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S U M M A R Y 

The phenomenon of elastic wave conversions, where acoustic, pressure ( P -) waves are con-
verted to elastic, shear ( S-) waves and vice-versa, is commonly disregarded in seismic imaging.
This can lead to lower quality images in regions with strong contrasts in elastic parameters.
While a number of methods exist that do take wav e conv ersions into account, the y either
deal with P and S waves separately, or are prohibitively computationally e xpensiv e, as is
the case for elastic full-waveform inversion. In this paper an alternative approach to taking
conv erted wav es into account is presented by extending full wavefield migration (FWM) to
account for wave conversions. FWM is a full-wavefield inversion method based on explicit,
convolutional, one-way propagation and reflection operators in the space–frequency domain.
By applying these operators recursively, multiscattering data can be modelled. Using these
operators, the FWM algorithm aims to reconstruct the reflection properties of the subsurface
(i.e. the ‘image’). In this paper, the FWM method is extended b y accounting for w ave con-
versions due to angle-dependent reflections and transmissions using an extended version of
Shuey’s approximation. The resulting algorithm is tested on two synthetic models to give a
proof of concept. The results of these tests show that the proposed extension can model wave
conversions accurately and yields better inversion results than applying conventional, acoustic
FWM. 

Key words: Inverse theory; Numerical approximations and analysis; Numerical modelling. 

 I N T RO D U C T I O N  

lthough the earth is an elastic medium in reality, most of the time seismic imaging methods have treated it as an acoustic medium, due to
he challenges in true elastic modelling. In doing so, many significant results have been achie ved. Howe ver, certain w ave propagation effects
n the earth are neglected by treating it as an acoustic medium. Specifically, acoustic methods disregard wave conversions, where pressure
 P -) waves are converted to shear ( S-) waves and vice versa, as well as the propagation of S-waves through the medium. 

Two areas in seismic imaging where these aforementioned effects play a particular role are areas with large contrasts and areas below the
o-called ‘gas clouds’. In the presence of large contrasts, such as around salt structures, the amplitudes of the converted wa ves ma y become
arge, which necessitates a method that takes these conversions into account (Alai et al. 2021 ). Gas clouds, by contrast, block the propagation
f P -waves, but not S-waves (Ensley 1984 ). Therefore, by incorporating the propagation of S-waves in the imaging process, higher quality
mages of structures below these areas may be obtained. 

At time of writing, there are two main strategies to take wave conversions into account. The first strategy is to perform migration for P 

nd S waves separately (Jones & Davison 2014 ; Alai et al. 2022 ), by changing the velocity profile used. The advantage of these techniques is
hat they are computationall y inexpensi ve and relati vel y easy to implement. Ho wever , these techniques examine each mode separately, where
deally one would like to examine all modes in an integrated framework. The second strategy is to use a full wavefield technique such as
lastic full-waveform inversion (FWI) (Virieux & Operto 2009 ; Prieux et al. 2013 ), which takes all elastic effects into account at once. The
dvantage of these techniques is that they are very powerful, and can be used to make very detailed images of the subsurface. Ho wever , they
re also computationally e xpensiv e, and run the risk of getting trapped in local minima if the starting model is far from the ground truth. 

In this paper, we present a third approach, which we name elastic FWM. This method is based on an extension of acoustic full-wavefield
igration (FWM) to include wave conversions (Berkhout 2014a ). This can be seen as an approach in-between the two aforementioned

trategies. Acoustic FWM is a migration technique introduced by Berkhout (Berkhout 2014b ) and expanded on by others (Staal 2015 ;
C © The Author(s) 2025. Published by Oxford University Press on behalf of The Royal Astronomical Society. This is an Open Access 
article distributed under the terms of the Creative Commons Attribution License ( https://creati vecommons.org/licenses/b y/4.0/ ), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited 1 
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Figure 1. Schematic representation of the wavefields and operators at the depth level z n and the neighbouring levels. 
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Davydenko & Verschuur 2017 ; Sun et al. 2018 ). It is based on recursi vel y appl ying one-w ay propagation and reflection operators to describe
the propagation and scattering of the full wavefield, including all multiples, within the subsurface. It is closely related to the operator-based
method developed by Berkhout ( 2012 ), which can be seen as the primaries-only version of FWM. 

As an elastic migration technique, elastic FWM can be compared to elastic reverse time migration (RTM) (Chang & McMechan 1987 ;
Ren et al. 2017 ), as both rely on a kinematically accurate velocity model to create an image of the subsurface. Ho wever , there are two key
differences between the methods. First of all, where elastic RTM makes use of two-way wave propagation using finite difference modelling,
elastic FWM uses explicit one-way wave propagation operators in the space–frequency domain. This leads to a reduced computational cost
(Mulder & Plessix 2004 ), at the expense of less accurate propagation at large angles. Secondly, as the underlying framework of elastic FWM
has been developed specifically to deal with multiple scattering effects, it can naturally describe events which have undergone multiple wave
conversions. 

The main challenge in extending acoustic FWM to include wave conversion effects is the angle-dependent nature of the elastic
transmission and reflection coef ficients. Traditionall y, angle-dependent reflection and transmission effects are taken into account in FWM 

by inverting for each angle separately (Davydenko & Verschuur 2017 ). Ho wever , when taking wave conversion effects into account, this
approach leads to a significant overparametrization of the reflection and transmission coefficients, as it would require inverting each of the 16
possible reflection and transmission coefficients separately for every angle. 

Therefore, to avoid this overparametrization, an extended version of Shuey’s approximation is used to link the different reflection and
transmission coefficients at all angles (Hoogerbrugge et al. 2025 ). This has the additional benefit of reducing the nonlinearity present in the
full elastic reflection and transmission coefficients, making the resulting problem easier to in vert. The do wnside of this approach is that it
requires an estimate of the local dip of the reflector to accurately model the wavefield. This estimate can be acquired by first applying a single
iteration of acoustic FWM, followed by applying a dip estimation scheme (Fomel 2002 ). 

By combining the e xtended Shue y’s approximations with the extension of the framework of FWM to the elastic case (Berkhout 2014a ),
we introduce a robust, elastic FWM algorithm which accounts for wave conversions and S-wave propagation in a controlled manner. In
the remaining four sections of this paper, we present this algorithm in detail. First, the elastic FWM algorithm is described in detail in
the Theory section. Next, some preliminary results using this method are presented in the Results section. Some general remarks on the
presented method are then discussed in the Discussion section. Finally, the conclusions of this paper are presented in the Conclusions
section. 

2  T H E O RY  

In this section, which consists of four parts, we present the theoretical framework for the extension of 2-D FWM to account for converted
wa ves. First, w e examine the extension of the acoustic FWM forward modelling scheme to include converted wa ves. Next, w e examine the
propagation operators for P and S waves in detail. Then, we do the same for the reflection and transmission operators. Finally, we examine
the inversion process. 

2.1 Forward modelling 

To include converted waves in the forward modelling algorithm, we follow the structure used by Berkhout ( 2014a ) and begin by examining
the wavefields at an interface located at a depth level z n . A schematic representation of this situation is shown in Fig. 1 . 

art/ggaf247_f1.eps
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At a location right above the interface, which we denote by 
(
x i , z −n 

)
, the P -wavefield is given by 

p P 
(
x i , z 

−
n 

) = p + P 

(
x i , z 

−
n 

) + q −P 
(
x i , z 

−
n 

)
, (1) 

here we have split the P -wavefield p P 
(
x i , z −n 

)
into a downgoing component, p + P 

(
x i , z −n 

)
, travelling towards the interface and an upgoing

omponent, q −P 
(
x i , z −n 

)
, tra velling awa y from the interface. Note that w e will work in the Fourier domain throughout this paper, so for example

p P 
(
x i , z −n 

) = p P 
(
x i , z −n , ω 

)
, with ω the (angular) frequency. 

In a similar way, at a location 
(
x i , z + n 

)
right below the interface, the P -wavefield is given by 

p P 
(
x i , z 

+ 
n 

) = p −P 
(
x i , z 

+ 
n 

) + q + P 

(
x i , z 

+ 
n 

)
, (2) 

here we have once again split the P -wavefield into an upgoing component, p −P 
(
x i , z + n 

)
, travelling towards the interface, and a downgoing

omponent, q + P 

(
x i , z + n 

)
, travelling away from the interface. 

Repeating the aforementioned process for the S-wavefield, we write 

p S 
(
x i , z 

−
n 

) = p + S 

(
x i , z 

−
n 

) + q −S 
(
x i , z 

−
n 

)
, (3) 

p S 
(
x i , z 

+ 
n 

) = p −S 
(
x i , z 

+ 
n 

) + q + S 

(
x i , z 

+ 
n 

)
. (4) 

ote the notation used. Superscripts are used to indicate the direction of propagation, where + and − denote downwards and upwards
ropagation, respecti vel y. The letters p and q are used to denote propagation towards or away from the interface, respectively . Finally , the
ubscripts P and S are used to differentiate between P - and S-wavefields, respectively. 

We are now interested in the relationship between these different wavefields. As a first step, we assume that our modelling takes place
n a rectangular grid, meaning that there are N z equally spaced depth levels with a spacing of �z, and each depth level consists of N x equally
paced grid points with a spacing of �x . We then define a vector p 

+ 
P 

(
z −n 

)
of length N x , with elements p 

+ 
P 

(
z −n 

)∣∣
i 
= p + P 

(
x i , z −n 

)
, where the

x i ’s are the lateral grid points at the depth level z n . In the same wa y, w e define the corresponding vectors for the other wavefield components
ntroduced in eqs (1 )–( 4 ). 

We now define the relationship between the different wavefield components at a depth level z n . Once again following the formulation
sed by Berkhout ( 2014a ), we use convolutional reflection and transmission operators, denoted as R 

···
··· and T 

···
···, respectively, to write ( 

q 

+ 
P 

(
z + n 

)
q 

+ 
S 

(
z + n 

)
) 

= 

( 

R 

∩ 
P P R 

∩ 
P S 

R 

∩ 
S P R 

∩ 
SS 

) ( 

p 

−
P 

(
z + n 

)
p 

−
S 

(
z + n 

)
) 

+ 

( 

T 

+ 
P P T 

+ 
P S 

T 

+ 
S P T 

+ 
SS 

) ( 

p 

+ 
P 

(
z −n 

)
p 

+ 
S 

(
z −n 

)
) 

, (5) ( 

q 

−
P 

(
z −n 

)
q 

−
S 

(
z −n 

)
) 

= 

( 

R 

∪ 
P P R 

∪ 
P S 

R 

∪ 
S P R 

∪ 
SS 

) ( 

p 

+ 
P 

(
z −n 

)
p 

+ 
S 

(
z −n 

)
) 

+ 

( 

T 

−
P P T 

−
P S 

T 

−
S P T 

−
SS 

) ( 

p 

−
P 

(
z + n 

)
p 

−
S 

(
z + n 

)
) 

, (6) 

here R 

···
··· and T 

···
··· are matrices of size N x × N x which relate the wav efields abov e and below the interface. Note that w e ha ve dropped the

z n -dependence of these matrices for ease of legibility. These operators are described in more detail in Section 2.3 . For simplicity, we introduce
he following shorthand notation for eqs ( 5 ) and ( 6 ), viz. 

 

+ ( z n ) = R 

∩ ( z n ) p 

− ( z n ) + T 

+ ( z n ) p 

+ ( z n ) , (7) 

 

− ( z n ) = R 

∪ ( z n ) p 

+ ( z n ) + T 

− ( z n ) p 

− ( z n ) , (8) 

hich we will use throughout the rest of this paper. 
Ne xt, we e xamine the relationship betw een the wa vefields at dif ferent depth le vels z n . To do this, we introduce a set of propagation

perators W P/S ( z n ±1 , z n ) such that ( 

p 

+ 
P 

(
z −n + 1 

)
p 

+ 
S 

(
z −n + 1 

)
) 

= 

( 

W P ( z n + 1 , z n ) 0 
0 W S ( z n + 1 , z n ) 

) ( 

q 

+ 
P 

(
z + n 

)
q 

+ 
S 

(
z + n 

)
) 

, (9) ( 

p 

−
P 

(
z + n −1 

)
p 

−
S 

(
z + n −1 

)
) 

= 

( 

W P ( z n −1 , z n ) 0 
0 W S ( z n −1 , z n ) 

) ( 

q 

−
P 

(
z −n 

)
q 

−
S 

(
z −n 

)
) 

, (10) 

ith W P/S ( z n ±1 , z n ) matrices of size N x × N x which describe the propagation of waves between the depth levels z n and z n ±1 , and 0 the zero
atrix of size N x × N x . Note that we assume that there is no difference between the propagation of upgoing and downgoing waves between

wo adjacent depth levels, that is, W P/S ( z n + 1 , z n ) = W P/S ( z n , z n + 1 ) . These operators are described in more detail in Section 2.2 . We once
gain introduce shorthand notation for eqs ( 9 ) and ( 10 ), viz. 

 

+ ( z n + 1 ) = W 

( z n + 1 , z n ) q 

+ ( z n ) , (11) 

 

− ( z n −1 ) = W 

( z n −1 , z n ) q 

− ( z n ) . (12) 

With the building blocks of eqs ( 7) , ( 8 ), ( 11 ) and ( 12 ) in place, we now examine the forward modelling algorithm. To initialize the
lgorithm, we set all upgoing and downgoing wavefields to zero, that is, p 

−, 0 ( z n ) = p 

+ , 0 ( z n ) = 0 . Note the notation of p 

−, 0 and p 

+ , 0 , where
 e ha v e introduced an e xtra number in the superscript, which denotes how many so-called ‘round-trips’ hav e been modelled. Each round-trip
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increases the maximum order of multiples that are taken into account by one, up to the chosen number of round-trips to be modelled.
Fur ther more, for simplicity’s sake, we assume that there are no sources within the subsurface, only at the surface. Consequently, we set
p 

+ ,m ( z 0 ) = s 0 for all m round-trips, where s 0 is a vector containing the source wavefield for one shot at z = z 0 . Finally, we assume that there
are no upgoing waves coming from below the deepest depth level z n = z N z . Therefore, we write p 

−,m 

(
z N z 

) = 0 for all m round-trips. 
We then begin by computing the downgoing wavefields for the first round-trip. Starting at z n = z 0 , we use eq. ( 7 ) to write 

q 

+ , 1 ( z 0 ) = T 

+ ( z 0 ) p 

+ , 1 ( z 0 ) + R 

∩ ( z 0 ) p 

−, 0 ( z 0 ) . (13) 

Next, we apply the propagation operators, using eq. ( 11 ) to write 

p 

+ , 1 ( z 1 ) = W 

( z 1 , z 0 ) q 

+ , 1 ( z 0 ) . (14) 

At the depth level z n = z 1 we simply repeat this process with the appropriate transmission, reflection and propagation operators. In this way,
we model the downgoing wavefield p 

+ , 1 ( z n ) at all depth levels. 
Next, we compute the upgoing wavefield p 

−, 1 ( z n ) at all depth levels. We start at the deepest depth level z n = z N z . We then use eq. ( 8 ) to
write 

q 

−, 1 
(
z N z 

) = T 

− (
z N z 

)
p 

−, 1 
(
z N z 

) + R 

∪ (z N z 
)

p 

+ , 1 (z N z 
)
, (15) 

and apply the propagation operators of eq. ( 12 ) to write 

p 

−, 1 
(
z N z −1 

) = W 

(
z N z −1 , z N z 

)
q 

−, 1 
(
z N z 

)
. (16) 

Once again, we continue to apply these operators to find the upgoing wavefield p 

−, 1 ( z n ) at each depth level. 
We now repeat this process as many times as we wish to account for higher order scattering, where the scattering order is increased by

one after each round-trip. The full process for finding the wavefields p 

+ ,M ( z n ) and p 

−,M ( z n ) for up to M scattering orders is illustrated in
algorithm 1. 

2.2 Propagation operators 

We now examine the propagation operators introduced in eqs ( 9 ) and ( 10 ) in more detail. To begin, we examine the propagation operators
between a depth level z n and z n + 1 . We initially assume that the P -wave velocity α

(
z n + 1 / 2 

)
and S-wave velocity β

(
z n + 1 / 2 

)
are laterally

homogeneous between z n and z n + 1 and only vary between depth levels. In that case, the propagation of the P -wavefield between these depth
levels is described in the spatial Fourier domain by (Gisolf & Verschuur 2010 ) 

ˆ p + P 

(
k x , z 

−
n + 1 

) = e − j k z,P ( z n + 1 / 2 ) �z ˆ q + P 

(
k x , z 

+ 
n 

)
, (17) 

where j 2 = −1 and k z,P 

(
z n + 1 / 2 

)
is given by 

k 2 z,P 

(
z n + 1 / 2 

) = ω 

2 α−2 
(
z n + 1 / 2 

) − k 2 x , (18) 

art/ggaf247_ufig1.eps
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here k x is the spatial frequency. Note that ˆ q + P 

(
k x , z + n 

)
is obtained by taking the spatial Fourier transform of the wavefield, that is, 

ˆ  + P 

(
k x , z 

+ 
n 

) = F 

{
q + P 

(
x, z + n 

)} = 

+∞ ∫ 
−∞ 

q + P 

(
x, z + n 

)
e j k x x d x . (19) 

We now wish to write eq. ( 17 ) in the spatial domain. Using the inverse Fourier transform and the convolution property of the Fourier
ransform (Oppenheim et al. 1996 ), we obtain 

p + P 

(
x i , z 

−
n + 1 

) = 

∞ ∫ 
−∞ 

W P ( x i − x, z n + 1 , z n ) q + P 

(
x, z + n 

)
dx , (20) 

ith W P ( x, z n + 1 , z n ) defined as 

W P ( x, z n + 1 , z n ) = F 

−1 
{ 

e − j k z,P ( z n + 1 / 2 ) �z 
} 

. (21) 

ote that W P ( x, z n + 1 , z n ) is an even function with respect to x , as e − j k z,P ( z n + 1 / 2 ) �z is an even function with respect to k x . Therefore, we write 

W P ( x i − x, z n + 1 , z n ) = W P ( x − x i , z n + 1 , z n ) = F 

−1 
{ 

e − j k z,P ( z n + 1 / 2 ) �z e j k x x i 
} 

. (22) 

e now discretize eq. ( 20 ) as follows 

p + P 

(
x i , z 

−
n + 1 

) = 

N x ∑ 

j= 1 
W P 

(
x j − x i , z n + 1 , z n 

)
q + P 

(
x j , z 

+ 
n 

)
�x , (23) 

here we have used eq. ( 22 ). Rewriting eq. ( 23 ) using the notation of eq. ( 9 ) yields 

 

+ 
P 

(
z −n + 1 

) = W P ( z n + 1 , z n ) q 

+ 
P 

(
z + n 

)
, (24) 

here W P ( z n + 1 , z n ) is a matrix of size N x × N x . Combining eqs ( 23 ) and ( 24 ), we see that the elements of the propagation operator
 P ( z n + 1 , z n ) are given by 

W P ( z n + 1 , z n ) | i j = W P 

(
x j − x i , z n + 1 , z n 

)
�x, (25) 

ith W P 

(
x j − x i , z n + 1 , z n 

)
defined according to eq. ( 22 ). 

In a similar way, one can construct the S-wave propagation operator W S ( z n + 1 , z n ) by replacing the P -wave velocity α
(
z n + 1 / 2 

)
in eq. ( 18 )

ith the S-wave velocity β
(
z n + 1 / 2 

)
, viz. 

 

2 
z,S 

(
z n + 1 / 2 

) = ω 

2 β−2 
(
z n + 1 / 2 

) − k 2 x , (26) 

nd following the same steps as above. 
In situations where the P - or S-wave velocities are not laterall y homo geneous, we approximate the propagation operators by using

he local velocity α
(
x i , z n + 1 / 2 

)
or β

(
x i , z n + 1 / 2 

)
. In this case, k z,P/S 

(
z n + 1 / 2 

)
becomes laterally heterogeneous, that is, k 2 z,P 

(
x i , z n + 1 / 2 

) =
 

2 α−2 
(
x i , z n + 1 / 2 

) − k 2 x . Using this heterogeneous k z,P/S 

(
x i , z n + 1 / 2 

)
, we approximate the laterally heterogeneous propagation operator by

xtending eq. ( 22 ), that is, 

W P/S ( x − x i , z n + 1 , z n ) = F 

−1 
{ 

e − j k z, P/S ( x i , z n + 1 / 2 ) �z e j k x x i 
} 

. (27) 

his approximation is reasonable under the condition that the lateral variations in the velocity profile are smooth. In situations where this is
ot the case, alternative forms of the propagation operator can be used (Wapenaar & Grimbergen 1996 ; Hammad & Verschuur 2018 ; Li &
iu 2021 ). 

Finally, we note that evanescent waves cannot be handled within this framework. In order to prevent these waves from creating problems
ithin the inversion, we add a spatial filter to remove them. This gives us the final form of eq. ( 22 ), viz. 

W P/S ( x − x i , z n + 1 , z n ) = F 

−1 
{ 

e − j k z,P/S ( x i , z n + 1 / 2 ) �z e j k x x i F P/S 

(
k x , x i , z n + 1 / 2 

)} 
, (28) 

here the spatial filter F P 

(
k x , x i , z n + 1 / 2 

)
is defined as 

F P 

(
k x , x i , z n + 1 / 2 

) = 

{ 

1 ∀ | k x | < ωα−1 
(
x i , z n + 1 / 2 

)
0 else 

, (29) 

ith a similar definition for F S 

(
k x , x i , z n + 1 / 2 

)
. 

.3 Reflection and transmission operators 

n a similar way to the previous section, we now examine the reflection and transmission operators introduced in eqs ( 5 ) and ( 6 ). As discussed
n the introduction, we use an extended version of Shuey’s approximation (Shuey 1985 ; Hoogerbrugge et al. 2025 ) to couple the reflection
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and transmission coefficients and to reduce the amount of nonlinearity present in the full (Zoeppritz) elastic transmission and reflection
coefficients. To start, we assume a flat reflector at the depth level z n , and assume the incident P -wavefield to be a plane wave, striking the
interface at an angle θ . In this case, we can approximate the true P P -reflection coefficient by taking a Taylor expansion with respect to the
angle sin ( θ ) and the contrasts c α , c β and c ρ . Grouping the terms of this Taylor expansion with respect to the order of the angle κ and the total
order of the contrasts λ we write 

R 

∪ 
P P 

(
sin ( θ ) , c α, c β, c ρ

) ≈
K ∑ 

κ= 0 


 ∑ 

λ= 0 

(
˜ R 

∪ 
P P 

)κ

λ
sin κ ( θ ) , (30) 

with 

(
˜ R 

∪ 
P P 

)κ

λ
= 

λ∑ 

m = 0 

λ−m ∑ 

k= 0 

1 

κ! m ! k! ( λ − k − m 

) ! 

d κ+ λ R 

∪ 
P P 

d ( sin ( θ ) ) κd c m 

α d c k βd c ( λ−k−m ) 
ρ

∣∣∣∣∣
( 0 ) 

c m 

α c k βc ( λ−k−m ) 
ρ , (31) 

where R 

∪ 
P P is the full, Zoeppritz P P -reflection coefficient for waves from above (Aki & Richards 2002 ) and with the dimensionless contrast

parameters c α , c β and c ρ defined as 

c α = 

α
(
z + n 

) − α
(
z −n 

)
1 
2 

[
α

(
z + n 

) + α
(
z −n 

)] , c β = 

β
(
z + n 

) − β
(
z −n 

)
1 
2 

[
β

(
z + n 

) + β
(
z −n 

)] , c ρ = 

ρ
(
z + n 

) − ρ
(
z −n 

)
1 
2 

[
ρ

(
z + n 

) + ρ
(
z −n 

)] , (32) 

where z + n and z −n denote depth levels just below and above the interface, respecti vel y. While eq. ( 31 ) is difficult to e v aluate b y hand, it can be
straightforw ardl y e v aluated using mathematical softw are such as Maple. Ev aluating the abov e e xpression for N = 2 and 
 = 1 , for example,
we find 

R 

∪ 
P P 

(
sin ( θ ) , c α, c β, c ρ

) ≈ 1 

2 

(
c α + c ρ

) + 

(
1 

2 
c α − 2 ̂  V 

2 
(
c ρ + 2 c β

))
sin 2 ( θ ) , (33) 

which is just the conventional, 2-term Shuey approximation, written in the notation used in this paper. 
If the incoming P -wavefield is not a pure plane wa ve, w e use the spatial Fourier transform to decompose the wavefield into plane-wave

components. In this domain, the angle of incidence θn is given by 

sin ( θn ) = 

ᾱ ( z n ) k x 
ω 

, (34) 

where ᾱ ( z n ) = 

1 
2 

[
α

(
z + n 

) + α
(
z −n 

)]
. Note that the angle of incidence depends on the depth level at which the reflector is located, as indicated

by the notation θn . Using eqs ( 30 ) and ( 34 ), we approximate the action of the P P -reflection coefficient R 

∪ 
P P on the downgoing P -wavefield

at z = z n in the k x domain as 

R 

∪ 
P P ( k x , z n ) ˆ p 

+ 
P ( k x , z n ) ≈

K ∑ 

κ= 0 


 ∑ 

λ= 0 

(
˜ R 

∪ 
P P 

)κ

λ

(
ᾱ ( z n ) 

ω 

)κ

k κx ̂  p + P ( k x , z n ) . (35) 

We now take the inverse Fourier transform of eq. ( 35 ) to find the action of the reflection operator in the space domain. Using the convolution
property of the Fourier transform (Oppenheim et al. 1996 ) we write 

F 

−1 
{

R 

∪ 
P P ( k x , z n ) ˆ p 

+ 
P ( k x , z n ) 

} ≈
K ∑ 

κ= 0 


 ∑ 

λ= 0 

(
˜ R 

∪ 
P P 

)κ

λ
S κθ ( x, z n ) ∗ p + P ( x, z n ) , (36) 

where ∗ represents a convolution with respect to the spatial coordinate x , and where 

S κθ ( x, z n ) = F 

−1 

{(
ᾱ ( z n ) 

ω 

)κ

k κx 

}
. (37) 

Following the approach of Section 2.2 , we now discretize eq. ( 36 ) to find the discretized reflection operator 

R 

∪ 
P P ( z n ) p 

+ 
P ( z n ) ≈

K ∑ 

κ= 0 


 ∑ 

λ= 0 

(
˜ R 

∪ 
P P 

)κ

λ
( z n ) S 

κ
θ ( z n ) p 

+ 
P ( x, z n ) , (38) 

where the matrices R 

∪ 
P P ( z n ) , 

(
˜ R 

∪ 
P P 

)κ

λ
( z n ) and S 

κ
θ ( z n ) are matrices of size N x × N x . Using the definition of the convolution, we see that the

elements of S 

κ
θ ( z n ) are given by 

S 

κ
θ ( z n ) 

∣∣
i j 

= 

( −1 ) κ S κθ
(
x j − x i , z n 

)
�x, (39) 

where we have used that S κθ
(
x j − x i , z n 

)
is an even function for even values of κ and an odd function for odd values of κ . Using eq. ( 31 ) we

write the matrices 
(

˜ R 

∪ 
P P 

)κ

λ
as 

(
˜ R 

∪ 
P P 

)κ

λ
( z n ) = 

λ∑ 

m = 0 

λ−m ∑ 

k= 0 

1 

κ! m ! k! ( λ − k − m 

) ! 

d κ+ λ R 

∪ 
P P 

d ( sin ( θ ) ) κd c m 

α d c k βd c ( λ−k−m ) 
ρ

∣∣∣∣∣
( 0 ) 

C 

m 

α ( z n ) C 

k 
β ( z n ) C 

( λ−k−m ) 
ρ ( z n ) , (40) 
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here the matrices C α ( z n ) , C β ( z n ) and C ρ ( z n ) are diagonal matrices of size N x × N x with elements 

C ... ( z n ) | i j = c ... ( x i , z n ) δi j . (41) 

e now expand the approach used above to construct the remaining parts of the reflection and transmission operators. We write the full
eflection operator R 

∪ ( z n ) as 

 

∪ ( z n ) = 

( 

R 

∪ 
P P R 

∪ 
P S 

R 

∪ 
S P R 

∪ 
SS 

) 

≈
K ∑ 

κ= 0 


 ∑ 

λ= 0 

( (
˜ R 

∪ 
P P 

)κ

λ
S 

κ
θ

(
˜ R 

∪ 
P S 

)κ

λ
S 

κ
θ(

˜ R 

∪ 
S P 

)κ

λ
S 

κ
θ

(
˜ R 

∪ 
SS 

)κ

λ
S 

κ
θ

) 

, (42) 

here w e ha v e omitted the z n dependenc y for ease of legibility. In eq. ( 42 ) 
(

˜ R 

∪ 
P S 

)κ

λ
, 
(

˜ R 

∪ 
S P 

)κ

λ
and 

(
˜ R 

∪ 
SS 

)κ

λ
are matrices of size N x × N x defined

n a similar way as 
(

˜ R 

∪ 
P P 

)κ

λ
, that is, 

(
˜ R 

∪ 
S P 

)κ

λ
( z n ) = 

λ∑ 

m = 0 

λ−m ∑ 

k= 0 

1 

κ! m ! k! ( λ − k − m 

) ! 

d κ+ λ R 

∪ 
S P 

d ( sin ( θ ) ) κd c m 

α d c k βd c ( λ−k−m ) 
ρ

∣∣∣∣∣
( 0 ) 

C 

m 

α ( z n ) C 

k 
β ( z n ) C 

( λ−k−m ) 
ρ ( z n ) . (43) 

he remaining reflection operator R 

∩ ( z n ) and the transmission operators T 

+ ( z n ) and T 

− ( z n ) are defined in an analogous way. 
Finally, we consider the case where the reflector is not a flat layer. In this case, we must adjust the angle of incidence θ to account for the

ocal dip. We assume that the interface can be locally approximated to be a flat plane under an angle θ0 . In that case, we use the trigonometric
dentities sin ( θ + θ0 ) = sin ( θ ) cos ( θ0 ) + cos ( θ ) sin ( θ0 ) and cos ( θ ) = 

√ 

1 − sin 2 ( θ ) to write 

in κ
′ 
( θ + θ0 ) = 

[ 
sin ( θ ) cos ( θ0 ) + 

√ 

1 − sin 2 ( θ ) sin ( θ0 ) 
] κ ′ 

. (44) 

aking a Taylor expansion with respect to sin ( θ ) gives 

in κ
′ 
( θ + θ0 ) ≈

K ∑ 

κ= 0 
s κ

′ 
κ ( θ0 ) sin κ ( θ ) , (45) 

ith 

 

κ ′ 
κ ( θ0 ) = 

1 

κ! 

d κsin κ
′ 
( θ + θ0 ) 

d ( sin ( θ ) ) κ

∣∣∣∣∣
0 

. (46) 

ombining eqs ( 45 ) and ( 30 ) we can approximate the true P P -reflection coefficient for a dipping reflector by 

R 

∪ 
P P 

(
sin ( θ + θ0 ) , c α, c β, c ρ

) ≈
K ∑ 

κ ′ = 0 


 ∑ 

λ= 0 

(
˜ R 

∪ 
P P 

)κ ′ 

λ
sin κ

′ 
( θ + θ0 ) ≈

K ∑ 

κ= 0 

K ∑ 

κ ′ = 0 


 ∑ 

λ= 0 

(
˜ R 

∪ 
P P 

)κ ′ 

λ
s κ

′ 
κ ( θ0 ) sin κ ( θ ) . (47) 

sing eq. ( 47 ), we can write the P P -reflection operator for a dipping reflector as 

 

∪ 
P P ( z n ) ≈

K ∑ 

κ= 0 

K ∑ 

κ ′ = 0 


 ∑ 

λ= 0 

(
˜ R 

∪ 
P P 

)κ ′ 

λ
( z n ) S 

κ ′ 
κ ( θ0 ) S 

κ
θ ( z n ) , (48) 

here S 

κ ′ 
κ ( θ0 ) is a diagonal matrix of size N x × N x with elements 

S 

κ ′ 
κ ( θ0 ) 

∣∣∣
i j 

= s κ
′ 

κ ( θ0 ( x i , z n ) ) δi j . (49) 

ote that we assume the local dip of the reflector to be known in eq. ( 45 ). In practice, this can be computed by first using a conventional
maging technique, or performing a single iteration of elastic FWM using θ0 = 0 , followed by a local dip estimation scheme, such as the one
e veloped b y Fomel ( 2002 ). 

.4 Inv ersion pr ocess 

n this section, we examine the inversion process associated with the forward modelling scheme described earlier. We consider a seismic
xperiment with N S sources with a known source wavefield s 0 ( z 0 ) , N x receivers located at the surface and N ω measured frequencies. In this
ase, we define the mismatch between the measured data and the forward modelled wavefields at the surface after M round trips as 

J M 

= 

1 

2 

N ω ∑ 

i= 1 

N S ∑ 

j= 1 

∥∥e M 

(
z 0 , s j , ω i , c α, c β, c ρ

)∥∥2 
, (50) 

here we have defined the residual e as 

 

M 

(
z 0 , s j , ω i , c α, c β, c ρ

) = d 

(
z 0 , s j , ω i 

) − p 

−,M 

(
z 0 , s j , ω i , c α, c β, c ρ

)
, (51) 
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with d 

(
z 0 , s j , ω i 

)
the known data recorded at the surface and the L 2 -norm ‖ ·‖ 2 defined as 

‖ p ‖ 2 = 

N x ∑ 

i= 1 

(| p P ( x i ) | 2 + | p S ( x i ) | 2 
)
. (52) 

Note that in eq. ( 50 ) w e ha v e e xplicitly written the dependence of the forward modelled wavefields p 

−,M on the contrasts c α , c β and c ρ , the
source s j and the frequency ω i . 

We now apply a gradient descent scheme with respect to the contrasts c α , c β and c ρ to minimize the objective function J M 

. To do this, we
must first compute the gradient with respect to the contrast parameters. Using algorithm 1, we write the contribution to the forward modelled
wavefields at the surface due to the contrasts at a depth level z n as 

p 

−,M ( z 0 ; z n ) = W̄ 

− ( z 0 , z n ) 
[
R 

∪ ( z n ) p 

+ ,M ( z n ) + T 

− ( z n ) p 

−,M ( z n ) 
] + W̄ 

∪ ( z 0 , z n ) 
[
R 

∩ ( z n ) p 

−,M ( z n ) + T 

+ ( z n ) p 

+ ,M ( z n ) 
]
, (53) 

where we have introduced the operators W̄ 

− ( z 0 , z n ) and W̄ 

∪ ( z 0 , z n ) . These operators are constructed by applying sequences of propagation, 
reflection and transmission operators and are defined as 

W̄ 

− (
z j , z i 

) = 

j+ 1 ∏ 

m = i−1 

[
W 

( z m −1 , z m 

) T 

− ( z m 

) 
]
W 

( z i−1 , z i ) ∀ j < i, (54) 

W̄ 

+ (z j , z i 
) = 

j−1 ∏ 

m = i+ 1 

[
W 

( z m + 1 , z m 

) T 

− ( z m 

) 
]
W 

( z i+ 1 , z i ) ∀ j > i, (55) 

W̄ 

∪ ( z 0 , z n ) = 

N z ∑ 

m = n + 1 
W̄ 

− ( z 0 , z m 

) R 

∪ ( z m 

) W̄ 

+ ( z m 

, z n ) . (56) 

For simplicities’ sake, we will focus on the first term of eq. ( 53 ), viz. 

p 

−,M 

(
z 0 ; z n , R 

∪ ) = W̄ 

− ( z 0 , z n ) R 

∪ ( z n ) p 

+ ,M ( z n ) . (57) 

Taking the deri v ati ve of p 

−,M with respect to the contrast c α ( x i , z n ) gives 

∂p −,M 

P 

(
x j , z 0 ; z n , R 

∪ )
∂ c α ( x i , z n ) 

= W̄ 

−
P P ( z 0 , z n ) 

∣∣
j i 

∂ ̃  q −,M 

P ( x i , z n ) 

∂ c α ( x i , z n ) 
+ W̄ 

−
P S ( z 0 , z n ) 

∣∣
j i 

∂ ̃  q −,M 

S ( x i , z n ) 

∂ c α ( x i , z n ) 
, (58) 

∂p −,M 

S 

(
x j , z 0 ; z n , R 

∪ )
∂ c α ( x i , z n ) 

= W̄ 

−
S P ( z 0 , z n ) 

∣∣
j i 

∂ ̃  q −,M 

P ( x i , z n ) 

∂ c α ( x i , z n ) 
+ W̄ 

−
SS ( z 0 , z n ) 

∣∣
j i 

∂ ̃  q −,M 

S ( x i , z n ) 

∂ c α ( x i , z n ) 
, (59) 

where we have introduced the wavefields ̃  q 

−,M ( z n ) , which, based on eq. ( 8 ), are defined as ̃  q 

−,M ( z n ) = R 

∪ ( z n ) p 

+ ,M ( z n ) . Taking the deri v ati ve
of these wavefields with respect to c α ( x i , z n ) yields 

∂ ̃  q −,M 

P ( x i , z n ) 

∂ c α ( x i , z n ) 
= 

N x ∑ 

j= 1 

∂ R 

∪ 
P P ( z n ) 

∣∣
i j 

∂ c α ( x i , z n ) 
p + ,M 

P 

(
x j , z n 

) + 

N x ∑ 

j= 1 

∂ R 

∪ 
P S ( z n ) 

∣∣
i j 

∂ c α ( x i , z n ) 
p + ,M 

S 

(
x j , z n 

)
, (60) 

∂ ̃  q −,M 

S ( x i , z n ) 

∂ c α ( x i , z n ) 
= 

N x ∑ 

j= 1 

∂ R 

∪ 
S P ( z n ) 

∣∣
i j 

∂ c α ( x i , z n ) 
p + ,M 

P 

(
x j , z n 

) + 

N x ∑ 

j= 1 

∂ R 

∪ 
SS ( z n ) 

∣∣
i j 

∂ c α ( x i , z n ) 
p + ,M 

S 

(
x j , z n 

)
, (61) 

where w e ha ve used the fact that the contrasts c α ( x i , z n ) at different locations are independent variab les. F inally, note the use of the partial
extended propagation operators W̄ 

−
P P , W̄ 

−
P S , W̄ 

−
S P and W̄ 

−
SS in eq. ( 58 ). These are matrices of size N x × N x , which are related to the full

operator W̄ 

− in the same way as the partial reflection and transmission operators of eq. ( 6 ). We now examine these deri v ati ves in more detail.

Using eq. ( 38 ), we expand 
∂ R ∪ P P ( z n ) | i j 

∂ c α ( x i , z n ) 
as 

∂ R 

∪ 
P P ( z n ) 

∣∣
i j 

∂ c α ( x i , z n ) 
≈

K ∑ 

κ= 0 


 ∑ 

λ= 0 

∂ 
(

˜ R 

∪ 
P P 

)κ

λ
( z n ) 

∣∣
i i 

∂ c α ( x i , z n ) 
δi j S 

κ
θ ( z n ) 

∣∣
i j 
, (62) 

with 

∂ 
(

˜ R 

∪ 
P P 

)κ

λ
( z n ) 

∣∣
i i 

∂ c α ( x i , z n ) 
= 

λ∑ 

m = 1 

λ−m ∑ 

k= 0 

m 

κ! m ! k! ( λ − k − m 

) ! 

d κ+ λ R 

∪ 
P P 

d ( sin ( θ ) ) κd c m 

α d c k βd c ( λ−k−m ) 
ρ

∣∣∣∣∣
( 0 ) 

c m −1 
α c k βc ( λ−k−m ) 

ρ , (63) 

where we have omitted the ( x i , z n ) dependence for ease of legibility. In a similar wa y, w e can find the deri v ati ves of the other reflection and
transmission operators. 
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We now examine the deri v ati ve of the full objective function with respect to the contrast c α ( x i , z n ) . Combining eqs ( 50 ), ( 53 ), ( 58 ) and
 59 ), and once again limiting our analysis to the first term of eq. ( 53 ), yields 

∂ J 
(
R 

∪ )
∂ c α ( x i , z n ) 

= −Re 

⎛ 

⎝ 

N x ∑ 

j= 1 
W̄ 

−
P P ( z 0 , z n ) 

∣∣∗
j i 

e M 

P 

(
x j 

) ∂ ̃  q −,M 

P ( x i , z n ) 
∗

∂ c α ( x i , z n ) 
+ W̄ 

−
P S ( z 0 , z n ) 

∣∣∣∣∣∣
∗

j i 

e M 

P 

(
x j 

) ∂ ̃  q −,M 

S ( x i , z n ) 
∗

∂ c α ( x i , z n ) 

+ W̄ 

−
S P ( z 0 , z n ) 

∣∣∗
j i 

e M 

S 

(
x j 

) ∂ ̃  q −,M 

P ( x i , z n ) 
∗

∂ c α ( x i , z n ) 
+ W̄ 

−
SS ( z 0 , z n ) 

∣∣∗
j i 

e M 

S 

(
x j 

) ∂ ̃  q −,M 

S ( x i , z n ) 
∗

∂ c α ( x i , z n ) 

) 

, (64) 

here w e ha ve used the superscript ∗ to indicate complex conjugation. Note the structure of eq. ( 64 ): the ter ms W̄ 

−
... ( z 0 , z n ) 

∣∣∗
j i 

e M 

P/S 

(
x j 

)
epresent the back-propagation of the data residual at the surface, while the multiplication with 

∂ ̃ q −,M 
S/P ( x i , z n ) 

∗

∂ c α ( x i , z n ) 
represents the application of the

maging condition at the location ( x i , z n ) . 
We now consider the update direction for all points x i at depth level z n . We first define a vector � c R 

∪ 
α ( z n ) , with elements 

� c R 
∪ 

α ( z n ) 
∣∣∣
i 
= − ∂ J M 

(
R 

∪ )
∂ c α ( x i , z n ) 

. (65) 

sing eq. ( 64 ), we write the vector � c R 
∪ 

α ( z n ) as 

 c R 
∪ 

α ( z n ) = Re 
[ (

W̄ 

−
P P 

H e M 

P + W̄ 

−
S P 

H e M 

S 

)
◦ ((

∂ c α R 

∪ 
P P 

)
p 

+ ,M 

P + 

(
∂ c α R 

∪ 
P S 

)
p 

+ ,M 

S 

)∗

+ 

(
W̄ 

−
P S 

H e M 

P + W̄ 

−
SS 

H e M 

S 

)
◦ ((

∂ c α R 

∪ 
S P 

)
p 

+ ,M 

P + 

(
∂ c α R 

∪ 
SS 

)
p 

+ ,M 

S 

)∗] 
, (66) 

here w e ha ve used the symbol ◦ to denote element wise multiplication and H to denote the conjugate transpose. Note that we have dropped
he dependence on the depth level z n for ease of legibility. Also note the notation ∂ c α to indicate differentiation with respect to c α , where
 c α R 

∪ 
P P is a matrix of size N x × N x with elements 

∂ c α R 

∪ 
P P 

∣∣
i j 

= 

∂ R 

∪ 
P P ( z n ) 

∣∣
i j 

∂ c α ( x i , z n ) 
. (67) 

Extending the approach described above to the other terms of eq. ( 53 ), we write the full update direction of the contrast c α as a vector
 c α ( z n ) , viz. 

 c α ( z n ) = 

∑ 

ω 

∑ 

s 

[ 
� c R 

∪ 
α ( z n ) + � c R 

∩ 
α ( z n ) + � c T 

+ 
α ( z n ) + � c T 

−
α ( z n ) 

] 
. (68) 

Given the update direction of eq. ( 68 ), we now examine the amplitude of the update. We again limit our analysis to the first term of
q. ( 53 ). Using the fact that R 

∪ depends linearly on the contrasts gives 

 p 

−,M 

(
R 

∪ ) = W̄ 

− (
� c α ◦ ∂ c α R 

∪ + � c β ◦ ∂ c β R 

∪ + � c ρ ◦ ∂ c ρ R 

∪ ) p 

+ ,M , (69) 

here we have not written the z n dependence explicitly for ease of legibility. 
Extending eq. ( 69 ) to include the other terms of eq. ( 53 ), we find 

 p 

−,M ( z 0 ) = 

N z ∑ 

n = 1 
� p 

−,M 

(
z 0 ; z n , R 

∪ ) + � p 

−,M 

(
z 0 ; z n , R 

∩ ) + � p 

−,M 

(
z 0 ; z n , T 

+ ) + � p 

−,M 

(
z 0 ; z n , T 

−)
, (70) 

ith � p 

−,M ( z 0 ) the total change in the wavefields at the surface due to the change in the contrast parameters at all depth levels. We now take
he size of the update as 

= 

∑ 

ω 

∑ 

s 
Re 

(
� p 

−,M ( z 0 ) 
∗ · e M 

)
∑ 

ω 

∑ 

s 

∥∥� p 

−,M ( z 0 ) 
∥∥2 

, (71) 

here · denotes the vector inner product. Finally, we update the contrast parameters 

 

new 
α ( x i , z n ) = c old 

α ( x i , z n ) + γ� c α ( x i , z n ) , (72) 

ith similar definitions for the c β and c ρ terms. 
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The full procedure used to find the gradient can be implemented in a straightforward manner , sho wn in algorithm 2, analogous to the
procedure for wavefield modelling illustrated in algorithm 1. Explicit expressions for the other terms of eq. ( 68 ) are given in appendix A . 

3  R E S U LT S  

In this section, we show the results of applying algorithm 2 on two synthetic models. First, we examine a flat, lay ered model, w hich will serve
as a proof-of-concept and allows us to explore the properties of the inversion results generated by the method. Secondly, we examine a model
featuring a lens-shaped inclusion with a large contrast with respect to the surroundings. This model represents a simplified version of a salt
body in the subsurface, which is a difficult situation to image properly if converted waves are not taken into account. 

3.1 F lat lay er ed model 

We begin our analysis with a simple, flat, layered model, based on the model used by Wu et al. ( 2022 ). This model will serve as a toy
model, which is used to benchmark the proposed method. It has been constructed such that the S-wave velocity β in the middle layer is
close to the P -wave velocity α in the surrounding layers, as shown in F igs 2 (a)–2 (c), w hich represents the case of a salt body within the
subsurface. 

Synthetic data was generated for the aforementioned model using 61 P -wave sources e venl y spaced along the surface. The source
w avelet used w as a Ricker w av elet with a peak frequenc y of 17 Hz. Both P - and S-wave data was recorded with 301 receivers with a receiver
spacing of 10 m. To avoid an inverse crime scenario (where the same modelling engine is used for both forward and inverse modelling),
elastic Kennett modelling (Kennett 1984 ) was used to generate the synthetic data. This data was then filtered in the spatial Fourier domain to
remove post-critical effects, as we know that the extended Shuey approximations used for the reflection and transmission operators only hold
up to the critical angle. Migration was then performed on the synthetic data using algorithm 2, with a smoothed version of the true velocity
models used for the propagation velocities. Forward and inverse modelling was performed on a grid of 301 by 151 points, with a lateral
spacing of 10 m and a vertical spacing of 5 m. For the e xtended Shue y approximations, Taylor expansions up to K = 6 and 
 = 2 were used.
The results of this process are shown in Figs 2 and 3 . 

We now analyse these results, starting with Fig. 2 , which show the true P -wave velocity contrast c α , S-wave velocity contrast c β and
density contrast c ρ , along with the inverted contrasts after 10 iterations. We begin our analysis with the reconstructed S-wave velocity contrast
c β , shown in Fig. 2 (e), which we see matches the ground truth quite closely, with both reflectors clearly identifiable. The reconstructed density
contrast c ρ , shown in Fig. 2 (f), also clearly shows both reflectors, but contains some smearing above the top reflector. Finally, the reconstructed
P -wav e v elocity contrast c α , sho wn in Fig. 2 (d), struggles in this case, with the tw o reflectors not being clearly visible. 

art/ggaf247_ufig2.eps


Elastic full-wavefield migration 11 

Figure 2. Results of elastic FWM for the flat, layered model. The g round-tr uth P -wav e v elocity, S-wav e v elocity and density, along with their contrasts, 
are shown in panels (a), (b) and (c), respecti vel y. The reconstructed P -w av e v elocity, S-wav e v elocity and density contrasts after 10 iterations are shown in 
figures (d), (e) and (f), respecti vel y. Finall y, the g round-tr uth P -wav e v elocity, S-wav e v elocity and density contrasts at x = 0 (black lines), as well as the 
reconstructed contrasts (red lines), are shown in figures (g), (h) and (i), respecti vel y. 
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12 L. Hoog erbrug g e et al . 

Figure 3. Shot records for the flat, layered model. The synthetic P - and S-wave data, generated by elastic Kennett modelling, are shown in panels (a) and 
(d), respecti vel y. The forw ard modelled P - and S-w ave data after 10 iterations is shown in panels (b) and (e), respecti vel y. Finall y, the dif ference between the 
synthetic P - and S-wave data and the forward modelled data is shown in panels (c) and (f), respecti vel y. All w a vefields ha ve been normalized with respect to 
the maximum amplitude of the synthetic P - and S-wave data, respectively. 
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For a more detailed analysis, we examine slices taken through the centre of Figs 2 (d)–2 (f), which are shown in Figs 2 (g)–2 (i). From
hese figures, we see a similar pattern. Once again, we see that the results for c β match the (band-limited) ground truth quite well. The result
or c ρ introduces additional smearing, and also clearly overestimates the strength of the contrast. Finally, the result for c α does not accurately
eproduce the two reflectors. 

To explore the reasons behind the lack of accuracy in the results for c ρ and c α , we examine the cross-talk between the different parameters.

e begin by investigating 
(

˜ R 

∪ 
P P 

)0 

1 
, the lowest order component of the P P -reflectivity, which is given by 

(
˜ R 

∪ 
P P 

)0 

1 
= 

1 

2 

(
c α + c ρ

)
. (73) 

rom this expression, we see that there is strong cross-talk between the c α and c ρ terms for near-zero angles of incidence. In the same vein,

e examine 
(

˜ R 

∪ 
S P 

)1 

1 
, the lowest order component of the S P reflectivity, which is given by 

(
˜ R 

∪ 
S P 

)1 

1 
= −

(
ˆ V 

(
c ρ + 2 c β

) + 

1 

2 
c ρ

)
, (74) 

 here ˆ V = β/α. F rom this expression, we see that there is also cross-talk between the c β and c ρ terms. This cross-talk between separate
ontrasts may explain why the density contrast c ρ is overestimated, while the P -wave velocity contrast c α is simultaneously underestimated.
 possible approach to reduce this cross-talk is to apply some form of pre-conditioning, such as pre-conditioning the gradient with the inverse
f the Hessian (Abolhassani & Verschuur 2024 ). 

To complete our analysis of the flat, layered example we examine a shot record, seen in Fig. 3 . Note the strong converted wave response
n the P -wave data shown in Fig. 3 (a), visible below the primary P P -reflection from the ‘base-salt’. From Fig. 3 (d) we see that this converted
ave response is due to P P S P and P S P P wave paths in the medium, as the P S S S response is very small. Examining Figs 3 (b) and 3 (e),
e see that the method has generally been able to capture much of the converted wave response. This is confirmed by the residuals, shown in
igs 3 (c) and 3 (f). 

.2 Lens-shaped inclusion model 

n this section we will examine a so-called lens-shaped inclusion model, with a lens with a large contrast in the centre of the model and a
umber of flat layers beneath it. In the same way as for the flat, layered model, the parameters of the lens have been chosen such that the

S-wav e v elocity inside the lens matches the P -wav e v elocity outside the lens, representing a high-contrast salt body. 
To generate data for the aforementioned model, a finite-difference time-domain modelling scheme was used (4th order in space, 2nd

rder in time) (Thorbecke & Draganov 2011 ). In total, 61 sources were used with a source spacing of 50 m, together with 301 receivers with
 receiver spacing of 10 m. The source wavelet employed was a Ricker wavelet with a peak frequency of 17 Hz. Once again, post-critical
ffects were filtered from the data in the spatial Fourier domain. Next, elastic FWM was applied on the synthetic data, using a grid of 301
y 381 points, with a grid spacing of 10 m in the lateral direction and 5 m in the vertical direction. Smoothed versions of the true velocity
odels were used for the propagation velocities. For the extended Shuey approximations, Taylor expansions up to K = 8 and 
 = 2 were

sed. The g round-tr uth contrasts, as well as the inversion results after five iterations, are shown in Fig. 4 . 
Examining the inverted contrasts, we see many of the same effects as those we observed for the flat, layered model in the previous

ection. Once again starting with the S-wave velocity contrast c β , shown in Fig. 4 (e), we see that the lens has been recovered well in this case.
o wever , the deeper reflectors are not well resolved. This is probably due to the fact that these deeper reflectors are only illuminated by small

ngles of incidence, which are not sensitive to the S-wave velocity contrast c β , making it difficult to reconstruct properly. 
Continuing our analysis, we examine the density contrast c ρ , shown in Fig. 4 (f). Once again, we note that the density contrast has been

verestimated in this case, similar to the results of the flat model, shown in 2 (f). We also note additional smearing above the top reflector
n this case. The P -wav e v elocity contrast c α , shown in Fig. 4 (d), also shows similar results. Most notably, the top part of the lens is not
econstructed well in this case, while the deeper layers are recovered accuratel y. These observ ations are further confirmed by examining slices
hrough the centre of Figs 4 (d)–4 (f), shown in Figs 4 (g)–4 (i). Once again, it appears that cross-talk between the different contrasts has made
t difficult to accurately recover the separate contrasts in this case. 

Finally, we examine a shot record for the lens inclusion model, shown in Fig. 5 . Comparing the forward modelled wavefields, shown
n Figs 5 (b) and 5 (e), to the finite-difference data shown in Figs 5 (a) and 5 (d), we see that the method explains the data reasonably well.
o wever , the residuals, shown in Figs 5 (c) and 5 (f), are clearl y larger than those achie ved for the flat model, shown in Figs 3 (c) and 3 (f). This

ncreased residual is probably caused by inaccuracies in the modelling of the dipping reflectors, which are difficult to model accurately when
sing one-way operators. 

 D I S C U S S I O N  

n this section we will discuss some additional aspects regarding the elastic FWM method presented in this paper. First, we compare the
esults shown in Section 3 to the results of the conventional, acoustic FWM method for the same models. Next, we examine the case where
o S-wave data is available, such as in a marine setting. Finally, we discuss a number of potential extensions of the elastic FWM method. 
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Figure 4. Results of elastic FWM for the lens-shaped inclusion model. The g round-tr uth P -wave velocity, S-wave velocity and density, along with their 
contrasts, are shown in panels (a), (b) and (c), respecti vel y. The reconstructed P -w ave velocity, S-w ave velocity and density contrasts after five iterations are 
shown in panels (d), (e) and (f), respecti vel y. Finall y, the g round-tr uth P -wave velocity, S-wave velocity and density contrasts at x = 0 (black lines), as well as 
the reconstructed contrasts (red lines), are shown in panels (g), (h) and (i), respecti vel y. 
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Figure 5. Shot records for the lens-shaped inclusion model. The synthetic P - and S-w ave data, generated b y elastic, time-domain finite-dif ference modelling, 
are shown in panels (a) and (d), respecti vel y. The forw ard modelled P - and S-w av e data after fiv e iterations are shown in panels (b) and (e), respectiv ely. 
Finall y, the dif ference between the synthetic P - and S-w ave data and the forw ard modelled data are shown in panels (c) and (f), respecti vel y. All w avefields 
have been normalized with respect to the maximum amplitude of the synthetic P - and S-wave data, respecti vel y. 
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Figure 6. Comparison of elastic FWM and acoustic FWM for the flat, layered model. The reconstructed impedance contrast generated by elastic FWM and 
acoustic FWM after 10 iterations are shown in panels (a) and (b), respecti vel y. The g round-tr uth impedance contrast is shown in panel (c). Finally, a slice 
through panels (a)–(c) is shown in panel (d), showing the g round-tr uth impedance contrast (black line), the elastic FWM result (red line) and the acoustic FWM 

result (blue line). 
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4.1 Comparison to acoustic FWM 

We begin by comparing the results for the elastic FWM algorithm with the conventional, angle-independent, acoustic FWM algorithm. In the
acoustic FWM algorithm, the quantity of interest for inversion is the impedance contrast c Z , which is defined as 

c Z = 

1 

2 

(
c α + c ρ

)
. (75) 

Therefore, in order to compare the reconstructions of the acoustic and elastic FWM methods fairly, we will compare the acoustic FWM image
to the average of the reconstructed P -wave velocity and density contrasts. Note that this comparison does not take into account the fact that
the elastic FWM algorithm provides additional information by separating the contrasts, thus giving more insight into the underlying medium
properties. 

We begin by comparing the elastic and acoustic FWM results for the flat model described in Section 3.1 . The reconstructed impedance
contrasts are shown in Fig. 6 . Comparing Figs 6 (a) and 6 (b), we immediately note that the acoustic FWM algorithm is not able to reconstruct
the reflectors properly in this case. Most notably, the acoustic FWM image has flipped the sign of the reflectors. This is easily explained by
examining the shot records, shown in Fig. 7 . Examining the true P -wave data, shown in Fig. 7 (a), we note that the reflectivity goes from
positive to negative at offsets away from zero incidence. As the acoustic FWM algorithm assumes the reflectivity to be angle-independent, it
is unable to account for this effect, leading to it estimating the reflectivity with the wrong sign. Note that this is a rather extreme case, as the
change in reflectivity at different angles is usually less strong. 

Examining a slice through the middle of Figs 6 (a) and 6 (b), shown in Fig. 6 (d), we see this effect more clearly. From this figure, we
also see that, while the elastic FWM result introduces some smearing for depths above the first reflector, the overall result for elastic FWM is
more consistent. Specifically, the two reflectors are clearly recovered, with no spurious reflectors introduced below the bottom reflector. The
acoustic FWM image, on the other hand, does not recover the two reflectors well, and is less consistent for areas below the top reflector. Note
that the smearing present in the elastic FWM result can be easily removed by filtering out the lowest spatial frequencies present in the image.

Next, we compare the modelled P -wave data for elastic FWM, shown in Fig. 7 (b), and acoustic FWM, shown in Fig. 7 (e). Comparing
these figures, we see that the modelled wavefield for elastic FWM is more consistent than that of acoustic FWM. Most notably, the wavefield
recovered by elastic FWM captures wav e-conv ersion effects accurately, while the acoustic method is unable to take these effects into account.
This leads to a significantly larger data residual when using acoustic FWM, as is shown in Fig. 7 (f). 

Finally, we compare the elastic and acoustic FWM results for the lens-shaped inclusion model, described in Section 3.2 . The results for
this comparison are shown in F ig. 8 . Comparing F igs 8 (a) and 8 (b), we note that the acoustic FWM algorithm is unable to reconstruct the
top of the lens-shaped inclusion properly, which the elastic FWM algorithm is able to do. This is confirmed by Fig. 8 (d), which shows that

art/ggaf247_f6.eps
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Figure 7. Shot records for the flat, layered model. The synthetic P -wave data, generated by elastic Kennett modelling, is shown in panels (a) and (d). The 
forw ard modelled P -w ave data for elastic FWM and acoustic FWM after 10 iterations are shown in panels (b) and (e), respecti vel y. Finall y, the dif ference 
between the synthetic P -wave data and the forward modelled data for elastic FWM and acoustic FWM are shown in panels (c) and (f), respecti vel y. All 
wa vefields ha ve been normalized with respect to the maximum amplitude of the synthetic P -wave data. 
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Figure 8. Comparison of elastic FWM and acoustic FWM for the lens-shaped inclusion model. The reconstructed impedance contrast generated by elastic 
FWM and acoustic FWM after five iterations are shown in panels (a) and (b), respecti vel y. The g round-tr uth impedance contrast is shown in panel (c). Finally, a 
slice through panels (a)–(c) is shown in panel (d), showing the g round-tr uth impedance contrast (black line), the elastic FWM result (red line) and the acoustic 
FWM result (blue line). 
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the top of the lens is recovered well in elastic FWM while being absent in the acoustic result. While the elastic FWM method does introduce
additional smearing above the top reflector, this can once again be removed by filtering the final result. 

4.2 Missing S-w av e data 

In this section, we examine the results of the elastic FWM algorithm in cases where onl y P -w a ve data is a vailable. This situation corresponds
to a marine acquisition scenario, for example, where no S-waves can be recorded. 

We begin by examining the results for the flat model of Section 3.1 , which are shown in Fig. 9 . Examining the reconstructed contrasts,
shown in Figs 9 (d)–9 (f), we note a number of differences compared to the reconstructed contrasts when S-wave data is available, shown in
F igs 2 (d)–2 (f). Most notab l y, we see that the S-w av e v elocity contrast c β is significantly less well recov ered when no S-wav e data is available.
This is to be expected, as the S P -reflection coefficient depends much more strongly on c β than the P P -reflection coefficient. In cases where
there is no S-wave data av ailable, therefore, the objecti ve function J does not depend as strongly on c β . This makes it more difficult to recover
accurately. The other contrasts, ho wever , are comparable with the results when S-wave data is available. 

Ne xt, we e xamine the results for the lens-shaped inclusion model of Section 3.2 , which are shown in Fig. 10 . Once again, we compare
Figs 10 (d)–10 (f) with Figs 4 (d)–4 (f). In this case, we once again note that the S-wav e v elocity contrast is significantly less well recovered
when no S-wave data is av ailable. Howe ver, once again we note that the results for the density contrast and the P -wave velocity contrast are
comparable to the case where S-wave data is available. This indicates that the elastic FWM algorithm can be used successfully in marine
cases, where no direct S-wave data is available. 

4.3 Possible extensions 

Finally, in this section, we examine a number of possible extensions to the elastic FWM algorithm presented in this paper. We begin by
examining the local dip θ0 , which w e ha ve assumed to be known in Section 2.3 . In cases where the local dip is not known a priori , one can
begin by using a conventional, acoustic imaging technique, such as angle-independent acoustic FWM, to generate an initial model of the
reflecti vity. By appl ying a local dip estimation scheme on this preliminary image, one can find an estimate of the local dip, which can be used
as an input for the method presented here. In the case of the lens model presented in Section 3.2 , the local dip was estimated b y appl ying a
dip estimation scheme on the g round-tr uth reflectors, capping the maximal dip angle at 30 degrees. 

Alternati vel y, one can estimate the local dip directly from the reflection operators, by extending the inversion process described in
Section 2.4 to include the local dip angle. To do this, one requires the deri v ati ve of the objective function J with respect to θ0 ( x i , z n ) .
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Figure 9. Results of elastic FWM for the flat, layered model when no S-wave data is available. The g round-tr uth P -wave velocity, S-wave velocity and density, 
along with their contrasts, are shown in figures (a), (b) and (c), respecti vel y. The reconstructed P -w ave velocity, S-w ave velocity and density contrasts after 10 
iterations are shown in figures (d), (e) and (f), respecti vel y. Finall y, the g round-tr uth P -wave velocity, S-wave velocity and density contrasts at x = 0 (black 
lines), as well as the reconstructed contrasts (red lines), are shown in figures (g), (h) and (i), respecti vel y. 
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Figure 10. Results of elastic FWM for the lens-shaped inclusion model when no S-wave data is available. The g round-tr uth P -wave velocity, S-wave velocity 
and density, along with their contrasts, are shown in panels (a), (b) and (c), respecti vel y. The reconstructed P -w av e v elocity, S-wav e v elocity and density 
contrasts after 10 iterations are shown in panels (d), (e) and (f), respecti vel y. Finall y, the g round-tr uth P -wav e v elocity, S-wav e v elocity and density contrasts 
at x = 0 (black lines), as well as the reconstructed contrasts (red lines), are shown in panels (g), (h) and (i), respecti vel y. 
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ummarizing the analysis of Section 2.4 , we find that this deri v ati ve is proportional to the deri v ati ve of the reflection and transmission
perators. Examining the P P -reflection operator, we find 

∂ R 

∪ 
P P ( z n ) 

∣∣
i j 

∂ θ0 ( x i , z n ) 
≈

K ∑ 

κ= 0 

K ∑ 

κ ′ = 0 


 ∑ 

λ= 0 

(
˜ R 

∪ 
P P 

)κ ′ 

λ
( z n ) 

∣∣∣
i j 

∂ S 

κ ′ 
κ ( θ0 ) 

∣∣
i i 

∂ θ0 ( x i , z n ) 
δi j S 

κ
θ ( z n ) 

∣∣
i j 
, (76) 

hich can be straightforw ardl y e v aluated using mathematical softw are. Using these deri v ati ves, the local dip can be updated at each iteration
n a similar way to the contrasts. In this manner, the estimation of the local dip can be integrated into the elastic FWM framework with little
dditional effort. 

Secondly, while the results presented in this paper have been achieved in the 2-D case, the method can also be extended to 3-D applications,
n a similar way as the conventional, acoustic FWM method (Davydenko & Verschuur 2017 ). In the 3-D case, the 1-D convolutions of the 2-D
ethod need to be replaced with 2-D convolutions to account for the propagation and scattering in three dimensions. An additional challenge

or elastic FWM is that it is necessary to take S H waves into account as well as the S V waves that we have discussed in this paper. In principle,
hese waves can be taken into account using the same framework as presented here. However this will introduce additional complexity into
he presented algorithm, and is outside the scope of this paper. 

Thirdly, in situations where significant wav e conv ersions are only expected within a specific region of interest, it is possible to adapt
he method to focus specifically on this region. Due to the use of explicit reflection and transmission operators, it is possible to apply
ngle-independent, acoustic imaging in the over- and underburden of the region of interest (by setting K = 0 and 
 = 1 , for example), while
till taking all wave conversions within the region of interest into account. This further reduces the computational cost of the method, while
till taking the most critical conv erted wav e ev ents into account. Note that this separation is difficult to apply in methods such as elastic RTM
nd elastic FWI, due to the implicit nature of the modelling engines commonly used in these approaches. 

Finally, the elastic FWM algorithm presented here can be incorporated into a joint reflectivity and velocity estimation algorithm,
uch as joint migration inversion (JMI) (Berkhout 2014c ; Staal 2015 ) or one-way reflection waveform inversion (ORWI) (Abolhassani
 Verschuur 2023 ). In conventional, acoustic JMI it is difficult to incorporate angle-dependent reflectivity, as estimating both the angle-

ependent reflectivity and the velocity model simultaneously leads to overparametrization (Qu 2020 ). Ho wever , by using the extended Shuey’s
pproximations of Section 2.3 , the number of parameters required to estimate the angle-dependent reflectivity is significantly reduced. This
ould potentially allow one to estimate both angle-dependent reflectivity along with velocity simultaneously. By further extending the acoustic
MI algorithm to also include S-wave velocity estimation, an elastic JMI algorithm, which takes conv erted wav es into account, could finally
e developed. 

 C O N C LU S I O N S  

n conventional, acoustic full wavefield migration, we neglect wave conversions from P to S waves, as well as the propagation of S waves
hroughout the medium. In this paper, we have presented an extension to the acoustic FWM algorithm which takes these effects into account
sing an extended version of Shuey’s approximation. 

Our main conclusion, based on the results we have presented, is that elastic FWM outperforms acoustic FWM in cases with large contrasts,
here strong AVO and wav e-conv ersion effects are present. While the reconstructed contrasts are not perfect, they are an improvement

ompared to the acoustic FWM results for the same areas. Therefore, we conclude that elastic FWM serves as an ef fecti v e e xtension of
coustic FWM for these situations and can serve to improve the resulting images in areas with strong converted waves. 

Fur ther more, we show that the method can still produce accurate results in cases where S-wave data is not available, such as in marine
ettings. This makes the method more widely applicable. We also present several possible areas where the method can be extended, which
an serve to further increase the potential of the method. 
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A P P E N D I X  A :  E X P L I C I T  E X P R E S S I O N S  F O R  T H E  U P DAT E  D I R E C T I O N  

In Section 2.4 we have discussed the update direction for the contrasts c χ , viz. 
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with χ ∈ { α, β, ρ} . In this section we explicitl y write the indi vidual components of the update for ease of reference. 
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Next, we write the recurring terms 
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nce again, while these terms are difficult to evaluate by hand, they can be straightforwardly evaluated using mathematical software such as
aple. 
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