GEOPHYSICS, VOL. 55, NO. 4 (APRIL 1990); P. 410-421, 11 FIGS.

Split-step Fourier migration

P. L. Stoffa*, J. T. Fokkemat, R. M. de Luna Freire§, and W. P. Kessinger*

ABSTRACT

The split-step Fourier method is developed and
applied- to- migrating- stacked- seismic data in- two- and-
three dimensions. This migration method. which is
implemented in both the frequency-wavenumber and
frequency-space domains, takes into account laterally
varying velocity by defining a reference slowness
(reciprocal of velocity) as the mean slowness in the
migration interval and a perturbation term that is
spatially varying. The mean slowness defines a refer-
ence vertical wavenumber which is used in the
frequency-wavenumber domain to downward con-
tinue the data across a depth interval as in constant-
velocity phase-shift migration. The perturbation term
is used to define a *‘source™ contribution that is taken
into account by the application of a second phase shift
in the frequency-space domain. Since the method does
not include the effects of second and higher order
spatial derivatives of the slowness field, the method
theoretically is accurate only when there are no rapid
lateral slowness variations combined with steep angles
of propagation. However, synthetic and real examples
indicate that good results are obtained for realistic
geologic structures.

INTRODUCTION

Migration methods differ primarily by their method of
implementation. Finite-difference approximations to the
wave equation accommodate lateral velocity variations, but
the differential operators required by the wave equation
must be approximated (Baysal et al., 1983). Depending on
the order of the approximation used, the spatial sampling,
and whether the implementation is implicit or explicit,
problems in accuracy and stability may arise. In phase-shift

migration, which is implemented in the frequency-wave-
number domain (Stolt, 1978; Gazdag, 1978), the differential
operators are applied exactly and the method is uncondition-
ally stable. However, because the wave equation is solved in
the frequency-wavenumber domain, a constant velocity
must be used for each depth interval being migrated. Gazdag
and Sguazzero (1984) introduced phase shift plus interpola-
tion as one way to circumvent this problem. In this case,
several constant-velocity migrations are performed for each
migration interval and the results are combined to form the
final migrated image. In this approach, each constant-
velocity migration requires the application of a phase shift,
followed by an inverse spatial Fourier transform. Pai (1985,
1988) generalized frequency-wavenumber migration to ac-
commodate arbitrary velocity variations. Pai’s method is
based on a matrix integral formulation that takes into ac-
count the coupling between plane-wave components due to
lateral velocity variations. Kosloff and Kessler (1987) devel-
oped a similar formulation but used a Chebychev series
expansion to the formal solution for the downward contin-
ued pressure wave field and its vertical derivative.

The split-step Fourier method is an alternative to the
above methods. It is based on a modification to phase-shift
migration that makes it possible to accommodate lateral
changes in the velocity for each migration interval. The
method was first employed by Hardin and Tappert (1973),
Tappert (1974), and then by McDaniel (1975) to model
horizontal sound transmission in a stratified water column
overlying sediment. The original development was based on
the parabolic approximation to the acoustic wave equation.
Here the method is developed using the exact vertical
wavenumber as demonstrated by Freire (1988). If a migra-
tion interval has no lateral velocity variation, the method is
exact and the wavenumber is correct up to 90 degrees. Also,
if the propagation is vertical, the method is exact for any
lateral velocity variation.

The split-step Fourier method is of interest because it has
the advantages of phase-shift migration but can still accom-
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Split-step Fourier Migration 411

modate lateral velocity variations. The lateral velocity vari-
ations are taken into account as a perturbation, and conse-
quently only one additional spatial Fourier transform is
required for each depth extrapolation. This behavior con-
trasts with phase shift plus interpolation, which requires a
complete phase-shift migration, including the Fourier trans-
form, for each velocity used in the depth extrapolation. By
taking into account lateral velocity variations (without the
need for multiple phase-shift migrations), the split-step Fou-
rier method makes it practical to realize the advantages of
phase-shift migration. Some of these advantages are faithful
migration of the frequency band of interest, accurate imple-
mentation of the differential operators, unconditional stabil-
ity, and the ability to migrate through a large layer in one
step, e.g., the water column in offshore areas. Computation-
ally, the split-step Fourier method also has the advantage
that only the frequencies of interest must be migrated, a
result particularly valuable in three-dimensional (3-D) migra-
tion, because it may be possible to solve the problem in
computer memory without the need for costly transfers to
and from disk.

OVERVIEW OF THE SPLIT-STEP
FOURIER MIGRATION METHOD

In a recent paper by Wen et al. (1988), 3-D modeling and
migration were discussed using a Fourier transform ap-
proach. In Wen’s paper, as in most previous papers that
employ Fourier transform methods to solve the acoustic
wave equation, a constant lateral velocity is required. In the
split-step Fourier method, the interval slowness (reciprocal
of interval velocity) is divided into two terms: a constant
reference slowness and a perturbation term. The reference
slowness is used to migrate across the interval in the
frequency-wavenumber domain just as in the case of con-
stant-velocity phase-shift migration, but the inclusion of the
perturbation term results in a correction which is applied in
the frequency-space domain as a second phase shift.

Consider the propagation of compressional waves in an

acoustic constant-density medium using the wave equation:
"

d
Vip-u?—p=0, 1
pP-ut—5p (1)

where p = p(x, y, z, £) is the pressure and u = u(x, y, z) is the
medium slowness, which is defined as the inverse of half the
propagation velocity w(x, y, z) = 2/(x. ¥, 2) as required by
the exploding reflector model (Loewenthal et al., 1976).
After transforming equation (1) into the frequency do-
main, we have
VP + wi’P =0, (2)

where

P(r, z, w) = fx plr, 2,0 e ™™ dy, 3)

-

and r is the horizontal position vector defined through r =

xip + yi, with
r = Irl= ‘\/,\‘2+y2.

We decompose the slowness field u(r, z) into two compo-
nents:

u(r, z) = uy(z) + Aulr, z), 4)

where we define uy(z) as the reference slowness which we
will specify as the mean. All variations are accommodated
by the Au(r, z) component. Substituting into equation (2), we
have

VP + 0lugP = — wQuyAu+ Aud)P, )
or

VP + olulP= -8, 7, w), ©)
where S is defined as

S(r, z, w) = 0 2uy Aulr, 2) + Au’(r, 2)]P(r, z, ).
@)

Thus, the homogeneous acoustic wave equation (2) has
been transformed into the inhomogeneous wave equation (6)
by the inclusion of a source-like term S(r, z, ) due to the
slowness variations.

The solution to equation (6) that is used by the split-step
Fourier method is based on ignoring the Au? contribution
and can be summarized as follows: Fourier transform
the previously migrated upgoing wave field at depth
2. P_(r, z,, w), from r to Kk, space:

P_(k,. Ty @) = fx P_(r,z,, ») e® T gr, (8)

-x

where k, is the horizontal wave vector defined by k, =

keig + kyig .
ke =1k, 1= \/kZ+ k..

Apply a phase shift based on the vertical wavenumber
computed using the reference slowness for all frequencies
and wavenumbers:

Pik,,z,,Az, 0)=P_(k,. z,, w) eods, )

where

ko, = \/ i — kI = wuy\/1 — (k,/oug)? (10)

and u, is the mean slowness for the interval Az with Az
assumed to be small. Inverse Fourier transform the phase-
shifted data P, (k, . z, . Az, w) from k, to r:

Pir,z,, 8z, w)

1\2 e
=(2—) f Pk, 2., 8z, @) e™™ T dk,.  (11)
™

-

Next, apply a second phase shift due to the perturbation in
the slowness, Au(r, z) = u(r, z) — uy(2), in the interval Az:

Po(r, 2341, w) = @3E8p (6 7 Az w).  (12)

Integrate P(r. z,.,, w) over all the frequencies of interest,
€.g., w; 10 w;, to obtain the migrated data for the current
depth TN Ie
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1\? o
p(l", Zn+lyo)=<~> f P_(r, Z.,,+],UJ) dw. (13)
2m Wl

The first phase shift is identical to that employed for a
constant-velocity phase-shift migration. The second phase
shift acts as a correction term providing a time shift based on
the difference between the actual and reference slownesses
at each spatial position. Just as in other migration methods,
this process is repeated for the next migration interval. For
a 3-D problem, forward and inverse two-dimensional (2-D)
complex-to-complex spatial Fourier transforms are required
for each migration interval. This is the major computational
requirement of the method. For a 2-D migration, only a
one-dimensional (1-D) complex-to-complex spatial Fourier
transform is required for each migration interval.

DERIVATION OF THE SPLIT-STEP FOURIER
TRANSFORM MIGRATION METHOD

We now formally derive the method. The accuracy of the
method is detailed in the Appendix. Equation (6), after a
spatial Fourier transform, can be expressed in terms of the
horizontal wave vector k, as

52
- kP = -8, (14)

where $=S5(k,, z, w).
We now rewrite equation (14) in terms of the reference
vertical wavenumber ke,

5P+ k2 P=-5, (15

where the reference vertical wavenumber k,, corresponds to
the constant-slowness case described by equatlon (10), and
where we choose the real part Re {k} = 0.

During migration, we extrapolate the upgoing wave field at
depth z,, P_(k,, z,, ), downward to the next level Zpsl s
ignoring any wave-field interactions. In poststack migration
of common-midpoint (CMP) data, this is a reasonable ap-
proximation, since the effect of multiples can often be
ignored. Including the effect of the source contribution, the
required extrapolation is

P—(krv ln+1> (0) =P_(l(,, 2y ﬁ))l"‘"
zn+1 CXP { 'kw (Z Ln+ I)] .
- Sk, .2, w)dz'.  (16)
2 2ik,,

which is initiated by P_ ¢k, Z,,w)=P_(k,, Zg, w), a known
quantity. At this point, no restrictions have been made on
the slowness field. Equation (16) could be solved numeri-
cally by integrating the source term for any arbitrary slow-
ness' varratium.

To complete the development of the split-step Fourier
method, we assume that the lateral variation of the slowness
is small compared to the reference slowness Uy:

uy > 1Au(r, 2)!. (17

Consequently, source terms of the order Au® can be
dropped and, consistent with an assumption of no wave-field

interaction, we replace the total wave field in equation (7) by
the upgoing wave field. This leads to the following approxi-
mation of the source S(r, z, w):

S(r, 7, ) = 2wluyAulr, 2)P_ (r, z, w). (18)

For migration, the reference slowness u,, is specified for the
depth interval z,, to z,,, . That is, for each depth interval, we
are free to redefine 4, based on the true slowness field «(r, z)
at this level. Since we expect the lateral slowness variation
to be less than the vertical variation, this is a reasonable
approximation.

Now, we consider the source term of equation (18) in more
detail. The corresponding spatial Fourier transform is

Sk, , 2, w) = 20, f Aak, — k., 2)P_(k'z, w) dk;,
(19)
where Aa(k,, z) is the spatial Fourier transform of A u(r, z).

Substituting S(k,, z, w) into the integral 7 of equation (16)
and substituting for k., from equation (10), we have

[:f:"—l d

X 2w3uy f Ak, — ki, 2) P_(k,, 2', w) dk}, (20)

_exp {iwug[1 - (kloug) 1 2,4y — 20}
z 2iwug[l — (k,foug)?] 2

which, after expanding the denominator and keeping only
the first term, simplifies to

= — .'wj‘"“ dz’j Aak, -k, z)

X P_(k}, 2, w) e G =00 gt g, @n
where

k= wugll — (kilwug)?]'"?, )

<0

and e is the error term that is analyzed in the Appendix.

We now define P (k,, z, d, ) as the upgoing wave field
extrapolated to a depth between levels z, and z,,,. First,
considering the slowness constant between z and z + d, we
have

Pk, .z d w)=P_(k,z, 0) exp (ik;, d),  (23)
and consider

In TI= 2y
and

p=z+ds 2,4, (24)

where d is the nonnegative depth step of the extrapolation.
In particular, we note
Pk, ,z,0,w)=P_(k,, z, 0. (25)

Substituting equation (23) into equation (21) and neglecting
the error term e, we have ¢
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- - Taking the inverse Fourier transform from k, to r space, we
I=—in f dz’' f Aakk, ~k/;, 2') can transform the convolution of A& with £, in the k,
2 - domain to the product of their inverse Fourier transforms in

X Pk}, 2 dyers o) dk. (26 ~ ther domain:

where P_(r, 2,1, w)=Pi(r, 2,, Az, w)
dn+l(z,) =Zn+ — z.
Substituting equation (26) into equation (16) resuits in +iw f‘"” dz'Bulr, 2') P(€, 7', dysy, ©) (28)

P‘(kr’zrﬁ'ls w)=P|(kry ZII’AZ’ (A))

N R . , where Pi(r, z, d, w) is defined as the inverse Fourier
+iw dZ All(k,—k,f, Z') Pl(krl3 3, dIH-I » (1)) dk;- (27) transform of i)l(kr? 2, d’ w),
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FiG. la. (upper) Synthetic seismic data for a 45° dipping reflection, where the velocity varies laterally as indicated
(lower). In this example, Ax = 20 m and the sampling interval is 4 ms. 256 traces and 517 time samples were used.
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F1G. 1b. Migrated data of (a). The deviation of the migrated data from the proper position (as indicated by the solid
line) is the greatest where the rays deviate significantly from vertical incidence. Only every other migrated trace is
displayed. Frequencies 0-40 Hz were migrated and 13 traces where used in the absorbing boundary. The migration
interval was 20 m. ,
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Pi(r, z, d, w) =

1 x . B
(211)2 f e ell\:“dp‘(kr’ Z, w) dkr .

(29)

For Az = z,,, — z, sufficiently small, the integral of
equation (28) can be evaluated using the trapezoid rule,
which, after substituting P_(r, ywty w) for Pi(r, z,,,, 0, w),
results in

Ja+t
f dZ’Aule, ') Py(r, ', 2pey — 2, w)

Az
=7 [A“(r’ Zn-H) P—(r! Intla w)

+Aulr, z,) Py(r, z,, Az, w)]. (30)

Substituting equation (30) into equation (28) gives

!
P_(r. 2,41, w)[l -EimAu(r, z,,ﬂ)Az:l

1
=P(r, z,,, Az, w)‘:] + 5 iwAu(r, z,,)AzJ. a1

Reanembering that we have ignored terms on the order of
Au(r, z), equation (31) is equivalent to

Q5 10
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Fi6. 2a. (upper) Exploding reflectors for a circular trough
model used to generate the synthetic seismic data of Figures
2b, 3a, and 4. (lower) The laterally varying velocity function
used to generate the synthetic data of (b).

P(r, 241, ) exp [~ (12)iwAu(r, z,4,)Az]
=P(r, z,, Az, w) exp [(1/2)iwAufr, x)AzZ]. (32)
Solving for P_(r, Zp+1, @) giVEs
P_(r, 2,.1, w) = exp {(1/2)iw[Aur, Zn+1)
+ Au(r, z,)]JAZ}P ) (r, 2, , Az, w). (33)

If we stop and consider the case where there is no vertical
slowness variation in the depth interval Az, i.c., Au(r, 7) =
Aulr) only, then

P(r, 2pey, 0) = ™08 p (2 Az w),  (34)
where the spatial Fourier transform of Pi(r, z,, Az, u) is
Pk, 20, Az, 0) =P_(K,, z,, w) e 82 (35

which are equations (9) through (12) used in the split-step
migration described earlier.

EXAMPLES

We illustrate split-step Fourier migration with several
examples. In all the synthetic data examples, the data were
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Fic. 2b. Synthetic data corresponding to the model of Figure
2a. 128 traces are shown with Ax = 20 m. The time sampling
interval was 4 ms.
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FiG. 2c. Data of (b) migrated using the split-step Fourier
method. Frequencies 0-40 Hz were migrated and 13 traces
were used in the absorbing boundary. The migration interval
was 20 m. ’



Split-step Fourler Migration 415

generated using either ray-tracing or finite-difference model-
ing programs. All of the migration examples used the split-
step migration method as defined by equations (34) and (35).
To diminish reflections from the edge of the data, an expo-
nentially damped taper was applied. This absorbing bound-
ary condition was applied in the spatial domain for every
frequency at every depth interval.

To test the ability of the method to accommodate lateral
velocity changes, a 45-degree dipping reflector was used.
Figure 1a (lower) shows the laterally varying velocity func-
tion used to generate the time section that was migrated,
Figure 1a (upper). No vertical velocity variation is present.
The model data were generated at a 4 ms time sample
interval and with a trace separation of 20 m. F igure 1b shows
every other trace of the migrated result. The solid line
indicates the correct reflector position in depth. The devia-
tion is greatest at the deepest point of the reflector. where
the reflection events have a significantly nonvertical angle of
incidence at the surface. In this example, the events are
migrated with little error until the midpoint of the section. At
the worst point, the deviation between the true and migrated
dips is 1.5 degrees. The maximum lateral velocity variation
in this example is 1.5 to 1, or a lateral slowness variation of
0.66 to 1. In this example we used 256 traces. Frequencies of
0 to 40 Hz were migrated and 13 traces were used in the
absorbing boundaries. The migration interval was 20 m, and
113 depth samples were generated.

Figure 2a is an example of a semicircular trough where the
velocity varies only laterally. Figure 2a (lower) shows the

|
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F1G. 3a. (upper) velocity model with a lateral discontinuity
where the velocity changes from 3.0 km/s to 3.3 km/s.
(lower) synthetic data corresponding to the exploding re-
flector model with this discontinuous velocity function. Data
parameters are the same as Figure 2.
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velocity function which varies linearly from 3.0 to 5.7 km/s,
a velocity ratio of 1.9 10 1, i.e., a nonlinear lateral slowness
perturbation of —31 to +31 percent. Figure 2a (upper) shows
the initial exploding reflectors used by the finite-difference
modeling program to generate the synthetic data of Figure
2b. Figure 2c is the migrated result using the split-step
Fourier method. In this case the results are good, even
though the total slowness perturbation is large, because the
velocity varies slowly. In this example, frequencies from
0-40 Hz were migrated and 13 traces were used in the
absorbing boundaries. The migration interval was 20 m, and
75 depth samples were generated.

To illustrate the effect of an abrupt velocity discontinuity,
the same exploding reflector model was used but with the
velocity function of Figure 3a (upper). The resulting finite-
difference data are shown in Figure 3a (lower) and the
migrated result is shown in Figure 3b. 7In this case, the
velocity discontinuity is 10 percent and the slowness pertur-
bation changes from —4.76 to +4.76 percent of the mean
slowness. Although the method should not be able to accom-
modate such a rapid transition zone, the result is still good
because the magnitude of the perturbation is small. If we
increase the velocity discontinuity from 3 to 5.1 km/s,ie.,a
slowness perturbation of 52 percent, the method fails (Figure
4) because of the magnitude and abruptness of the transition,
even though the slowness perturbation is smaller in magni-
tude than the total slowness variations for the case of Figure
2. Note, however, that the horizontal events in Figure 4 are
correctly positioned. Correct positioning would not be pos-
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Fic. 3b. Data of (a) migrated using the split-step Fourier
method. Reasonably good results are obtained because the
velocity discontinuity is only 10 percent. Migration param-
eters are identical to those used in Figure 2.
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FiG. 4. Migration results for data s1m|lar to that of Fxgurc 3,
but for the case where the velocity changes dlscontmuously
from 3 to 5.1 kmy/s. In this case the large and abrupt change
is not taken into account properly by the split-step Fourier
method. Data and migration parameters are the same as
those used in Figures 2 and 3.
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sible with ordinary phase-shift migration. In both examples,
the data and migration parameters were identical to those
used in the example shown in Figure 2.

A more realistic situation is illustrated by a finite-
difference model of a salt dome. Figure 5a shows the model
and the velocity function. The reflection coefficients were
calculated from the vertical change in velocity. Figure Sb
shows 256 traces of synthetic finite-difference data for a
near-offset gather (source-receiver offset of 287.5 m). (For
our purposes in this example, we have assumed that this is
equivalent to a zero-offset section.) For these data, the trace
separation is 25 m and the time sample interval is 2 ms.
Figure 6 is the result of the split- -step migration. The results
are good even though there are considerable and abrupt
lateral velocity variations in the vicinity of the salt dome,
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FiG. 5a. Interval velocities and reflector locatlons for a .salt dome model. The reflector locations can be used to
evaluate the migration results.
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€.g.,2.7to 4.6. In this example, frequencies of 0-40 Hz were
migrated and eight traces were used in the absorbing bound-
aries. The migration interval was S m.

Figure 7 is a detailed comparison of the split-step method
(left) with phase-shift migration for a laterally invariant
velocity function (right). The reflectors of Figure 5a are
superimposed on both plots for comparison. The split-step
method has imaged the flanks of the salt dome successfully.

1.0 2.0
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The French (1974) model was used to test the split-step
method for 3-D migration. The data were generated using the
Sierra Quick™ ray-trace modeling software to synthesize a
zero-offset seismic section for the 3-D model. The trace and
line spacing are 12.2 m, and the time sampling interval is
5 ms. 64 lines were generated with 128 traces per line. The
model results are ray theoretical and do not include true
diffraction effects. Figure 8 shows seismic line 9 before
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FIG. 6. Split-step migration of the data of Figure 5b. The result should be compared to the reflector locations in

Figure 5a. Although some noise is

present, the overall quality of the image is good even though the velocity

constrasts are as high as 1.7 on the flanks of the dome. No smoothing of the velocity function was performed. Also,

no time or trace interpolation was d
The separation between traces was 25 m.

eight traces were used in the absorbing boundaries.

one. In this example. the input data consisted of 4 s of data sampled at 2 ms.
The migration interval was 5 m. Frequencies 0-40 Hz were migrated. Only
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Fic. 7. Detailed comparison of the split-step migration (left) and a depth-only variable velocity phase-shift migration

(right). The reflectors of Figure Sa are

method to image the flanks of the salt dome accurately.

superimposed on both plots for comparison. Note the ability of the split-step
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(upper) and after (lower) the split-step Fourier 3-D migra-
tion.

In this example, frequencies 040 Hz were migrated and
eight traces and eight lines were used in the absorbing
boundaries. The migration interval was 1.83 m. The split-
step migration uses the entire 3-D volume simultaneously, so
that both inline and crossline events are migrated correctly,
in contrast to 2-D by 2-D methods. which may be poor
approximations in complex geologic situations. Note in this
figure that the deepest event at 1100 m (bold arrow) is nearly
horizontal, indicating that the overlying lateral velocity
variations have been taken into account correctly. Only
minor distortions occur under the intersection of the dome
and the horizontal event.

Figure 9 shows a depth slice from the migrated volume.
The position of the depth slice is indicated on the migrated
depth section of Figure 8. The upper plot displays the
theoretical locations of the reflectors generated by taking
first differences of the velocity function. The lower plot is the
split-step Fourier migration result. The spatial position of the
final image is quite good.

Figure 10 is a real data example of 2-D split-step migration
for data acquired in the Carolina Trough offshore the East
Coast of the United States. Figure 10a shows the original
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FIG. 8. (upper) Line 9 from the synthetic 3-D zero-offset data
volume for the French (1974) 3-D model generated using the
Sierra Quick™ ray-irace modeling software. (lower) 3-D
split-step Fourier migrated result for Line 9.

DEPTH (km)

stacked data in the vicinity of the continental shelf edge. The
data were migrated to depth using the split-step method
(Figure 10b) and then converted back to time by resampling
to a 4 ms sample interval for comparison (Figure 10c). [For
this migration example interval velocities were initially de-
rived by interpreting the stacking velocities and using Dix’s
(1955) formula. The resulting interval velocities were then
refined by transforming the CDP gathers to the t-p domain
and iteratively performing a T-p NMO correction (Stoffa et
al.. 1981). The final interpreted interval velocities were then
smoothed prior to migration.] In this example, 2048 traces
separated by 12.5 m were migrated. The number of input
time samples was 2048, and frequencies of S to 50 Hz were
migrated. The migration interval was |6 m, and output depth
samples were generated by interpolation every 8 m. Absorb-
ing boundaries of 50 traces were used. Migration through the
water column was done in one 800 m interval using a velocity
of 1.5 km/s. The CPU time on a Cray X-MP/24 supercom-
puter was 1159 s to migrate to a depth of 8 km.

Figure 11 illustrates both 2-D and 3-D split-step migrations
of 3-D data collected offshore Costa Rica. The diffractions
are from the top of the accretionary prism complex (arrows)
in this subduction zone. The upper section is part of a
stacked line from the 3-D survey consisting of S12 traces,
each separated by 33.3 m. These data were migrated to a
depth of 6.9 km using the split-step algorithm and then
converted back to time for comparison (middle). Although
many of the diffractions from the rough surface of the
accretionary prism complex have been removed, the image
of the top of the prism complex is still distorted. Figure 11

FiG. 9. (upper) Reflector locations for the French model
obtained by taking first differences of the 3-D velocity field at
a depth of 0.853 km. (lower) Corresponding depth slice after
the split-step Fourier migration. The edges of each dome are
correctly imaged. Figure 8 indicates the position of this
depth slice in section format. 4



FiG. 10a. Stacked section col-
lected over the continental
shelf edge in the Carolina
Trough region. 2048 traces
with a separation of 12.5 m
were used to migrate the data
shown in (b). Only every
other trace is displayed here
(25 m display spacing).

FiG. 10b. Depth migration of
Carolina Trough data. Every
other trace is displayed. Fre-
quencies 5-50 Hz and absorb-
ing boundaries of 50 traces
were used in the migration.

FiG. 10c. The depth-migrated
Carolina Trough data of (b),
converted to time by resam-
pling. This time display allows
a direct comparison with the
original data of (a).

DEPTH (km)
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FiG. 11. Stacked 3-D data collected over the accretionary
wedge offshore Costa Rica. 32 lines of 512 traces from the
3-D data volume were used to compare 2-D and 3-D split-
step migrations. Each line has 512 traces with a spacing of 33
m. The line spacing was 50 m. ( Upper) portion of stacked dip
line in the middle of the 32 line data volume. (Middle) same
line after 2-D split-step migration. The depth migrated data
were resampled to time for comparison. (Lower) same line,
after 3-D split-step migration of the 32 line data volume,
Arrows indicate the top of the accretionary prism.

(lower) is a 3-D split-step depth migration of 32 lines each
separated by 50 m. The data were then converted back to
time for comparison. In the 3-D migration, the image of the
top of the prism complex (arrows) has much better lateral
continuity.

In both the 2-D and 3-D examples, migration through the
water column was performed in one 2.5 km migration
interval using a velocity of 1.5 km/s. The migration interval
through the section was 80 m with output depth samples
generated by interpolation every 8 m. The number of 4 ms
interval input time samples was 2048, and frequencies of 5 to
45 Hz were migrated. The data were converted back to time
by resampling to a 4 ms sampling interval. Absorbing bound-
aries of 45 traces and six lines were employed to minimize
edge effects. The CPU time on a Cray X-MP/24 supercom-

puter was 82 s for the 2-D migration and 2915 s for the 3-D
migration.

DISCUSSION

The split-step Fourier method offers an alternative to
finite-difference migration methods. The method is similar to
constant-velocity phase-shift migration but takes into ac-
count lateral velocity variations. Theoretically, the velocity
must be slowly varying to be properly taken into account.
Practical experience, however, indicates that data with even
reasonably rapid velocity transitions can be imaged effec-
tively. Unlike phase shift plus interpolation, which requires
a constant-velocity migration for each velocity in the current
depth extrapolation interval, the split-step Fourier method
requires only.one additional spatial Fourier transform. Like
phase-shift migration, the method is unconditionally stable,

Some practical considerations can be used to improve the
performance of the split-step migration method. First, only
the frequencies that are well defined need to be migrated.
Since the computation time and storage requirements are
directly proportional to the number of frequencies used,
limiting the frequencies to those that are well determined in
the data reduces the computation time as well as the storage
requirements.

Second, since we alternate between the frequency-
wavenumber and frequency-space domains, various types of
boundary conditions can be used to minimize edge effects. In
all the examples shown, we simply applied an exponentially
damped taper to the edge of the data volume in the space
domain for each frequency during each downward continu-
ation. Practical experience indicates that a taper length of
one-eighth the number of traces per line gives reasonable
results.. More sophisticated. boundary cenditions, however,
can also be implemented (Clayton and Engquist, 1980).

Third, it may be possible to move down to the zone of
interest in one or several large steps using the mean slowness
for each depth interval. For marine data this makes it
possible to migrate through the water column in one step.

Finally, we note that since the computation is performed
independently for each frequency, the migration of each
frequency can proceed in parallel, and the results can be
summed at the end of the computation for each depth. This
makes it possible to consider implementations of the algo-
rithm in parallel computer architectures.
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APPENDIX
ERROR CONSIDERATION FOR THE SPLIT-STEP FOURIER METHOD

The error in the split-step Fourier method can be analyzed
based on the way the lateral slowness variations are decom-
posed into a reference slowness uy(z) and a perturbation
Au(r, 7} and the way this perturbation is taken into account.
First, the split-step Fourier method assumes that the pertur-
bation term is sufficiently small with respect to the reference
slowness for the current depth extrapolation interval Az, so
that terms on the order of Au?(r, z) can be ignored. For
depth extrapolation across intervals where no slowness
variation exists, i.e., Au(r, z) = 0, the method is exact and
reduces naturally to the phase-shift migration method. When
the slowness does vary in the depth interval, the principal
error in the method can be attributed to the neglect of the
second-order variations in the slowness and the higher order
terms of equation (20) which are neglected in equation (21).
Comparing equations (20) and (21), we find that this error &
is

£ = iw f“” dz’ f dk/Aak, -k, ) P_(k], 7, »)
Zn —%

% {eiumo[l — W) (201 - 21)

(1= (& fwug) 2] 72 (A-D

To find the order of this approximation, we expand the two
square root terms in each of the exponentials within the
brackets, drop all terms greater than second order. and
expand the denominator term. The result is

_exp {ioug[1 = (k /wug) (2, — z')}}

ei(.mo(z,,H - z’){e 7ll2imuu(ky’/wunflz(ln41 -7)

_ e—l/2fumu(k,/mun):(lnol —2')[1 + l/Z(k,/(x)uo)z NI .]}
(A-2)
The leading exponential does not depend on k! and can be
removed from the integral over &/ in equation (A-1). Expand-

ing the remaining exponentials and dropping all but the
second-order terms, we have

1 = iy (ko) (zpey — 2')

= [1 = 12iwug (kJwug) 2zpe ) ~ 2)J1 + 1/2(k, loug)?].
(A-3)
Neglecting terms of order &', expression (A-3) reduces to

1 o (Zar1 —27) 1
-k k) T o)t (A
2 Wiy 2

This reduces the error expression of equation (A-1) to
Tn+l . ' o«
Ezf dzl(,tumu(z.nn*z Jj dk,’[(kr’z—k,z)(z,,ﬂ—z')/Zuo

— ik 2ous + 0(kY + 0(k! %)
X Aak, -k, z') P_(k!. 2', w), (A-5)

which shows that the second and higher order derivatives of
the slowness perturbation with respect to the horizontal
coordinates will be neglected.



