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Different Parameterizations of the Initial
Ensemble for a Channelized Reservoir in an
Assisted History Matching Context

B. Sebacher (Delft University of Technology), A.S. Stordal (IRIS) & R.G.
Hanea* (Statoil)

SUMMARY

In this paper we present a comparison of three parameterizations of channelized reservoirs generated using
multipoint geostatistics (MPS) in combination with a training image. In a previous study, we suggested
estimating the facies probability fields from an ensemble generated with MPS and linked, marginally, the
facies probability fields with the standard Gaussian variables by means of the normal score transform. We
have parameterized the facies fields with random fields, marginally Gaussian, using the conditional mean
of the Gaussian variables. This parameterization keeps a possible dependence structure inherited from the
training image, but marginally the sampling from the Gaussian distribution is discrete and bi-modal. Here,
we extend this parameterization in two directions. First, we do not take into account the dependence
structure and parameterize by random sampling from the conditional distribution. The second idea is to
draw samples from the conditional distribution, but using the same random seed for each grid cell within
each ensemble member, but different random seeds across the ensemble members. This would preserve the
dependence structure within each ensemble member while increasing the variability between the ensemble
members. Both parameterizations have the property that, marginally, samples correctly from the standard
Gaussian distribution. We compare the behavior of the parameterizations within a history matching
process assimilating the production data. The comparison has two main directions: to prove the impact of
the stochastic forcing on the history matching of geological properties and to prove the stochastic forcing
on the predictive power of the models. We have used the iterative adaptive Gaussian mixture filter
(IAGM) for history matching because the IAGM is suited for highly nonlinear problems and has a re-
sampling step that allow us to use the already existing technique of re-sampling from the training image
using updated probability fields. The re-sampling step is necessary to re-position the facies geometry, lost
after a cycle of data assimilation.

ECMOR XV - 15" European Conference on the Mathematics of Oil Recovery
29 August — 1 September 2016, Amsterdam, Netherlands



EAGE ECMOR XV

Introduction

The estimation of two facies channelized reservoirs conditioned to production data is a problem that
was extensively studied in the reservoir engineering community. This problem poses difficulties from
beginning when a reliable geological simulation model has to be chosen in order to simulate facies fields
that exhibits channelized geometry. It is well known that the truncated Gaussian simulation model fails
in this matter and, until now, two geological simulation models have been proved as suitable to sim-
ulate channelized reservoirs: the multi-point geostatistical simulation (MPS, Caers and Zhang (2004))
models and the object based simulation models (Deutsch and Wang, 1996). Once the geological sim-
ulation model is chosen, there are two options to estimate the position of the channels conditioned to
production data: either the distribution of the permeability (or a parametrization of it) is estimated and
afterwards, if necessary, the channel positions is inferred from it or a parametrization of the facies fields
is defined, which permits the estimation of the channels directly. From the first category, (Sarma et al.,
2008) proposed a method to project the permeability field into a multi-dimensional kernel space using
the kernel-principal component analysis (K-PCA) and performing the parameterization in this space.
The model parameters from the kernel space were coupled with the ensemble Kalman filter (Evensen,
2003) for history matching of the production data. Jafarpour and McLaughlin (2008) parameterize the
permeability field using a basis obtained by applying of the discrete cosine transform (DCT) and the
parameters that are updated in the EnKF framework are the coefficients of the DCT transformation. In
Zhang et al. (2015) the permeability field is estimated from the production data using an iterative en-
semble smoother and afterward it is projected onto a facies field using a post-processing technique. In
Jafarpour and Khodabakhshi (2011) the authors proposed the probability conditioning method (PCM)
in which a probability field of the channel is inferred from the estimated permeability field and, is fur-
ther used to condition the MPS algorithm to it. As consequence, the updated channelized reservoir is
obtained by a random sampling from a training image conditioned to the previous probability field. In
Zhou et al. (2012) the authors have used the normal score transformation to project marginally the per-
meability field onto a standard Gaussian space where the ENKF is performed. The permeability field is
re-constructed based on the inverse of the normal score transformation.

For the second category, in order to estimate the channel position, a parametrization of the facies fields
must be defined first. In Lorentzen et al. (2012) the authors propose a parameterization of the facies
fields using the distance from the current cell to the border of the channel. If the cell is inside of the
channel the distance function is positive and if the cell is outside, the distance is negative. The distance
function is further updated within an EnKF process, assimilating production data and conditioned to
some statistical measures in order to keep the continuity of the channel bodies. In Hu et al. (2013) the
parametrization is performed not on the facies fields but using a parameter inside of the MPS method.
The authors considered the uniform numbers that helps the simulation of the facies field at each grid cell
as the parameters to be updated in an EnKF process by assimilation of the production data. The princi-
pal component analysis (PCA) is also used to parameterize channelized reservoirs. In Vo and Durlofsky
(2015) the authors implemented an optimization-PCA method to deal with non-Gaussian complex mod-
els in combination with the randomized maximum likelihood (RML) method.

In this study we are situated in the second category using as the geological simulation model the MPS
in combination with a two-facies channelized training image. In Sebacher et al. (2015) and Sebacher
et al. (2016) we introduced a parametrization bridging the MPS with the truncated Gaussian simulation
model. The parameterization consist of defining of some random fields, marginally Gaussian, of which
truncation with reliable thresholds simulate the same facies fields with those previously obtained from
the training image with the MPS. Here we propose two parameterizations which are based on the same
idea, but the random fields are constructed different. If in Sebacher et al. (2015), the marginally Gaus-
sian random fields were defined by the means of the conditional mean of a standard normal variable,
here we follow two directions: the first idea is to random sample from the conditional distribution using
different random seeds for each grid cell within each ensemble member and the second idea is to random
sample from the conditional distribution using constant random seed for the grid cells of an ensemble
member but different seeds across ensemble members. We compare these parameterizations within an
assisted history matching (AHM) process using the iterative adaptive Gaussian mixture filter (IAGM,
Stordal and Lorentzen (2014)), assimilating production data. The comparison has two main directions:
to quantify the impact of the stochastic forcing on the history matching of geological properties and to
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prove the stochastic forcing on the predictive power of the nsodéde use of the IAGM is suitable here
because the IAGM works well for highly nonlinear problems and has a re-sampling step which allows
us to use the technique of re-sampling with MPS from the training image conditioned to the updated
probability fields (Krishnan et al., 2005). The re-sampling is necessary because after an assimilation cy-
cle the channelized geometry may be broken and the re-sampling is repositioning the channel structure
in the field.

In the next sections we introduce the parameterizations, present the IAGM with its customized imple-
mentation for our problem and a case study where we perform the comparison. The papers ends with
the conclusions.

The parameterizations

The geological simulation model used for generation of the initial ensembles is the single normal equa-
tion simulation model (SNESIM, Strebelle (2002)) of which training image that represents the geological
concept of channelized reservoir is presented in Figure 1. In this section we start by presenting the pa-
rameterization proposed in Sebacher et al. (2015) and based on this idea we extend it in two directions.
Consider an ensemble of channelized reservoirs, simulated with SNESIM from the training image us-

Figure 1 Thetraining image.

ing asconstraintonly the globalfaciesproportionson a squaredeservoirdomainwith 100x 100grid
cells. We calculatefrom this ensemblghe probabilityfield of the channebccurrencéFigure 2) which
marginally meansthe calculationof a value p! representinghe probability that the channeloccursin
thegrid cell j of thereservoirdomain.

Figure 2 The probabilityfield of the channel.

At the grid cellj we consider the discrete random variable, dendtades distribution of which distri-
bution can be described as in eq. 1.

(1)

facies distribution ~ ( Channel Non- channel>

o’ 1-p
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The idea is to link this discrete random variable with a stashdeormal variable and the easiest way
is by the means of the normal score transform. Consequently, we calculate the cumulative distribution
of this random variable and we define the threshwldn the Gaussian space as = ®~*(p!), where

u?
® is the standard Gaussian cumulative distribution functi(x) = \/%_n J%,e zdu. The threshold

K

Non —channel zone

1 1

1
A channel ~ non— channel o
1

Figure 3 Thenormalscoretransform

al splits the real axis in two intervals—o,al] and (al, %) corresponding to the channel and non-
channel respectively (Figure3). In Figure 4 is shown the threstwlos the reservoir domain where it

can be seen a strong spatial structure similarly with the structure of the probability field of the channel
(Figure 2) which is inherited from the training image. The parameterizations are performed in the multi-

Figure 4 Thethresholds

dimensionakeal spaceR", wheren is the dimensionof the reservoirdomain(numberof the grid cells,
in our case 10000). For each ensemblememberi (two-facies channelizedreservoir) we define a
parametefield on the reservoir domain, denotégof which truncation with the thresholdsyields the
ensemblanembeii. we consider the following situations:

Parametrizatiorwith gravity centergGC)

Herewe areusingtheideafrom Sebacheetal. (2015) parameterizinghe faciesfield usingthe gravity
centersof the intervals (—co,a!] and (a’,«) with respectto the standardGaussiandensity ¢(x) =

Vlﬁe*% Consequenyl for ensemblanembeli we defineat gridcell j thevalueof the parametefield

eij as:
N E(XX|X < al)= ;“Zg’j’)) if j € channe] @
' EXIX > al) = 11"3,"22,) if j € non-channel

where,X is a random variable having a standard normal distribution.

Parametrization with random sampling (Random seed)

The first new parametrization introduced is based on the idea to define the parameébfieldandom
sampling from a conditional Gaussian distribution. The sampling is done randomly for each ensemble
member and for each grid cell of the reservoir domain. Consequently, for ensemble mevelufine
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at grid cell j the value of the parameter fie@i as:
0l _ random sampling froniX|X < al) if j € channe) 3)
' 7 ) random sampling frongX|X > al) if j € non-channel

Parameterization with random sampling using the same random seed for each grid cell within each
ensemble member but different random seeds across the ensemble members (Fixed seed)

This parametrization is defined so that for each ensemble member we are using a single random seed for
each grid cell of the reservoir domain for sampling from the conditional distribution. In order to define
this parametrization we firstly calculate the cumulative distribution functaaif) (of the conditional
Gaussian distribution§X|X < a!) and(X|X > a!):

if x< ol
cdfyx<qi(x) = § 2@ = (4)
0 if x> a!,
" " 0 if x<al, 5)
Calx|x>qi (X) = S o(x)—o(ql . ;
x>a ——f‘_)q)(off;) if x> al,

For sampling from a random variab¥ewith known cumulative distribution functioodfy, we use the
probability integral transform. Thety,i§ a random sample frord if and only if cdfy(¥) is a random
sample from the uniform distribution U(0,1). Consequently, for each ensemble mémiedraw a
random seed y from the uniform distribution U(0,1) and after solving the equatalfigi4i(X) =y
andcdfyx~ qi(X) = y we find the solutions:

x =0 L(yxd(al)) and respectivel = d~1(d(al) +y= (1 — ®(al)) which are random samples
from the conditional Gaussian distributio®|X < a!) and(X|X > a!). Consequently, using the same
random seed for each grid cellj of the reservoir domain we define the parameter fielassociated
with memberi as follows:

6 —

{q:l(y*tb(aj)) if j € channe) (6)

o Y(d(al)+yx(1—d(al)) if j e non-channel

Comparison of the parameterizations before history matching

In Figure 5 we present two ensemble members of the ensemble of channelized reservoirs (first column)
and the associated parameter fields as follows: In the second column is shown the parameter fields calcu-
lated with the parameterization with gravity center, in the second column the parameter fields calculated
with the random seed and in the fourth column the parameter fields calculated with the fixed seed. From
this figure it can be seen that the random seed parameterization destroys any possible two-points corre-
lation that may be inherited from the training image; inside of the channels or outside of the channels
we find values with no spatial correlation. This is not happening for the other two parameterizations,
inside of each body of facies the values of the parameter field are spatially correlated. However, for the
case of the last parameterization (last column) we observe a higher variability than the one observed
for the first parameterization (second column) because the ranges of the parameter field are different for
different ensemble members. In Figure 6 are shown the mean of the parameter field calculated from
the ensemble for all parameterizations. If for the first parameterization the mean is a zero uniform field
(Sebacher et al., 2015) the other two means are not zeros, but their values are close to zero. The random
seed parameterization has generated a mean field with values randomly distributed over domain whilst
in the mean field generated with the fixed seed parameterization one can clearly see a spatial correla-
tion similarly with those seen in the threshold field (Figure 4). In Figure 7 is shown the histograms of
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Figure 5 The faciedields and the associated parameter fields.
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70 -0.04

80 -0.06

90 -0.08

20 40 60 80 100

(a) Gravity center (b) Random seed (c) Fixed seed

Figure 6 The mean of the parameter field for all parameterizations.

the parametefield valuesasfollows: in the first line the histogramis calculatedrom the ensembleof
valuesbut for the first cell of the reservoirdomainandin the secondine we presentthe histogramof
all valuesfor thefirst ensembleanember.Forthe parameterizatiomvith gravity centerswe approximate
(marginally) the standardGaussiardistribution with a bi-modal distribution (Figure 7, position (1,1))
which is a badapproximation.The lasttwo parameterizationsamplesnuchbetterfrom the Gaussian
distribution (last two positionsof the first row of Figure 7). If we calculatethe histogramof the pa-
rameterfield from Memberl onecanobservea bi-modalbehaviorof the parameterizatiomvith gravity
centersandwith fixed seedswhilst the randomsamplingyields a Gaussiardistribution (secondrow of
Figure7).

Cell1 Cell1 Cell1

80

60

40

-15 -1 -0.5 0 05

Member 1 Member 1 Member 1

400
200
0
1

-15 -1 -05 0 05 1

-15 -1 -05 0 05 1

(a) Gravity center (b) Random seed (c) Fixed seed

Figure 7 The histograms of the values of the parameter fields in all parameterizations
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The iterative adaptive Gaussian mixture filter (IAGM)

The iterative adaptive Gaussian mixture filter (IAGM) is the iterative version of the adaptive Gaussian
mixture filter (AGM, Stordal et al. (2011)) developed for improving the AGM for nonlinear models
(Stordal and Lorentzen, 2014). In the AGM the uncertainty of the system is represented by an ensemble
of possible states and each ensemble member (particle) has an associated likelihood weight. Initially
all ensemble members have the same weight (equally weighfé}dé:, 1/ne, j =1,...,ne, as in the
ensemble Kalman filter (EnKF). In our case the ensemble of parameter fields con$@t}§”§)f and we

denote by4, the function with output the simulated observations given the parameters. We augment our
state vector with these variables. Hence our ensemble state ¥éctor 1,. .., ne, is given by

X =168" %6)",i=1...,n. (7)

This augmentation allows us to construct, for each assimilation tjnaebinary matrixH; with the
relationY; = HiX; + & where & follows a Gaussian distribution with mean 0 and known covariance
matrix R;. That is, the measurement is a linear function of our augmented state vector with additive
Gaussian white noise. The measurements used in this study are the bottom hole pressures taken at
the injection wells, the oil and water rates taken at the production wells. The dynamical variables
(the pressure and saturation fields) are not included in the state vector as we have chosen to rerun the
simulator from time zero.

Let beC; the sample covariance matrix @X{i}{‘il calculated based on the weighted ensemble mean:

X = iivwat‘ (8)

At each assimilation time, the augmented state vector is updated in the AGM (and IAGM) for each
i=1,...,ncas

)A(ti :Xti+CthT(HtCthT+h_2Rt)_1 (yt_Ht)(ti+£li) ©

heresti is a sample from the Gaussian measurement error distribN{iorR). The update is similar with

the standard EnKF, the only difference is the scaling of the measurement error covariance matrix

R.. In other words the linear update is dampened, where the dampening liaét¢n < [0, 1)) is the
bandwidth of the Gaussian mixture (Stordal et al., 2011). For h equal to 1 we get the standard EnKF
update. In addition to a linear update, importance weights are derived from the Gaussian mixture and
updated sequentially as

W =W, (yi — HX HGHT +R),

W (10)
\MI ~ N t_ia
YW,

Here, the functior®d(x — u,C) represents multivariate Gaussian density with mgeaand covariance
matrix C. To avoid filter degeneracy that occurs in high dimension and complex systems a weight
interpolation is introduced ‘ _

W =aW +(1—a)ngt, oy €0,1], (11)

where
Ne

o = nglqw‘)zr? (12)

i=
For details of the AGM we refer to Stordal et al. (2011). A re-sampling and re-weighting step in the
algorithm before rerunning AGM is discussed in Stordal and Lorentzen (2014).
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Reconstruction of the facies fields

After the assimilation of the data the values of the parameter fiééddchanging according to eq. 9.
Using the new values we updated the facies fields on a cell by cell basis: _
For each ensemble membeg IL, 2, ..., ne and for each grid cell £ 1,2,...,nif 8P4 < ol we assign

in the grid cell j the channel and 8"*®® > ai we assign the non-channel.

At this step what we have to do is to truncate the values of the updated parameter field with the thresholds
calculated at the initial time. This truncation will project a continuous field into a discrete field (as in the
truncated Gaussian method).

Re-sampling in IAGM

The SNESIM has incorporated the tau model (Journel (2002), Krishnan et al. (2005)) which enables
integration of the probabilities coming from soft data and the training image. Usually, the probability
maps used as soft data are coming from seismic interpretations, but here, we adopt the procedure from
Jafarpour and Khodabakhshi (2011) but using the probability fields of the facies calculated after an iter-
ation of IAGM. The tau model depends on two weights, denatezhd 1y, that calibrates the geological
concept (the training image) with the probability fields. In this study the weights used are both equal
to 1, which correspond to the equal importance assigned to the training image and weighted probability
map respectively.

After one complete assimilation cycle, new weighted probability fields (of the channel and non-channel)
are constructed from the updated ensemble of channelized reservoirs:

) Ne .
.= _le' Ind,', k= channelnon— channel (13)
i=

where

(14)

Ind — 1 ifcellj e facies type k
K 0 ifcellj ¢ facies type k

Wherei represents the ensemble member aisdhe indicative of the grid cell artddenotes the last time

step where we have measurements. Using the tau model we generate a new ensemble of channelized
reservoirs conditioning the training image to the weighted probability fields of the facies types. This is
equivalent to re-sampling marginal facies variables from the empirical distribution obtained with AGM
(re-sampling) with the constraint that the dependence structure is given by the training image. The
re-sampling step of the IAGM repositions the facies geometry and this is one of the reason for using
this AHM method. After each iteration we evaluate the ensemble from the geometry and data match
perspective and decide if it is necessary to proceed with another iteration. After a finite number of
iterations the updated ensemble of facies fields remain geologically realistic and provide, in addition, a
good data match.

Algorithm

The algorithm of one complete assimilation cycle with the AGM can be summarized as follows:

1. Generate an ensemblergfchannelized reservoirs from the training image.
2. Calculate the parameter fiel@sfor i € 1, ne.

3. Construct the state vector in (7) associating equal weightgmftb each ensemble member and
set the dampening parameter

4. For each assimilation time do

e Apply the forward model from timeto the next assimilation time, populating first the facies
fields with reliable petrophysical properties.

ECMOR XV - 15" European Conference on the Mathematics of Oil Recovery
29 August — 1 September 2016, Amsterdam, Netherlands



EAGE ECMOR X V'

e At the assimilation time, assimilate the data, updating the state vector according to (9) and
the weights according to (11).

e Reconstruct the updated channelized reservoirs using the updated parﬁh‘i’é@?g

Case study

The parameterizations presented above are tested using a reservoir model of which domain has a square
shape of dimension is 100100 grid cells.The dimension of each grid cell is set as<3D x 20 ft.

We design the reservoir as a 13-spot water flooding black oil model, having four injection wells at the
center of reservoir domain and nine production wells surrounding the injection wells. The reservoir is
initially filled with oil at a constant uniform saturation of 0.8 (the connate water saturation is 0.2) and
with a uniform pressure of 5000 psi in every grid cell. The producers works under constant bottom
hole pressure (BHP) with a value of 3000 psi and the injectors operate at 3500 STB/D constrained by a
maximum BHP of 100000 psi. For each experiment the measurements were obtained through forward
simulation of a synthetic model presented as the "reference” which was randomly sampled from the
same training image using SNESIM. The reference model with the position of the wells is presented
in Figure 8. The measurement errors of the production data are assumed Gaussian with 0 mean and

Reference field

20 40 60 80 100

Figure 8 The referencéeld.

standarddeviationsof 70 STB/D for waterrates(WR) andoil rates(OR) at the producersand 200 psi
for BHP attheinjectors. Thesevaluesareusedto generatenoisy observationgrom the referencamodel
in additionpredictedobservation®f the productiondatausedin the analysisstepof the HM processes.
Waterinjection startsfrom thefirst day andcontinuethereaftera period of 351 daysof production.We
assimilatedataat a 60-dayinterval resultingin atotal of 6 assimilationsteps.The permeabilityvalues
weresetat 9mD and1 mD for the channelfaciestype andfor the non-channefaciestype, respective),
while the porosityof bothfaciestypesis setto 0.2 andconsiderecasknown. Thedampeningarameter,
h, is setto 0.25 in the AGM runsbasedon previousexperienceandwe haveperformedthreeiterations
with theIAGM. Theensemblesizeis setto 120.

Results

In Figure 9 are shownthe probability fields of the channelin initial (re-sampled in evenrows) and
updatedensemblegodd rows)in threeiterationswith IAGM, for all parameterization§GC represents
the parameterizatiomwith gravity centersRSthe parameterizatiomwith randomseedsandFSrepresents
the parameterizationvith fixed seed).In all experimentgheinitial ensembleof channelizedeservoirs
is the sameandis shownby Figure2. Theresultsobtainedfor parameterizatiomwvith gravity centersare
takenfrom Sebacheet al.(2015). Analyzingthelastrow of the Figure2 wherethe probability fields of
the channelin thelastiterationis presentedpnecanobservethatall parameterizatiorapturethe same
trend of the possibleposition of the channeldnto the field. The channelestimationis good enoughif
comparedt, visually, with thereferencgFigure8). However,therearesomeparticularities:
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e The parameterization with gravity centers yields a smaller variability than other two parameteri-
zations (Figure 9, sub-figure (n) vs (0) and (p)) .

e The lack of the spatial correlation of the parameter fields of the parameterization with random
seeds affects the probability fields of the channel in the sense that the channel position is diffusely
estimated (Figure 9, sub-figures (c), (i), (0)).

e The spatial dependence structure introduced by the parameterizations and with gravity centers and
fixed seeds really help the estimation; the probability fields of the channel for both parameteriza-
tions exhibit much shaped zones than the probability field of the channel of the parameterization
with random seed.

20 40 60 80 100

1

09
08
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06
05

.: -

20 w0 60 80 1

% :
04
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0.2

01

(e) Initial Iteration 2 (RS)

1
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02

1

09
08
07
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05
04
03
02
01

(m) Updated lteration 3 (GC) (n) Updated Iteration 3 (RS) (0) Updated Iteration 3 (FS)

Figure 9 The probability fields of the channel for all parameterizations (GC-gravity center, RS-random
seed, FS-fixed seed)
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The probability fields of the channel are calculated from ertdesnof facies fields either generated with
SNESIM or the result of estimation with the IAGM. They only present possible positions of the channel
into the field, do not offer any information of the geological plausibility of the channel fields. In order to
qguantify the uncertainty of the channel distribution into the field we have to look at the facies fields. In
Figure 10 is shown the evolution of the first member of the ensembles during the experiments. Initially, it
presents a nice channelized structure (sub-figure (a)) because is the result of a simulation with SNESIM
from the training image, structure regained after each re-sampling for all parameterizations (odd rows).
The channelized structure is broken differently after the iterations of the history matching. For the
parameterizations with gravity centers and fixed seed the updated member is still presenting continuous
bodies, whilst for the parameterization with random seed the updated member is far from the geological
concept presented by the training image, even after the third iteration. We believe the reason is the
lack of the spatial dependence of the parameter field. However, the facies fields obtained with this
parameterization look better with iterations and are close to the estimation with gravity centers (sub-
figure (0) vs sub-figure (n)). After the third iteration the parametrization that is able to keep better the
channel continuity is surprisingly the one with gravity centers (sub-figure (n)) while the parametrization
with fixed seed seems to needs extra iterations. This is the reason that we have stop after three iterations,
the parameterization with gravity centers was able to keep the channel continuity in the updates and we
production data match and the predictions are also very good (Figure 11).

We continuing the comparison presenting the water rates at all the production wells in all the experiments
for 651 days which is split in two periods: the assimilation period (from O to 351) and the prediction
period from (351 to 651 days). Figure 11 shows the evolution of the water production rate for the gravity
center parametrization and is taken from Sebacher et al. (2015). In Figure 12 and Figure 13 is shown
the production water rates for the parameterization with random seeds and fixed seeds respectively.
Analyzing with a visual inspection these evolutions we are not able to rank them, all present a good data
match and predictions. This is not a surprise because all parameterizations match the data modifying the
channel position into the field on a grid cell basis and all have a high degree of freedom to do it. Here the
AGM helps because of the small value of the dampening factor (h=0.25) which yields small correction
in the updates while matching the data.

In order to better analyze the comparison of the proposed parameterizations we present the evolution
over iterations of the Root Mean Square Error calculated as weighted euclidian distance between the
reference, (Ref) and each ensemble memEérEq. 15), calculated for permeability and for total
production rates for a period of 651 days.

RMSE = (ng) ! 3 %VT/,’(VJ-(Ref) —V;(Xh)?, (15)
i=1j=1

whereny is the number of dat&' denotes ensemble member numbhﬁﬁ the corresponding likelihood
weight andV; is the variable of interests (i.e. the permeability and the total production rates). Table 2
presents the RMSE calculated for permeability field and Table 1 the RMSE calculated for total produc-
tion rates for a period of 651 days. Both results indicates that, after three iterations, the smaller values
of RMSE arw obtained by the parameterization with gravity centers and the higher values are obtained
by the parameterization with random seeds even though all values are within a small bandwidth. In ad-
dition, after the third iteration, the parameterization with fixed seeds is very close to the parametrization
with gravity centers and observing its higher variability in the updated ensemble one can try another
iteration with fixed seed. However, this iteration will not help in the estimation of the channel position
because, after the third iteration, the probability fields of the channel show similar characteristics (Figure
9, sub-figures (m) and (0)). A new iteration for the parameterization with fixed seed will constrain the
re-sampled ensemble so that it yield a probability field and predictions comparable with those obtained
by the parameterization with gravity centers after the third iteration.
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Figure 10 Member 1 in initial and updated ensembles for all parameterizations (GC-gravity center,
RS-random seed, FS-fixed seed)

Conclusions

In this study we have presented a comparison between three parameterizations of channelized reservoirs
generated with a multi-point geostatistical simulation model before and after they are coupled with a
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Figure 11 Water productionratesfor the parameterizatiorwith gravity centers.

history matchingmethod.Two of parameterizationvere newly introduced,basedon extensionsof a
parameterizatiordesignedn a previousatrticle. If in the older parameterizatiorthe randomnessvas
ensurecdnly by theinitial ensembleof channelizedeservoir,herewe enhancedhe randomnessy the
meansof a stochasticforcing involving the use of somerandomseeds. In the first parameterization
introduced we usedifferentrandomseedsvhensamplingfrom a conditionaldistribution for eachgrid
cell of the domainand for eachensemblemember. In the secondparameterizationintroduced,we
have usedthe samerandomseedwhen parameterizingan ensemblememberbut changingthe seeds
whenparameterizinglifferent members.In this way this parameterizatiokeepsa spatialdependence
structureinheritedfrom the training imagewhilst the first parameterizatiomoesnot. For the history
matchingpartwe haveusedtheiterativeadaptiveGaussiammixturefilter in threeiterationsfor its ability
to dealwith highly non-linearsystemsandfor there-samplingstepbetweeriterations. Theresultsshow
that the dependencespatial structureis crucial in keepingthe geologicalplausibility during iterations
while the channeldistributioninto the fields wasequallywell estimatedoy all parameterizationsThis
meansthat the uncontrolleduseof the stochastidorcing doesnot helpin uncertaintyquantificationof
the channelizedeservoirs. In addition, the stochastidforcing usedcontrolled, eventhoughenhances
thevariability in theinitial ensemblef the parametefield andin the updatedensemblef faciesfields,
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Figure 12 Water productionratesfor the parameterizatiorwith randomseeds.

seemsto not improve the channelestimationand the datamatchand predictions,showingthe same
trend as the older parameterization All of theseprovesthe robustnesf the parameterizationghat
accounftfor the spatialdependencstructureinheritedfrom thetrainingimage.
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Figure 13 Water production rates for the parameterization with fixed seeds.
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