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1

Introduction

Anfangen im Kleinen,
Ausharren in Schwierigkeiten,
Streben zum Großen.

Alfred Krupp (1812 - 1887)

Ever since the 1973 oil crisis there has been an ongoing discussion over the world en-
ergy demand. With respect to this it has always been of particular interest whether
the oil resource base would be sufficient to meet this demand.
The International Energy Outlook published by the Energy Information Administra-
tion [2005] projects a growth of the total worldwide energy use from 412 quadrillion
Btu1 in 2002 to 645 quadrillion Btu in 2025. It is, furthermore, expected that fossil
fuels such as oil, natural gas and coal will continue to supply most of the energy
used with fossil oil being the most important energy source and that there will be
sufficient oil to meet the worldwide demand until at least 2025. However, the trend
clearly implies that the growing demand for oil cannot be met solely by the remain-
ing reserves but that existing reserves need to be exploited more efficiently and new
reserves need to be found.
It is actually this need to discover new reserves and monitor the proven ones that
establishes the importance of geophysical exploration techniques and, in particular,
the importance of the seismic method. As explained by Telford et al. [1990], the
seismic method is especially well suited for the exploration of hydrocarbons. It al-

1British Thermal Unit, 1 Btu = 1.05505585262 kJ.
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lows a great penetration depth, and the result – an image of the probed subsurface
– exhibits high accuracy as well as high resolution.

1.1 The seismic method – seismic data acquisition and data

processing

Exploration seismology (‘the seismic method’) has developed from earthquake seis-
mology. An earthquake usually occurs when a part of the subsurface is fractured. At
the fractured surface seismic (elastic) waves are generated. These waves travel out-
ward and can be recorded at the earth’s surface. Seismologists then use the recorded
data to extract information about the rocks through which the waves traveled.
Exploration seismology basically uses the same type of measurements. Here, artifi-
cial sources are used to generate seismic waves. Explosives, vibrator trucks (for land
acquisition) and air guns (for marine acquisition) are employed. The reflected waves
returning to the earth’s surface are recorded with receivers, such as geophones or
hydrophones. In Figure 1.1 a typical situation for marine data acquisition is shown.
The recorded seismic data of such an experiment consist of a number of so-called
traces. Each trace represents the motion of the ground in time, respectively the
pressure variations for marine acquisition, which is related to the waves arriving at
the receiver.

Figure 1.1: Marine data acquisition. (a) Photograph of a vessel towing the marine acqui-
sition devices (taken from the Veritas website). (b) Sketch of the marine data acquisition.
Here, one source and one streamer, which contains the hydrophones, are shown. Further-
more, the raypaths of the reflection from one interface are indicated.
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Figure 1.2: (a) Three reflections occurring on a measurement for one source/receiver pair,
(b) the corresponding seismic trace, (c) three reflections occurring on a number of traces of
a particular shot gather and (d) the shot gather showing the reflection events.

The traces contain information about the subsurface, because energy is reflected
whenever there is a heterogeneity in the elastic properties of the subsurface, e.g. at
the interface between two layers of different types of rock.
In Figure 1.2b a seismic trace is shown containing the reflection events of an experi-
ment for the simple subsurface model presented in Figure 1.2a. However, evaluating
only one trace is not enough to build a picture of the subsurface. To cover a large
area in the subsurface, a number of geophones is planted along lines (2D seismic) or
over a certain area (3D seismic), recording the echoes of a number of shots at differ-
ent source positions. In Figure 1.2d a so-called shot gather is shown, which contains
the reflection events of all traces for the geophones planted along a 2D line for one
shot position (see Figure 1.2c). If one takes a look at the shot gather presented,
which is representative for the raw data a seismic processor typically gets from a
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field crew, it is clear that one still cannot extract any information about the geologic
structures of the subsurface. It cannot be done for this simple example, and it is def-
initely impossible for more complicated data as obtained in the real world. Certain
processing steps have to be applied first to get a seismic image of the subsurface.
This seismic image, being the end product of the seismic method, is finally handed
over to geologists, geophysicists or reservoir engineers who will interpret the result.
In Figure 1.3a such a seismic image is presented showing a syncline structure, which
can also be found in reality (see Figure 1.3b).

(a) (b)

Figure 1.3: Geological syncline structure (a) in a seismic image, and (b) in reality.

1.2 Redatuming – a data processing step

Seismic processing has been defined by Sheriff [2002] as: ”Changing data, usually
to improve the signal-to-noise-ratio to facilitate interpretation.” To achieve this, a
number of different processing operations are subsequently applied to the input data,
such as rearranging the data, filtering, applying different corrections and migration
(imaging). Thereby, most of the algorithms applied during seismic processing are
optimized for regularly sampled data referenced to a flat surface (datum) and for
a simple velocity distribution in the subsurface. Unfortunately in reality, and espe-
cially for land acquisition, data are collected on irregularly sampled, rugged surfaces
and with complex structures in the subsurface. Typical features of such complexi-
ties frequently encountered in the near surface are, for example: varying water table,
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leached zones, buried river channels, sand dunes and high velocity beds. The vari-
ability in velocity and thickness of this near surface layer causes serious distortions
of the seismic data acquired at the earth’s surface. With the thickness of this near
surface layer being usually hundreds of meters, burying sources and receivers for the
acquisition at a depth level below the complexities is not a viable option. There-
fore, the data will be acquired at the surface, but, prior to further processing, the
data can be artificially referenced to a flat surface (new datum) below the distorting
complex near surface layer. As a data processing step, signals of virtual sources
and receivers at another level than the acquisition surface can be calculated without
actually moving them.

1.2.1 Static corrections versus wavefield extrapolation

In data processing the near surface effects are usually accounted for by applying so-
called static corrections [see e.g. Marsden, 1993]. Hereby time shifts are calculated
independently for every trace, assuming the waves to travel vertically downward
from the sources and upward to the receivers through the near surface, low velocity
layer, which is assumed to have a relatively smooth velocity distribution. However, in
situations of large elevation changes, large distances between surface and new datum
level and complex near surface layers with a heterogeneous velocity distribution, the
assumption of such vertical raypaths is not realistic (see Figure 1.4). In this case, a
processing method taking the true wave propagation in the datum layer into account
has to be applied.

true raypath

statics raypath

@@I

@@I

Figure 1.4: Comparison of the vertical raypath within the near surface layer assumed for
static corrections and the true raypath.

Wavefield extrapolation is such a method. Here, the data recorded at the acquisition
surface are transformed into a data set referenced to a new recording surface using
the scalar wave equation. That is, in one step the receivers are brought to the
new datum; in a second step the sources are moved to the new datum level. This
processing step is called datuming or redatuming, because it references the data to
a new datum. Its ability to remove distortions from the input data is illustrated in
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Figure 1.5: (a) Velocity model with a near surface anomaly. The datum is indicated by the
black line. (b) Seismic shot gather distorted by the near surface anomaly. (c) Redatumed
seismic shot gather. Note that the distortion has been removed.

Figure 1.5. Figure 1.5b shows a shot gather, which is clearly distorted by a near
surface complexity. For the gather presented in Figure 1.5c redatuming has been
performed towards a reference surface below the near surface anomaly. Thereby, the
distortions have been removed.

1.2.2 Inventory of existing wavefield extrapolation method s

The wavefield extrapolation techniques can generally be divided into three different
categories:

• the Kirchhoff summation methods,

• the phase shift methods,

• the finite difference methods.

All three methods can either be applied to post-stack data, or, by splitting up the
extrapolation of the sources and the receivers in two steps, to pre-stack data.

Kirchhoff summation methods

This concept has first been presented by Berryhill [1979] for post-stack data and was
later extended to pre-stack data [Berryhill, 1984]. It is based on the Kirchhoff inte-
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Figure 1.6: (a) Schematic illustration of the Kirchhoff method. (b) Schematic illustration
of the finite difference method.

gral, which can be derived from the scalar wave equation. By applying this integral
to a wavefield, which has been acquired at an arbitrary surface S, the wavefield at
any point xA lying inside S can be reconstructed. Performing the Kirchhoff integral
can be interpreted as calculating a weighted sum of delayed wavefield components
of the data acquired at the surface S (see Figure 1.6a). The required amplitude
weights a and the time delays τ can be derived from Green’s functions describing
the wave propagation between the points on S and xA. These Green’s functions are
the so-called redatuming operators.
A major advantage of this method is that the wavefield at xA can be calculated from
measurements along S without the need to construct the wavefield in-between.

Phase shift methods

Gazdag [1978] has been the first to introduce the phase shift method. While Kirch-
hoff summation methods are applied in the space domain, this method is applied in
the wavenumber-frequency domain. There, the downward continuation step can be
described as a simple multiplication of the wavefield at the acquisition surface with a
phase shift factor, the phase shift being defined as the multiplication of the interpo-
lation step ∆z in depth direction and the vertical wavenumber kz . This wavenumber
can be derived from the dispersion relation [see for example Claerbout, 1985], and it
can be considered constant for small depth intervals where the velocity is constant.
An advantage of this method is the ease of implementation and its fast calculation.
However, assuming kz to be constant for the depth interval means that the imple-
mentation has to be done in a recursive way in order to handle vertically varying
velocities correctly. Furthermore, it is limited to handling small lateral variations
of the velocity. To overcome the latter problem, various methods have been devel-
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oped including the ones of Gazdag and Sguazzero [1984] and Stoffa et al. [1990]. In
these so-called split-step methods parts of the computations are performed in the
space domain to account for the lateral velocity variations. However, also for these
approaches the lateral velocity variations are treated only in an approximate way.
A more exact treatment of lateral velocity variations can only be guaranteed if the
multiplication of the wavefield in the wavenumber-frequency domain is replaced by
a convolution in the space-frequency domain [see for example Holberg, 1988; Blac-
quiere et al., 1989; Thorbecke and Berkhout, 1994]. In this approach the higher
accuracy is paid for by larger computational effort.

Finite difference methods

The paper of Claerbout and Doherty [1972] has been the starting point in the de-
velopment of the theoretically most accurate but computationally most demanding
method used for wavefield extrapolation: the finite difference method. For this
method, the derivatives of the one-way wave-equation are approximated by finite
differences. The finite-difference wave-equation can then be used to expand the
input wavefield to any given point in time and space by performing a numerical
integration. This is illustrated schematically in Figure 1.6b.
In this method, laterally and vertically varying velocities can be handled. In fact,
the complexity of the velocity model that can be treated is only limited by the step-
size between adjacent grid points of the gridded velocity model. If one is willing to
invest a lot of computation time and memory, densely sampled grids can be used
to describe complex subsurface models with strongly varying velocities and complex
boundaries. However, in order to extrapolate a wavefield towards a certain loca-
tion, all points in-between need to be calculated and stored consecutively. Hence,
depending on the chosen grid of the velocity model a vast number of calculations
has to be performed per step, and a large number of data has to be stored. The
demand in terms of runtime and memory might not pose a serious problem in a 2D
situation, but it can certainly restrict the feasibility of this method with respect to
the 3D situation.
Another factor limiting the accuracy of the finite difference method is the chosen
implementation. For the implementation an expression for the derivative of the
wavefield is needed. As shown by Claerbout [1985], this derivative contains the
square root of the differential operator ikz . However, there is no straightforward
finite difference representation of this square-root expression. It can only be im-
plemented if the square root is regarded as a truncated series expansion. Thereby,
the truncation of the series expansion introduces errors in the implementation. The
more terms are neglected the less accurate the result of the wavefield extrapolation
will be. For reasons of computational efficiency, often only the low-order terms are
used comprising either one, two, three or four terms of the series expansions. These
equations are often referred to as the 5◦-, 15◦-, 45◦- and 60◦-equation, respectively.
Another, computationally very demanding, technique that also uses a finite differ-
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ence method is reverse time migration. There, the two-way wave-equation is used,
which enables a stable migration even of steep dips [see McMechan, 1982, 1983;
Chang and McMechan, 1989, 1990]. Because of the high computation costs, only
in the last few years the application of reverse time migration has become feasible
for practical applications [see Farmer et al., 2006]. It can handle 90◦ dips, turning
rays, multi-pathing and anisotropy and therefore overcomes the limitations of other
migration methods.

Comparison of the different methods

A very detailed comparison of these three methods has been presented by Bevc
[1995]. He actually computed an upward and a downward continuation of synthetic
2D pre-stack data. The data set being used has been modeled for a subsurface in-
cluding a syncline/anticline interface and two point diffractors placed directly above
and below that interface; the acquisition surface is a cosine shaped surface. From
there, the data are upward continued toward a flat surface just above the highest
point of the acquisition surface, the downward continuation is applied to the upward
continued data set back to the original acquisition surface. For the implementation
of the Kirchhoff method the near-field term was included, and it was applied in one
step in the time domain. For the implementation of the phase shift method Gazdag’s
approach was used, and the finite difference method was implemented utilizing the
45◦-equation for the calculation of the wavenumber kz.
For both, the upward and the downward continuation, the Kirchhoff summation
approach produces the best results with the least artifacts while being the most
effective method. Besides this, it is shown that the efficiency can be further in-
creased by neglecting the near-field part while the accuracy is not diminished in
most situations. Not only the results of the up- and downward continuation have
been compared but they also served as input for a migration whose results have been
taken into consideration as well.
Bevc [1995] names the need for a regular computational grid as a major disadvantage
for both the phase shift and the finite difference method. Furthermore, he stresses
that, unlike these methods, the Kirchhoff method can handle irregular acquisition
grids as long as no operator or data aliasing occurs [see for example Biondi, 2001],
and it handles the acquisition topography accurately and not in an approximated
version. Consequently, the Kirchhoff summation approach is considered to be the
most appropriate method to perform redatuming.
The Kirchhoff summation method indeed has been widely used for redatuming. It
has been applied successfully to correct for an irregular datum [see for example
Shtivelman and Canning, 1988; Bevc, 1997] and for complex subsurface structures
[Berryhill, 1986; Larkin and Levander, 1996; Hindriks and Verschuur, 2001; Kelamis
et al., 2002], and for subbasalt imaging [see Martini and Bean, 2002a,b].
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1.3 Shortcomings of the conventional redatuming methods wi th

respect to sparse 3D data

Redatuming employing the Kirchhoff summation method has only been applied to
2D data. The two other methods have, to the best of our knowledge, not been used
to perform redatuming, but have been used in 2D migration schemes. However,
nowadays there is a growing demand for 3D redatuming over complex overburdens
and from irregular acquisition surfaces because the amount of 3D data increases.
Consequently, the suitability of the three different methods and their limitations
with respect to the task of redatuming of 3D data need to be examined carefully.

1.3.1 Problem I – sparse input data sets

A problem that we face in the 3D situation that has not been an issue for the 2D
situation is the need for a sufficiently sampled input data set. In this context, ‘suffi-
ciently’ can mean different things for the three different methods being considered.

Kirchhoff summation methods

For a successful application of the Kirchhoff summation approach to redatum a 3D
pre-stack data set, the amplitude factors and time shifts correcting for the wave
propagation in the datum layer need to be known everywhere. Furthermore, a suf-
ficiently dense areal receiver coverage for each source as well as a sufficiently dense
areal source coverage for each receiver of the input data set is needed. And while
assigning the amplitude factors and time shifts does not pose a problem, the demand
for an input data set with a sufficiently dense areal source and receiver coverage at
the acquisition surface poses a serious problem.
The amplitude factors and time shifts, constituting the redatuming operators of the
Kirchhoff approach, can either be calculated in a model-driven manner from a known
velocity model of the datum layer, or they can be estimated from the input data
set applying the data-driven Common Focus Point (CFP) technology that has been
developed by Berkhout [1997a,b]. In case of a sparsely sampled input data set, this
technique needs to be combined with the infill method described by van de Rijzen
et al. [2004].
In order to understand the need for a densely sampled input data set, one has to re-
member that the redatuming process, employing the Kirchhoff summation method,
has just been described as performing a weighted sum over all acquired traces to
calculate one redatumed trace. As is known from the principles of integration the-
ory, such a summation will only give correct results if the distance between two
adjacent points to be summed together is sufficiently small. If the distances between
the neighboring points are too large, aliasing artifacts will be produced by the sum-
mation, and the achieved result will not resemble the desired result. In the ideal,
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densely sampled case, the summation of the corrected traces gives a constructive
interference of the contributing traces. The traces which do not contribute interfere
destructively, i.e. they cancel each other. However, choosing, or having to deal with
a sampling interval that is too large hampers this process. The non-contributing
parts will not cancel each other, but they produce artifacts. Furthermore, the am-
plitudes of the real events will be affected. That means that the output data of a
redatuming method utilizing Kirchhoff summation applied to sparse input data will
contain artifacts and show incorrect amplitudes. Therefore, the source and receiver
coordinates of the acquired traces, which are added together in the redatuming in-
tegral, have to have a sufficiently dense sampling. This is generally the case for the
densely sampled 2D lines. Unfortunately, conventional 3D acquisition geometries,
such as the cross-spread geometry for land acquisition or the marine parallel line
geometry, do not provide a dense sampling of all four coordinates describing the
source and receiver positions at the surface (see Figure 1.7). Usually, at least one
of these coordinates is sparse, meaning that the Kirchhoff summation approach for
redatuming cannot be applied to this kind of data unless it is being combined with
some sort of data interpolation process.

*
* * * *** * * ***

(a) (b)

Figure 1.7: (a) Marine parallel line geometry, and (b) land cross spread geometry.

Phase shift methods

In order to perform redatuming by applying the phase shift approach to 3D pre-stack
data sets, the input data set has to be Fourier-transformed to the wavenumber-
frequency domain. Calculating a Fourier transform means, again, the computation
of an integral, i.e. the calculation of a weighted sum. Consequently, this method too
requires an input data set that has a sufficiently dense areal coverage of the source
and the receiver coordinates at the acquisition surface. In addition, the source and
receiver coordinates need to be regularly sampled if standard Fourier transforms are
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used.
Therefore, the same restrictions apply to this approach as to the Kirchhoff summa-
tion approach concerning the density of the data sampling, and, additionally, the
requirement of regularly sampled data imposes a further limitation with respect to
the applicability to 3D data sets. In reality, a regular sampling of the acquisition
surface almost never happens for reasons like streamer feathering for marine data
acquisition and obstacles or limited accessibility for land data acquisition. Conse-
quently, the phase shift method for redatuming cannot be applied to 3D pre-stack
data as they are acquired in reality unless it is combined with a data interpolation
and data regularization step.

Finite difference methods

The equations being used for the finite difference methods expect the data to be
acquired on a regular grid. Furthermore, the more complex the subsurface becomes,
i.e. the more complex the input data set becomes, the finer the data grid has to
be chosen to get correct results. However, this, again, establishes the demand for
an input data set which is regularly sampled and exhibits a dense areal coverage of
the source and the receiver coordinates. Due to this, the finite difference method
for redatuming can also not be applied to 3D pre-stack data as they are acquired in
reality unless it is combined with a data interpolation and data regularization step.

1.3.2 Problem II – computational feasibility

It is not only the requirements with respect to the data sampling that restrict the
proposed methods in their applicability to realistic 3D situations, but it is also the
amount of data which limits the computational feasibility of all three approaches
in the 3D situation. First of all, a huge amount of data has to be handled, even if
the data set is called sparse with respect to the demands of redatuming. Usually,
a data set consists of millions of traces adding up to several terabyte of data. A
large number of traces is involved in the calculation of one redatumed trace for all
three methods, i.e. data storage and handling are forming a challenge. Secondly,
extensive computations have to be performed for all three methods. In order to
perform redatuming applying the Kirchhoff summation method, a four-dimensional
integral needs to be computed for each frequency component or output time sample.
For one redatumed trace using the phase shift method a number of five-dimensional
integrals need to be calculated successively. Here, already the calculation of these
integral expression is, at the least, computationally demanding and might not even
be feasible. In case the finite difference approach is chosen to perform the redatum-
ing, no integral needs to be computed. Instead, the wavefield, which is known on
certain grid points, is used to extrapolate the wavefield successively towards other
grid points until the new datum is reached. For every calculation step a number of
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data points is used and needs to be stored. Depending on the grid size considered,
a large number of calculation steps needs to be performed and a huge amount of
data has to be stored. This can also form a task which is, at least, computationally
demanding and might not be feasible.

1.3.3 Conclusions on the conventional redatuming methods

Considering the observations made above concerning the applicability of the existing
redatuming methods to a 3D input data set as it is produced from conventionally
used acquisition geometries, it can be concluded that none of the methods is par-
ticularly suitable for this problem. A successful application of all of these methods
requires a sufficiently dense areal source and receiver coverage at the acquisition
surface. This generally is not available. In addition, the finite difference and the
phase shift approach both require the input data set to be regularly sampled, which
is almost impossible to acquire in practice. Therefore, the existing methods cannot
be applied to a 3D data set from a conventionally used acquisition geometry without
an additional data regularization and data interpolation step. Furthermore, all three
methods can be called computationally demanding and might not even be feasible.

1.4 Research objectives

The aim of my research, which will be documented in this thesis, is to develop and
to test a new redatuming method, which is applicable to sparse 3D data acquired
with conventionally used 3D acquisition geometries. The results of this new method
should be comparable to the results the application of the Kirchhoff summation
method would have delivered if applied to a densely sampled input data set. The
proposed method should be computationally feasible. Therefore, for the new ap-
proach it is aimed to reduce the amount of data needed to calculate one output
sample.
In this thesis, a new approach to redatuming is presented, that satisfies these require-
ments. The choice has been made to formulate the redatuming process in terms of a
data mapping problem. In order to do this, certain assumptions about the velocity
model below the new datum level need to be made, which is different from the con-
ventional methods. However, in this new approach the number of traces involved in
the calculation of one output sample is reduced considerably, and the dimensionality
of the integral expression describing the process is reduced. Here, only a 2D integral
needs to be calculated to compute one output sample as opposed to a 4D integral
for the conventional 3D redatuming approach.
The data mapping approach is generally applicable to all sorts of input data sets,
but, as already mentioned, the primary interest of this work is to develop an ap-
proach applicable to data sets that do not have a dense areal coverage of sources and
receivers at the acquisition surface. For the approach too it can still happen that
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the required traces have not been acquired, even if it uses considerably less traces
per output sample. In case this happens, the data mapping approach needs to be
combined with some sort of data infill procedure. Fortunately, certain information,
which can be obtained from the assumptions of the medium below the new datum
level, can be used to apply the infill method developed by van de Rijzen et al. [2004].
Hence, by combining the data mapping approach with the data infill method, the
new approach to redatuming becomes applicable to 3D data sets from conventionally
used acquisition geometries.

1.5 Outline of the thesis

A schematic outline of the thesis is presented in Figure 1.8. After an introduc-
tion to the seismic method in general and redatuming in particular (Chapter 1),
the methodology of the proposed redatuming approach is described conceptually
in Chapter 2. Chapter 3 concentrates on the theoretical derivation and imple-
mentation of the data mapping approach to redatuming. In Chapter 4 this newly
developed redatuming approach is evaluated on fully sampled synthetic and real 2D
data sets. The series of tests being performed has to ensure that the developed
method produces kinematically and dynamically correct results.
Chapter 5 describes the infill step, which will be combined with the new redatum-
ing approach to handle sparsely sampled 3D data sets. This infill step is performed
by applying a well-established method, which will be described here. Furthermore,
the abilities and limitations are further assessed by means of tests performed for
synthetic 3D data sets and on a 3D data set, which has been acquired in a phys-
ical modeling facility (see Chapter 6). First, I investigate on fully sampled data
whether the data mapping approach to redatuming has been extended correctly to
the 3D situation. Thereafter, the redatuming of sparsely sampled data by means
of the data mapping approach to redatuming combined with the proposed infill is
tested.
Chapter 7 presents additional modules of the presented redatuming method. It
discusses the implementation of the method for PS-data and, furthermore, presents
a modification of the methodology such that it can be used for the prediction of
datum layer-related multiples as they appear in the redatumed data. At last, in
Chapter 8, conclusions will be drawn from the results of the previous chapters and
recommendations for future research will be given.
Additionally, certain aspects that have not been addressed explicitly but are impor-
tant are discussed more thoroughly in the Appendices. Appendix A, Appendix B
and Appendix C are related to the theory and the implementation of the data
mapping approach to redatuming. Appendix A presents the derivation of the ex-
pression for the redatuming of 3D pre-stack data using the Kirchhoff summation
method. Appendix B is dedicated to the estimation of ray parameters from reda-
tuming operators, and Appendix C explains the estimation of the eigenvalues for
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the Hessian matrix of the corrected traveltime function. Appendix D is related
to the implementation of the infill approach the redatuming is combined with for
sparsely sampled input data sets.
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Figure 1.8: Schematic outline of the thesis.
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2

Methodology of the redatuming of

sparse 3D seismic data

Überall geht ein frühes Ahnen
dem späteren Wissen voraus.

Alexander von Humboldt (1769 - 1859)

In this chapter, a new approach to redatuming is presented for which the amount
of data needed to calculate one output sample is reduced with respect to the con-
ventionally used methods. We have chosen to formulate the redatuming process in
terms of a data mapping problem along the lines of Bleistein and Jaramillo [2000].
They define Kirchhoff data mapping (KDM) as a procedure which transforms data
with a certain source/receiver configuration belonging to a certain background model
of the earth to another data set with a different source/receiver configuration and
background earth model. The normal move-out (NMO) correction, the dip move-out
(DMO) correction, the azimuthal move-out (AMO) method and redatuming can be
thought of as special cases of this general concept. For the NMO, DMO and AMO
correction, the background earth model being used is generally very simple. A ho-
mogeneous medium is assumed as background model for every time sample that
needs to be calculated with the velocity being the stacking velocity related to the
time sample considered. Then, in the NMO correction and DMO correction, all
trace offsets are changed to be zero offset. The AMO method can be described as a



18 Methodology of the redatuming of sparse 3D seismic data

generalization of these two procedures. Here, besides the offset, also the azimuth of
the traces is changed. In comparison to this, the most important aim of redatuming
is certainly not to change the offset and the azimuth of a certain input data set, but
to produce an output data set which is referenced to a new datum level. However,
offset and azimuth changes can be incorporated as well.
Bleistein and Jaramillo [2000] derive a general formula considering a single reflector,
multiple and multi-pathing free seismic data set. The formula they derive is a mul-
tidimensional integral equation with the integration parameters being the source
and receiver coordinates of the input data set and the the so-called earth model
parameters, which basically describe the single reflector and which are influenced
by the chosen background earth model. This integration over the physical model
space needs to be solved analytically in order to derive formulas describing NMO,
DMO, AMO and redatuming. In their paper they note that the application of the
KDM formalism has already successfully been used to derive the formulation of 2.5D
DMO. For redatuming, this has not been accomplished yet.
To develop the new redatuming method, the general thought of KDM is being
adopted here, i.e. a simplified background model of the earth is assumed in or-
der to map an input data set referenced to the acquisition surface to an output data
set referenced to the new datum level. However, the derivation of the formalism fol-
lows a different, slightly simpler line of thought. In the end, the proposed approach
meets the requirements. The formalism describing the data mapping approach to
redatuming (DMR) can be interpreted as a simplified version of Kirchhoff summa-
tion redatuming method (KSR), where one of the 2D integrals over the acquisition
coordinates can be solved analytically. Furthermore, fewer traces of the input data
set are involved in the calculation of one output sample because the knowledge of the
velocity model is utilized to pre-select potentially contributing traces of the input
data set.
The assumptions about the background earth model, which are made for this new
approach, do not only provide the opportunity to develop a new, efficient approach
for redatuming. At the same time, the information of the background model can
also be used to combine the redatuming method with a trace infill method such that
it becomes applicable to sparse 3D input data sets.

2.1 The background earth model

It has just been discussed that all KDM techniques require a background earth
model. With respect to the application of KDM to redatuming, a distinction has to
be made between the datum layer and the medium below the datum.
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2.1.1 The datum layer

As for the conventional KSR method, redatuming operators will be used to account
for the one-way wave-propagation between the sources or the receivers at the acqui-
sition surface and at the new datum level. These redatuming operators represent
Green’s functions. In general, there are two possible ways to derive the operators:
a data-driven or a model-driven way.
In the data-driven way, the operators are extracted from the input data set apply-
ing the Common Focus Point (CFP) technology developed by Berkhout [1997a,b].
With this technology the operators can be estimated correctly from the input data
set without requiring an accurate velocity model of the datum layer. However, the
estimation procedure demands the input data set to be densely sampled as well.
Hence, if the redatuming operators are to be extracted from a sparse input data set,
this process is also combined with a trace infill method such as the method described
by van de Rijzen et al. [2004].
For the model-driven estimation of the redatuming operators, an accurate velocity
model of the datum layer is needed [see for example Bevc, 1997]. This model is then
used to calculate the operators either by ray tracing or by applying some sort of
wavefield modeling method.
In the end, the redatuming operators contain amplitude factors and time shifts,
describing the wave propagation in the datum layer, no matter whether they are
computed in a data-driven or in a model-driven manner.

2.1.2 The medium below the new datum

For the conventional KSR approach information about the medium below the new
datum level is not required. The considered redatumed traces are estimated by
the application of two weighted summations (Fresnel stacks) to the input data set,
which has been corrected for the wave propagation in the datum layer. One Fresnel
stack is applied to estimate the contributing receivers and the second one is applied
to identify the contributing sources. However, for the DMR approach, which is
described in this chapter, it is aimed at utilizing a background model of the earth
below the new datum level to map the input data set referenced to the acquisition
surface to the desired output data set referenced to the new datum level. A crucial
point, with respect to this, is the definition of the assumed background model.
This model should be as simple as possible. If a very complex model for the medium
below the datum level was needed to get correct results, the whole redatuming
process would become superfluous. Besides this, the background medium should
not include any restrictions of the shape and the position of the potential reflectors.
It is intended to construct a surface of all possible reflection points and, thereby,
account for all possible dips and azimuths of the subsurface reflectors. In other
words, a reasonable estimate of the velocity associated with the given reflection
time tred of the considered time sample of the redatumed trace is needed, but no
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assumptions will be made on the shape of the potential reflector. It is assumed, and
will be demonstrated by the results, that a simple dip independent root mean square
(RMS) velocity field is accurate enough to serve this purpose. This assumption
implies the following:

• a constant velocity describes the medium below the new datum for the calcu-
lation of one output sample,

• the velocity being used changes for every output sample,

• the possible reflection points belonging to the considered time sample lie on
an ellipsoidal surface, a so-called isochrone1 [see Staude, 1882].

2.2 The locus

The information gained from the isochrones can be employed to identify time samples
in the input data set, which are possibly contributing to the considered time sample
of the redatumed trace; that is, a locus2 of possibly contributing time samples can
be created in the input data set. Such a locus will be a 1D line in source and receiver
coordinate space for the redatuming of a 2D input data set and a 2D surface for
the redatuming of a 3D input data set. It is comparable to the DMO surface [see
for example Hale, 1991] and the AMO saddle [see for example Biondi et al., 1998;
Biondi, 2006]. The DMO surface can be derived from the DMO ellipse/ellipsoid, the
AMO saddled is derived by cascading the formula of DMO and inverse DMO.
The estimation of the locus for the DMR approach is carried out straightforwardly
(see Figure 2.1). For every possible reflection point on the considered isochrone ray
tracing is performed through the redatumed source and receiver location towards
the acquisition surface. Thereby, the part below the new datum level is simple.
Straight rays can be employed here since the medium below the new datum level is
assumed to be homogeneous. The transition at the boundary of the medium below
the datum layer and the medium above the datum layer is conducted by applying
Snell’s law, i.e. the ray parameter ̺ is kept constant. Finally, the raypaths are
continued upwards through the datum layer towards the acquisition surface. This
is done by extracting information about the ray parameter from the traveltimes of
the redatuming operators. The theoretical description of this concept will be given
in Chapter 3. By doing this, the true raypath in the datum layer, which will be
bending or crooked depending on the structure of the datum layer, is taken into
account.

1Isochrone: an imaginary line or a line on a chart connecting points at which an event occurs
simultaneously or which represents the same time or time difference [see Merriam Webster].

2Locus: The curve or other figure constituted by all the points which satisfy a particular equation
of relation between coordinates, or generated by a point, line, or surface moving in accordance with
any mathematically defined conditions [see Oxford Dictionary of English].
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A similar approach to redatuming has been chosen by Alkhalifah and Bagaini [2004,
2006] using the so-called topographic datuming operator (TDO). For the derivation
of this operator a constant velocity is assumed for the medium below the new datum
level. However, in contrast to the approach presented here, they decided to simplify
the background medium of the datum layer as well. In their approach the datum
layer is assumed to be laterally varying with a locally constant velocity belonging to
the considered source and receiver position. This velocity is calculated, for example,
from refraction statics. As a consequence, the rays in the datum layer, which are
used to identify possibly contributing traces from the input data set, become straight
rays. Alkhalifah and Bagaini [2004, 2006] also show that, if the velocity below the
new datum layer is set to infinity, static corrections can be interpreted as a limit of
their approach. In that case, the rays in the datum layer are vertical.

∆∗

∗

∆

ray parameters from traveltimes
no straight rays

homogeneous medium
straight rays

Figure 2.1: Raypaths for one source/receiver pair at the surface, which is possibly contribut-
ing to the considered output sample of the redatumed trace.

2.3 The weighted stack along the locus

As previously described, for every point on the isochrone one source/receiver pair
at the acquisition surface is selected, which belongs to the specular reflection at this
point. The two-way traveltime of the sample in this trace, that is needed in the
isochrone stack, can be determined. In this way, a locus of possibly contributing
time samples in the input data set is determined. Once this locus is known, a
weighted stack has to be calculated along it, to compute the time sample considered
of the redatumed trace. This step is similar to the stack along the DMO surface
or the stack along the AMO saddle applied in the other KDM techniques. It is
important to note that the locus is a 2D surface for 3D redatuming and a 1D line
for 2D redatuming [see Bagaini and Alkhalifah, 2003]. Hence, for the calculation of
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a redatumed time sample by means of the DMR approach only a 2D integral needs
to be computed [see Tegtmeier et al., 2004]. This is a considerable reduction of the
computational effort compared to the KSR approach, where a 4D integral has to be
computed for the redatuming of 3D input data.
The derivation of the correct weights applied in the stack of the DMR approach is
a challenge. In order to judge whether the weights have been chosen correctly a
desired outcome of the proposed redatuming approach needs to be defined. For this
purpose, the result of the conventional Kirchhoff summation method applied to an
input data set with a sufficiently dense areal coverage of sources and receivers at the
acquisition surface has been selected. The theoretical derivation of the weights and
the derivation of the formalism describing this new redatuming approach are being
described in Chapter 3.

2.4 The trace infill

The DMR method is generally applicable to any kind of input data sets. However,
the focus of this research is the application to input data sets acquired with conven-
tional 3D acquisition geometries. As already mentioned, these data sets are usually
sparsely sampled in at least one of the four coordinates describing the source and
receiver positions at the acquisition surface. It needs to be examined whether these
data sets are to be considered sparse with respect to the requirements of the DMR
approach. If these data sets are, indeed, sparse, all problems related to the sparse-
ness need to be identified and possible solutions have to be evaluated.
The requirement of the new approach with respect to the sampling of the input data
set is that the locus needs to be sampled sufficiently densely. A problem most likely
to occur for sparsely sampled input data is that a trace, which has been pre-selected
along the locus, does not exist in the input data set. If, in this case, the weighted
stack is applied without taking this into account, the result will be incorrect.
To prevent this from happening, the new redatuming approach is combined with a
trace infill step, which will be performed prior to the application of the weighted
stack along the locus. As already mentioned in Chapter 1, the trace infill method
described by van de Rijzen et al. [2004] has been selected, because this method is
particularly well suited for the given situation. However, the discussion of the rea-
sons to prefer this method to other available methods and the description of the
methodology and theory behind it are beyond the scope of this chapter. A detailed
discussion on this subject is provided in Chapter 5.

2.5 The data mapping approach – step-by-step

To summarize the previous sections a flowchart is presented in Figure 2.2. It il-
lustrates the different steps that have to be performed successively to calculate one
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output sample of a redatumed trace. As one can see, firstly, the isochrone describing
the positions of all possible reflection points in the subsurface below the new datum
level needs to be determined. Thereafter, this information is translated into a lo-
cus, which indicates all time samples on certain traces referenced to the acquisition
surface, which are possibly contributing to the considered output sample. Thirdly,
it needs to be checked whether all traces along the locus have been acquired and
missing traces need to be filled in. In the end, the weighted stack along the locus is
applied. This procedure has to be repeated for every output sample of all desired
output source/receiver combinations, because the isochrone of possible reflection
points will be different for every output sample.
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Figure 2.2: Flowchart of the data mapping approach to redatuming.
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2.6 Influence of the velocity model below the new datum

It certainly needs to be examined how accurately the velocity model below the new
datum has to be known to get correct results from the new redatuming approach.
A first quick observation is that there is no reflector dip information required in the
model, because all possible dips are represented in the ellipsoidal isochrone and all
points of the ellipsoid are included in the isochrone stack. Hence, only velocities are
needed. The following simple argument tells why using a simple RMS velocity field
probably is sufficient.
As illustrated in Figure 2.3, any event arriving at the redatumed receiver can ap-
proximately be characterized by three parameters: the arrival time, the emergence
angle and the radius of curvature of the wavefront [see Hubral, 1983]. The reda-
tuming procedure outlined above is carried out for every time tred of the redatumed
trace; hence, all possible arrival times are covered.
For every arrival time, the ellipsoid assures that all possible emergence angles are
covered. So, the only parameter that is still missing is the radius of curvature of
the wavefront. This radius is actually directly related to the RMS velocity of the
medium for that particular output time.
Conceptually, redatuming is migration to an image point and demigration to the new
datum. In this view, the datum layer is traversed only once, whereas the medium
below the new datum is traversed twice, in opposite directions. It looks very plau-
sible to assume that inaccuracies in the medium below the new datum cancel out,
therefore. The final proof of the concept will be given by applying the new reda-
tuming approach assuming different velocity models for the medium below the new
datum. The results, which are presented in Chapter 4, show that the dependency
of the redatumed result on the assumed velocity model is, indeed, weak, and that it
is sufficient to use simple RMS velocity fields.

arrival time

wavefront curvature

emergence angle

Figure 2.3: Features of an event occurring at a receiver at the new datum level.



2.7 Classification of the DMR method 25

2.7 Classification of the DMR method

In this chapter the new DMR methodology has been described. This new approach
can be classified as a data mapping technique similar to DMO, AMO, TDO and, as
the most simplified version of data mapping, statics. In Table 2.1, the most distinct
features of these approaches are compared. These features are the geometry and
reference surface of the output data set, the characteristics of the datum layer, if
applicable, and the characteristics of the medium below the reference surface.
On the one hand, the DMR approach converges to the AMO method if the thickness
of the datum layer converges to zero and, furthermore, to the DMO method if,
additionally, the azimuths are kept constant. On the other hand, the DMR method
converges to the TDO redatuming approach if the velocity of the datum layer is
assumed vertically homogeneous, and it even converges to the conventional approach
of static corrections if, additionally, the velocity of the medium below the reference
surface is assumed to be infinite; i.e. the velocity in the datum layer is much lower
than the velocity below the datum.
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3

Theory of the data mapping

approach to redatuming

Es gibt nichts Praktischeres
als eine gute Theorie.

Immanuel Kant (1724 - 1804)

In this chapter the theory underlying the data mapping approach to redatuming
(DMR) is derived, which includes the steps 1, 2 and 4 of the flowchart presented
in Figure 2.2. Firstly, it is described how a-priori knowledge of a velocity model of
the medium below the datum level is translated into an isochrone that defines all
possible reflection points belonging to the output time sample considered (step 1,
see Section 3.1). After that, the transformation of this information into the locus of
all possibly contributing time samples in the input data set is explained (step 2, see
Section 3.2). Thereafter, the integral equation describing the weighted stack along
this locus is formulated (step 4, see Section 3.3). With respect to this, the derivation
of the correct weighting factors is of particular importance (see Section 3.4).
Furthermore, the assumptions of the DMR approach are listed, and its limitations
and opportunities are specified (see Section 3.5). Note, that step 3 of the scheme
presented in Figure 2.2, the infill procedure, is described in Chapter 5.
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3.1 Definition of the reflection point positions

For the determination of the isochrone of all possible reflection points it is helpful
to consider its definition, which is illustrated in Figure 3.1:

{(xA, yA, zA) | tred = tr + ts} . (3.1.1)

This isochrone indicates a set of points xA in the subsurface where a wave, trans-
mitted by the redatumed source positioned at x̃s at time t = 0, and received at the
redatumed receiver position x̃r at time t = tred, has been reflected. ts and tr are
the traveltimes from the redatumed source to xA, and from xA to the redatumed
receiver, respectively. Every point on this isochrone represents a potential specular
reflection point.

.
*

∆

 
ts

tr

(xA, yA, zA)

S0

S1
x̃s x̃r

Figure 3.1: Illustration of the definition of a possible reflection point below the new datum.

It is impossible to determine the positions of these potential reflection points with-
out any knowledge of the medium below the new datum.
As already mentioned in the previous chapter, it is intended to use a simple dip in-
dependent RMS velocity field for this purpose. In practice, the desired RMS velocity
field is approximated by redatumed stacking velocities. These redatumed stacking
velocities are calculated from conventional stacking velocities, which can be retrieved
from the input data set by standard velocity picking. To reference the velocities to
the new datum level, they are transformed to interval velocities applying the for-
mula published by Dix [1955]. Thereafter, the layers of the datum layer are removed
and, finally, the velocities are inverse transformed to the desired redatumed stacking
velocities vNMO.
Once the redatumed stacking velocity v2 = vNMO(x̃s, x̃r, tred), related to the mid-
point of (x̃s, x̃r), for the considered time sample is known, the ellipsoidal isochrone
can easily be derived. It is defined by its two focal points x̃s and x̃r and by the two
parameters aell and bell describing the axes of the ellipsoid (see Figure 3.2a). These
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*

∆

bell

aell

θ

φ

(a) (b)

Figure 3.2: (a) The parameters aell and bell describing an ellipsoid. (b) The azimuth θ and
polar angle φ of a point on the ellipsoid.

two values can be calculated as follows:

aell =
v2tred

2
, (3.1.2)

bell =

√

a2
ell −

‖(x̃r − x̃s)‖2

4
. (3.1.3)

Here, ‖ · ‖ indicates the L2-norm of a vector.
With aell and bell being known, the coordinates of the points along the isochrone
can be derived. An appropriate sampling of the isochrone surface has to be defined.
It has been mentioned earlier that all possible dips of the potential reflector need
to be considered; i.e, the sampling of the isochrone should be chosen in such a way
that the local dip of selected points on the isochrone in the x-direction δx and the
local dip δy in the y-direction are both equidistantly sampled.
The azimuth θ and polar angle φ of the possible reflection point on the ellipsoidal
isochrone can be calculated for every (δx, δy)-pair as:

θ = arctan

(
bell tan δy

aell tan δx

)

, (3.1.4)
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φ = arctan

(
sin θ

tan δy

)

, (3.1.5)

with δx ∈ [−π, π] and δy ∈ [−π, π]. An illustration of these angles is presented in
Figure 3.2b.
Having derived the angles, the coordinates xiso = (xiso, yiso, ziso) of the reflection
points along the isochrone a can be determined from the parametric equations of an
ellipsoid:

xiso =
x̃s − x̃r

2
+ aell cos θ cosφ, (3.1.6)

yiso =
ỹs − ỹr

2
+ aell sin θ cosφ, (3.1.7)

ziso = bell sinφ, (3.1.8)

with x̃s and x̃r being the x-coordinates of x̃s and x̃r, respectively, and with ỹs and
ỹr being the y-coordinates of x̃s and x̃r, respectively.
With respect to Equations 3.1.6 – 3.1.8, two things need to be noted:

[1] The equations are only valid if the redatumed source and the redatumed re-
ceiver are positioned at the same depth level, i.e. if z̃s = z̃r. This is approx-
imately true for all examples treated in this thesis. However, if the approach
is to be applied in a situation with a none flat datum, with the redatumed
sources and receivers at different depth levels, the equations have to be modi-
fied accordingly.

[2] The x-axis of the coordinate system being used is oriented in direction of the
connecting line between x̃s and x̃r.

3.2 Pre-selection of possibly contributing time samples

The information about the isochrone belonging to a certain output time sample is
used to determine the locus of corresponding time samples in the input data set in
the following way:

[1] The ray parameters ̺s, consisting of the components ̺x,s and ̺y,s, belonging
to the rays between every possible reflection point and the source position at
the new datum are calculated:
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̺x,s =

sin

[

arctan

(
xiso − x̃s

ziso

)]

v2
, (3.2.9)

̺y,s =

sin

[

arctan

(
yiso − ỹs

ziso

)]

v2
. (3.2.10)

[2] The source positions xs at the surface belonging to a certain reflection point
have to be determined utilizing ̺x,s and ̺y,s. According to Snell’s law the
ray parameter of a wave traveling through a medium is constant along the
raypath. Hence, the required source positions xs can be determined by se-
lecting the positions at the acquisition surface, which are connected to the
source position at the new datum by rays with the estimated ray parameters
̺x,s and ̺y,s. Therefor, the ray parameters of the rays inside the datum layer
can be extracted from the traveltimes of the redatuming operators, which are
assumed to be known (see Appendix B). A selected ray and source position
at the surface are presented in Figure 3.3a.

[3] The ray parameters ̺r, consisting of the components ̺x,r and ̺y,r, belonging
to the rays between the reflection points and the receiver position at the new
datum are calculated in a similar way:

̺x,r =

sin

[

arctan

(
xiso − x̃r

ziso

)]

v2
, (3.2.11)

̺y,r =

sin

[

arctan

(
yiso − ỹr

ziso

)]

v2
. (3.2.12)

[4] The receiver positions xr at the surface belonging to these parameters and
reflection points, respectively, are determined, again, using the redatuming
operators above the new datum (see Figure 3.3b).

[5] The traces belonging to the source/receiver pairs (xs(δx, δy),xr(δx, δy)) thus
obtained contain time samples which are possibly contributing to the consid-
ered output sample. These contributing time samples tL(xs(δx, δy),xr(δx, δy))
can easily be determined by calculating the traveltime tray along the rays
belonging to the selected source/receiver pairs.



32 Theory of the data mapping approach to redatuming

.

*

*

∆

*

*

.

∆

∆

(a) (b)

xs

x̃s x̃r

xs xr

x̃s x̃r

Figure 3.3: Calculation of one source/receiver pair at the surface describing a trace which
is possibly contributing to the time sample tred. (a) The surface position of the source
is determined using the information about ̺s. (b) The surface position of the receiver is
determined using the information about ̺r.

In the end, all possibly contributing time samples on the pre-selected traces form
the locus:

{
tL(xs(δx, δy),xr(δx, δy))

∣
∣ δx, δy ∈ [−90◦, 90◦]

}
. (3.2.13)

It is important to note that xs and xr are dependent on each other. They are
connected via a point on the isochrone described by (δx, δy). Hence, xs can be
expressed as a function of xr, and likewise, xr can be expressed as a function of xs.
As a consequence, tL can also be described as a function of xs:

tL = tL(xs). (3.2.14)

Unlike for the DMO and AMO method, it is impossible to find an analytic solution
describing the locus as a function of the either (δx, δy) or as a function of xs or xr .
The assumption of non-straight rays inside the datum layer makes this impossible.
Note, that no restrictions are imposed regarding the number of true reflectors that
can be involved per time sample. The DMR method simply calculates the stationary
phase contribution from the selected time samples. If there are more than one true
reflectors being tangent to the considered isochrone, as in case of multi-valuedness,
they will all produce a stationary phase contribution and will all be handled correctly.

3.3 Derivation of the DMR integral equation

The most straightforward formulation of a weighted stack for the DMR approach is:

p(x̃s, x̃r, tred) =

∫

S0

aw(xs) p[xs,xr(xs), tL(xs)]dxs, (3.3.15)
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with p being the wavefield in the time domain and aw being a weighting factor.
This expression clearly shows a weighted summation of time samples of the input
data set along the locus L. The key challenge here is the correct derivation of the
weights aw. To accomplish this, the desired result of the weighted stack needs to be
formulated first. It has been decided to define the outcome of the conventional KSR
method as the desired result, because this method gives the correct result, albeit at
great expense, and only for full coverage data. The aim is, of course, that the result
of the new redatuming approach is dynamically as well as kinematically identical to
the result of exact redatuming.
Starting point for the derivation of the integral expression describing the DMR ap-
proach is the integral expression of the conventional KSR approach (see Appendix A
for its derivation):

P (x̃s, x̃r, ω) =

∫ ∫
(iω)2

(2πv1)2
cosαr cosαs

rrrs

P (xs,xr, ω)eiω(τr+τs)dxrdxs, (3.3.16)

with ω being the angular frequency, P being the wavefield in the space-frequency
domain and v1 being the velocity of the datum layer, which is assumed to be con-
stant for the moment. The meaning of α and r is illustrated in Figure 3.4. As

.

.

r
n

α

S0

S1

Figure 3.4: Geometry for downward extrapolation.

one can see, rr = |x̃r − xr|, rs = |x̃s − xs|, αr is the emergence angle between the
inward pointing normal vector of S0 and the local raypath at xr , and τr = rr

v1
. αs is

the emergence angle between the inward pointing normal vector of S0 and the local
raypath at xs, and τs = rs

v1
. αr, rr and τr are functions of (xr , x̃r), αs, rs and τs are

functions of (xs, x̃s). Only dependencies on relevant parameters will be mentioned
in the derivation of the DMR integral.
Equation 3.3.16 is valid for the calculation of all output time samples of the reda-
tumed trace and can, therefore, be formulated in the frequency domain. For the
DMR approach the assumed knowledge about the velocity model below the new
datum enables one to determine the positions of the possible reflection points be-
longing to a certain output sample, and it establishes a relationship between sources
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and receivers at the acquisition surface. However, the isochrone of possible reflection
points changes for every output sample. Hence, the DMR approach is dependent
on the considered output time, and, consequently, the derivation of the simplified
redatuming integral has to be performed in the time domain. The time-domain ex-
pression can be obtained by an inverse Fourier transform applied to Equation 3.3.16:

p(x̃s, x̃r, tred) =
1

2π

∫

dωeiωtred

∫∫
(iω)2

(2πv1)2
cosαr cosαs

rrrs

P (xs,xr, ω)eiω(τr+τs)dxrdxs.

(3.3.17)

Here, the two integrations over the source and the receiver coordinates can be seen
as two Fresnel stacks that are performed to determine the contributing traces to the
redatumed trace from the input data set. For the DMR method the relationship
between sources and receivers at the surface is known. It is established via the
considered possible reflection point on the isochrone. As a result of this dependency,
the Fresnel stack over the receiver coordinates becomes superfluous, and the integral
Ir over the receiver coordinates can be solved analytically. The integral over xr in
Equation 3.3.17 leads to a xs-dependent result:

Ir(xs, ω) =

∫
cosαr(xr)

rr(xr)
P (xs,xr, ω)eiωτr(xr)dxr. (3.3.18)

The application of this integral automatically selects the stationary phase contri-
bution from the input data P (xs,xr, ω) for a given surface source location; i.e. it
automatically selects the receiver of a possibly contributing trace. However, in the
DMR approach it is known how to determine the potential stationary phase point
x̂r for every source location and output time, via the isochrone. So one can write
P (xs, x̂r, ω) instead of P (xs,xr , ω), where x̂r is a function of (xs, tred).
For every surface source position xs, it is now assumed that the data P (xs,xr, ω)
can be described as the reflection at the true reflector tangent to the ellipsoid in the
point determined by xs and x̃s. So, in Equation 3.3.18 P (xs,xr, ω) can be replaced
by:

Υ(xs,xr, ω) = a(xs,xr)w̃(ω)e−iωtt(xs,xr). (3.3.19)

Here, a(xs,xr) describes the spherical spreading, w̃(ω) describes the wavelet and
tt is the two-way traveltime from xs to xr reflected at the interface tangent to
the ellipsoid. In the point xr = x̂r(xs) the analytic extension Υ(xs,xr, ω) should
coincide with the true wavefield P (xs, x̂r, ω):

Υ(xs, x̂r, ω) ≈ P (xs, x̂r, ω). (3.3.20)

It should be noted here that this assumption is only true for x̂r(x̂s), with x̂s being
the surface position belonging to the specular reflection at the true reflector tangent
to the ellipsoid belonging to tred. For all other x̂r(xs) this assumption is not true.
This incorrect assumption will, in the end, result in an erroneous curvature of the
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corrected event before the Fresnel stack over xs is applied. This needs to be corrected
for. The derivation of the correction factor accounting for this effect is described in
Section 3.4.
It should, furthermore, be noted that the position of x̂s is unknown. It is included
in the data and implicitly determined by the calculation of the Fresnel stack over
xs.
Substituting Υ, as given by Equation 3.3.19, for P in Equation 3.3.18 yields:

Ir(xs, ω) =

∫
cosαr(xr)

rr(xr)
a(xs,xr)w̃(ω)e−iωtt(xs,xr)eiωτr(xr)dxr . (3.3.21)

The integral Ir can now be calculated by applying the stationary phase method. It
has been shown [Bleistein, 1984] that an integral of the form:

I(ω) =

∫

f(x)eiωΓ(x)dx (3.3.22)

can be approximated in the high-frequency limit by:

I(ω) ≈
[
2π

ω

]m
2 1√

A
f(x̂)ei(ωΓ(x̂)+µ π

4 ). (3.3.23)

The stationary phase point is defined as x̂ with |∇Γ(x̂)| = 0. Furthermore, A =

| detA| with Ajk =
[

∂2Γ(x̂)
∂xj∂xk

]

, j, k = 1, 2, . . . , m and m being the dimension of x.

µ = 2n − m with n being the number of positive eigenvalues of A. This is applied
to the integral Ir(xs, ω) as follows:

Ir(xs, ω) = w̃(ω)

∫
cosαr(xr)

rr(xr)
a(xr)

︸ ︷︷ ︸

f(xr)

eiω

Γ(xr)

︷ ︸︸ ︷

[−tt(xs,xr) + τr(xr)]dxr

≈ w̃(ω)
2π

ω

1√
A

a(x̂r)
cosαr(x̂r)

rr(x̂r)
eiω[−tL(xs,x̂r)+τr(x̂r)]eiµ π

4 ,(3.3.24)

with m = 2 and n = 2 (see Appendix C). As µ = 2, the extra phase factor becomes
eiµ π

4 = e
π
2 = 1

−i
. This gives:

Ir(xs, ω) = w̃(ω)
2π

(−iω)

1√
A

a(x̂r)
cosαr(x̂r)

rr(x̂r)
eiω[−tL(xs,x̂r)+τr(x̂r)]. (3.3.25)
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Substituting this result in Equation 3.3.17 and using Equation 3.3.20 has as result
the integral of the DMR approach:

p(x̃s, x̃r, tred) =
1

2π

∫

dωeiωtred

∫
1

2πv2
1

cosαr cosαs

rrrs

(−iω)√
A

aw̃e−iωtL

︸ ︷︷ ︸

≈P (xs,x̂r,ω)

eiω(τr+τs)dxs,

(3.3.26)
or:

p(x̃s, x̃r, tred) = − 1

2πv2
1

[∫
cosαr cosαs

rrrs

1√
A

∂

∂t
p(xs, x̂r, t + τr + τs)dxs

]

t=tred

.

(3.3.27)

Here, αr, rr , τr and A are functions of x̂r and x̃r , and of xs and tred through the
relationship x̂r = x̂r(xs, tred). αs, rs and τs are functions of xs and x̃s directly.
It should be noted that the calculation of the amplitude correction factor 1√

A re-

quires the knowledge of the second derivative of the two-way traveltime tt(xs, x̂r)
of the reflection at the true reflector, which is tangent to the considered ellipsoid.
However, the position and shape of the true reflector below the datum is not known
and tt cannot be described analytically. For the implementation of the DMR method
it is, therefore, assumed that the second derivative of tt is small compared to the
second derivative of τr and can be omitted in the calculation of A. This assumption
is true if the true reflector does not have a strong curvature and the distance between
the true reflector and the datum is large compared to the thickness of the datum
layer. However, if the considered event stems from a shallow reflector or a strongly
curved reflector the assumption is no longer valid. In these cases, small errors in the
redatumed amplitudes are to be expected.
The derivation for 2D data can be carried out in an analogous manner. Starting
point is the integral expression describing the conventional redatuming method in
the time domain:

p(x̃s, x̃r, tred) =
1

2π

∫

dωeiωtred

∫∫
(−iω)

(2πv1)

cosαr cosαs√
rrrs

P (xs, xr, ω)eiω(τr+τs)dxrdxs.

(3.3.28)

For this situation the one-dimensional stationary phase approximation needs to be
applied in order to solve the integral over xr analytically:

I(ω) =

∫

f(x)eiωΓ(x)dx

≈
√

2π

ω

1
√

|Γ′′|
f(x̂)ei(ωΓ(x̂)+µ π

4 ), (3.3.29)

with ∂Γ(x̂)
∂x

= 0, x̂ being the stationary phase point and µ = sign(Γ′′(x̂)).
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Finally, the simplified integral of the new redatuming approach for 2D data is:

p(x̃s, x̃r, tred) =
1

2π

∫

dωeiωtred

∫
1√

2πv1

cosαr cosαs√
rrrs

√
−iω

√

|Γ′′|
P (xs, x̂r, ω)eiω(τr+τs)dxs,

(3.3.30)
or

p(x̃s, x̃r, tred) =
1√

2πv1

[
∫

cosαr cosαs√
rrrs

1
√

|Γ′′|
D 1

2
∗ p(xs, x̂r, t + τr + τs)dxs

]

t=tred

.

(3.3.31)

The term D 1
2

is a convolution operator corresponding to the frequency domain

multiplication by
√
−iω.

3.4 Amplitude correction in the DMR method

A crucial part of the DMR approach is the pre-selection of traces possibly contribut-
ing to the considered time sample, which is different from the conventional KSR
method. The two techniques are illustrated in Figure 3.5 and in Figure 3.6 with as
result both showing the true raypaths belonging to the pre-selected source/receiver
pairs before the final Fresnel stack is applied. Note here, that for the KSR method
the final stack is the second Fresnel stack applied to a half-redatumed data set while
for the DMR method only one Fresnel stack is applied to the pre-selected traces
applying the source- and the receiver-correction at the same time.
As can be seen in Figure 3.5, for the KSR method the contributing receiver of a
certain shot gather is determined by means of the first Fresnel stack, which is ap-
plied to redatum the receivers. This process automatically identifies the stationary
phase ray; i.e. the contributing trace of the considered shot gather, and needs to
be repeated for all shot gathers of the input data set. The result is, as already
mentioned, a half-redatumed data set containing a number of possibly contributing
traces. In the end, a second Fresnel stack will be applied to this data set to redatum
the sources, which automatically determines the stationary phase ray belonging to
the redatumed trace from the set of half-redatumed, possibly contributing traces.
It is important to note that all possibly contributing traces have been determined
correctly by the first Fresnel stack if the applied redatuming operators are correct.
For the DMR approach, presented in Figure 3.6, possible reflection points are as-
sumed to be positioned on an ellipsoidal isochrone below the datum. This informa-
tion is utilized to identify the potential stationary phase rays and the source and
receiver positions of the possibly contributing traces belonging to these rays. How-
ever, the true reflector causing the event registered at the considered time tred is
most likely not of ellipsoidal shape but will in most cases be a dipping plane tangent
to the assumed isochrone in one point. Hence, only one of the assumed reflection
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points is positioned correctly, and only one pair of possibly contributing sources
and receivers is determined correctly. All other reflection points and pre-selected
source/receiver pairs are mispositioned. For the example in Figure 3.5 and Fig-
ure 3.6 a plane surface with zero dip has been chosen as true reflector and the true
raypaths belonging to the pre-selected source/receiver pairs are indicated for this
situation (see Figure 3.6b). Only the source/receiver pair and true raypath belong-
ing to the stationary phase ray are identical for the DMR and the KSR approach.
As a consequence of this, the time-corrected reflection event on the selected traces
before the final stack is performed has the same apex position for both methods,
but its curvature is different. This is displayed in Figure 3.7. Here, experiments
on synthetic data with a single dipping layer below the datum have been run for
various dips. The results, indeed, show that the apex of the curves indicating the
times of the corrected events is always positioned at the correct position in time and
space while the corrected events itself have a different curvature. This difference in
curvature of the events to be stacked in the two methods gives rise to an amplitude
error in the DMR method that needs to be corrected for.
The traveltimes of the corrected event before the final stack is applied for the two
methods can be described as follows:

ΓDMR(x̂s,xs) = −tt[x̂s,xs, x̂r(xs)] + τr[x̂r(xs)] + τs(xs), (3.4.32)

ΓKSR(x̂s,xs) = −tt,KSR(x̂s,xs) + τs(xs). (3.4.33)
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Figure 3.5: Estimation of the true raypaths of the possibly contributing traces for the con-
ventional redatuming method before the last stack is applied. Note, that the reflector below
the new datum is assumed to be flat with zero dip.
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Figure 3.6: (a) Determination of the raypaths of the possibly contributing traces for the
DMR method before the stack is applied. (b) True raypaths, belonging to the selected
source/receiver pairs for a reflector below the new datum with zero dip.

They are both dependent on the surface coordinate xs and on the position and shape
of the true reflector. The true reflector is tangent to the ellipsoid in a point given
by x̂s and x̃s. It has to be noted here, that this point x̂s is not known, but it will
be determined implicitly by performing the second redatuming step by means of
the KSR method or by calculating Equation 3.4.40, since the information about the
true reflector is implicitly included in the seismic data. tt,KSR is the traveltime of a
reflection event in a half-redatumed data set after the receivers have been brought
to the new datum by means of the conventional KSR approach.
The integral equation describing the DMR method already includes an amplitude
correction factor aΓ employing the curvature of the half-corrected traveltimes as
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Figure 3.7: Comparison of the traveltimes of the corrected traces before the last Fresnel stack
for the conventional redatuming method (solid line) and for the DMR approach (thick dotted
line). (a) shows the situation for a data set for a reflector with a dip of −40◦, and (b) for
a dip of 40◦. The tests have been performed for redatumed traces with an offset of -800 m,
-200 m, 200 m, and 800 m.

follows:

aΓ =
1√
A

. (3.4.34)

It is, therefore, a natural choice to design the amplitude correction for the difference
in curvature of ΓDMR and ΓKSR in a similar way:

ac(x̂s,xs) =

√

ADMR(x̂s,xs)

AKSR(x̂s,xs)
. (3.4.35)

ADMR and AKSR are defined as follows:

ADMR(x̂s,xs) = | detADMR(x̂s,xs)|, (3.4.36)

AKSR(x̂s,xs) = | detAKSR(x̂s,xs)|, (3.4.37)

with

ADMR,jk(x̂s,xs) =

[
∂2ΓDMR(x̂s,xs)

∂xs,j∂xs,k

]

, (3.4.38)

AKSR,jk(x̂s,xs) =

[
∂2ΓKSR(x̂s,xs)

∂xs,j∂xs,k

]

. (3.4.39)



3.5 Assumptions, limitations and opportunities 41

Including this amplitude correction in Equation 3.3.27 finally yields the integral
expression describing the DMR approach:

p(x̃s, x̃r, tred)=− 1

2πv2
1

[
∫ √

ADMR

AKSR

cosαr cosαs

rrrs

1√
A

∂

∂t
p(xs, x̂r, t+ τr+τs)dxs

]

t=tred

.

(3.4.40)
The results of this approach are dynamically and kinematically identical to the
results of the conventional KSR approach if the medium below the new datum level
is homogeneous. However, as previously discussed, the shape and position of the true
reflectors is unknown. Hence, no analytic expression can be found for tt and tt,KSR.
As for the calculation of A it is, therefore, assumed that the second derivatives of
tt and tt,KSR are small and can be omitted in the calculation of ADMR and AKSR.
This assumption is true if the true reflector does not have a strong curvature and
the distance between the true reflector and the datum is large compared to the
thickness of the datum layer. If the considered event stems from a shallow reflector
or a strongly curved reflector the assumption is no longer valid. In these cases, small
errors in the redatumed amplitudes are to be expected.
It should be noted, however, that even in case of strong curvature the amplitude
errors are small. This is also shown by the results presented in Chapter 4. In such
cases one should keep in mind that quantitative analysis of the reflectivities of such
amplitudes is impossible, not because of amplitude errors, but because there exists
no analytical relationship between media properties and the reflection amplitude of
strongly curved events.

3.5 Assumptions, limitations and opportunities

For the derivation of Equation 3.4.40 several assumptions have been made, which
can limit the application of the DMR approach. In the following, these assumptions
are listed and their consequences are discussed.

3.5.1 Homogeneous datum layer and flat acquisition surface

For the derivation of Equation 3.4.40 the integral expression given in Equation 3.3.16
has been chosen as a starting point. Strictly speaking, this expression is only valid
for a homogeneous datum layer with a flat acquisition surface, and only in this case
it will give correct results. The redatumed results will be kinematically and dy-
namically identical to a wavefield which has been acquired at the new datum layer.
Only in this situation the redatuming process can be considered as true amplitude
redatuming.
In reality, the datum layer will most likely not satisfy these assumptions. Conse-
quently, errors will be introduced in the results of Equations 3.3.16 and 3.4.40. This
also happens for most commonly used migration approaches. If the datum layer is
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a inhomogeneous, low contrast medium, the amplitude corrections and traveltime
shifts of the redatuming operators – the Green’s functions – can no longer be cal-
culated analytically. They need to be determined by applying other methods such
as ray tracing. For a strongly inhomogeneous datum layer where two-way wave-
propagation should be taken into account, redatuming can only be carried out with
exact Green’s functions, which generally cannot be described by single time shift
and amplitude factors. This thesis is limited to datum layers where one-way trav-
eltime operators (Green’s functions) with spherical spreading amplitude factors are
adequate.
The second assumption underlying the conventional KSR approach and the DMR
approach is the assumption of a flat acquisition surface. This stems from the fact
that the Rayleigh II integral has been used to derive Equation 3.3.16. This integral
is actually a special case of the so-called full Kirchhoff-Helmholtz integral describing
wavefield extrapolation for data acquired at arbitrarily shaped surfaces [see for ex-
ample Wapenaar, 1993]. The Rayleigh II integral will produce correct results if the
acquisition surface is flat and if one-way wave-propagation is guaranteed. Applying
Equations 3.3.16 and 3.4.40 to data from curved acquisition surfaces will produce
redatumed data sets, which are kinematically correct but dynamically incorrect. If
it is intended to perform redatuming in this situation, the full Kirchhoff-Helmholtz
integral expression should be chosen to describe the conventional KSR method and
this expression should be utilized as starting point to derive the data mapping ex-
pression.

3.5.2 Multi-valuedness inside the datum

The problem of multi-valuedness arising inside the datum layer equally affects the
KSR approach and the DMR approach. For these redatuming methods the esti-
mation of the Green’s functions, i.e. the redatuming operators, is crucial for the
handling of the multi-valuedness. As already mentioned, the operators are deter-
mined in a model-driven way using either ray tracing algorithms or finite difference
algorithms [see for example Vidale, 1990; Cerveny, 2001], or they are estimated in a
data-driven way employing the CFP-technology. However, these approaches usually
consider only first or most-energetic arrivals. They neglect multi-valuedness. They
do not consider more than one arrival from the same reflector. For the example pre-
sented in Figure 3.8, the operator would contain only one of the two events reaching
the same receiver position at the surface from the same focus position at the datum,
but it would not contain both events.
It can thus be concluded that neither the KSR approach nor the DMR approach, as
they have been derived here, are able to handle multi-valued data sets correctly, if
the multi-valuedness arises inside the datum layer. In order to address this problem,
it should be examined whether it is possible to combine the presented redatum-
ing methods with the Gaussian beam approach as it has been done by Hill [1990,
2001] for Kirchhoff migration. Hill [1990, 2001] expresses the Green’s functions as
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Figure 3.8: Multi-valuedness inside the datum layer. The transmitted event and the refracted
event emitted at the same focus point reach the same receiver.

Gaussian-beam summations and, in doing so, retains most arrivals. A second op-
tion to solve this problem is to calculate the redatuming operators by means of the
x − ω extrapolation [see for example Thorbecke and Berkhout, 1994] or the finite
difference approach [see for example Claerbout, 1985], which can both include the
multi-valuedness correctly. However, for the application of these approaches an ex-
act velocity model of the datum layer is necessary.
Another way to circumvent the problem of multi-valuedness inside the datum layer
is to perform redatuming in a recursive way, i.e. the datum layer is subdivided into a
number layers of smaller thickness such that multi-valuedness does not occur inside
these thinner layers.
Note that multi-valuedness below the datum does not pose a problem. It will be
accounted for automatically by the DMR approach (see Section 3.2).

3.5.3 Flat datum

For the estimation of the isochrone, which is being used in the DMR approach
to determine the positions of possible reflection points belonging to the considered
output sample, the new datum is assumed to be flat, i.e the redatumed source and the
redatumed receiver are expected to be positioned at the same depth level. However,
if it is intended to apply the DMR method to a situation with a non-flat datum,
that is with large differences in the z-positions of the redatumed source and the
redatumed receiver, it is strongly recommended to modify the proposed approach to
get kinematically and dynamically correct results.
This modification can easily be accomplished. One just has to orient the axes of the
coordinate system used to determine the positions of the possible reflection points
accordingly (see Section 3.1). Thereafter, all other steps can be performed as they
have been described in this chapter.
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3.5.4 Shape of reflectors below the datum

In the derivation of the amplitude weights, which are utilized in the weighted stack of
the DMR approach, the potential reflectors below the new datum layer are assumed
not to be strongly curved. For most reflectors this will be true. However, it can
happen, that strongly curved reflectors have to be treated, or diffraction events,
which can be interpreted as reflections from a reflector with infinite curvature. In
these cases, the contributions of tt and tt,KSR cannot be neglected in the correction
term derived in Equation 3.4.35. As a result, the event on the redatumed trace can
exhibit errors in the amplitude compared to the result of conventional redatuming.
The timing of the event will not be affected. However, note the remarks made about
the image amplitude of strongly curved events made in Section 3.4.

3.5.5 One-way wavefields

As pointed out in the derivation of the KSR approach, which is the basis for the
development of the DMR method, the situation of inverse extrapolation of one-way
wavefields is considered. This means that the input data set is assumed to contain
primaries only; surface-related multiples should have been removed by prior data
processing and internal multiples are assumed to be negligible. Internal multiples
that have not been removed will be treated as primaries reflected at mirrored re-
flectors (see Figure 3.9). As long as the multiple event did not travel inside the
datum layer the redatumed result of the KSR approach will be kinematically and
dynamically correct, because the assumption that, inside the datum layer, a one-way
wavefield is treated is still valid.
For the calculation of the redatumed result by means of the DMR approach also the
assumptions being made about the medium below the datum layer are important.
In particular, the correctness of the positioning of the possible reflection points and
of the velocity used to describe the medium below the datum layer is crucial. As
one can see in Figure 3.9, the reflection point belonging to the internal multiple is
assumed to be at the mirrored reflector. That is, the velocity belonging to this point

Figure 3.9: Raypath of an internal multiple. The dashed line indicates the mirrored reflector,
the dotted line indicates the raypath of the primary event belonging to the mirrored reflector.
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will be used for the DMR approach instead of the correct velocity belonging to the
true reflector. However, in most cases the difference between these two velocities
will be negligible, and, therefore, the redatumed result of the DMR approach will
be kinematically and dynamically correct as well.
The considerations made above are not true for datum layer-related multiples, which
are events that have a downward reflection inside the datum layer or at the surface.
In this situation, the assumption of an either up-going or down-going one-way wave-
field inside the datum layer is violated. However, the DMR approach can be extended
such that it can be used to predict and remove datum layer-related multiples. This
application of the DMR methodology is further discussed in Chapter 7.

3.5.6 Far-field approximation

It has also been mentioned in the derivation of Equation 3.3.16 that this expression
is a far-field approximation of the Rayleigh II integral with the near-field term being
neglected for computational efficiency. Hence, Equation 3.4.40 underlying the DMR
method is a far-field approximation, too. As stated in Appendix A, the approxima-
tion is valid if the distance between the source and receiver positions at the surface
and at the new datum r is large compared to v1

ω
. Assuming, for example, the maxi-

mum velocity of a datum layer to be approximately 2000m/s and a minimum seismic
frequency of 10Hz yields v1

ω
= 35m. With datum layers usually being several hun-

dreds of meters thick the far-field approximation should be valid. However, if the
datum velocities are higher, the minimum seismic frequency is lower and a datum
layer of relatively small thickness is treated, the far-field approximation might no
longer be valid. In this case, the near-field term needs to be included, and Equa-
tion A.9 has to be utilized for the derivation of the integral expression describing
the DMR method.
Furthermore, it should be investigated whether the chosen integral expression indeed
converges to the AMO expression if the thickness of the datum layer converges to
zero.

3.5.7 Converted waves

Finally, the issue of input data sets containing converted waves needs to be discussed.
An example of such a converted wave is presented in Figure 3.10. The derivation of
the KSR method, which is the basis of the DMR method, starts from the acoustic
wave equation. This implies that only acoustic waves can be redatumed correctly by
these methods. However, it can certainly be assumed that both methods redatum
SH-waves correctly as well.
Furthermore, the KSR approach can be extended to handle converted waves kine-
matically correctly. The redatuming operators used to correct for the one-way wave-
propagation between sources at the surface and at the datum and receivers at the
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Figure 3.10: Raypath of a converted wave with a down-going P-leg and an up-coming S-leg.

surface and at the datum, respectively, have to be determined accordingly. If the
data set consists of down-going P-waves and up-coming S-waves, a P-operator has
to be used to correct the sources and a S-operator has to be used to correct the
receivers. The redatumed result will be kinematically correct. Whether the am-
plitudes of the redatumed result are correct should be examined in detail, but is
beyond the scope of this thesis.
The extension of the DMR approach to handle converted waves, at least, kinemat-
ically correctly requires little more effort, but can also be accomplished. This is
discussed in greater detail in Chapter 7.
Note, that both the KSR and the DMR method can handle converted waves properly
as long as the path through the datum layer can be associated with P-wave propa-
gation (see Figure 3.11). What happens below the datum is of less importance. In
case of the DMR method only a different, not fully correct velocity to describe the
medium below the new datum is used. However, this yields only small errors in the
amplitudes and the timing of the redatumed events.

P
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P

S

Figure 3.11: Raypath of a converted wave with a down-going P-leg and an up-coming P-leg
inside the datum layer.



4

Evaluation of the DMR methodology

with 2D data examples

Der Worte sind genug gewechselt,
Laßt mich endlich Taten sehen.

Johann Wolfgang von Goethe (1749 - 1832)

In this chapter results are presented for several tests of the DMR approach. At this
stage, only the new redatuming method itself is assessed. That is, it is examined
whether the proposed approach works, whether the assumed background medium
describing the medium below the new datum level is sufficient, and whether the
trace-selection parameters and the amplitude weights, which are needed for the
weighted stack along the locus, have been derived correctly. The method can only
be extended to sparse 3D data sets by combining it with the infill step, if these tests
show correct results.
The set of experiments presented in this chapter is run on 2D data sets because of
the ease of implementation and the low computational effort. In the following list,
the objectives of the different experiments are named.

[1] The applicability of the proposed method and the derived trace-selection pa-
rameters need to be verified. To accomplish this, the new DMR approach is
applied to seismic data from a velocity model with a constant velocity below
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and above the new datum level. In this situation the assumptions made about
the background medium below the new datum layer are satisfied and, further-
more, the trace-selection parameters can be calculated analytically. As a result
no numerical errors influence the trace-selection procedure.

[2] The sensitivity of the DMR method with respect to errors in the velocities
describing the medium below the datum needs to be examined. Therefore, the
DMR approach is applied, again, to seismic data from a velocity model with a
constant velocity below and above the new datum level. In this situation the
background medium below the new datum layer is well-known and, further-
more, the trace-selection parameters and amplitude weights can be calculated
analytically. Hence, by assuming incorrect velocities below the new datum
level and correct velocities above the datum the sensitivity of the new method
with respect to these errors can clearly be identified.

[3] The applicability of the simplifying assumptions on the velocity model for
the medium below the new datum level and the derived weighting parameters
need to be tested. The DMR approach is therefore applied to seismic data
from a velocity model with a constant velocity above the new datum level and
a complex velocity structure below the datum. In this situation the weights
can be calculated analytically and are not influenced by numerical errors.

[4] It needs to be examined whether the trace-selection parameters and the weight-
ing factors can be extracted from given redatuming operators. To assess this
the DMR method is applied to seismic data from two different velocity models.
The first, and simpler velocity model consists of a complex datum layer and a
constant velocity medium below the datum. The second, more realistic veloc-
ity model consists of a complex velocity model above and below the datum.
Especially the latter experiment can be considered as a test under realistic
conditions.

[5] The ultimate test of a newly developed methodology certainly is its application
to real seismic data. This has been done as well for the DMR approach by
applying it to a 2D data set acquired in the Middle-East. The data set has
been acquired over a fairly complex near surface area, which is typical for this
region.

It should be noted here, that the direct arrivals and reflections from the datum itself
have been muted whenever possible, because, after redatuming, only events from
below the datum level are of importance.
Once the 2D experiments are completed with a positive outcome, the method can
be extended to and tested on 3D data sets (see Chapter 5 and Chapter 6).
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4.1 Simple model – homogeneous datum layer; correct veloci-

ties

For the first test, a simple numerical model has been chosen, which satisfies the
medium assumptions made for the DMR approach. In other words, the method is
applied to seismic data obtained from a medium built of several layers with a con-
stant velocity below the new datum. Reflections from below the new datum occur
due to changes in the medium density. The model used for this first test is shown
in Figure 4.1. The velocity of the datum layer is 2500m/s, the velocity below the
medium is 3500 m/s. The most distinct feature is the reflector below the new datum
level, which has a sharp edge and a dip of 60 ◦. This sharp edge will produce a
reflection event showing characteristics of a diffraction. In other words, this event is
especially suited to assess the amplitude weights, which have been derived assuming
the potential reflectors not to be strongly curved.
A synthetic data set modeled with a moving spread geometry serves as input for
this first test. Hereby, a 2D acoustic finite difference algorithm has been employed.
The source positions are ranging from 2000m to 6000m with a sampling interval of
20m. For the receivers, a split-spread geometry has been chosen with a maximum
offset of 2000m and a sampling interval of 20m. This data set is utilized for the
calculation of a redatumed shot gather with source and receivers both at the new
datum level at a depth of 300m. The source position at the new datum is 4000m,
the receivers range from 4000m to 5500m.
In Figure 4.2 two redatumed shot gathers are compared. The gather in Figure 4.2a
has been computed with the conventional KSR method and, thus, represents the
desired outcome. The gather in Figure 4.2b has been computed with the DMR

x[m]

z[
m

]

ρ[kg/m3]

Figure 4.1: Density model with a homogeneous datum layer and a simple subsurface below
the datum. Note, that the velocity below the datum is homogeneous.
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Figure 4.2: Comparison of (a) the redatumed shot gather computed by conventional reda-
tuming and the redatumed shot gather computed by the DMR approach using (b) the correct
velocity v2 = 3500 m/s.

approach assuming the correct velocity of 3500m/s for the medium below the new
datum.
At first glance, it can be concluded that the proposed method works well because
the two events are reconstructed properly. However, to evaluate the output of the
DMR approach the results need to be examined in detail, i.e. with respect to kine-
matic quantities like traveltimes as well as with respect to dynamic quantities like
amplitudes. Therefore, the segments of the redatumed traces containing the two
events, which have been computed with the DMR approach and the KSR approach,
are compared. Figure 4.3 presents traces with an offset of 0m, 200m and 400m.
It is apparent, that for a correct model assumption the redatumed traces using the
DMR approach match the desired traces very well. There are neither timing er-
rors nor significant errors in the absolute amplitudes. However, for the first event,
corresponding to the reflection from the edge and the steeply dipping part of the
reflector, small amplitude errors occur for small offsets. These errors decrease for
larger offsets.
The appearance of these errors can be interpreted as a validation of the theory under-
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Figure 4.3: Comparison of redatumed traces computed by the KSR approach (gray line) and
by the DMR approach (black line) for an offset of (a) 0 m, (b) 200 m, and (c) 400 m.

lying the DMR approach. For the derivation of the weighting factors, the potential
reflectors below the new datum level are assumed not to have a strong curvature.
As a consequence, incorrect amplitudes are to be expected for reflection events from
strongly curved reflectors. In this experiment the first event is a diffraction event
from the edge of the reflector for small offsets. Consequently, the amplitude of the
first event shows a small error. However, with increasing offsets the characteristic
of this event changes from a diffraction to a reflection of a steeply dipping, but flat
reflector. In other words, for increasing offsets the assumptions made underlying
the DMR approach are met. This is also confirmed by the results because the am-
plitude error of the first event decreases for increasing offsets. Note, that for the
second event no amplitude errors are observed, as expected.
A second discrepancy between the two results is a small artifact, which appears
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prior to the main events in the results of the DMR approach. Its occurrence can be
explained by the limited aperture of the redatuming operators. For the new method,
only dips of the ellipsoid between -90 ◦ and +90 ◦ are covered; i.e. the surface aper-
ture of the redatuming operators is restricted to an area from which the considered
source at the new datum and receiver at the new datum, respectively, are reached
with an angle of incidence not exceeding the critical angle. This leads to a sharp
cut-off of the corrected traces before the final Fresnel stack, which does not occur
for the conventional method. The occurrence of this artifact does not pose a serious
problem, because it could be removed by applying a taper before the stack. How-
ever, applying a taper in this situation also means that parts of the corrected traces
could be tapered that actually contribute to the considered event. Since this would
affect the absolute amplitude of the redatumed event, it was decided not to apply a
taper.
In conclusion, this test on numerical data from a velocity model with a simple sub-
surface below the datum and a homogeneous datum layer can be summarized by the
following statements:

• the DMR approach, whereby for 2D data a 2D integral is reduced to a 1D
integral, works since it reproduces the desired results;

• small errors occur for strongly curved reflectors below the datum level; this
was expected.

4.2 Simple model – homogeneous datum layer; erroneous ve-

locities

As already mentioned, the sensitivity of the DMR approach with respect to an in-
correct description of the background velocity model needs to be examined. For
this purpose, two redatumed shot gathers have been calculated applying the DMR
method to the input data set that has been described in the previous section. How-
ever, this time an incorrect velocity is assumed for the medium below the new datum
level. For the result presented in Figure 4.4a this velocity has been assumed 500 m/s

too low, and for the result presented in Figure 4.4b the velocity has been assumed
500m/s too high. A comparison of these results with the desired result displayed in
Figure 4.3a indicates a low sensitivity of the DMR approach to an incorrect back-
ground model. The results are kinematically and dynamically almost correct, even
when a very wrong velocity is used. This can also be seen in Figure 4.5 and Fig-
ure 4.6, which provide a comparison of redatumed traces computed by the DMR
approach for two offsets. Apparently only the amplitudes of the diffraction events
are affected, while the amplitude of the reflection event stays unaffected.
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Figure 4.4: Comparison of the redatumed shot gather computed by the DMR approach using
(a) the incorrect velocity v2 = 3000 m/s and (b) the incorrect velocity v2 = 4000 m/s.
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Figure 4.5: Comparison of redatumed traces computed by the data mapping approach using
the correct velocity (black line), the velocity v2 = 3000 m/s (solid gray line) and the velocity
v2 = 4000 m/s (dotted gray line) for an offset of 400 m.
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Figure 4.6: Comparison of redatumed traces computed by the data mapping approach using
the correct velocity (black line), the velocity v2 = 3000 m/s (solid gray line) and the velocity
v2 = 4000 m/s (dotted gray line) for an offset of 1400 m.

Besides this, the timing of both events is almost correct for the small offset. For
larger offsets, the shallow event shows a small time shift while the timing of the deep
event stays unaffected.
Hence, it has been learned from this second test that the DMR approach shows
only a weak sensitivity to errors in the assumed background medium below the new
datum. Even large errors in the assumed velocity produce only small errors in the
amplitude and traveltime of the events.

4.3 Complex model – homogeneous datum layer

Next, the DMR approach is applied to synthetic data generated from a complex sub-
surface model below a homogeneous datum layer with a medium velocity of 1500m/s.
As indicated in the previous section, the expectation is that utilizing approximate
RMS velocities to describe the velocity model below the new datum is sufficient to
obtain kinematically and dynamically correct redatumed output traces.
The numerical model underlying this synthetic 2D data set is displayed in Figure 4.7.
Unlike for the previous experiment this model is quite realistic. It contains a part
of a salt dome, fault structures beneath the dome, turbidite structures with low
velocities and vertical as well as lateral velocity gradients.
For this subsurface model a data set has been modeled with a moving spread ge-
ometry using a 2D acoustic finite difference code. The source positions are ranging
from 4500m to 10500m with a sampling interval of 30m. The receiver spread has a
maximum offset of 4800m at both sides of the source position and is sampled with
an interval of 30m. From this input data set a redatumed shot gather is calculated
at a depth of 250m. The source is positioned laterally at 6000m, and the receivers
range from 6000m to 10000m. To get the redatumed RMS velocity field used for
redatuming a standard velocity analysis has been applied to the input data set.
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Figure 4.7: Velocity model with a homogeneous datum layer and a complex subsurface below
the datum.
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Figure 4.8: Comparison of (a) the redatumed shot gather computed by the KSR method, and
(b) the redatumed shot gather computed by the DMR approach.
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The resulting gather is displayed in Figure 4.8b. A comparison with the desired result
(see Figure 4.8a), which has been computed by applying conventional redatuming,
shows that the DMR approach produces very good results. Obviously all events are
reconstructed and appear at a correct position in time. It should be remembered
that, compared to conventional redatuming, in the new approach a 1D integral
instead of a 2D integral has been applied to calculate one time sample. It should,
furthermore, be noted that, for the DMR approach, only approximately 100 traces
are needed for the calculation of one output sample.
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Figure 4.9: Comparison of redatumed traces computed by conventional redatuming (gray
line) and by the data mapping approach (black line) for an offset of (a) 30 m, (b) 1800 m,
and (c) 3000 m.
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This considerable reduction of input data needed to calculate one time sample will
be of special importance for the application to sparse 3D data since the number of
traces to be infilled is strongly reduced then as well.
To evaluate the quality of the redatuming result more closely, again, traces repre-
senting the near-offset, the medium-offset and the far-offset range are selected.
In Figure 4.9 the traces are compared with the results of the KSR approach, which
are obtained by calculating the full 2D integral. The redatumed events on these
traces do not show any or only very minor errors in timing, and even the absolute
amplitudes match very well.
It can thus be stated that the DMR method utilizing RMS velocities for the descrip-
tion of the medium below the new datum produces kinematically and dynamically
correct results. Furthermore, these results prove that assuming a simple background
medium below the new datum layer is indeed sufficient.

4.4 Simple model – complex datum layer
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Figure 4.10: Density model with a complex datum layer and a simple subsurface below the
datum.

For this test a complex near surface is included in the numerical model to create a
more realistic situation than the ones considered before. Here, a constant velocity
medium below the datum (v2 = 3000m/s) has been chosen. By doing this, it is
assured that all occurring errors are resulting from errors made in the extraction of
the trace-selection parameters and the weights from the redatuming operators. As
illustrated in Figure 4.10 the datum layer is 700m thick. This layer exhibits a veloc-
ity gradient with an increase of the velocity from top left (v = 1500m/s) to bottom
right (v = 1700m/s). Furthermore, a low velocity zone (vlow = 1200 m/s) is present
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Figure 4.11: Traveltimes of the redatuming operators for the complex datum layer.

around x = 7000m which corresponds to a wadi (dry riverbed) as often present in
the Middle East. For this situation it is no longer possible to calculate the one-way
traveltime operators including the time shifts, the ray parameters and the amplitude
corrections analytically. Instead, an Eikonal solver has been used to calculate the
traveltimes and the amplitudes of the one-way operators [see for example Vidale,
1988]. The traveltimes are presented in Figure 4.11. Note the imprint of the low
velocity anomaly and the effect of the velocity gradient.
The ray parameters at the surface points were extracted from the traveltimes by
sorting them into common receiver gathers and calculating the first derivative, as it
has been described in Chapter 3.
For this numerical model a data set has been computed with a moving spread geom-
etry utilizing a 2D acoustic finite difference code. Its sources are positioned between
4500m to 10500m with a sampling interval of 30m. The receiver spread has a max-
imum offset of 4800m at both sides of the source position and is sampled with an
interval of 30m. Again, a redatumed shot gather is calculated for this input data set
at a depth of 700m. The position of the redatumed source is 6000m, the receivers
range from 6000m to 9500m.
Figure 4.12a illustrates one shot gather of the input data set, which is clearly dis-
torted by the low velocity infill. Four strong events can be identified. The two events
with the apex positions at approximately x =6000m represent the primary reflection
from the reflector below the datum layer and the first-order surface-related multi-
ple belonging to it. The two events whose apices are shifted to the right represent
first-order multiples related to the low velocity zone. Here, the first event represents
a reflection from the reflector below the datum, which has then been diffracted at
the edges of the low velocity area; the second event represents a reflection from the
reflector below the datum, which has then been reflected at the lower boundary of
the low velocity area.
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It should be noted here, that, in general, surface-related multiples are treated dif-
ferently by the KSR and the DMR approach. The redatumed results will only be
comparable if the stacking velocities used for the redatuming by means of the DMR
approach are similar to the RMS velocities belonging to the paths the multiples took
(see Chapter 3.5). However, this is not the case for the considered data set. Here,
the velocity used for redatuming is 3000m/s, whereas the surface-related multiples
and the multiple events related to the low velocity zone mostly travel with a velocity
that does not exceed 1700 m/s. Hence, errors in the timing of those events are to be
expected. However, the redatuming of datum layer-related multiples is beyond the
scope of this chapter. It will be discussed more thoroughly in Chapter 7.
The redatuming results are displayed in Figure 4.12. A comparison of the desired
result (see Figure 4.12b), which has been computed by applying conventional full
2D integral redatuming, with the result of the DMR approach (see Figure 4.12c) is,
again, positive. Obviously the primary reflection from the reflector below the datum
has been reconstructed correctly. The distortions triggered by the low velocity zone
within the datum layer have successfully been removed. Small errors can only be
seen in the timing of the multiple events. This, however, was to be expected.
Amplitude comparisons of the desired result and the result of the DMR approach are
presented in Figure 4.13 for two different offsets, again, showing that the primary
event redatumed by means of the DMR method is dynamically correct.
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Figure 4.12: Comparison of (a) a shot gather of the input data set, (b) the redatumed shot
gather computed by conventional redatuming, and (c) the redatumed shot gather computed
by the DMR approach.
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Figure 4.13: Comparison of redatumed traces computed by conventional redatuming (gray
line) and by the DMR approach (black line) for an offset of (a) 30 m and (b) 3000 m. Note
that the earlier event is a primary reflection from below the datum layer, the later event is
a multiple related to the low-velocity zone inside the datum layer.

It can thus be concluded, that the results of the DMR method are kinematically and
dynamically correct even if the amplitude weights and trace-selection parameters
have to be extracted from redatuming operators.

4.5 Complex model – complex datum layer

For the next experiment a complex subsurface is included in the synthetic model.
As illustrated in Figure 4.14 the datum layer is 700m thick and includes exactly the
same features as the datum layer included in the velocity model discussed before.
A synthetic data set has been produced for this numerical model using, again, an
acoustic 2D finite difference code. The data set has a moving spread geometry with
sources positioned between 4500m to 10500m with a sampling interval of 30m. The
receivers are arranged in a split-spread geometry with a maximum offset of 4800m
at both sides. They are sampled with 30m, too. The redatumed shot gather being
calculated from this input data set is positioned at a depth of 700m with its lateral
position at 6000m. The receivers range from 6000m to 9500m.
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Figure 4.14: Velocity model with a complex datum layer and a complex subsurface below the
datum.
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Figure 4.15: Comparison of (a) a shot gather of the input data set, (b) the redatumed shot
gather computed by conventional redatuming, and (c) the redatumed shot gather computed
by the new data mapping approach.
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Figure 4.16: Comparison of redatumed traces computed by conventional redatuming (gray
line) and by the DMR approach (black line) for an offset of (a) 60 m and (c) 2400 m.

Figure 4.15b and Figure 4.15c display the results of the redatuming. A comparison of
them shows that the DMR method, again, produces good results, which are almost
identical to the result of the KSR method. It can also be seen that the distortions
of the near surface have been successfully removed. This can be observed when the
redatumed shots are compared with a shot gather of the input data presented in
Figure 4.15a.
The absolute amplitudes of the redatumed results can be examined in Figure 4.16
for traces at two different offsets. Here, the DMR result matches the desired result
very well.
It can thus be concluded that even for this complex velocity model below and above
the datum the DMR method produces satisfactory results, which kinematically and
dynamically match the conventional redatuming results.

4.6 Real data example

The real 2D data set used here to test the DMR approach has been provided by
Saudi Aramco. It is a land data set acquired over a complex near surface, which is
typical for the Middle East. In Figure 4.17 a stacked section of the input data is
presented, clearly showing this complexity.
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Figure 4.17: A stack of the input data. Note that the reflection of the target reflector for
redatuming occurs at approximately 0.59 s.
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For the first test on these data the redatuming operators have been estimated using
the data-driven CFP technology employing the old iterative updating approach [see
for example Kelamis et al., 1999; Hindriks and Verschuur, 2001; Al-Ali and Blac-
quiere, 2005]. The traveltimes of these operators are presented in Figure 4.18. It
should be noted that the CFP location is equivalent to the source position of a one-
way operator at the new datum level. The offset coordinates indicate the receiver
offset at the surface with respect to the considered source (CFP) location at the new
datum. It clearly can be seen that the traveltimes are inconsistent along the CFP
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Figure 4.18: Traveltimes of the first redatuming operators estimated for the real data set.

location coordinate. In some areas neighboring operators exhibit large differences.
It has to be noted here that these inconsistencies are a result of the applied iterative
updating method, and that they are most likely not related to inhomogeneities in
the datum layer itself. The reason for this is that neighboring operators are not
included in the estimation of the traveltimes at a certain CFP position. The situa-
tion shown here is comparable to using different, slightly incorrect velocity models
for the calculation of the redatuming operators at different CFP locations in the
model-driven approach.
However, even though these operators are not fully correct, they still represent a
realistic situation, because one usually cannot expect the estimated redatuming op-
erators to be error-free. It is, therefore, interesting to see how the different reda-
tuming methods handle these inconsistencies.
In Figure 4.19b the resulting redatumed shot gather using the conventional KSR
method is displayed, and Figure 4.19c shows the result of the DMR approach. A
comparison of these gathers with the same shot gather of the input data set (see
Figure 4.19a), which has been shifted in time, reveals that, apparently, the KSR
approach suffers more from the inconsistencies in the applied redatuming operators.
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Figure 4.19: (a) A shot gather of the input data shifted in time by approximately the amount
redatuming shifts the data. (b) A redatumed shot gather computed by conventional reda-
tuming using inconsistent operators. (c) A redatumed shot gather computed by the DMR
approach using inconsistent operators.
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In the conventional approach the characteristics of the input data are less well pre-
served than by using the DMR approach. This can be explained by the fact that the
inconsistent operators are applied twice to the data by the conventional approach.
In contrast to this, the DMR method applies only one Fresnel stack, so that the
error will be less pronounced in the final result.
A second test has been performed on this data set, this time using operators which
have been estimated by an improved operator updating procedure. As one can see
in Figure 4.20, these operators are more consistent. Again, the CFP location is
equivalent to the source position of a one-way operator at the new datum level.
The offset coordinates indicate the receiver offset at the surface with respect to the
considered source (CFP) location at the new datum. They do not show as severe
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Figure 4.20: Traveltimes of the second redatuming operators estimated for the real data set.

inconsistencies of the traveltimes in CFP direction as the result of the old estimation
method. Consequently, the result of the conventional redatuming improves (see Fig-
ure 4.21b). The reflection events are more continuous. However, also for this second
experiment it is observed that the characteristics of the original data are preserved
better by the DMR approach. This might not be apparent from a comparison of the
redatumed shot gathers presented in Figure 4.21b and Figure 4.21c, but it becomes
clear from the stacked sections of the redatumed data. In Figure 4.22 the stacked
input data set shifted by the time of the reflection event from the new datum at
zero offset is illustrated. Figure 4.23 presents the stack of the redatumed data using
the conventional KSR approach. This stack shows more continuity than the stacked
input data. However, this continuity has to be attributed to errors of the redatum-
ing. It can be seen in Figure 4.19b and in Figure 4.21b that the inconsistency of the
operators produces flat events in the redatumed shots using the KSR method.
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Figure 4.21: (a) A shot gather of the input data shifted in time by approximately the amount
redatuming shifts the data. (b) A redatumed shot gather computed by conventional redatum-
ing using more consistent operators. (c) A redatumed shot gather computed by the DMR
approach using more consistent operators.
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Figure 4.22: A shifted stack of the input data. Here, the oval indicates an area where the
data redatumed by the DMR approach show an improved continuity compared to the KSR
result and the stacked input data.
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Figure 4.23: A stack of the redatumed results computed by the KSR approach using more
consistent operators. The oval indicates an area where the data redatumed by the DMR
approach show an improved continuity compared to the KSR result shown here and the
stacked input data.
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Figure 4.24: A stack of the redatumed results computed by the DMR approach using more
consistent operators. Here, the data inside the oval show a better continuity than the result
of the KSR method and the stacked input data.
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Figure 4.25: A selected area of: (a) the stacked input data shifted in time by approximately
the amount redatuming shifts the data, (b) the stack of the redatumed result computed by
conventional redatuming and (c) the stack of the redatumed result computed by the DMR
approach.
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A stack of these flat events certainly yields a strong continuous event, but it does
not necessarily mean that this event exists. In opposite to this the DMR approach
clearly preserves the characteristics of the original data better (see Figure 4.24).
Furthermore, a slight improvement of the stacked result after DMR redatuming can
be stated, because a better continuity has been achieved in some areas (see also
Figure 4.25).
Hence, from these tests of the DMR approach on a real 2D data set it can be
concluded that:

• the DMR approach produces satisfactory results for the application to complex
real 2D data;

• the DMR approach preserves the characteristics of the input data better be-
cause only one Fresnel stack is applied, whereas the conventional redatuming
approach uses two;

• the DMR approach is less sensitive to inconsistencies in the redatuming oper-
ators (e.g. due to an improper estimation of one-way travel times or the use
of inaccurate velocities of the datum layer), which happened for this data set,
compared to the conventional KSR method.

4.7 Conclusions and recommendations

The results of the tests on fully sampled 2D data can be summarized as follows:

[1] the DMR approach using RMS velocities for the description of the velocity
model below the new datum level works very well;

[2] the redatumed traces are kinematically and dynamically correct;

[3] the absolute amplitudes are showing small errors for strongly curved reflectors
below the new datum level;

[4] the number of traces needed to calculate one output sample is considerably
reduced, only about 100 traces were enough to calculate one output time
sample, whereas in the conventional approach this would be 10000;

[5] the dependency of the new approach on the assumed medium below the new
datum level is weak because the assumption of a velocity medium where no
ray bending occurs is already sufficient to produce correct results;

[6] the method is applicable to a complex near surface;

[7] the method has proved its applicability to real data.
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With these tests showing satisfactory results the DMR approach can now be ex-
tended to, and tested on, 3D data sets. The proposed infill idea needs to be incor-
porated then.
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5

The infill of missing data

So einfach wie möglich.
Aber nicht einfacher !

Albert Einstein (1879 - 1955)

In this chapter the problem of sparse 3D input data is addressed. The results of
the DMR approach, which has been explained in Chapters 2 and 3, will suffer from
aliasing if the loci of possibly contributing time samples in the input data set are
not sampled sufficiently densely, i.e. if the weighted summation is performed on
sparsely sampled data. To prevent this from happening, the DMR approach has to
be combined with a data interpolation or data infill step prior to the application of
the stack.
The first section of this chapter reviews the existing methods of data interpolation
and regularization (Section 5.1) and evaluates their applicability to the problem
at hand. Thereafter, the theory of the chosen ‘Delphi trace replacement’-method
(DTR) is explained (see Section 5.2), and the implementation of this method as
part of the DMR approach is described (see Section 5.3). In the end, assumptions
being made for the DTR are discussed, and their implications with respect to the
application in the DMR approach are listed (see Section 5.4).
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5.1 Existing methods

A literature study on methods for the reconstruction, regularization and interpola-
tion of seismic data reveals numerous approaches. In general, these approaches can
be categorized in two classes:

• data mapping methods,

• signal processing methods.

A brief overview of these two categories is given here, followed by a discussion about
which method is most appropriate for the application in the DMR approach.

5.1.1 Data reconstruction by data mapping approaches

This first class of methods to reconstruct missing seismic data bases on the principles
of Kirchhoff data mapping (KDM) as explained in Chapter 2. They are utilized:

[1] to create zero-offset data from traces with non-zero offsets by applying a DMO
operator [see Deregowski, 1986; Hale, 1991],

[2] to perform offset continuation by applying an offset move-out (OMO) operator
[see Bagaini and Spagnolini, 1996; Spagnolini and Opreni, 1996],

[3] to reconstruct missing shot gathers by applying a shot continuation (SCO)
operator [see Bagaini and Spagnolini, 1996],

[4] to create traces at arbitrary offsets and azimuths by applying the AMO oper-
ator [see Biondi et al., 1998].

It can be stated that the underlying principle of KDM methods utilized to recon-
struct missing seismic data is to exploit their redundancy. A continuation operator
is applied to the available input data set, and, thereafter, a weighted summation is
performed on the corrected traces yielding the desired result. The application of this
operator to the input data can be equated with the construction of a locus of pos-
sible contributing time samples. For the construction of the continuation operator
all KDM approaches, including the DMR approach, assume some knowledge of the
subsurface to be imaged. Usually, a constant medium is adopted for this purpose,
whose velocity is related to the stacking velocity of the desired output sample.
Generally speaking, the DTR approach as described by Gisolf [2002] and van de Ri-
jzen et al. [2003, 2004] can also be classified as a data mapping technique, although
it has to be considered as a simplified version. As for the other KDM techniques,
the DTR method utilizes the large redundancy of seismic data. However, all KDM
techniques mentioned above make certain subsurface assumptions to create a surface
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of possible contributing reflection points. They translate this information into con-
tinuation operators and, finally, calculate the desired output sample by applying a
Kirchhoff summation to the input data, which have been corrected by the operators.
For these techniques the exact location of the true reflection point belonging to the
considered event is unknown. It is only implicitly determined by performing the
Kirchhoff summation. In contrast to this, the DTR method assumes the position
of the reflection point as well as the angle of incidence of the wave reflected at this
point and recorded at the considered time sample to be known. If this information
is available, the application of the Kirchhoff summation, i.e. the implicit determi-
nation of the position of the true reflection point, becomes superfluous. In fact, the
a-priori information about the position of the reflection point and the angle of inci-
dence is employed in the DTR approach to search the input data set for a trace that
contains the reflection event from the considered reflection point reflected under the
same angle of incidence as the event belonging to the desired output sample. Once
this trace has been found, the time sample corresponding to the considered reflection
event can be used for the reconstructed trace. It can thus be stated that the DTR
approach is a simplified data mapping technique using a-priori information.
In conclusion, all data mapping approaches to reconstruct missing data employ the
redundancy of seismic data based on the principles of wave propagation. However,
they all need information about the subsurface and errors made in the assumed sub-
surface medium will have a deteriorating effect on the outcome of the data recon-
struction. Besides this, all reconstruction techniques employing the KDM method-
ology, apart from the DTR approach, are computationally expensive, because they
require the calculation of summations along multiple dimensions.

5.1.2 Data reconstruction by signal processing approaches

The second group of data reconstruction techniques is based on the principles of
signal processing and not necessarily restricted to seismic data. They employ either
transforms or a filter to the input data to create a regularly and densely sampled
data set.

Transform-based methods

The methods of this class apply a cascade of transform and inverse transform. The
forward transform is applied to an irregularly, sparsely sampled input data set yield-
ing a regularly sampled data set in the transform domain. Thereby, the estimation
of the transform coefficients is formulated as an inversion problem. Then, an inverse
transformation is applied to compute the data on the desired grid. The transforms
being used for these data reconstruction methods are, for example, the Fourier trans-
form [see Hindriks et al., 1997; Duijndam et al., 1999; Zwartjes, 2005] or the Radon
transform [see Thorson and Claerbout, 1985; Kabir and Verschuur, 1995].
All methods named here can be fast, if the transforms are implemented efficiently,
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and they are independent of information about the subsurface. However, as stated
by Zwartjes [2005], they can produce incorrect results if the input data are non-
bandlimited or aliased.

Filter-based methods

The second category of the signal processing approaches to data reconstruction are
filter-based methods. Here, a filter is designed to interpolate the sparsely sampled
spatial domain. Examples for the filter-based methods are Spitz [1991], who em-
ployed prediction-error filters in the f − x domain to interpolate locally flat events,
and Crawley et al. [1999], who applied prediction-error filters to interpolate non-
stationary events. According to Zwartjes [2005], the first method mentioned here is
limited by the assumptions made about the shape of the events and is restricted to
relatively small gaps. The first problem has been fixed in the approach developed by
Crawley et al. [1999]. However, this improvement is achieved at the costs of higher
computational costs and a higher dependency on numerous parameters.

5.1.3 Reasons to chose the Delphi trace replacement method

For the selection of a data reconstruction technique to be used in combination with
the DMR method, the requirements of the DMR approach and the information pro-
vided by the DMR approach, that could facilitate certain reconstruction methods,
have to be considered.
As mentioned previously, the DMR approach needs the locus of time samples pos-
sibly contributing to the desired output sample to be sampled sufficiently densely.
Hence, missing time samples along this locus have to be filled in correctly. A com-
plete and correct reconstruction of the traces belonging to the missing time samples
is not necessary, however. This is, because the isochrones of possible reflection
points in the subsurface defining the locus will be different for the calculation of
every output sample. Consequently, the locus indicating the possibly contributing
time samples of the input data set changes for the calculation of every output sam-
ple, and there will be different time samples belonging to different traces that are
missing. The aim of the data reconstruction is, therefore, not to produce missing
traces and to create a densely sampled input data set but to provide only the re-
quired time samples. This indicates already that the data mapping techniques for
data reconstruction are particularly well suited for this situation. They are prefer-
able to the signal processing methods, because these methods cannot be utilized for
the reconstruction of single time samples due to their underlying principles.
Besides this, the information provided by the DMR approach, which is available as
a-priori information for the data reconstruction, has to be taken into account. As
explained in Chapters 2 and 3, the first step of the DMR methodology is to create
an isochrone of possible reflection points belonging to the considered output sam-
ple. This information is then translated into a locus of possibly contributing time
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samples in the input data set. In other words, during the application of the DMR
approach, the reflection point positions belonging to the time samples along the locus
are determined and can be used as a-priori information for the data reconstruction.
Moreover, the angle of incidence at these reflection points can be determined easily.
It can be calculated from the position of the reflection point belonging to the missing
time sample and from the source and receiver position at the new datum by simple
trigonometry. With this information being available the DTR method is the logical
choice for the reconstruction of missing time samples in the DMR approach.

5.2 Theory of the DTR method

The Delphi trace replacement (DTR) method is based upon two basic assumptions:

• The reflectivity of a certain reflection point at a target reflector is independent
of the azimuth.

• Two-way transmission losses can be ignored.

Both these assumptions are in concordance with the principles of modern 3D acqui-
sition design. There, it is always aimed to achieve a large fold at the target reflector.
However, a regular azimuthal illumination of the target points is not specifically
aimed for. That is, data acquisition is carried out with the implicit understanding
that the reflectivity of a reflection point is independent of the azimuth. Similarly,
two-way transmission losses are ignored in all commonly used migration algorithms.
The foregoing suggests that traces recorded at two different source/receiver pairs
(xs,xr) and (x

′

s,x
′

r) contain identical information regarding the target reflector if
the rays belonging to the considered reflection event reach the same reflection point
xiso with an identical angle of incidence α (see Figure 5.1). Here, I use the sub-
script iso to describe the reflection points, because these points will be points on
the elliptical isochrone if this method is applied to infill missing time samples in
the DMR process. As a consequence, the time sample p(xs,xr, te), which belongs
to the considered reflection event, can be replaced by a time sample on the trace
corresponding to (x

′

s,x
′

r):

p(xs,xr, te) ≈ p(x
′

s,x
′

r, te − ∆tDT R). (5.2.1)

∆tDT R is the difference in the two-way traveltimes of the reflection event considered
at the missing source/receiver pair and the acquired source/receiver pair, which
is used for the infill. ∆tDT R will only be zero if the reflector is horizontal and the
medium between target point and acquisition surface is laterally homogeneous. This
difference in two-way traveltime between the two samples at the locations (xs,xr)
and (x

′

s,x
′

r), that cover the same reflection point under the same angle of incidence,
can be calculated from the one-way traveltimes from the locations xs, xr, x

′

s, and
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Figure 5.1: Rays belonging to different source/receiver pairs reach the same reflection point
with an identical angle of incidence.

x
′

r to the reflection point.
As different traveltimes also mean different spherical spreading, one could apply an
amplitude correction for these effects:

p(xs,xr, te) = aDT Rp(x
′

s,x
′

r, te − ∆tDT R), (5.2.2)

aDT R =
asr

as′r′

.

Here, asr and as′r′ are the amplitudes belonging to the events at the different loca-
tions (xs,xr) and (x

′

s,x
′

r). For the work presented in this thesis the choice has been
made to apply the ratio of the different two-way traveltimes as amplitude correction.
It should be stressed, again, that the position of the target point xiso and the local
dip δiso in this point need to be known to find the trace and the time shift that
provide the missing information. Note, however, that this information is available
for the DMR approach.
Furthermore, it should be noted that the given relationship is only valid for the pri-
mary reflection at the target point. It is not valid for reflections from other interfaces
or multiples; i.e. if, for other applications than in DMR, it is intended to reconstruct
traces the whole procedure has to be repeated for every single time sample.

5.3 Implementation of the DTR approach

An important aspect with respect to the application of the DTR approach is its im-
plementation. The way of finding a source/receiver pair that contains the required
time sample is crucial. Unfortunately, the search algorithm described by van de
Rijzen et al. [2004] is not suited for the redatuming situation. This algorithm has
been designed to replace missing traces in the estimation of 3D CFP gathers from
sparsely sampled input data, using fully sampled 3D focusing operators. The focal
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points of these focusing operators – one-way wave-propagation operators – are po-
sitioned along the target reflector of the considered event. Apart from the one-way
traveltimes, these operators also contain information about their focal point posi-
tion and the angles of incidence at these focal points. For their search routine they
firstly regroup the operators from common focus point gathers to common surface
point gathers, so-called transposed operators. Then they estimate the stationary
reflection point for every source/receiver pair at the acquisition surface employing
Fermat’s principle of minimum two-way traveltime; the required two-way traveltimes
are calculated from the transposed operators belonging to the considered source and
receiver positions. Once this stationary reflection point is known, the reflection an-
gle of the specular reflection at this point can be determined as well. The result
of this procedure is a table containing the reflection point positions and reflection
angles for all source/receiver pairs. This table can then be utilized to find an ac-
quired source/receiver pair for every missing pair, which has an identical stationary
reflection point and reflection angle.
Operators with focal points at the target reflector are not available for redatuming.
This excludes the described search algorithm. Hence, a different approach to per-
form this search needs to be developed, and it has to be designed for the information
available from the DMR method. This information, which is available for the DMR
approach, or which becomes available during the application of the DMR approach,
is the following. Fully sampled 3D redatuming operators are provided, whose focal
points are located along the datum. The positions of the reflection points belonging
to the considered time samples and the medium in-between those points and the
new datum are known by the imposed assumptions of a velocity field below the da-
tum and the scanning over all possible reflector dips inherent in the ellipsoid. This
knowledge is utilized in a new search algorithm, which is solely based on geometrical
considerations. The flowchart presented in Figure 5.2 describes this search routine
for a certain time sample. As one can see, the following steps have to be performed:

[1] A contour at the new datum is determined indicating all source/receiver pairs
x̃

′

s,r with rays reaching the considered isochrone point under the same angle of
incidence as the rays belonging to the missing time sample (see Appendix D).
This contour constitutes the intersection of a cone and the new datum. The
cone has its apex position at the considered isochrone point at the ellipsoid
describing all possible reflection points, and it indicates all rays leaving this
point under the considered angle of incidence.

[2] Redatuming operators are selected which have their focal points on or near
this contour. The relative error εO of their focal point position with respect
to the contour is recorded.

[3] All surface locations corresponding to the points along the contour on the
new datum are determined by continuation to the surface of the rays from
the isochrone point to the new datum. That is, all source/receiver pairs at
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a densely sampled acquisition surface are defined which correspond to the
required pair. Traces acquired at these positions contain time samples which
can be used to replace the missing one. The continuation of the rays of the cone
from the datum to the acquisition surface is accomplished in exactly the same
way as it has been done for the construction of the locus using the selected,
fully sampled 3D redatuming operators (see Chapter 3). The relative error ε̺

of the ray parameter belonging to the selected surface position with respect to
the ray parameter describing the considered ray on the cone is recorded.

[4] From all source/receiver locations at the surface that are found this way, one
is selected that corresponds to a trace that has actually been acquired in the
sparse data set. The relative error εS of the positions of the acquired pair with
respect to the desired one is recorded.

∆

∗

Create contour

Select operators

Find surface positions

Find acquired
source/receiver pairs

Select
source/receiver pair

?

?

?

?

?
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⊕
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Figure 5.2: Flowchart describing the search for an acquired source/receiver pair which is
suitable to replace a missing pair if the DMR approach is applied to sparsely sampled data.
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[5] All relative errors are added and the source/receiver pair x
′

s,r with the mini-
mum relative error out of all selected pairs is chosen.

Once the trace has been selected, the desired time sample can be extracted according
to Equation 5.2.2.

5.4 Assumptions and limitations

The DTR method has been chosen for the infill of missing time samples if the
DMR approach is applied to sparsely sampled input data. As described above,
the reconstruction of a time sample by means of the DTR methodology will only
be correct if the isochrone point under consideration is an actual reflection point.
For all other isochrone points the infill may not be correct, but since only the true
reflection locations survive the isochrone stack, at least we can be sure that for that
location the possible infill was correct. This is discussed further in Section 5.4.1.
The search and infill, if the required trace is not in the data set, has to be repeated
for every point on the isochrone.
As with so many things, the ultimate proof of a concept are experiments. We have
proved the concept by the experiments presented in Chapter 6. It is recommended,
however, to perform more detailed tests to evaluate further the assumptions and
limitations discussed here.

5.4.1 Isochrone point is not a reflection point

The fact that the DTR method delivers correct results only if the considered isochrone
point is an actual reflection point needs to be investigated further with respect to
its application in the DMR approach. For our redatuming approach the isochrone is
the locus of all possible reflection points belonging to the considered output sample.
These possible reflection points are used to identify possibly contributing time sam-
ples in the input data set. Only very few of these points are true reflection points,
even if the subsurface is complex. All other isochrone points are not positioned on
a true reflector. Missing time samples due to sparseness of the input data, however,
will not only be related to the true reflection points. They will also be related to
points which are not true reflection points, and, as a consequence, their reconstruc-
tion will be incorrect. Hence, the influence of these errors in the reconstruction of
missing time samples on the redatuming result needs to be evaluated.
Here, two situations need to be considered separately:

[1] the missing time sample belongs to an isochrone point in the vicinity of a true
reflection point,

[2] the missing time sample belongs to an isochrone point further away from a
true reflection point.
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In the vicinity of a true reflection point

For the first case, it can be assumed that the error of the reconstruction is small,
because the error in the position of the reflection point is negligible. This is similar
to the situation described by van de Rijzen et al. [2004], where it was claimed that
errors in the Green’s functions have a negligible effect on the infill process.

Far away from a true reflection point

For the second case, the fact that the isochrone point is not near a true reflection
point leads to errors in the selection of the source/receiver pair used in the recon-
struction, and it leads to an incorrect calculation of the correction parameters ∆tDT R

and aDT R. However, the effect of these errors in the reconstruction depends on which
of the following two situations applies:

[1] the azimuth difference between the missing source/receiver pair and the one
selected for replacement is small,

[2] the azimuth between the missing source/receiver pair and the one selected for
replacement is large.

◦ Small azimuth between missing trace and selected trace

If the azimuth between the missing and the selected pair is small, the two raypaths
belonging to those pairs, which have been constructed for the infill, will be very
similar, unless the datum layer is very complex (see Figure 5.3).

Figure 5.3: Rays belonging to different source/receiver pairs reach the same reflection point
with an identical angle of incidence. Here, the situation of a small azimuth between the
missing trace and the selected trace is presented.
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This implies that the time-correction parameter ∆tDT R is close to zero. For traces
acquired in the vicinity of each other (similar azimuth and offset) events recorded
at similar traveltimes will belong to the same reflector if the subsurface is not very
complex. These events can, therefore, be described by similar true raypaths. Be-
cause of this, the amplitude of the selected time sample is similar to the amplitude
the missing time sample would have had, if it had been acquired. It can thus be
assumed that the error of the reconstruction is small and, therefore, negligible for
the redatumed result.

◦ Large azimuth between missing trace and selected trace

As already mentioned, the selection of the source/receiver pair as well as the calcu-
lated correction parameters are incorrect if the considered isochrone point position
is not at a true reflection point. If the azimuth between the required and the se-
lected source/receiver pair is large, it can no longer be assumed that this incorrectly
selected time sample is similar to the time sample that would have been used if the
missing trace had been acquired (see Figure 5.4). Consequently, the error made in
this situation cannot be neglected.

Figure 5.4: Rays belonging to different source/receiver pairs reach the same reflection point
with an identical angle of incidence. Here, the situation of a large azimuth between the
missing trace and the selected trace is presented.

In conclusion, it can be stated that the errors made in the data reconstruction,
which cannot be neglected, occur only for missing time samples belonging to possible
reflection points further away from the the true reflection point. The time samples in
the vicinity of the apex of the locus are correct. Further away from the apex position
of the locus the reconstructed time samples can occur at an incorrect position in
time and/or with an incorrect amplitude. The redatumed time sample, which is the
result of a weighted summation applied along the locus, is still correct, because all
possible contributing time samples which interfere constructively (inside the Fresnel
zone) are correct. However, if the errors in timing and/or amplitude lead to strong
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discontinuities, they can still have an effect. They can be interpreted as irregularities
of the locus which destroy the destructive interference of the contributions outside
the Fresnel zone. If that happens, artifacts can occur in the redatumed result.
However, if the errors in the infill do not cause discontinuities along the locus but
show a smooth behavior, no artifacts will be produced by the stack.

5.4.2 Discrete sampling of input data sets

It is assumed that at least one trace of the sparsely sampled input data set is avail-
able exactly at the infill contour pointing out all surface locations that could be
used for the data reconstruction. However, seismic data acquisition yields a discrete
sampling of the wavefield. It is likely, therefore, that no trace exists with source
and receiver exactly on the infill contour. Instead, a trace closest to the contour is
selected.
Furthermore, the sampling of the acquisition surface is not random. The data sets
usually consist of several subsets, which all have the same geometry like marine par-
allel lines and cross-spread geometries at land. It is, therefore, likely that traces from
a certain area are reconstructed by traces from one subset, and that the transition
from one subset to another neighboring subset happens abruptly. This effect might
cause the event on the set of corrected traces before the isochrone stack is applied
to be discontinuous (see Figure 5.5). It is very clear, that the stack of such an event
will produce artifacts in the redatumed result.

source position

tim
e

Figure 5.5: Discontinuities of the considered event as it might appear in a very extreme case
on the corrected traces before the final stack is applied. Abrupt changes from one subset of
the 3D data set to the neighboring one could cause these kind of discontinuities.

5.4.3 Recommendations

The occurrence of both artifacts, the one mentioned in Section 5.4.1 and the one
mentioned in Section 5.4.2, could probably be suppressed if the requirements im-
posed on the selection of possibly contributing time samples for the DMR approach
were eased. One could, for example, decide to use any trace belonging to a consid-
ered reflection point instead of restricting the search only to traces with a certain
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angle of incidence. By doing this, an incorrect amplitude of the selected time sam-
ple is accepted. However, the occurrence of unwanted artifacts due to an incorrect
infill could be prevented as well. It is probably the best to develop an optimization
strategy, that automatically decides whether to replace the missing time sample by
means of the DTR method or to use a time sample of an acquired trace, which
contains a reflection event from the considered reflection point but with a different
angle of incidence at that point.
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6

Evaluation of the DMR methodology

with 3D data examples

Gibt es einen Unterschied zwischen Theorie und Praxis ?
Es gibt ihn. In der Tat.

Werner Mitsch (1936 - )

In this chapter the DMR approach is evaluated on fully sampled and sparsely sam-
pled 3D data sets. The intention is to examine whether the DMR amplitude cor-
rections have been extended correctly to the 3D situation. Besides this, it needs to
be tested whether the infill by means of the DTR methodology, which is needed in
case of sparsely sampled input data sets, has been implemented correctly.
Below, the objectives of the different experiments are listed.

[1] The trace-selection parameters and amplitude weights need to be verified for
the 3D situation. As for the 2D situation, the DMR approach is applied to fully
sampled seismic data from a velocity model using a constant velocity below and
above the new datum level. In this situation the assumptions made about the
background medium below the new datum layer are satisfied and the trace-
selection parameters and amplitude weights can be calculated analytically.
Consequently, no numerical errors influence the result.

[2] The applicability of the proposed infill method needs to be tested. The DMR
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approach is, therefore, applied to a sparsely sampled input data set using the
velocity model which has been used for the first test. In this situation the infill
contour needed for the trace selection as well as the time shifts and amplitude
corrections belonging to the selected trace can be calculated analytically. As
a consequence, the infill is not influenced by numerical errors.

[3] The applicability of the DMR approach for a more realistic medium below the
new datum level needs to be tested. The DMR approach is, therefore, applied
to a fully sampled 3D data set using a velocity model with a constant velocity
above the new datum level and a complex velocity structure below the datum.

[4] It needs to be examined whether the proposed DTR approach to infilling miss-
ing data works if the medium below the new datum level is complex. The DMR
approach combined with the infill step is, therefore, applied to a sparsely sam-
pled 3D data set using the velocity model which has also been used for test
3.

[5] The ultimate test of a newly developed methodology certainly is its application
to realistic seismic data. This has been done by applying the DMR approach
to a sparsely sampled 3D data set, which has been acquired over a scale model.

6.1 Simple model – homogeneous datum layer;

fully sampled input data

In this test the DMR approach is applied to a very simple input data set. The
purpose of this test is to examine whether the method has been extended correctly
to the 3D situation. The model used to create the synthetic 3D data is presented
in Figure 6.1. It consists of a homogeneous velocity layer (v1 = 1500m/s) above the
new datum at 300m. Below the datum the velocity is constant (v2 = 2500m/s) as
well. Reflections from this area are caused by differences in the densities. Note, that
the reflectors below the datum are dipping in both in-line and cross-line direction.
A synthetic data set modeled with a moving spread geometry serves as input for this
first test. Hereby, 3D ray tracing has been employed. As shown in Figure 6.2 the
source layout is 0m to 900m in the in-line direction and -300m to +300m in the
cross-line direction. The source spacing in either direction is 15m. The maximum
receiver offsets are ±1500m in the in-line direction and ±300m in the cross-line
direction. The receiver spacing is 15m in both directions.
For this fully sampled 3D data set a 2D line at the new datum level is computed.
The source position at the new datum is (300m,0m), the receivers range from 300m
to 900m in in-line direction with a cross-line offset of 100m; i.e. a truly 3D problem
is handled.
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x[m]

z[
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]

y[m]

Figure 6.1: 3D velocity model with a homogeneous datum layer and a simple subsurface
below the datum.

It is important to note that for the calculation of one output sample by means of
the DMR approach only about 900 traces of the full data set were used. This is a
tremendous reduction of data used in the redatuming process and gives an idea about
the potential of this DMR approach with respect to the reduction of computational
costs.
In Figure 6.3 the desired result computed by the KSR method applied to the fully
sampled 3D data set and the result of the DMR method are compared. Apparently,
the reflection events have been reconstructed correctly. They appear at a correct
position in time and the phase of the redatumed events is correct as well.

*
*

∆∆∆∆
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]

(-1500,-600)

(-1500,600)

(2400,-600)

(2400,600)

Figure 6.2: Acquisition geometry of the data set computed for the simple velocity model.
The receivers are distributed with dense sampling all over the light gray area. The sources
are distributed with dense sampling all over the dark gray area. The dashed line indicates
the receiver spread for one particular source position. The geometry of the redatumed shot
gather is indicated by the white symbols.
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Figure 6.3: Comparison of (a) the redatumed shot gather computed by conventional reda-
tuming and (b) the redatumed shot gather computed by the DMR approach.

However, to evaluate the quality of the redatuming result more closely traces rep-
resenting the near-offset and the medium-offset range are selected. In Figure 6.4a
and Figure 6.4b the traces with absolute amplitudes are compared with the results
of the KSR approach, which were obtained by calculating the full 4D integral. The
redatumed events on these traces show no errors in the timing, and the absolute
amplitudes match very well. The events have been reconstructed dynamically and
kinematically correct.
The results of this first test on fully sampled 3D data imply, therefore, that the
DMR method has been extended correctly to the 3D situation.
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Figure 6.4: Comparison of redatumed traces computed by the DMR approach (black line)
and the KSR approach (gray line) for an in-line offset of (a) 0 m and (b) 600 m.

6.2 Simple model – homogeneous datum layer;

sparsely sampled input data

Next, the applicability of the proposed DTR approach to infilling missing data needs
to be examined. For this purpose, a redatumed shot gather is computed for a sparsely
sampled input data set utilizing the DMR method combined with the proposed infill
approach. The velocity model underlying this data set has been described in the
previous section.
This time the input data set consists of 2D lines (see Figure 6.5). The sources are
ranging from 0m to 900m in the in-line direction. The source spacing in in-line
direction is 15m. For every 2D line a split-spread geometry has been chosen with
a maximum receiver offset of 1500m and a receiver spacing of 15m. The cross-line
spacing between the 2D lines is 50m.
In Figure 6.6a the desired result is presented, which is, this time, a redatumed shot
gather computed by means of the DMR approach applied to a fully sampled input
data set. Figure 6.6b shows the redatuming result for sparsely sampled input data.
It has been calculated using the DMR method in combination with the proposed
infill approach.
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Figure 6.5: Acquisition geometry of the data set computed for the simple velocity model. For
the fully sampled data set the receivers were distributed with a dense sampling all over the
light gray area; the sources were distributed with a dense sampling all over the dark gray
area. For the sparse input data set sources and receivers were distributed only along the
lines.
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Figure 6.6: Comparison of (a) the redatumed shot gather computed by the DMR method for
fully sampled input data (same as Figure 6.3b) and (b) the redatumed shot gather computed
by the DMR approach combined with the infill for sparsely sampled input data.
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Figure 6.7: Comparison of redatumed traces computed by the DMR approach for fully sam-
pled data (gray line) and for sparsely sampled data (black line) for an in-line offset of (a)
0 m and (b) 600 m.

A comparison of these redatumed shot gathers reveals that the proposed infill ap-
proach works. The results are kinematically and dynamically correct. This can also
be seen in Figure 6.7a and Figure 6.7b, which provide a comparison of redatumed
traces for two offsets.
Hence, it can be concluded that the DMR method combined with the proposed
infill approach produces kinematically and dynamically correct results for sparsely
sampled 3D input data.

6.3 Complex model – homogeneous datum layer;

fully sampled input data

The purpose of the experiments presented in this and in the following section is to
assess whether correct redatuming results can be obtained from fully and sparsely
sampled 3D data sets by means of the DMR approach if the subsurface model is
complex. The velocity model used to compute the synthetic data sets is displayed in
Figure 6.8. It is the so-called EAGE/SEG Overthrust model combined with a homo-
geneous datum layer of 500m thickness and a velocity of 2000m/s [see Aminzadeh et
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Figure 6.8: 3D velocity model with a homogeneous datum layer and a complex subsurface
below the datum. The target points are indicated by the white dots.

al., 1994, 1996]. Since the modeling of a full 3D data set would have taken too long,
it was decided to create the input data by target-oriented modeling; i.e., reflection
points were distributed along a target reflector and one-way operators were modeled
between these points and the acquisition surface. All required traces of the input
data set were composed from these operators. One major drawback of this fast
modeling approach for the 3D situation is that the resulting data set contains only
one reflection event. However, this reflection event is part of a complex subsurface,
and, therefore, the data are considered adequate for the intended experiments.
The target points at the reflector are positioned between 5775m and 6525m in the
in-line direction and from 11375m to 11625m in the cross-line direction. They are
sampled with 25m in both directions. The surface positions range from 25m to

∆∆∆∆∆∆∆∆∆∆∆*
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Figure 6.9: Acquisition geometry of the data set computed for the complex velocity model.
The receivers used for the KSR approach were distributed with a dense sampling over the
whole area; the sources are distributed with a dense sampling all over the dark gray area.
The geometry of the redatumed shot gather is indicated by the white symbols.
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12975m in the in-line direction and from 9025m to 13975m in the cross-line direc-
tion with a sampling of 25m in both directions.
From these operators all traces that were required during the DMR process were
built. For the calculation of the desired result by means of the KSR method the
possible input traces were restricted beforehand to a maximum aperture of 500m
with respect to the positions of the redatumed source and receivers. This was done
to reduce the computation time for this method. However, the critical angle at
the datum level, which limits the aperture of the possible contributing sources and
receivers, is expected to be smaller than 45◦. Hence, all contributing sources and
receivers are expected to lie well inside this maximum aperture. The surface posi-
tions used for the KSR approach are shown in Figure 6.9. The source and receiver
positions of the possibly contributing traces for the DMR approach will be inside
this area as well.
In Figure 6.10 one modeled shot gather and two redatumed shot gathers are com-
pared. The source is positioned at (6000m,11625m), the modeled receivers range
from 5000m to 7500m in the in-line direction and the redatumed receivers range
from 6000m to 7500m. The cross-line offset between source and receiver line is
250m.
Figure 6.10a illustrates the shot gather, which has been modeled with the source
and the receivers at the new datum level. Here, another effect of the technique
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Figure 6.10: Comparison of (a) a modeled shot gather referenced to the new datum level,
(b) the redatumed shot gather computed by the KSR approach and (c) the redatumed shot
gather computed by the DMR approach. The box in (a) refers to the reconstructed offsets
in (b) and (c).
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used to build the data set becomes obvious. The constructed event shows only in
the area directly above the target points the characteristics of a reflection event.
Towards the edges of this area the event becomes more diffuse. This is, because it
no longer resembles a reflection event; instead it has to be considered a diffraction
event. However, the DMR approach has been implemented such that reflections
from reflectors that are not strongly curved are reconstructed correctly. Redatumed
diffractions exhibit small errors of the absolute amplitudes (see Chapter 4). There-
fore, this experiment can also be interpreted as a test on 3D diffracted events.
In Figure 6.10b and Figure 6.10c the redatumed shot gathers are presented, which
show the desired result computed by means of the KSR approach and the result of
the DMR method, respectively. Again, it can be concluded, that the DMR approach
delivers satisfying results. The reflection event occurs at the correct position in time,
and the phase has been reconstructed correctly. Even the diffraction, which occurs
for offsets larger than 7000m as second event, has been reconstructed correctly. Only
an artifact occurring prior to the reflection event is treated differently by the two
approaches.
The occurrence of this artifact can, again, be related to the limited aperture of the
input data set. This can also be seen in Figure 6.11. It shows all selected and
corrected traces prior to the final stack for the calculation of the redatumed time
sample tred = 1.2 s of a trace with the source at (6000m,11625m) and the receiver at
(6500m,11375m) by means of the DMR approach. Note here, that this is a 2D dis-
play of a cube. Every panel of 20 traces belongs to a certain position in y-direction
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Figure 6.11: (a) Selected and corrected traces prior to the final stack for the calculation of
one redatumed time sample by means of the DMR approach. (b) Subset of these traces.
The arrows indicate the contributions to the diffraction event.
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Figure 6.12: Comparison of redatumed traces computed by the DMR approach (black line)
and the KSR approach (gray line) for an offset of (a) 0 m and (b) 1300 m in in-line
direction. The cross-line offset is 250 m.

of the underlying isochrone. It can clearly be seen that that the global shape of the
corrected event flattens further away from the global apex position. This explains
the occurrence of the artifact. One can also see that traces further away from the
global apex position clearly contain two events (see Figure 6.11b). These are the
contributions for the diffraction event.
Figure 6.12 provides a comparison of redatumed traces for two different offsets. It
can be seen that the absolute amplitudes of the redatumed event are correct as well.
It can thus be stated that the DMR method produces kinematically and dynamically
correct results for fully sampled 3D input data even over a complex subsurface.

6.4 Complex model – homogeneous datum layer;

sparsely sampled input data

Next, the applicability of the proposed infill approach needs to be assessed. For this
purpose a redatumed shot gather is computed for a sparsely sampled input data set
utilizing the DMR method combined with the proposed infill approach. The velocity
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model underlying this data set has been described in the previous section.
Again, the input data set consists of 2D lines (see Figure 6.13). The sources are
ranging from 4000m to 8000m in the in-line direction. The source spacing in in-line
direction is 25m. For every 2D line a split-spread geometry has been chosen with a
maximum receiver offset of ±1975m and a receiver spacing of 25m. The cross-line
spacing between the 2D lines is 50m.
From these input data, again, a redatumed shot gather is computed with the source
and the receivers at exactly the same positions as for the experiment on fully sampled
data. Figure 6.14a displays a redatumed shot gather computed by means of the DMR
approach for a fully sampled input data set. This is considered the desired result.
Figure 6.14b shows the redatuming result for sparsely sampled input data. This
shot gather has been calculated using the DMR method in combination with the
infill approach. No significant differences can be found between these two results.
Even a detailed comparison of traces does not reveal any errors in the absolute
amplitudes (see Figure 6.15). Errors in the traveltimes of the traces computed from
the sparsely sampled input data cannot be found.
The findings of this experiment suggest, therefore, that the DMR method combined
with the infill approach produces kinematically and dynamically correct results for
sparsely sampled 3D input data even over a complex subsurface. However, it is
recommended for future research to repeat this experiment on synthetic data sets
which have been modeled with full reflector responses. Then the traces will contain
more than only one event. In this case, the amplitude behavior can be examined more
thoroughly than it was possible for this data set. Especially the relative behavior of
many reflections should be looked at.

x[km]

y[
km

]

(2,9)

(2,14)

(10,9)

(10,14)
50 m

Figure 6.13: Acquisition geometry of the data set computed for the complex velocity model.
The receivers used for the KSR approach were distributed with a dense sampling all over
dark and the light gray area; the sources are distributed with a dense sampling all over the
dark gray area. For the sparse input data set sources and receivers are distributed along the
lines.
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Figure 6.14: Comparison of (a) the redatumed shot gather computed by the DMR method
for fully sampled input data (same as Figure 6.10c) and (b) the redatumed shot gather
computed by the DMR approach combined with the infill for sparsely sampled input data.
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Figure 6.15: Comparison of redatumed traces computed by the DMR approach for fully
sampled data (gray line) and for sparsely sampled data (black line) for an in-line offset of
(a) 0 m and (b) 1300 m. The cross-line offset is 250 m.
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6.5 Realistic data example

The realistic 3D data set used to test the DMR approach has been acquired over a
scale model in the Experimental Facility for Imaging (EFI) of the TU Delft [see for
example Blacquiere and Koek, 1997]. For this experiment the so-called Ziggy model,
which is also being used for the ZMAART1 project, has been chosen. This model
is described in detail by van Veldhuizen and Blacquiere [2005]. It was placed inside
the water tank with a silicon hemisphere (v =1000m/s) on top, to simulate a low
velocity zone inside the homogeneous water layer (v =1480m/s). Data were acquired
over an area around this hemisphere, with a water depth of approximately 1000m.
The relevant part of the Ziggy model as well as a picture of the silicon hemisphere
are presented in Figure 6.16.
The acquired data set consists of 2D lines. The sources are ranging from 24000m
to 30000m in the in-line direction and from 11000m to 14000m in the cross-line
direction. The source spacing in the in-line direction is 25m. For every 2D line
end-on shooting has been chosen with a minimum receiver offset of -425m and a
maximum offset of -1900m. The receiver spacing is 25m. The cross-line spacing
between the 2D lines is 50m.
Figure 6.17 shows two common-offset gathers of the input data set, which clearly
show the influence of the low velocity zone. The events of gather 6.17a, which
has been acquired at y =11000m with an offset of -850m, are undistorted because
this 2D line has been acquired well away from the hemisphere. This hemisphere

1Ziggy Model Acquisition and the ART of physical modeling

�
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Figure 6.16: Part of the Ziggy model that has been utilized for the acquisition of the water
tank data. Furthermore, a picture of the silicon hemisphere – the low velocity area – is
presented.
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is centered approximately at (27450m,12150m) with an approximate diameter of
1000m and an approximate height of 240m. The events of gather 6.17b are clearly
distorted. This gather has been acquired at y =12150m with an offset of -850m. It
is the aim of redatuming to remove these distortions as well as possible.
In a first attempt to redatum the data, operators have been estimated from the input
data set employing the technology developed by Verschuur and Marhfoul [2005].
This data-driven technique is based on an iterative updating scheme as well. For
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Figure 6.17: Common offset gathers of the input data set with an offset of -850 m. (a) is
recorded at y =11000 m, and (b) is recorded at y =12150 m.
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Figure 6.18: (a) Common offset gather with offset -850 m before redatuming showing the
area right below the low-velocity anomaly. (b) Common offset gather after redatuming using
the DMR approach combined with the DTR methodology to infill missing data.

the estimation of the operators used in this experiment only very few updating steps
have been performed. I.e. it is very likely that the scheme had not yet converged to
the final result and inaccurate operators are being used. This is, again, comparable
to using an incorrect velocity model in the model-driven operator estimation.
In Figure 6.18 the redatumed common offset gather at y =12150m with an offset
of -850m (see Figure 6.18b) is compared to the relevant part of the common offset
gather of the input data set (see Figure 6.18a). Here, the event marked by the arrow
is important. This event is the reflection from the first reflector below the water
bottom. As one can see in Figure 6.18b this event has clearly been improved by
applying the redatuming. However, it is obvious that the presented result is not yet
perfect. There are still discontinuities left. This probably has to be attributed to
the use of incorrect redatuming operators.
The findings of this test suggest that the DMR approach handles sparsely sampled
realistic 3D data correctly. However, it is strongly recommended to repeat this
experiment with correct redatuming operators.

6.6 Conclusions and recommendations

The results of the tests on fully and sparsely sampled 3D data can be summarized
as follows:
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[1] The DMR method has been extended correctly to the 3D situation; the tests
on fully sampled 3D synthetic data sets from simple and complex subsurface
models show satisfactory results, which are kinematically and dynamically
correct.

[2] The DMR method combined with the proposed infill approach produces satis-
fying results; the redatumed traces for sparsely sampled 3D synthetic data sets
from simple and complex subsurface models are kinematically and dynamically
correct.

[3] The number of traces needed to calculate one output sample is considerably
reduced, already about 900 traces were enough to calculate one output time
sample.

[4] The results for a sparsely sampled realistic 3D data set are promising. However,
these results suffer from errors of the employed redatuming operators.

For further research the following recommendations are made:

[1] The experiments on synthetic data from a numerical model with a homo-
geneous datum layer and a complex subsurface below the datum should be
repeated. Thereby, a finite difference code should be employed to model the
data. In this way, the amplitudes of the input data set are reliable, and the
considered traces contain more than only one reflection event. As a conse-
quence, errors in the absolute amplitudes of the redatumed events can easily
be identified.

[2] The experiments on the realistic data should be repeated with correct reda-
tuming operators. These operators could either be estimated directly from the
input data set, or they could be computed for a correct velocity model of the
datum layer.

[3] The proposed DTR approach for the infill of missing data should be evaluated
more thoroughly. Here, it has only been applied in combination with the
DMR approach. It is worthwhile, however, to set up tests that concentrate
exclusively on the evaluation of the proposed infill method to examine its
applicability and its limitations in detail.
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7

Further applications of the DMR

methodology

Die Klugheit ist sehr geeignet zu bewahren, was man besitzt
doch allein die Kühnheit versteht zu erwerben.

Friedrich der Große (1712 - 1786)

The DMR methodology, as it has been described in the previous chapters, primarily
aims at the redatuming of P-wave data consisting of primary reflections. However,
in this chapter the possibilities for a modification of this methodology are explored
with respect to:

[1] its application to PS-data,

[2] its applicability for the prediction of datum layer-related multiples in the re-
datumed result.

The modification of the DMR method for PS-data is described (see Section 7.1) and
evaluated on a synthetic 2D data set (see Section 7.2). Furthermore, a new concept
for the prediction of datum layer-related multiples based on the DMR methodology
is developed (see Section 7.3) and tested on numerical 2D data (see Section 7.4).
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7.1 Redatuming of PS-data using the DMR technology – Theory

The derivation of the KSR method, which is the basis of the DMR method, starts
from the acoustic wave equation. This implies that only acoustic waves can be re-
datumed correctly by these methods. However, the KSR approach can be extended
to handle converted waves as well. The redatuming operators used to correct for
the one-way wave-propagation between sources at the surface and at the datum and
receivers at the surface and at the datum have to be determined accordingly. If, as

∗

∆

P
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S

S

Figure 7.1: Raypath of a converted wave with a down-going P-leg and an up-coming S-leg.

illustrated in Figure 7.1, the data set consists of down-going P-waves and up-coming
S-waves, a P-operator has to be used to redatum the sources and a S-operator has
to be used to redatum the receivers. The redatumed result will be kinematically
correct. Whether the amplitudes of the redatumed result are correct should be ex-
amined in detail, but this is beyond the scope of this thesis.
The extension of the DMR approach to handle converted waves, at least kinemat-
ically, correctly requires only little more effort. The methodology, as explained in
Chapter 2, remains unchanged. Still, for the calculation of one output sample the
four steps described there have to be executed (see Figure 2.2). Only the implemen-
tation of these steps has to be modified.

7.1.1 The isochrone

First, the surface of possible reflection points belonging to the considered time sample
tred, the so-called isochrone, needs to be determined. In case of converted waves this
can no longer be achieved in an analytical manner assuming a constant velocity for
the medium below the datum. Instead, two velocities are necessary. The velocity
belonging to the down-going P-wave and the velocity belonging to the up-going
S-wave. The possible reflection points along the isochrone all have to satisfy the
following requirement: the sum of the P-traveltime ts from the source at the new
datum to the isochrone point and the S-traveltime tr from the same point to the
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receiver at the new datum has to equal the traveltime of the considered output
sample tred:

{(xiso, yiso, ziso) | tred = tr + ts} . (7.1.1)

Hence, an isochrone point xiso belonging to the emergence angle β and the azimuth
θs at the redatumed source position has to lie on a straight line xβ,θs

which intersects
the datum with these angles, and it has to satisfy Equation 7.1.1. In the search for
this point, firstly, the intersection points of xβ,θs

and a number of straight lines xγ,θr
,

which cross the datum at the receiver position with an emergence angle γ ∈ [−π
2 , π

2 ]
and azimuth θr ∈ [0, 2π) are determined and the traveltimes ts and tr are calculated
accordingly. Then, the point which satisfies Equation 7.1.1 is selected from this set
of points.

β γγ

xβ,θs

xγ,θr

Figure 7.2: Search for an isochrone point in case of converted-wave redatuming. The raypath
belonging to the selected point is indicated with a bold line.

Figure 7.2 illustrates this search routine for the 2D situation, which is equivalent
for the search of all points with θs = 0 and θs = π. As shown in Figure 7.3, this
procedure has to be repeated for all β ∈ [−π

2 , π
2 ] and θs ∈ [0, 2π) to create the entire

isochrone.
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Figure 7.3: Isochrone points for the redatuming of PS-waves. Note the asymmetry due to
the different wave types at source and receiver side.
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7.1.2 The locus

The estimation of the locus for the redatuming of PS-data is conducted in exactly the
same way as it has been described in Chapter 2 and Chapter 3. For every possible
reflection point on the isochrone, ray tracing is performed towards the acquisition
surface. Again, straight rays are employed below the new datum level and the ray
parameters at the datum are calculated by means of Snell’s law. This time, the
P-wave velocity vp,2 for the medium below the new datum is utilized to determine
the ray parameter at the source position and the S-wave velocity vs,2 is utilized to
determine the ray parameter at the receiver position. Finally, the raypaths are con-
tinued upwards to the acquisition surface. The information about the ray parameter
needed is extracted from the traveltimes of the redatuming operators. These opera-
tors have to be selected accordingly. In case of a down-going P-wave and a up-going
S-wave, a P-operator, which describes the one-way wave-propagation of a P-wave,
is employed for the source side, and a S-operator is utilized for the receiver side. In
the end, all possibly contributing time samples can be determined by calculating the
traveltimes along the different raypaths.

7.1.3 The infill

The infill step remains unchanged as well. Its implementation is outlined in Chap-
ter 5. Firstly, a contour at the new datum is determined indicating all source/receiver
pairs with rays reaching the considered isochrone point under the same angle of in-
cidence as the rays belonging to the missing source/receiver pair. The size and
position of this contour depends only on the position of the isochrone point, on the
source position at the new datum level and on the receiver position at the new datum
level (see Appendix D). Once this contour is known, the source/receiver pairs at
the acquisition surface are determined by an upward continuation of the rays from
the contour points at the datum to the surface. This is accomplished in exactly the
same way as it has been done for the construction of the locus. Again, a P-operator
is utilized for upward continuation at the source side, and a S-operator is used for
the receiver side. At last, the time sample which is used to replace the missing one
is taken from a trace that has been acquired at one of the selected source/receiver
pairs.

7.1.4 The weighted summation

For the application of the DMR approach to PS-data, as far as it is considered
in this thesis, a straightforward application of the integral expression for P-wave
data to the situation of converted-wave data has been chosen. In fact, only the
redatuming operators, which are needed for the calculation of the time shifts and
the amplitude corrections are selected accordingly. The expression for the DMR
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approach for P-data is repeated here:

p(x̃s, x̃r, tred)=

[
∫ √

ADMR

AKSR

app√
A

∂

∂t
p(xs, x̂r, t+ τr+τs)dxs

]

t=tred

, (7.1.2)

with:

app = − 1

2πv2
1

cosαr cosαs

rrrs

.

It has to be noted that this equation has been derived from the scalar wave equation
for the acoustic pressure p. For the elastic case, however, the surface displacement u
is measured. Unfortunately, the wave equation for the displacement is more complex
than the scalar wave equation for the acoustic case. Therefore, often the choice is
made to formulate the problem in terms of the displacement potentials Φ and Ψ,
with Φ being referred to as the P-wave potential and Ψ being referred to as the S-
wave potential [see Aki and Richards, 2002]. The relationship between the potentials
and the displacement u is described by the Helmholtz theorem:

u = ∇Φ + ∇× Ψ. (7.1.3)

The wave equation for the scalar potential Φ is:

∂2Φ

∂t2
= v2

p∇2Φ. (7.1.4)

The wave equation for the vector potential Ψ is:

∂2Ψ

∂t2
= v2

s∇2Ψ. (7.1.5)

They are comparable to the wave equation for the acoustic pressure:

∂2p

∂t2
= v2

p∇2p. (7.1.6)

Assuming 2D wave propagation in the x− z plane, the SV-waves are fully governed
by the y-component Ψy of the shear potential Ψ. Hence, in the 2D situation a
scalar wave equation for Ψy can be found to describe the wave propagation of the
SV-wave. I.e., the redatuming of converted waves assuming 2D wave propagation
can be formulated as:

Ψy(x̃s, x̃r, tred)=

[
∫ √

ADMR

AKSR

aps√
A

∂

∂t
Ψy(xs, x̂r, t+ τr+τs)dxs

]

t=tred

, (7.1.7)

with:

aps = − 1

2πvp,1vs,1

cosαr cosαs

rrrs

.
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It has to be noted here, that the decomposition of converted-wave data into two
scalar potentials has been performed successfully for 2D data [see for example Schalk-
wijk et al., 2003].
If it was possible to decompose the measured displacement u into two scalar poten-
tials Φ and Ψ for the 3D situation as well, the redatuming of converted PS-waves in
3D could be formulated as:

Ψ(x̃s, x̃r, tred)=

[
∫ √

ADMR

AKSR

aps√
A

∂

∂t
Ψ(xs, x̂r, t+ τr+τs)dxs

]

t=tred

. (7.1.8)

However, 3D wavefield decomposition into two scalar potentials is by no means a
trivial thing. It is being researched within Delphi right now whether this is, at all,
possible. However, this is beyond the scope of this thesis.
If Equation 7.1.7 or Equation 7.1.8 are applied, the calculation of the amplitude
weights A, ADMR, AKSR and the time shifts τr, τs has to be adapted to the respective
situation. For an input data set with down-going P-waves and up-going S-waves, the
time shifts related to the source side, which are also utilized for the calculation of
ADMR and AKSR, have to be extracted from the P-operators. The time shifts related
to the receiver side, which are also utilized for the calculation of A and ADMR, have
to be extracted from the S-operators.

7.2 Redatuming of PS-data using the DMR technology – Evalu-

ation

The DMR methodology for converted-wave data for the 2D situation is evaluated
on a synthetic data set, which has been modeled for the subsurface model displayed
in Figure 7.4. Due to the lack of an elastic modeling tool, the data set had to
be generated by conventional ray tracing [Cerveny, 2001] in an alternative acoustic
model with mirrored sources (see Figure 7.5). By doing this, it is ensured that the
traveltimes of the modeled events are correct. However, their amplitudes will not
be correct. The modeled events represent transmission events through interfaces of
an acoustical model, whereas the reflection of converted waves in an elastic model
is aimed for. The source positions of the input data set are ranging from -1500m to
1500m with a sampling interval of 15m. For the receivers a split-spread geometry
has been chosen with a maximum offset of 1500m and a sampling interval of 15m.
This data set serves as input for the calculation of a redatumed shot gather with
source and receivers both at the new datum level at a depth of 300m. The source
position at the new datum is 0m, the receivers range from 15m to 1185m.
In Figure 7.6a and Figure 7.6b the redatumed shot gathers are compared. Gather
7.6a has been computed with the conventional KSR method modified for PS-data.
Gather 7.6b has been computed with the modified DMR approach assuming the
correct P- and S-velocities for the medium below the new datum.
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Figure 7.4: Velocity model of the subsurface for the PS-data set showing P-wave velocities.
Note, that the reflection below the datum is caused by an inhomogeneity of the density. The
S-wave velocities can be derived from this model by applying the scaling factor of 0.67.
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Figure 7.5: Alternative velocity model used for the modeling of the PS data. All computed
events are transmission events recorded at the dipping line. The traveltimes of these events
are identical to the traveltimes of reflected PS-data of the model presented in Figure 7.4.
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From these results, it can be concluded that the proposed method works well for the
redatuming of PS-data, because the event has been reconstructed properly.
For an evaluation of the presented results with respect to the kinematic quantities
like traveltimes as well as with respect to dynamic quantities like amplitudes the
segments of the redatumed traces containing this event, which have been computed
with the DMR approach and the KSR approach, are compared. Figure 7.7 displays
traces with an offset of 15m and 900m. A comparison of the two results reveals
that the redatumed PS-events have been reconstructed at identical traveltimes but
with small differences in the absolute amplitudes. The occurrence of these amplitude
errors could possibly be explained with errors made in the derivation of the factors
A and ADMR

AKSR
. However, it has not been examined in detail. This is recommended

for future research.
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Figure 7.6: Comparison of (a) the redatumed shot gather computed by the KSR method, and
(b) the redatumed shot gather computed by the DMR approach.
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Figure 7.7: Comparison of redatumed traces computed by conventional redatuming (gray
line) and by the DMR approach (black line) for an offset of (a) 15 m and (b) 900 m.

In the end, this test on numerical converted-wave data can be summarized by the
following statements:

• the modification of the DMR approach for converted-wave data has been done
correctly;

• it reproduces the desired results kinematically correct;

• small errors occur for the amplitudes of the events.

Furthermore, the following recommendations can be made for future research:

• the integral expression describing the weighted summation of the DMR ap-
proach for converted-wave data should be checked by deriving it from the
integral expression underlying the KSR approach for elastic waves based on a
proper decomposition of the Φ and the Ψ potential;

• the DMR methodology should be evaluated on synthetic and real input data;
the synthetic input data sets should be computed with an elastic modeling
algorithm.
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7.3 Prediction of datum layer-related multiples based on th e

DMR technology – Theory

Redatuming, as it is usually performed and as it is presented in this thesis, consid-
ers and corrects only one-way wave-propagation inside the datum layer; i.e. of the
events recorded at the acquisition surface only one down-going source leg and one
up-going receiver leg is removed. Hence, after redatuming for primaries and internal
multiples with the multiple reflection occurring below the datum all contributions
inside the datum layer have been removed. For datum layer-related multiples with
the multiple reflection occurring at the surface one source leg and one receiver leg
inside the datum layer are removed correctly, all other up- and down-going legs of
the event inside the datum layer cannot be removed.
The aim of all redatuming approaches, however, is to produce events that are only
traveling below the datum layer. Consequently, a new method needs to be developed
to predict and remove the remainings of the datum layer-related multiples from the
redatumed data set.
The development of the new concept for the prediction of datum layer-related mul-
tiples in a redatumed data set by means of the DMR methodology is explained here
step by step. Firstly, the characteristics of the events that are to be predicted are an-
alyzed, and it is discussed how similar events could be constructed. Thereafter, the
new concept for the prediction of datum layer-related multiples is explained. This
new DMR-based concept for multiple prediction is very well suited for the situation
of sparsely sampled 3D input data.

7.3.1 Datum layer-related multiples

Figure 7.8 illustrates the redatuming process for a datum layer-related multiple in
the input data set. As one can see in Figure 7.8a, prior to redatuming the event
consists of one leg inside the datum layer on the source side and three legs inside
the datum layer at the receiver side. During redatuming, one source leg and one
receiver leg is removed (see Figure 7.8b). Figure 7.8c shows that for the redatumed
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Figure 7.8: Correction of a datum layer-related multiple during redatuming.
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datum layer-related multiple two legs remain inside the datum layer. They have not
been removed. These are the events to be predicted by the new approach.
Note, that this example is also representative for events with multiple reflections at
the source side.

7.3.2 Transforming primaries into datum layer-related mul tiples

The basic idea underlying the new concept for the prediction of redatumed datum
layer-related multiples is simple:

If it is possible to remove the source and the receivers legs inside the
datum layer, it is also be possible to remove one leg and add one leg.

Figure 7.9 illustrates this for a primary event in the input data set. From the event
presented in Figure 7.9a the source leg inside the datum layer is removed and one leg
inside the datum is added at the receiver side (see Figure 7.9b). The resulting event
shown in Figure 7.9c resembles the desired redatumed datum layer-related multiple
shown in Figure 7.8c. Note again, that this example is also representative for events
with multiple reflections at the source side.
Hence, primaries in the input data set can be used to predict first-order multiples
in the redatumed data set, first-order multiples in the input data set can be used to
predict second-order multiples, etc..
This idea of removing one source leg and adding a receiver leg is not new. Kirchhoff
summation based method have been developed and successfully applied to fully
sampled 2D data sets [see for example Berryhill and Kim, 1986; Wiggins, 1988]. In
the method described by Wiggins [1988] one down-going leg is removed by applying
an inverse extrapolation step to the input data, and one down-going leg is added by
applying a forward extrapolation step to the data. Next, the predicted multiples are
subtracted, after which the result is forward extrapolated to the surface.
However, as the KSR method, these methods suffer from the sparseness of 3D input
data sets and can, therefore, not be applied directly to 3D data sets from conventional
acquisition geometries. Pica et al. [2005] tried to overcome the problem of sparsely
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Figure 7.9: Estimation of a datum layer-related multiple from a primary reflection.
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sampled input data by performing a data interpolation step prior to the multiple
prediction. This is computationally very expensive.
A new concept for the prediction of datum layer-related multiples based on the
DMR methodology can, however, easily be combined with the DTR method to infill
missing data. By doing this, an additional interpolation of the data set prior to the
multiple prediction is no longer necessary.

7.3.3 A new concept for the prediction of datum layer-relate d multiples

In the previous section the basic idea for the prediction of datum layer-related multi-
ples has been described. For the description of the new concept, a multiple reflection
at the receiver side is considered. It should be noted that the same derivation also
holds for a multiple at the source side.
The applied redatuming approach needs to be modified such that it removes one
leg inside the datum layer from the events of the input data set and that it adds
one leg inside the datum layer. Furthermore, it needs to be taken into account that
a number of multiples with different angles of incidence could be recorded at the
considered trace location at the new datum (see Figure 7.10). Every one of these
possible multiples needs to be computed. This is done by applying the modified
DMR approach. The modification of the DMR approach, such that it removes one
leg inside the datum layer from the considered possible event and adds one leg inside
the datum layer, is straightforward. As already mentioned, the inverse extrapolation
of the receivers is replaced by a forward extrapolation.
A crucial point with respect to the calculation of the possible multiples at the con-
sidered source/receiver pair at the new datum for a certain angle of incidence is
the selection of the focal points for the ellipsoidal isochrones used in the modified
DMR approach. Unlike for redatuming, they are not identical to the considered
source/receiver locations at the new datum. If, as for this example, a multiple re-
flection at the receiver side is to be predicted, the focal points for the isochrones are
located at the source position considered and at a location in-between the source
position and the receiver position. The position of this second focal point is depen-

Multiple 1 Multiple 2 Multiple N

· · ·

· · ·

· · ·

Figure 7.10: Datum layer-related multiples which are possibly contributing to the considered
redatumed trace.
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dent on the considered angle of incidence.
Furthermore, it should be noted that, if it is intended to compute the time sample
tred of the possible multiple event at the considered source/receiver pair, the time
tred cannot be used to create the isochrone. Actually, the isochrone has to be calcu-
lated using tred − ∆tM , with ∆tM being the two-way traveltime of a primary event
between the second focal point of the isochrone and the receiver location considered,
which is reflected at the surface.
Hence, a for every possible angle of incidence at the receiver position considered a
trace is computed using as focal points the redatumed source location and and the
second focal point whose position is dependent of the considered angle of incidence.
This trace is shifted by ∆tM . In the end, a weighted summation is applied to the
traces, which contain the possible multiple events. The result is one trace with the
predicted datum layer-related multiples.
Until now, only a concept for the prediction of datum layer-related multiples in
a redatumed data set has been developed. The amplitude weights needed for the
weighted stack of all possible multiples have not been derived yet. This is, however,
recommended for future research.
In the following section it is evaluated whether the proposed procedure for the pre-
diction of datum layer-related multiples delivers kinematically correct results.

7.4 Prediction of datum layer-related multiples based on th e

DMR technology – Evaluation

The concept for the prediction of datum layer-related multiples based on the DMR
methodology is assessed on a synthetic 2D data set. A simple numerical model has
been chosen, which is built of several layers with a constant velocity below the new
datum. Reflections from below the new datum occur due to changes in the medium
density. The model used for this test is shown in Figure 7.11.
For this numerical model a data set has been computed with a moving spread geom-
etry. Its sources are positioned between -1500m to 1500m with a sampling interval
of 15m. The receiver spread has a maximum offset of 1500m at both sides of the
source position and is sampled with an interval of 15m. The input data set, which
has been modeled by ray tracing, consists of the two primary reflections from the
reflectors below the datum and of the first- and second-order multiples belonging to
these primaries. Note here, that only the multiples with the receiver-side peg-legs
have been modeled.
For this input data set redatumed shot gathers are calculated using the conventional
KSR method and the DMR method. The position of the redatumed source is 0 m at
a depth of 300m, the receivers range from 150m to 900m. Furthermore, the datum
layer-related multiples for the considered shot gather are predicted by means of the
modified DMR methodology as described in Section 7.3.
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Figure 7.11: Density model of the subsurface underlying the data set with datum layer-related
multiples. Note, that the velocity below the datum is homogeneous.
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Figure 7.12: (a) The redatumed shot gather with multiples computed by conventional reda-
tuming, (b) the redatumed shot gather with multiples computed by the DMR approach, and
(c) the predicted multiples in the redatumed shot gather computed by the modified DMR ap-
proach. The events marked with R1 and R2 are the primary reflections of the two reflectors,
the events marked with M11 and M12 are the first- and second-order multiple belonging to
the reflection from the shallow reflector, and the events marked with M21 and M22 are the
first- and second-order multiple belonging to the reflection from the deeper reflector.
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The redatumed gathers are displayed in Figure 7.12a and Figure 7.12b. Figure 7.12c
illustrates the predicted multiples. A comparison of Figure 7.12a and Figure 7.12b
reveals that the DMR approach constructs the datum layer-related multiples accu-
rately. Moreover, it can be stated that the new concept for the prediction of datum
layer-related multiples delivers satisfying results. This can be seen from a compari-
son of a redatumed shot gather (see Figure 7.12a or b) and the predicted multiples
presented in Figure 7.12c. Obviously all multiples have been constructed and appear
at a correct position in time. For a detailed evaluation of the presented results the
segments of the redatumed traces containing the multiple events, which have been
computed with the DMR approach, are compared to the predicted multiples. Fig-
ure 7.13 displays the computed traces normalized with respect to their maximum
amplitude for an offset of 450m and 870m. A comparison of the two results shows
that the predicted multiples have been reconstructed kinematically correctly. They
occur at the desired traveltimes. In contrast to this, the reconstruction of the am-
plitudes has not been done correctly. However, this was to be expected because the
amplitude weights used for the modified DMR approach have not yet been derived
properly.
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Figure 7.13: Comparison of redatumed traces computed by the DMR approach (gray line)
and the predicted multiples computed by the modified DMR approach (black line) for an
offset of (a) 450 m and (b) 870 m.
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Finally, this test can be summarized as follows:

• a new concept for the prediction of datum layer-related multiples in a reda-
tumed data set has been developed;

• this new concept for the prediction of datum layer-related multiples is based
on the DMR technology;

• it reproduces the desired results kinematically correct;

• the amplitudes of the predicted events are erroneous; this is due to the fact
that the proper amplitude weights have not yet been derived.

Furthermore, the following recommendations can be made for future research:

• the amplitude weights needed for the prediction of the datum layer-related
multiples have to be derived;

• the proposed concept should be evaluated on synthetic and real input data.

7.5 Conclusions and recommendations

In this chapter the modification of the DMR approach for PS-data has been described
and evaluated on a synthetic 2D data set. From this test the following conclusions
can be drawn:

[1] the events are reconstructed kinematically correct by the modified DMR ap-
proach;

[2] small errors occur for the amplitudes of the events; this needs to be examined.

In addition to this, a new concept for the prediction of datum layer-related multiples
based on the DMR methodology has been developed and tested on numerical 2D
data. The results from this test can be summarized as follows:

[1] the predicted multiples are kinematically correct;

[2] the amplitudes of the predicted events are not correct; this is due to the fact
that the proper amplitude weights have not yet been derived.

On the basis of these results it is recommended to:

[1] derive the integral expression describing the weighted summation of the DMR
approach for converted-wave data from the integral expression underlying the
KSR approach based on elastic wave propagation and to check the derived
weights;
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[2] derive the amplitude weights needed for the prediction of the datum layer-
related multiples properly;

[3] evaluate both approaches, the DMR approach for converted-wave data and
the proposed concept for the prediction of datum layer-related multiples, on
synthetic and real input data; the synthetic input data sets should be computed
with an appropriate modeling algorithm which delivers reliable amplitudes.
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8

Conclusions and recommendations

Der Abschied von einer langen und wichtigen Arbeit
ist immer mehr traurig als erfreulich.

Friedrich von Schiller (1759 - 1805)

In this thesis a new methodology for redatuming has been presented. The aim of
redatuming is to reconstruct new seismic traces with sources and receivers posi-
tioned at a user-defined datum level, which is different from the acquisition surface.
This new datum level is typically located below a complex overburden, such that
redatuming will remove the imprint of this complexity on the seismic data. For
a successful application of the redatuming process full knowledge of the one-way
wave-propagation between the sources at the surface and at the new datum and the
receivers at the surface and at the new datum is required; i.e. it is assumed that
so-called redatuming operators are available, which contain amplitudes and travel-
times accounting for this one-way wave-propagation. These redatuming operators
can be determined either in a model-driven way from a given velocity model of the
datum layer, or they can be extracted in a data-driven way from the input data set.
For the redatuming method described in this thesis they are assumed to be known.
The methodology most commonly used for redatuming is the so-called Kirchhoff
summation redatuming (KSR). There, the redatuming is performed in two separate
steps, one to redatum the receivers and one to redatum the sources. Each step re-
quires the computation of an integral over the coordinates of the considered sources
and receivers. Hence, the KSR method requires the input data set to have a dense
sampling in both sources and receivers at the acquisition surface. It should also be
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noted that a 4D integral has to be computed for the redatuming of 3D pre-stack
data.
Nowadays, the amount of 3D data increases, which makes it more and more impor-
tant to develop a feasible method for the redatuming of 3D pre-stack data. However,
the conventionally used KSR approach is not only computationally demanding, it
also requires the input data set to be densely sampled. Unfortunately, all commonly
used 3D acquisition geometries deliver data sets that are sparse in at least one of the
coordinates. Hence, a new redatuming methodology needed to be developed, which
is also applicable to sparsely sampled 3D data.
In this thesis, the data mapping redatuming (DMR) methodology was presented.
The research objectives underlying the development of this new methodology to
redatuming were:

[1] The method should be applicable to sparse 3D data, acquired with conven-
tionally used 3D acquisition geometries.

[2] The results should be comparable to the results the application of the Kirchhoff
summation method would have delivered if applied to a densely sampled input
data set.

[3] A reduction of the amount of data needed to calculate one output sample
should be achieved.

The choice has been made to formulate the redatuming process in terms of a data
mapping problem. Thereby, firstly all time samples of the input data set are iden-
tified which are possibly contributing to the considered output sample. Then, a
weighted stack is applied to the possibly contributing time samples, which yields
the required time sample of the redatumed trace to be calculated. To achieve this
certain assumptions about the velocity model below the new datum level have to
be made. This is different from the conventional methods. However, in this new
DMR approach, the number of traces involved in the calculation of one output sam-
ple is reduced considerably as well as the dimensionality of the integral expression
describing the process. Only a 2D integral needs to be calculated to compute one
output sample compared to a 4D integral for the conventional KSR approach. The
DMR methodology and the theory underlying it have been explained in Chapter 2
and Chapter 3.
The DMR approach is in general applicable to all sorts of input data sets, but, as
already mentioned, the primary interest of this work was to develop an approach
applicable to data sets that do not have a dense areal coverage of sources and re-
ceivers at the acquisition surface. For the DMR approach it can still happen that
the required traces have not been acquired, even if it uses considerably fewer traces
per output sample. In case this happens, the DMR approach needs to be combined
with a data infill procedure. Fortunately, the DMR approach provides exactly the
information that is needed in order to be able to apply the Delphi trace replace-
ment (DTR) method to infill missing data. This DTR method can be categorized
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as a simplified data mapping technique, whose application in combination with the
DMR approach gets facilitated by certain information provided by the DMR ap-
proach itself. By combining the DMR approach with the proposed infill method the
new approach to redatuming becomes applicable to 3D data sets from conventionally
used acquisition geometries. The DTR method has been described in Chapter 5.
The newly developed approach for redatuming has also been evaluated on several
data examples. The applicability of the proposed DMR methodology has been tested
with positive outcome on fully sampled synthetic 2D and 3D data sets and on a 2D
field data set (see Chapter 4 and Chapter 6). The objective of producing results
that are comparable to the results of the conventional KSR approach was achieved.
Furthermore, the applicability of the DMR method combined with the proposed
DTR approach to infill missing data has been investigated. The method has been
applied to sparsely sampled synthetic and realistic 3D data sets. The results of these
tests were very satisfactory too (see again Chapter 6). It can thus be stated that all
research objectives have been achieved.
Together with the exposition of the DMR and the DTR methodologies and the
derivation of their theoretical principles, the advantages and limitations of these
approaches have been discussed extensively. In this chapter, the most important
findings for these two methods will be summarized. Furthermore, recommendations
for future research will be made (see Section 8.1 and Section 8.2).
Additionally, further applications of the DMR approach have been examined. The
methodology has been modified such that it can be applied for the redatuming of
PS-data, and a new concept for the prediction of datum layer-related multiples by
means of the DMR methodology has been developed (see Chapter 7.1 and Chap-
ter 7.3). The applicability of the modified redatuming approach and the new concept
for multiple prediction, both, have been evaluated on numerical 2D data sets with
a positive outcome (see Chapter 7.2 and Chapter 7.4). The most important ad-
vantages and limitations of these approaches as well as recommendations for future
research will be given in Section 8.3.

8.1 The DMR methodology

Advantages

• The DMR technology utilizes RMS velocities to describe the medium below the
new datum level, which can be extracted from the input data set. Due to this,
the redatuming procedure can be expressed as a data mapping technique, sim-
ilar to DMO and AMO. Instead of a 4D integral, as for the conventional KSR
approach, only a 2D integral has to be computed. Hence, the computational
demand of the new approach is reduced compared to the KSR approach.

• In the application of the DMR methodology certain information becomes avail-
able that is required for the DTR methodology to infill missing data. In fact,
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the DMR technology can easily be combined with an infill step employing the
DTR approach and can, therefore, handle sparsely sampled 3D data sets. All
a-priori information required for a successful application of the DTR method-
ology to infill missing time samples is computed during the application of the
DMR approach anyway.

Limitations

• The DMR approach has been derived from the Rayleigh II integral for inverse
wavefield extrapolation. However, the application of Rayleigh II integral yields
dynamically and kinematically correct results only if (1) the acquisition sur-
face is flat, (2) the employed redatuming operators – the Green’s functions –
describe the wave propagation inside the datum layer correctly. For a curved
acquisition surface, the redatumed results will be dynamically incorrect. For a
complex datum layer the redatumed result will dynamically be correct within
the approximations where transmission effects, internal reflections and multi-
pathing inside the datum layer are ignored.

• Different from conventional redatuming, the DMR approach relies on certain
knowledge of the subsurface below the datum layer. It has been shown that
this dependence is insensitive and that the use of a redatumed RMS velocity
field extracted from the input data set is already sufficient. However, if these
velocities are greatly incorrect, errors in the traveltimes of the reconstructed
events have to be expected.

• For the implementation of the DMR approach a flat new datum level has been
assumed.

Recommendations

• It is recommended to adjust the implementation of the DMR approach such
that traces with sources and receivers at a different depth level can be handled
correctly. Therefore, a small modification of the code is necessary. Only the
axes of the ellipsoid indicating the positions of all possible reflection points
belonging to the considered time sample have to be rotated.

• There is a lot of scope to improve the efficiency of the current implementation
of the DMR approach. The current algorithm strictly follows the flowchart
presented in Chapter 2 and treats every output sample separately. It is, for
example, advisable to treat several time samples simultaneously. The problem
is very well suited for parallel implementation; i.e. the calculation of differ-
ent time samples or groups of time samples, respectively, could be performed
simultaneously on different nodes of a parallel machine.
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• For dynamically correct redatuming results from curved acquisition surfaces
it is recommended to derive the DMR integral from the Kirchhoff-Helmholtz
integral equation, which handles these cases correctly [see Wapenaar, 1993].

• For dynamically correct redatuming results from complex datum layers with
several interfaces it is recommended to perform the redatuming as an iterative
procedure between the different interfaces. Furthermore, it is strongly advised
to estimate the redatuming operators such that multipathing occurring inside
the datum layer is handled correctly.

• For a dynamically correct result from relatively thin datum layers it is recom-
mended to include the near-field term in the derivation of the DMR integral.

• The DMR methodology should be extended such that anisotropy can be han-
dled correctly.

8.2 The DTR method

Advantages

• Different from the signal processing approaches to data reconstruction, the
Delphi trace replacement (DTR) method does not make any assumptions
about the shape of the considered events. It purely utilizes the redundancy of
seismic data sets, as every other data mapping technique, which generally scan
for all possible dips for the reconstruction of a missing time sample. Hence,
the result is not biased by the assumptions made about the shape of the events
occurring in the reconstructed data set.

• As mentioned above, data mapping techniques usually scan all possible reflec-
tion points belonging to the considered output sample. In contrast to this, the
DTR method assumes the position of the reflection point and its local dip be-
longing to missing time sample to be known. In fact, this information becomes
available during the application of the DMR approach. It is then used by the
DTR approach as a-priori knowledge. Due to this, the missing time sample
no longer has to be reconstructed by means of a weighted stack along possibly
contributing time samples. Instead, the missing time sample is replaced by a
suitable (amplitude-corrected) time sample. This process is computationally
less intensive.

• The a-priori knowledge needed for the DTR approach becomes available during
the application of the DMR method. For this reason, the combination of the
DMR technology and the DTR approach is ideal for the redatuming of sparsely
sampled 3D seismic data.
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Limitations

• Missing time samples can only be reconstructed correctly if the reflection point
positions and their local dips are correct. If the current isochrone point is far
away from the true reflection point and if the azimuth difference between
the missing source/receiver pair and the source/receiver pair selected for the
reconstruction are both large, the reconstruction will be incorrect. This can
lead to artifacts in the redatumed result.

• In theory at least one trace of the sparsely sampled input data is assumed to be
available exactly at the infill contour indicating all surface source and receiver
locations that could be used for the data reconstruction. However, seismic
data acquisition yields a discrete sampling of the wavefield. It is, therefore,
likely that no trace exists with source and receiver exactly on the infill contour.
Instead, a trace closest to the contour is selected.
Furthermore, the sampling of the acquisition surface is not random. The data
sets usually consist of several subsets, which all have the same geometry like
marine parallel lines and cross-spread geometries at land. It is, therefore, likely
that traces from a certain area are reconstructed by traces from one subset,
and that the transition from one subset to another neighboring subset happens
abruptly. This effect might as well cause artifacts in the redatumed result.

Recommendations

• Until now the DTR methodology has only been evaluated in combination with
redatuming. For a more thorough evaluation it is recommended to test it
separately.

• Until now only parallel line geometries have been considered to test the pro-
posed sparse data redatuming approach. These tests should be extended to
all commonly used 3D acquisition geometries, such as cross-spread geometries
for land data.

• It is recommended to ease the requirements imposed on the selection of possibly
contributing time samples for the DMR approach. One could, for example, opt
to use any trace belonging to a considered reflection point instead of restricting
the search only to traces with a certain angle of incidence. By doing this, an
incorrect amplitude of the selected time sample is accepted. However, the
occurrence of unwanted artifacts due to an incorrect infill could be prevented
this way.
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8.3 Further applications of the DMR methodology

Advantages

• The DMR approach can easily be extended to the redatuming of converted-
wave data. Only the construction of the isochrone of possible reflection points
belonging to the desired output sample has to be adjusted and the redatuming
operators have to be selected accordingly.

• The DMR method can be modified such that redatumed datum layer-related
multiples can be predicted and removed.

Limitations

• The integral expression of the DMR approach for converted-wave data has
been derived from the integral expression underlying the KSR approach based
on scalar wave equations. This assumes that the reconstructed pressure and
velocity data has been decomposed in scalar P-wave and SV-wave potentials.
For 3D data sets, this is by no means a trivial process, that is researched right
now.

• The amplitude weights needed for the prediction of the datum layer-related
multiples have not been derived yet. Hence, the amplitudes of the predicted
multiples will not be correct.

Recommendations

• The DMR methodology for converted-wave data should be evaluated more
thoroughly on synthetic and real input data.

• The amplitude weights needed for the prediction of the datum layer-related
multiples by means of the modified DMR technology have to be derived.

• The proposed methodology for the prediction of datum layer-related multiples
should be examined more detailed on synthetic and real input data.
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A

Theory of the Kirchhoff summation

approach to redatuming

In this appendix a derivation of the conventional KSR approach for 3D pre-stack
data is presented.
Starting point for the derivation of the integral expression underlying the KSR
method is the well-known Kirchhoff-Helmholtz integral [see for example Wape-
naar, 1993]. This equation states that for any point A with the coordinates x̃A =
(x̃A, ỹA, z̃A) inside the volume V with surface S and the inward pointing normal
vector n (see Figure A.1) the acoustic pressure P (x̃A, ω) can be expressed as:

P (x̃A, ω) =
1

4π

∫

S

[G∇P − P∇G] · ndS +

∫

V

GQdV, (A.1)

or, alternatively:

P (x̃A, ω) =
1

4π

∫

S

[G∗∇P − P∇G∗] · ndS +

∫

V

G∗QdV. (A.2)

Here, Q(x, ω) describes the source distribution inside V , G(x, x̃A, ω) represents the
forward-propagating Green’s wavefield, and G∗(x, x̃A, ω) represents the backward-
propagating Green’s wavefield.
At this point, it needs to be decided whether a two-way wavefield-extrapolation
or a one-way wavefield-extrapolation should be applied. For a two-way – or full –
wavefield-extrapolation full Green’s functions are required including single scattered
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Figure A.1: Point A inside V enclosed by S to which the wavefield should be extrapolated
using the Kirchhoff-Helmholtz integral. (a) shows the situation for forward extrapolation
with the causal Green’s function G. (b) represents the backward extrapolation with the anti-
causal Green’s function G∗. [Figures according to Wapenaar et al., 1989]

events (primaries) as well as multiply scattered events (multiples). To calculate such
a Green’s function correctly, an accurate velocity model of the probed subsurface is
required and, additionally, a correct description of the sources. Thereby, the multi-
ple events are very sensitive to the position of the reflectors.
In opposite to this, one-way extrapolation schemes consider primary events only.
They are, therefore, more robust to errors of the subsurface model being used. In
most cases an accurate velocity model of the probed subsurface is not available,
since the estimation of such a model is usually the aim of seismic processing. Hence,
inverse wavefield extrapolation, or redatuming, is mostly formulated as one-way ex-
trapolation. Thereby, the input data set is assumed to contain only primaries; i.e.
it is assumed that strong surface-related multiples have been removed by prepro-
cessing and internal multiples are negligible. The latter assumption is true if the
reflectivities of the probed subsurface are small.
Next, the Kirchhoff-Helmholtz integral needs to be modified for seismic data. In this
situation the volume V and the surface S can be defined as presented in Figure A.2a.
Here, the volume V around A is surrounded by the acquisition surface S0 and by
the surface Sh of a hemisphere with radius R. Hence, if V is assumed source-free
and the radius R goes to infinity:

P (x̃A, ω) =
1

4π

∫

S0

[G∇P − P∇G] · n dS0. (A.3)

According to the Sommerfeld radiation condition, the contribution over the hemi-
sphere vanishes for the forward extrapolation case [Bleistein, 1984]. However, this
radiation condition requires the Green’s wavefield inside V to travel in the same
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Figure A.2: Volume V modified for the seismic situation for (a) forward extrapolation and
(b) backward extrapolation. [Figures according to Wapenaar et al., 1989]

direction as P . Unfortunately, this requirement is not met in case of backward
extrapolation, which is applied for redatuming. In order to derive an expression
similar to Equation A.3 for inverse extrapolation, the representation of the seismic
data is changed. As displayed in Figure A.2b, the volume V is now enclosed by
the acquisition surface S0, a surface Sh between A and the reflector and by the
cylindrical surface S2 with radius R. If R goes to infinity, the contribution of S2

vanishes, however, the contribution of Sh does not. It has been shown by Wapenaar
et al. [1989] that this part is approximately zero if, for a constant velocity inside V ,
the evanescent waves at Sh are neglected, or, for an inhomogeneous velocity inside
V , evanescent waves and multiply reflected waves inside V are neglected. These
approximations for the inverse extrapolation of P yield:

P (x̃A, ω) ≈ 1

4π

∫

S0

[G∗∇P − P∇G∗] · ndS0. (A.4)

Here, P (x̃A, ω) is the up-going wavefield at A, while P represents the total wave-
field at S0. Furthermore, the Kirchhoff-Helmholtz integral can be replaced by the
Rayleigh II integral if the seismic data are acquired at a plane acquisition surface
S0:

P (x̃A, ω) =
1

2π

∫

[P (x, ω)
∂G∗

∂n0
]dS0, (A.5)

Note, that ∇G∗ · n is now expressed as ∂G∗

∂n0
, and that P (x̃A, ω) and P (x, ω) both

represent up-going wavefields. Furthermore, ≈ has been replaced by = keeping the
approximation in mind.
For a constant velocity v1 between the surface S0 and point A at the new datum
the free space solution can be used for the Green’s function:

G∗ =
eikr

r
, (A.6)
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with r =
√

(x̃A − x)2 − (ỹA − y)2 − z̃2
A and the wavenumber k. This yields the

following for the derivative of G∗ with respect to n:

∂G∗

∂n0
= cosα(

ikr − 1

r2
)eikr, (A.7)

with:
∂r

∂n0
= cosα. (A.8)

As shown in Figure A.3, α is the emergence angle.
Substituting Equation A.7 into A.5 results in:

P (x̃A, ω) =
1

2π

∫

P (x, ω) cosα

[
iω

v1r
− 1

r2

]

eiωτdS0, (A.9)

with the time shift τ = r/v1 given by the traveltime along the raypath from x to
x̃A.
To save computation time, the near field term decaying with 1/r2 can be neglected
when r is large with respect to v1/ω:

P (x̃A, ω) =
1

2π

∫

P (x, ω) cosα
iω

v1r
eiωτdx. (A.10)

This integral expression, the far-field approximation of the Rayleigh II integral as-
suming a constant medium between the acquisition surface and the new datum level,
is commonly used for the conventional KSR approach. Note, that the surface integra-
tion

∫
dS0 has been replaced by the equivalent expression

∫
dx; i.e. the integration

is formulated in terms of the x- and y-coordinates on S0.
A seismic survey usually consists of sources and receivers both at S0. In other
words, both, sources and receivers, have to be moved from S0 to the new datum S1.
Equation A.10 describes how the wavefield in point A on some surface S1 can be
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Figure A.3: Geometry for the downward extrapolation.
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calculated from the observations on S0. It can thus be used to calculate the result
of having sources on S0 and receivers on S1:

P (x̃r ,xs, ω) =
1

2π

∫

P (xr ,xs, ω) cosαr

iω

v1rr

eiωτrdxr, (A.11)

with rr = |x̃r − xr |, αr being the emergence angle between the inward pointing
normal vector of S0 and the local raypath at xr , and τr = rr

v1
.

As stated by Wiggins [1984], Equation A.11 cannot be applied to move the sources
to S1, because this integral describes the backward extrapolation of a received signal.
To move the sources, the principle of reciprocity is utilized. It states that a signal
received at x̃r from a source at xs is equal to a signal that is received at xs from a
source at x̃r . Therefore, Equation A.10 can be applied to P (x̃r,xs, ω) to move the
sources to S1 as well:

P (x̃r, x̃s, ω) =
1

2π

∫

P (x̃r,xs, ω) cosαs

iω

v1rs

eiωτsdxs. (A.12)

Substituting A.11 into A.12 yields:

P (x̃r , x̃s, ω) =

∫ ∫
cosαr cosαs

(2πv1)2 rrrs

(iω)2P (xr ,xs, ω) eiω(τr+τs)dxrdxs, (A.13)

with τs = rs

v1
.

Wiggins [1984] refers to Equation A.13 as the KRK integral. As one can see, it
describes a double extrapolation of sources and receivers and is applicable to pre-
stack data. This equation actually forms the basis of the KSR approach.
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B

The estimation of ray parameters

from the traveltimes of redatuming

operators

The aim of this appendix is to explain how the ray parameters needed for the trace
selection of the DMR approach can be estimated from the traveltimes of the given
redatuming operators.
It is well known that the ray parameter ̺ of a certain ray can be expressed in terms
of its angle of incidence α with respect to a surface and the medium velocity v:

̺ =
sin α

v
. (B.1)

However, it has been shown by for example Bleistein [1984] that this relation can
easily be reformulated in terms of the traveltimes of the considered wave using the
geometrical relations illustrated in Figure B.1. There, a wavefront is depicted at two
different points in time belonging to the wave described by a ray with ray parameter
̺. These wavefronts impinge on the reflector under the angle α. The sine of this
angle of incidence can be expressed as:

sin α =
vdt

dx
, (B.2)
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dx

α
vdt

raywavefront 1 wavefront 2

Figure B.1: Derivation of the ray parameter ̺. [Figure according to Bleistein, 1984]

with dt being the difference in time and dx as depicted in Figure B.1. Substituting
B.2 into B.1 yields:

̺ =
vdt

vdx
=

dt

dx
. (B.3)

Hence, the ray parameter ̺ of a certain ray reaching a surface can be estimated by
taking the spatial derivative of the traveltimes measured at this surface.
For the DMR method the redatuming operators are utilized as common shot re-
sponses with sources at the new datum and receivers at the acquisition surface (see
Figure B.2a). Taking the spatial derivatives here means calculating ray parameters
at the acquisition surface. However, what is needed are ray parameters at the new
datum layer in order to continue the estimated ray from the datum upwards. This
can be achieved by rearranging the operators from common source gathers to com-
mon receiver gathers and taking the spatial derivatives at the datum location (see
Figure B.2b). Note, that this requires the redatuming operators to be available for
a dense grid of locations along the datum.
Furthermore, it needs to be taken into account that a 3D situation is considered; i.e.

∆

∗

∆ ∆ ∆ ∆ ∆

∗

∆

∗ ∗ ∗ ∗ ∗
(a) (b)

Figure B.2: Redatuming operators (a) grouped as common source gathers and (b) grouped
as common receiver gathers.
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the ray parameters:

̺x =
sinαx

v
, (B.4)

̺y =
sinαy

v
, (B.5)

need to be extracted from the traveltimes t(x, y). This is accomplished by taking
the partial derivatives in x- and y-direction of the rearranged traveltimes:

̺x =
∂t

∂x
, (B.6)

̺y =
∂t

∂y
. (B.7)

These ray parameters describe a ray connection a certain position at the datum with
a certain position at the acquisition surface and can, therefore, be utilized for the
selection of source/receiver pairs at the surface belonging to the possible reflection
points.
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C

Estimation of the eigenvalues for the

Hessian matrix of the corrected

traveltime function

The aim of this appendix is to explain why both eigenvalues of the Hessian matrix of
the half-corrected traveltime function Γ are said to be positive. This is derived here
for the situation of a flat target reflector, assuming that this is also representative
for target reflectors that are not strongly curved.
In Chapter 3 the number n of positive eigenvalues of the Hessian matrix of the
half-corrected traveltimes:

Ajk =

[
∂2Γ(x̂r)

∂xrj
∂xrk

]

, (C.1)

with

Γ(xs,xr) = −tt(xs,xr) + τr(xr), (C.2)

is required for the derivation of the integral expression describing the DMR method.
For a flat target reflector at depth zr and the new datum at depth zd the required
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Figure C.1: Comparison of the traveltime curves of (a) the reflection event and (b) the time
correction for xs =(0m,0m), x̂r =(500 m,0m), v1 =1500 m/s, vRMS =2000 m/s, zr =1000 m
and zd =500 m.

traveltimes tt and time shifts τr can be expressed as:

tt =
2

vRMS

√

(
xr − xs

2
)2 + (

yr − ys

2
)2 + z2

r , (C.3)

τr =
1

v1

√

(xr − x̃r)2 + (yr − ỹr)2 + z2
d. (C.4)

Here, vRMS denotes the RMS-velocity along a ray traveling from the considered
source xs = (xs, ys) via the target reflector to the receiver xr = (xr , yr) at the
surface. v1 describes the velocity of the datum layer, and x̃r = (x̃r , ỹr) describes
the receiver position at the new datum. Figure C.1 provides a comparison of these
traveltime curves for certain values of xs and x̃r clearly showing that the curvature
of τr is considerably larger than the curvature of tt.
Because of this, it can be assumed that the half-corrected traveltime Γ has a pos-
itive curvature in the vicinity of the stationary phase point x̂r. Hence, it can be
approximated by an hyperboloid th of the form:

th =

√

1 +
(xr − x̂r)2

a2
h

+
(yr − ŷr)2

a2
h

− bh, (C.5)

with ah and bh being two parameters defining the curvature and the shift in vertical
direction, respectively. In Figure C.2 Γ is compared to such an hyperboloid.
The approximation made here is also valid for a dipping target reflector, because the
reflector dip mainly causes the apex position of the traveltime curve to shift while
its shape is approximately retained. The hyperboloid can then be described as:

th =

√

1 +
(xr − x̂r)2

a2
h

+
(yr − ŷr)2

c2
h

− bh, (C.6)
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Figure C.2: Comparison of the half-corrected traveltime curve Γ (solid line) and the hyper-
boloid th (dashed-dotted line) in (a) 3D, (b) along yr = ŷr and (c) along xr = x̂r.

with different curvatures in x- and y-direction.
The eigenvalues belonging to the Hessian matrix of Γ can be approximated by the
eigenvalues of the Hessian matrix Ah belonging to a hyperboloid as described in
Equation C.5:

Ah =





∂t2h
∂x2

r

∂t2h
∂xr∂yr

∂t2h
∂yr∂xr

∂t2h
∂y2

r



 . (C.7)

According to Bartsch [1994], the eigenvalues ζ1,2 of any given 2 × 2-matrix D can
be calculated using the following expression:

ζ1,2 =
1

2

[

(d11 + d22) ±
√

4d12d21 + (d11 − d22)2
]

. (C.8)
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For the given problem the eigenvalues have to be derived for Ah, hence:

d11 =
∂t2h
∂x2

r

=
1

a2
h

[1 +
(yr − ŷr)

2

c2
h

]

[√

1 +
(xr − x̂r)

2

a2
h

+
(yr − ŷr)

2

c2
h

]3 , (C.9)

d12 = d21 =
∂t2h

∂xr∂yr

=
−1

ahch

(xr − x̂r)(yr − ŷr)
[√

1 +
(xr − x̂r)

2

a2
h

+
(yr − ŷr)

2

c2
h

]3 , (C.10)

d22 =
∂t2h
∂y2

r

=
1

c2
h

[1 +
(xr − x̂r)

2

a2
h

]

[√

1 +
(xr − x̂r)

2

a2
h

+
(yr − ŷr)

2

c2
h

]3 . (C.11)

Here, it can clearly be seen that d11 and d22 will both have positive, real values,
and, furthermore, that the multiplication of d12 and d21 will have a positive, real
result. It can thus be concluded that the radicand of Equation C.8 will be real and
positive, too; i.e. the first eigenvalue ζ1 has to be positive.
In order to prove that ζ2 is positive, it has to be shown that:

d11 + d22 −
√

4d12d21 + (d11 − d22)2 > 0, (C.12)

or, after reformulating this expression, that:

d11d22 > d12d21. (C.13)

Substituting Equations C.9-C.11 yields:

1

a2
hc2

h

[1 + (xr−x̂r)2

a2
h

][1 + (yr−ŷr)2

c2
h

]
[√

1 + (xr−x̂r)2

a2
h

+ (yr−ŷr)2

c2
h

]6 >
1

a4
hc4

h

(xr − x̂r)
2(yr − ŷr)

2

[√

1 + (xr−x̂r)2

a2
h

+ (yr−ŷr)2

c2
h

]6 , (C.14)

and after further simplification:

1 +
(xr − x̂r)

2

a2
h

+
(yr − ŷr)

2

c2
h

> 0. (C.15)

This statement is certainly true and, therefore, the second eigenvalue ζ2 is positive
as well.



D

The construction of a contour of

source/receiver pairs with rays

reaching a certain reflection point

under identical angle of incidence

The aim of this appendix is to explain how a contour at a new, flat datum level, as it
is assumed throughout this thesis, can be constructed, which indicates the positions
of all source/receiver pairs x̃

′

s,r at this datum belonging to rays that reach a certain
reflection point under an identical angle of incidence.
The contour at the new datum indicates the intersection of the datum plane and
a cone, which has its apex at the possible reflection point belonging to the time
sample that needs to be reconstructed. Consequently, the contour at the new datum
is determined by the characteristics of the cone: its apex position xiso, its opening
angle ϕ, which is twice the angle of incidence α, and its axis of rotation x̃c,0 (see
Figure D.1). Besides the apex position xiso, two points on the contour – the source
position x̃s at the new datum and the receiver position x̃r at the new datum – are
known. These three points define the vectors (see also Figure D.2):

x̃c,s = x̃s − xiso, x̃c,r = x̃r − xiso, (D.1)
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ϕ
xiso

Figure D.1: Infill cone, which indicates all rays belonging to different source/receiver pairs
at the datum that reach the reflection point with an identical angle of incidence.

which are part of the cone. They can be utilized to calculate the opening angle ϕ
by means of their scalar product:

ϕ = arccos

(
x̃c,sx̃c,r

|x̃c,s||x̃c,r|

)

. (D.2)

Furthermore, it is known that:

[1] the rotation axis intersects the datum plane at some point x̃0 on the straight
line in the datum plane connecting x̃s and x̃r (see Figure D.2). This straight
line can be described by its slope m0 and its intercept b0 with the y-axis:

m0 =
ỹr − ỹs

x̃r − x̃s

, b0 = ỹs −
ỹr − ỹs

x̃r − x̃s

x̃s. (D.3)

Hence, the components of x̃0 have to satisfy the following equation:

ỹ0 = m0x̃0 + b0. (D.4)

ϕ
2

x̃0

x̃c,0

xiso

x̃s x̃r

x̃c,s x̃c,r

Figure D.2: Definition of the rotation axis of the infill cone.
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[2] the rotation axis, whose direction is given by the following vector:

x̃c,0 = x̃0 − xiso, (D.5)

and x̃c,s intersect each other with half the opening angle. Hence, the compo-
nents of x̃0 have to satisfy the following equation:

x̃c,sx̃c,0

|x̃c,s||x̃c,0|
= cos

ϕ

2
. (D.6)

Thus, x̃0 can be found by combining Equations D.4 and D.6.
Once the direction of the rotation axis and its intersection with the datum have
been defined, the contour at the datum can be determined in a similar way. All
points x̃

′

s,r on this contour have to be positioned somewhere along straight lines in
the datum plane, which can be described as the straight line connecting x̃s and x̃r

rotated around x̃0 by ϑ ∈ [0, 2π). This is illustrated in Figure D.3. In other words,
the contour points have to satisfy the following equation:

ỹ
′

s,r = tan (arctan (m0) + ϑ)x̃
′

s,r + (ỹ0 − tan (arctan (m0) + ϑ)x̃0). (D.7)

And, since the contour points lie on the cone, the vectors x̃
′

c,s and x̃
′

c,r:

x̃
′

c,s = x̃
′

s − xiso, x̃
′

c,r = x̃
′

r − xiso, (D.8)

both have to intersect the rotation axis x̃c,0 with half the opening angle. That is,
the contour points have to satisfy the following equations:

x̃
′

c,sx̃c,0

|x̃′

c,s||x̃c,0|
= cos

ϕ

2
, (D.9)

x̃
′

c,rx̃c,0

|x̃′

c,r||x̃c,0|
= cos

ϕ

2
. (D.10)

xiso

x̃
′

s

x̃
′

rϑ

Figure D.3: The contour, which indicates all source/receiver pairs at the datum belonging to
rays which reach the same reflection point with an identical angle of incidence, is constructed
by rotation around x̃c,0.
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Now, all contour points x̃
′

s,r can be found by combining Equations D.7, D.9 and
D.10.
Note, again, that these derivations are only valid for a locally flat datum layer
between the redatumed source and the redatumed receiver. If it is intended to
extend the approach to arbitrary datum layers, the construction of the contour
needed for the infill of missing data has to be modified accordingly.



E

Notation, Symbols and

Abbreviations

E.1 Notation

For the notation in this thesis the following conventions have been adopted:

• Scalars are given by lower-case normal font, e.g. x.

• Vectors are given by lower-case bold font, e.g. x. The elements of vectors
indicating positions in a Cartesian coordinate system are given by lower case
normal font subscripted by the name of the vector, e.g. (xiso, yiso, ziso) be-
longing to xiso.

• Matrices are given by upper-case normal font, e.g. A. One element of a
matrix is denoted by an upper-case normal font with a double subscript, e.g.
Ai,j means element (i, j) of matrix A.

• The determinant of a matrix is given by an upper-case calligraphic font, e.g. A.

• Parameters related to sources are denoted by the subscript s in normal font,
parameters related to receivers are denoted by the subscript r in normal font,
e.g xr.
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• Positions at the acquisition surface are denoted by a vector x.

• Positions at the new datum level are denoted by a vector x̃.

• Stationary phase points are denoted by a vector x̂.

• Source/receiver positions, which can be used to infill missing traces are denoted
by x

′

at the acquisition surface and by x̃
′

at the datum level.

E.2 Symbols

In the following symbols that occur frequently are briefly explained. Symbols that
occur infrequently are not listed. Their meaning will be clear from the text.

Scalars

symbol description

p seismic wavefield in the space-time domain

P seismic wavefield in the space-frequency domain

t time

ω angular frequency

k wavenumber

tred time sample to be redatumed

tL possibly contributing time sample on locus L

τs,r one-way traveltime between sources at the acquisition surface
and the new datum, and receivers at the acquisition surface
and the new datum, respectively. This equals the time shift
applied during redatuming

tt two-way traveltime of a reflection event at the true reflector
recorded at the acquisition surface

tt,KSR traveltime of a reflection event in a half-redatumed data set

te traveltime of the missing time sample

∆tDT R difference in traveltime between the missing time sample and
the time sample used for reconstruction

Γ half-corrected traveltime of a reflection event for the DMR
method (Γ = −tt + τr)
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ΓDMR fully corrected traveltime of a reflection event for the DMR
method (ΓDMR = −tt + τr + τs)

ΓKSR fully corrected traveltime of a reflection event for the KSR
method (ΓKSR = −tt,KSR + τs)

A determinant of A (related to Γ)

ADMR determinant of ADMR (related to ΓDMR)

AKSR determinant of AKSR (related to ΓKSR)

a amplitude

asr amplitude of a missing time sample

as
′
r
′ amplitude of a time sample used for reconstruction

aDT R amplitude correction applied for the infill

r distance between two points

rs,r distance between a source at the acquisition surface and the
new datum and a receiver at the acquisition surface and the
new datum, respectively

α emergence angle at a certain point between the local raypath
and the inward pointing normal vector

αs,r emergence angle at xs,r between the local raypath and the
inward pointing normal vector of the acquisition surface

v velocity

vRMS RMS velocity

v1 velocity of the datum layer

vNMO redatumed stacking velocity

v2 redatumed stacking velocity chosen to describe the medium
below the datum for a certain redatumed time sample

aell long axis of the ellipsoid describing the isochrone of possible
reflection points

bell short axis of the ellipsoid describing the isochrone of possible
reflection points

δx,y local dip of the ellipsoid in x, y-direction

θ azimuth of a certain point xiso on the isochrone

φ polar angle of a certain point xiso on the isochrone

ε relative error

εO relative error of focal point position

ε̺ relative error of ray parameter
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εS relative error in the position of a source/receiver pair

Vectors

symbol description

xs,r source/receiver position at the acquisition surface

x̃s,r source/receiver position at the new datum

xiso point on the isochrone of possible reflection points

x̂s,r stationary source/receiver at the acquisition surface

x
′

s,r source/receiver position of a trace used for the infill of missing
data

x̃
′

s,r source/receiver positions on the infill contour at the new datum
level

̺ ray parameter consisting of the components (̺x, ̺y)

̺s,r ray parameter belonging to the ray between the considered
reflection point and a source/receiver at the new datum

n normal vector

Matrices

symbol description

A Hessian matrix of Γ

ADMR Hessian matrix of ΓDMR

AKSR Hessian matrix of ΓKSR

E.3 Abbreviations

abbreviation meaning

1D one dimensional

2D two dimensional

3D three dimensional

KDM Kirchhoff data mapping

NMO normal move-out

DMO dip move-out

AMO azimuthal move-out
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DMR data mapping approach to reda-
tuming

KSR Kirchhoff summation approach to
redatuming

CFP Common Focus Point

RMS root mean square

TDO topographic datuming operator

DTR Delphi trace replacement

OMO offset move-out

SCO shot continuation operator

EFI Experimental Facility for Imaging

ZMAART Ziggy Model Acquisition and the
ART of physical modeling
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Summary

Redatuming of Sparse 3D Seismic Data

The purpose of a seismic survey is to produce an image of the subsurface providing
an overview of the earth’s discontinuities. The obtained image can be interpreted
by geologists, geophysicists or reservoir engineers. The aim of seismic processing -
including procedures like temporal and spatial filtering, traveltime corrections and,
finally, the migration of the reflection energy - is to recreate this image. The seismic
method is especially well suited for the exploration and the monitoring of hydrocar-
bon reservoirs.
A majority of the algorithms, which are applied for seismic processing, are optimized
for regularly sampled data referenced to a flat surface and for a simple velocity distri-
bution in the subsurface. In reality, data are collected at irregularly sampled, rugged
surfaces and/or with complex structures in the subsurface. As a pre-processing step,
the seismic data can be redatumed to a new reference surface prior to further pro-
cessing, which satisfies the requirements mentioned above. Redatuming virtually
places sources and receivers at another level without moving them.
The methodology most commonly used for redatuming is the so-called Kirchhoff
summation redatuming (KSR). It has been applied successfully to 2D data sets.
The redatuming of pre-stack data by means of the KSR approach is applied in two
separate steps, one to redatum the receivers and one to redatum the sources. Each
step requires the computation of the Rayleigh II integral over the coordinates of
the considered sources and receivers, respectively. This integral can be derived from
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the acoustic wave equation. It allows the calculation of the seismic wavefield at any
point below the acquisition surface by means of a weighted sum of the wavefield
measurements at the surface; i.e. for the redatuming of 2D pre-stack data by means
of the KSR approach a 2D integral has to be computed, for the redatuming of 3D
pre-stack data a 4D integral has to be computed. The KSR method requires the
input data set to be densely sampled in both source and receiver coordinates at the
acquisition surface to avoid aliasing artifacts.
The weighting functions account for the propagation effects between the surface
points and the target point at the new datum, in terms of traveltimes and ampli-
tudes. In practice, they are unknown and need to be estimated from the seismic data
(data-driven approach) or from a given velocity model of the datum layer (model-
driven approach).
Nowadays, the amount of 3D data increases, which makes it more and more impor-
tant to develop a feasible method for the redatuming of 3D pre-stack data. However,
all commonly used 3D acquisition geometries deliver data sets that are sparse in at
least one of the coordinates, meaning that the KSR approach is not directly applica-
ble. Hence, a new redatuming methodology had to be developed, which is applicable
to sparsely sampled 3D data.
In this thesis, data mapping redatuming (DMR) is presented. The choice has been
made to formulate the redatuming process in terms of a data mapping problem,
similar to well-known techniques as, for example, dip move-out (DMO) correction
and azimuthal move-out (AMO) correction. For the DMR approach, firstly, all time
samples of the input data set are identified which are possibly contributing to the
output sample considered. To achieve this, certain assumptions about the velocity
model below the new datum level are made. It is assumed that the medium below the
new datum level can be described by the redatumed stacking velocities, which can be
extracted from the input data by conventional velocity analysis. Furthermore, the
potential reflectors below the datum are assumed not to be strongly curved. Then,
a weighted stack is applied to the possibly contributing time samples, which yields
the sought-after time sample of the considered redatumed trace. This is different
from the conventional methods. However, in this new DMR approach, the number
of traces involved in the calculation of one output sample is reduced considerably as
well as the dimensionality of the integral expression describing the process. Only a
2D integral needs to be calculated to compute one output sample compared to a 4D
integral for the conventional KSR approach.
The DMR approach is in general applicable to all sorts of input data sets, but, as
already mentioned, the primary interest of this work was to develop an approach
applicable to data sets that do not have a dense areal coverage of sources and re-
ceivers at the acquisition surface. For the DMR approach it can still happen that
the required traces have not been acquired, even if it uses considerably less traces
per output sample. In case this happens, the DMR approach needs to be combined
with a data infill procedure.
The information about the possible reflection points belonging to the time sample
considered, which can be obtained from the assumptions of the medium below the
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new datum level made for the DMR approach, can be used to apply the Delphi

trace replacement (DTR) method to infill missing data. The DTR method can
be categorized as a simplified data mapping technique, which employs the redun-
dancy of seismic data. The general assumption underlying this approach is that the
reflectivity of a certain reflection point at a target reflector is independent of the
azimuth. This suggests that traces recorded at two different source/receiver pairs
contain identical information regarding the target reflector if the rays belonging to
the considered reflection event reach the same reflection point with an identical angle
of incidence. As a consequence, the missing time sample, which belongs to a certain
reflection event, can be replaced by a time sample on an acquired trace, which be-
longs to a reflection at the same reflection point with the same angle of incidence
with respect to this point. Certainly, the acquired time sample has to be corrected
first for differences in the wave propagation, which cannot be considered azimuthal
independent. By combining the DMR approach with the proposed infill method the
new approach to redatuming becomes applicable to 3D data sets from conventional
acquisition geometries.
The newly developed approach for redatuming has been evaluated on several data
examples. The applicability of the proposed DMR methodology has been tested
with positive outcome on fully sampled synthetic 2D and 3D data sets and on a
2D field data set. It has been shown, that the DMR methodology produces results
that are kinematically and dynamically almost identical to the results of the conven-
tional KSR approach, as it was intended to. It has, furthermore, been shown that
the DMR method is, indeed, relatively insensitive with respect to the background
medium chosen to describe the subsurface below the new datum level. The use of
redatumed stacking velocities was already sufficient to achieve correct results. Even
the use of grossly incorrect velocities for the medium below the new datum yielded
results with only minor errors in the timing and the amplitudes of the redatumed
events.
Furthermore, the applicability of the DMR method combined with the proposed
DTR approach to infill missing data has been examined. It has been applied to
sparsely sampled synthetic and realistic 3D data sets. The results of these tests
were satisfactory as well. The results of the DMR approach combined with the in-
fill and applied to sparsely sampled input data were kinematically and dynamically
almost identical to the results of the DMR approach applied to fully sampled 3D
input data, as was aimed for. It can thus be stated that all research objectives have
been achieved.
Additionally, further applications of the DMR approach have been examined. The
methodology has been modified such that it can be applied for the redatuming of
PS-data, and a new concept for the prediction of datum layer-related multiples by
means of the DMR methodology has been developed. The applicability of the mod-
ified redatuming approach and the new concept for multiple prediction, both, have
been evaluated on numerical 2D data sets with a positive outcome.

Sandra Tegtmeier-Last
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Samenvatting

Redatuming van schaarse 3D seismische data

Het doel van een seismisch onderzoek is een beeld van de ondergrond te verkrijgen
die een overzicht van de discontinüıteiten van de aarde levert. Het verkregen beeld
kan door geologen, geophysici of reservoir-ingenieurs worden gëınterpreteerd. Het
doel van seismische data verwerking - d.m.v. van procedures zoals het tijdelijke en
ruimtelijke filteren, looptijd correcties en, tenslotte, de migratie van de gereflecteerde
energie - is dit beeld te creëren. De seismische methode is vooral geschikt voor de
exploratie en de controle van koolwaterstof reservoirs.
Een meerderheid van de algoritmen, die in de seismische data verwerking worden
toegepast, is geoptimaliseerd voor regelmatig bemonsterde data gemeten op een
vlakke oppervlakte en voor een eenvoudige snelheidsdistributie in de ondergrond. In
werkelijkheid zijn de seismische data onregelmatig bemonsterd en ze worden geme-
ten op een ruwe oppervlakte en/of met complexe structuren in de ondergrond. In
dit geval kunnen de seismische data worden geredatumed naar een nieuwe referentie
oppervlakte (datum) die aan de hierboven vermelde eisen voldoet, voorafgaand aan
verdere stappen. Redatuming plaatst echter bronnen en ontvangers op een ander
niveau zonder hen daadwerkelijk te bewegen.
De methodologie die het meest voor redatuming wordt gebruikt is het zogenaamde
Kirchhoff sommatie redatuming (KSR). Het is al met succes toegepast op 2D data.
Het redatuming van pre-stack data door middel van de KSR methode wordt uit-
gevoerd in twee afzonderlijke stappen, het redatuming van de ontvangers en het
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redatuming van de bronnen. Elke stap vereist de berekening van het Rayleigh II
integraal over de coördinaten van de bronnen en de ontvangers. Dit integraal kan
uit de akoestische golf-vergelijking worden afgeleid. Het staat de berekening van een
seismische golfveld op iedere punt onder de acquisitie oppervlakte toe door middel
van een gewogen sommatie van de metingen aan deze oppervlakte; d.w.z. voor het
redatuming van seismische 2D pre-stack data door middel van KSR moet een 2D
integraal worden berekend, voor het redatuming van 3D pre-stack data moet een
4D integraal worden berekend. De KSR methode vereist dicht bemonsterde data
in zowel bron- als ontvangers-coördinaten aan de acquisitie oppervlakte om aliasing
artefacten te voorkomen.
De wegingsfuncties beschrijven de een-weg propagatie tussen de oppervlakte-punten
en het doelpunt op het nieuwe datum, in termen van looptijden en amplitudes. In de
praktijk zijn zij onbekend en moeten worden geschat uit de gemeten seismische data
(data-gedreven benadering) of van een snelheidsmodel van de datum laag (model-
gedreven benadering).
Tegenwoordig neemt de hoeveelheid van gemeten 3D data toe, wat betekent dat het
ontwikkelen van een toepasbare methode voor het redatumen van 3D pre-stack data
steeds belangrijker wordt. Alle gebruikelijke 3D acquisitie-geometrieën leveren data
sets op die in minstens één van de coördinaten schaars zijn. Dat betekend dat de
KSR methode niet rechtstreeks toepasbaar is. Daarom moest een nieuwe redatuming
methodologie worden ontwikkeld, die wel van toepassing is voor schaarse 3D data.
In dit proefschrift wordt het zogenaamde data mapping redatuming, de DMR meth-
ode gëıntroduceerd. Hier is de keuze gemaakt om het redatuming proces in termen
van een data mapping probleem te formuleren, vergelijkbaar met bekende technieken
zoals, bijvoorbeeld, de dip move-out (DMO) correctie en de azimuthal move-out
(AMO) correctie. Voor de DMR methode worden, ten eerste, alle tijdsamples van
de input data gëıdentificeerd die misschien tot het beschouwde output sample bijdra-
gen. Om dit te kunnen bereiken worden enkele veronderstellingen over het snelhei-
dsmodel onder het nieuwe datum gemaakt. Men veronderstelt dat het medium onder
het nieuwe datum kan worden beschreven door stack snelheden gerelateerd aan het
nieuwe datum. Deze snelheden kunnen uit de input data worden gehaald door con-
ventionele snelheidsanalyse. Verder wordt verondersteld dat de potentiële reflectoren
onder het datum niet sterk gekromd zijn. Er wordt een gewogen sommatie toegepast
op de mogelijk bijdragende tijdsamples met als resultaat het gezochte tijdsample van
het geredatumde signaal. Dit is verschillend van de conventionele methodes. In de
DMR methode wordt het aantal signalen dat is betrokken bij de berekening van één
output-sample aanzienlijk verminderd, net als de dimensionaliteit van het integraal
die het proces beschrijft. Er moet slechts een 2D integraal worden berekend om één
output-sample te verkrijgen terwijl er een 4D integraal voor de conventionele KSR
methode nodig is.
De DMR methode is in het algemeen van toepassing op alle soorten input data, maar
het primaire doel van dit werk was het ontwikkelen van een redatuming methode die
wel toepasbaar is op data die er geen dichte bedekking van bronnen en ontvangers
aan het acquisitie oppervlak hebben. Zelfs voor de DMR methode kan het gebeuren
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dat de vereiste signalen niet zijn gemeten, ook al heeft deze methode aanzienlijk
minder signalen per output-sample nodig. Voor het geval dat dit gebeurt moet de
DMR methode met een infill procedure worden gecombineerd.
De informatie over de mogelijke reflectie punten die tot de beoogde tijdsample be-
horen, die uit de veronderstellingen over het medium onder het nieuwe datum kan
worden verkregen die voor de DMR methode worden gemaakt, kan worden gebruikt
om de Delphi trace replacement (DTR) methode voor de infill van ontbrekende data
toe te passen. De DTR methode kan als een vereenvoudigde data mapping techniek
worden gecategoriseerd, die gebruik maakt van de redundantie van seismische data.
De algemene veronderstelling, waar deze methode op gebaseerd is, is dat de reflec-
tiviteit van een bepaald reflectie punt onafhankelijk is van de azimut. Dit stelt voor
dat de signalen die bij twee verschillende bron/ontvanger-paren worden geregistreerd
identieke informatie betreffende een reflectie punt bevatten als de stralen, die tot de
beschouwde reflectie behoren, hetzelfde reflectie punt onder een identieke invalshoek
bereiken. In dit geval kan het ontbrekende tijdsample, dat tot een bepaalde reflectie
behoort, worden vervangen door een tijdsample op een spoor die wel gemeten is
en tot een reflectie behoort aan het zelfde reflectie punt met dezelfde invalshoek.
Alleen moet het zo gekozen tijdsample eerst voor de verschillen in de golf propagatie
worden gecorrigeerd, die niet als azimutaal onafhankelijk kan worden beschouwd.
Door de DMR methode met de voorgestelde infill methode te combineren wordt de
nieuwe methode voor het redatuming wel toepasbaar op 3D data van conventionele
acquisitie-geometrieen.
De ontwikkelde DMR methode voor redatuming is geëvalueerd op verschillende voor-
beelden. De toepasbaarheid van de voorgestelde methodologie is getest op volledig
bemonsterde synthetische 2D en 3D data en op een echte 2D data set. De uitkomsten
van deze tests waren positief. De DMR resultaten en de resultaten van de conven-
tionele KSR methode zijn kinematisch en dynamisch bijna identiek. Verder kan men
zien dat de DMR methode inderdaad vrij ongevoelig is voor de keuze die is gemaakt
om het medium onder het nieuwe datum te beschrijven. Het is al voldoende stack
snelheden te gebruiken die gerelateerd zijn aan het nieuwe datum. Zelfs als onjuiste
snelheden voor het medium onder de nieuwe datum worden gebruikt zijn er slechts
kleine fouten in de timing en de amplitude van het geredatumde resultaat te zien.
De toepasbaarheid van de DMR methode gecombineerd met de voorgestelde DTR
methode voor de infill van ontbrekende data is ook onderzocht. Het was toegepast
op schaarse synthetische en realistische 3D data. De resultaten van deze tests waren
eveneens bevredigend. De resultaten van de DMR methode met infill toegepast op
schaarse data zijn kinematisch en dynamisch bijna identiek aan de resultaten van
de DMR methode toegepast op volledige 3D input data. Men kan dus concluderen
dat alle doelstellingen van dit onderzoek zijn bereikt.
Verder zijn een tweetal andere toepassingen van de DMR methode onderzocht. De
methodologie is dusdanig gewijzigd dat het voor het redatuming van PS-data kan
worden gebruikt. Bovendien is een nieuw concept ontwikkeld voor de voorspelling
van meervoudige reflecties gerelateerd aan die datumlaag door middel van de DMR
methodologie. De toepasbaarheid van de gewijzigde redatuming methode voor PS-
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data en van het nieuwe concept voor de voorspelling van meervoudige reflecties zijn
allebei geëvalueerd op numerieke 2D data met een positief resultaat.

Sandra Tegtmeier-Last
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Wichtig auf dem Weg zur und während der Doktorarbeit ist aber vor allem die Fam-
ilie. Meine Eltern haben mit Ihrer Erziehung den Grundstein gelegt. Meine Mutter
hat dadurch, daß sie war, wie sie war, viel zu dem beigetragen, was ich heute bin.
Und meinem Vater möchte ich dafür danken, daß er mich und insbesondere alle
meine Auswanderungsentscheidungen immer unterstützt hat.
Vielen Dank auch an meine Schwester. Es hat zwar einige Zeit gedauert, bis wir uns
zusammengerauft hatten, aber die Zeit in Delft war toll.
Und dann, die letzten Worte und den größten Dank an Thorsten, dessen Anteil an
dieser Arbeit und an meinem Leben nicht in Worte zu fassen ist. Ich hoffe, daß in
nicht allzu ferner Zukunft auch die physische Distanz, die uns trennt, nicht mehr in
umgekehrtem Verhältnis zur gefühlten Nähe sein wird.


