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Abstract

Edge AI is an architectural deployment tactic that brings AI models closer to the user and data, re-
lieving internet bandwidth usage and providing low latency and privacy. It remains unclear how this
tactic performs at scale, since the distribution overhead could impact the total energy consumption.
We identify four architectural scalability factors that could impact the energy consumption of AI: envi-
ronment, optimisation, throughput, and overhead. The latter consists of downloading, verification, and
updating the model over time. This work performs an empirical study on the sustainability of Edge AI
compared to Cloud AI at scale in terms of energy consumption. For the environment variable, energy
consumption measurement experiments are run on a cloud device and multiple edge devices, various
quantized models for optimisation, and various throughput levels per hour. We simulate the distribution
overhead and combine the results with the measurements to find the holistic energy efficiency of each
architectural strategy. We find that all four variables impact energy consumption, but the main contrib-
utors are environment, throughput, and overhead. We observe that Edge AI is most energy-efficient in
low-distribution, low-demand scenarios, whereas in high-distribution, high-demand scenarios Cloud AI
is better optimised and outperforms Edge AI in energy efficiency. This means that developers depend-
ing on their use case and the project’s scalability need to consider these quality attributes for the most
sustainable architectural solution.
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Preface

To whom it may concern:

This is (for now) my final contribution to the academic field as a Master’s student in the Software
Engineering Research Group (SERG) of Delft University of Technology. Starting in 2017 with my Bach-
elor’s degree, I couldn’t have phanthomed the knowledge and capabilities I gained over the years,
which resulted in this contribution.

Although I’ve always had an interest in nature, sustainability, and for instance recycling, my passion
for Computer Science and Engineering (CSE) outweighed these preferences and I started my studies
in Delft. My ambition to contribute to the climate challenges subsided a bit as generally, CSE focuses
on accuracy over sustainability.

This changed when I took the course Sustainable Software Engineering taught by my daily super-
visor for this thesis, Luis Cruz, and became aware of this field. For this course, we created an energy
measurement library for the PyTorch library to gain insight into the specific energy consumption within
a model and create more awareness for Green AI1. This combined my interest and I discovered the
huge potential of finding technical solutions to the carbon footprints of IT in the world.

This led to the cooperation that constituted this thesis in the field of Green AI. Over the span
of 9 months starting in September 2023, together with my other daily supervisor, Silverio Martínez-
Fernández from UPC BarcelonaTech, I worked on the lack of awareness of the sustainability of Edge
AI at scale in terms of energy consumption.

I want to thank Luis and Silverio who provided me with weekly support and feedback and made this
thesis possible. We had many constructive yet critical meetings that allowed me to finish it with novel
contributions and on time. Furthermore, I want to thank Arie van Deursen and Ujwal Gadiraju for taking
time out of their busy schedules to grade my graduation. Lastly, I want to thank my friends and family
for their unwavering support throughout the thesis and my complete time at the university.

Furthermore, even though I’m not continuing my academic career with a PhD at this time, I’m still
dedicated to spending my time and capabilities in the field of sustainable software engineering and I
urge other developers to consider their environmental impacts and act accordingly. Generally, software
allows for many good things but needs correct control to be sustainable, otherwise, the cost might
outweigh the benefits.

Rover van der Noort
Delft, April 2024

1See: https://github.com/GreenAITorch/GATorch
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1
Introduction

Artificial Intelligence (AI) has been in increasing demand and coupled with the increase in size and
complexity of the models, this significantly impacts the energy consumption and carbon footprint in
the world [31, 128]. The energy consumed in data centres to run these models is enormous and the
resources and infrastructure needed to produce the required hardware are expensive [128]. Many AI
models prioritise achieving maximum accuracy without considering resource constraints, a paradigm
known as Red AI. In contrast, Green AI emphasises energy efficiency over accuracy [101].

AI development consists of multiple steps, such as data collection, experimentation, training, and
deployment, which can all consume high resources. While most Green AI research has focused on
the training phase of AI development, less attention has been paid to the energy costs associated with
model inference once it is deployed. At the same time, this generally consumes more energy over
the life-cycle of the model [128]. Therefore, a more holistic approach to the investigation of energy
consumption of AI needs to be made [128, 129].

The inference costs can have a significant impact on the total energy consumption of the whole
pipeline [26]. This is because some models have become so popular that many users infer many re-
quests, which scales up the energy consumption. For instance, with the release of ChatGPT, many
people started using AI that had never before, and even though OpenAI is optimising the energy ef-
ficiency of their processes, this can lead to a phenomenon called Jevons Paradox1. This states that
improving the efficiency of a resource increases the demand leading to an increase in the use of the re-
source, instead of a reduction due to the efficiency. Even though the energy consumption of inference
has remained constant due to optimisations, this increase in usage results in higher overall energy
consumption [26]. It is therefore important to create more awareness about the energy consumption of
AI for both the users and developers and reduce it where possible [56].

The majority of AI models are trained and deployed in cloud environments, consisting of centralised
or distributed data centres consisting of High-Performance Computing (HPC) hardware configurations
that are optimised for high-performance AI training and inference. These cloud instances are perform-
ing well in accuracy and inference speeds, however, their energy consumption and carbon footprint
are inherently large. On the other hand, cloud instances are so large that smaller models might result
in underutilisation of the resources and lost energy running idle [95, 128].

Cloud providers have been investing in better carbon awareness and tools that reduce the energy
consumption of training and deployment of AI models by for instance scheduling [109, 116, 128, 129] or
deferring requests to locations with cleaner energy [128, 129]. However, due to the proprietary nature
of the cloud, it is hard to do direct investigations into the energy consumption of these data centres.
The cloud providers charge their customers for all the usage of their resources, which can increase
significantly once the model scales in the amount of inferences it performs. This incentivised some AI
developers to consider Edge AI methods to reduce energy consumption and high monetary costs to
cloud providers.

Edge AI is a deployment strategy characterised by running the AI on the devices where the data is
located. An increasing number of edge devices are connected to the internet [2], ranging from mobile

1See: https://en.wikipedia.org/wiki/Jevons_paradox
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phones to consumer laptops and specialised IoT devices. Depending on the application, Edge AI
promises to bring the models closer to the data source in order to decrease latency. Smart grid [107,
109, 110], smart city [4, 59, 102, 134], IoT in Industry 4.0 [21, 32, 86, 88, 107, 118] and self-driving cars
[61] are examples of use cases, which benefit from Edge AI’s features. In practice, many organisations
choose a hybrid strategy between cloud and edge for their deployment strategy [34, 35, 103]. The
experiments of this study are performed in the context of Smaller Language Models (SLM), which are
smaller versions of Large Language Models (LLM). These are popular models with a wide range of
applications such as real-time applications like chatbots. Edge AI benefits from lower response times
and offline usage [70] since the strategy moves the computation to the end user device.

Logically, smaller devices on the edge generally consume less energy than large Cloud HPC de-
vices, however, they are less optimised and can significantly increase the processing duration per
request. This means latency could increase and the maximum throughput is smaller per device, which
means high-throughput applications require a more complex setup with multiple edge devices. There-
fore, the sustainability of Edge AI is still up for debate [1], since the correlated overhead of such a
network could introduce significant energy consumption. Because Edge AI can operate offline, this
can reduce the communication bandwidth of the internet, however, Edge AI comes with a high level of
duplication across a potentially wide range of devices. This means a compilated maintenance setup
is required and thus the related overhead could impact the sustainability [128]. Little investigation
into the energy consumption of deployment strategies between Edge AI and Cloud AI has been done.
Researchers are working on studies that push for more sustainable research towards the edge like
GreenEdge [44]. However, they lack the needed comparison between the edge and the cloud at scale.
This raises the question of whether Edge AI including all these distribution overheads decreases energy
consumption compared to the highly optimised cloud solutions.

An IT company that uses various AI applications might need to come up with a deployment strategy
for their models that optimises energy and cost efficiency. For example, the company wants to deploy
a coding assistant model for their developers that runs on their internal codebase and has a very high
utility and update rate. The company can run this on a cloud instance or deploy the model on the
developers’ workstations. Another scenario for the same company entails a support chatbot for their
clients. This support chatbot can help the user by providing detailed and relevant answers about the
company’s software but it is generally only used for a few questions a day. The other option is to deploy
on the cloud or on-premise with the client. It remains unclear for this company what the best strategy
is for either use case. Is Edge AI an energy-efficient way to deploy these models and which factors
determine this?

To find recommendations for AI developers about the sustainability of various AI deployment factors,
this thesis aims to investigate the energy consumption of different AI deployment strategies, with
a focus on understanding the scalability factors influencing energy efficiency in Edge AI compared to
Cloud AI.

Document Structure
This document starts by introducing the necessary related work in the field of Green AI and Edge AI. Our
investigation of existing literature reveals a gap in understanding the scalability of Edge AI concerning
its energy consumption and carbon footprint, motivating the need for further research in this area.

In response to the identified gap, this study aims to investigate the impact of four scalability fac-
tors; environment, quantization, throughput, and model lifespan on energy consumption in Edge AI
deployment strategies. We identify the relevant variables, followed by a discussion of the experimental
setup to measure the appropriate energy consumption values and how to compare them. We conduct
empirical experiments to quantify the energy consumption of various devices across different variables.
Additionally, we develop a simulation model to assess the energy consumption of the extended lifespan
of AI models at scale.

The results show that all the identified scalability factors of Edge AI impact the overall energy con-
sumption. We observe that the throughput and overhead factors are the main contributors to this
difference. Therefore, Edge AI can only be energy efficiently applied in a low-demand, low-throughput
environment with specialised investigation for device and optimisation strategy. For AI applications at
scale, the energy efficiency on the cloud is better optimised. AI developers need to thoroughly investi-
gate their most efficient deployment strategy for each use case.



2
Related Work

This section describes the previous work in the fields of Green AI, Cloud AI and Edge AI. First, we
explore the notion of Green AI and the relevant research from the last few years. This is followed by
the identification of the pros and cons of both Cloud AI and Edge AI and their sustainability efforts.
Lastly, we look at techniques for measuring energy consumption and finally, we present the identified
research gap that this study aims to fill.

2.1. Green AI
In 2019, Schwartz et al. [101] introduced the notion of Red and Green AI, which respectively stand for
accuracy-focused and energy-focussed AI development. This paper established the current research
field of sustainable software engineering for AI and this shows the infancy of this research field.

Luccioni et al. [72] looked into the carbon emissions of ML models over time and discovered that
they have increased. They concluded that higher energy consumption and carbon emissions do not
correlate with higher accuracy. Another study by Luccioni et al. [73] investigated the carbon footprint
of BLOOM, a 176B parameter model, and found that its training emitted 25-50 tonnes of CO2eq, which
is roughly equivalent to 6-12 passenger cars driving for a year. They recommended further research
into the energy consumption of the inference step in the AI pipeline. Desisilavov et al. [26] observed an
increasing trend in AI energy consumption as well, however, the hardware and software optimisations
have decreased the expected growth in consumption, although it is still increasing due to the general
higher usage of AI. Castano et al. [16] observed decreased carbon reporting on Hugginface for which
they proposed a method to create more awareness about the footprints of these models. Furthermore,
they found a correlation between carbon emissions and model and dataset sizes. Zhou et al. [137]
proposed HULK, an energy efficiency benchmark platform in which they report training and inference
times of a selection of LLMs and the associated costs.

Saheb et al. [96] reviewed AI for sustainable energy and found that AI optimizations are a relevant
part towards more sustainable AI use. Chien et al. [20] proposed a CarbonMin optimisation that shifts
the workload geographically in order to reduce carbon emissions from the request. The authors found
that response latency is weakly correlated with user location, so in case of a bad connection, this could
negatively impact the user experience.

Martinez et al. [75, 95, 130] found that the model architecture has an effect on energy consump-
tion and that the training environment should factor in the model architecture for most energy-efficient
training by optimising the GPU utilisation. Li et al. [65] found that the hardware used for training has
an impact on energy consumption and that training on GPU-enabled devices is more energy efficient
than CPU-only devices. Yarally et al. [132] investigated the energy efficiency of various hyperparame-
ters optimization techniques and found that Bayesian optimisation is the most efficient. Moreover, they
found that convolutional layers in a CNN are most power-hungry, but that the complexity can often be
reduced for more energy efficiency without much loss in accuracy. Another study found that batch size
significantly impacts the energy consumption and inference speed of the models [131].

Verdecchia et al. [120] investigated a data-centric approach to reduce the energy consumption of AI
systems and found that some dataset operations can significantly reduce energy consumption without

3
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Data-centric Algorithm design Model optimization Management
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T2: Remove redundant 
data
T3: Reduce number of 
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T4: Use input 
quantization
T5: Use data projection

T6: Choose an energy-
efficient algorithm
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T8: Decrease model 
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reinforcement learning 
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T10: Use dynamic 
parameter adaptation
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aware pruning
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T18: Use quantization-
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during training
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The symbol * means the tactic was found with the help of the focus group.

Figure 2.1: Catalog of Green AI techniques [56].

reducing accuracy. The same authors [119] also provide a systematic literature review of Green AI.
They found that Edge Computing is a hot topic, while deployment is an under-considered phase. This
shows the need for more research into the energy consumption of AI inferences, as this contributes
largely to the overall energy consumption [127].

This overview of the latest developments in Green AI shows the potential of reducing the carbon
footprint of AI models by all kinds of techniques as shown in the synthesis in Figure 2.1 [56]. All
these papers have shown the broad possibilities of energy consumption reduction for the complete AI
development field. However, they also show the difficulty in measuring and reporting accurate results.
Moreover, we find a gap in research on the scalability of these systems and the effect on the energy
consumption of AI at scale.

2.2. Cloud AI
Cloud computing uses large data centres full of HPC hardware to execute AI applications. There are
many options for cloud deployment and you can configure the hardware configuration to scale up and
down based on your usage. You are charged by the cloud providers for the usage of their systems,
usually on a per-request basis. Extensive use of those systems can become quite expensive [38].

The simplest cloud configuration for AI deployment consists of a single model in a virtual machine
or container environment in a specific region with a specific hardware set. However, deployment en-
gineers can theoretically scale the system infinitely. In Table 2.1, we show an identification of the ad-
vantages and disadvantages of Cloud AI and how often they were mentioned by literature. Due to the
centralised nature and high configurability of cloud deployment, it is the preferred deployment option
for almost all applications nowadays. It offers a reliable system that can scale, and cloud providers are
improving the sustainability of the data centre facilities, like using renewable energy. However, these
data centres still have high energy consumption for executing the requests, high internet transmission
energy costs, and high embodied carbon costs due to the production of the HPC hardware. This all
results in high monetary costs for the cloud users. Finally, there are privacy concerns about sending
user data over the internet and aggregating this data on the cloud.

Devices
Over the years, the primary method of computation has shifted from mostly CPU loads for webservers
and APIs to mostly GPU loads for AI training and inference [128]. Although the power consumption
of GPUs is generally higher than that of CPUs, due to the parallel computational abilities, the energy
consumption for AI loads does not necessarily have to be higher [80]. Li et al. [65] did a study on
CNNs and measured their CPU and GPU energy consumption finding variability in network topology
and batch size. Cheng et al. [19] found that for small operations, CPU-only outperforms GPU, but for
more complex operations, the GPU or a CPU-GPU co-processing setup reduces energy consumption.

Moreover, Wang et al. [124] benchmarked the performance and energy efficiency of various AI
accelerators on multiple GPU and Tensor Processing Unit (TPU) configurations. Ma et al. [74] propose
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Table 2.1: Advantages and challenges of Cloud AI.

Advantages Citations
Sustainability efforts [11, 30, 77, 116, 128]
Scalability [11, 68, 116, 128]
Redundancy and reliability [11, 116, 127]
Centralised setup, easy maintenance [11, 116]
Offers wide array of configurations [11, 116]
High performance [127]
High quality training [127]

Challenges
High energy consumption [11, 30, 68, 69, 77, 89, 116]
Privacy concerns [69, 128]
High monetary costs [38, 137]
High embodied carbon costs [69, 128]
Responsiveness (latency) [32, 69]
High internet bandwidth usage [32, 89]

a framework called GreenGPU, which distributes workloads dynamically based on the characteristics
of the computation by which they can reduce energy consumption.

More specialised hardware for AI, such as Field ProgrammableGate Arrays (FPGA), can outperform
both CPU and GPU hardware configurations if model complexity increases [93], but this depends on
memory localisation and therefore depends on the application [12] and the optimization technique [79].
Field Al-Ali et al. [3] found a significant increase in inference time using an FPGA, compared to a
consumer-grade GPU for image processing. Boutros et al. [13] also found in their comparison of
AI-optimised FPGAs and GPUs a significant compute speedup for the latter.

This shows the complexity of hardware configurations and their impact on the energy efficiency
of deployment systems. Furthermore, specialised hardware also brings significant embodied carbon
costs in their production. Furthermore, hardware components have increasingly higher power ratings,
which is concerning for their sustainability, however, their computing capability is growing as well.

Providers
Escribano [30] performed an experiment where he compared the energy consumption of various cloud
providers and found that cloud providers differ in total carbon emissions. It is hard to establish the
accuracy of these results due to the complexity of cloud environments.

Large cloud providers such as Amazon Web Services (AWS), Google Cloud Platform (GCP), and
Microsoft Azure provide users with many options and tools to optimise or monitor performance and
carbon footprint. They offer sustainability dashboards that give insights to their users on the carbon
impact of their projects [40], which they calculate by estimating the carbon footprint over multiple scopes
from fuel used by generators, energy consumption per region, to the carbon cost of the production
of the hardware [41]. They offer development tools that reduce the carbon emissions of projects in
the cloud. For instance, these methods refer requests to regions with cleaner energy [42] and they
make recommendations for minimising unused cloud resources [43]. OpenStack is an Open-Source
Software (OSS) platform that allows you to build a cloud environment for users to set up their nodes
with configurations. They maintain a marketplace with tools such as environmental dashboards [113].

All these sustainability efforts are important to reduce the total energy consumption in various ways,
however, it remains hard to determine what the actual impact is of these optimisation techniques: once
they are inside these proprietary data centres, they are hard to measure. Therefore, more research is
required into the actual energy consumption of cloud infrastructures.

Scalability
Only a few research papers look into the measured energy consumption of these cloud setups at scale
and many studies rely only on estimates to come to some quantification [84]. However, it is hard to
establish the complete carbon footprint of cloud deployment, since models in production can have var-
ied life cycles and usages. The amount of throughput, the model size, and the hardware configuration
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in the cloud can significantly impact the final power consumption of the model’s deployment. Tuli et al.
[116] proposed an AI holistic resource manager model to manage sustainable cloud computing.

Lin et al. [68] performed a study on an energy consumption measurement system for a multi-
component cloud system at scale. They proposed Distributed Energy Meters (DEM) for heterogeneous
cloud environments, outperforming state-of-the-art (SOTA) energy consumption estimation methods.

The internet traffic a cloud-deployed model generates and the associated costs are reasons AI de-
ployers select Edge AI. As you pay for the bandwidth of your application, the monetary costs could
drastically increase once the application scales up. Especially multimedia internet traffic, like photos or
videos, can use more energy than textual traffic. However, the network traffic energy costs of the de-
ployment strategies are often overlooked and depending on the actual utility of the model, this overhead
can have a significant impact [5, 52].

2.3. Fog AI
Fog deployment is the strategy between cloud model deployment and edge deployment, which exists
at various levels, ranging from cloud regions to local company networks. This strategy benefits from
similar advantages as the edge although not completely, as the offline benefit trait does not apply to
Fog, meaning it has a different set of challenges [11]. For instance, Shen et al. [103] empowered an
edge network of various models using an LLM in a centralised cloud instance, which overlaps all the
borders of the deployment space. Such a network requires a communication protocol, which impacts
the system’s performance when the number of devices scales up [10, 139].

Bermejo et al. [11] provide a systematic review of the use of AI on the sustainability of cloud/-
fog/edge/IoT ecosystems. They mainly find a lack of consistency in the reporting and use of these
models to decrease energy consumption and carbon emissions.

Zhu et al. [140] investigate the energy efficiency of Green AI for Industrial IoT. The authors propose
a dynamic scheduler that distributes most resources over the edge, and they show that a well-designed
scheduler can outperform the cloud with short processing speeds and low energy consumption. How-
ever, this study does not account for use cases that span more devices and the life cycle over a longer
time. Mendes et al. [78] propose a similar energy-aware container scheduling algorithm for Micro-
Clouds. This algorithm relieves overutilised nodes in the network in order to create a network that is
overall more energy efficient.

Long et al. [71] propose a complexity-aware adaptive training and inference for an edge-cloud dis-
tributed AI system. It determines the complexity of a request before sending it to the corresponding
system that needs to run the inference. This adaptability decreases the energy consumption per re-
quest. Similarly, Kim et al. [60] propose the reinforcement learning algorithm AutoScale, which decides
when edge inferences are executed on which device. This means inferences can be selected to run on
the most energy-efficient device available, which improves energy efficiency according to the authors.

Lastly, deployment strategies such as serverless computing automatically scale nodes up and down
based on usage. Patros et al. [89] highlight the need for sustainable serverless computing, as current
serverless strategies can reduce their energy overhead.

Fog strategy is hard to investigate because it can vary largely in setup and it is more difficult to create
an experiment which accurately reflects real-world applications [54]. This study only investigates Edge
AI and Cloud AI to simplify the study and make the results interpretable.

2.4. Edge AI
Edge AI is the deployment variant that offloads the computation tasks to the respective end-user de-
vices such that the computation can be executed close to the user and the data. This technique spans
a wide array of devices visually depicted in Figure 2.2a. Devices such as phones, laptops and mi-
crocontrollers can be considered edge devices, where the user can interact directly with the models,
instead of making inferences over the internet to the cloud. Figure 2.2b shows the ratio between data
volume and intelligence capability, which ranges from edge devices with large amounts of data but lim-
ited resources to cloud devices where only little data is being generated compared to high-performance
computational availability. In the middle Fog AI leverages the best of both worlds, however, this is out
of the scope of this research. Using a combination of grey and white literature, we identified a set of
advantages and challenges for Edge AI summarised in Table 2.2 included the related citations. We
briefly discuss the impact of these traits on Edge AI.
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(a) Types of edge devices [29]. (b) Data volume vs Intelligence capability per device type [27].

Figure 2.2: Abstractions of Edge AI from related work.

Low latency gets mentioned most often in literature and seems to be a driving factor for Edge AI,
however, when we compare the current inference speeds of Cloud AI and Edge AI, they are quite dif-
ferent and the generally high internet speeds are not necessarily the latency bottleneck. Yet in specific
situations where internet access is limited or offline operations are required, Edge AI is a promising tech-
nique that could increase accessibility to AI applications. Furthermore, privacy and data sovereignty
is another important aspect of Edge AI. Due to the limited network use, the data is mostly contained
on the user’s device, limiting the potential of security breaches, which can be a requirement in some
situations.

Another important factor, especially for the industry, is the potential cost reduction that can be
achieved using Edge AI. We know the high cloud costs once a program scales up to a certain level,
which could impact the business. Edge AI can reduce costs by offloading the work to the user device
and incurring less costs on the cloud platform. However, there is no specific investigation into the actual
distribution overhead of Edge AI and the cost of downloading, and maintaining deployed edge systems.

Reduced bandwidth seems like a good indication that Edge AI can impact energy consumption,
as it promises reduced network traffic of the inference requests. For some AI applications, like those
that deal with multimedia this could have some effect, however, for text-only applications this could

Table 2.2: Advantages and challenges of Edge AI.

Advantages Citations
Low latency with users [11, 22, 32, 35, 62, 69, 70, 76, 94, 103, 108, 112, 114, 122, 126, 140]
Privacy and data sovereignty [22, 35, 76, 103, 112, 114, 122, 126, 128, 133, 138]
Cost efficiency [35, 70, 76, 104, 126, 128, 133]
Offline operations (availability) [22, 35, 104, 114, 122, 133]
Reduced internet bandwidth usage [11, 70, 76, 94, 108]
Democratization of AI domain [22, 138]
Personalisation [133]
Energy efficiency [62]
Scalability

Challenges
Limited computational resources edge devices [22, 35, 36, 69, 94, 108, 112, 114, 122, 126, 127, 133, 140]
Model compression overhead [66, 112, 114]
Amplified bias due to compression [18, 53, 126]
Managing and updating edge devices [122, 140]
Ensuring consistency across heterogeneous system [35, 140]
Limited control on energy type [128]
Scalability
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potentially be negligible. However, the overhead of downloading, andmanaging these devices and the
whole consistency of the system could still use large amounts of internet bandwidth. Neither of these
has been confirmed by research so far.

Lastly, a few small advantages include the ability to personalise models for better user experience,
democratise the AI domain by distributing models, and the potential energy efficiency of Edge AI as
they are generally less powerful devices with lower production costs compared to the cloud.

The limited computational resources of Edge AI pose a challenge, as not all devices have the
most energy efficiency hardware for deployed AI models, which could increase energy consumption.
Moreover, the Edge restricts the memory bandwidth and limits the peak computation throughput on the
edge [67, 114]. Wu et al. [127] show that most phones run older and highly varied hardware, which
makes the programmability harder and results in performance variability. This limitation increases the
complexity of edge deployment because it can serve a wide range of customers on devices with various
configurations of limited resources. This means that the developer needs to either offer a model that
works on all devices set above a certain configuration or a set of differently-sized models distributed
over the corresponding configuration. This could provide better performance to customers with better
hardware, which poses a problem where the overall product does not produce a homogenous result.

Optimising models using quantization [67, 114] or pruning can be an effective method to enable
model deployment on edge devices. These techniques are known to decrease the energy consumption
for the training pipelines [115] or post-training inference but can come with an accuracy decrease or
bias increase [53]. Furthermore, depending on the optimisation technique, executing the method can
have an overhead of energy consumption which could impact the total energy consumption, especially
if the model needs extra (re)training which is a computationally expensive task. Lastly, by moving the
work of AI inference to the edge, the deployer loses some control over the model and how it is used. For
instance, the cloud environment could use renewable energy while the edge deployment uses energy
from fossil fuels, which impacts the carbon footprint more. This is a general challenge and can only
realistically be solved by providing more renewable energy for everyone.

The scalability of Edge AI is not often mentioned in literature and lacks investigation, due to the
high complexity of experimenting on them and generating a generalisable result. The resource of edge
devices and the variability between devices pose real challenges for either horizontal or vertical scaling
[112] and therefore need to be further investigated.

2.4.1. Green Edge AI
Due to the edge devices’ inherently lower energy consumption and production costs, Edge AI is pro-
posed as a sustainable alternative to Cloud AI. However, as we have shown there is no direct compar-
ison between cloud and edge deployment strategies at scale. However, Edge AI has been studied for
various sustainability efforts, which shows only the sustainability of Edge AI for smaller-scale projects.

Del Rey et al. [94] performed a review of the current research on the green deployment of Edge AI
and found that the main limitation to Edge AI is resource restriction and there are still knowledge gaps
in the field of Edge AI deployment and the factors that impact energy consumption and carbon footprint.
This is acknowledged by Siemers et al. [104] who showcased the current SOTA of green mobile AI
computing, showing the lack of foundational research into the sustainability of edge computing. A
research agenda for trustworthy and sustainable Edge AI is proposed by Ding et al. [27], which mainly
found research gaps in energy optimisations and a lack of hardware/software co-design strategies
making it difficult to generalise these optimisations. Castanyer et al. [17] identified a set of design
decisions that contribute to greener AI for mobile applications. The authors mainly found that increasing
the complexity of the model increases resource consumption, but recommend further research with
actual energy profilers.

Olliver et al. [85] explored the tradeoffs between hardware accelerators considering inference and
online training on edge computing devices. They found that edge devices with GPUs are typically more
energy efficient but their embodied carbon costs can outweigh the costs in scenarios where the usage
is lower than average, which makes them less sustainable. Molom-Ochir et al. [80] described their
experiment on the energy efficiency of various NVIDIA GPUs both edge and cloud. Their study mainly
compared five different hardware accelerators to optimise for specific hardware configurations. They
conclude that the GPU is more efficient than the CPU and that larger models are more efficient on
larger GPUs.

Hanafy et al. [48] found that for energy-efficient inference of Deep Neural Networks (DNN) on edge
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devices, there is always a trade-off between accuracy, latency and energy. Furthermore, the authors
found that this relation is non-linear, and therefore proposed an algorithm to choose the best model
based on energy budget constraints. Hampau et al. [47] performed an empirical study that assesses
the performance and energy consumption of various AI containerization strategies on the edge. They
made recommendations for deployment strategies based on their findings. Çöplü et al. [22] tested
the inference feasibility and performance of LLMs on iPhones, and although they managed to run
LLMs on these devices, more work is needed to achieve an acceptable performance. Especially for
battery-powered systems, AI inference can have significant impact on battery life and therefore user
experience.

Gondi et al. [39] found that Automatic Speech Recognition (ASR) inference on the edge is more
sustainable in terms of energy efficiency. The authors however lack evidence for this and only compare
accuracy between the inference on the models, which inexplically differs. The authors’ other contribu-
tion is that small quantized models are efficient in terms of power consumption.

Hadidi et al. [46] investigated DNNs on edge deployment and the results of this study are shown in
Figure 2.3, which shows the comparison of energy per inference between these devices. The authors
found that between four types of edge devices and one cloud device, the cloud device uses more
energy than specialised GPU-enabled edge devices, but some edge devices like the Raspberry Pi
perform less energy efficiently. However, this study failed to take into account the scalability factors of
AI and their potential impact on complete energy consumption.

Similarly, Lenherr et al. [64] measured the energy efficiency of Cloud and Edge AI models and found
that Cloud uses 100-1000x larger power consumption for training. Furthermore, they mainly focussed
on energy-precision ratios and did not compare the inference energy consumption between platforms
as this would be unfair due to varying accuracies.
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eral requests together and perform multi-batch computations.
Multi-batch inferencing helps to amortize the cost of data
movement and eliminates redundant load and stores. On the
other hand, for edge devices, the number of requests is limited
and real-time performance is crucial. Thus, special edge de-
vices are designed for efficient single-batch inferencing. Here,
we want to see if these edge-specific designs are efficient with
respect to HPC platforms in single-batch inferencing.

To make such a comparison between edge and HPC devices
for single-batch inferencing, we use a common framework
(i.e., PyTorch) for deployment. Then, we measure time per
inference on several HPC platforms and Jetson TX2, shown
in Figure 9. To make a fair comparison of single-batch infer-
encing across the platforms, we do not use any edge-specific
techniques to increase the performance. We choose Jetson
TX2 as our edge device because its hardware is not heavily
optimized (see Figure 2). As we see in Figures 9 and 10, the
average speedup over Jetson TX2 on all benchmarks is only
3x. Most of these platforms are designed to be throughput-
oriented for multi-batch DNN computations (both training and
inferencing). However, single-batch inferencing is a latency-
sensitive task, which requires a new design philosophy, both
in hardware and frameworks. Although CPUs are known to
be designed for latency-sensitive tasks, our experiments show
that CPUs are not beneficial for single-batch inferencing.

More specifically, on several benchmarks, the Xeon CPU
performance is lower than that of all platforms. This is because
most benchmarks are compute-bounded and benefit from more
available cores. In fact, only for memory-bounded benchmarks
(e.g., VGG16 and VGG19), does Xeon CPU perform similarly
to TX2 because of its large memory hierarchy. On HPC GPUs,
the benchmarks with large memory footprint such as VGG
models and C3D generally achieve higher speedups. This is
because HPC GPUs have larger memories and caches. On the
other hand, benchmarks with higher compute per memory such
as ResNet models benefit less from HPC GPUs. In summary,

single-batch inferencing requires a different hardware design
perspective, which specially designed edge devices and frame-
works aim to reach.

D. Virtualization Overhead Study

With a diverse set of hardware platforms and frameworks,
virtualization could provide several benefits by decoupling
hardware/software setup and reducing the programmer’s effort.
Nevertheless, the virtualization environment should support
auto-tuning to each specific hardware platform to maximize
performance (e.g., using INT8 on architectures that supports
it). Endeavors to design such virtualization tools are underway,
but virtualization itself has overhead. This overhead is caused
by several translations for system calls and environment isola-
tions. In this section, we evaluate the overhead of virtualized
environments by executing DNN models inside and outside
such an environment. We use Docker [82], a widely used
virtualization tool in both academia and industry. Figure 13
shows the results of executing DNNs on RPi with/without
Docker. As seen, the overhead is almost negligible, within 5%,
in all cases. Contrary to popular belief about virtualization
overhead, we do not observe a significant slowdown with
virtualization.

E. Energy Measurements

Inferencing in the edge dictates processing one input most ef-
ficiently. Specifically, for edge inferencing, an efficient device
is fast and power efficient. Thus, we measure the energy per
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(a) Energy per inference for each device.
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Fig. 12. Inference time and active power usage graph across platforms.

inference across all our platforms and include one HPC GPU
as a comparison point with high-end devices. Figure 11 shows
energy per inference for our platforms with four models. As
expected, RPi has the highest energy per inference value be-
cause (i) it is designed as a cheap and general-purpose single-
board computer without accounting for energy efficiency, and
(ii) it has the longest inferencing time among our devices.
After RPi, GTX Titan X has the highest energy per inference,
between 1 J to 5 J per inference for ResNet-18 and Inception-
v4, respectively. Although Jetson TX2 is a GPU-based design,
its energy consumption is lower, between 0.3 J to 1 J per
inference for ResNet-18 and Inception-v4, respectively. This
is an average of a 5x energy savings with respect to GTX
Titan X. Nevertheless, edge-specific devices lower the energy
consumption to as low as 11 mJ per inference (MobileNet-v2
on EdgeTPU). Jetson Nano consumes 84 mJ to 0.5 J energy
per inference for ResNet-18 and Inception-v4, respectively.
Movidius Stick also has a similar profile, which is between
66 mJ to 1 J for MobileNet-v2 and Inception-v4, respectively.

For a better perspective, we also compare platforms within
inference time versus active power graph. Figure 12 shows
such a graph, in which the left corner illustrates the most
energy efficient and fastest device. Each dot represents a
model, and dots are grouped based on their platform. As seen,
GTX Titan X resides far in the left side of the graph, with an
average of 100 W active power usage. Several platforms have
similar inference time but much lower active power: Jetson
TX2, Jetson Nano, Edge TPU, and Movidius Stick. In fact,
Movidius Stick is the platform with the lowest active power
usage. On the other hand, EdgeTPU is the platform with the
lowest inference time. However, both devices make a tradeoff

to be at such extremes. Jetson Nano resides in the middle by
balancing inference time and power usage.

F. Temperature Measurements

This section evaluates the correlation between temperature and
power usage when running the inference of a heavy DNN (i.e.,
Inception-v4) on various edge devices using the most efficient
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TABLE VI
Device specifications for temperature experiments.

Device Heatsink Cooling Idle Fan
Fan Temperature Activated?

Raspberry Pi 7
7 43.3 ◦C 714x14 mm

Jetson TX2 3
3 32.4 ◦C 380x55x20 mm

Jetson Nano 3
7 35.2 ◦C 759x39x17 mm

Edge TPU 3
3 33.9 ◦C 744x40x9 mm

Movidius 3†
7 25.8 ◦C 760x27x14 mm

† USB stick is designed as a heatsink.

framework for each device. Table VI lists the availability and
characteristics of the cooling instruments (i.e., the heatsink
and fan) for the edge devices and their idle temperatures. As
Figure 14 illustrates, the temperature variation of Movidus is
the lowest even though it is not equipped with a fan. Although
the temperature and the power usage of Movidus are the
lowest among the peers, the trend is not always valid. For
instance, the power usage of Jetson TX2 is higher than that of
Jetson Nano, while their temperatures are opposite. In fact, the
figure and table suggest that the temperature of Jetson TX2
is perhaps controlled by the activated fan, and so should be
the temperature of Jetson Nano. Further, from Figure 12 and
Figure 14 we infer that the temperatures of RPi and Edge
TPU are similar; however, the power usage of the latter is
approximately 5x lower as that of the former.

VII. Discussions

In this paper, we tried to analyze popular frameworks and
implementation optimizations for DNN deployment on the
edge devices. Since these frameworks are actively being im-
proved, we tried not to include a tighter conclusion about each
framework. Additionally, there are several other frameworks
that we did get a chance to cover, so concluding about a
framework would not be entirely fair. Moreover, as seen, there
is no single best framework for all cases. Depending on the
model, the computation type, and, in several cases, the final
weight sparsity, each framework delivers different results. In
fact, these tradeoffs, as any other generalized frameworks, oc-
cur because each framework tries to offer a simple interface to
a wide range of users while optimizing execution performance.
Therefore, our goal is to give the reader the knowledge to reach
to their own conclusion about what is the best framework for
their use case based on the provided data.
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(b) Inference speed compared to power for each device.

Figure 2.3: Results of study between Cloud and Edge AI by Hadidi et al. [46].

Federated Learning
Yokoyama et al. [135] found that training ML models on an ARM-based edge device are a more cost-
effective solution than on the cloud. They looked at the effects of location and user software on energy
consumption, accuracy and inference time. To train larger models, a more complicated setup is re-
quired, such as Federated Learning (FL). FL is the technique of training AI models on multiple edge
devices, where the edge devices each calculate portions of the weights, which are then aggregated
on the Cloud or run distributed over these edge devices [86]. For smaller models, Lenherr et al. [64]
found that FL uses more energy than training normally on an edge device. However, comparing it to
training larger models on the cloud, it is still more energy efficient.

At Facebook, they found that FL is estimated to have a similar carbon footprint to training a normal
big model [128]. Wang et al. [121] found a more sustainable method of cloud-edge FL methods using
an auction system and quantization. However, many of the costs are incurred due to networking, which
could indicate similar problems in the case of a distributed environment like Edge AI over time. Shen et
al. [103] proposed a cloud-edge technique that can autonomously create and execute FL code to train
new AI models. The authors showed that their model can allocate resources and perform FL effectively,
but lack to show the sustainability of their solution.

These studies showed the complexity of FL setups and the potential overhead that can occur, which
can impact the energy efficiency of the training process significantly. Therefore, FL is not considered
a sustainable solution yet to train AI with less energy consumption. For this reason, FL remains out of
scope for this research.
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Devices
Because of the broad nature of IoT, many different types of specialised hardware have been created for
all these applications. Similarly, smartphones and laptops have become increasingly more available
and have better performance. However, this poses a challenge for the domain of Edge AI, since this
means that the resource availability of these devices can vary enormously, and supporting them all
out-of-the-box is a significant challenge. The hardware range of edge devices is roughly:

• between 1 and 10GB of RAM,
• ARM/x86 CPU, duo/quad-core,
• Cooling ranging from passive fans and heatsinks, to activate cooling,
• 0-4GB of (shared) VRAM

Models
Since the popularity of the transformer model architecture, LLM models have been increasingly applied
in all kinds of scenarios. They are used in various contexts ranging from text to images to video.
However, their inherently large sizes and computational requirements, make it difficult to deploy these
kinds of models to the edge. For instance, LLaMa2-7b already requires 28GB GPU RAM to run in full
precision, which does not fit any of the edge hardware configurations.

Optimisations
Fitting these large models on edge devices requires additional compression techniques. Järvenpää
et al. [56] created a list of numerous tactics for Green AI to increase environmental sustainability as
shown in Figure 2.1. Based on this and other case studies, we created a list of compression techniques
that allow AI models to fit on edge devices and potentially reduce the energy consumption of these
models. Table 2.3 shows this list of these compression techniques for LLMs. Additionally, system-
level approaches such as parallelism and flash attention can work complementary to the optimisation
methods and improve runtime efficiency [18, 108].

Quantization is the most mentioned in the reviewed literature and entails mapping the float weight
values into whole integers in order to reduce storage and computational complexity [37]. Pruning is
the technique of selecting and removing redundant parameters that have the least effect on the output.
Furthermore, model architecture can have a significant impact on energy consumption and knowledge
distillation is a specific kind of architecture where you train a smaller model based on a bigger model
[99]. Lastly, microarchitecture tuning entails for instance hyperparameter optimisations but has energy
efficiency as the goal instead of accuracy and low-rank factorization is another decomposition technique
that tries to map the weights into a smaller yet effective data bundle.

From these techniques, quantization, pruning, and knowledge distillation, are deemed most promi-
nent in increasing energy efficiency [22]. Of course, such techniques always result in a trade-off with
accuracy. However, as Li et al. [66] showed, quantization techniques allow a model to be compressed
without significant loss in accuracy. Moreover, Wang et al. [123] proposed a hardware-aware auto-
mated quantization technique that selects the best quantization depending on the hardware reducing
latency and energy consumption, while maintaining accuracy. Because of the simplicity of the tech-
nique and the low computational effort that is required, quantization seems to provide a balanced solu-
tion to reduce the model size for edge deployment [33, 37, 62] and energy as well [28, 37, 50, 82, 136].
Furthermore, large-scale pruning or distillation is computationally expensive [18].

Name Citations
Quantization [18, 22, 28, 33, 37, 50, 53, 55, 56, 66, 69, 81, 82, 103, 115, 121, 123, 127, 133, 136, 138, 141]
Weight pruning [18, 22, 37, 53, 56, 69, 103, 115, 127, 138, 141]
Architecture [22, 37, 56, 69, 95, 103, 122, 127, 133]
Knowledge distillation [18, 22, 37, 49, 56, 57, 69, 99, 103, 138, 141]
Microarchitecture tuning [56, 127]
Low-Rank Factorization [18, 141]

Table 2.3: Model compression techniques.
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Architecture seems to play an important role in the energy consumption of a model, and various
techniques have been proposed to search for the optimal architecture for the problem [69]. Moreover,
Mixture-of-Experts (MoE) seems another viable option as an optimisation technique to reduce the mem-
ory requirement for these models [133]. However, to apply MoE you need the model to be trained as
such, otherwise, the cost of retraining is high [122].

Although these techniques can reduce the model size significantly, quantization of for instance
LLaMa2-7B, still results in a hardware requirement of 5-10GB RAM1. And even though there are edge
devices that meet these specifications of the model, there are plenty that do not and could benefit from
originally smaller models [18].

SLMs
To include a broader range of edge devices and their hardware limitations, we need to make an identifi-
cation of available SLMs. Even though SLMs are a bit contradictory, there has been plenty of research
and development into these models to make them more accessible to the public [36]. We made a
collection of these models2 which is open to contributions. It curates the latest SLMs describing their
release, underlying architecture, optimisations, hardware requirements, and reproducibility.

A promising model found in this curation is TinyLLaMa 1.1B3 which is significantly smaller than the
original LLaMa model and trained on openly available data, but promises good performance and has a
low training and inference cost. Moreover, it has a memory footprint of 0.5-4 GB of RAM, which means
it can fit on a wide range of edge devices.

Overhead
Most of the research that investigates the sustainability of Edge AI look at specific use cases or tech-
nologies that improve energy efficiency. However, much of the research fails to acknowledge the
inherent overhead that comes with Edge AI. Initially, the models are distributed to the edge devices
over the internet. Furthermore, periodically the request on the edge device might need to be verified
on a centralised processing unit to ensure consistency in the distributed system. Moreover, if a devi-
ation is detected in the verification or the models require an update due to retraining, the models are
redistributed over the complete network, again sending all the weights over the internet.

Fettweis et al. [31] described an increasing trend of energy consumption in ICT devices over time.
This is due to the increasing usage of the devices as well as the increase in the number of devices
available around the world. This underlines the importance of investigating the environmental impact of
the overhead factors as these are logically also increasing with the trend. Simon et al. [106] addressed
the full spectrum of software service life cycles and cover different categories of environmental impacts.
This includes factors such as people and office, and hardwaremanufacturing and electricity usage. This
shows that the overhead can have impact on the holistic process of Edge AI as well.

Olaru et al. [91] described model retraining techniques, that adapt the model to concept drift. They
found that the original method of retraining the model completely is unsustainable and therefore the
authors proposed an adaptation technique instead, which should remove some of the energy costs.
This paper showed the potential problem of choosing an incorrect deployment strategy that can impact
energy consumption.

Network
We need to investigate the energy intensity of internet traffic to enable correct calculations of the over-
head of Edge AI deployment. This intensity can be expressed in either the amount of data transferred
or the amount of time it takes to completely transfer the data. The latter is generally recommended for
high bandwidth internet usage, like video streaming [58].

Coroama et al. [23] reviewed the methods and results of studies that assessed the energy intensity
of the internet. They reviewed three methods, top-down based on estimations, model-based using
simulated heuristics and lastly, and bottom-up using case studies and generalisations. The authors
showed that the year of reference and the inclusion of end device energy consumption influences the
results as shown in Figure 2.4a.

1See: https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF
2See: https://rvandernoort.github.io/SmallLLMs/
3See: https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0

https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF
https://rvandernoort.github.io/SmallLLMs/
https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0
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(Koomey et al., 2004) to 2009 (Coroama et al., 2013; Schien et al., 2012).
ICT is a very dynamic sector, and the equipment is becoming ever more
energy efficient, needing less energy per amount of data being proc-
essed or transmitted. According to the observation from Taylor and
Koomey (2008) that the energy intensity of Internet data transfers
decreases by 30% each year, this technological progress alone leads to
a reduction by a factor of 25 over the period of 9 years covered by the
studies. In Baliga et al. (2011) it is not explicitly stated which year the
study refers to. Assuming it refers to the year of publication, 2011,
would imply a factor of 50 between 2000 and 2011.

The plot of the energy intensity over time shows the general
decreasing trend (Fig. 1).

3.2. System boundary

The other determining factor is the system boundary, in particular,
whether end devices (i.e., end-user devices such as desktop, notebook
or tablet computers, and servers running to provide services through
the Internet) are viewed as part of the system under study or not. This
decision has a large impact on the result: As shown in Table 1, for the
year 2008, which has been referred to by several studies, the study in-
cluding end devices yields a result of 7 kWh/GB (Weber et al., 2010),
while the three studies not including end devices result in energy inten-
sities of 1.8 kWh/GB (Pickavet et al., 2008), 0.39 kWh/GB (Lanzisera

et al., 2012), and 0.179 kWh/GB (Baliga et al., 2009)— all at least a factor
of 4 below the study that includes end devices. Google (2012) implicitly
assumes that the energy consumption caused by the Internet transfer of
data is small in comparison to the consumption of the data centers, es-
timating the transfer by adding an extra 10% on top of the data center
consumption. The study by Pickavet et al. (2008) computes the average
worldwide power consumption in 2008 for different classes of ICT de-
vices. Their analysis yields 25 GW for network equipment and 29 GW
for data centers, 30 GW for PCs, 44 GW for TVs and displays, and
40 GW for other devices — the network part thus being 15% of the
total. Finally, Williams and Tang (2013) analyze the energy consump-
tion of five cloud-based services, indicating the consumption of data
centers, network, and end devices separately. Their analysis that con-
siders the entire life cycle of devices and is thus not directly comparable
to the studies reviewed here, results in much lower shares for the net-
work: 0.01–0.50% of the life-cycle wide energy, depending on the ser-
vice and type of end device used.

From all these considerations, it is evident that the decision of
whether or not to include end devices within the system boundary
will influence the result substantially. The difference between including
or excluding end devices is also made visible in Fig. 1.

In Section 4 below,wewill argue against the inclusion of enddevices
within the system boundary of studies analyzing the energy intensity of
the Internet.

3.3. Assumptions regarding access networks

Several authors point out that the access network (the network
connecting users to the nearest switch of the Internet service provider,
nowadays ADSL lines, public WiFi hotspots or mobile networks) can
dominate the energy consumption (Baliga et al., 2009; Coroama et al.,
2013; Hinton et al., 2011). With increasing access rates, however, it is
also possible that the core network components will become increas-
ingly important andmight, in the end, be themajor factor of the energy
intensity of the wired Internet (Baliga et al., 2009). A more detailed in-
vestigation of the access versus core networkswill therefore be a crucial
part of future studies on Internet energy intensity.

3.4. Other factors influencing the results

The facilities (rooms, buildings) hosting ICT networking equipment
and datacenters induce a power overhead due to non ICT-related
consumption such as cooling or lighting. The measure widely used to
account for this consumption is the so-called Power Usage Effectiveness
(PUE). The PUE is computed as a facility's total power divided by the
power needed to run the ICT equipment only (Rawson et al., 2008). As
the former includes the latter, the PUE is larger than, or equal to, 1.
The closer the PUE is to 1, the less power is “wasted” for activities
other than information processing, such as power transformation or
cooling. The average PUE for datacenters nowadays is slightly lower

Table 1
Estimates for the energy demand of Internet transmissions.

Study Method System boundary Data for Energy intensity

Networking equipment Optical fibers End devices

Koomey et al. (2004) Top–down X X X 2000 b136 kWh/GB
Taylor and Koomey (2008) Top–down X X X 2006 8.8–24.3 kWh/GB
Weber et al. (2010) Top–down X X X 2008 7 kWh/GB
Pickavet et al. (2008) Top–down X X 2008 1.8 kWh/GBa

Lanzisera et al. (2012) Top–down X 2008 0.39 kWh/GBa

Baliga et al. (2007) Model-based X X 2007 0.7–2.1 kWh/GBa

Baliga et al. (2009) Model-based X X 2008 N0.179 kWh/GB
Baliga et al. (2011) Model-based X X 2011 (?) 0.006 kWh/GB
Schien et al. (2012) Bottom–up X X 2009 0.057 kWh/GBa

Coroama et al. (2013) Bottom-up X X 2009 b0.2 kWh/GB

a Calculated by the authors based on the results provided in the cited study.

Fig. 1. Results of the reviewed studies, togetherwith the year their data refers to. Filled cir-
cles represent studies that took into account end devices; empty circles represent studies
that considered only the energy needed for data transmission. Legend: 1. (Koomey et al.
(2004); 2. Taylor and Koomey (2008): high end, as computed by the authors; 3. Taylor
and Koomey (2008): low end; 4. Weber et al. (2010); 5. Baliga et al. (2007): high end,
as computed by us depending on the distribution of Australian Internet traffic between
high bandwidth users and low bandwidth users; 6. Baliga et al. (2007): low end, as com-
puted by us; 7. Pickavet et al. (2008), computed by us based on the author's estimate of
worldwide Internet energy consumptiondivided by an estimate of theworldwide Internet
traffic for that year; 8. Lanzisera et al. (2012), computed by us based on the author's esti-
mate ofworldwide Internet energy consumption divided by an estimate of theworldwide
Internet traffic for that year; 9. Baliga et al. (2009), value for low access rates of a few
Mbits/s; 10. Coroama et al. (2013); 11. Schien et al. (2012), value approximated from
Figs. 6 and 7 of the paper; 12. Baliga, Ayre (2011), uncertain which year the data refers
to, probably 2011.
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(a) Energy intensity of the internet over time [23]. (b) Energy intensity of the internet for various scenarios
and estimation approaches [87].

Figure 2.4: Various results of internet energy intensity.

Hinton et al. [52] proposed a model that gains insight into the contribution of different parts of the
internet. The authors acknowledged the impact of data centres on energy consumption. Furthermore,
they made an interesting observation that for low throughput requests, the storage disk dominates the
energy consumption, while for high throughput requests the energy consumption is determined by the
servers and transport network.

Oxenløwe et al. [87] explored the various methods of energy intensity estimations and proposed
a standardised evaluation method for energy consumption and carbon estimation. Figure 2.4b shows
the comparison of various use-case scenarios and the type of estimation technique. The authors found
that the time-based methods are most useful now, but data-based models may become more important
as the network becomes increasingly energy efficient.

Baliga et al. [6] provided a model-based estimation of the energy consumption of the internet by
simulating the network. This study only takes limited resources into account and only provides a lower
bound to the energy consumption. A later study on optical IP networks found that the energy consump-
tion per bit of data is around 75 µJ at low access rates and decreases for higher access rates of 100
Mb/s to 2-4 µJ [7]. Lastly, the same authors analysed various types of access networks and found that
the optical access network is the most energy efficient [8].

Schien et al. [100] presented a bottom-up model for the energy intensity of the Internet that draws
from the current state of knowledge in the field and is specifically directed towards assessments of
digital services. The authors described the total energy consumption of the network for a service as

E(S) = t(S) ∗ 52W +GB(S) ∗ 0.052kWh/GB (2.1)

where t(S) is the time of the service, GB(S) the amount of data send and received by the service.
The authors also showed the variable energy intensity between continuous video streaming and text
retrieval, where video seems to consume more energy. Ullrich et al. [117] refined and confirmed their
methods based on exemplary data and found an internet intensity of 0.02169kWh/GB. Comparing this
with previous work, they found an increase in energy efficiency due to improvements in the network
and hardware. This shows that many optimisations are being deployed on the internet network which
increase energy efficiency. However, currently, the network still can have significant energy usage,
which could impact the energy efficiency of the deployment of a distributed system.

Measurements
We require reliable energy measurement techniques to effectively determine the energy consumption
of Cloud and Edge AI. There are many options to measure the energy consumption of cloud and edge
devices, but to provide a good comparison a correct strategy needs to be determined. Cabrera et
al. presented the Energy Measurement Library (EML)4 to simplify the variable measurement methods
[14]. However, it lacks support for most recent hardware configurations, showing the difficulty of a
single strategy across devices. Guo et al. [45] described various measurement methods for embedded
devices and Chang et al. [63] described a case study for the energy measurement of an ARM processor.

4See: https://github.com/HPC-ULL/eml

https://github.com/HPC-ULL/eml
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Furthermore, Damaševičius et al. [25] presented an analysis of energy measurement methods for
mobile devices and identified a set of challenges with current measuring techniques.

Cao et al. [15] looked into the accuracy of software-based energy measurement tools by quantify-
ing the error using a highly accurate power meter and found that the software-based methods are not
accurate and should take into account hardware variability and resource utilisation. Sallou et al. [97]
created a multi-platform utility platform called energibridge5, which allows energy measurements on
all recent hardware configurations. This project aimed to generalise energy measurements over multi-
ple environments, which is important for the comparability between devices. However, ARM CPUs or
certain Nvidia devices still lack support.

2.4.2. Research Gap
We summarised the related work on Green AI, Cloud AI and Edge AI in which we identified a research
gap. Mainly, the sustainability of Edge AI at scale in terms of energy consumption is an underinves-
tigated challenge. Even though Edge AI provides various advantageous properties, one of the main
reasons to choose that strategy is the financial relief for the deployment costs.

However, the question remains whether Edge AI provides a good alternative to Cloud AI from an
environmentally sustainable perspective. Moreover, we need to know whether it performs at scale and
in which use-case scenarios it provides an energy-efficient alternative. The knowledge gap therefore
lies in the absence of accurate energy consumption measurements for edge and cloud devices and a
comparison between them.

5See: https://github.com/tdurieux/EnergiBridge

https://github.com/tdurieux/EnergiBridge


3
Experimental Design

To fill the identified research gap, we describe the experimental design of the research. First, we
discuss the goal of this experiment, followed by the research questions that aim to fill the knowledge
gap. This is then followed by the methodology, which describes the physical and software setup of
the experiment, including all dependent, independent and confounding variables. Lastly, the statistical
methods that are performed to compare the dataset to come to conclusions are discussed.

Cloud AI generally has a larger energy and carbon footprint than Edge AI, due to expensive hard-
ware production costs and high base energy consumption. Generally, the cloud has a higher through-
put and better parallelisation, but in practice, it suffers from underutilisation [128], which can impact the
overall energy consumption. On the other hand, the high level of complexity of edge configuration with
many variables such as orchestration and resource limitation is hard to simulate and measure and often
does not give a complete overview of the real-world scenarios. Moreover, multiple factors determine
the energy footprint of Edge AI at scale, such as model optimizations and model usage.

Based on the related work we identify four scalability factors that could determine the energy ef-
ficiency of Edge AI deployment: environment, throughput, optimisation, and model-life strategy. The
environment represents the resource constraints of the device, determining the maximum model size,
maximum request processing duration, and maximum throughput. For the cloud environment, this is
generally abundant, while for edge devices this is limited. The throughput determines the utilisation
of the model and device, which could impact the energy consumed per request as some hardware
is better optimised for parallelism [128]. Optimizations for models can reduce the model size and en-
ergy consumption, and the quantization techniques provide lower inference speeds and better energy
efficiency of a model [33, 62]. The model-life strategies concern initial model download and periodic
verification and updating of the model. It can impact energy consumption at scale, because of the
distributed nature of Edge AI [10, 128].

3.1. Methodology
The goal of this experiment and the research questions are defined using the GQM guidelines [9]. The
general goal of this experiment is to: analyse the scalability factors of Edge AI for the purpose of
assessing the impact with respect to energy efficiency from the point of view of AI developers in
the context of SLM inference on the edge compared to the cloud.

This goal works towards gaining insight into (i) quantifying and evaluating the impact of the scala-
bility factors of Edge AI with respect to energy consumption. The research objectives, variables and
hypotheses are established and we perform an empirical study to answer the posed research ques-
tions. Particularly, energy consumption is measured for simulated requests to various deployed model
configurations. Lastly, a simulation of the overhead factors like model download and verification is sim-
ulated. This could help us (ii) to identify the scenarios in which Edge AI and Cloud AI are most energy
efficient. This could (iii) assist in a general conclusion of the energy efficiency of Edge AI at scale.

14
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Based on this goal, the following research questions are established:

• RQ1: What are the effects of architectural deployment strategies for SLMs in terms of
energy consumption at scale?
This question aims to find determining factors for the overall energy consumption of deployment
strategies by comparing Cloud AI and Edge AI. By measuring quantitative results we should be
able to create an overview of the trends for multiple scalability factors that potentially impact en-
ergy consumption. The goal is to provide insight into the energy efficiency of various deployment
strategies and their scalability.

– RQ1.1: How is the energy consumption impacted by the deployment environment?
The goal here is to find the energy difference between the cloud device and multiple edge
devices running the same model. This should give us insight into the relationship between
the hardware configuration and their energy efficiency for AI applications.

– RQ1.2: How is the energy consumption impacted by the quantization level?
The quantization levels have varying sizes and complexities and therefore energy efficiency.
This question aims to find whether the quantization levels impact the energy efficiency com-
pared to non-quantized F32/F16 models. Furthermore, we investigate whether an optimally
energy-efficient quantization level exists.

– RQ1.3: How is the energy consumption impacted by the throughput level of requests?
This looks at the direct scalability of requests throughput on a model. Evaluating the models
under varying levels of load could show their efficiency for deployment in variable utilisation
scenarios. We investigate the throughput levels from a minimum of ten requests per hour to
the respective maximum throughput per device.

– RQ1.4: How is the overall energy consumption impactedwhen overhead factors, such
as model distribution, verification, and updating are incorporated into the measure-
ment over time?
This question aims to incorporate the complete model lifecycle including distribution and
monitoring. We simulate the internet energy consumption that is required for various deploy-
ment strategies over the timespan of a year. The goal is to show the potential cost of using a
distributed deployment strategy compared to the original cloud strategy. We achieve this by
including the measurements in the simulation to find which deployment strategy is the most
energy-efficient at scale.

We hypothesise that Edge AI consumes less energy for smaller projects with low throughput and
low distribution over devices. However, once the project scales up this will not hold anymore and the
overhead could introduce significant increases in energy. Cloud AI for high-demand applications could
outperform Edge AI in energy efficiency. Although the decentralised architecture could save costs in
cloud expenses, the energy usage is increased and given as responsibility to the users.

3.1.1. Variables
This section describes the independent, dependent and confounding variables of this study. They are
summarised in Table 3.1 and provided with a description and scale or unit of the variables.

Independent variables
The main goal of this study is to find which devices used to deploy AI models, are the most energy
efficient. Therefore, we select multiple devices ranging fromHigh-Performance Computing (HPC) cloud
devices to small microcontrollers like the Nvidia Jetson Nano (Jetson) and Raspberry Pi devices (RPi4)
and (RPi5). Therefore the primary independent variable is the deployment environment, which sets the
resource limitations and computational abilities.

Quantization levels determine the model size and complexity and are therefore related to the en-
ergy consumption of the models comparing non-quantized (float32/16) with quantized (>=int8). We use
binary model files in GPT-Generated Unified Format (GGUF1) for the various quantizations as optimi-
sation, which are available pre-quantized on the model repository HuggingFace2. Quantization levels

1See: https://github.com/ggerganov/ggml/blob/master/docs/gguf.md
2See: https://huggingface.co/TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF

https://github.com/ggerganov/ggml/blob/master/docs/gguf.md
https://huggingface.co/TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF
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Table 3.1: The independent, dependent, and confounding variables of this study.

Class Name Description Scale
Independent Environment

Quantization
Throughput
Model-life

Cloud/Edge
GGUF
10/max throughput
Download, Update,
and Verify over internet

Devices
8-2 bits
Requests/hour
Strategy

Dependent Energy consumption Measure/Simulate Joules/request
Confounding Inference framework

Dataset
Model
EC measurement technique
Room temperature

llama.cpp
OpenOrca
TinyLLama 1.1B
AC, DC, Software
Celsius

determine the model size and complexity ranging from non-quantized float 32- and 16-bit to quantized
8- to 2-bit models.

Throughput is an important factor for scalability since optimal resource utilisation improves the en-
ergy efficiency of the deployment devices. Therefore, we test various throughput levels ranging from
ten requests per hour to the maximum throughput per respective device.

Lastly, themodel-life strategy estimates the energy consumption for the required internet traffic. This
includes model distribution, both for initial download and consequent updates of the model. Another
factor is the verification of Edge models by a centralised cloud model to verify consistency over all
distributedmodels. These variables are simulated and their consumption is estimated based on internet
energy intensity estimations of previous work.

Dependent variables
We evaluate the contributions of the scalability factors of the deployment of the model concerning the
energy consumption of the evaluation dataset. The energy consumptions are calculated based on the
power measurements over time and are then aggregated to find the energy consumption per request.
The measured variables are defined as follows:

• GPU power, quantifying the energy consumption of the GPU (if applicable).
• CPU power, quantifying the energy consumption of the CPU.
• Overall energy consumption, quantifying the total energy consumption of a device.
• Total energy consumption, including internet traffic energy costs.

Confounding variables
We identify that this study has confounding variables that could impact the results. The popularity of
LLMs has created a large number of possible AI frameworks. These projects tackle the problem slightly
differently and therefore the well-established LLM framework llama.cpp3 is used for all experiments
to mitigate this risk. This framework provides a low-resource solution for AI inference and therefore
is suitable for Edge AI applications. It allows inference on different CUDA versions for GPU-enabled
devices and offers seamless integration and quantization scripts for the GGUF format.

Although the dataset does not directly impact any energy consumption of the model, specific queries
have seen a variable energy consumption, which could impact the results of this study. Awell-established
open-source dataset is chosen to ensure reproducibility. The dataset is preprocessed to remove any
large queries as some overflowed the context of the models on lower resource devices4.

There is an increased trend in SLM development due to the unavailability of LLMs on consumer-
grade devices. Because of the resource limitations of edge devices, SOTA LLMs like GPT-4 and LLaMa2
are unable to fit. Therefore, this study opts to use a smaller implementation of the LLaMa model to

3See: https://github.com/ggerganov/llama.cpp
4See: github.com/ggerganov/llama.cpp/issues/4185

https://github.com/ggerganov/llama.cpp
https://huggingface.co/datasets/Open-Orca/OpenOrca
https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0
https://github.com/ggerganov/llama.cpp
github.com/ggerganov/llama.cpp/issues/4185
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Figure 3.1: Flow chart of the experimental setup.

make fit on a resource constraint device called TinyLLama 1.1B5 which is a retrained variant of LLaMa2,
providing a small yet accurate LLM for Edge AI purposes.

Another confounding variable is the lack of a unified measurement solution for the energy con-
sumption of all the devices. We compare the baseline consumptions of each measurement technique
to ensure consistency in the results and mitigate the risk of faulty measurements.

Ambient room temperature can have a small effect on the energy consumption of hardware [90].
This confounding variable ismitigated in this study by running the experiments in a temperature-controlled
room, which should alleviate any problems regarding the results.

Lastly, other variables like power, hardware utilisation, inference duration, and model size are
recorded to provide more insight for the final analysis.

3.2. Experimental Setup
This study proposes the experimental setup as shown in the flowchart in Figure 3.1. The main flow
consists of a single cloud environment and multiple edge devices that are directly measured on their
energy consumption based on a variable request rate of inferences per hour. Different quantization
levels are tested and compared to the non-quantized model’s energy consumption. This allows the
experiment to analyse the environment, quantization and throughput impacts on energy consumption.
Lastly, we model the overhead of edge devices, such as downloading, updating, model verification and
affiliated network energy consumptions in various configurations.

Firstly, the simulated actor is the starting point of the experiment and consists of a simple script
that sends requests over the host network to the deployed AI model on a server on each respective
device and model type. The simulated actor and the inference server are deployed using a Docker con-
tainer enabling them to send messages to each other. Furthermore, the models are downloaded from
Hugginface, which provides pre-quantized versions and the original model is converted to GGUF format
using the scripts provided in llama.cpp into 32- and 16-bit formats. Lastly, the overhead is not imple-
mented to measure, but this part of the study is simulated based on internet intensity measurements

5See: https://github.com/jzhang38/TinyLlama

https://github.com/jzhang38/TinyLlama
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Table 3.2: Cloud HPC and Edge devices used in the experiment.

Cloud HPC CPU GPU RAM Cooling
GreenServer AMD Ryzen 9 7900X 12-Core MSI RTX 4090 24G OC 64GB Active

Edge Devices
Raspberry Pi 4B 1.8GHz quad-core Arm Cortex-A72 None 4GB Passive fan
Raspberry Pi 5 2.4GHz quad-core Arm Cortex-A76 VideoCore VII 8GB Active
Nvidia Jetson Nano quad-core Arm Cortex-A57 MPCore Maxwell 128 CUDA cores 4GB Passive heatsink

from previous work. These simulations and the measured energy consumption are then aggregated
and used for analysis.

Hardware configurations
This experiment uses a range of devices and we summarise their hardware specifications in Table 3.2.
They consist of a single Cloud HPC and multiple edge devices with a variable range of limited hardware
configurations. The Cloud HPC called GreenServer has a top-of-the-line hardware configuration which
should be able to handle larger models with ease. This should emulate the Cloud environments since
it has abundant hardware availability. The range of edge devices includes GPU-enabled and CPU-only
devices with different memory capabilities and cooling techniques, which can all impact the energy
consumption of such devices [92].

Optimally, this study would include edge devices like consumer laptops and smartphones to pro-
vide better insight into a broader range of devices that are more frequently used by an average user.
However, the complexity of measuring these devices and the budget limits of this project only allow for
this set of devices, which should cover a wide enough range to simulate the collective group. These se-
lected devices allow for relatively easy measurements and are quick to set up for energy experiments.
We perform a small test to find the average duration and maximum throughput per hour for each device
so we can test these devices at various throughput interval levels.

Models
The models are retrieved from Hugginface, including the original non-quantized model and the quan-
tized versions of 8-bit and lower. For the original sized model, the conversion script of llama.cpp is
used to convert it into 32- and 16-bit GGUF format files since these were not readily available and are
required for llama.cpp and the comparability of the results.

Quantization algorithms map the weight values of a model from float values to integers, which
decreases the storage and computational requirements. We use pre-quantized models with GGUF,
which allows for the inference of various quantization levels. These quantization levels consist of type-
0 and type-1, in which type-1 includes slightly more information in the weights. Furthermore, we also
use K-quant6 levels, which are predetermined variations of the level of weight compression. Some bit
levels also have variations in the size indicated by Small, which indicates whether the quantized model
uses only the specified bit level or Large or Medium, which uses a higher bit level for some attention
layers.

Because quantization changes the precision of the weight values, it is expected that this loses
some accuracy. LLM accuracy is often expressed in perplexity, which quantifies the surprise factor that
a word is selected based on the context. No perplexity measurements are performed for the model of
this study, and this is considered out of scope as this research focusses on Green AI. However, GGUF
quantizations are compared on perplexity for other models, showing only a negligible decrease in the
accuracy of these models.

For inference, we use the llama.cpp server application to simulate a hosted AI application in a
docker container, which then gets the simulated requests from another container. To enable llama.cpp
to work on older hardware configurations like the Nvidia Jetson Nano, issues were created and resolved
to get it working on this specific hardware7. This however indicates the problem of the wide array of
hardware configurations that Edge AI needs to support in real-world applications.

6See: https://github.com/ggerganov/llama.cpp/pull/1684
7See: https://github.com/ggerganov/llama.cpp/issues/4099

https://github.com/ggerganov/llama.cpp/pull/1684
https://github.com/ggerganov/llama.cpp/issues/4099
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Figure 3.2: Experimental setups for measuring techniques.

Furthermore, we use the model size to perform the simulation of the internet distribution overhead
that is present for Edge AI. We use data-driven internet intensity measurements from previous work
and create various strategies for downloading, verifying and updating the model on the edge devices.
Due to the potential complexity of architectural strategies that can be applied to these steps, we only
simulate a simplified version to make a clear conclusion.

Measurements
The Cloud HPC uses the tool energibridge8 which utilises the internal measuring software of AMD for
the CPU and Nvidia-SMI for the GPU. These measuring techniques are reliable sources available on
all newer hardware configurations and do not require external measuring hardware. This measuring
technique only takes into account the CPU and GPU energy consumption, and ignores other energy
consumers, like for instance motherboard I/O and fans. However, due to the hardware configurations,
these consumptions are considered negligible.

For the Nvidia Jetson Nano, the tool jetson-stats9 allows you to read the energy consumption of
the complete board and therefore does not require external hardware as well.

Other edge devices, like the Raspberry Pi, do not have such built-in functionalities to measure their
energy consumption and therefore require a more complex setup with external measurement devices.
Therefore, Atorch J7-C10 is used as a DC power measurement device. Figure 3.2a shows the schema
of how this device is connected after a DC convertor and sends the energy data over Bluetooth which
is retrieved using the open-source program usb-meter11.

3.2.1. Normalization
This study assumes that the baseline energy consumption for all devices is constant and therefore
does not need to be removed from the data. This provides a good insight into the holistic energy
consumption of these deployment strategies by including server idle energy consumption. Because
this study utilises different energy consumption methods, it is important to validate the comparability.
Because the measurements are either DC- or software-based, we can use an AC measurement device
to compare the other methods by placing it before the DC converters. The AC power consumption
device can measure the full power range and comes with an error of a maximum of 2% [105]. However,
the energy loss in DC converters and the measurement technique for the Cloud HPC that only looks
at GPU and CPU power could exhibit a larger energy consumption difference between measurement
techniques. Unfortunately, the measurement device is not digital and therefore requires a setup as
shown in Figure 3.2b to automate the process. We take the measurements with intervals of 1 second
for around 30-60 seconds when they are tasked with 10 inference requests.

The resulting measurements are aggregated and averaged for both load and idle for which we de-
termined a threshold. The results are compared with the DC and software measurement averages to
find if there are significant differences between the measurement techniques. In Table 3.3 we show the

8See: https://github.com/tdurieux/EnergiBridge
9See: https://github.com/rbonghi/jetson_stats
10See: en.atorch.cn/
11See: https://github.com/rvandernoort/usb-meter

https://github.com/tdurieux/EnergiBridge
https://github.com/rbonghi/jetson_stats
en.atorch.cn/
https://github.com/rvandernoort/usb-meter
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Table 3.3: Results of comparison power consumption performance of measurement technique.

Method Device AC (W) DC/Software (W) Threshold (W)
idle load idle load

ATorch J76 RPi4 2.5 6.6 1.99 5.80 5
ATorch J76 RPi5 3.6 10.2 2.99 9.42 5
jetson-stats Jetson 1.6 6.9 1.68 6.50 5
energibridge Cloud HPC 90.2 142.1 83.8 111.5 100

resulting measurements for the AC and DC/Software measurements and the corresponding threshold.
The table shows comparable results between the measurement techniques, although the Cloud HPC
has higher deviations, due to the generally higher consumption and the higher error rate of the AC
adapter, this difference can still be considered negligible. Due to the lack of evidence that the mea-
surement techniques are inaccurate, we can compare the results of the various measuring techniques
without adjusting them.

3.2.2. Analysis strategy
We compare the experimental measurements based on the energy consumption per request. We first
perform a visual check of the data distribution to see if any preprocessing is required such as outlier
removal. After the preprocessing step, we perform the statistical tests as shown in Figure 3.3 in three
stages. The analysis starts with the Shapiro-Wilk test to check for normality in the data distribution,
which tests the null hypothesis that the distribution is from a normally distributed population. A Quantile-
Quantile (QQ) plot is then used to confirm conclusions about the normality of the distribution. We check
the variances of the distributions and their similarity to the normally distributed datasets. Levene’s test
assumes the null hypothesis that the population variances are equal between two distributions. The
boxplots of the distributions are compared visually to confirm the conclusions.

We use the appropriate statistical comparison tests to find significant differences to support the
answers to the research questions. In case both distributions are normally distributed and have equal
variances, the comparison is done with the ANOVA, because we want to compare the means across
multiple groups. If the distributions are normal but have unequal variances, we use the Welch ANOVA
t-test. If the data distribution is not normally distributed, we use the non-parametric Kruskall-Wallis test
to compare the distributions for statistical differences. When the results are mixed between groups we
apply the most conservative method that should maintain its statistical power.

The post-hoc Dunn’s test is performed to find the distributions that are more significant than the
others on non-parametric distributions, and the Games-Howell test is used on parametric distributions.
These are used to make conclusions about the similarity of the distributions. Lastly, we performed the
post-hoc test to find the effect size using Cliff’s delta, since this is a non-parametric test quantifying the
amount of difference between two groups. We use the effect magnitudes of >0 - negligible, >0.147 -
small, >0.33 - medium, >0.474 - large [51]. In case we observe a high effect size difference, we compare
the means to get an average scalar of the Relative Mean Difference (RMD) in energy consumption.
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equal variances
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Shapiro-Wilk QQ plot

statistical test

visual confirmation
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Figure 3.3: Flow chart of statistical tests
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3.2.3. Replication package
To allow for the reproducibility of this study, we publish a replication package online including all the
scripts to run and measure the models on the devices, preprocess the resulting data, and perform
the statistical analyses. Furthermore, we include the measured and aggregated data as well in the
package in case further research wants to use it. Some of the results are emitted from the analysis for
simplification and clarity of the study, but they can be found in this package12.

12See: https://zenodo.org/records/11065939

https://zenodo.org/records/11065939


4
Results

This section describes the outcomes of the experiments by analysing the resulting measurements and
simulations. First, we look at the environment as the independent variable, allowing us to compare
Cloud AI with Edge AI and Edge AI with each other. Then we look at the quantization level, followed by
the throughput level to answer the first three research questions. Lastly, we simulate the overhead of the
various deployment methods. These analyses are then combined to provide a general conclusion. For
more details on the exact results of this study, Appendix A shows the index of the replication package
where the statistical test results and measurement scripts are all located, which are emitted from the
results for simplicity.

We performed a small throughput test on each hardware configuration and the results from that
test are shown in Table 4.1. The lowest durations and highest throughputs are bold, while the highest
durations and lowest throughputs are underlined. We observe that the maximum throughput of the
HPC Cloud is significantly higher than any of the edge devices up to 10.000 to 100.000 requests per
hour, compared to the few hundred of the edge devices.

To test the scalability of these devices, we need to include throughputs up to the maximum through-
put of the device per hour. However, to accurately perform statistical tests, the experiments were
limited to a maximum of 5000 requests per hour. This is because the normality and comparison sta-
tistical tests can be significantly impacted by minor deviations from normality, which makes the test
results less trustworthy. However, by looking at the effect size of these distributions we should still

Table 4.1: Measured duration and throughputs per device and quantization level.
Dur.1: Average duration in ms, Thr.2: Average throughput in request per hour, OOM3: Out of Memory.

Device HPC Cloud Jetson Nano RPi5 RPi4
Quantization Dur.1 Thr.2 Dur. Thr. Dur. Thr. Dur. Thr.
F32 366 9836 OOM3 26708 247 OOM
F16 318 11320 OOM 19513 341 OOM

Q8_0 238 31859 23628 412 12035 224 38992 185
Q6_K 194 46652 29618 224 15906 464 40449 174
Q5_K_M 277 29243 16568 552 10824 382 35897 193
Q5_K_S 165 74945 25047 271 13103 271 36995 135
Q5_0 236 32016 25581 372 10636 581 34175 192
Q4_K_M 167 21557 24579 296 10204 390 34142 125
Q4_K_S 184 96975 21607 379 9840 549 30308 172
Q4_0 174 46666 13844 600 11137 441 30191 209
Q3_K_L 180 49468 21100 385 9826 732 30986 204
Q3_K_M 203 49468 22879 355 10132 372 28741 223
Q3_K_S 152 57423 21546 355 10166 384 31418 146
Q2_K 155 45326 17355 399 10350 385 35203 175

22
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(a) Throughput 5000 (top) & 1000 (bot). (b) Throughput 100 (top) & 10 (bot).

Figure 4.1: Bell curves of energy consumption per request for HPC Cloud F32.

(a) Throughput 5000. (b) Throughput 1000.

Figure 4.2: QQ plots of HPC Cloud for F32.

be able to determine statistical significance in scenarios with large sample sizes [111]. For compari-
son between edge and cloud devices, this sample size should therefore suffice as the edge devices’
maximum throughput does not come close to 5000 requests per hour.

4.1. Normality
We start with the analysis of the normality of the data using the Shapiro-Wilk test for all devices, which
is visually confirmed with distribution graphs and QQ plots. Firstly, the Cloud HPC is approximately
normally distributed for both original and quantized models for throughputs 1000, 100 and 10 but for
throughput 5000 the test shows evidence that the data does not come from a normally distributed
population. As discussed, this might be due to the sample size but by performing a visual analysis of the
distribution plots in Figure 4.1 we see evidence that throughput 5000 is indeed not normal, compared to
the lower throughputs. In Figure 4.2 we show the QQ-plot for throughput 5000 and 1000, which shows
deviation from the normal line only for throughput 5000. We emit further QQ plots from this chapter for
clarity, but they can be found in the reproducibility package. Even though the quantized model shows
less of a significant difference from normality, it still holds for all quantized versions.

For the Nvidia Jetson Nano (Jetson), the Shapiro-Wilk test states that most measurements seem to
not be from a normally distributed population. In Figure 4.3 we show the distributions of the Jetson, and
we see evidence of non-normal distributions, which is confirmed by the QQ-plots. For throughput 50, we
observe some varying results between quantization levels, which shows us that low-bit quantizations
are more likely to be consistent due to lower complexity.

For the Raspberry Pi 5 (RPi5) similarly, the Shapiro-Wilk tests show evidence that only throughput 10
is normally distributed. However, as shown in the distribution graphs in Figure 4.4, the distribution differs
between non-quantized and quantized, from which the latter seems more likely following a normal
distribution. Yet most distributions are confirmed to not be normal by the QQ plot. Only for throughput
50, we observe significance in the Shaprio-Wilk test, which shows that F32, F16, Q3_K_L and Q3_K_M are
normally distributed. However, for the RPi5 we observe some outliers in the data that could contribute
to this, however, by removing these from the dataset we potentially overfit the results, therefore, we
deal with the distributions as is.
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(a) Throughput 300 (top) & 100 (bot). (b) Throughput 50 (top) & 10 (bot).

Figure 4.3: Bell curves of the energy consumption per request for Jetson for Q4_K_M.

(a) Non-Quantized F32. (b) Quantized Q4_K_M.

Figure 4.4: Bell curves of the energy consumption per request for RPi5 for throughput 200.

(a) Throughput 125. (b) Throughput 10.

Figure 4.5: Bell curves of the energy consumption per request for RPi4 for Q4_K_M.

Lastly, for the Raspberry Pi 4 (RPi4), there is again evidence in the Shaprio-Wilk test that only the
distribution with throughput 10 is normal. In Figure 4.5 we show the distributions for various through-
puts from which we can confirm that all the other distributions for higher throughputs are not normally
distributed. The increased variance compared to the other devices might be due to the limited cooling
capabilities of this device, which could thermal throttle more easily than the other devices and result in
outliers. In the QQ plots, we confirm that only throughput 10 is normally distributed.

4.2. Environment (RQ1.1)
First, we look at the impact of the environment on the energy consumption of a deployed model. The
initial comparison is between all edge devices and the cloud, followed by a comparison between all
edge devices with each other. The first should determine a difference in energy consumption between
using the cloud and edge, while the next looks if a specific edge device of this set is optimal.

4.2.1. Edge vs Cloud
For all quantized models, we compare the results of all devices against each other. We emit some
of the quantized results for simplicity, however, the significance is present for all quantization levels.
For throughput 10, the variances between edge and cloud are compared using Levene’s test, which
shows significant differences between the variances. In Figure 4.6 we show the boxplot of the energy
consumptions of all devices, from left to right respectively, Cloud HPC, Jetson, RPi4, and RPi5. This
confirms that variances are unequal as the boxes and their ranges do not overlap.

It must be noted that we can only look at the difference between RPi5 and HPC for quantizations F32
and F16 because the other edge devices ran out of memory for these larger variants of the model. We
already established that edge measurements were not normally distributed for throughputs above 10,
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Figure 4.6: Box plot of energy consumption variances of all devices (HPC, Jetson, RPi4, RPi5) on Q4_K_M with throughput 10.

therefore, we used the Kruskall-Wallis test to determine similarity. Similarly to the quantized levels for
the Cloud HPC and the RPi5, this unequal variance occurs for the non-quantized versions. Therefore,
for all throughput 10, the Welch-ANOVA test is used for the comparison.

Table 4.2 lists the results of the relevant statistical test for each quantization level (Quant.) and
throughput (Thr.), where the statistic (Stat.) or F value is the ratio of the between-group variance to the
within-group variance, where a large value bigger than 1 suggests high variability. Furthermore, the
p-value represents the likelihood that the distributions are drawn from the same population, where if
p < 0.05 this hypothesis can be rejected, which is displayed in bold. Lastly, the average Relative Mean
Difference (RMD) is calculated showing the effect size between cloud and edge devices.

For all non-quantized and quantized levels, there is enough evidence that shows a difference in
energy consumption between the tested devices. Dunn’s post-hoc test shows that the Cloud HPC is
the device that impacts the results the most by having a significantly higher energy consumption than
edge devices. In Figure 4.7 we plot the energy consumptions of all the devices for quantization Q4_K_M
with throughput 100. The blue line, representing the energy consumption of the Cloud HPC, shows a
large difference with the edge devices (Jetson in orange, RPi5 in green, and RPi4 in red), while these
edge devices yield similar consumption patterns.

Looking at the post-hoc Cliff’s delta for the effect size, we observe negligible effect size difference
between RPi4 and RPi5 for a throughput higher than 10, while all other pairs have large deltas. Looking
at the RMD between the edge and cloud on average we observe a 2-12x increase in energy consump-
tion of the cloud. This means the Cloud HPC device consumes significantly more energy than the edge
device for low-throughput applications. To test the same for higher throughput, the requests need to be
distributed over multiple devices, multiplying the energy consumption of these devices and increasing
the overhead.

Table 4.2: Statistical test results of Edge vs. Cloud.

Quan. Thr. Devices Test Stat./F p-value RMD
F32 100 RPi5/HPC Kruskall-Wallis 136.751 1.367e-31 2.6x
F32 10 RPi5/HPC Welch-ANOVA 90.117 0.5e-5 7.0x
F16 500 RPi5/HPC Kruskall-Wallis 318.189 3.592e-71 1.7x
F16 100 RPi5/HPC Kruskall-Wallis 148.955 2.933e-34 5.1x
F16 10 RPi5/HPC Welch-ANOVA 94.971 0.4e-5 8.5x

Q8_0 100 all Kruskall-Wallis 283.474 3.750e-61 9.0x
Q4_K_M 100 all Kruskall-Wallis 278.973 3.533e-60 9.0x
Q4_K_M 50 all Kruskall-Wallis 143.826 5.656e-31 11.6x
Q4_K_M 10 all Welch-ANOVA 57.126 4.444e-09 8.8x
Q2_K 100 all Kruskall-Wallis 275.495 1.997e-59 7.0x
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Figure 4.7: Energy consumption of all devices for Q4_K_M with throughput 100.
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Figure 4.8: Box plot of variance of edge devices (Jetson, RPi4, RPi5 rsp.) of Q4_K_M with throughput 10.

4.2.2. Optimal Edge device
Next, we investigate the inter-edge devices’ energy efficiency to find the effect of edge device selec-
tion. We only investigate quantized models, because of our device set only the RPi5 can run the
non-quantized version. Similarly to the previous section, for throughput 10, the Welch-ANOVA test is
used due to the unequal variances found in Levene’s test. We verified this test by plotting the boxplot
of all edge devices using the Q4_K_M quantization with throughput 10 in Figure 4.8. Although we can
see a few similarities between the boxes from both Raspberry Pi devices, the box from Jetson confirms
the hypothesis that the variances are unequal.

Table 4.3 shows the results of the statistical differences test, which show that for all quantization
levels, there is a significant difference in energy consumption between edge devices. According to
the respective post-hoc tests, the RPi4 and RPi5 have similar energy consumption distributions, while
Jetson significantly differs from both Raspberry Pi devices. We plotted the energy consumption again
for Q4_K_M for throughput 100 for all edge devices in Figure 4.9. We observe the same conclusions as
the post-hoc test showed, where the Jetson has a consistently lower energy consumption than both
Raspberry Pi devices.

Looking at the Cliff’s delta post-hoc test, we observe large differences in effect size between the
Raspberry Pi devices and the Jetson. By comparing the medians, we observe a decrease in energy
consumption for the Jetson of about 2-3x compared to the RPi4 and RPi5. This shows that GPU-
enabled devices are more energy efficient per request than CPU-only devices confirming findings from
previous works.

Table 4.3: Statistical test results of comparing only the edge devices.

Quan. Thr. Test Stat./F p-value RMD
Q8_0 100 Kruskall-Wallis 106.291 8.301e-24 2.1x
Q4_K_M 100 Kruskall-Wallis 97.787 5.832e-22 1.8x
Q4_K_M 50 Kruskall-Wallis 56.591 5.145e-13 1.6x
Q4_K_M 10 Welch-ANOVA 36.872 0.2e-5 2.1x
Q2_K 100 Kruskall-Wallis 92.681 7.493e-21 1.7x
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Figure 4.9: Energy consumption of edge devices for Q4_K_M with throughput 100.

Conclusion
We have looked at the difference in energy consumption between cloud and edge devices, where
edge devices use significantly less energy than the cloud for low throughputs. Some edge devices
consume even less energy than others, especially if they are GPU-enabled compared to CPU-only.
Better hardware configurations for the edge seem to result in lower energy consumption for higher
throughputs.

Summary 1

RQ1.1: How is the energy consumption impacted by the deployment environment?

For low throughput scenarios, edge devices consume significantly less energy for inference
than the cloud. This means that applications without high throughput are recommended to
use an edge device for a smaller energy footprint. The type of edge device can impact energy
consumption and should be selected based on expected throughput and quantization level. This
study found that CPU-only edge devices consume more energy per request than GPU-enabled
edge devices.

4.3. Quantization (RQ1.2)
The next variable we look at is the quantization level and its effect on energy consumption. First, we look
at the difference between non-quantized 32- and 16-bit models and all quantized versions to see if there
is any indication that quantization reduces energy consumption. Next, we compare each quantization
level with each other to see again if any quantization is optimal.

4.3.1. Non-quantized vs Quantized
The SLM TinyLLama 1.1B is significantly smaller than its base model LLaMa 2 7B, making it suitable
for edge device deployment. However, the original unquantized versions still exceed some of these
devices’ memory capacities. This shows that models and device configurations are still a challenge to
the broad deployment of edge devices. Moreover, more recent edge devices have less limited resource
constraints and manage to run the original unquantized models. Therefore, we can compare the impact
of quantization with the HPC Cloud and RPI5 devices.

Because the distribution of the Cloud HPC with throughput 5000 was not normally distributed, we
used Kruskall-Wallis to test for equality. Furthermore, the HPC measurement distributions for through-
put 1000 and lower are normally distributed, and therefore we perform Levene’s test to compare the
variances to determine the appropriate statistical test. The results of the test show that only for the
non-quantized F32 and F16 models for throughput 1000 there is evidence that the variances are un-
equal compared to the quantized versions. This is confirmed by the boxplots, which are emitted for
clarity, but show that HPC Cloud has unequal variances between quantization levels only for through-
put 1000. This means we use Welch-ANOVA for this throughput, while we use regular ANOVA for the
lower throughputs.

In Table 4.4 we show the results of all the respective tests to compare the non-quantized with
the quantized versions. We observe that the results become significantly different only for the higher
throughput levels. This could indicate that using any form of quantization on the HPC Cloud can reduce
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Table 4.4: Non-Quantizated (F32,F16) vs. quantized statistical test results.

Device Throughput Test Statistic/F p-value RMD
HPC 5000 Kruskall-Wallis 2485.523 0.0 1.2x
HPC 1000 Welch-ANOVA 10.008 3.823e-21 1.1x
HPC 500 ANOVA 5.308 0.005 1.0x
HPC 100 ANOVA 0.0745 0.999 1.0x
HPC 10 ANOVA 0.005 0.999 1.0x

RPI5 400 Kruskall-Wallis 805.533 9.020e-164 2.5x
RPI5 200 Krusakll-Wallis 339.499 1.252e-64 2.4x
RPI5 100 Kruskall-Wallis 150.133 1.938e-25 2.1x
RPI5 50 Kruskall-Wallis 69.409 1.031e-09 1.7x
RPI5 10 ANOVA 0.645 0.812 1.2x

energy on higher loads and does not impact energy consumption for low utilisation scenarios.
To confirm the statistical difference we found for throughput 5000, we use Dunn’s post-hoc test

and observe that the F32 has the most difference with all other models, specifically with the quantized
models. The 16-bit version also has a significant difference but with a lower impact. We use the Games-
Howell post-hoc test for the other throughput of 1000 and 500, which finds that only the 32-bit version
significantly impacts the statistical difference. In Figure 4.10 we plot the various energy consumptions
of the Cloud HPC, where we show the quantization levels F32 in blue, F16 in orange and Q4_K_M in
green. We can see that F32 has a higher energy consumption for high throughputs, while we observe
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(b) Throughput 500 (top) & 100 (bot).

Figure 4.10: Energy Consumptions of HPC with F32 (blue), F16 (orange), Q4KM (green) for various throughputs.
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less difference for lower throughputs. This indicates that using any form of quantization on the F32
version can reduce energy consumption.

Because most throughput levels for the RPi5 are not normally distributed, we only have to test the
variance of throughput 10 and both Levene’s test and the box plots do not show evidence that the
variance is unequal, therefore ANOVA is applied for this throughput level to test for equality.

We show in Table 4.4 that all throughputs higher than 10 have evidence of being significantly differ-
ent for the RPi5. The results of the post-hoc Dunn’s test confirm this by showing that F32 and F16 have
the most significant difference, although for throughput 50 this significance can only be attributed to F32.
This means that using quantization on the RPi5 is observed to have significant effects on the energy
consumption of the model. In Figure 4.11 we plot the energy consumption of the RPi5 again for the
quantization levels. We observe higher differences in energy consumption of the quantization levels
for lower throughputs. Furthermore, the impact of quantization is significant for lower throughputs on
the edge device compared to the Cloud HPC.

Looking at Cliff’s delta for the effect size post-hoc test, we observe small and medium differences
for the Cloud HPC on throughputs higher than 500, but only between the F32 level with F16 and Q4_K_M.
The energy consumption of this non-quantized model is only slightly larger than the quantized version
according to the RMD. For throughput 500 and lower, the effect size is considered negligible.

For the RPi5, we observe larger effect size differences and for all throughput levels. Comparing
the medians, we find that quantization can reduce energy consumption by 1-3x. This shows that any
quantization is more effective on edge devices, especially on higher throughputs.
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(c) Throughput 50.
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(d) Throughput 10.

Figure 4.11: Energy Consumptions of RPi5 with F32 (blue), F16 (orange), Q4_K_M (green) for various throughputs.
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Table 4.5: Quantization statistical test results.

Device Thr. Test Stat./F p-value RMD
HPC 5000 Kruskall-Wallis 715.278 2.861e-146 1.0
HPC 1000 ANOVA 1.417 0.157 1.0
HPC 100 ANOVA 0.067 0.999 1.0
HPC 50 ANOVA 0.006 0.999 1.0
HPC 10 ANOVA 0.005 0.999 1.0

Jetson 300 Kruskall-Wallis 70.790 8.645e-11 1.0
Jetson 200 Kruskall-Wallis 48.191 1.320e-06 1.0
Jetson 100 Kruskall-Wallis 15.869 0.146 1.0
Jetson 50 Kruskall-Wallis 20.221 0.042 1.0
Jetson 10 ANOVA 0.328 0.978 1.0

RPI5 400 Kruskall-Wallis 139.919 1.692e-24 1.1
RPI5 200 Kruskall-Wallis 49.0267 9.358e-07 1.0
RPI5 100 Kruskall-Wallis 20.984 0.034 1.1
RPI5 50 Kruskall-Wallis 8.440 0.673 1.0
RPI5 10 ANOVA 0.024 0.999 1.0

RPI4 125 Kruskall-Wallis 40.711 2.702e-05 1.1
RPI4 100 Kruskall-Wallis 22.648 0.020 1.1
RPI4 75 Kruskall-Wallis 10.863 0.455 1.0
RPI4 50 Kruskall-Wallis 9.681 0.559 1.1
RPI4 10 ANOVA 0.089 0.999 1.0

4.3.2. Optimal Quantization level
Because quantizedmodels are smaller in model size, we can test these across a wider range of devices.
We want to compare only the quantized models regarding energy efficiency to see if any quantization
level is performing optimally for all the devices.

We look again at the equality of the variances between quantizations. For the Cloud HPC, we do
not observe any statistically significant difference in the variances for all throughputs lower than 5000 in
Levene’s test and the corresponding boxplot. For all the edge devices there are no signs of significant
differences between variances for throughput 10, therefore ANOVA is used for all normal distributions.

In Table 4.5 the results of each respective statistical difference test for just the quantized models on
all devices are shown. We observe significant differences in all the devices for the throughputs closest
to the maximum throughput per hour. For the Cloud HPC, we already observe this for throughput 5000
and in Figure 4.12 we show the Locally Weighted Scatterplot Smoothing (LOWESS) [83] graph of the
respective energy runs for the quantizations. Because most distributions were not normally distributed,
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Figure 4.12: Energy Consumption per request of Cloud HPC for all quantizations.
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0 10 20 30 40 50
Throughput (requests)

175

200

225

250

275

300

325

To
ta
l e

ne
rg
y 
co

ns
um

pt
io
n 
(J)

0 2 4 6 8
Throughput (requests)

650

700

750

800

850

To
ta
l e

ne
rg
y 
co

ns
um

pt
io
n 
(J)

(c) Throughput 50 (top) & 10 (bot).

Figure 4.13: Energy consumption Jetson for all quantizations.

we used this smoothing function to encompass the non-parametric shape. If the figure labels are
bold, the difference from the statistical test showed significance. We only show one of the insignificant
results to compare and emit the other plots for clarity, but they can be found using the reproducibility
package. Take into account the y-axis, which does not start at zero to be able to compare the smoothing
lines. If the smoothed lines indicate higher energy consumption, and the lines are comparable then the
quantization levels are less likely to significantly differ.

We observe that the energy is lower per request for higher throughputs, but they still show higher
variability. This confirms the high variability on higher throughputs, while we observe no significant
difference for lower throughputs. For the HPC with throughput 5000, the post-hoc using Dunn’s test
shows that most quantization levels are significantly different, with only a few comparable exceptions.
This means that the choice of quantization level can impact the energy efficiency for higher throughputs.
However, Cliff’s delta post-hoc test shows only a few pairs of quantizations with a negligible effect size
difference, which we additionally observe with the average RMD of 1.

If we look at the Jetson, we observe some inconsistent results. For throughput 100, the p-value
does not show enough evidence to reject the hypothesis that the distributions of the quantizations are
different. For all higher throughputs and throughput 50, this is the case. However, let’s account for
the F value, which represents the ratio between inter-difference and between-difference and should
be near 1. This is for both throughput 100 and 50 relatively high, which means there is variability and
evidence that the quantizations have different energy consumptions.

In Figure 4.13 we plot the energy consumptions of each quantization level, we can see the high
derivation of one particular quantization level, but this does disappear with lower throughput. We see
this back in the results of Dunn’s test where Q5_0 impacts the results the most, but for throughput 100
this difference is lower resulting in too low evidence to reject the null hypothesis. For throughput 300,
however, there are more differences between quantization levels, but Q5_0 is still the most prominent.
Looking at Cliff’s delta for this quantization level, we see it has a small impact on the difference in effect
size for all throughput levels, but we find no significant deviation in the RMD as it averages to 1.

Another observation we make is that the optimal quantization level between devices differs, which
could mean that the best quantization is device-dependent and cannot be generalised to select one
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(c) Throughput 100 (top) & 50 (bot).

Figure 4.14: Energy consumption RPi5 all quantizations.

optimal level for all devices.
For the RPi5, we observe a significant difference between quantization levels from throughput 100

and higher. Figure 4.14 shows the smoothed energy consumptions per quantization level of the RPi5,
which again has a higher differentiation on higher throughputs and the inconsistency of the energy
efficiency of the quantization levels. Dunn’s post-hoc test shows a high impact of many of the quanti-
zation algorithms, while for lower throughput this is reduced to only a few impactful levels. Cliff’s delta
confirms this, showing a single medium and various small differences in effect size, about 1.1x higher
according to the medians for high throughput, while for lower throughputs less effect size differences
occur as most are negligible. Interestingly, even the inter-device results show inconsistency in the op-
timal quantization level. This means it is important to account for both device and throughput when
choosing a quantization level.

Similarly for the RPi4, we observe for throughputs 125 and 100, a significant difference between
the energy consumption of quantizations. As shown in Figure 4.15 and in the results from Dunn’s test,
for the higher throughputs there is more variability between quantization levels, while this dissipates
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Figure 4.15: Energy Consumption RPi4 all quantizations.
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on lower throughputs. Cliff’s delta shows in the post-hoc test that for all throughputs, there are pairs of
quantization levels with different effect sizes, with an average RMD of 1.1.

We observe that between the edge devices, some quantization levels such as Q8_0, Q6_K, and Q5_0
are on the higher end of the energy consumption per request, while Q5_K_S, Q4_K_S, and Q3_K_S are
on the lower end. This is expected, since the 0 versions are based on older techniques and the K_S
versions are small by design, logically reducing their consumption. However, for the HPC environment,
some larger models seem to have a better energy efficiency, which could be due to better energy
performance under higher load.

Finally, in Figure 4.16 we plot the average energy consumption per request against the model size
and are labelled with the respective quantization level. We can see a variable average energy con-
sumption per model type and size and the variability between devices and throughputs. This shows
that the quantizations do not consistently or logically based on the model size, reduce energy consump-
tion. Based on these results, the test did not show enough evidence to make any conclusions on the
optimal energy-efficient quantization level.

Conclusion
The Cloud HPC has a statistically significant lower energy consumption when using quantized models
for higher load. Only on high throughput do there exist statistical differences in energy consumption
between quantized models. This conclusion is similar for the edge devices, yet the throughput levels
where quantization starts impacting the energy consumption are lower. Specific models perform better
or worse on the edge than the cloud, but they show inconsistent results and are device- and throughput-
dependent.
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(b) Cloud HPC device with throughput 100.
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Figure 4.16: Average energy consumption vs. quantized model size.
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Figure 4.17: Average durations per device vs. quantization level.

Summary 2

RQ1.2: How is the energy consumption impacted by the quantization level of the model?

Applying any quantization technique over standard non-quantized F32 and F16 bit models re-
duces energy consumption significantly on both cloud and edge devices for high throughputs.
There is some evidence that for higher throughputs the choice of quantization level matters for
all devices. There is no clear indication of the best quantization model, but this depends on the
device and throughput.

4.4. Throughput (RQ1.3)
HPCs have a much higher computing capability as we’ve seen in the hardware specifications and
this is reflected in the maximum throughput capabilities of all devices. Cloud AI can have 13-776x
more throughputs per hour than Edge AI based on the throughput test we showed at the start of this
chapter. The throughput for these applications significantly impacts the energy consumption of these
devices, because underutilised hardware can produce idle costs that could impact the energy efficiency.
Especially for HPC hardware, these costs can be quite high due to having large base power draws.

In Figure 4.17 we plot the the average duration of a request for each device and for each quantization
level, which shows us significant reductions from the non-quantized F32 and F16 models. For the
quantized levels, only a slight decrease in duration time is present for the edge devices, while this is
observed to be of higher impact on the Cloud HPC, which is shown separately in Figure 4.17b.

Another observation we make is the hard resource limitation of these models, and even though the
chosen model and inference framework is designed for Edge AI applications, some devices like the
RPi4 and Jetson run out of memory executing the non-quantized versions of the model.

Due to the nature of the experiment throughputs are a bit harder to compare as the sample size
between the datasets varies as the distributions are made by energy per request. However, we can
still apply Kruskall-Wallis in this situation to compare them. We want to compare the high and low
throughputs on the Cloud HPC and the edge devices to find the deployment method that fits a specific
situation.

In Table 4.6 you can see that all devices show evidence that the energy consumption is affected by
the actual model throughput. We can observe that an increase in the maximum throughput of a device
results in a more significant difference in energy consumption. This can be confirmed with Dunn’s
post-hoc test, which shows that the maximum throughput and our minimum throughput of 10 per hour
impact these results the most.

Cliff’s delta post-hoc test shows large effect size differences between all the throughput levels. Cal-
culating the median difference, we find that between the minimum throughput per hour and the max-
imum per device for the Cloud HPC, the energy per request is around 27-33x smaller on maximum
throughput. The Jetson, RPi5, and RPi4 have an average RDM of around 3x. This shows that both
throughput level and energy efficiency based on usage are device-dependent.
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Table 4.6: Throughput statistical test results.

Device Quant. Test Stat./F p-value RMD
HPC F32 Kruskall-Wallis 3326.876 0.0 26.9x
HPC F16 Kruskall-Wallis 3485.239 0.0 32.9x
HPC Q4_K_M Kruskall-Wallis 2721.836 0.0 33.9x

Jetson Q4_K_M Kruskall-Wallis 69.006 3.679e-14 2.4x
RPi5 Q4_K_M Kruskall-Wallis 170.950 6.541e-36 3.7x
RPi4 Q4_K_M kruskall-Wallis 34.782 5.150e-07 2.2x

We show in Figure 4.18 the energy consumption per request per device for Q4_K_M, however for
all other quantization levels the same observations can be made. This graph shows the high impact
of throughput especially on high-end hardware devices, while for the lower-end devices, this becomes
less relevant due to their inherent limitations. Furthermore, low-throughput scenarios like throughput
10 jump out because they consume much more energy than the higher throughputs. This is because
we include the idle energy cost for a holistic view of the deployment, which means low-throughput
applications reduce energy consumption by being deployed on edge devices, but they still benefit from
higher throughput.

Conclusion
These results indicate that the throughput of the deployed model significantly impacts the energy con-
sumption per request. An increased throughput overall means less energy consumption per request,
however, the overall consumption of the model does increase, but it can serve a high number of user
requests. A reduced throughput means more energy consumption, which becomes more prevalent on
high-end computing devices since their idle energy consumption is generally higher than on an edge
device.
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Figure 4.18: Energy Consumption for different throughputs for all devices on Q4_K_M.
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Summary 3

RQ1.3: How is the energy consumption impacted by the throughput level of requests?

Higher throughput on a single model of any quantization on any device results in lower en-
ergy consumption per request. Cloud AI has 13-776x higher throughput per hour than Edge AI
and therefore can serve more throughput. Some quantization levels provide higher throughput,
which means they can reduce energy in case of high throughput. Low throughput scenarios
use significantly more idle energy and depending on the device could impact the overall energy
consumption.

4.5. Overhead (RQ1.4)
Since the Cloud HPC has significantly higher throughput, Edge AI would needmultiple devices to satisfy
the demand. This increases the distribution complexity.

As described in chapter 3, edge deployment comes with some overhead factors that are frequently
overlooked, but should be included to create a more holistic view of the various deployment strategies.
To include these overhead factors in the comparison, we simulate the energy consumption based on
the latest work on internet energy intensity estimations [117].

Furthermore, we model the energy consumption individually for each overhead factor, for which
different strategies are applied. The resulting energy consumption simulation is shown in Figure 4.19
and is calculated based on the model size of a Q4_K_M of 0.67GB, an average message size of 5KB
and the throughput levels that we measured before. The energy consumption is simulated over the
timespan of a year on the x-axis for which the amount of used devices increases linearly.

The first graph in Figure 4.19a simulates the initial download of the model for the distribution to the
edge devices. We model various strategies in which a variable number of devices download the model.
Logically, we see that a linear increase in devices increases energy consumption linearly as well.

Next is the periodic verification of the model, which means that the model sends a request to a Cloud
instance to check for the accuracy of the distributed model. We only modelled the actual inference on
a cloud device, using the average energy consumption of the Q4_K_M at the relevant throughput level.
This means that the idle energy consumption of the measurements is not included in the simulation.
The strategies vary from a verification once per month to once per day. We see in Figure 4.19b that
this results in exponential energy consumption once the amount of devices scales up.

Naturally, offloading more requests from the cloud to the edge leads to lower energy consumption
due to the lower consumption for edge devices, however, with only a few deployed devices, the cloud
instancewill have significant idle costs waiting on the verifications. When a high number of edge devices
are deployed, the energy consumption per verification is expected to decrease due to optimisations.
The strategy to verify can therefore have an impact on the energy consumption of the verification model.

Lastly Figure 4.19c shows the energy costs for different update strategies. Similar to the verification
step it is exponential with the increasing devices and the strategy has a significant impact. However,
this step consumes more energy since it periodically verifies and redownloads the model.

2 4 6 8 10 12
Time (months)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

En
er
gy
 C
on
su
m
pt
io
n 
(Jo

ul
es
)

1e9
Download 5000
Download 1000
Download 100
Download 10

(a) Download simulation ranging
from 10 to 5000 total downloads.

2 4 6 8 10 12
Time (months)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

En
er
gy

 C
on

su
m
pt
io
n 
(Jo

ul
es
)

1e7
Verfiy 365
Verfiy 24
Verfiy 12

(b) Verification simulation ranging
from once a month to once a day.

2 4 6 8 10 12
Time (months)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

En
er
gy
 C
on
su
m
pt
io
n 
(Jo

ul
es
)

1e9
Update 365
Update 24
Update 12

(c) Update simulation ranging
from once a month to once a day.

Figure 4.19: Download, verify and update energy consumption cost with varying strategies.



4.5. Overhead (RQ1.4) 37

It is possible to use a more dynamic strategy where based on the heuristics of the verification step
some algorithm or model decides to perform an update, in case of drift or other similar scenarios.
However, this is complex to model accurately and therefore not included in this simulation. However, it
should be possible to include these scenarios in specific use cases to see the energy effect compared
to these static scenarios.

Next, we investigate the impact of these overhead factors on the total energy consumption if we
include them in the results from the previous measurements. In Figure 4.20 we show the combined
energy consumption for Q4_K_M model between an edge device and a cloud device for various through-
puts. Due to the limited throughput for edge devices, we modelled this by including more edge devices
to achieve the wanted throughput. The figure shows that the accumulated energy consumption for
the cloud is higher for low-throughput scenarios. However, at some point, the overhead of the edge
devices impacts the total energy consumption and Edge AI deployment becomes less energy efficient.
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(a) Throughput 10: 1 edge, 1 cloud.
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(b) Throughput 100: 1 edge, 1 cloud.
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(c) Throughput 1000: 10 edge, 1 cloud.
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(d) Throughput 5000: 50 edge, 1 cloud.

Figure 4.20: Total energy consumption including the overhead comparison between Cloud and Edge for various throughputs.

Conclusion
This simulation has shown us the often overlooked energy impact of the overhead factors of Edge AI,
such as downloading, verifying with a base model, and updating the model over time. We showed
that if you include these variables with the measurements we took of these devices, there is a certain
throughput level fromwhich Edge AI becomes the less energy-efficient deployment strategy. This is due
to the resource limitations and the highly optimised Cloud HPC infrastructure, and to achieve a certain
level of throughput, edge devices need to be duplicated which increases this overhead significantly.
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Summary 4

RQ1.4: How is the overall energy consumption impacted when overhead factors, such
as model distribution, verification, and updating are incorporated into the measurement
over time?

Based on simulated overhead factors, the deployment strategy can significantly impact the en-
ergy consumption of Edge AI deployment and model updating seems to have the highest impact.
If we include the factors with the measurements of these devices, we see that once the deploy-
ment scales up, Edge AI is observed to use more energy than its cloud counterpart, while Edge
AI consumes less for lower throughputs.

Summary 5

RQ1: What are the effects of architectural deployment strategies for SLMs in terms of
energy consumption?

Based on the combination of the measurements of the experiment with different scalability fac-
tors and the simulated overhead factors, we observe that throughput and device resource re-
strictions are the most influential on the scalability of edge devices. It seems that Edge AI is
only energy efficient in specific use cases, which are low-distribution, low-demand applications
for which Edge AI significantly outperforms the cloud, but in the opposite scenario, cloud deploy-
ment is more efficient since it is better optimised for parallel performance.



5
Discussion

In the previous chapter, we showed some observations and made conclusions based on these results.
In this chapter, we discuss the implications of these observations for AI developers, the threats to the
study’s validity, and some recommendations for future work.

5.1. Implications
In RQ1.1 we observe that edge deployment uses less energy than cloud deployment for low-throughput
applications. This means Edge AI could reduce energy consumption due to its lower computing costs
depending on the user scenario. However, once the scenario scales up to higher throughput and dis-
tributions the results of RQ1.4 showed that Edge AI becomes less energy efficient due to the resource
limitations of edge devices and better optimizations of HPC devices.

RQ1.2 finds that applying any form of quantization reduces energy consumption. Due to the small
impact on accuracy and the shown reduction in energy consumption, quantization is considered a good
practice for sustainable AI deployment. More investigation is required into the optimal quantization
level, which can depend on the use case. AI developers need to investigate their scenarios and find
the optimal quantization level.

In RQ1.3 we observed that higher throughput reduces energy per inference for both Cloud and
Edge AI deployment. This could indicate that cloud deployment could be more energy efficient for
high-demand applications due to its high resource availability and higher maximum throughput than an
Edge AI device. However, this means that for low-demand applications, the Cloud HPC environment
uses significantly more energy than edge devices, which indicates that Edge AI is more energy effi-
cient in these scenarios. AI developers need to account for the expected throughput and adjust their
configuration accordingly.

The last observation in RQ1.4 confirms that once the demand and amount of inferences scale up,
overhead factors like distribution, periodic verification, and updates impact the overall energy consump-
tion. Our simulation shows a turning point for which deployment strategy is the most energy efficient.
Edge AI is observed to consumemore energy thanCloud AI in high-demand, high-distribution scenarios.
This means that scalability is an effective factor in determining the sustainability of an AI deployment
strategy. AI developers need to account for the overhead factors, which could add considerable energy
consumption.

This results in edge deployment strategies being only environmentally sustainable in low-demand,
low-throughput applications compared to cloud deployment. Developers should utilise quantization
techniques if possible and find the most resource-optimal devices or optimise the model to the device
for the best efficiency. For high-demand, high-throughput applications, cloud-based deployment strate-
gies are deemed more efficient in terms of energy consumption and provide better scalability for more
precise, complex and efficient models. This means that developers need to consider scalability when
deciding on deployment strategies for their AI applications.

Next, we address the question of the hypothetical IT company from the introduction about which
deployment strategy is most environmentally sustainable for their use cases of a coding assistant model,
and their customer support chatbot. Because their code assistance application is considered a high-
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demand, and high-frequency update application, edge deployment could be the less efficient variant
compared to deployed in the cloud. Because the customer support chatbot lives in a low-demand,
low-distribution environment, Edge AI can be considered a sustainable alternative for this application’s
model deployment.

5.2. Threads to validity
Internal Validity
The main limitation of this study concerns the confounding variables which narrow down the scope
of this study. First, a single inference framework is used, which is actively being developed at the
time of the experiment. However, this framework was one of the few that allowed for inference on all
edge devices and showed good performance. Therefore, we mitigated the risk of history affecting the
results by using a constant set of confounding variables. The model was fully released halfway through
this study, which allowed us to use the final version for the most accurate measurements, which we
used consistently across devices. Furthermore, the dataset used for the experiments is not specifically
designed for the selected model, however, it still has the same structure and allows for a zero-shot
investigation.

To avoid thematuration risk we performed our experiments according to the latest energy consump-
tion measurement methods. This study aimed to standardise the measurement techniques for a fair
comparison and has shown that they are similar. However, due to the external hardware, the measure-
ments can be affected by the inaccuracies of these measurement devices.

Another limitation of this study is the constant execution time of the analysis of a single hour, which
ignores the long-term effects of running hardware that can impact the overall result [92]. Due to the
nature of AI, these variables could impact the results and therefore threaten this study. However, by
keeping these variables constant we believe they do not significantly impact the results, which makes
our results valid.

Data Validity
Wepreprocessed the dataset by removing larger queries since this overflowed the limited context size of
the model, which is an issue within the inference framework1. This means this study did not investigate
larger queries, which could impact the energy consumption in select use cases. It does once again
show the complexity of Edge deployment for general usage.

External Validity
Furthermore, this study only looked at a single HPC device, which although it has the same level of
hardware configurations as you can rent in the Cloud, still does not fully simulate the actual energy con-
sumption in the data centres of the cloud, which could suffer from overhead or have better optimizations.
However, a similar limitation exists for the edge devices because this study emulates ’all’ possible edge
devices with only a select range. This hardly covers all hardware configurations, however, we believe
this study provides a general baseline. Furthermore, to accurately reflect real-world scenarios multiple
actors should be simulated that can infer models in parallel to test the devices’ capabilities of running
parallel computation and its energy efficiency under this load.

Moreover, this study utilises only a single quantization technique, which makes it difficult to make
a general conclusion about the effectiveness of quantization techniques or any other optimisations.
During this study, newer quantization and optimisation techniques were released which could further
improve the energy efficiency. Moreover, some non-quantized SLMs could not run on all edge de-
vices due to memory overloading. This shows the difficulty of wide-scale edge deployment and the
advantages of optimisation techniques.

Next, only limited throughput data points are studied in the experimentation. This means that the
exact throughput level where the switching point of energy efficiency at scale occurs cannot be directly
found. If we incorporate the overhead simulation, we can only conclude that for this scenario this point
is between 1000 and 5000 throughputs per hour.

This study is performed in the context of SLM applications since there is a trend towards deploying
these models on the edge to reduce cloud costs. However as discussed before, Edge AI provides
opportunities in various contexts. This means that other model types, such as image or control models,
could have different architecture and therefore another energy consumption distribution.

1See: https://github.com/ggerganov/llama.cpp/issues/4185

https://github.com/ggerganov/llama.cpp/issues/4185
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Construct Validity
This study does not consider the origin of the energy or the embodied carbon footprint of the devices,
looking only at direct energy consumption. This makes the results comparable and interpretable be-
cause more complex metrics like CO2eq are more error-prone and harder to understand.

Additionally, edge devices on a large scale are widely available because everyone owns a smart-
phone or laptop, which can run some of these optimised models. This could alleviate some of the
embodied carbon cost of producing these devices since they were produced for other purposes. In
the future, specific hardware could be created to allow for better AI inference on these devices, which
could impact carbon emissions.

However, the threat of inaccurate operationalisation of constructs is mitigated by having a well-
established design as outlined in chapter 3 for the experiments. Furthermore, we performed a normal-
isation study on the measurement techniques to verify whether they produced comparable results.

Conclusion Validity
Some of the p-values in this study are significantly lower than the regular level of α = 0.05. We already
discussed some of the assumptions that could have contributed to these results, such as the high
sample size, especially for the Cloud HPC.Wemitigated this risk by restricting themaximum throughput
for this device to 5000 requests per hour. Even though, these tests theoretically work for this throughput,
however, practically the test becomes sensitive to small deviations. However, we believe the risks
are mitigated by the study design and by including all the data as is, and therefore the results and
conclusions are valid. Lastly, the provided replication package in subsection 3.2.3 can be used to
reproduce and validate the results of this study.

5.3. Future work
These findings and limitations provide an opportunity for further research into sustainable software en-
gineering and Green AI. Primarily, the provided replication package can be used for further study in the
energy efficiency of Cloud and Edge AI. It provides the implementations of the measuring techniques,
which can be utilised on the devices of this study or a broader range. Furthermore, the measurement
data allows for comparisons with new data to find other insights into the sustainability of these deploy-
ment strategies. Lastly, the simulation can be used to improve the overhead estimation of Edge AI.
Next, we discuss a broader collection of possible future work.

Investigate more complex Fog strategies
Almost all deployment strategies employ a hybrid system that uses a central device that aggregates,
verifies, and updates edge deployments. Others deploy in the Fog on for instance access points to get
the partial advantages of the edge deployment benefits. This strategy can increase the complexities of
the systems and make it increasingly difficult to asses their energy consumption and carbon footprint.
Therefore, more effort must be put into the research investigating the environmental sustainability of
Fog deployment and other edge-cloud hybrid strategies considering their holistic energy consumption.

Broader device range
We identified the set of devices as a limitation for this study since Edge AI and Cloud AI encompass
more hardware configurations than we have studied in this experiment. With the selected set we tried
to cover a range as wide as possible making the results generalisable. However, because of the wide
variety of edge devices used in the real world, more research should investigate other devices such
as mobile devices like laptops, and phones. This is especially important for battery-powered devices
since the usability of these devices is dependent on the battery life, which can be significantly impacted
by Edge AI [25]. Additionally, an increasing number of devices have a dedicated GPU, which allows for
better-optimised inference energy efficiency as we showed in the study. Many laptops and even phones
are therefore good potential edge devices, however, this increase in computing capabilities comes
with secondary carbon emission costs driven by the production of these more performant hardware
configurations.

However, a wider range of edge devices increases the complexity of the study, since they possibly
require their ownmeasurement strategy, which threatens the accuracy of the comparisons of the results.
Many consumer-grade laptops come with RAPL and Nvidia-SMI so that should not complicate the
setup toomuch, however, many phones do not come with integratedmeasuring hardware and therefore
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require an external setup like the Raspberry Pi devices. However, if we want to test the performance on
battery-powered devices, like smartphones [24], the complexity significantly increases to get accurate
measurements [92].

Finally, a study to investigate more complicated setups of various edge devices simultaneously
dealing with various throughputs is challenging but could provide better insights into the scalability
of a complete Edge AI network. This would allow us to compare the actual cloud throughputs with
the aggregated edge throughputs instead of comparing simulated throughputs as done in the current
research.

More optimisation techniques
Currently, the study only investigates the pre-defined quantization levels in GGUF from llama.cpp, which
allows the model to fit on all tested edge devices. However, if you incorporate even more limited-
resourced devices other optimisation techniques possibly need to be applied to allow models to run
on these devices. Furthermore, much research is currently done in this domain and new techniques
are proposed regularly, like GPTQ, NF4, and MoE. However, more investigation is required into the envi-
ronmental sustainability of these techniques as our results showed inconsistency between the energy
consumption and model size. Therefore, we recommend more investigation into the energy consump-
tion of optimisation techniques for Edge AI.

More throughput internvals
The results showed that optimisation can affect throughput, especially on higher-end hardware. There-
fore, it is important to consider the different use cases. This study investigated a selection of through-
puts, whereas a more thorough investigation of more intervals can assist in finding the exact cross
point on which Edge AI becomes less energy efficient than Cloud AI. However, this would require a
more complicated setup with multiple edge devices being measured for a more accurate simulation of
real-world applications.

Increase complexity overhead simulation
Lastly, the simulation used in this study is a basic linear model, which does not reflect real-world scenar-
ios. Therefore, we recommend increasing the complexity of the simulations with more variables, like
location, scheduling, and energy cost, and including better energy intensity estimation of the internet
traffic, for instance, by modelling it like a dynamic variable.

Broader context range
Further research is required to find the generalisability of the results in other contexts since these can
have different energy consumption distributions. Moreover, various kinds of contexts can differ in the
overhead factors, since multimedia for instance has a significantly higher internet transportation cost
than text. This shows the importance of reproducing this study for different contexts to make a general
conclusion about the sustainability of Edge AI at scale.



6
Conclusion

This paper described the experiments of Edge AI deployment and the effect of scalability factors on
energy consumption. We compared the environment, including an HPC Cloud, a GPU-enabled edge
device, and two CPU-only edge devices. We also compared the impact of the various quantization
levels and the impact of the throughput per hour on the energy consumption per request. Finally, we
simulate the overhead of downloading and updating the model over time. The results show that for
low-demand, low-utility scenarios Edge AI is significantly more energy efficient than Cloud AI. How-
ever, for high-demand, high-utility scenarios the Cloud AI is better optimised and requires less energy
overhead than the model distribution of Edge AI. We discussed the implications of these results and
finally recommended some further research.
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A
Results

This index discusses the index of the reproducibility package containing the resulting data.

Reproducability package
Table A.1 shows an index of the measurement, analysis and simulation scripts and the results of this
study provided in the reproducibility package as described in subsection 3.2.3

Table A.1: Index of reproducibility package.

Directory/file Documentation
analyse
analyse/data contains all raw and preprocessed data
analyse/results contains all test results and plots
analyse/analyse_throughput.py plots Figure 4.17
analyse/calculate_average.py calculates average for normalisation
analyse/plot_energy_consumption.py plots energy consumption graphs Figure 4.7-4.18
analyse/preprocess.py preprocesses measurements into energy per request
analyse/statistical_test.py performs all statistical tests
llama.cpp
llama.cpp/dataset contains dataset used in experiments
llama.cpp/dataset/determine_throughput.py small sample test determining average throughput
llama.cpp/data/preprocess.py preprocesses dataset to filter out too large queries
llama.cpp/data/request.py main script that uses dataset to infer server for experiments
llama.cpp/inference clone of llama.cpp library for inference server
llama.cpp/measure_jetson/jetson_stats/measure_stats.py measure script for Jetson
llama.cpp/Containerfile.[device] respective containerfile for each device
llama.cpp/docker-compose.[device].yml respective composefile for each device
llama.cpp/docker-compose.throughput[.gpu].yml composefiles for throughput test depending on hardware availability
llama.cpp/run[_X].sh run scripts that trigger multiple containers after each other
llama.cpp/test[_X].sh test scripts

simulate/
simulate/average_ec.py retrieves energy consumption averages for simulation
simualte/simulate.py performs and plots simulations of Figure 4.19-4.20
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B
Justification

This appendix discusses some justifications for this study.

Energy justification
To create awareness of the environmental impact of the studies that investigate environmental impacts,
we report the energy justifications of this study to inform any other research that wants to reproduce this
study or perform similar ones, what the expected energy costs are. To execute this experiment, this
study has used a fair amount of energy, even though some steps were taken to reduce this as much
as possible. The models used were pre-trained and pre-quantized, which means that those costs were
mostly mitigated. We estimate the energy consumption of this project and the related carbon footprint
and show it for full disclosure in Table B.1. We divide the usage in the energy consumed for running the
experiments, simulating, performing the analysis, using AI for research and development, and weekly
video conferencing with supervisors. We acknowledge the fact that these estimations are not very
accurate but act more as an indication of the scale of the research.

Table B.1: Disclosure of used energy for this study.

Description Calculation Energy Consumption (kJ)
Experiments 4 envs., 14 quants, 5 thrs. @ avg. 2600J cloud, 500J edge 2300
Simulation 3 + 4 @ 10̃0J 1
Analysis 4x13x5 @ 20̃0J 52
AI use 10̃0x request LLM @ 2000J per request [98] 200
Video conferencing 30̃x 30min @ 750J per 3 min [125] 225

Total 2.778
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