurement fundamentals (survey
vs. traces and logging frames) we combined well-cited foundations with updates from
2020–2025 where constructs remained stable [32, 60].

Peer-reviewed articles and working papers provide the primary evidence on measurement,
task portfolios and outcomes [32, 60, 1, 19]. Grey literature has a bounded role: official
guidance and regulator reports for operational decisions about anonymisation and data
minimisation [20, 56, 17], and sector surveys to contextualise adoption levels and perceived
value at scale [12]. These sources are cited for procedures or context, not to adjudicate
fine-grained prevalence.

Screening and inclusion

Screening proceeded in two passes. First, titles and abstracts were checked against
theme-specific criteria (on-scope constructs and basic method transparency). Second, full
texts were read to confirm methodological detail (construct definitions; sampling and
measurement frames for surveys; operational definitions for logs). After the human read,
we used Claude AI as a reading companion to generate a short point-form summary of
each candidate and to flag any obvious mismatches with our scope, Claude was chosen for
its smooth interaction and consistently clear summaries in spot checks. This step acted
as a cross-check only; it did not perform retrieval, decide inclusion, or write the synthesis.
Working papers were included when methods and analysis were documented well enough
to support replication or auditing (for example, [60, 19]).

The themes in Table 2.1 mirror the operational choices reported in later chapters. Measure-
ment work motivates the like-for-like frames used to compare self-reports to logs (weekly
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rates, dayparts, prompt-length bands) and the emphasis on distributional contrasts rather
than paired records [60, 32]. Donation and ethics sources underpin the tiered consent, data
minimisation and masking used in Chapter 4 [31, 20, 56]. Portfolio studies and multi-label
guidance explain why we classify prompts into overlapping families and summarise to
donors with thresholds that aim for interpretability rather than exhaustiveness [1, 61].
Outcomes mappings are used for context in Chapter 6 without causal claims [19, 12].

2.2 Measuring generative AI use

This section sets our design choices against prior work on how AI use is measured. Large
surveys have been the main way to quantify awareness and adoption in 2023–2025 because
they scale across countries and sectors [9, 10, 30, 12]. At the same time, a decade of
validation research shows that self-reports and digital traces can differ in both level and
shape, sometimes substantially [32, 60, 45, 21]. A practical approach in the literature
is to pair a short survey with a donation of platform logs and to compare independent
cohorts on like-for-like frames. The aim in such designs is pragmatic: retain the reach
and context of surveys and use logs to sharpen what people actually do.

Surveys are good at telling us who uses a tool and in what context (plan, device, role).
That is why many widely cited indicators for adults, teens, students and workers are
survey-based [9, 10, 4, 18, 24, 30]. The trade-off is well known: self-reports can over- or
understate levels, compress distributions, and miss short or highly interactive use [32, 60,
21]. In short, surveys are essential for prevalence and profiles, but they are not a ground
truth for intensity or prompt form.

Digital traces (client logs, server telemetry, exports) avoid recall error and offer time
resolution. They capture when and how often well, and they can describe input form (for
example, prompt length) that people struggle to recall [60]. But pure telemetry often
lacks demographics, is hard to access ethically at scale, and linking traces to surveys
raises consent, privacy and governance issues; linkage can also change who participates
[47]. Designs that keep survey and trace collection close without one-to-one linkage are
therefore attractive.

Data donation is a practical middle ground: participants export and donate their own
records under clear conditions [31]. Donors are recruited differently than general survey
samples, but ecological validity is good when platform-native exports are used [39, 14].
Willingness depends on trust, a clear purpose, modest incentives and privacy guarantees
[49, 36, 3, 58]; recruitment channels also shape who reaches the upload page and who
converts [37]. Reported implementations vary, but common elements include clear consent,
use of platform-native exports and data-minimisation safeguards; specific file formats or
pipelines differ across studies.

Three implications recur in the measurement literature. First, treat survey and log samples
as independent cohorts and compare full distributions rather than paired records. Second,
align frames so that survey items have direct log analogues in familiar units. Third,
minimise stored content and avoid one-to-one linkage, following anonymisation guidance
[20, 56, 17].

These implications carry into the results. The survey maps perceived intensity and task
portfolios and provides profiles (plan, device, status, field). The logs add time-resolved
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Table 2.3: Measurement approaches used in the literature and where our design sits

Approach Captures well Main trade-offs (typical)

Self-report surveys Awareness, adoption, context Scalable with rich profiles, but recall
and social-desirability biases can distort
intensity and form.

Platform logs or telemetry Timing, frequency, form High temporal fidelity, but often lacks
demographics and requires strong gover-
nance or platform access.

User-based data donation Naturalistic traces with consent Uses platform-native exports; privacy-
preserving by design; donor pools are
selective; careful onboarding needed.

and content-aware views (for example, prompt length and task labels) across the full
donated horizon. Where the literature warns about survey-trace mismatch, good practice
is to report distributional contrasts with uncertainty rather than relying on single means
[32, 60]. This estimation-first stance is applied consistently in Chapters 5–6.

2.3 Where and how LLMs are used

This section locates our study in the two settings where ChatGPT and related large
language models (LLMs) are most visible today: higher education and the workplace.
We summarise what recent studies say about adoption and typical tasks in each setting
and explain how those patterns shaped the task taxonomy and comparisons used later in
Chapters 4–6. We prioritise sources with transparent methods and recent field evidence.

2.3.1 Higher education
Student surveys and early campus studies report substantial but uneven adoption. Global
and regional snapshots from 2023–2025 show sizeable shares of students who have tried
or regularly use ChatGPT for study tasks, with variation by programme and language
background [1, 4, 18, 24]. Broader polls point in the same direction outside higher
education: both adults and teens report rising use for schoolwork between 2023 and 2025
[9, 10].

Across sources, three activity clusters recur: writing and communication (outlining,
drafting, rephrasing), language support (grammar and style improvement, translation),
and study help (summarising readings, explaining concepts, practice questions) [1, 4].
Creative ideation appears but is typically secondary. These clusters directly informed
three of our main task families (Writing and communication; Language/translation;
Study/exam) and our choice to allow multiple selections. Students often mix uses within
a single session (for example, outline → translate → polish), which a forced single choice
would miss.

Institutional policy shapes edge cases. Ambiguity about permitted assistance can channel
use towards phrasing and summarisation; explicit prohibitions on full drafting reduce, but
do not eliminate, that category [4, 18]. We therefore frame tasks at a functional level
(what the tool was used for) rather than inferring policy compliance from text. This keeps
labels close to user intent and avoids over-interpreting institutional context from logs
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Table 2.4: Task families in prior work and examples frequently reported

Family Typical examples in studies and reports

Writing and commu-
nication

Outlining slides or emails; drafting and redrafting text;
tone and style adaptation; summarising meetings or
documents.

Language/translation Grammar and style improvement in a target language;
translation of passages or full texts; audience-specific
rewriting.

Coding/programming Generating snippets; debugging; explaining code; con-
verting between languages; writing tests.

Brainstorming or
ideation

Idea generation for assignments, campaigns or features;
creative prompts; role-play.

Study or exam sup-
port

Explaining difficult concepts; summarising readings;
practice questions and quizzes.

alone.

2.3.2 The workplace
Adoption in firms reflects both top-down initiatives and bottom-up experimentation.
Industry and policy reports emphasise rapid uptake since mid-2023, with heterogeneity
across roles and sectors [12, 30]. Two patterns matter for our design.

First, use concentrates where LLMs have clear strengths: drafting and editing communica-
tions; summarising meetings or documents; generating or explaining code; and translation
or audience-specific rewriting. Case studies and surveys highlight these families and note
that some use occurs outside formal approvals, especially early on [44, 12]. To capture this
breadth without presuming a single primary purpose, we use a multi-label task taxonomy
and report portfolio breadth alongside prevalence.

Second, adoption is uneven [19]. Skill demands, data sensitivity and governance constraints
make some teams faster adopters than others. Policy work warns that productivity gains
can widen gaps if access and training are unequal [30]. This motivates our descriptive
stance in Chapter 5. Contrasts are distributional rather than population estimates, and
we avoid causal claims about work outcomes.

2.3.3 Implications for our design
Three implications follow.

1) Mixed use is the norm. We let respondents select multiple families and code logs with
a multi-label pipeline (Chapter 4), reporting which families appear and how broad the
portfolio is. This mirrors observed practice and avoids over-interpreting a single primary
task [1, 12, 30].

2) Labels should describe what was done, not whether it was permitted. Prior work shows
policy signals channel behaviour but do not fully determine it [4, 18]. We therefore keep
functional labels and avoid treating compliance as a category.

3) Intensity and orientation are distinct. A person can be heavy or light in either setting
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[30]. In Chapter 5 (SQ1) we therefore extract a separate study/work orientation alongside
intensity and breadth and carry that structure into the cohort comparisons in Chapter 6.

2.4 Implications for This Study

This section summarises, in one place, the design commitments implied by the literature.
Implementation details follow in Chapters 3–4 and the analysis plan in Chapter 5. The
literature above points to three practical imperatives for studying everyday ChatGPT
use: measure multiple facets of behaviour rather than one headline, align self-reports
with traceable log frames, and protect participants’ privacy so donation remains feasible
and ethical. This section translates those points into concrete choices implemented in
Chapters 3–6.

Work on digital behaviour shows that “use” is multi-dimensional: frequency, session length,
time of day, input form and task portfolio are only loosely coupled [60]. Single items
(for example, “How often do you use it?”) tend to miss that structure and are sensitive
to recall and interpretation effects [32]. We therefore treat intensity (sessions per week,
sessions per day, minutes per session), timing (broad dayparts), prompt form (typical
length) and task portfolio (main families and subtasks) as separate, interpretable facets.
Each facet appears in the survey in plain terms and has a direct analogue in the export
so the two sources can be compared later (Chapter 4).

Self-reports are indispensable for context (plans, devices, roles, attitudes), but validation
work shows that reported behaviour and observed traces often diverge in predictable ways
[32, 60]. Donation-based designs offer a workable compromise: a short survey provides
reach and profiles; anonymised logs reduce recall error and sharpen the picture of what
people did over time [31]. In our design, the survey supplies the frames and profiles; the
logs supply distributional benchmarks in the same units. We do not treat logs as a perfect
ground truth; they complement self-reports where recall is coarse.

People rarely use ChatGPT for a single purpose, and prompts often blend writing with
brainstorming, coding with explanation, or translation with style improvement. This is a
multi-label setting [61]. Our taxonomy therefore allows multiple task families per donor
and multiple subtasks within a family. On the log side, free-text prompts are mapped
to this taxonomy with a small, fixed codebook and a hybrid routing strategy (prototype
matching in an embedding space with a minimalist judge for borderline cases), chosen for
transparency, reproducibility and cost [40, 38]. Validation metrics set expectations about
where labels are precise and where they are indicative (Chapter 4).

Donation only works if participants trust that their data remain anonymous and cannot
be re-identified [49]. We therefore (i) use the platform’s native export so donors see
exactly what leaves their account [14]; (ii) minimise data on ingestion by parsing to
question-and-answer units and masking obvious identifiers [20]; and (iii) avoid creating
one-to-one links between survey records and donated files. Even hashed joins can be risky
in small samples and are not anonymous in a strict sense [56, 17]. Instead, we compare
independent cohorts (survey-donor and logs-donor) and frame all contrasts as unpaired,
distributional comparisons (Chapters 3, 5).

Recruitment via a company intranet and social media yields a heterogeneous but selective
sample that skews male and young, which is typical for networked recruitment and
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donation studies [15, 39, 31]. Following guidance for non-probability designs, we report
descriptive distributions and effect sizes with uncertainty rather than population estimates
and highlight where composition may shape results [37, 42]. Where helpful, external
benchmarks (for example, platform usage by age) provide context [35].

To keep survey and logs commensurate, we use broad, readable units: weekly and daily
rates; minutes per session; dayparts on a single local time base; prompt-length bands in
words; and a compact task taxonomy tied to explicit prototypes. Chapter 4 details how
each survey frame (Q7–Q11; Q12–Q17) is mirrored on the log side and how donor-level
behaviour is summarised robustly (for example, medians for skewed quantities and Wilson
intervals for small-n proportions) [26]. Where parameters are design choices (for example,
dominance and aggregation thresholds), we flag them and check sensitivity rather than
treating them as standards.

Four commitments follow and structure the rest of the thesis:

1. measure multiple facets of use (intensity, timing, form and portfolio) rather than a
single headline;

2. build survey frames that the export can mirror one for one, so comparisons use the
same units;

3. treat tasks as multi-label with a compact, auditable taxonomy and report validation
to calibrate trust; and

4. protect donors by design (data minimisation and no linkage), accepting unpaired,
distributional contrasts as the trade-off.

Chapters 3 and 4 implement these choices. Chapter 5 translates them into tractable
comparisons. Chapter 6 reports where survey and log distributions align and where they
diverge.

2.5 Chapter Summary and Gaps

This chapter mapped the landscape around real-world LLM use and its measurement. We
combined peer-reviewed work with high-quality grey literature to (i) clarify how LLM use
is currently measured (self-report vs. logs or telemetry), (ii) characterise usage patterns
(single-task versus multi-label and mixed workflows), and (iii) summarise commonly
reported outcomes (productivity, quality, creativity). We emphasised recent studies on AI
use (post-2020 for data-donation work) and retained older, foundational sources where
core concepts and methods originated. Scope followed the two-pass screening described in
§2.1, with English-language sources and theme-specific recency windows.

What is established

• Measurement: Most field studies rely on self-report (surveys or diaries). Telemetry
or platform logs are rarer and often siloed. When both sources appear, they are
typically used side by side without one-to-one linkage—surveys provide who/contexts;
logs provide when/how—so the two are complementary rather than interchangeable.

• Usage patterns: Many studies reduce use to a single dominant task or frequency,
even though day-to-day practice mixes drafting, reviewing, debugging, searching,
ideation and transformation. Multi-label characterisations are less common.
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Issue in prior work Consequence for our study Chapter

Triangulation gap (survey
vs. logs)

Build survey constructs with direct log
analogues; compare cohorts at an aggre-
gate, privacy-preserving level (no one-to-
one linkage).

Ch. 3, 4

Patterning gap (single-task
framing)

Use a multi-label use-case taxonomy to
capture combined workflows; report port-
folio breadth alongside prevalence.

Ch. 4, 6

Outcome breadth gap Use outcomes from prior work for con-
text; avoid causal claims and keep our
analyses descriptive.

Ch. 2, 6

Table 2.5: From related-work gaps to design choices in this thesis.

• Outcomes: Reported effects cluster around productivity and quality; creativity is
measured less consistently. Many evaluations use constrained tasks with uncertain
ecological validity for everyday work or study.

• Scope: Evidence often centres on general-purpose LLMs but within specific domains
(for example, education or programming). Sampling is commonly convenience-based
and skews younger and more male.

Where the gaps remain

• Triangulation gap: Few studies place survey responses and usage logs side by side
in a way that lets claims be checked against observable behaviour.

• Patterning gap: Everyday LLM use is multi-aspect; single-purpose taxonomies
understate combined workflows (for example, search → draft → revise).

• Outcome breadth gap: Productivity and quality dominate the discussion; creativity
and other perceived outcomes are less systematically captured alongside them.

Table 2.5 summarises how our design choices (Ch. 3–7) address the above gaps. In short,
we use a deliberately multi-aspect survey, aligned ex ante with available logs, and a
multi-label use-case taxonomy so that we can analyse how people combine tasks and
how perceived outcomes travel with those patterns. We focus on general LLM use (not
vendor-specific workflows), and we keep donation and analysis anonymous at the individual
level to encourage contribution while allowing aggregate cross-checks.

Our scope was English-language sources. For AI-use and data-donation studies we
prioritised recency (post-2020) and retained older, foundational work for core concepts.
Some operational assumptions necessarily draw on high-quality grey literature where
peer-reviewed documentation is not yet available. Those sources inform procedures, not
prevalence.

Guided by this synthesis, Chapter 3 details the survey instrument, the anonymised
donation workflow and the task taxonomy. Chapter 4 shows how survey frames map to
logs. Chapter 5 lays out the distributional comparisons we use at small n, and Chapter 6
reports where survey and log distributions align and where they diverge most.



3
Data Collection Methodology
This chapter describes the study population and recruitment, the survey instrument, the
consent procedure and the data–donation funnel. The design enables a clean comparison
between self–reports and log–derived measures while protecting participants’ privacy.

3.1 Population and Recruitment

We recruited three cohorts: a full Survey Sample (S, N = 93), a Logs-Donor cohort
(Llogs, n = 24) who uploaded exports, and a size-matched Survey-Donor subset (Sdon,
n = 24) used for unpaired contrasts with Llogs. Figure 3.1 shows the funnel from 93
survey starts to 80 completes and 24 uploads; these counts anchor the cohort definitions
used throughout.

The study used a convenience sample recruited through two channels: a company intranet
post at a mid–sized software/media firm (about 100 employees across functions) and two
Instagram Stories from the author that were reshared within the personal network. This
is a non–probability sample whose composition is shaped by channel reach and network
dynamics [15].

Two features of the respondent pool matter from the start. The sample is male–leaning:
roughly two–thirds identified as men. The age distribution skews young: about two–thirds
fall between 18 and 35 years old. These skews likely reflect the reach of the Instagram calls
and the author’s network; Instagram–based recruitment often concentrates reach in specific
age segments [39]. External benchmarks corroborate that Instagram usage is higher among
younger adults [35]. In total, the announcements are estimated to have reached about 2,000
unique viewers through direct followers and re–shares. Together with the intranet post,
this produced a heterogeneous but selective group suited for descriptive, distributional
contrasts rather than population estimates; this stance is consistent with recruitment
and selection effects observed in data–donation studies and with non–probability survey
guidance [37, 42].

This recruitment approach has two implications for the remainder of the thesis. First,
because the channel mix and the observed skews (gender, age) reflect convenience sam-
pling, all cohort contrasts are framed as descriptive. Second, the cohorts used later are
independent by design: the Survey Sample (S) contains completed questionnaires; the
Log–Donor Sample (Llogs) contains participants who uploaded logs; and the Survey–
Donor Subsample (Sdon) is a size–matched subset of survey respondents used for unpaired,

12
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Table 3.1: Cohorts and sample sizes used in the study.

Cohort Definition N

Survey Sample (S) All respondents with usable survey data 93
Logs–Donor cohort (Llogs) Donated conversation.json 24
Survey–Donor subset (Sdon) Size–matched subset of S for Sdon–Llogs contrasts 24

distributional contrasts with Llogs. There is no one–to–one linkage between survey records
and donated files, so all comparisons centre on distributional gaps between self–reported
and log–derived measures—an approach that is common in donation–based designs when
linkage is impractical or undesirable [31].

3.2 Survey Instrument

The survey was designed to compare self–reports with log–derived measures [32]. It was
in English and took about 2–5 minutes to complete. Its structure mirrors the outcomes
analysed later, but all analytic construction is deferred to Chapter 4. The opening block
situates respondents with a compact profile—current status (student, employed, other),
age band, gender, broad study/work field, ChatGPT plan, and primary device—and two
context cues about institutional policy and whether use typically occurs in study or work
settings. These variables provide the backdrop for later contrasts and allow us to describe
cohort balance transparently. Table 3.2 lists all survey items with the short titles we use
throughout the thesis. From here on we refer to questions as Q+title; for example, Q7
Sessions/week, Q10 Usage timing, Q11 Prompt length. We use this shorthand consistently
in Chapter 4 Data Processing, Chapter 5 Statistical Plan and Chapter 6 Results so
cross-references remain unambiguous.

A second block captures usage in frames that can be mirrored by logs. Respondents report
sessions in the last seven days, sessions on a typical day, average minutes per session, the
time of day when they use the tool most, and a typical prompt length. Categories are
intentionally simple and interpretable: for timing, the day is collapsed into a few clear
periods; for prompt length, bands are phrased in plain language (one short sentence, a
short paragraph, multiple paragraphs, or “varies too much”). Chapter 4 explains how
each of these frames is mapped to log–derived analogues over each donor’s full donated
horizon. Designing items so that survey frames can be mirrored by digital traces follows
recommendations from validation studies that compare self–reports to logged behaviour
[60].

The third block asks what respondents use ChatGPT for. A small set of main task families
appears first (writing and communication, brainstorming/fun, coding, language/trans-
lation, study/exam, plus “other”), followed by concise subtask lists that remain visible
regardless of the initial selections. If a respondent did not select the corresponding main
family at Q12, they could indicate this explicitly in the follow–ups (“I did not choose this
category”), which keeps the subtask items comparable without forcing ratings of irrelevant
categories. Two short attitude items close the instrument: the perceived importance of
ChatGPT and whether use would continue if access became paid–only. In the analysis,
main families (Q12) provide the primary task contrast between Sdon and Llogs; subtask
shares (Q13–Q17) are used as supporting detail. The task families reflect dominant use
clusters reported in recent student surveys [1].
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Table 3.2: Survey questions with shorthand titles used in the thesis

Q Survey question Short title

Q1 What is your gender? Gender
Q2 Which age group do you belong to? Age group
Q3 Which ChatGPT plan are you currently on? Plan type
Q4 Which device do you use most often to access ChatGPT? Device
Q5 What best describes your current status? Status
Q6 What best describes your main field of study or work? Field
Q7 How many separate ChatGPT sessions did you have in the last 7 days? Sessions/week
Q8 On a typical day, how many ChatGPT sessions do you start? Sessions/day
Q9 On average, how long does a single ChatGPT session last? Session length
Q10 When do you most often use ChatGPT? Usage timing
Q11 How long are your typical prompts? Prompt length
Q12 What tasks do you usually use ChatGPT for? Task families
Q13 Sub-tasks for “Writing and communication” Writing subtasks
Q14 Sub-tasks for “Brainstorming / fun” Brainstorming subtasks
Q15 Sub-tasks for “Coding / programming help” Coding subtasks
Q16 Sub-tasks for “Language practice / translation” Language subtasks
Q17 Sub-tasks for “Study revision / exam prep” Study subtasks
Q18 In the last month, what share of your sessions were for study or work tasks? Study/work share
Q19 How important is ChatGPT for completing your study or work tasks? Importance
Q20 If ChatGPT became paid-only tomorrow, would you still use it? Paid-only use

3.3 Consent Procedure and Participation Flow

Participation was voluntary and proceeded under tiered consent. On the survey landing
page, potential respondents first read a short information sheet that explained the aim
of the study, data handling, anonymity and the right to withdraw without consequences.
Consent was indicated via an explicit yes/no choice before any questions (Appendix A
contains the full consent form). Contact details for the author and supervisor were
provided for questions. Only those who consented advanced to the questionnaire.

At the end of the survey, a thank–you page offered a separate and optional consent step for
data donation. Respondents who agreed were redirected to a simple upload page with clear
instructions for exporting and submitting their ChatGPT history (conversation.json).
The voucher lottery applied only to this donation step to offset the extra effort without
influencing survey answers, in line with evidence on motivations and willingness to donate
[36]. Using a distinct, optional consent for donation follows recommended practice in
data–donation designs [31], and reflects psychological evidence that trust, transparency
and modest incentives are central drivers of donation behaviour [49].

Figure 3.1 summarises the participation flow from survey start to optional donation. These
counts show where attrition occurred and define the three analytic cohorts used later. All
contrasts are strictly unpaired (no one–to–one linkage) to minimise re–identification risk
and preserve anonymity [20, 56, 17].

Recruitment occurred in three call–outs that captured most traffic: two Instagram story
waves and one intranet announcement. Approximate survey starts attributed to these
waves are reported with the funnel in Figure 3.1. These channels align with the observed
skews (male–leaning and younger age bands) and contextualise the donation conversion.
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Figure 3.1: Participation flow from survey start to optional donation

3.4 Data–Donation Funnel

We used the platform–native ChatGPT export to keep the donation task simple and
ecologically valid. Donors remained in full control: they saw exactly what is exported,
decided whether to proceed, and uploaded the standard conversation.json file via a
secure form, consistent with recent work on user–based data donation for generative AI
[14].

Immediately after the survey, donors saw the official export instructions on the upload
page:

1. Sign in at https://chat.openai.com.

2. Click the profile icon (top right) → Settings.

3. Open Data Controls and click Export Data.

4. Confirm export in the pop–up; an e-mail with a download link arrives within minutes.

5. Download the ZIP archive from the e-mail.

6. Unzip the archive; inside the sub-folder ChatGPT, locate conversation.json.

7. Upload only conversation.json through the study’s secure upload form.

This hand–off keeps effort low and avoids custom software or browser extensions. The
instructions appeared on the upload page, so donors did not need to navigate back and
forth. Figure 3.1 provides context on how many respondents reached and completed the
donation step.

Uploads were received in a restricted EU workspace. E-mail addresses for the voucher
draw were collected separately and never entered the content pipeline. No personal

https://chat.openai.com
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identifiers were collected and no one–to–one link was created between survey records
and donated files. Upon receipt, files passed integrity checks (valid JSON and required
fields) and were parsed into privacy–minimised question–answer (Q–A) records: one row
per user→assistant exchange with only the fields needed downstream (see Chapter 4):
pseudonymous donor_id, conversation_id, turn_index, prompt text, optional assistant
text and timestamps. Personally identifiable strings (e-mail, phone, IBAN) were masked
during parsing, in line with anonymisation guidance [20]. Prompt texts were retained
under the same privacy safeguards; only fields needed downstream were stored. Time–
based derivations use a fixed Europe/Amsterdam time base for interpretability in this
population (details in Chapter 4).



4
Data Processing and Variable Derivation
This chapter turns the platform export (conversation.json) into analysis-ready question-
and-answer (Q-A) records and derives log measures that exactly mirror the survey frames
(Q7–Q11) plus task labels (Q12–Q17). We describe the pipeline Figure 4.1 and the
retained fields (Table 4.1), define the rules and thresholds for sessions, dayparts and
prompt-length bands (Table 4.2), and the validation checks that support reproducibility
(Figure 4.2;Table 4.3). The outcome is a like-for-like set of log indicators that enable the
unpaired comparisons reported in chapter 6.

4.1 Export and JSON Schema

We work with the official ChatGPT data export and ask donors to upload the platform-
generated conversation.json [14]. Our goal is a compact table of question-and-answer
(Q-A) records that mirrors the survey frames while storing as little as possible. Figure 4.1
shows the end-to-end pipeline from upload to analysis; Table 4.1 lists the fields we retain
and what each is used for.

OpenAI
Data Export

(conversation.json)

Participant
Upload

(Google Form)

Secure
Storage

(EU Workspace)

Parsing
(JSON → Q–A)

Feature
Derivation
(Q7–Q11,
Q12–Q17)

Merge with
Survey

(Matched Sample)

Analysis &
Visualisation

Figure 4.1: Data processing pipeline from
export to matched analysis

From each exported conversation we traverse the message tree and collapse consecutive
user→assistant turns into a single row. Treating a Q-A pair as the atomic unit avoids
ambiguity in branched threads and provides a stable basis for all downstream measures.
Where a session-level view is needed later (for example, to time an episode from first
prompt to last reply), the conversation_id serves as the session key.

Data minimisation is deliberate. We keep a pseudonymous donor_id (generated per

17
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upload, not a reversible hash), the conversation_id, a within-conversation turn_index,
the user’s question_text and the assistant’s answer_text (optional), and timestamps
for both. These fields are sufficient to construct session counts and durations (Q7–Q9),
timing categories (Q10), prompt length (Q11), and task labels (Q12–Q17), without storing
profile data or auxiliary metadata that are not needed for analysis [56].

Table 4.1: Parsed fields used in downstream derivations

Field Type Used for

donor_id string Grouping by donor; deletion schedule and
audit.

conversation_id string Sessionisation (one conversation = one ses-
sion).

turn_index integer Order of Q–A within a session; duration
helper.

question_time POSIX (Europe/Amsterdam) Time windowing, rates, and dayparting (af-
ter local conversion).

answer_time POSIX (Europe/Amsterdam) Fallback for duration checks.
question_text string Prompt length (Q11) and task coding (Q12–

Q17).
answer_text string or null Optional context for QA checks (not re-

quired for coding).

Before storage, obvious personally identifiable information is masked in both question
and answer (for example, e-mail addresses, phone numbers, IBANs) [20]. We normalise
whitespace and remove exact duplicate Q-A rows within a conversation; otherwise prompts
are kept as written. We do not truncate or rewrite content. This keeps the textual signal
intact for readers and for the classifier used later, while reducing accidental disclosure risk
[20].

Timestamps are parsed from the export and stored in local Europe/Amsterdam time, and
the same base is used for every time-dependent variable in this chapter. Using one local
time zone avoids noise from unknown per-user settings and makes the daypart categories
introduced in §4.2 directly comparable to the survey’s options.

Basic integrity checks run on receipt: the JSON structure and required fields are validated.
We maintain a small disposition ledger with file- and record-level reason codes so that
exclusions are transparent, following general recommendations for data editing and
transparent handling [57]. Uploads are handled in a restricted EU workspace; addresses
collected for the voucher lottery are stored separately and never enter the content pipeline.
Donated logs are deleted after thesis submission in October.

This normalisation yields a lean Q–A table used to construct log-side measures for the
unpaired cohort comparisons in Chapter 6. To orient the reader, the next section opens
with a compact overview of the five derived variables that mirror the survey frames
(Table 4.2), followed by precise definitions for each of Q7–Q11.
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4.2 Deriving Q7–Q11

As previewed at the end of §4.1, Table 4.2 summarises the five derived variables that
mirror the survey items (Q7–Q11). We then define each quantity exactly and report the
thresholds that are held fixed across sources, so that survey and logs remain directly
comparable.

We first define what counts as a session. In the export a conversation_id captures a
coherent threaded exchange. We therefore treat each unique conversation_id as a session
in the primary specification. When users return to the same thread after a prolonged
break, the behaviour resembles a new episode. To reflect that, we split a conversation into
a new session after 30 minutes of inactivity between consecutive Q-A turns. A 30-minute
inactivity cut-off is a pragmatic convention in digital-trace work to approximate natural
breaks without over-fragmentation [48]. This behaviour-based rule provides a stable unit
for rates, durations, and timing.

Q7. Weekly sessions

We count sessions over the donor’s entire horizon and normalise to a weekly rate (sessions
per seven calendar days). Normalisation avoids the artefact that donors with longer
horizons would otherwise appear more active simply because more days are observed,
and it aligns the trace window to the survey’s weekly frame [60]. The resulting rates are
banded into the same categories as the survey: 0, 1–2, 3–5, 6–10, >10.

Q8. Typical day

We mirror the everyday rhythm respondents report. We compute a per-day session count
across the full horizon. Days with zero sessions are retained, except that we drop zero runs
strictly longer than five days (ZERO_STREAK_MAX=5) to prevent extended off-study periods
(holidays, outages) from dominating the statistic. This is a documented design choice; it
follows robust-summary principles (reduce undue influence of long zero runs) and is paired
with sensitivity checks reported alongside results. For the donor-level summary we use
the median sessions per day over the kept days, a robust location estimator recommended
in exploratory data analysis when distributions are skewed or zero-inflated [27]. Bands
map directly to the survey categories: 0; 1; 2–3; 4–5; 6+.

Q9. Session length

For each session we measure elapsed time from the first user prompt to the last assistant
reply. This captures the episode users actually experience, not just isolated turns. When
timestamps are incomplete we apply a small, conservative proxy (baseline 3 minutes plus
3 minutes per additional Q-A turn) and bound durations to [1, 480] minutes to avoid
pathological values. Both choices are sanity checks grounded in robust EDA practice for
handling outliers and partial information [27]. Donor-level means are then mapped to the
Q9 minute bands: < 5, 5–15, 15–30, 30–60, > 60.

Q10. Time of day

Each session start is classified, in Europe/Amsterdam time, into one of three broad
dayparts: During work/study hours (Monday–Friday, 09:00–18:00), Evenings (18:00–03:00,
crossing midnight), and Other (the remaining hours and weekends outside those windows).
These boundaries follow typical diurnal patterns reported for smartphone and computing
use in comparable populations [22]. At donor level we assign one final label by dominance:
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Table 4.2: Overview of derived variables for Q7–Q11

Variable Unit Operational definition (concise)

Q7. Weekly sessions count/7d Sessions per donor, normalised to a weekly
rate; session = conversation_id split by
30 min inactivity. Bands: 0, 1–2, 3–5, 6–10,
>10.

Q8. Typical day mean/day Sessions per calendar day over the full do-
nated horizon; zero days kept; drop only
0-streaks >5 days. Bands: 0, 1, 2–3, 4–5,
6+.

Q9. Session length minutes First prompt to last assistant reply; proxy if
missing times (3 + 3 min/extra Q-A); bound
[1,480]; donor mean mapped to bands.

Q10. Time of day category Dominant daypart of session starts: Work/s-
tudy (Mon–Fri 09:00–18:00), Evenings
(18:00–03:00), Other; donor label via domi-
nance ≥ 0.33, else “Anytime”.

Q11. Prompt length category Median words per prompt; bands: ≤ 20,
21–60, > 60; “Varies too much” if no band
≥ 0.33.

if at least a third of a donor’s session starts fall in a bucket, that bucket is the donor’s timing
category; otherwise the label is “Anytime throughout the day”. The one-third dominance
rule reflects typical use while keeping labels interpretable; in multi-label classifiers such
thresholds are commonly tuned for interpretability rather than raw accuracy [61]. Using
session starts prevents long sessions from overweighting a period, broad buckets reduce
boundary noise, and a single Amsterdam time base makes interpretation straightforward
for this population.

Q11. Prompt length

We count words per user prompt as written (after light whitespace normalisation) and
take the donor’s median as a robust summary of “typical”, again to reduce sensitivity
to outliers or a few very long prompts [27]. Medians are mapped to the survey’s bands
set a priori: one short sentence (≤ 20 words), a short paragraph (21–60), or multiple
paragraphs (> 60). If no single band accounts for at least one third of a donor’s prompts,
we assign “Varies too much to say”. These bands replicate the survey frames for direct
comparability rather than claiming linguistic norms.

Together, these constructions prioritise interpretability and comparability. They keep
the units readers expect from the survey, avoid fragile parameter choices, and make clear
why each choice was made. Where values are design choices rather than standards (for
example, 30-minute inactivity, 0.33 dominance, 5-day zero-streak), we flag them explicitly
and check them in sensitivity analyses. The next section turns to task coding (Q12–Q17),
where free-text prompts are aligned with the survey’s task taxonomy.
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4.3 Task Coding for Q12–Q17

To compare tasks fairly across survey and logs, free-text prompts must be mapped to
the same categories respondents saw. We therefore label each user prompt against the
survey’s task taxonomy (Q12 main families; Q13–Q17 subtasks). Labelling happens at
prompt level and is summarised to the donor level only afterwards. Codebooks with the
prototype phrases that define each label are fixed ahead of time and listed in Appendix C.
Keeping these prototypes explicit makes the measurement target transparent and supports
reproducible auditing [38]. The resulting label space is multi-label by design so that
blended intents can be represented without forced choice [61].

Prototypes: provenance and refinement

Prototypes were seeded directly from the survey instrument (the answer options for
Q12–Q17) and a first pass over a small, stratified sample of prompts. We then refined
them in three short steps using the validation workflow described in §4.4: (i) expand
near-synonyms that appeared in correct matches; (ii) inspect borderline errors and add
1–3 disambiguating phrases for the most confused label pairs; (iii) freeze the codebook
before the final pass. This keeps the codebook compact and auditable (see Table C.1 in
Appendix C), while tuning it just enough to the data without overfitting.

Hybrid pipeline and design rationale

At a high level the pipeline is hybrid. We route most prompts by semantic similarity in
an embedding space (vector representations of sentences) and resolve genuinely borderline
cases with a compact LLM judge under tight output constraints. Concretely, we use
text-embedding-3-small to embed the prompt and the prototypes for each family. This
model provides stable sentence-level representations suited to paraphrase detection and
prototype matching at low cost [40]. For small, fixed codebooks, it separates broad intents
(for example, Writing vs. Coding) reliably and captures near-synonyms without overfitting
to style. Cosine similarity then measures how close the prompt is to each label’s prototypes.
A label is accepted when it is clearly similar in absolute terms (operating point around
0.28 on a 0–1 cosine scale) or when it is essentially tied with the best match (within about
0.06 of the top score). This simple rule captures paraphrases without forcing a single
winner when a prompt blends intents.

Why this structure and these thresholds? Three constraints guided the choice:

1. Valid labels at family and subtask level. Embeddings handle most prompts reliably
for a small, fixed codebook; a judged fallback is only needed near boundaries where
intents blend.

2. Reproducible and auditable outputs. The judge is constrained to return only label
indices (JSON-only, temperature = 0), which keeps the step deterministic and cheap.

3. Runtime budget. Thresholds were tuned against the validation setup in §4.4 so that
the full Q12–Q17 pass completes within the set runtime, while preserving micro-F1
at the family level. Practically, the operating point (0.28) and the narrow ambiguity
band keep judged fallbacks to a small fraction of prompts; REFINE_MAX_CALLS= 800
caps worst-case calls per run.
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Routing and aggregation

Ambiguous ties occur between neighbouring labels (for example, “summarise this article
and translate the abstract”). In those cases we call the LLM judge (gpt-5-mini) that
receives the Q-A pair and returns only the label indices. We invoke this step sparingly:
when the top similarity lands in a narrow ambiguity band (roughly 0.345–0.355) or when
the top two labels are separated by at most 0.010 [11].

Two policies keep labels readable. First, the pipeline is multi-label at prompt level: if
a request genuinely combines tasks, it can carry more than one label [61]. Second, the
fallback Other is exclusive and appears only when no concrete label clears the operating
point; we never combine Other with concrete labels. This avoids double-counting and
keeps Other a true residual. Subtasks are considered only for donors whose logs show the
corresponding Q12 family. This hierarchical gating improves efficiency and label quality
[51].

After prompt-level labelling, we summarise to the donor level across the full donated
horizon so that the log side mirrors what the survey calls “typical use”. A Q12 family is
counted for a donor only when it appears with enough support to be plausibly typical:
at least five prompts and at least ten percent of that donor’s prompts (n ≥ 5 and share
≥ 10%). Subtasks (Q13–Q17) use lighter thresholds, at least three prompts and at
least ten percent (n ≥ 3, share ≥ 10%), and are gated on their parent. The aim is a
donor-level summary that reflects typical use rather than one-off occurrences. A 10%
share, paired with n ≥ 5 (Q12) or n ≥ 3 (Q13–Q17), (i) scales with a donor’s horizon, (ii)
prevents a handful of prompts from very active donors from dominating, and (iii) keeps
person-level labels interpretable. In small-sample checks tied to the validation workflow
in §4.4, thresholds between 5–15% led to similar family-level conclusions; 10% offered the
best trade-off between stability, readability and keeping the judged fallback small.

Inputs are the user prompts as written (after the basic redaction and normalisation
described in §4.1). We do not alter content for classification. The outputs we carry
forward are simple: for each donor, the set of Q12 families and gated subtasks that pass
threshold, plus per-label counts and shares used in Chapter 6. Validation of this pipeline
is reported next in §4.4.

Parameter values

The embedding step returns a cosine similarity between a prompt and each label’s
prototypes. The parameters below control when a label is accepted on similarity alone,
when a borderline case is escalated to the judge, and how we keep runtime bounded and
outputs deterministic (see §4.4 for the tuning logic).

• ABS_DREMPEL= 0.28 — minimum absolute similarity to accept a label outright;
guards against spurious matches.

• REL_MARGIN= 0.06 — tie zone: if the runner-up is within this margin of the top
score, we allow both (multi-label) or escalate.

• BAND_LOW= 0.345 & BAND_HIGH= 0.355 — narrow ambiguity band around the
operating point; hits in this band trigger the judge.

• TIE_GAP= 0.010 — if the top two labels are closer than this gap, treat as a genuine
tie (again, candidate for the judge).
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Figure 4.2: Micro-F1 by question (Q12–Q17).

• MIN_TOP_FALLBACK= 0.26 — if even the best similarity is below this floor, route to
Other (we never combine Other with concrete labels).

• REFINE_MAX_CALLS= 800 per run; judge gpt-5-mini, temperature 0 — engineering
caps that keep the end-to-end pass fast and reproducible.

4.4 Validation

Before interpreting any task distributions, we validate the coding pipeline described in
§4.3. The aim is practical: to show how well the pipeline recovers the survey’s task
taxonomy from free-text prompts, where it performs strongly, and where outputs should
be treated as indicative. Validation is conducted on six independent samples, one for
each family of labels (Q12–Q17), with n = 100 Q-A pairs per family. Samples are
stratified across donors with a fixed random seed. A single human rater assigned gold
labels while blinded to model predictions and donor identity. Cohen’s κ is not reported
because only one rater produced the gold set (κ quantifies agreement between two or more
raters); where κ is planned, recommended sample sizes depend on expected agreement
and prevalence and can be substantive [8]. Agreement is reported with metrics that are
familiar and interpretable in multilabel settings, with micro-F1 as the primary summary,
weighted macro-F1, macro recall, and any-overlap accuracy, following common practice in
multi-label evaluation [61]. For any-overlap accuracy—counting an example as correct if
any true label is returned—we report Wilson 95% confidence intervals [26]. Given class
imbalance in some families, these summaries prioritise precision/recall trade-offs over
ROC-based summaries [43].
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Question N Overlap acc Overlap CI lo Overlap CI hi Macro F1 Macro Rec Micro F1
Q12 100 0.63 0.53 0.72 0.65 0.75 0.63
Q13 100 0.49 0.39 0.59 0.55 0.67 0.49
Q14 100 0.45 0.36 0.55 0.53 0.68 0.45
Q15 100 0.53 0.43 0.62 0.62 0.71 0.53
Q16 100 0.46 0.37 0.56 0.55 0.68 0.46
Q17 100 0.54 0.44 0.63 0.59 0.86 0.54

Table 4.3: Validation summary per question (Q12–Q17).

Table 4.4: Code sets for Q12–Q17.

Code Q12: Main
tasks

Q13: Writing
subtasks

Q14: Brain-
storming/fun
subtasks

Q15: Coding
subtasks

Q16:
Language/-
translation
subtasks

Q17:
Study/exam
subtasks

WRI Writing &
communication

Outlining ideas or
slides

Academic or
research topics

Generating new
code snippets

Translating full
texts between
languages

Summarising
lecture notes or
readings

BRA Brainstorming /
fun

Drafting full text Business or
marketing
concepts

Debugging
existing code

Improving
grammar or style
in a target
language

Generating
practice questions
or quizzes

COD Coding /
programming

Proof-reading /
tone adjustment

Creative role-play,
jokes, stories

Explaining code /
concepts

Vocabulary drills
or word lists

Explaining
difficult concepts
in simple terms

LAN Language /
translation

Summarising
sources or
meeting notes

Hypothetical
“what-if” scenarios

Converting code
between languages

Conversational
practice /
dialogue role-play

Reviewing
flashcards / key
terms

STU Study / exam Adjusting style
for different
audiences

Recommendations
(books, movies,
music)

Writing unit tests Pronunciation or
phonetic guidance

—

TRI — — Trivia & general
knowledge

— — —

OTH Other Other Other Other Other Other

Per-label diagnostics clarify where errors arise. For Q12 (the main families; Figure 4.3),
Writing & communication and Study/exam show relatively high F1 (0.70 each), with
precision/recall of 0.80/0.62 (support = 13) and 0.94/0.56 (support = 27). Language/-
translation is solid (F1 = 0.62), while Brainstorming/fun trades perfect recall for many
false positives (precision = 0.23, recall = 1.00, F1 = 0.38, support = 3), reflecting loosely
phrased “ideas” prompts that overlap with adjacent categories. The residual Other is
precise (precision = 0.76) but conservative on recall (0.56; F1 = 0.64; support = 45),
which means some genuine uses remain in concrete labels rather than being swept into
Other.

A representative subtask family shows the same pattern of strengths and near misses.
For study/exam subtasks (Q17), Explaining difficult concepts in simple terms is strong
(precision = 0.74, recall = 0.91, F1 = 0.82), while very small-support subtasks such as
Summarising lecture notes or readings, Generating practice questions or quizzes, and
Reviewing flashcards / key terms yield low and unstable F1 (supports = 2–3). The Other
subtask category again shows high precision with modest recall (F1 = 0.55, support = 71),
which is desirable for a residual class but implies that observed subtask shares in Chapter 6
should be read as lower bounds for concrete subtasks. See Figure 4.4 for the per-label F1
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Figure 4.3: Q12 per-label F1.

view (codes per Table 4.4).

These diagnostics guide interpretation downstream. At the family level (Q12), micro-F1
= 0.63 and balanced recall = 0.75 support using Q12 shares for prevalence contrasts.
At the subtask level (Q13–Q17), micro-F1 in the 0.45–0.54 band supports pattern-level
comparisons rather than precise prevalence claims. Where subtask labels have very
small support, variability is expected and documented rather than over-interpreted. All
codebooks (prototype lists) are fixed before inference and reproduced in Appendix C, in
line with reproducibility guidance [38]. The complete validation outputs accompany this
chapter: the per-question master table appears here (Table 4.3); all per-label metrics tables
for Q12–Q17 (TP/FP/FN, precision/recall/F1, support) are collected in Appendix D; the
full set of per-label F1 panels and TP/FP/FN stacks is placed in Appendix E.
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5
Statistical Analysis Plan
This chapter sets out what we compare, how we compare it, and why these choices fit
the data. Survey answers reflect perceived use; donated logs (processed in Chapter 4)
reflect observed use. Because we do not link individuals one-to-one, we work with two
independent cohorts: the survey-donor subset (Sdon, n=24) and the logs donors (Llogs,
n=24). All contrasts therefore compare full distributions across independent groups, which
is standard in donation-based designs without record linkage [31]. Given the small n, we
focus on effect sizes with confidence intervals rather than on pass/fail significance tests
[59]. Reporting conventions appear in section 5.4.

5.1 SQ1: Structure of Self-Reported Use

SQ1 describes the internal structure of the survey and who scores high or low on the
resulting dimensions. We use the full survey (N=93) to learn the structure and apply
the same scoring to Sdon (n=24) so later contrasts use identical constructs. The goal is
twofold: (i) a clear picture of how respondents say they use the tool, and (ii) a small set
of well-behaved variables that Chapter 6 can reference without re-explaining method.

Usage items (Q7–Q9) are ordered bands. Where a numeric summary helps, we map
to band midpoints in their native units: Q7 as sessions in the last seven days; Q8 as
median sessions per day; Q9 in minutes per session. Q11 Prompt length stays as an
ordered set of three bands plus Varies too much to say. Multi-select items (Q12–Q17)
become one binary indicator per option; the informational response I did not choose
. . . is kept for transparency but does not add to counts. From these binaries we form
breadth measures: the number of Q12 families a respondent selects (task breadth) and,
within families, the number of subtasks selected. A simple intensity index, usage_index,
is the unit-weighted mean of the z-scores of Q7mid, Q8day, mid and Q9mid. We use unit
weights on purpose: in small samples they are more stable than fitted weights and keep
interpretation straightforward [59]. These choices align the survey side with the log
analogues in Chapter 4.

We show one association map using effect-size measures matched to variable types.
Spearman’s rank correlation (ρ) summarises ordered/numeric pairs; categorical pairs use
Cramér’s V on a [0, 1] scale [6]. For ordered/numeric versus categorical (for example,
usage_index by Q3 Plan type), we add the correlation ratio η to respect scale differences
[2, 41]. Co-selection among tasks uses the Jaccard index, a standard overlap measure for
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multi-label data [61]. Confidence intervals accompany the main displays; for proportions
we use Wilson intervals [26].

We then reduce to a few dimensions using an exploratory factor/PCA workflow on
usage_index, Q10 Usage timing (for trend checks), Q11 Prompt length (scored bands),
Q12 Task breadth, family-specific subtask breadths (Q13–Q17), and Q18 Study/work
share. Retention uses parallel analysis plus a scree check; an oblique rotation (e.g.,
oblimin) allows related dimensions to correlate [13]. In practice we retain two to three
axes that read naturally as (i) Usage intensity, (ii) Study/work orientation, and (iii)
Portfolio breadth. We compute scores once and reuse them for Sdon so later contrasts
refer to the same survey-defined constructs.

We relate factor scores to Q3 Plan type, Q4 Device, Q5 Status, Q6 Field and Q2 Age
group using ordinary least squares (OLS) with HC3 robust standard errors. Ordered
attitudes (Q19 Importance; Q20 Paid-only use, optionally collapsed to a binary in plots)
are modelled with ordered logit or (for the binary collapse) logit; we present marginal
changes in predicted probabilities rather than log-odds [55]. For non-normal contrasts on
usage_index we also show a rank-sum test as a robustness check [16].

Alongside these models we report prevalence per Q12 Task family and subtask breadth
within families (Q13–Q17), show which families are often chosen together (Jaccard
co-selection), and connect breadth back to behaviour: Spearman’s ρ relates task breadth
to usage_index and to Q11 Prompt length bands; a rank-sum test compares usage_index
between those who do versus do not select a given Q12 family. Q10 Usage timing is
cross-tabulated with device, status and plan; Cramér’s V summarises association strength
and standardised residuals flag which cells drive any pattern [6]. This completes a compact,
survey-only map of self-reported use. The same scores and definitions are then held fixed
when section 5.2 compares Sdon and Llogs and when section 5.3 ranks and explains gaps.

5.2 SQ2: Survey–Log Convergence

SQ2 compares Sdon (n=24) and Llogs (n=24) on like-for-like indicators in the same units
(weekly rates, dayparts, prompt-length bands, task codes). The composite usage_index is
scaled on the pooled matched set (N=48) so both cohorts share one metric; this avoids
re-scaling artefacts when distributions are shown side by side.

For numeric usage (Q7–Q9), means are fragile with small and skewed samples, so we use
the Wilcoxon–Mann–Whitney rank-sum test. We summarise the size of any shift with
the Hodges–Lehmann median difference in original units (sessions/week; minutes/session)
and attach 95% bootstrap CIs. A rank effect (rank-biserial r or Cliff’s δ) puts dominance
on a [−1, 1] scale. We also add two simple shape checks—the two-sample KS and a
1-Wasserstein distance—to see whether whole distributions differ, not just the middle [33,
46, 25, 16].

For Q10 Usage timing and Q11 Prompt length, we compare cohort shares per category
with Wilson 95% intervals [26]. Differences are reported as ∆p = pSdon − pLlogs with
Newcombe score-type CIs, which remain stable at small n [29]. A single table-level number
(Cramér’s V ) summarises overall association, and for Q11 we add a linear-by-linear trend
across the ordered bands [6, 2]. The residual Varies too much to say is kept separate. For
Q10 Usage timing we apply the dominance rule from Chapter 4: a daypart is assigned if



5 Statistical Analysis Plan 29

it captures at least one third of session starts; otherwise the label is Anytime throughout
the day.

Tasks (Q12–Q17) are multi-label by design. For the six main families (Q12 Task families)
we show prevalences with Wilson CIs and cohort differences with Newcombe CIs. We
compare portfolio breadth—the number of Q12 families a person uses—using a rank-sum
test and HL shift because breadth is a skewed count [16, 6]. For subtasks (Q13–Q17)
we repeat the same within each family and gate logs on the parent family to keep
like-for-like. Beyond single bars, we also check whether the overall mix aligns: Spearman’s
rank-correlation compares the ordering of families by prevalence, and a bounded Hellinger
distance summarises how far the mixes are when many bars move a little [5].

We apply the same uncertainty and multiple-comparison rules as section 5.4. Effects are
shown with 95% CIs, and we control false discovery at q=0.10 within three families: (i)
Q7–Q11, (ii) Q12 options, and (iii) each subtask family (Q13–Q17) [7]. Plots mirror this
plan: ECDF/violin views with HL shifts for Q7–Q9; stacked shares and ∆p with intervals
for Q10–Q11; per-option ∆p (Q12 Task families) plus a compact breadth contrast; and a
small panel with rank-correlation and Hellinger distance.

5.3 SQ3: Gaps and Subgroups

SQ3 ranks where Sdon and Llogs differ most and relates those components to survey
subgroups. The aim is descriptive: show clear effect sizes in familiar units and then see
which profiles sit higher or lower on those same components; no causal claims [52].

For numeric/ordinal usage (Q7–Q9 and the standardised usage_index) we report the HL
median difference (Sdon − Llogs) with 95% bootstrap CIs, a rank effect (r or δ), and
KS shape checks; where helpful we add a 1-Wasserstein distance [25, 34, 16, 33, 46]. For
Q10–Q11 (categorical/ordinal), we compare cohort shares with Wilson intervals and ∆p
with score-type CIs, add Cramér’s V for the table and a linear-by-linear trend for Q11,
and keep Varies too much to say separate [26, 29, 54, 2]. For tasks, we mirror the survey
at two levels: per-family prevalences and breadth (Q12), then gated subtasks (Q13–Q17),
plus a pattern view with Spearman’s ρ and Hellinger distance [5].

Inside the survey (N=93), we fit simple models with links matched to the outcome:
OLS with HC3 for continuous indices and midpoint-coded usage (usage_index, Q7–Q9);
ordered logit for ordered outcomes (Q11 bands; Q19 attitudes), reporting marginal effects;
and logit for binaries (each Q12 family), reporting odds ratios and marginal effects in
percentage points. Predictors are plan (Free/Plus/Pro), device (laptop/phone/mixed),
status (student/working/both/other), field (STEM/business/H&SS/creative/other) and
age band, with optional behavioural covariates (usage_index and Q12 task breadth)
where useful. Coefficients are standardised where applicable, shown with 95% CIs, and
interpreted as effect sizes, not pass/fail p-values [59]. These models explain who in the
survey tends to sit higher or lower on the components that showed the largest Sdon–Llogs
gaps.

Because Sdon and Llogs are independent and self-selected, we benchmark Sdon against
the full Survey Sample on background variables (Q1–Q6; Q18–Q20): per-category ∆p
with Wilson intervals and Cramér’s V as a compact strength-of-association measure
[26, 54]. We also show that conclusions are stable under reasonable alternatives: (i)
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different midpoints for open-ended bands (e.g., top-bin ×1.5 for Q7–Q8), (ii) rare-category
handling (collapsing ultra-rare subtasks or fields), and (iii) the episode-split sensitivity for
log-derived durations/rates from Chapter 4. If an effect changes sign under a reasonable
alternative, we flag it explicitly [28].

Results appear as (i) ranked gap bars with 95% CIs and BH–FDR marks; (ii) a compact
table listing the impact measures used for ranking (HL in units, rank effect r/δ, V , and
∆p); and (iii) coefficient/marginal-effects plots for the subgroup models.

5.4 Tests, uncertainty & reporting conventions

All tests are two-sided at α=0.05. We take an estimation-first approach: report effect
sizes with 95% confidence intervals and treat p-values as diagnostics (shown, not used as
pass/fail thresholds) [59]. Multiple comparisons are handled with Benjamini–Hochberg
false-discovery-rate control at q=0.10 within three families: (i) Q7–Q11, (ii) Q12 options,
and (iii) each subtask family (Q13–Q17) [7].

For numeric and ordinal usage (Q7–Q9; usage_index) we use Wilcoxon–Mann–Whitney
and report HL median differences in natural units (sessions/week; minutes/session) and
rank effects (rank-biserial r or Cliff’s δ). We check distributional shape with KS and,
where helpful, a 1-Wasserstein distance [16, 23, 6, 33, 46, 25].

For categorical outcomes we compare cohort shares rather than means. Category propor-
tions use Wilson 95% intervals [26], and differences use Newcombe score-type intervals
∆p = pSdon − pLlogs [29]. Overall association in contingency tables is summarised by
Cramér’s V on [0, 1] [54]. For ordered bands (Q11) we add a linear-by-linear trend test;
Varies too much to say is kept separate and, in a sensitivity run, omitted to check stability
[2].

Uncertainty is handled with non-parametric bootstrap intervals (10,000 resamples; fixed
seed) for HL and other statistics without small-sample closed forms; binomial share and
∆p intervals follow the score-based formulas above. Analyses are available-case: we report
the used N per item, do not impute missing values, and rely on the conservative bounds
and proxy rules defined in Chapter 4 for the log side (for example, duration winsorisation)
[27]. Units and coding are fixed: Q8 per day; Q9 in minutes per session; Q10 uses three
dayparts on a Europe/Amsterdam time base with a dominance rule (a label is assigned if
it captures ≥1/3 of session starts; otherwise Anytime throughout the day); Q11 uses three
prompt-length bands (sentence ≤20 words; short paragraph 21–60; multiple paragraphs
>60) and assigns Varies too much to say if no band reaches ≥1/3. Tasks (Q12–Q17) stay
multi-label at the option level; breadth counts the number of families (Q12) and subtasks
(within families) selected [61]. On the log side, aggregation thresholds are fixed: Q12
requires n ≥ 5 and share ≥ 10%; Q13–Q17 require n ≥ 3 and share ≥ 10%, and are gated
on their Q12 parent.



6
Results
This chapter reports results aligned with the three sub-questions from Chapter 5. We start
with the participation funnel and cohort balance, then map the self-reported landscape
(SQ1), compare survey donors with logs donors on like-for-like indicators (SQ2), and
identify the largest gaps and which survey subgroups align with higher or lower values
(SQ3). We close with sensitivity and robustness checks. Throughout we emphasise effect
sizes with confidence intervals and keep units consistent with Chapter 4.

6.1 Self-reported landscape (SQ1)

This section does two simple jobs. First, it shows which survey items move together
so we can reuse one compact “intensity” score later in §6.2. Second, it checks whether
differences mainly come from behaviour rather than who people are. We use the full
survey only (N=93). Measures follow earlier definitions: usage items stay in their original
bands and, where helpful, we also show midpoints (Q7 Sessions/week, Q8 Sessions/day,
Q9 Session length). Q11 Prompt length stays ordered. Task breadth counts how many
Q12 Task families a respondent selects. We first map associations, then reduce them to a
few dimensions, and finally relate those dimensions to plan, device, status, field and age.
Results are descriptive; full tables are in the appendix.

Association map

Figure 6.1 is a heatmap, each cell shows how strongly pairs of survey items move together
on a common [0, 1] scale (absolute Spearman’s ρ for ordered/numeric pairs, Cramér’s V
for categorical–categorical, and η for ordered/numeric versus categorical) [61]. Darker cells
mean a stronger link. Note: the map shows strength only (absolute values), not direction;
it is not designed to display negative vs. positive signs. A rough guide for reading the
colours: around 0.6 and above is strong; 0.3–0.6 is moderate; below 0.3 is weak [6].

Two things stand out. First, Q7–Q9 (how often and how long) move together and line
up with Q11 Prompt length and task breadth. In plain terms, people who say they use
ChatGPT more also tend to write longer prompts and report a wider set of task families;
the links are strong rather than marginal.

Second, background variables (Q2 Age group, Q3 Plan type, Q4 Device, Q5 Status, Q6
Field) have smaller and mixed connections to behaviour. Co-selection among Q12 Task
families matches intuition: Writing & communication pairs with Brainstorming/fun, and
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Coding pairs with Language/translation, while Other co-selects weakly, as is typical for a
residual category.Full cell estimates with intervals are in Table D.4; Q12 co-selection is in
Table D.1.
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Figure 6.1: Association heatmap (S, N=93). Darker cells indicate stronger association on
a common [0, 1] scale.

Dimensions retained and what they mean

We want a small, stable set of axes we can reuse in §6.2–§6.3. Figure 6.2 shows a standard
scree/parallel analysis: the first three observed eigenvalues sit above a random baseline;
the fourth does not. We therefore retain three components using the oblique factor/PCA
workflow [13]. In simple terms, they map to:

• Usage intensity — a “how much” axis: more sessions per week (Q7 Sessions/week),
more per day (Q8 Sessions/day), and longer sessions (Q9 Session length). Q11
Prompt length shifts from one-liners towards short paragraphs as intensity rises.
Moving up means using ChatGPT more often and for longer, and usually typing
more than a single short line.

• Study/work orientation — where ChatGPT sits in daily routines: more study-
leaning versus more work-leaning use, anchored by Q18 Study/work share (with
Q10 Usage timing as a lighter cue). This is a tilt, not a volume knob.

• Portfolio breadth — how widely people range across task types: the number of
Q12 Task families and subtask breadth (Q13–Q17). This is largely independent from
intensity: someone can be broad but low-intensity, or narrow but heavy-intensity.
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Rotated loadings and communalities are in Table D.3; removing the residual Q11 category
(“Varies too much to say”) does not change the meanings.

Figure 6.2: Scree and parallel analysis (S, N=93). We retain three components because
their observed values sit above the random baseline.

Who scores higher or lower on these dimensions?

Next we relate each dimension to Q3 Plan type (Free/Plus/Pro), Q4 Device (laptop/-
phone/mixed), Q5 Status, Q6 Field and Q2 Age group using OLS with HC3 standard
errors [50]. Figure 6.3 displays the top coefficients with 95% CIs. Read this panel as a
check: coefficients help us see whether any single profile dominates the dimensions. In
practice, effects are modest—useful for interpretation, not for prediction. Full models
appear in Table D.6–Table D.8.

Three plain takeaways:

1. Intensity is only weakly tied to profiles: The largest lift appears for Free plan;
smartphone-only is slightly positive but uncertain. Paid plans (Plus/Pro) are not
systematically higher in this convenience sample. Heavy users show up in every plan
and device group.

2. Orientation behaves like a tilt, not a volume knob: Field and device shift
where the axis points (for example, H&SS higher; laptop lower), without simply
mirroring intensity.

3. Breadth is independent from intensity: Breadth is modestly lower among
women and STEM; Plus users also show a small reduction. Trying many task
families is not the same as using the tool a lot.

Attitudes line up with these patterns: higher intensity goes together with higher reported
importance (Q19 Importance) and with a higher chance of continuing if access were
paid-only (Q20 Paid-only use).
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Figure 6.3: Profile associations for the three survey dimensions. Bars show estimates with
95% CIs; we display the top ten predictors per panel. Full models: Table D.6–Table D.8.
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How to read these results

1. The survey provides a clear “how much” signal: Q7–Q9 and Q11 move together, so
a single composite intensity score is meaningful.

2. Orientation and breadth are separate from intensity: someone can be study-leaning
or work-leaning, and broad or narrow, at any usage level.

3. Profiles explain only a small part of the variation: differences by plan or device exist
but are modest; they will not, on their own, explain survey–log gaps.

With that in place, section 6.2 puts survey donors next to logs donors on the same units
and the same survey-defined constructs [61, 50, 6, 13].

6.2 Survey–log convergence (SQ2)

This section answers to the following question: do the survey-defined indicators line up
with what we observe in logs when measured the same way? We place the survey-donor
subset (Sdon, n=24) next to the independent logs donors (Llogs, n=24) on like-for-like
frames (intensity, timing, prompt form, task portfolio). All contrasts are unpaired and
distributional. For numeric outcomes we report Hodges–Lehmann (HL) shifts in natural
units [25]; for categorical outcomes we show differences in shares (∆p in percentage points)
with Newcombe score-type intervals [29]; and we control multiplicity with Benjamini–
Hochberg FDR at q=0.10 [7]. Figure 6.4, Figure 6.5, Figure 6.6 and Figure 6.10 show the
main displays; full tables appear in full tables are in the appendix (Table D.9–Table D.17).
Unlike SQ3, which ranks the largest gaps and relates them to profiles, SQ2 is a side-by-side
comparison of the distributions themselves.

Numeric usage

Figure 6.4 shows HL shifts (Sdon − Llogs) for Q7 Sessions/week, Q8 Sessions/day, Q9
Session length, and the composite usage index. Each dot is the estimated median difference
in the original units; bars are 95% CIs. Values to the right mean Sdon sits higher than
Llogs in that unit. We also check whether the shapes differ, not just the medians, using a
two-sample KS and a 1–Wasserstein distance (Table D.9) [33, 46].

• Q7 Sessions/week: Survey donors report and show slightly more weekly ses-
sions—on the order of a couple of extra sessions per week (≈ +2.5)—while the
overall distribution looks very similar across cohorts.

• Q8 Sessions/day: Typical-day activity is essentially the same in both cohorts.

• Q9 Session length: Session lengths overlap broadly; medians line up.

• Composite usage index: Taken together, Sdon scores a little higher on overall
intensity (= +0.51 pooled z), but the shift is modest.

Overall, numeric differences are small to moderate, and most intervals include small shifts
(Table D.9). The larger contrasts show up elsewhere: in how people phrase prompts and
in which task families they use.
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Figure 6.4: Numeric contrasts (Sdon − Llogs).

Q10 Usage timing

In Figure 6.5 the daypart labels are very similar across cohorts. Sdon shows a small tilt
towards “Anytime throughout the day”, mirrored by a small dip for “During work/study
hours”, and “Evenings” is essentially identical. Using the same dominance rule (at least a
third of session starts) on both sides leads to the same story: timing is not a major source
of difference.

Q11 Prompt length

Figure 6.6 shows large, one-direction differences. “A short paragraph” is much more
common in Sdon (+54.2 percentage points), while “One short sentence” is much more
common in Llogs (−41.7 points). “Multiple paragraphs” shows only a small lift for Sdon,
and “Varies too much to say” is lower in Sdon. In plain terms, survey donors say they
tend to write fuller, paragraph-level prompts; logs donors more often use one-liners.

Q12 Task families

Figure 6.7 summarises differences across the six task families and compares portfolio
breadth. Two families drive most of the gap: Coding/programming and Language/trans-
lation are much less common in Sdon (each lower by roughly −37.5 and −41.7 percentage
points). Writing & communication is a little higher, and Brainstorming/fun is about
the same; Study/exam is very low in both cohorts. The residual “Other” shows a large
negative gap by design (see Chapter 4). Portfolio breadth differs sharply: the median
person uses 2 families in Sdon versus 4 in Llogs—a two-family gap that signals broader
use on the logs side.
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Figure 6.5: Q10 daypart shares (top) and ∆p with 95% CIs (bottom). Table-level
association V =0.09 (n=48).

Q13–Q17 Subtasks

Subtasks are computed only for donors who selected the parent family (“gated”), so
comparisons are like-for-like. Two examples illustrate where the family-level gaps come
from.

Q16 Language subtasks: Sdon is much lower on conversational practice/role-play and on
vocabulary drills (the largest drops, on the order of −70 to −80 percentage points), and
also lower on pronunciation. By contrast, Sdon is higher on improving grammar or style
in a target language. In short, Sdon’s language use leans towards polishing texts; Llogs
leans towards interactive practice and drills (Figure 6.8).

Q15 Coding subtasks: Sdon is much higher on debugging existing code and on converting
code between languages, and lower on explaining code/concepts and on writing unit tests.
Here Sdon focuses on hands-on debugging and translation, while Llogs more often covers
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Figure 6.6: Q11 prompt-length shares (top) and ∆p with 95% CIs (bottom). Bands are
ordered; strong table-level association (V =0.65).

explanation and scaffolding (Figure 6.9). Appendix Figure E.1, Figure E.2 and Figure E.3
show similar tilts for Writing, Brainstorming/fun and Study/exam.

Pattern view

Figure 6.10 plots Sdon prevalence against Llogs prevalence for each Q12 family. Points
do not sit on the diagonal: the rank ordering barely lines up and the overall mixes differ
substantially. We show this view to stress that it is not just a few categories moving, but
a broader reshaping of the portfolio.

How to read these results

Three takeaways.

1) Levels are broadly similar, while form and portfolio differ: Numeric intensity is only a
little higher in Sdon and session length aligns; the big shifts are in prompt form (paragraphs
versus one-liners) and in task breadth and mix.

2) Subtasks show the direction of travel: In language tasks Sdon emphasises grammar/style
over conversational and drill-type uses; in coding Sdon leans into debugging and language
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Figure 6.7: Q12 family differences.

Figure 6.8: Q16 (Language/translation).
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Figure 6.9: Q15 (Coding).

Figure 6.10: Task-pattern alignment (Q12). Spearman rank correlation and Hellinger
distance relative to the diagonal reference.

conversion. Writing, brainstorming and study subtasks in the appendix show the same
tilt away from short, interactive items.

3) Definitions matter: Timing labels and units match Chapter 4. “Other” is a residual
category by design, and the large gap there is definitional, not substantive.

These contrasts identify where the cohorts differ most; section 6.3 ranks those gaps and
asks which survey subgroups sit higher or lower on the same components.

6.3 Gaps and subgroups (SQ3)

This section ranks where Sdon and Llogs differ most and shows which survey subgroups
tend to sit higher or lower on those same components. Effects are matched to the scale
of each outcome (HL shifts for numeric, ∆p in percentage points for categorical) and
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presented with 95% CIs [25, 29]. We keep the frames from Chapter 4 and section 6.2 to
ensure like-for-like comparisons, and control multiplicity with Benjamini–Hochberg within
outcome families [7].

Top gaps

Figure 6.11 ranks the largest gaps: the top panel shows numeric HL shifts; the bottom
panel shows Q12 ∆p with 95% CIs. Category-level gaps for Q11 were shown in Figure 6.6.

The largest numeric gap is Q7 Sessions/week, where Sdon does a little more per week
(= +2.5). The composite usage index is modestly higher for Sdon (HL ≈ +0.5 pooled
z). Q8 Sessions/day and Q9 Session length sit near zero. In short, everyday activity and
session length look alike across cohorts; any intensity edge for Sdon sits mainly in weekly
frequency and is small to moderate.

The biggest categorical differences appear in Q11 Prompt length (Figure 6.6): “A short
paragraph” is about +54 points for Sdon, while “One short sentence” is about −42 points.
In plain terms, survey donors gravitate to paragraph-level prompts, whereas logs donors
more often use one-liners.

Two families dominate the Q12 ranking (Figure 6.11, bottom): Language/translation and
Coding/programming are much less common in Sdon (each lower by roughly forty points).
Writing & communication is slightly higher, and Brainstorming/fun is similar. “Other”
shows a very large negative gap by definition (see Chapter 4). Portfolio breadth differs
sharply as well: the median person uses 2 families in Sdon vs. 4 in Llogs (a two-family
gap; see Table D.15). Beyond intensity, the cohorts diverge in what they do: the logs
cohort spreads use across more families and is especially higher in coding and translation.

Where within families do gaps come from?

Subtasks clarify which activities drive the family-level differences (gated on the parent
family; see section 6.2).

Q16 Language subtasks: Sdon is much lower on Conversational practice / dialogue role-
play (−79.8 pp) and on Vocabulary drills or word lists (−71.4 pp), and also lower on
Pronunciation or phonetic guidance (−23.5 pp). By contrast, Sdon is higher on Improving
grammar or style in a target language (+21.0 pp). The survey-donor side leans towards
text polishing, while the logs side leans towards interactive practice and drills (Figure 6.8).

Q15 Coding subtasks: Sdon is much higher on Debugging existing code (+76.7 pp) and
on Converting code between languages (+26.7 pp), and lower on Explaining code or
concepts (−16.7 pp) and Writing unit tests (−10.0 pp). The survey-donor side focuses on
hands-on debugging and translation, whereas the logs side more often covers explanation
and tests (Figure 6.9). Appendix Figure E.1–Figure E.3 (Writing, Brainstorming/fun,
Study/exam) show similar tilts away from short, playful or drill-type items and towards
summarising/explaining, consistent with the Q11 shift.

Who sits higher or lower on key gaps

We relate the main gap components to profiles using survey-only models with HC3
standard errors; coefficients are descriptive, not causal [50]. Read these models as a check
on composition: if a single profile dominated a gap, it would show up here. Full tables
are in Table D.19–Table D.22; Figure 6.12 summarises the coefficients for Q11 Prompt
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Figure 6.11: Top gaps by family: numeric HL shifts (top) and Q12 ∆p with 95% CIs
(bottom).

length and Q12 Task families along intensity.

For intensity, the strongest positives are Plus (β≈0.52) and Pro (β≈0.28), with a smaller
positive for “both student and working” (β≈0.24). Field and age effects are modest.
Heavier users show up across profiles, but paid plans are more likely to sit higher on the
composite intensity.

For the probability of choosing “A short paragraph”, smartphone use and the 18–24 age
band are positive; “Other status” and “younger than 18” are negative. Longer prompts
are thus more common among younger and phone-first respondents in this sample.

For Coding, field markers outside STEM (H&SS/Other/Business) are negative and Plus is
positive; for Language/translation, Student and “Both student and working” are negative
with a small positive for age 25–34. Selection into coding and translation therefore tracks
field and role more than plan or device.

Representativeness of Sdon

Sdon is broadly similar to the full survey on background composition, with small to
moderate differences on plan, device, status and field and larger differences on attitudes.
This suggests composition differs somewhat but is unlikely to account for the large
Q11/Q12 gaps on its own.
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Figure 6.12: Profile associations for key gap components
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Sensitivity and robustness

We check that conclusions do not hinge on specification choices. Wider top-bin midpoints
do not change directions for Q7 Sessions/week (12→15), Q8 Sessions/day (6→7) or Q9
Session length (> 60: 75→90); see Table D.25. Available-case handling for Q9 Session
length reduces n on the logs side and widens CIs but leaves medians aligned. All contrasts
and models use the same units, Amsterdam time base and gating as in Chapter 4. Where
relevant, shape diagnostics mirror section 6.2 (two-sample KS and 1–Wasserstein) [33, 46].

Key Takeaways

1) The biggest numeric gap is in weekly frequency; everyday activity per day and session
length are alike.

2) The strongest categorical gaps sit in prompt form and task mix: Sdon shifts to
paragraphs and a narrower set of families; Llogs spreads across more families and is higher
in coding and translation.

3) Profiles help to read these differences (for example, paid plans and intensity; younger
and phone-first for paragraphs), but they do not fully explain them. Mix and form remain
the main points of divergence.

6.4 Summary and link back to the research question

Across SQ1–SQ3 the picture is consistent. SQ2 showed that levels of use align reasonably
well across sources, while SQ3 organised where the biggest gaps lie and who tends to sit
higher or lower on those gaps. On levels of use, the two cohorts look much alike; on how
people use the tool, they pull apart.

Where the cohorts differ most is form and portfolio. Sdon more often uses paragraph-level
prompts, while Llogs more often uses one-liners. Llogs also spreads activity across more
task families (median 4 vs. 2) and is especially higher in Coding and Language/translation;
Sdon is narrower and relatively more Writing. Inside families, the tilt is clear: for Language,
Sdon focuses on grammar/style, while Llogs emphasises conversational practice, drills and
pronunciation. For Coding, Sdon focuses on debugging and code conversion, while Llogs
more often involves explanation and tests. Profile models help to read these patterns:
higher intensity is more common among paid plans, longer prompts are more common
among younger and phone-first respondents, and Coding/Language selection tracks field
and role more than plan or device. These profiles do not fully explain the gaps.

Answering the RQ

How does ChatGPT usage in anonymised logs compare to what users report?

On how much people use the tool (frequency and duration), surveys and logs broadly
agree. The biggest differences lie in how the tool is used. Self-reports describe longer,
more elaborated inputs and a narrower set of task families; the logs show broader, more
interactive and more technical use. These differences are not driven by timing or by one
simple profile split, which points to a real gap between reported and observed practice.
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Implication

Short, one-line and interactive or technical use is easy to miss in self-reports. Combining
surveys with log-based indicators gives a fuller picture: the survey covers intensity well; the
logs add detail on form and portfolio breadth. The concluding chapter places these findings
in context, notes limitations, and turns them into practical guidance for instrument design
and usage monitoring.



7
Discussion
This chapter interprets the main results, connects them to prior work on survey–trace
alignment and everyday LLM use, and draws out what the patterns mean for measurement
and practice. The guiding question stays practical: how does ChatGPT usage observed in
anonymised logs compare to what users report in surveys, and which components align or
diverge? We keep the stance descriptive: cohorts are independent by design, the sample
is convenience-based and small, and effects are reported with uncertainty rather than as
population estimates.

Two headline patterns organise the discussion. First, levels of use are broadly similar
across cohorts: typical-day activity and minutes per session overlap, and the only clear
numeric difference is a modest shift in weekly frequency towards the survey-donor group.
Second, the largest gaps appear in how people interact (prompt form) and what they use
the tool for (task breadth and mix). These differences are not explained by timing labels
and are only weakly related to composition, which points to real gaps between reported
and observed practice rather than artefacts of who donated logs.

7.1 Discussion of findings

What aligned: a workable signal for “how much”

Across numeric indicators, survey donors and logs donors look much alike. Typical-day
sessions and session length line up; the median shift sits close to zero on both measures.
Weekly frequency is somewhat higher among survey donors (Hodges–Lehmann ≈ +2.5
sessions/week; 95% CI [0.0, 4.0]), but shapes remain comparable. Read plainly: when
framed in broad, interpretable units, respondents recall how much they use ChatGPT
with acceptable fidelity. This matches validation work on digital behaviour showing that
coarse frequency/duration bands travel better from memory than fine-grained counts [32,
60].

Where cohorts pulled apart

The strongest categorical differences are in prompt form. Survey donors most often
describe a short-paragraph input; logs show a much higher share of one-liners. Concretely,
“short paragraph” is over-represented on the survey side (∆p ≈ +54 pp), while “one short
sentence” dominates more on the logs side (∆p ≈ −42 pp); the table-level association is
strong (Cramér’s V ≈ 0.65; see Figure 6.6). This signals distinct interaction styles: survey

46
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narratives gravitate to fuller, worked-out prompts, whereas the logs capture many terse
nudges and checks.

Task breadth and mix diverge as well. The median survey donor names two main
families; the median logs donor uses four (see Figure 6.7). Family-level gaps concentrate
in Coding/programming and Language/translation, both substantially more prevalent
in logs; Writing & communication is slightly more common on the survey side, while
Brainstorming/fun is similar. In short, logs reveal a broader and more technical or
interactive portfolio, not just a uniform rescaling of the same tasks.

Within-family subtask tilts make this texture concrete. In Language/translation, sur-
vey donors gravitate to polishing (grammar/style), while logs donors more often show
practice and drills (conversational role-play, vocabulary, pronunciation; Figure 6.8). In
Coding, survey donors emphasise debugging and code conversion; logs donors show more
explanation and scaffolding (Figure 6.9). Read together with the prompt-length split,
these tilts indicate that the logs contain many short, iterative exchanges that are easy
to under-weight when someone is asked for their “usual” use. Family-level inferences are
supported by validation (micro-F1 ≈ 0.63; Figure 4.2 and Table 4.3); subtask inferences
are directional rather than precise (micro-F1 ≈ 0.45–0.54), and we treat them accordingly.

Why these gaps are plausible

Three mechanisms, all consistent with prior measurement work, credibly account for the
form/portfolio gaps:

(1) Recall and salience. When asked for a typical prompt or usual uses, respondents
compress varied behaviour to a memorable prototype. Longer, production-like prompts are
easier to recall and justify; one-line nudges and micro-checks fade from memory. Surveys
therefore over-select paragraph-level inputs and under-select technical or interactive
micro-uses; logs count every exchange across the full horizon [32, 60].

(2) Blended workflows. Real sessions often chain tasks (for example, outline → translate
→ refine), and “language help” or “code explanation” may not be perceived as distinct
tasks when answering a checklist. A multi-label coding of prompts captures these overlaps
explicitly in logs; single-pass survey recall flattens them. The broader log portfolios and
the consistent within-family tilts are exactly what a blended, opportunistic workflow
would yield [61].

(3) “Usually” versus “observed across the horizon”. Survey wording (“usually”) encourages
naming a few salient families. On the log side, a family only counts for a donor after
clearing minimum support (for example, n ≥ 5, share ≥ 10%), which biases against
breadth inflation. That breadth is still larger in logs strengthens the interpretation that
surveys under-enumerate secondary but regular families.

What did not drive the gaps

Two potential alternative explanations do not fit the data.

(1) Timing. Timing labels are essentially the same across cohorts (weak table-level
association; “Evenings” identical), which rules out a simple “when” story (see Figure 6.5).
If the cohorts use the tool at similar times but show different prompt forms and portfolios,
the difference lies in interaction style, not schedule.
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(2) Composition. Background differences between the survey-donor subset and the full
survey are small to moderate (see Table D.23). Profile models (plan, device, field, age)
help read who sits higher or lower on some components (for example, paid plans and
intensity), but they do not erase the prompt-form or breadth gaps. That is, who people
are explains little; how they describe use versus what logs observe remains the main source
of divergence.

7.1.1 How this study compares to prior work
Our main alignment is with validation studies that compare self-reports to digital traces.
Meta-analyses and recent smartphone work find that broad frequency/duration measures
tend to match logs more closely than fine-grained counts, while form and short, iterative
interactions are often under-reported in surveys [32, 60, 45]. In our data, this is exactly
what we see: Q7 Sessions/week, Q8 Sessions/day and Q9 Session length are broadly
similar across sources (a small weekly lift for survey donors), whereas Q11 Prompt length
and Q12 Task families show the largest gaps (paragraphs vs. one-liners; narrower vs.
broader portfolios).

On adoption and typical activities, our survey taxonomy mirrors what broad student
snapshots and early campus studies report. Student surveys emphasise writing/communi-
cation, language help and study support as recurring clusters [1, 4, 18, 24]. Large general
polls point in the same direction for adults and teens: usage rose steadily between 2023
and 2025 [9, 10]. In that context, our Q12 Task families and the observed mix (more
Writing on the survey side; more Coding and Language/translation in logs) fit the wider
picture: surveys foreground longer, production-like prompts and a few salient families;
logs surface many short, technical or interactive tasks.

For the workplace, landscape studies highlight rapid uptake with uneven patterns across
roles and sectors [12, 30, 19]. Our side-by-side view is consistent with that texture:
intensity (how much) aligns reasonably well, but form and portfolio (how and what)
vary—especially Coding and Language/translation—suggesting that brief, task-specific
uses are easy to miss in self-reports.

Methodologically, our donation-based, unpaired comparison follows recommended practice:
keep survey and trace cohorts independent, align frames so each survey item has a
like-for-like log analogue, and avoid one-to-one linkage for privacy [31, 47, 49, 14]. Relative
to many telemetry-only studies, we add profiles (plan, device, status, field) from the
survey; relative to survey-only studies, we add prompt-form and portfolio breadth from
logs. Read plainly: our study sits between the two traditions—surveys for “who” and
context; logs for “how” and “how widely”.

Limitations also match prior work. Donation cohorts are selective and small, so effects are
descriptive; subtask labels are informative about direction but less precise. Even so, the
main alignment (levels) and the main divergences (form and mix at Q11/Q12) replicate
the pattern others have documented in adjacent settings [32, 60].

7.2 Implications

This section translates the patterns above into concrete guidance for how to measure
everyday LLM use and what organisations should monitor or support. The advice follows
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directly from two stable findings: (i) levels of use align reasonably well between survey
and logs; (ii) the biggest gaps live in input form and portfolio breadth or mix. We keep
the focus practical and avoid restating results already shown.

7.2.1 Implications for measurement and method
Treat “use” as four separate facets—intensity, timing, input form and task portfolio—and
design survey items so each has a like-for-like log analogue. In this study, typical-day
sessions and minutes per session align closely across sources, and weekly frequency differs
only modestly (Hodges–Lehmann shift ≈ +2.5 sessions/week). Timing labels are also
similar when broad dayparts share one local time base. These patterns justify keeping
coarse, interpretable bands for frequency or duration and using the same bands when
deriving log indicators. In practice: pre-specify weekly or daily frames, a local time base
with a simple dominance rule for dayparts, and minute bands for sessions; mirror those
frames in the export. This preserves interpretability and makes distributional contrasts
straightforward.

The largest survey–log differences are categorical: survey donors gravitate to paragraph-
level inputs while logs show many more one-liners (Cramér’s V ≈ 0.65; Figure 6.6); log
donors also span more task families (median 4 vs. 2; Figure 6.7) with higher prevalence
of Coding and Language/translation. Instruments that only ask “how often?” will miss
these contrasts. In practice: include a prompt-length item with simple word-count bands
that the log side can reproduce; and a compact checklist of main task families scored as
multi-label, with portfolio breadth reported alongside prevalence.

“Usually” prompts respondents to name a few salient categories and longer, worked-out
inputs; logs surface short, iterative prompts that get under-reported. Two small wording
tweaks help: (i) anchor to a concrete horizon (“In the last 30 days, which of these have
you done at least five times?”) to align with log thresholds; (ii) allow a “Varies” option
but keep it distinct so it does not dilute ordered bands. Our log aggregation counted a
family for a donor only if it cleared n ≥ 5 and ≥ 10% of prompts—a conservative choice
that still yielded broader portfolios in logs, underscoring the need to counter salience in
surveys.

For free-text logs, we mapped prompts to the same task families respondents saw using a
small, fixed codebook and a hybrid router (embedding-based prototype matching with a
minimalist judge at boundaries). Family-level validation supports prevalence contrasts
(micro-F1 ≈ 0.63; Table 4.3); subtask labels are informative about direction but less
precise (micro-F1 ≈ 0.45–0.54). The implication is twofold: (i) keep the family space small
and public (prototypes in an appendix) so others can audit and reuse; (ii) treat subtask
differences as indicative unless supports are large. Publish thresholds and ambiguity rules
so replication is possible.

Small samples and skewed usage benefit from robust estimators (medians for skewed
numeric quantities; Wilson or Newcombe intervals for binomial shares; HL shifts for
location). Thresholds used for timing labels (one-third dominance), inactivity splits (30
minutes) and portfolio inclusion (share and count minima) are design choices; state them
up front and keep them identical across sources. Sensitivity checks can then verify that
qualitative conclusions do not hinge on a single setting.

Comparative analysis worked here without one-to-one linkage: we sized a survey-donor
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subset to the logs cohort and contrasted full distributions. This preserves anonymity
while still revealing where sources agree (levels, timing) and where they diverge (form,
portfolio). If linkage is not strictly necessary for the research aim, prefer unpaired and
distributional designs.

7.2.2 Implications for organisations
Dashboards that only track “active users” or “sessions” risk a false sense of alignment: our
study shows intensity aligns across sources, but the mode of interaction and the breadth
of use do not. If you monitor LLM use, add two shape indicators: (i) the distribution of
prompt-length bands and (ii) portfolio breadth (how many task families a person typically
uses). Expect a heavier mass of one-liners and a broader task mix in logs than you will
elicit from surveys; calibrate “healthy use” baselines accordingly.

Logs reveal many micro-tasks—quick translations, code explanations, vocabulary checks,
terse summaries—and more technical or interactive families than respondents list. Training
that only models long, polished prompts under-serves real behaviour. Teach short iterative
prompting, chaining (for example, search → draft → revise), and code or translation
“nudge” patterns alongside longer drafting. Inside families, emphasise the tilts we observe
(for example, language practice and drills; code explanation and tests) so materials match
everyday texture rather than idealised cases.

Because timing labels looked alike across cohorts on broad dayparts, “when” people use
the tool is a weak lever relative to “how” they use it. Plan enablement and support
independent of time-of-day variation; invest instead in shaping input form and portfolio
breadth where the biggest gaps—and opportunities—sit.

If you need richer telemetry, consider user-centric donation with platform-native exports,
tiered consent, data minimisation and no one-to-one linkage. Our funnel shows feasibility
(93 surveys; 51 reached the donation page; 24 uploaded logs; Figure 3.1), with conversion
depending on clear instructions and trust; analyses then proceed as unpaired, distributional
comparisons. This model balances utility and governance and is suitable for pilots in
education or the workplace.

When reporting usage to stakeholders, be explicit about what each indicator can and
cannot say. Family-level prevalence contrasts are well supported; subtask splits are
directional unless supports are large. Keep “Other” as a residual by design (not a
substantive category), and present effect sizes with intervals rather than single-point
claims.

7.3 Limitations and directions for future work

The design choices in this study were made to enable a clean, privacy-preserving comparison
between self-reports and logs. Those choices also define the limits of what we can claim.
We group these limits into four themes and pair each with concrete, feasible next steps.

(1) External validity and recruitment

Our evidence comes from a convenience sample recruited via an intranet post and Instagram
(S: N=93; Sdon and Llogs: n=24 each). The pool is male-leaning and younger (about
two-thirds aged 18–35), which reflects the reach of the channels (Figure 3.1; section 3.1).
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All contrasts are therefore descriptive rather than population estimates, and subgroup
models are read as associations, not causal effects (Chapters 3, 5, 6).

Future work. Broaden recruitment beyond networks to reduce skews and improve trans-
portability: mix university lists, professional associations, and opt-in panels with pre-set
quotas by age, role, and field; publish funnel metrics and composition alongside outcomes.
Where feasible, run parallel cohorts in different settings (for example, specific departments
or business units) and non-Western contexts to test whether the form or portfolio gaps
replicate. When quotas are impossible, use transparent post-stratification against neutral
benchmarks strictly for descriptive re-weighting, not for model-based inference.

(2) Privacy-preserving, unpaired design

Re-identification risk was reduced by design: via platform-native exports, data minimisa-
tion and no one-to-one linkage. The trade-off is that we cannot decompose within-person
survey–log differences (all comparisons are unpaired, distributional). This constraint is
deliberate and central to donor trust, but it limits what we can say about individual
recall-bias mechanisms or the stability of self-reports over time (Chapters 3–4).

Future work. Explore tightly governed, opt-in linkage variants that preserve the spirit
of this study: (i) a double-consent, short-lived join token administered inside a secure
enclave so raw identifiers never leave donor control; (ii) ephemeral, local joins that produce
only pre-agreed aggregates (for example, donor-level bands) before keys are destroyed;
and (iii) third-party safe-room audits in which an independent steward verifies the join
and releases only cell-count–protected outputs. Any such design would require additional
ethics review and explicit safeguards against the known risks of re-identification (hashing
̸= anonymity), but would enable within-person convergence tests that are out of scope
here.

(3) Measurement frames and task coding

Frames were aligned ex-ante (weekly or daily rates; dayparts; prompt-length bands;
multi-label task taxonomy) and thresholds were set for interpretability (for example,
Q12 family counted at n ≥ 5 and ≥ 10%; subtasks at n ≥ 3 and ≥ 10%; dominance
rules for timing and prompt-length). These are sensible design choices, but they are still
choices. Family-level labels validate well (micro-F1 ≈ 0.63), while subtask labels are
noisier (micro-F1 ≈ 0.45–0.54), so subtask contrasts are read as directional, not precise
(see Chapter 4, Table 4.3; see also the per-label panels in the appendices). The Other
category is a residual by design and exclusive on the log side, which affects its apparent
cohort difference (Chapter 4).

Future work. Two paths can sharpen fidelity without sacrificing transparency. First,
richer form features: add conversational texture (turn count per session, back-and-
forth depth), scaffolding markers (explain → try → revise sequences), and light tool-
use flags to complement word-count bands, so “one-liner” versus “paragraph” carries
interaction context. Second, codebook and threshold refinement: expand prototypes
with active learning (human review of uncertain prompts); replace hard minima with
Bayesian shrinkage at the donor level for rare but recurrent subtasks; and report label-wise
calibration plots alongside F1. Both improvements keep the pipeline auditable while
reducing boundary effects that can under- or over-state breadth.
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(4) Small n and temporal scope

The matched cohorts are small (24 vs. 24), and the donated horizons vary. We therefore
emphasised effect sizes with intervals, rank-based contrasts, and FDR control; several
numeric gaps centre near zero with wide CIs (for example, minutes/session), while
categorical gaps (prompt form; portfolio breadth) are large and consistent (HL shift
for Q7 Sessions/week ≈ +2.5 sessions/week; Cramér’s V ≈0.65 for Q11 Prompt length)
(Chapter 6). Cross-sectional timing also means we cannot separate seasonal or policy
effects from idiosyncratic behaviour.

Future work. Field a panel donation with two to four waves per donor to track within-
person stability of intensity, form and breadth; this allows random-effects models that
separate person-level differences from week-to-week variation. Pre-register a short list of
primary endpoints (for example, Q11 band share; Q12 breadth) to control multiplicity
upfront and retain the estimation-first stance. Where feasible, embed light natural
experiments (policy changes, training roll-outs) and measure coupled outcomes (perceived
productivity, quality, creativity) on the same frames to test how form and breadth travel
with perceived value in real tasks rather than constrained benchmarks.

Summary

The limits are tractable: broaden and diversify recruitment to improve transportability;
keep privacy by design while prototyping consented, enclave-based linkage for within-
person checks; enrich form features and calibrate the task pipeline to tighten prevalence
estimates; and add a panel structure to separate stable patterns from short-run noise.
Each step extends the present study without discarding the core commitments that made
it feasible: like-for-like frames, multi-label realism, and privacy-first governance.
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Conclusion
This thesis compared what people say they do with ChatGPT to what anonymised platform
exports show, using a donation-based design without linking individuals. Because the
cohorts are small and independent, we compare groups and report differences with
uncertainty rather than make population-wide claims.

SQ1. What dimensions structure self-reported use (intensity, study/work orientation,
breadth), and how do they relate to plans, devices, roles and fields?

The survey data show a clear usage core. Q7 Sessions/week, Q8 Sessions/day and Q9
Session length move together and also line up with Q11 Prompt length and the number
of Q12 Task families people select. On top of that core sit three readable components:
Intensity (how often/how long, with a shift from one-liners towards short paragraphs),
Study/Work orientation (a tilt rather than a volume knob), and Portfolio breadth (how
many task families a person ranges across). Crucially, breadth is not just intensity by
another name. Background factors (plan, device, field, age) play a smaller role—heavy and
light users appear in every profile—so later survey–log gaps are unlikely to be explained
by composition alone.

SQ2. To what extent do survey constructs correspond to log indicators on like-for-like
frames (rates, dayparts, prompt-length bands, task families)?

On “how much”, the two sources broadly agree. Weekly frequency is somewhat higher
among survey donors (about +2.5 sessions per week), while typical-day activity and
minutes per session look alike. Timing labels are also similar, so “when” people use the
tool is not the main difference. The clearest gap is form: survey donors report many more
short-paragraph prompts (about +54 percentage points), whereas the logs show many
more one-liners (about −42 points). Portfolios diverge too: logs span more task families
(median 4 vs. 2), especially Coding/programming and Language/translation. In short,
the survey captures “how much”; the logs add detail on “how” and “how widely”.

SQ3. Which components differ most between survey donors and logs donors, and which
survey subgroups sit higher or lower on those components?

Ranked by size, the biggest gaps are categorical: prompt form (paragraphs vs. one-liners),
prevalence of Coding and Language/translation, and overall portfolio breadth. Numeric
gaps are smaller (a modest weekly-frequency shift; other level metrics near zero). In
survey-only models, intensity is higher among paid plans; longer prompts are more common

53
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among younger and phone-first respondents; and selecting Coding or Language/translation
tracks field/role more than plan or device. These patterns help read the gaps but do not
explain them away.

Based on the findings of the three sub-questions, this thesis aimed to answer the following
overarching RQ:

How does ChatGPT usage in anonymised logs compare to what users report?

When both sources use the same frames, they largely agree on how much people use
ChatGPT, apart from a small weekly edge for survey donors. They diverge on how and
what: logs show many short, one-line, interactive or technical exchanges and a broader
mix of tasks; surveys emphasise paragraph-level prompts and a narrower portfolio. These
differences are not about timing or one simple subgroup—they reflect a real gap between
what people remember and what the logs record.

Implications and closing

For measurement, treat usage as multi-facet—intensity, timing, form and portfolio—and,
with small samples, report ranges rather than single numbers. Logs should complement,
not replace, surveys: donation-based exports sharpen form and breadth; surveys add
profiles and context. For governance and MOT practice, a privacy-by-design setup
(platform-native export, minimal data, no record linkage) makes responsible monitoring
feasible. Our convenience sample means results are descriptive, but using both lenses
together gives a practical way to see not just how much people use LLMs, but also how
and for what.
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A
Consent and Ethics Materials
Survey Consent

You are invited to participate in a research study by Quinten Voncken, a Master’s 
student at TU Delft, supervised by Dr. Savvas Zannettou. This study investigates 
how accurately users self-report their use of ChatGPT. Participation involves com-
pleting an anonymous online survey, taking approximately 2–5 minutes, about your 
usage frequency, tasks performed and attitudes toward ChatGPT. Your responses 
are anonymous, will be securely stored and your anonymous answers, with the 
answers of other respondents will be made publicly available at the end of the study. 
Participation is voluntary, and you can withdraw at any point without consequences. 
Proceeding with this survey indicates your consent to participate under these condi-
tions. For questions, contact Quinten Voncken or Dr. Savvas Zannettou.

Thank you and Data Donation Consent

Thank you for completing the survey. You now have the opportunity to voluntarily
donate your anonymised ChatGPT usage logs for further analysis and, if you choose
to do so, enter a lottery to win a €50 Bol.com gift card. Participation in this step is
completely optional and independent of your survey responses.

All submitted logs will be treated as personal data and handled in accordance
with the European GDPR. Before analysis, logs will be processed to ensure full
anonymization. We will not analyze or retain any personally identifiable information
contained in the logs. Only general usage characteristics such as frequency, types
of prompts and interaction patterns will be examined. The file is stored under a
random code only, so neither we nor your school / employer can trace it back to you
or to your survey responses. The anonymised data will be used solely for research
purposes, securely stored, and accessed only by the research team at TU Delft. Your
email address and raw log file will be permanently deleted at the end of the study
(October 2025).

By submitting your anonymised logs, you explicitly consent to their use in this
research under the conditions described. If you choose to participate and follow the
instructions on the next page to upload your logs, you will automatically be entered
into the lottery. The winner of the €50 Bol.com voucher will be randomly selected
and notified via email on 23 July 2025.
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If you have any questions or need more information, please contact Quinten Voncken  
or Dr. Savvas Zannettou.



B
Survey Instrument and Codebook

Part Question Answers

Part 1 Q1 - What is your gender? Woman
Man

Q2 - Which age group do you belong
to?

< 18

18–24
25–34
35–44
45+

Q3 - Which ChatGPT plan are you
currently on?

Free

Plus (20 euro)
Pro (200 euro)

Q4 - Which device do you use most
often to access ChatGPT?

Laptop / desktop

Smartphone
Mixed equally

Q5 - What best describes your current
status?

Student

Working
Both student and working
Other

Q6 - What best describes your main
field of study or work?

STEM (science, tech, engineering,
maths)
Business / economics
Humanities / social sciences
Creative arts / media
Prefer not to say
Other
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Part Question Answers

Part 2 ⋆ Q7 - How many separate ChatGPT
sessions did you have in the last 7
days?

0

1–2
3–5
6–10
More than 10

⋆ Q8 - On a typical day, how many
ChatGPT sessions do you start?

0

1
2–3
4–5
6 or more

⋆ Q9 - On average, how long does a
single ChatGPT session last?

Less than 5 minutes

5–15 minutes
15–30 minutes
30–60 minutes
More than 60 minutes

⋆ Q10 - When do you most often use
ChatGPT?

During work / study hours

Evenings
Anytime throughout the day

⋆ Q11 - How long are your typical
prompts?

One short sentence (≤ 20 words)

A short paragraph (21–60 words)
Multiple paragraphs (> 60 words)
Varies too much to say

Part 3 ⋆ ⋄ Q12 - What tasks do you usually
use ChatGPT? (multiple answers
possible)

Writing & professional
communication

Brainstorming & personal ideas /
fun
Coding / programming help
Language practice or translation
Study revision / exam prep
Other

⋆ ⋄ Q13 - If you chose “Writing &
professional communication”, which
sub-tasks do you use ChatGPT for?

Outlining ideas or slides

Drafting full text



B Survey Instrument and Codebook 65

Part Question Answers

Proof-reading / tone adjustment
Summarising sources or meeting
notes
Adjusting style for different
audiences
I did not choose “Writing &
professional communication”
Other

⋆ ⋄ Q14 - If you chose “Brainstorming
& personal ideas / fun”, what kinds of
prompts do you ask ChatGPT for?

Academic or research topics

Business or marketing concepts
Creative role-play, jokes, stories
Hypothetical “what-if” scenarios
Recommendations (books, movies,
music)
Trivia & general knowledge
I did not choose “Brainstorming &
personal ideas / fun”
Other

⋆ ⋄ Q15 - If you chose “Coding /
programming help”, what coding
sub-tasks do you use ChatGPT for?

Generating new code snippets

Debugging existing code
Explaining code / concepts
Converting code between languages
Writing unit tests
I did not choose “Coding /
programming help”
Other

⋆ ⋄ Q16 - If you chose “Language
practice or translation”, what do you
mainly use ChatGPT for?

Translating full texts between
languages

Improving grammar or style in a
target language
Vocabulary drills or word lists
Conversational practice / dialogue
role-play
Pronunciation or phonetic guidance
I did not choose “Language practice
or translation”
Other
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Part Question Answers

⋆ ⋄ Q17 - If you chose “Study revision
/ exam prep”, which study tasks do
you use ChatGPT for?

Summarising lecture notes or
readings

Generating practice questions or
quizzes
Explaining difficult concepts in
simple terms
Reviewing flashcards / key terms
I did not choose “Study revision /
exam prep”
Other

Q18 - In the last month, what share of
your total ChatGPT sessions were for
study or work tasks?

0%

1–25%
26–50%
51–75%
76–100%

Q19 - How important is ChatGPT for
completing your study or work tasks?

Extremely important

Somewhat important
Neutral
Somewhat not important
Not important at all

Q20 - If ChatGPT became paid-only
tomorrow, would you still use it?

Yes, definitely

Yes, if the price is low
Not sure
Probably not
Definitely not

Notes. ⋆ = compared with log-derived analogues in the analyses (Q7–Q17). ⋄ = multiple
answers allowed (Q12–Q17).



C
Reproducibility and Code Structure
Repository

All analysis and generation scripts are available at: github.com/QV25/thesis-repo. The
reproducibility repository contains only the source code required to regenerate analyses
and figures. Top-level helpers and all files in scripts/ are tracked; data, caches, logs and
exports are intentionally ignored. See the README for environment setup and script
entry points. And the repository map shown below.
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Table C.1: Prototypes

Family / Label Prototype phrases

Q12 Main tasks
Writing & professional
communication

Writing an email, report or other professional text

Brainstorming & personal ideas –
fun

Brainstorming ideas or asking fun creative questions

Coding – programming help Getting help with coding or programming
Language practice or translation Practising a foreign language or translating text
Study revision – exam prep Studying, revising or preparing for an exam
Other Any other kind of task
Q13 Writing subtasks
Outline Creating an outline for a presentation or slide deck
Draft Drafting a complete email, letter or report for me
Proof-read / tone Proof-reading my text and correcting tone or grammar
Summarise Summarising articles, sources or meeting notes
Rewrite for audience Rewriting the same text for different audiences
Other / no-choice Any other use, or I did not choose Writing & professional

communication
Q14 Brainstorming subtasks
Academic ideas Brainstorming academic or research ideas and paper topics
Business / product / marketing Brainstorming business plans, product or marketing concepts
Creative role-play / jokes / stories Creative role-play, jokes or storytelling with ChatGPT
Hypotheticals Asking hypothetical what-if or alternate reality questions
Recommendations Requesting recommendations for books, movies or music
Trivia Asking trivia or general knowledge questions for fun
Other / no-choice Any other use, or I did not choose Brainstorming & personal

ideas
Q15 Coding subtasks
Generate code Generate fresh code snippets or function templates for me
Debug Debug my existing code and fix errors
Explain Explain what a piece of code does or clarify a concept
Convert Convert code from one programming language to another
Unit tests Write sample unit tests for my functions
Other / no-choice Any other use, or I did not choose Coding / programming help
Q16 Language / translation
subtasks
Translate Translate an entire paragraph or document from one language

into another
Improve style Improve my grammar or writing style in the target language
Vocabulary Give me vocabulary drills or word lists to study
Role-play Do a conversational role-play so I can practise dialogue
Pronunciation Help with pronunciation or phonetic transcription
Other / no-choice Any other use, or I did not choose Language practice or

translation
Q17 Study / exam subtasks
Summarise notes Summarise my lecture notes or textbook chapter concisely
Practice questions Generate practice questions or quizzes for my exam
Explain concept Explain a difficult concept to me in simple terms
Mnemonics Create mnemonics or other memory aids for key facts
Flashcards Help me review flashcards or key terms for the test
Other / no-choice Any other use, or I did not choose Study revision / exam prep
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Figure C.1: GitHub repository map



D
Tables for Chapters 6 and 7
This appendix collects all tables referenced in Chapters 6 and 7. Each input file defines
its own caption and label, so cross-references from the main text resolve to the entries
listed here.

D.1 §6 Results

Table D.1: Q12 co-selection (Jaccard index)

(n) Category 1 2 3 4 5

1) q12_writing_and_professional_communication 1.000 0.506 0.273 0.343 0.059
2) q12_brainstorming_and_personal_ideas_fun 0.506 1.000 0.233 0.250 0.088
3) q12_coding_programming_help 0.273 0.233 1.000 0.333 0.111
4) q12_language_practice_or_translation 0.343 0.250 0.333 1.000 0.091
5) q12_other 0.059 0.088 0.111 0.091 1.000

Table D.3: SQ1 component loadings (oblimin rotation) and communalities.

Dim1 Dim2 Dim3

usage_index_survey 0.18 -0.60 0.08
Q11_score -0.55 -0.01 0.22
task_breadth_main 0.13 -0.14 -0.64
subtask_breadth_wri -0.39 -0.27 -0.40
subtask_breadth_bra -0.13 -0.64 -0.11
subtask_breadth_cod -0.46 0.18 -0.19
subtask_breadth_lan 0.01 0.33 -0.55
Q18_mid -0.51 -0.02 0.12

70
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Table D.4: Association matrix (absolute ρ, V , and η).

(n)
V

ariab
ele

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25

1)
Q

7_
m

id
1
.000

0
.924

0
.888

0
.783

0
.929

0
.913

0
.963

0
.867

0
.889

0
.888

0
.918

0
.952

0
.537

0
.323

0
.267

0
.444

0
.227

0
.240

0
.222

0
.158

0
.188

0
.192

0
.410

0
.051

0
.136

2)
Q

8_
m

id
0
.924

1
.000

0
.893

0
.771

0
.902

0
.909

0
.935

0
.940

0
.933

0
.854

0
.933

0
.885

0
.490

0
.140

0
.283

0
.315

0
.242

0
.138

0
.138

0
.143

0
.145

0
.145

0
.281

0
.037

0
.056

3)
Q

9_
m

id
0
.888

0
.893

1
.000

0
.858

0
.883

0
.924

0
.959

0
.955

0
.873

0
.912

0
.944

0
.886

0
.360

0
.331

0
.449

0
.296

0
.322

0
.027

0
.063

0
.281

0
.104

0
.000

0
.253

0
.031

0
.017

4)
Q

11_
score

0
.783

0
.771

0
.858

1
.000

0
.804

0
.882

0
.797

0
.816

0
.958

0
.855

0
.808

0
.858

0
.224

0
.133

0
.316

0
.240

0
.258

0
.015

0
.364

1
.000

0
.094

0
.039

0
.091

0
.156

0
.089

5)
task_

breadth_
m

ain
0
.929

0
.902

0
.883

0
.804

1
.000

0
.921

0
.885

0
.879

0
.864

0
.921

0
.891

0
.932

0
.434

0
.413

0
.376

0
.463

0
.378

0
.354

0
.479

0
.499

0
.538

0
.490

0
.643

0
.600

0
.203

6)
subtask_

breadth_
w

ri
0
.913

0
.909

0
.924

0
.882

0
.921

1
.000

0
.911

0
.951

0
.903

0
.857

0
.909

0
.917

0
.428

0
.326

0
.191

0
.265

0
.206

0
.096

0
.064

0
.471

0
.000

0
.195

0
.247

0
.123

0
.039

7)
subtask_

breadth_
bra

0
.963

0
.935

0
.959

0
.797

0
.885

0
.911

1
.000

0
.942

0
.843

0
.857

0
.938

0
.931

0
.265

0
.263

0
.176

0
.315

0
.234

0
.160

0
.236

0
.259

0
.050

0
.000

0
.149

0
.103

0
.066

8)
subtask_

breadth_
cod

0
.867

0
.940

0
.955

0
.816

0
.879

0
.951

0
.942

1
.000

0
.925

0
.917

0
.939

0
.862

0
.405

0
.199

0
.087

0
.320

0
.428

0
.295

0
.052

0
.398

0
.248

0
.101

0
.000

0
.021

0
.146

9)
subtask_

breadth_
lan

0
.889

0
.933

0
.873

0
.958

0
.864

0
.903

0
.843

0
.925

1
.000

0
.774

0
.884

0
.816

0
.272

0
.599

0
.157

0
.360

0
.482

0
.312

0
.346

0
.286

0
.194

0
.522

0
.425

0
.000

0
.013

10)
subtask_

breadth_
stu

0
.888

0
.854

0
.912

0
.855

0
.921

0
.857

0
.857

0
.917

0
.774

1
.000

0
.823

0
.895

0
.049

0
.405

0
.435

0
.444

0
.127

0
.253

0
.056

0
.537

0
.474

0
.026

0
.105

0
.222

0
.053

11)
usage_

index_
survey

0
.918

0
.933

0
.944

0
.808

0
.891

0
.909

0
.938

0
.939

0
.884

0
.823

1
.000

0
.883

0
.134

0
.067

0
.128

0
.432

0
.112

0
.098

0
.073

0
.070

0
.082

0
.035

0
.011

0
.132

0
.017

12)
Q

18_
m

id
0
.952

0
.885

0
.886

0
.858

0
.932

0
.917

0
.931

0
.862

0
.816

0
.895

0
.883

1
.000

0
.250

0
.333

0
.352

0
.243

0
.238

0
.013

0
.385

0
.316

0
.225

0
.274

0
.121

0
.044

0
.154

13)
Q

3
0
.537

0
.490

0
.360

0
.224

0
.434

0
.428

0
.265

0
.405

0
.272

0
.049

0
.134

0
.250

1
.000

0
.597

0
.590

0
.634

0
.599

0
.713

0
.436

0
.464

0
.341

0
.264

0
.297

0
.186

0
.229

14)
Q

4
0
.323

0
.140

0
.331

0
.133

0
.413

0
.326

0
.263

0
.199

0
.599

0
.405

0
.067

0
.333

0
.597

1
.000

0
.610

0
.627

0
.588

0
.713

0
.473

0
.474

0
.359

0
.250

0
.251

0
.151

0
.135

15)
Q

5
0
.267

0
.283

0
.449

0
.316

0
.376

0
.191

0
.176

0
.087

0
.157

0
.435

0
.128

0
.352

0
.590

0
.610

1
.000

0
.547

0
.636

0
.726

0
.458

0
.411

0
.413

0
.286

0
.230

0
.236

0
.091

16)
Q

6
0
.444

0
.315

0
.296

0
.240

0
.463

0
.265

0
.315

0
.320

0
.360

0
.444

0
.432

0
.243

0
.634

0
.627

0
.547

1
.000

0
.490

0
.759

0
.489

0
.404

0
.381

0
.364

0
.493

0
.228

0
.254

17)
Q

2
0
.227

0
.242

0
.322

0
.258

0
.378

0
.206

0
.234

0
.428

0
.482

0
.127

0
.112

0
.238

0
.599

0
.588

0
.636

0
.490

1
.000

0
.716

0
.490

0
.407

0
.373

0
.303

0
.262

0
.273

0
.234

18)
Q

1
0
.240

0
.138

0
.027

0
.015

0
.354

0
.096

0
.160

0
.295

0
.312

0
.253

0
.098

0
.013

0
.713

0
.713

0
.726

0
.759

0
.716

1
.000

0
.533

0
.558

0
.313

0
.268

0
.187

0
.157

0
.096

19)
Q

10
0
.222

0
.138

0
.063

0
.364

0
.479

0
.064

0
.236

0
.052

0
.346

0
.056

0
.073

0
.385

0
.436

0
.473

0
.458

0
.489

0
.490

0
.533

1
.000

0
.615

0
.426

0
.343

0
.189

0
.184

0
.116

20)
Q

11_
band

0
.158

0
.143

0
.281

1
.000

0
.499

0
.471

0
.259

0
.398

0
.286

0
.537

0
.070

0
.316

0
.464

0
.474

0
.411

0
.404

0
.407

0
.558

0
.615

1
.000

0
.446

0
.341

0
.379

0
.343

0
.128

21)
q12_

w
riting_

and
professional_

com
m

unication
0
.188

0
.145

0
.104

0
.094

0
.538

0
.000

0
.050

0
.248

0
.194

0
.474

0
.082

0
.225

0
.341

0
.359

0
.413

0
.381

0
.373

0
.313

0
.426

0
.446

1
.000

0
.144

0
.208

0
.239

0
.163

22)
q12_

brainstorm
ing_

and
personal_

ideas_
fun

0
.192

0
.145

0
.000

0
.039

0
.490

0
.195

0
.000

0
.101

0
.522

0
.026

0
.035

0
.274

0
.264

0
.250

0
.286

0
.364

0
.303

0
.268

0
.343

0
.341

0
.144

1
.000

0
.106

0
.029

0
.009

23)
q12_

coding_
program

m
ing_

help
0
.410

0
.281

0
.253

0
.091

0
.643

0
.247

0
.149

0
.000

0
.425

0
.105

0
.011

0
.121

0
.297

0
.251

0
.230

0
.493

0
.262

0
.187

0
.189

0
.379

0
.208

0
.106

1
.000

0
.334

0
.084

24)
q12_

language_
practice_

or
translation

0
.051

0
.037

0
.031

0
.156

0
.600

0
.123

0
.103

0
.021

0
.000

0
.222

0
.132

0
.044

0
.186

0
.151

0
.236

0
.228

0
.273

0
.157

0
.184

0
.343

0
.239

0
.029

0
.334

1
.000

0
.031

25)
q12_

other
0
.136

0
.056

0
.017

0
.089

0
.203

0
.039

0
.066

0
.146

0
.013

0
.053

0
.017

0
.154

0
.229

0
.135

0
.091

0
.254

0
.234

0
.096

0
.116

0
.128

0
.163

0
.009

0
.084

0
.031

1
.000
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Table D.6: SQ1 OLS models — Dimension 1.

Term Estimate [95% CI] Partial R$^2$

const -0.20 [-0.20, -0.20] 1.000
Q3 (Plan): Free 0.42 [0.03, 0.81] 0.056
Q3 (Plan): Plus (20 euro) -0.19 [-0.61, 0.23] 0.011
Q3 (Plan): Pro (200 euro) 0.17 [-0.37, 0.72] 0.005
Q4 (Device): Laptop / desktop -0.09 [-0.50, 0.31] 0.003
Q4 (Device): Mixed equally 0.12 [-0.42, 0.66] 0.003
Q4 (Device): Smartphone 0.37 [-0.12, 0.85] 0.029
Q5 (Status): Both student and working -0.15 [-0.99, 0.70] 0.002
Q5 (Status): Other 0.54 [-1.13, 2.22] 0.005
Q5 (Status): Student 0.01 [-0.78, 0.80] 0.000
Q5 (Status): Working -0.01 [-0.61, 0.60] 0.000
Q6 (Field): Business / economics 0.08 [-0.70, 0.86] 0.001
Q6 (Field): Creative arts / media 0.70 [-0.24, 1.64] 0.028
Q6 (Field): Humanities / social sciences -0.25 [-1.12, 0.63] 0.004
Q6 (Field): Other -0.66 [-1.55, 0.22] 0.029
Q6 (Field): Prefer not to say 0.56 [-3.07, 4.19] 0.001
Q6 (Field): STEM (science, tech, engineering, maths) -0.03 [-0.85, 0.79] 0.000
Q2 (Age): 18-24 -0.28 [-1.27, 0.71] 0.004
Q2 (Age): 25-34 -0.24 [-1.22, 0.75] 0.003
Q2 (Age): 35-44 -0.39 [-1.42, 0.63] 0.008
Q2 (Age): 45+ 0.30 [-0.88, 1.47] 0.003
Q2 (Age): <18 1.01 [-3.03, 5.05] 0.003
Q1 (Gender): Man 0.20 [-0.24, 0.64] 0.010
Q1 (Gender): Woman 0.20 [-0.27, 0.67] 0.009
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Table D.7: SQ1 OLS models — Dimension 2.

Term Estimate [95% CI] Partial R$^2$

const 0.24 [0.24, 0.24] 1.000
Q3 (Plan): Free 0.19 [-0.17, 0.55] 0.014
Q3 (Plan): Plus (20 euro) -0.32 [-0.75, 0.10] 0.030
Q3 (Plan): Pro (200 euro) -0.24 [-0.83, 0.34] 0.009
Q4 (Device): Laptop / desktop -0.47 [-0.82, -0.13] 0.089
Q4 (Device): Mixed equally 0.33 [-0.33, 0.99] 0.013
Q4 (Device): Smartphone -0.24 [-0.70, 0.23] 0.013
Q5 (Status): Both student and working -0.39 [-1.23, 0.45] 0.011
Q5 (Status): Other 0.05 [-1.51, 1.61] 0.000
Q5 (Status): Student -0.23 [-0.84, 0.37] 0.008
Q5 (Status): Working 0.19 [-0.42, 0.80] 0.005
Q6 (Field): Business / economics 0.36 [-0.15, 0.86] 0.025
Q6 (Field): Creative arts / media 0.13 [-0.53, 0.80] 0.002
Q6 (Field): Humanities / social sciences 0.93 [0.25, 1.60] 0.089
Q6 (Field): Other 0.13 [-0.35, 0.62] 0.004
Q6 (Field): Prefer not to say -2.15 [-3.30, -1.01] 0.156
Q6 (Field): STEM (science, tech, engineering, maths) 0.22 [-0.33, 0.78] 0.008
Q2 (Age): 18-24 0.18 [-0.29, 0.65] 0.008
Q2 (Age): 25-34 -0.00 [-0.57, 0.56] 0.000
Q2 (Age): 35-44 -0.66 [-1.46, 0.14] 0.034
Q2 (Age): 45+ -0.21 [-0.99, 0.57] 0.004
Q2 (Age): <18 0.31 [-1.24, 1.87] 0.002
Q1 (Gender): Man -0.22 [-0.54, 0.11] 0.023
Q1 (Gender): Woman -0.16 [-0.58, 0.26] 0.007
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Table D.8: SQ1 OLS models — Dimension 3.

Term Estimate [95% CI] Partial R$^2$

const 1.10 [1.10, 1.10] 1.000
Q3 (Plan): Free 0.11 [-0.20, 0.43] 0.006
Q3 (Plan): Plus (20 euro) -0.54 [-0.94, -0.13] 0.084
Q3 (Plan): Pro (200 euro) -0.29 [-0.69, 0.12] 0.025
Q4 (Device): Laptop / desktop -0.36 [-0.72, 0.01] 0.048
Q4 (Device): Mixed equally -0.22 [-1.02, 0.58] 0.004
Q4 (Device): Smartphone -0.14 [-0.58, 0.31] 0.005
Q5 (Status): Both student and working 0.06 [-0.55, 0.67] 0.001
Q5 (Status): Other -0.36 [-1.22, 0.51] 0.009
Q5 (Status): Student -0.19 [-0.71, 0.32] 0.007
Q5 (Status): Working -0.22 [-0.66, 0.21] 0.013
Q6 (Field): Business / economics -0.21 [-0.70, 0.28] 0.010
Q6 (Field): Creative arts / media -0.29 [-0.96, 0.38] 0.010
Q6 (Field): Humanities / social sciences 0.18 [-0.31, 0.67] 0.007
Q6 (Field): Other -0.07 [-0.43, 0.30] 0.002
Q6 (Field): Prefer not to say 0.25 [-0.31, 0.81] 0.010
Q6 (Field): STEM -0.57 [-1.11, -0.03] 0.055
Q2 (Age): 18-24 0.10 [-0.27, 0.47] 0.004
Q2 (Age): 25-34 -0.25 [-0.65, 0.15] 0.019
Q2 (Age): 35-44 0.05 [-0.58, 0.68] 0.000
Q2 (Age): 45+ 0.14 [-0.40, 0.69] 0.004
Q2 (Age): <18 -0.75 [-1.64, 0.14] 0.036
Q1 (Gender): Man -0.11 [-0.41, 0.19] 0.007
Q1 (Gender): Woman -0.60 [-0.96, -0.23] 0.123

Table D.9: Numeric contrasts: HL shifts, KS, Wasserstein, n and FDR.
component label effect l95 u95 p cliffs_delta ks w1 n_Sdon n_Llogs q_FDR

Q7_mid
Sessions per
week 2.500 0.000 4.000 0.940 0.262 0.208 1.688 24.000 24.000 0.940

Q8_mid
Sessions per
day 0.000 0.000 1.500 0.800 0.260 0.292 0.708 24.000 24.000 0.940

Q9_mid
Minutes per
session 0.000 −12.500 12.500 0.185 −0.042 0.458 10.506 24.000 14.000 0.370

usage_index
Usage index
(pooled z) 0.508 0.000 0.894 0.078 0.316 0.333 0.489 24.000 24.000 0.310

Table D.10: Q10 timing: shares (Wilson), ∆p (Newcombe), Cramér’s V , n, FDR.
category p_Sdon l_Sdon u_Sdon p_Llogs l_Llogs u_Llogs deltap l95 u95 p n_Sdon n_Llogs q_FDR cramers_V

During work /
study hours 0.625 0.427 0.788 0.708 0.508 0.851 −0.083 −0.424 0.280 0.540 24.000 24.000 0.810 0.093
Evenings 0.042 0.007 0.202 0.042 0.007 0.202 0.000 −0.195 0.195 1.000 24.000 24.000 1.000 0.093
Anytime throughout
the day 0.333 0.180 0.533 0.250 0.120 0.449 0.083 −0.269 0.413 0.525 24.000 24.000 0.810 0.093
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Table D.11: Q11 prompt length: shares and ∆p with FDR; table-level association.
category p_Sdon l_Sdon u_Sdon p_Llogs l_Llogs u_Llogs deltap l95 u95 p n_Sdon n_Llogs q_FDR cramers_V

One short sentence 0.250 0.120 0.449 0.667 0.467 0.820 −0.417 −0.700 −0.018 0.004 24.000 24.000 0.008 0.655
A short paragraph 0.583 0.388 0.755 0.042 0.007 0.202 0.542 0.186 0.748 0.000 24.000 24.000 0.000 0.655
Multiple paragraphs 0.083 0.023 0.258 0.000 0.000 0.138 0.083 −0.115 0.258 0.149 24.000 24.000 0.149 0.655
Varies too much
to say 0.083 0.023 0.258 0.292 0.149 0.492 −0.208 −0.469 0.109 0.064 24.000 24.000 0.086 0.655

Table D.12: Q11 linear-by-linear trend (logit slope with 95% CI).

coef l95 u95 n

3.628822 1.405095 5.852548 39

Table D.14: Q12 family prevalence by cohort with ∆p and FDR.
family Sdon_p Sdon_l Sdon_u Llogs_p Llogs_l Llogs_u deltap l95 u95 p q_FDR

Q12: Writing &
communication 0.875 0.690 0.957 0.750 0.551 0.880 0.125 −0.190 0.406 0.267 0.334
Q12: Brainstorming /
fun 0.667 0.467 0.820 0.667 0.467 0.820 0.000 −0.353 0.353 1.000 1.000
Q12: Coding /
programming 0.250 0.120 0.449 0.625 0.427 0.788 −0.375 −0.668 0.022 0.009 0.015
Q12: Language /
translation 0.292 0.149 0.492 0.708 0.508 0.851 −0.417 −0.702 −0.017 0.004 0.010
Q12: Other 0.083 0.023 0.258 1.000 0.862 1.000 −0.917 −0.977 −0.604 0.000 0.000

Table D.15: Task-breadth by cohort: medians, HL shift, MWU, Cliff’s δ.

component median_Sdon median_Llogs HL l95 u95 p cliffs_delta

Task breadth (Q12 families) 2.0 4.0 -2.0 -2.0 -2.0 0.000002 -0.71875

Table D.17: Task-pattern alignment: Spearman ρ (95% CI) and Hellinger distance.

Table D.18: T6 7 pattern ci

spearman_rho l95 u95 hellinger

-0.1 -1.0 1.0 0.585734
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Table D.19: Survey-only model for usage index (OLS, HC3).

Term Std. beta HC3 s.e.

const -0.053 0.089
Q3_Plus 0.517 0.116
Q3_Pro 0.276 0.086
Q4_Mixed equally -0.024 0.123
Q4_Smartphone -0.057 0.095
Q5_Both student and working 0.240 0.132
Q5_Other -0.070 0.099
Q5_Student 0.085 0.147
Q6_Business / economics -0.094 0.140
Q6_Creative arts / media 0.067 0.124
Q6_Humanities / social sciences -0.139 0.112
Q6_Other -0.180 0.121
Q6_Prefer not to say -0.007 0.042
Q2_18–24 -0.102 0.101
Q2_18–24 (alt) 0.011 0.019
Q2_25–34 0.126 0.069
Q2_35–44 0.023 0.058
Q2_45+ -0.048 0.069
Q2_<18 -0.065 0.043
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Table D.20: Ordered/logit model for Q11 “A short paragraph”.

Term Std. beta (LPM) HC3 s.e.

const -0.000 0.111
Q3_Plus 0.052 0.139
Q3_Pro -0.084 0.128
Q4_Mixed equally 0.072 0.142
Q4_Smartphone 0.252 0.146
Q5_Both student and working 0.037 0.149
Q5_Other -0.340 0.155
Q5_Student -0.173 0.194
Q6_Business / economics 0.003 0.156
Q6_Creative arts / media -0.106 0.150
Q6_Humanities / social sciences -0.019 0.128
Q6_Other 0.081 0.158
Q6_Prefer not to say -0.185 0.049
Q2_18–24 0.154 0.137
Q2_18–24 0.062 0.140
Q2_25–34 -0.007 0.094
Q2_35–44 -0.133 0.098
Q2_45+ -0.052 0.132
Q2_<18 -0.184 0.060
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Table D.21: Logit model for Q12 Coding/programming (selected vs not).

Term Std. beta (LPM) HC3 s.e.

const 0.000 0.099
Q3_Plus 0.199 0.127
Q3_Pro 0.052 0.112
Q4_Mixed equally -0.111 0.136
Q4_Smartphone -0.054 0.106
Q5_Both student and working 0.144 0.126
Q5_Other 0.081 0.084
Q5_Student 0.079 0.161
Q6_Business / economics -0.363 0.160
Q6_Creative arts / media -0.144 0.153
Q6_Humanities / social sciences -0.412 0.101
Q6_Other -0.424 0.119
Q6_Prefer not to say -0.080 0.043
Q2_18–24 -0.042 0.092
Q2_18–24 -0.045 0.083
Q2_25–34 0.126 0.075
Q2_35–44 -0.081 0.072
Q2_45+ -0.009 0.067
Q2_<18 -0.020 0.043
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Table D.22: Logit model for Q12 Language/translation (selected vs not).

Term Std. beta (LPM) HC3 s.e.

const 0.000 0.117
Q3_Plus 0.080 0.142
Q3_Pro -0.045 0.141
Q4_Mixed equally -0.043 0.133
Q4_Smartphone -0.073 0.144
Q5_Both student and working -0.194 0.164
Q5_Other 0.118 0.317
Q5_Student -0.208 0.210
Q6_Business / economics -0.034 0.166
Q6_Creative arts / media -0.111 0.138
Q6_Humanities / social sciences 0.073 0.153
Q6_Other -0.182 0.167
Q6_Prefer not to say -0.075 0.054
Q2_18–24 -0.003 0.153
Q2_18–24 -0.186 0.261
Q2_25–34 0.102 0.103
Q2_35–44 -0.042 0.111
Q2_45+ 0.003 0.121
Q2_<18 0.032 0.059

Table D.23: Representativeness: Sdon vs Survey full (Cramér’s V by item).

Table D.24: T6 A repr V

question cramers_V df n

Q1 0.111463 2 117
Q2 0.186162 5 117
Q3 0.169970 3 117
Q4 0.164008 3 117
Q5 0.180173 4 117
Q6 0.154392 6 117
Q18 0.210696 5 117
Q19 0.281875 5 117
Q20 0.292352 5 117

Table D.25: Sensitivity: alternative midpoints and episode-split checks.

Measure HLorig [95% CI] HLsens [95% CI] Stable?

Q7 (12→15) 2.50 [0.00, 4.00] 2.50 [0.00, 6.50] yes
Q8 (6→7) 0.00 [0.00, 1.50] 0.00 [0.00, 1.50] yes
Q9 (>60: 75→90) 0.00 [0.00, 22.50] 0.00 [0.00, 22.50] yes
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D.2 §7 Validation

Label TP FP FN Precision Recall F1 Support
WRI 8 2 5 0.80 0.62 0.70 13
BRA 3 10 0 0.23 1.00 0.38 3
COD 8 12 0 0.40 1.00 0.57 8
LAN 4 4 1 0.50 0.80 0.62 5
STU 15 1 12 0.94 0.56 0.70 27
OTH 25 8 20 0.76 0.56 0.64 45
Table D.26: Q12 per-label metrics. Codes per Table 4.4

Label TP FP FN Precision Recall F1 Support
WRI 2 8 0 0.20 1.00 0.33 2
BRA 3 11 6 0.21 0.33 0.26 9
COD 2 4 2 0.33 0.50 0.40 4
LAN 3 16 1 0.16 0.75 0.26 4
STU 5 11 0 0.31 1.00 0.48 5
OTH 34 1 42 0.97 0.45 0.61 76
Table D.27: Q13 per-label metrics. Codes per Table 4.4

Label TP FP FN Precision Recall F1 Support
WRI 4 4 2 0.50 0.67 0.57 6
BRA 1 12 2 0.08 0.33 0.13 3
COD 2 13 0 0.13 1.00 0.24 2
LAN 2 19 0 0.10 1.00 0.17 2
STU 1 2 0 0.33 1.00 0.50 1
OTH 32 4 47 0.89 0.41 0.56 79
TRI 3 1 5 0.75 0.38 0.50 8
Table D.28: Q14 per-label metrics. Codes per Table 4.4.

Label TP FP FN Precision Recall F1 Support
WRI 1 11 1 0.08 0.50 0.14 2
BRA 2 7 2 0.22 0.50 0.31 4
COD 3 21 1 0.13 0.75 0.21 4
LAN 1 3 0 0.25 1.00 0.40 1
STU 2 1 0 0.67 1.00 0.80 2
OTH 44 3 43 0.94 0.51 0.66 87
Table D.29: Q15 per-label metrics. Codes per Table 4.4.
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Label TP FP FN Precision Recall F1 Support
WRI 1 9 2 0.10 0.33 0.15 3
BRA 1 6 2 0.14 0.33 0.20 3
COD 2 11 0 0.15 1.00 0.27 2
LAN 2 21 0 0.09 1.00 0.16 2
STU 2 6 0 0.25 1.00 0.40 2
OTH 38 1 50 0.97 0.43 0.60 88
Table D.30: Q16 per-label metrics. Codes per Table 4.4.

Label TP FP FN Precision Recall F1 Support
WRI 3 13 0 0.19 1.00 0.32 3
BRA 2 11 0 0.15 1.00 0.27 2
COD 20 7 2 0.74 0.91 0.82 22
LAN 2 15 0 0.12 1.00 0.21 2
OTH 27 0 44 1.00 0.38 0.55 71
Table D.31: Q17 per-label metrics. Codes per Table 4.4.



E
Figures for Chapters 6 and 7
This appendix reproduces the figures referenced in Chapters 6 and 7. Each included file or
graphic provides its own caption and label; cross-references in the main text resolve here.

E.1 §6 Results

Figure E.1: Q13 (Writing) subtasks: ∆p with 95% CIs (gated).

82
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Figure E.2: Q14 (Brainstorming/fun) subtasks: ∆p with 95% CIs (gated).

Figure E.3: Q17 (Study/exam) subtasks: ∆p with 95% CIs (gated).
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E.2 §7 Validation
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Figure E.4: Q12 TP/FP/FN per label. Codes per Table 4.4.
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Figure E.5: Q13 per-label F1. Codes and label texts per Table 4.4.
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Figure E.6: Q13 TP/FP/FN per label. Codes per Table 4.4.
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Figure E.7: Q14 per-label F1. Codes and label texts per Table 4.4.
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Figure E.8: Q14 TP/FP/FN per label. Codes per Table 4.4.
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Figure E.9: Q15 per-label F1. Codes and label texts per Table 4.4.
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Figure E.10: Q15 TP/FP/FN per label. Codes per Table 4.4.
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Figure E.11: Q16 per-label F1. Codes and label texts per Table 4.4.
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Figure E.12: Q16 TP/FP/FN per label. Codes per Table 4.4.
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Figure E.13: Q17 TP/FP/FN per label. Codes per Table 4.4.



F
AI Use
This appendix documents, for transparency, how AI was used during the project. The
guiding principle was simple: AI acted as a helper, not a ghostwriter. No donated logs or
other sensitive materials were shared with third-party services. These choices align with
the study’s privacy-by-design protocol and donation workflow described in Chapters 3–4.

1. Coding partner: Used as a reviewer to check scripts, surface bugs and edge cases
and suggest clearer or more efficient implementations. Suggestions were tested and
kept only when they improved correctness or clarity; final code was written and
validated manually.

2. Source cross-checks: After sources were first located and read, the assistant
produced short bullet-point summaries and answered whether each source fit the
intended use (measurement design, small-n estimation, privacy practice). Inclusion,
phrasing and all citations relied on the source texts; any AI summaries were treated
as a second opinion.

3. Structure & wording: Near submission, the assistant flagged unclear or repeti-
tive sentences and proposed line-level edits. No sections were replaced wholesale;
suggestions were reviewed and adapted to keep tone and meaning consistent with
the rest of the thesis.

4. Final consistency sweep: The assistant checked for consistency across chapters
(terminology, numbers, units, thresholds, figure/table references) and for general
readability. Where it flagged mismatches, the text was harmonised manually;
substantive claims and statistics were not altered.

In short, AI functioned as a careful reviewer of code and text. Ownership is taken for all
analysis decisions, interpretations, final wording and any errors.
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