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Different Parameterizations of the Initial
Ensemble for a Channelized Reservoir in an
Assisted History Matching Context
B. Sebacher (Delft University of Technology), A.S. Stordal (IRIS) & R.G.
Hanea* (Statoil)

SUMMARY
In this paper we present a comparison of three parameterizations of channelized reservoirs generated using
multipoint geostatistics (MPS) in combination with a training image. In a previous study, we suggested
estimating the facies probability fields from an ensemble generated with MPS and linked, marginally, the
facies probability fields with the standard Gaussian variables by means of the normal score transform. We
have parameterized the facies fields with random fields, marginally Gaussian, using the conditional mean
of the Gaussian variables. This parameterization keeps a possible dependence structure inherited from the
training image, but marginally the sampling from the Gaussian distribution is discrete and bi-modal. Here,
we extend this parameterization in two directions. First, we do not take into account the dependence
structure and parameterize  by random sampling from the conditional distribution. The second idea is to
draw samples from the conditional distribution, but using the same random seed for each grid cell within
each ensemble member, but different random seeds across the ensemble members. This would preserve the
dependence structure within each ensemble member while increasing the variability between the ensemble
members. Both parameterizations have the property that, marginally, samples correctly from the standard
Gaussian distribution. We compare the behavior of the parameterizations within a history matching
process assimilating the production data. The comparison has two main directions: to prove the impact of
the stochastic forcing on the history matching of geological properties and to prove the stochastic forcing
on the predictive power of the models. We have used the iterative adaptive Gaussian mixture filter
(IAGM) for history matching because the IAGM is suited for highly nonlinear problems and has a re-
sampling step that allow us to use the already existing technique of re-sampling from the training image
using updated probability fields. The re-sampling step is necessary to re-position the facies geometry, lost
after a cycle of data assimilation.
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 Introduction

The estimation of two facies channelized reservoirs conditioned to production data is a problem that
was extensively studied in the reservoir engineering community. This problem poses difficulties from
beginning when a reliable geological simulation model has to be chosen in order to simulate facies fields
that exhibits channelized geometry. It is well known that the truncated Gaussian simulation model fails
in this matter and, until now, two geological simulation models have been proved as suitable to sim-
ulate channelized reservoirs: the multi-point geostatistical simulation (MPS, Caers and Zhang (2004))
models and the object based simulation models (Deutsch and Wang, 1996). Once the geological sim-
ulation model is chosen, there are two options to estimate the position of the channels conditioned to
production data: either the distribution of the permeability (or a parametrization of it) is estimated and
afterwards, if necessary, the channel positions is inferred from it or a parametrization of the facies fields
is defined, which permits the estimation of the channels directly. From the first category, (Sarma et al.,
2008) proposed a method to project the permeability field into a multi-dimensional kernel space using
the kernel-principal component analysis (K-PCA) and performing the parameterization in this space.
The model parameters from the kernel space were coupled with the ensemble Kalman filter (Evensen,
2003) for history matching of the production data. Jafarpour and McLaughlin (2008) parameterize the
permeability field using a basis obtained by applying of the discrete cosine transform (DCT) and the
parameters that are updated in the EnKF framework are the coefficients of the DCT transformation. In
Zhang et al. (2015) the permeability field is estimated from the production data using an iterative en-
semble smoother and afterward it is projected onto a facies field using a post-processing technique. In
Jafarpour and Khodabakhshi (2011) the authors proposed the probability conditioning method (PCM)
in which a probability field of the channel is inferred from the estimated permeability field and, is fur-
ther used to condition the MPS algorithm to it. As consequence, the updated channelized reservoir is
obtained by a random sampling from a training image conditioned to the previous probability field. In
Zhou et al. (2012) the authors have used the normal score transformation to project marginally the per-
meability field onto a standard Gaussian space where the ENKF is performed. The permeability field is
re-constructed based on the inverse of the normal score transformation.
For the second category, in order to estimate the channel position, a parametrization of the facies fields
must be defined first. In Lorentzen et al. (2012) the authors propose a parameterization of the facies
fields using the distance from the current cell to the border of the channel. If the cell is inside of the
channel the distance function is positive and if the cell is outside, the distance is negative. The distance
function is further updated within an EnKF process, assimilating production data and conditioned to
some statistical measures in order to keep the continuity of the channel bodies. In Hu et al. (2013) the
parametrization is performed not on the facies fields but using a parameter inside of the MPS method.
The authors considered the uniform numbers that helps the simulation of the facies field at each grid cell
as the parameters to be updated in an EnKF process by assimilation of the production data. The princi-
pal component analysis (PCA) is also used to parameterize channelized reservoirs. In Vo and Durlofsky
(2015) the authors implemented an optimization-PCA method to deal with non-Gaussian complex mod-
els in combination with the randomized maximum likelihood (RML) method.
In this study we are situated in the second category using as the geological simulation model the MPS
in combination with a two-facies channelized training image. In Sebacher et al. (2015) and Sebacher
et al. (2016) we introduced a parametrization bridging the MPS with the truncated Gaussian simulation
model. The parameterization consist of defining of some random fields, marginally Gaussian, of which
truncation with reliable thresholds simulate the same facies fields with those previously obtained from
the training image with the MPS. Here we propose two parameterizations which are based on the same
idea, but the random fields are constructed different. If in Sebacher et al. (2015), the marginally Gaus-
sian random fields were defined by the means of the conditional mean of a standard normal variable,
here we follow two directions: the first idea is to random sample from the conditional distribution using
different random seeds for each grid cell within each ensemble member and the second idea is to random
sample from the conditional distribution using constant random seed for the grid cells of an ensemble
member but different seeds across ensemble members. We compare these parameterizations within an
assisted history matching (AHM) process using the iterative adaptive Gaussian mixture filter (IAGM,
Stordal and Lorentzen (2014)), assimilating production data. The comparison has two main directions:
to quantify the impact of the stochastic forcing on the history matching of geological properties and to
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 prove the stochastic forcing on the predictive power of the models. The use of the IAGM is suitable here
because the IAGM works well for highly nonlinear problems and has a re-sampling step which allows
us to use the technique of re-sampling with MPS from the training image conditioned to the updated
probability fields (Krishnan et al., 2005). The re-sampling is necessary because after an assimilation cy-
cle the channelized geometry may be broken and the re-sampling is repositioning the channel structure
in the field.
In the next sections we introduce the parameterizations, present the IAGM with its customized imple-
mentation for our problem and a case study where we perform the comparison. The papers ends with
the conclusions.

The parameterizations

The geological simulation model used for generation of the initial ensembles is the single normal equa-
tion simulation model (SNESIM, Strebelle (2002)) of which training image that represents the geological
concept of channelized reservoir is presented in Figure 1. In this section we start by presenting the pa-
rameterization proposed in Sebacher et al. (2015) and based on this idea we extend it in two directions.
Consider an ensemble ofne channelized reservoirs, simulated with SNESIM from the training image us-
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Figure 1 The training image.

ing as constraints only the global facies proportions on a squared reservoir domain with 100 × 100 grid
cells. We calculate, from this ensemble, the probability field of the channel occurrence (Figure 2) which
marginally means the calculation of a value p j representing the probability that the channel occurs in
the grid cell j of the reservoir domain.
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Figure 2 The probability field of the channel.

At the grid cell j we consider the discrete random variable, denotedf acies_distributionof which distri-
bution can be described as in eq. 1.

f acies_distributionj ∼
(

Channel Non−channel
p j 1− p j

)
(1)
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 The idea is to link this discrete random variable with a standard normal variable and the easiest way
is by the means of the normal score transform. Consequently, we calculate the cumulative distribution
of this random variable and we define the thresholdα j in the Gaussian space asα j = Φ−1(p j), where

Φ is the standard Gaussian cumulative distribution function,Φ(x) = 1√
2π

∫ x
−∞ e−

u2
2 du. The threshold

Figure 3 The normal score transform

α j splits the real axis in two intervals(−∞,α j ] and (α j ,∞) corresponding to the channel and non-
channel respectively (Figure3). In Figure 4 is shown the thresholdsα on the reservoir domain where it
can be seen a strong spatial structure similarly with the structure of the probability field of the channel
(Figure 2) which is inherited from the training image. The parameterizations are performed in the multi-
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Figure 4 The thresholds

dimensional real space Rn, where n is the dimension of the reservoir domain (number of the grid cells, 
in our case 10000). For each ensemble member i (two-facies channelized reservoir) we define a 
parameter field on the reservoir domain, denoted θi, of which truncation with the thresholds α yields the 
ensemble member i. we consider the following situations:

Parametrization with gravity centers (GC)

Here we are using the idea from Sebacher et al. (2015) parameterizing the facies field using the gravity
centers 

2
of the intervals (−∞,α j ] and (α j ,∞) with respect to the standard Gaussian density φ (x) = 

√1
2π e

− x2 . Consequently, for ensemble member i we define at grid cell j the value of the parameter field

θ j
i as:

θ j
i =





E(X|X ≤ α j) = −φ(α j )
Φ(α j)

if j ∈ channel,

E(X|X > α j) = φ(α j )
1−Φ(α j )

if j ∈ non-channel,
(2)

where,X is a random variable having a standard normal distribution.

Parametrization with random sampling (Random seed)

The first new parametrization introduced is based on the idea to define the parameter fieldθ by a random
sampling from a conditional Gaussian distribution. The sampling is done randomly for each ensemble
member and for each grid cell of the reservoir domain. Consequently, for ensemble memberi we define
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 at grid cell j the value of the parameter fieldθ j
i as:

θ j
i =

{
random sampling from(X|X ≤ α j) if j ∈ channel,
random sampling from(X|X > α j) if j ∈ non-channel,

(3)

Parameterization with random sampling using the same random seed for each grid cell within each
ensemble member but different random seeds across the ensemble members (Fixed seed)

This parametrization is defined so that for each ensemble member we are using a single random seed for
each grid cell of the reservoir domain for sampling from the conditional distribution. In order to define
this parametrization we firstly calculate the cumulative distribution function (cdf) of the conditional
Gaussian distributions(X|X ≤ α j) and(X|X > α j):

cdfX|X≤α j (x) =

{
Φ(x)

Φ(α j)
if x≤ α j ,

0 if x> α j ,
(4)

cdfX|X>α j (x) =

{
0 if x≤ α j ,
Φ(x)−Φ(α j)

1−Φ(α j )
if x> α j ,

(5)

For sampling from a random variableY with known cumulative distribution functioncdfY, we use the
probability integral transform. Then, ˜y is a random sample fromY if and only if cdfY(ỹ) is a random
sample from the uniform distribution U(0,1). Consequently, for each ensemble memberi we draw a
random seed y from the uniform distribution U(0,1) and after solving the equations:cdfX|X≤α j (x) = y
andcdfX|X>α j (x) = y we find the solutions:
x = Φ−1(y∗ Φ(α j)) and respectivelyx = Φ−1(Φ(α j) + y∗ (1− Φ(α j)) which are random samples
from the conditional Gaussian distributions(X|X ≤ α j) and(X|X > α j). Consequently, using the same
random seedy for each grid cellj of the reservoir domain we define the parameter fieldθ associated
with memberi as follows:

θ j
i =

{
Φ−1(y∗Φ(α j)) if j ∈ channel,
Φ−1(Φ(α j)+y∗ (1−Φ(α j)) if j ∈ non-channel,

(6)

Comparison of the parameterizations before history matching

In Figure 5 we present two ensemble members of the ensemble of channelized reservoirs (first column)
and the associated parameter fields as follows: In the second column is shown the parameter fields calcu-
lated with the parameterization with gravity center, in the second column the parameter fields calculated
with the random seed and in the fourth column the parameter fields calculated with the fixed seed. From
this figure it can be seen that the random seed parameterization destroys any possible two-points corre-
lation that may be inherited from the training image; inside of the channels or outside of the channels
we find values with no spatial correlation. This is not happening for the other two parameterizations,
inside of each body of facies the values of the parameter field are spatially correlated. However, for the
case of the last parameterization (last column) we observe a higher variability than the one observed
for the first parameterization (second column) because the ranges of the parameter field are different for
different ensemble members. In Figure 6 are shown the mean of the parameter field calculated from
the ensemble for all parameterizations. If for the first parameterization the mean is a zero uniform field
(Sebacher et al., 2015) the other two means are not zeros, but their values are close to zero. The random
seed parameterization has generated a mean field with values randomly distributed over domain whilst
in the mean field generated with the fixed seed parameterization one can clearly see a spatial correla-
tion similarly with those seen in the threshold field (Figure 4). In Figure 7 is shown the histograms of
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Figure 5 The facies fields and the associated parameter fields.

 
20 40 60 80 100

10

20

30

40

50

60

70

80

90

100 −0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

(a) Gravity center

 
20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

(b) Random seed

 
20 40 60 80 100

10

20

30

40

50

60

70

80

90

100 −0.11

−0.1

−0.09

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

(c) Fixed seed

Figure 6 The mean of the parameter field for all parameterizations.

the parameter field values as follows: in the first line the histogram is calculated from the ensemble of 
values but for the first cell of the reservoir domain and in the second line we present the histogram of 
all values for the first ensemble member. For the parameterization with gravity centers, we approximate 
(marginally) the standard Gaussian distribution with a bi-modal distribution (Figure 7, position (1,1)) 
which is a bad approximation. The last two parameterizations samples much better from the Gaussian 
distribution (last two positions of the first row of Figure 7). If we calculate the histogram of the pa-
rameter field from Member 1 one can observe a bi-modal behavior of the parameterization with gravity 
centers and with fixed seeds whilst the random sampling yields a Gaussian distribution (second row of 
Figure 7).
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Figure 7 The histograms of the values of the parameter fields in all parameterizations
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 The iterative adaptive Gaussian mixture filter (IAGM)

The iterative adaptive Gaussian mixture filter (IAGM) is the iterative version of the adaptive Gaussian
mixture filter (AGM, Stordal et al. (2011)) developed for improving the AGM for nonlinear models
(Stordal and Lorentzen, 2014). In the AGM the uncertainty of the system is represented by an ensemble
of possible states and each ensemble member (particle) has an associated likelihood weight. Initially
all ensemble members have the same weight (equally weighted),Ŵj = 1/ne, j = 1, . . . ,ne, as in the
ensemble Kalman filter (EnKF). In our case the ensemble of parameter fields consists of{θ i}ne

i=1 and we
denote byGt , the function with output the simulated observations given the parameters. We augment our
state vector with these variables. Hence our ensemble state vectorXi

t , i = 1, . . . ,ne, is given by

Xi
t = [θT

i Gt(θi)]
T , i = 1, . . . ,ne. (7)

This augmentation allows us to construct, for each assimilation timet, a binary matrixHt with the
relationYt = HtXt + εt whereεt follows a Gaussian distribution with mean 0 and known covariance
matrix Rt . That is, the measurement is a linear function of our augmented state vector with additive
Gaussian white noise. The measurements used in this study are the bottom hole pressures taken at
the injection wells, the oil and water rates taken at the production wells. The dynamical variables
(the pressure and saturation fields) are not included in the state vector as we have chosen to rerun the
simulator from time zero.
Let beCt the sample covariance matrix of{Xi

t }ne
i=1 calculated based on the weighted ensemble mean:

Xt =
ne

∑
i=1

Ŵi
t Xi

t (8)

.

At each assimilation time, the augmented state vector is updated in the AGM (and IAGM) for each
i = 1, . . . ,ne as

X̂i
t = Xi

t +CtH
T
t (HtCtH

T
t +h−2Rt)

−1(yt −HtX
i
t + ε i

t

)
(9)

hereε i
t is a sample from the Gaussian measurement error distributionN(0,R). The update is similar with

the standard EnKF, the only difference is the scalingh−2 of the measurement error covariance matrix
Rt . In other words the linear update is dampened, where the dampening factorh−2 (h ∈ [0,1]) is the
bandwidth of the Gaussian mixture (Stordal et al., 2011). For h equal to 1 we get the standard EnKF
update. In addition to a linear update, importance weights are derived from the Gaussian mixture and
updated sequentially as

W
i
t = Ŵi

t−1Φ(yt −HtX
i
t ,HtCtH

T
t +Rt),

Wi
t =

W
i
t

∑N
i=1W

i
t

,
(10)

Here, the functionΦ(x− µ ,C) represents multivariate Gaussian density with meanµ and covariance
matrix C. To avoid filter degeneracy that occurs in high dimension and complex systems a weight
interpolation is introduced

Ŵi
t = αtW

i
t +(1−αt)n

−1
e , αt ∈ [0,1], (11)

where

αt = n−1
e (

ne

∑
i=1

(Wi
t )

2)−1. (12)

For details of the AGM we refer to Stordal et al. (2011). A re-sampling and re-weighting step in the
algorithm before rerunning AGM is discussed in Stordal and Lorentzen (2014).
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 Reconstruction of the facies fields

After the assimilation of the data the values of the parameter fieldθ is changing according to eq. 9.
Using the new values we updated the facies fields on a cell by cell basis:
For each ensemble member i∈ 1,2, . . . ,ne and for each grid cell j∈ 1,2, . . . ,n if θupdate, j

i ≤ α j we assign

in the grid cell j the channel and ifθupdate, j
i > α j we assign the non-channel.

At this step what we have to do is to truncate the values of the updated parameter field with the thresholds
calculated at the initial time. This truncation will project a continuous field into a discrete field (as in the
truncated Gaussian method).

Re-sampling in IAGM

The SNESIM has incorporated the tau model (Journel (2002), Krishnan et al. (2005)) which enables
integration of the probabilities coming from soft data and the training image. Usually, the probability
maps used as soft data are coming from seismic interpretations, but here, we adopt the procedure from
Jafarpour and Khodabakhshi (2011) but using the probability fields of the facies calculated after an iter-
ation of IAGM. The tau model depends on two weights, denotedτ1 andτ2, that calibrates the geological
concept (the training image) with the probability fields. In this study the weights used are both equal
to 1, which correspond to the equal importance assigned to the training image and weighted probability
map respectively.
After one complete assimilation cycle, new weighted probability fields (of the channel and non-channel)
are constructed from the updated ensemble of channelized reservoirs:

p j
k =

ne

∑
i=1

Ŵi
t Indi, j

k , k= channel,non−channel (13)

where

Indi, j
k =

{
1 if cell j ∈ facies type k
0 if cell j /∈ facies type k

(14)

Wherei represents the ensemble member andj is the indicative of the grid cell andt denotes the last time
step where we have measurements. Using the tau model we generate a new ensemble of channelized
reservoirs conditioning the training image to the weighted probability fields of the facies types. This is
equivalent to re-sampling marginal facies variables from the empirical distribution obtained with AGM
(re-sampling) with the constraint that the dependence structure is given by the training image. The
re-sampling step of the IAGM repositions the facies geometry and this is one of the reason for using
this AHM method. After each iteration we evaluate the ensemble from the geometry and data match
perspective and decide if it is necessary to proceed with another iteration. After a finite number of
iterations the updated ensemble of facies fields remain geologically realistic and provide, in addition, a
good data match.

Algorithm

The algorithm of one complete assimilation cycle with the AGM can be summarized as follows:

1. Generate an ensemble ofne channelized reservoirs from the training image.

2. Calculate the parameter fieldsθi for i ∈ 1,ne.

3. Construct the state vector in (7) associating equal weights of 1/ne to each ensemble member and
set the dampening parameterh.

4. For each assimilation time do

• Apply the forward model from timet to the next assimilation time, populating first the facies
fields with reliable petrophysical properties.
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 • At the assimilation time, assimilate the data, updating the state vector according to (9) and
the weights according to (11).

• Reconstruct the updated channelized reservoirs using the updated parametersθupdated
i .

Case study

The parameterizations presented above are tested using a reservoir model of which domain has a square
shape of dimension is 100× 100 grid cells.The dimension of each grid cell is set as 30× 30× 20 ft.
We design the reservoir as a 13-spot water flooding black oil model, having four injection wells at the
center of reservoir domain and nine production wells surrounding the injection wells. The reservoir is
initially filled with oil at a constant uniform saturation of 0.8 (the connate water saturation is 0.2) and
with a uniform pressure of 5000 psi in every grid cell. The producers works under constant bottom
hole pressure (BHP) with a value of 3000 psi and the injectors operate at 3500 STB/D constrained by a
maximum BHP of 100000 psi. For each experiment the measurements were obtained through forward
simulation of a synthetic model presented as the "reference" which was randomly sampled from the
same training image using SNESIM. The reference model with the position of the wells is presented
in Figure 8. The measurement errors of the production data are assumed Gaussian with 0 mean and

Figure 8 The reference field.

standard deviations of 70 STB/D for water rates (WR) and oil rates (OR) at the producers, and 200 psi 
for BHP at the injectors. These values are used to generate noisy observations from the reference model 
in addition predicted observations of the production data used in the analysis step of the HM processes. 
Water injection starts from the first day and continue thereafter a period of 351 days of production. We 
assimilate data at a 60-day interval resulting in a total of 6 assimilation steps. The permeability values 
were set at 9 mD and 1 mD for the channel facies type and for the non-channel facies type, respectively, 
while the porosity of both facies types is set to 0.2 and considered as known. The dampening parameter, 
h, is set to 0.25 in the AGM runs based on previous experience and we have performed three iterations 
with the IAGM. The ensemble size is set to 120.

Results

In Figure 9 are shown the probability fields of the channel in initial (re-sampled , in even rows) and 
updated ensembles (odd rows) in three iterations with IAGM, for all parameterizations (GC represents 
the parameterization with gravity centers, RS the parameterization with random seeds and FS represents 
the parameterization with fixed seed). In all experiments the initial ensemble of channelized reservoirs 
is the same and is shown by Figure 2. The results obtained for parameterization with gravity centers are 
taken from Sebacher et al. (2015). Analyzing the last row of the Figure 2 where the probability fields of 
the channel in the last iteration is presented, one can observe that all parameterization capture the same 
trend of the possible position of the channels into the field. The channel estimation is good enough if 
compared it, visually, with the reference (Figure 8). However, there are some particularities:
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 • The parameterization with gravity centers yields a smaller variability than other two parameteri-
zations (Figure 9, sub-figure (n) vs (o) and (p)) .

• The lack of the spatial correlation of the parameter fields of the parameterization with random
seeds affects the probability fields of the channel in the sense that the channel position is diffusely
estimated (Figure 9, sub-figures (c), (i), (o)).

• The spatial dependence structure introduced by the parameterizations and with gravity centers and
fixed seeds really help the estimation; the probability fields of the channel for both parameteriza-
tions exhibit much shaped zones than the probability field of the channel of the parameterization
with random seed.
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(a) Updated Iteration 1 (GC)
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(b) Updated Iteration 1 (RS)
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(c) Updated Iteration 1 (FS)
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(d) Initial Iteration 2 (GC)
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(e) Initial Iteration 2 (RS)
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(f) Initial Iteration 2 (FS)
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(g) Updated Iteration 2 (GC)
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(h) Updated Iteration 2 (RS)
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(i) Updated Iteration 2 (FS)
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(j) Initial Iteration 3 (GC)
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(k) Initial Iteration 3 (RS)

 
20 40 60 80 100

10

20

30

40

50

60

70

80

90

100 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(l) Initial Iteration 3 (FS)
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(m) Updated Iteration 3 (GC)
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(n) Updated Iteration 3 (RS)

 
20 40 60 80 100

10

20

30

40

50

60

70

80

90

100 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(o) Updated Iteration 3 (FS)

Figure 9 The probability fields of the channel for all parameterizations (GC-gravity center, RS-random
seed, FS-fixed seed)
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 The probability fields of the channel are calculated from ensembles of facies fields either generated with
SNESIM or the result of estimation with the IAGM. They only present possible positions of the channel
into the field, do not offer any information of the geological plausibility of the channel fields. In order to
quantify the uncertainty of the channel distribution into the field we have to look at the facies fields. In
Figure 10 is shown the evolution of the first member of the ensembles during the experiments. Initially, it
presents a nice channelized structure (sub-figure (a)) because is the result of a simulation with SNESIM
from the training image, structure regained after each re-sampling for all parameterizations (odd rows).
The channelized structure is broken differently after the iterations of the history matching. For the
parameterizations with gravity centers and fixed seed the updated member is still presenting continuous
bodies, whilst for the parameterization with random seed the updated member is far from the geological
concept presented by the training image, even after the third iteration. We believe the reason is the
lack of the spatial dependence of the parameter field. However, the facies fields obtained with this
parameterization look better with iterations and are close to the estimation with gravity centers (sub-
figure (o) vs sub-figure (n)). After the third iteration the parametrization that is able to keep better the
channel continuity is surprisingly the one with gravity centers (sub-figure (n)) while the parametrization
with fixed seed seems to needs extra iterations. This is the reason that we have stop after three iterations,
the parameterization with gravity centers was able to keep the channel continuity in the updates and we
production data match and the predictions are also very good (Figure 11).
We continuing the comparison presenting the water rates at all the production wells in all the experiments
for 651 days which is split in two periods: the assimilation period (from 0 to 351) and the prediction
period from (351 to 651 days). Figure 11 shows the evolution of the water production rate for the gravity
center parametrization and is taken from Sebacher et al. (2015). In Figure 12 and Figure 13 is shown
the production water rates for the parameterization with random seeds and fixed seeds respectively.
Analyzing with a visual inspection these evolutions we are not able to rank them, all present a good data
match and predictions. This is not a surprise because all parameterizations match the data modifying the
channel position into the field on a grid cell basis and all have a high degree of freedom to do it. Here the
AGM helps because of the small value of the dampening factor (h=0.25) which yields small correction
in the updates while matching the data.

In order to better analyze the comparison of the proposed parameterizations we present the evolution
over iterations of the Root Mean Square Error calculated as weighted euclidian distance between the
reference, (Ref) and each ensemble member,Xi (Eq. 15), calculated for permeability and for total
production rates for a period of 651 days.

RMSE2 = (nd)
−1

ne

∑
i=1

nd

∑
j=1

Ŵi(Vj(Re f)−Vj(X
i))2, (15)

wherend is the number of data,Xi denotes ensemble member numberi, Ŵi the corresponding likelihood
weight andVj is the variable of interests (i.e. the permeability and the total production rates). Table 2
presents the RMSE calculated for permeability field and Table 1 the RMSE calculated for total produc-
tion rates for a period of 651 days. Both results indicates that, after three iterations, the smaller values
of RMSE arw obtained by the parameterization with gravity centers and the higher values are obtained
by the parameterization with random seeds even though all values are within a small bandwidth. In ad-
dition, after the third iteration, the parameterization with fixed seeds is very close to the parametrization
with gravity centers and observing its higher variability in the updated ensemble one can try another
iteration with fixed seed. However, this iteration will not help in the estimation of the channel position
because, after the third iteration, the probability fields of the channel show similar characteristics (Figure
9, sub-figures (m) and (o)). A new iteration for the parameterization with fixed seed will constrain the
re-sampled ensemble so that it yield a probability field and predictions comparable with those obtained
by the parameterization with gravity centers after the third iteration.
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(g) Initial Iteration 2 (FS)
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(h) Updated Iteration 2 (GC)
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(i) Updated Iteration 2 (RS)
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(j) Updated Iteration 2 (FS)
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(k) Initial Iteration 3 (GC)
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(m) Initial Iteration 3 (FS)
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(n) Updated Iteration 3 (GC)
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(o) Updated Iteration 3 (RS)
10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(p) Updated Iteration 3 (FS)

Figure 10 Member 1 in initial and updated ensembles for all parameterizations (GC-gravity center,
RS-random seed, FS-fixed seed)

Conclusions

In this study we have presented a comparison between three parameterizations of channelized reservoirs
generated with a multi-point geostatistical simulation model before and after they are coupled with a
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(a) Production water rates from initial ensemble (b) Production water rates after first iteration

(c) Production water rates after first re-sampling (d) Production water rates after second iteration

(e) Production water rates after second re-sampling (f) Production water rates after third iteration

Figure 11 Water production rates for the parameterization with gravity centers.

history matching method. Two of parameterization were newly introduced, based on extensions of a 
parameterization designed in a previous article. If in the older parameterization the randomness was 
ensured only by the initial ensemble of channelized reservoir, here we enhanced the randomness by the 
means of a stochastic forcing involving the use of some random seeds. In the first parameterization 
introduced, we use different random seeds when sampling from a conditional distribution for each grid 
cell of the domain and for each ensemble member. In the second parameterization introduced, we 
have used the same random seed when parameterizing an ensemble member but changing the seeds 
when parameterizing different members. In this way this parameterization keeps a spatial dependence 
structure inherited from the training image whilst the first parameterization does not. For the history 
matching part we have used the iterative adaptive Gaussian mixture filter in three iterations for its ability 
to deal with highly non-linear systems and for the re-sampling step between iterations. The results show 
that the dependence spatial structure is crucial in keeping the geological plausibility during iterations 
while the channel distribution into the fields was equally well estimated by all parameterizations. This 
means that the uncontrolled use of the stochastic forcing does not help in uncertainty quantification of 
the channelized reservoirs. In addition, the stochastic forcing used controlled, even though enhances 
the variability in the initial ensemble of the parameter field and in the updated ensemble of facies fields,
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(a) Production water rates from initial ensemble
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(b) Production water rates after first iteration

0 200 400 600 800
0

1000

2000

Time  t , days

W
at

er
 R

at
e 

W
R

 , 
S

T
B

/D   Prod1 

 

Mean
Ref

0 200 400 600 800
0

2000

4000
 Prod2 

Time  t , days

W
at

er
 R

at
e 

W
R

 , 
S

T
B

/D

0 200 400 600 800
0

1000

2000

Prod3

Time  t , days

W
at

er
 R

at
e 

W
R

 , 
S

T
B

/D

0 200 400 600 800
0

2000

4000

 Prod4 

Time  t , days

W
at

er
 R

at
e 

W
R

 , 
S

T
B

/D

0 200 400 600 800
0

2000

4000

6000

8000
 Prod5

Time  t , days

W
at

er
 R

at
e 

W
R

 , 
S

T
B

/D

0 200 400 600 800
0

2000

4000

Prod6 

Time  t , days

W
at

er
 R

at
e 

W
R

 , 
S

T
B

/D

0 200 400 600 800
0

2000

4000
  Prod7 

Time  t , days

W
at

er
 R

at
e 

W
R

 , 
S

T
B

/D

0 200 400 600 800
0

2000

4000

Prod8 

Time  t , days

W
at

er
 R

at
e 

W
R

 , 
S

T
B

/D

0 200 400 600 800
0

2000

4000
 Prod9 

Time  t , days

W
at

er
 R

at
e 

W
R

 , 
S

T
B

/D

(c) Production water rates after first re-sampling
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(d) Production water rates after second iteration
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(e) Production water rates after second re-sampling
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(f) Production water rates after third iteration

Figure 12 Water production rates for the parameterization with random seeds.

seems to not improve the channel estimation and the data match and predictions, showing the same 
trend as the older parameterization. All of these proves the robustness of the parameterizations that 
account for the spatial dependence structure inherited from the training image.
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(a) Production water rates from initial ensemble
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(b) Production water rates after first iteration
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(c) Production water rates after first re-sampling
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(d) Production water rates after second iteration
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(e) Production water rates after second re-sampling
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(f) Production water rates after third iteration

Figure 13 Water production rates for the parameterization with fixed seeds.
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Table 1 The RMSE calculated for total rates

Gravity center Random seed Fixed seed
Initial Updated Initial Updated Initial Updated
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