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Abstract

Accidents, malfunctioning matrix signs, oil on the road and a bridge that
is not able to close are examples of traffic events that happen every day on the
Dutch roads. In the Netherlands we are able to measure traffic speeds and cal-
culate travel times on highways and most important secondary roads using a net-
work of connected traffic measuring points. The data that is collected using these
points is available for anyone interested and distributed every minute. This dis-
tribution frequency makes it possible to detect near real time traffic disturbances.
However, the traffic data does not provide information about what is actually
happening on the road. During rush-hour or particular city events traffic distur-
bances are expected, but there also exist many disturbances of the unexpected
kind: accidents and car or truck breakdowns for example.

In this study we focus on the characterization of traffic events by using Twit-
ter as an information source. Using open traffic data as a traffic event provider we
link tweets to traffic events using different linkage strategies in order to extract
traffic information. Related traffic tweets can than be used to extract cause types
and enrich traffic events.

We developed a demonstrating system for the Netherlands that is able to
extract traffic cause types using two different Dutch Twitter datasets. The system
uses a set of detected traffic events as its input.
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Preface

I started my Master Computer Science in 2012. Because of particular courses I fol-
lowed and my job as web developer I became more and more interested in the Web
Information Systems (WIS) specialization. I am particularly interested in data gather-
ing, processing and visualization. Courses that I followed related to these topics are
Information Retrieval, Web Data Management and Web & Semantic Web Engineering.
Furthermore I like software (re)-engineering and coding. During my Master I therefore
also took programming courses in functional- and reactive programming. The data and
programming domains are both heavily presented in my Master thesis.

During the Web & Semantic Web Engineering course I wrote a paper about how
social media can play a supportive role in detecting traffic disturbances and provide
additional information on top of traditional traffic measuring equipment. A couple
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thesis.

I’ve learned a lot doing my Master Thesis. One of the most important things was
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inspiring courses and Oded Cats for being a member of my thesis committee. Finally
I thank my family and friends for all the great years that I have had as a student at the
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Chapter 1

Introduction

1.1 Subject matter

In the Netherlands people are dealing with traffic jams every day. From casual rush
hour jams to big accidents that cause total congestion for several hours. Different
traffic variables, such as traffic speed and traffic flow are measured in this country
at different points on the main roads every minute. This kind of numerical traffic
information enables us, for example, to make an estimation about the total travel time
needed for a route. Furthermore it can tell us at which places there are traffic delays.
However, during traffic congestion this data does not provide us any information about
the cause of the delay, possible lane closures, etc.

In the Netherlands the National Data Warehouse for Traffic information (NDW1)
is responsible for collecting and distributing the traffic data to consumers and other
interested. Since the first of September 2013 this data has become Open Data, which
means any interested person can retrieve the data for free. At this moment there are
more than 25.000 measuring points in the country that provide reliable and precise
measurements every minute.

The NDW data makes it possible to detect disturbances on roads. For single lane
provincial roads various algorithms have been developed to accomplish this task, as
researched in [8]. The drawback of this data is that although detected disturbances
provide you information that something is happening on the road, it does not pro-
vide you precise information about what is happening. When comparing the speed
slowdown patterns of rush hour jams and accidents it might be possible to make a dis-
tinction between causes of disturbances, but you can’t know for sure. Imagine you are
on your way home in the middle of the night and suddenly you get totally stuck. The
matrix signs above the road are off. You and the rest of the jam have no clue about
what is going on. Most of the people now are curious about why they are standing still
at this strange point in time.

Nowadays many mobile traffic applications provide the possibility for users to give
real-time feedback about traffic situations. Google maps recently added traffic reports
from Waze [9]2 to their maps to give other road users the opportunity to avoid con-
gested roads. This user generated content is reported by users using the Waze app on

1http://www.ndw.nu
2http://waze.com
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1.2 Approach Introduction

mobile devices. By integrating this service to a road map you add semantics to road
disturbances. In this research I propose a similar approach to use Twitter as social me-
dia platform to enrich traffic disturbances. Twitter is a popular platform, the messages
are always short and it has a real time nature. These properties seem to make the plat-
form suitable for the traffic enrichment task. The main research question in this thesis
is the following: ‘To what extent can social media support traffic information during
uncommon disturbances on the road?’. In the first part of the thesis we investigate to
what extend social media can be used to detect traffic disturbances. The second part is
devoted to the characterization of disturbances.

1.2 Approach

Using the Twitter Streaming API3 we constructed two datasets. The first set contains
tweets that are retrieved using a keyword search with traffic related terms for a period
of 6 months. The second dataset consists of tweets that were received using a geo
bounded box covering the whole Netherlands. We’ve also collected traffic event in-
formation for the same period. This information is collected by Rijkswaterstaat and
distributed by the NDW roughly every 10 minutes. The traffic events consist of all
kind of information, such as queue length of disturbances and the locations of events.
The location is given as a combination of latitude and longitude coordinates, but is
also described related to VILD points. VILD points, also used for communication in
navigation systems using TMC, are included in VILD tables. These tables link VILD
points to all kind of information that describe the points: road names, location descrip-
tions (bridge, intersection, main road, etc), road numbers, etc. In this thesis we will
often refer to one collection of distributed traffic events by Eventinfo set.

The traffic measuring equipment is installed at the locations of the VILD points.
Therefore, together with the knowledge that NDW data can be used to detect traffic
disturbances[8], we make the assumption that the traffic disturbances described in our
third dataset could have been detected using the raw traffic data that is distributed every
minute. WIth this assumption we use the Eventinfo set from the NDW together with
the information from the VILD points in our research to connect the collected tweets
to the events described in the Eventinfo set.

1.3 Contribution

The following contributions are made:

• In the literature there has been quite some research about people acting as social
sensors, and a few about social sensors in traffic [6][7][1]. Our work is different
in the sense that it aims to combine precise, reliable and real-time numerical
open traffic data with textual information that can be retrieved from social media.
Other works focuses on one particular social media platform that is used for the
detection and classification of traffic events. We believe that the power of social
content is in detailed descriptions of traffic events and multimedia items, such
as pictures, it can include.

3https://dev.twitter.com/docs/streaming-apis
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Introduction 1.4 Outline

• In the scientific field, in the Netherlands, the combination of open traffic data
and social media content is new.

• A demonstration software system has been developed that extracts causes of dis-
turbances by linking and classifying tweets to traffic disturbances. Furthermore
the software can be used to evaluate the results of several experiments that have
been done.

1.4 Outline

The structure of the remaining parts of this thesis is as follows. Chapter 2 gives infor-
mation about related work that forms the background for the thesis. In the first part
we use social media to detect traffic disturbances. This is described in chapter 3. The
second part is about the characterization of traffic events. Chapter 4 describes the dif-
ferent steps of the developed methodology, including several algorithms. Chapter 5
is about the implementation of the methodology. It gives more insights in the archi-
tectural structure of the software that has been developed. Chapter 6 is about several
experiments that have been performed together with the results. Finally, in the last
part, the chapters 7 and 8 conclude the research and provide several tasks that remain
as future work.

3





Chapter 2

Background

2.1 Real world event detection using social media

One of the properties of Twitter is it’s real time nature. Because the microblogging
service forces you to make posts within 140 characters, updates are often placed very
quickly. In combination with the popularity that Twitter has some say that the plat-
form acts as a mirror of the real world with all the information living inside. Political
debates, live updates of sport events, but also critical information about natural disas-
ters like storms, fires and earthquakes are examples of information that can be found
on Twitter. The problem is how to retrieve and extract exactly that information from
Twitter you are interested in.

2.1.1 Query-based approach

In [6] the authors use Twitter to detect earthquakes in real time. The fact that people
are tweeting about earthquakes immediately after they occur makes these users act as
social sensors. The goals that Sakaki et al. have in [6] can be summarised as follows:

• to investigate the real-time interaction of events like earthquakes using Twitter

• to propose a method to monitors tweets and detect potential earthquakes

• to develop an earthquake reporting system for Japan that sends emails to regis-
tered users as soon as an earthquake is detected

To find relevant information they use a query based approach, searching for tweets
containing either ‘earthquake’ or ‘shaking’. To train a classifier to make the distinction
between positive and negative tweets they look at the keywords used, the the number
of words in a tweet and the words before and after the search query words. To estimate
the centre location of the earthquake they use location filtering algorithms such as
Kalman filtering and particle filtering[6].

The experiments show that the developed reporting system in general detects earth-
quakes much faster than the default broadcast service that is used in Japan. 96% of the
quakes with a seismic intensity scale of 3 or larger are detected by the system. One
side-note to place here is that Japan is a perfect country for such a system to perform
well. It has a high density of Twitter users; the number two country of Twitter traffic

5



2.1 Real world event detection using social media Background

at the time the paper was written. Furthermore there are many earthquakes in Japan
to detect. Nevertheless the method of Sakaki et al. have shown that information about
disaster events can be found and extracted, near real-time, from Twitter.

2.1.2 Geo-based approach

Fujisaka et al. [3][2] argue with the query based approach to detect events as used in
the previous described method [6]. To adjust the system to detect other events than
earthquakes; like storms, fires and traffic jams, the input query and the extraction tech-
niques needs to be manually adjusted. This forms a limitation for a query based event
detection system. Therefore they propose a different method, focusing on the location
awareness of social media applications on mobile devices. Using the geographical
meta-data of social content and social media users, irregular behaviour can be ob-
served. This indicates that something might be happening. Their contribution is to
develop a geo-social event detection system for Japan by monitoring crowd behaviour
indirectly through Twitter. According to the authors it is easy to detect unusual inci-
dents such as town festivals or unexpected natural disasters with the proposed event
detection system [3][2]. In order to observe irregularities, the geographical regularities
of local crowd behaviours needs to be registered. In short, the method of Fujisaka et
al. can be summarized as follows:

• Divide the region of interest into smaller regions and investigate the usual status
of crowd behaviour: record the number of tweets composed and the Twitter
users tweeting per region and estimate the normal amount by averaging these
numbers.

• A sudden increase in the number of tweets, the number of people tweeting or
the movement of a crowd in or between regions forms a trigger that something
might be happening.

• To find out if indeed something is going on the content of the ‘suspicious tweets’
needs to be investigated.

• By looking at the geographical history of tweets from a user within a short time
range, movements of crowds can be observed.

One of the most interesting parts of the methodology is that the authors define several
possible cases for specific combinations of the following properties:

• the number of tweets composed in a region (#Tweets)

• the number of Twitter users in a region (#Crowd)

• the movement of a crowd (#MovCrowd)

For example, a sudden increase of tweets, new twitter users and movements of a crowd
for a short amount of time can indicate that a festival is taking place. An increase in
the number of tweets, but a stable number of twitter users (or crowd) in a region can
indicate a local festival, as demonstrated in figure 2.1.

6



Background 2.1 Real world event detection using social media

Figure 2.1: Example of detection of local festivals[3]

In order to observe irregularities the authors work with time frames of 6 hours each:
morning, afternoon, evening and night. Depending on the combination of stable and
changing properties the system makes a final decision: the situation is either normal
or abnormal. To test the performance of the system the authors used a list of 15 known
festivals that took place in Japan. 13 out of 15(87%) were detected by the system.
Since they only tested a finite small set of just 15 festivals the recall of the system was
1.8%. Besides the festivals they also found other interesting events with the system:
soccer games, earthquakes and thunderstorms.

It is nice to see that a relatively easy method can be used well to detect (unknown)
events. The detection works completely independent from the actual content of the
tweets and therefore you do not have to use complicated extraction techniques. The
drawback of the method is that a lot of preparing work needs to be done in advance.
The situation of interest needs to be split up in smaller regions in a smart way. Fur-
thermore, the geographical regularities need to be determined, which will cost some
time. Since significant changes take more time to detect than searching specific query
terms in a tweet, it can sometimes be more difficult to do fast event detection using this
approach. It is good to see that the method can be used to detect all kinds of events,
however the content needs to be analysed afterwards to see what actually is happening.
The authors did not take this into account in their method and let it be manual work.

2.1.3 Conclusion

Research have shown that social media can be used to detect real word events [6][3][2].
With a query-based approach real world events can be detected fast [6]. As soon as so-
cial content arrives that contain suspicious terms, like ‘shaking’ or ‘earthquake’ in the
research of Sakaki et al., an event has been detected and an early warning system can
be triggered to update users about the potential disaster. With a geo-based approach it
takes more time, in general, to detect events. A significant change in active users or
amount of social content composed in a region needs to be monitored first in order to

7



2.2 Open traffic data Background

detect a potential event [3].
With a query-based approach the input query needs to be manually adjusted as

soon as you are interested in a different kind of event. A geo-based approach can
detect all kinds of real-world events, since it only make use of geographical properties
of social content and social media users in order to perform detection.

In case of earthquake detection the authors make the assumption that there occurs
only one earthquake at a time [6]. In our work, where we deal with traffic congestion,
we have multiple traffic events at the same time. Furthermore we need a very precise
location of detected traffic events in order to be useful. In the next section we give an
introduction to the open traffic data that is used in the Netherlands.

2.2 Open traffic data

The National Data Warehouse for Traffic information (NDW) is a collaborative part-
nership of 24 road operators in the Netherlands that have the main goal to develop
and maintain one joint database for all traffic data in the country1. This data has be-
come open data since September 2013 and can therefore be retrieved by any interested
with an internet connection. Different techniques, such as license registering camera’s,
loops beneath roads and the detection of bluetooth devices are used in order to collect
the traffic data from road users, as shown in figure 2.2. This data is collected at more
than 25.000 measuring locations throughout the country and distributed every minute.
The near real time traffic data is an extension to the European DATEX-II format2 and
include the following items:

traffic speed (TS) the average speed of vehicles that pass a measuring point in km/h

traffic flow (TF) the number of vehicles that pass a measuring point during a period
of one hour

travel time (TT) the estimated travel time in seconds between two measuring points

For some measuring points the traffic data contains detailed traffic speed, -flow and
travel time information for specific lanes and different vehicle lengths. Traffic speed
and traffic flow values are collected in one XML dataset. The travel time informa-
tion can be found in a separate XML file. Records in TT and TFTS files are referring
to measurementSiteReference id’s. These id’s can be found in the Measurement Site
Table- or MST-XML file. This dataset describes where the measuring points are lo-
cated and what their properties are.

Examples of snippets of the described datasets can be found in Appendix A.
Besides the near real time traffic data the NDW also distributes another dataset

about the availability of the road, which consists of manually entered events such as
traffic jams, accidents and road construction zones. This dataset is maintained by
Rijkswaterstaat3 and distributed roughly every 10 minutes. In the rest of the thesis we
will refer to this dataset as Eventinfo or EI. An example of an EI dataset can also be
found in Appendix A.

1http://www.ndw.nu
2http://www.datex2.eu/
3http://www.rijkswaterstaat.nl/
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Background 2.2 Open traffic data

Figure 2.2: Overview of the collection of traffic data

The location of measuring points is besides precise coordinates also described rel-
ative to points in the traffic information location database or VILD table. The VILD
table describes a network of points, lines and areas that contain all kind of information
such as road numbers, road names and types of points (intersection, highway, exit).
The TMC table which is often used by car navigation systems to inform road users
about the location of traffic events is derived from the VILD table. In Code A.6 in the
appendix is displayed how the location of a measuring point is structured, starting at
line number 71.

• The locationForDisplay tag describes the precise coordinates in WGS84 format.

• The alertCPoint tag refers to the point in the VILD table: the first three tags
within the alertCPoint (alertCLocationCountryCode, alertCLocationTableNum-
ber, alertCLocationTableVersion) describe the specific version of the table that
is used. The AlertCDirectionCoded describes the direction. The offsetDistance
describes the offset in meters between the measuring point and the VILD point
in the specificLocation tag.

In the above example the record is referring to just one VILD point, indicated
by the csi:type="Point" property. Other possibilities are line (2 points) and area (>2
points).

In figure 2.3 two measuring points are shown relative to the closest VILD point
(9240) that is indicated by the orange dot.

Part of the methodology in chapter 4 make use of the information from the VILD
table.

9



2.3 Traffic information extraction and classification using social media Background

Figure 2.3: Point on road described relative to VILD points

2.3 Traffic information extraction and classification using
social media

In 2.1 we showed how researches were able to extract different real world events from
social media using different approaches: query-based and geo-based. In this section
we describe how social media has been used to extract and classify traffic information.

2.3.1 Sakaki

In the work of Sakaki et al. Twitter is used to extract and classify traffic events [7].
Like the previous work on earthquake detection of Sakaki et al. in [6], this is again a
query based approach.

An Intelligent Transportation System or ITS supports drivers in choosing the best
route by providing traffic information in terms of traffic speed and traffic flow. The
previous discussed data from the NDW is an example of the data that is used in ITS.
Sakaki et al. believe there are some drawbacks on the use of these techniques. In
the first place, the system can only be used at preassigned areas where the measuring
equipments has been installed. Second, the data only provides numerical information.
Social media can provide additional valuable information like road- and weather con-
ditions. The target region of [7] is Japan. The ITS in Japan is good enough to verify
traffic event detections using social media and there is enough traffic congestion to do
such a research.

10



Background 2.4 Conclusion

In the first phase of the methodology positive tweets that are related to traffic events
are extracted using Support Vector Machine. The authors searched for the follow target
information: traffic restrictions, police checkpoints, rain and mist. For this classifica-
tion experiments achieved an average precision of 0.71 with a recall of 0.91. The
dataset from this experiment from November 2010 consisted of 540 tweets.

The second phase of the methodology includes the conversion of geographically
related terms, that can be found in the tweet text, to geographical coordinates using
Natural Language Processing. Only 0.1% of the collected tweets contained GPS co-
ordinates. Therefore the search for location related terms in tweet texts is crucial to
increase the set of detected traffic events. The authors constructed a location dictio-
nary using 26.893 place names from Wikipedia and 24.619 from Hatena Keywords.
When a tweet does not contain precise geographical information the constructed place
dictionary is used to see if there is a matching place with the terms from the tweet.
Experimenting on a dataset of 540 tweets from January 2011 an average precision of
0.72 and a recall of 0.48 was achieved on location estimation using the pre-constructed
dictionary.

2.3.2 Wanichopong

In the work of Wanichapong et al. the authors classify traffic information found on
Twitter in either a point category (e.g. a car accident at place X) or a link category
(e.g. a traffic jam between A and B)[1]. In order for a tweet to be relevant it must
contain information about what is happening and where it is happening. To find these
two properties they tokenize tweets and define several categories for each token or a
group of tokens: place, road, verb, ban, start- and end preposition. A question mark
is an example of a ‘ban’ token, because the authors believe that traffic information
should be informative, factual and definitive. There is no place for questions. They use
dictionaries to categorize the tokens. When a tweet fulfils to specific rules regarding
the different categories it is considered to be a positive tweet. To convert place tokens
found in tweets into precise geographical coordinates Wanichapong et al. use a similar
approach as the one found in [7]: a combination of an own constructed dictionary
and the Google Maps geocoding API4. Experiments classified 2942 tweets into the
point category and 331 into the link category with an accuracy of respectively 76.85
and 93.23%. The average accuracy of the location estimation step was 92.20%. This
seems to be 20% higher than the result of Sakaki et al. in [7].

2.4 Conclusion

Several researches show that social media seems suitable to detect all kind of real
world events such as storms, fires, earthquakes, traffic jams and riots. Natural language
processing techniques enable us to extract the information we are interested in from
social media content. With a geo-based approach we can detect all types of events
without expensive textual processing techniques. However, if we want to know what
causes a sudden irregularity in the amount of social media users or social content we do

4https://developers.google.com/maps/documentation/geocoding/
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need to take the content into account. Furthermore real-time detection is hard, because
it takes some time to detect irregularities events and prevent false detections.

With a query based approach you search, by using well thought search terms, for
more specific predefined events. Events can be detected faster, but all social media
content needs to be processed or classified in order to become useful. Support vector
machines, which are trained using test datasets, are often used to support this task.

In the Netherlands the NDW provides near real time numerical traffic information
with traffic speeds, traffic flows and travel times on different trajects. This information
is reliable, precise and has a fixed temporal resolution of one minute. The disadvantage
of the data is that it does not provide you additional information about what is going
on during (unexpected) traffic disturbances.

The work of Sakaki et al. and Wanichapong et al. have shown that Twitter can be
used to extract and classify traffic information [7][1]. Using a query based approach
together with a collection of predefined dictionaries the researches were able to cor-
rectly extract the location of events with an accuracy ≥ 72%

In our research we seek for the right balance between the reliable and precise open
traffic data and the rich traffic information that can be found on social media to detect
and characterize traffic disturbances in the Netherlands.
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Chapter 3

Detection

3.1 Introduction

In the first part of the thesis we focus on the detection of traffic disturbances using Twit-
ter. Using a geographical approach, related to the work of Lee et al. [3][2], we inves-
tigate if the geographical data in tweets reflects places that are getting more crowded.
Therefore we’ve chosen some spots from where we know that and when events will
take place. In contrast to the work of [3] we only investigate how the number of tweets
changes over time: before, during and after an event. We do not first determine the res-
idents or consider all Twitter users in the areas that tweet with geo meta data enabled.
The reason for this is that we just want to know how much information we could re-
trieve from Twitter and if the amount of tweets is related to the traffic flow information
that can be retrieved from the open traffic data from NDW.

3.2 Experimental Setup

As said during the introducing section we would like to monitor tweets at ‘hot spots’;
locations where we know that events will take place frequently. We created the spots to
collect tweets with gps coordinates at the following popular places where often soccer
games or concerts take place:

• Ahoy (Rotterdam)

• Ziggo Dome (Amsterdam)

• De Kuip, Feyenoord (Rotterdam)

• GelreDome, Vitesse (Arnhem)

• Parkstad Limburg, Roda JC (Kerkrade)

• Kyocera, ADO Den Haag (Den Haag)

To collect tweets in these areas we use the Twitter streaming API1. We use the
soccer stadiums and concert halls as centres for our recordings and record in a circular

1https://dev.twitter.com/streaming/overview
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area with a radius of one kilometre. For South Holland this is visually displayed in
figure 3.1. The spot centred at the Ziggo Dome in Amsterdam also includes the popular
Heineken Musical Hall and the Amsterdam Arena, because those buildings are within
one kilometre radius of the Ziggo Dome.

When one wants to use the Twitter streaming API’s to record such geographically
determine areas it is possible that Twitter will not reveal all tweets for free [4]. To re-
duce the chance of loosing too much tweets we want to do some recordings in dual. We
will start these recordings at DataSift2, using the software trial possibility the platform
offers.

Figure 3.1: Detection spot overview for South Holland

3.3 Results

The amount of received tweets is very low in all areas, as can be seen in figure 3.3
where the number of tweets per hour are plotted for four locations during three full
recording days in February. Unfortunately we did not get any results from our free
recordings at DataSift. Investigating the content of our own received tweets during
the spikes in the evening reveal that soccer events took place. With one exception:
the yellow bars at the Kyocera spot in The Hague at February 6th. Here a couple of
teenage girls in a street close to the stadium tried to create a ‘trending topic’ on Twitter
at exactly 7 O’clock in the evening. The spike during that hour is higher than the spike
at the same hour during the day that ADO The Hague played their home soccer game
at February 4th. This simple example shows how false events could be detected when
we only take the number of tweets into account. However, since all tweets during the
spike at February 6 are created by residents in the Kyocera area the tweets could be
distinguished from the ones that are created by people visiting the stadium where the
biggest part of the people will be from outside the area. According to the work of Lee
et al. in [3] this situation will be considered as a local event. Preliminary research
should be done when we want to determine the resident in all areas. As said during the
introducing section we only wanted to see if Twitter can reflect traffic data as the data
from the NDW does. Therefore we did not determine the residents in the recording

2DataSift is an paid on-line service where you can easily start some Twitter recordings by using a
graphical interface (http://datasift.com/)
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areas. The data from NDW forms the ground truth for our detecting study using social
media, since the data is reliable and precise.

In figure 3.4 the number of tweets per day part (6 hours) are plotted for the Ziggo
Dome spot for 12 days. Two spikes, one in an afternoon and one in an evening are
clearly visible here. Both spikes are caused by soccer games that were played at the
Amsterdam Arena. These numbers are of the same order as the results in [3], where
the authors also work with time frames of 6 hours. It shows that it is indeed fairly easy
to detect events using a geo-based approach.

Figure 3.2: Locals are trying to make a ‘trending topic’
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Figure 3.3: Results of collected geo tweets

Figure 3.4: Tweets per day part
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3.4 Conclusion

When there are events like soccer games we observe that the amount of composed
tweets increase. The data from the NDW show denser traffic during the recorded
spikes. So, we might say that a geo-based approach using Twitter can, to some extend,
reflect the real traffic situation. However, the amount of tweets we received is far too
low to compete with the data from the NDW, which provide more detail and has a fixed
temporal resolution of one minute. The event detection using a geo-based approach
seems to be more suitable to detect different kind of real world events at a high level.
It is relatively easy to setup recording areas and one of the nicest thing of the method
is that, since you only rely on geo metadata of social media content, you can detect all
kind of events. No difficult extraction and filtering techniques are needed in order to
detect that something is happening. For the detection of disturbances in our country
were the ITS is well developed the method just didn’t work out. The low amount
of received tweets cannot compete with the real time open traffic data that provide
detailed and reliable data every minute.

We were not able to get enough detailed traffic information from Twitter using a
geo-based approach. Events were detected, but we did not receive detailed information
about which corners and roads were more crowded than others. Something that the
open traffic data in the Netherlands can provide.
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Chapter 4

Methodology

In the second part of the thesis we focus on the characterisation of traffic events. While
the open traffic data can be used to detect traffic disturbances it does not provide us any
information about what is going on. Images from traffic monitoring camera’s can be
used for this purpose, but it’s quite a long way from the capturing camera to the road
user that wants to avoid traffic jams and is interested in these images. Someone needs
to be constantly focused on the images of the traffic monitoring camera in order to
observe a potential traffic disturbance. Afterwards it may take quite a while before the
information reaches the relevant road users: traffic info providers need to know about
the disturbance and forward this information. It is quite a long path, with many manual
work involved. People that rely on broadcast messages from radio stations, which are
typically 4 times per hour during rush hour, this information stream is slow. What if
we could produce, process and deliver the information about traffic disturbances by the
road users themselves to other road users? That is the philosophy behind the developed
methodology: using information hidden in Twitter streams to collect and extract traffic
problems and bring the useful (filtered) information about these problems to the right
road users.

In this chapter we present the methodology we developed in order to enrich de-
tected traffic disturbances with information from real road users using Twitter.

The methodology consists of four different steps or phases. The purpose of each
step can be summarized as follows:

Collection
During the collection step all required data that will be used to enrich detected
traffic disturbances is collected. This includes tweets from Twitter, eventinfo
datasets (EI) and VILD tables from NDW.

Extraction and analysis
The goal of this phase is to extract useful information from the data to retrieve
first insights into the data. DBPedia Spotlight1 can be used to extract entities
from the collected tweets to get a better understanding of what is talked about.
Using sentiment analysis on the retrieved tweets we hope to find out a little bit
on how people react during different traffic disturbances. With simple pattern

1http://spotlight.dbpedia.org/
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matching we can extract roads from tweets and using external databases, like
Geonames2, we can extract places.

Linkage
In the linkage phase the collected tweets are linked to traffic disturbances that
are detected by Rijkswaterstaat3 and distributed by the NDW. We will refer to
this traffic disturbances in the rest of the chapter as events. Different linkage
strategies are developed in order to find the best results for this linkage.

Classification
In the classification phase we determine the cause types for detected traffic
events, when possible, using the linked tweets from the previous step.

In the next sections we will discuss the methodology steps in more detail.

4.1 Collection

In the collection step all data that is needed for the succeeding steps of the methodology
should be retrieved. A high level presentation of the collection process is shown in
figure 4.1. Two different streams of two different data providers are processed and the
resulting data is stored into a database. Because we decided to use the JSON-based
CouchDB software for our data storage4 all data can be perfectly stored into one single
database.

4.1.1 NDW

As explained in the introduction (1.2), we assume that traffic disturbances, as described
in the Eventinfo set or EI, can be detected using the raw traffic speed and traffic flow
values the NDW provides for over 25.000 points in the Netherlands every minute. The
thesis work of Jasper Vries[8] is an example that uses this values to detect disturbances
on single lane provincial roads. Based on this assumption our methodology heavily
relies on the properties, availability and correctness of the traffic events described in the
EI dataset. Working with a predefined set of events has several advantages. Each event
has a short cause description that tells us why the traffic disturbance is happening. It
also is bounded in time: the event has a start- and an end time. And finally, each event
has a precise location: one or more points with latitude and longitude coordinates.
Because the events describe what, where and when something is happening they are
ideally as a ground truth.

The bottom row in figure 4.1 describes the path of the collection of the NDW
data. Since September 2013 the data has become Open Data and is accessible from
file servers using the file transfer protocol (FTP). Most of the files distributed by NDW
are in XML-format, except the VILD tables which appear as CSV documents. For all
data this means that some process or module needs to be created that parses this data

2http://www.geonames.org/
3Rijkswaterstaat, as an executive agency of the Ministry Department of Infrastructure and Environ-

ment, has to make sure that road traffic on the Dutch highways flows as quickly and save as possible.
http://www.rijkswaterstaat.nl/

4http://couchdb.apache.org/
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so that it can be stored in our CouchDB database. Examples of NDW datasets can be
found in appendix A. The data is described in section 2.2.

4.1.2 Twitter

tweets
events

VILD tables

Twitter

NDW

perform keywords search
using streaming API

tweets

crawl FTP sources

events

VILD tables

parse data

Figure 4.1: High level overview of the collection steps

In the top row in figure 4.1 the Twitter collection path is shown. An important
question related to the collection of tweets is: how do we retrieve the highest possible
amount of potential interesting tweets? In other words: how do we get the highest
recall. From literature, and our performed experiments described in the first part of the
thesis, we know that a geographical search approach on Twitter gives poor results. For
a large area, for example the whole Netherlands, we are expected to receive no more
than 1% of all composed tweets [4]. We could do ‘smart things’, like partitioning the
country into smaller pieces and execute multiple crawlers. However, with such a setup
it is still unknown how many tweets are retrieved and more important: how many are
not. Furthermore, the overhead of non-relevant tweets with his approach is large and
will require more data storage.

A better approach is to perform a search that is more focused on the data that
we actually want to retrieve: those describing traffic disturbances. A keyword based
approach seems suitable for this tasks. We are aware of the fact that this approach
makes it less flexible to adapt the methodology to other domains than traffic, because
the input queries are only working for the particular domain of interest[3][2]. The fact
that we can search much more focused is decisive.

The public streaming API’s of Twitter allows you to search up to 400 different
keywords. It is hard to come up with a set of traffic related terms that much, so when
we start our search with manually chosen traffic related terms this limit should not be
a problem. However, it is still possible that in the future we want to add other terms
to our search set, like certain places or road names. Therefore it is important that we
choose our keywords wise. In [5] is explained that in many cases there exists terms
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/ keywords that are co-occurring all the time in a text. It is good to recall this fact at
times that limitations, like API restrictions, play an important role in the obstruction
of your data retrieval. After the keywords search is set up the tweets that are obtained
are saved into the database. Because the Twitter streaming API’s can return JSON
documents of tweets, it is fairly easy to store these documents into our database.

4.2 Extraction and analysis

The main goal of the extraction and analysis phase is to retrieve first insights and
get a better understanding of the data. What type of traffic disturbances are people
tweeting about? And when are they tweeting about traffic problems? The pipe-line of
the extraction and analysis phase is shown in figure 4.2. The extraction steps can, in
theory, occur directly after a tweet have been received during the previous collection
step. Because we have restricted access to several services that we would like to use
in the extraction and analysis phase we don’t want to send all collected tweets to those
services. A set of ban words is maintained that consists of non traffic-related terms. A
tweet is skipped for extraction when it contains at least one ban word. Furthermore we
want to eliminate tweets that are composed by ‘bots’.

4.2.1 Detecting bot accounts

Along with people that tweet about traffic accidents and traffic jams there are also a
lot of accounts from news or traffic media providers that use Twitter as a platform
to make traffic announcements. Tweets from those users are considered as spam in
the developed system. The reason for this is that the source for those users is almost
always derived from views from traffic monitoring camera’s. Since the goal in this
study is to use observations from ‘real people’ that are in some way involved with
the traffic disturbance, the messages from the news providers does not fit in. Therefore
their messages are disregarded. The accounts that provide the messages are called bots.
The twitter messages composed by bots are stored to the database with a bot_status
flag set to true. The bot status for a twitter user is determined once: as soon as the
first tweet of the user reaches the system. For every received tweet we check if the
‘bot status’ of the twitter user already exists in our database. This is the get bot status
process in figure 4.2. If the twitter user is not yet known to the system a bot detection
algorithm is executed to determine if a user is real user or not. Afterwards this value is
stored into our database. The pseudo algorithm of the bot detection algorithm is given
in algorithm 1.
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if user already in database then
return status according to database

else if username contains one of the following suspicious terms: ‘file’,
‘verkeer’, ‘news’, ‘nws’, ‘nieuws’, ‘weer’, ‘112’, ‘headline’ then

return true
else

Retrieve last 25 tweets from user.
if at least 50% of the retrieved tweets contain at least one of the search
keywords then

return true
else

return false
end

end
Algorithm 1: Determining bot status

So, a user is considered to be a bot when its username contains suspicious traffic
or news related terms or at least half of its last 25 tweets contains at least one traffic
related term. Some quick tests showed that this fairly easy algorithm does the job quite
well. The algorithm should work in other domains too when using different keywords.
The only modifications that needs to be done is the change of the suspicious terms. An
estimated performance of algorithm 1 is given in chapter 6.

4.2.2 Annotations and sentiments

To automatically extract entities from the tweet texts each tweet is annotated by making
a call to the Dutch DBPedia Spotlight5. Before the call is made the hash-tag symbol(#)
is removed from the tweet, because the service is not able to recognise terms that start
with a hash-tag. The rest of the tweet message is unaffected. The goal of the annotation
is to get an idea of the distribution of topics our collected tweets are about.

After the tweet is annotated the next step enriches the data with sentiment scores
and labels. By doing this we hope to get a little bit of an idea on how people react
to different traffic problems. We found two different sentiment services for the Dutch
language: text-processing6 and ai-applied7. Because of some API restrictions it is
expected that not all collected tweets can automatically be accompanied with sentiment
scores and labels.

4.2.3 Roads and places

The last extraction steps of our methodology extract places and road names from tweet
texts. We use Geonames8 as place provider. To increase performance all place names
that are available in the Geonames database are stored in our own local database. An

5http://nl.dbpedia.org/spotlight/rest/spot/
6http://text-processing.com/api/sentiment/
7http://api.ai-applied.nl/api/sentiment_api/
8http://www.geonames.org/
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index is constructed that maps the Geonames place names (Rotterdam, Amsterdam,
Utrecht) to pairs of latitudes and longitudes (51.9225, 4.47917). Before we extract
roads and places we strip tweet texts by removing special characters and punctuation
symbols. Afterwards we tokenize the tweet. For all tokens we search for matching
places in our places index and we perform a simple pattern match to recognise ‘A’ and
‘N’ roads.

4.2.4 Overview extraction steps

The following list summarises all extraction steps.

1. Retrieve tweet from database that is not already extracted

2. Check if bot status for twitter user is present in local database and return
accordingly. If not, perform bot detection algorithm on user: save status for
user in database and return

3. A tweet is skipped for extraction if it is composed by a bot

4. Remove hashtag from tweet, so that terms can be recognised by DBPedia

5. Add annotations by using DPPedia Spotlight

6. Add sentiment scores and labels by using the text-processing and ai-applied
services

7. Replace upper case letters in the tweet message by lower case variants. This
makes it easier to match with place names

8. Remove special characters and punctuation symbols

9. Tokenize tweet

10. The following pattern is used to extract highways and provincial roads from
tweet message: [A||N][0−9]+.

11. Tokens with 3 or less characters are removed

12. A tweet is skipped for further extraction if it contains at least one ban word.

13. For the remaining tokens check if they have a matching place name in local
database
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tweets
twitter users

places

Strip tweet text

Tokenize tweet

Extract roads
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Figure 4.2: High level overview of the extraction steps
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4.3 Linkage

In the linkage phase all retrieved data comes together: tweets are connected to events
using information from the VILD tables. When we perform a time-based matching
from tweets to events it is expected that only a very small fraction of tweets is actually
saying something about the event. Many tweets will not be about the matched event
or are not even traffic related at all. In the extraction phase we extracted roads and
places from our collected tweets. This information seems valuable and usable to link
tweets to the appropriate events. However, the information that is stored in the VILD
tables, which also includes road numbers and place names, is even richer and therefore
probably even more suitable to use for linkage.

As described in section 2.2 the location of events in the EI dataset are besides
precise coordinates also described relative to points in the traffic information location
database or VILD table. A location of an event is described as a point, link or area
location. The area location is used to describe weather events like fog in a larger
area in the country. ‘Normal’ traffic events, like casual rush hour jams and accidents,
are described as point or link location. Often when a traffic event, like an accident,
happens on the road it is first described as a point event; indicating the accident itself.
If the accident results in a significant traffic jam the traffic event becomes a link event
and is described by two points: the start and end of the event. Each location contains
references to VILD points. As said before the information that these VILD points
provide, together with a basic time filtering, can be used to filter potential relevant
tweets for the event. The VILD tables are discussed in more detail in section 2.2.

In the following sections we describe different linkage strategies that are derived
from the principal of matching using time and VILD points. We start the following
section with the most basic variant: ‘the VILD strategy’.

VILD strategy

An overview of the VILD strategy steps are described in figure 4.3. We start by retriev-
ing an event from our database. For this event we want to link tweets that are created
between the start- and end time of the event. We collect the following VILD terms or
VILD properties from the VILD points to use for our matching:

loc_des the location description that describes the type of the point. Examples: viaduct,
exit, bridge.

first_name The primary name of the point. The name of a bridge, viaduct, exit, etc.

secnd_name The secondary name of the point. This name is not always used. Most
of the time it describes the name of an intersecting road or the name of the road
the primary point is leading to (in case the point is an exit).

roadnumber The roadnumber. Can be empty. Examples: A13, A4, A16, N210.

roadname The name of a road. Can be empty. Examples: Ring Rotterdam, A16
Hoofdrijbaan, Traverse Maastricht.
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Figure 4.3: High level overview of the linkage steps for the VILD strategy
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The next step of the linkage phase is the calculation of the matching between the
VILD terms and the tweet text. An example of a match percentage of 75% is given in
4.1.

Table 4.1: Example of the match percentage calculation

Tweet text ‘Groot ongeluk op de A13 vlakbij afrit Tu Delft’
Vild terms ′A f rit ′,′A13′,′TUDel f t ′,′N470′

Matching terms ′A13′,′TUDel f t ′,′ a f rit ′

Match percentage 75%

An important note to place here is that we do not expect that the actual number of
the match percentage (75% in the previous example) is a performance measure in some
way. It is not related to the chance that the tweet is actually about the linked event,
that it is more interesting than a tweet with a lower match percentage, or whatsoever.
The only assumption we make is that as soon as the match percentage is higher than
zero we believe it has a high chance (> 50% ?) that the tweet is about the linked event
and an even higher chance (> 75% ?) that it is at least about some traffic event. In
chapter 6 we discuss the performance of the linkage strategies to see if this assumption
is justified.

After the match percentage has been calculated the match information is added
to both the tweet and the event. We also store the information for tweets that have a
match percentage of 0%. Since these tweets are still composed during the time the
event was active, it is still possible that it is a related tweet e.g. has something to do
with the event. When we construct a ground truth, needed to evaluate the performance
of our linkage strategies, we also need to consider those tweets. The Dutch preposition
‘van’ occurs quite a lot in the VILD tables. An example of a term containing these
preposition is ‘van Brienenoord’; a bridge in Rotterdam. People are also referring to
this bridge as ‘Brienenoord’, without the preposition. When we search for the precise
terms in the tweet texts, tweets that do not include the preposition will be ignored. This
will reduce the recall of our methodology. To prevent this loss we also include the term
without the preposition. Just removing the ‘van’ preposition and only put the result in
the set is not a good solution, because the preposition can also be in the middle (‘poort
van Groningen’).

The pseudo-code of the VILD strategy is described in algorithm 2.

full-VILD strategy

Linking tweets to events using VILD terms in combination with a time constraint
seems a good starting approach to find the right tweets. Now consider the follow-
ing situation. We have an event that starts at point A, ends at point C and crosses point
B. We have a tweet about the accident related to the event that is composed at point
B and mentions the first name of the corresponding VILD point. Since the previous
described strategy only retrieves the VILD points of A and B, the start and end point of
the event, the tweet will not match. To deal with this problem and increase the recall
of our linkage strategy we developed the ‘full-VILD strategy’. Do not only include
the terms from the start- and end point of the event, but add the series of all points on
the route of the event, including the start- and end point. In this way the tweet of the
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foreach traffic event e do
Find tweets t with creation time: estart ≤ tcreatedAtDate ≤ eend
forall the VILD points vi ∈V mentioned in event e do

retrieve the loc_des, first_name, secnd_name, roadnumber and
roadname properties describing vi using the VILD tables.
If a property contains the preposition ‘van’, add property without ‘van’
as additional property
Calculate the match percentage between the unique properties from the
previous step and the tweet texts, for all tweets t.

end
\\ Make cross links for tweets and events
Add linked tweet to event (together with match percentage score)
Add linked event to tweet (together with match percentage score)

end
Algorithm 2: Linkage algorithm

previous example will be matched. In general we expect an increase in recall by using
this strategy. The idea of the full-VILD strategy is given in figure 4.4.

location description viaduct afrit (exit) viaduct brug (bridge) afrit(exit)

road number A16 A16 A16 A16 A16

road name Ring Rotterdam Ring Rotterdam Ring Rotterdam Ring Rotterdam Ring Rotterdam

first name Groeninx van 
Zoelen

Feijenoord John F 
Kennedyweg

Van 
Brienenoordbrug

Rotterdam Centrum

second name Nieuwe Maas N210

7624 7625 7626 7627 7628

Figure 4.4: full-VILD strategy

The original event starts at VILD point 7624 and ends at 7628. The complete chain
of VILD points this events passes is: {7624,7625,7626,7627,7628}, as illustrated in
figure 4.4. The table beneath the VILD points displays the corresponding properties
that we use to calculate the matching. The unique set of terms is the following:

∪ f ullV ILDterms = {viaduct, afrit, brug, A16, Ring Rotterdam, Groeninx van
Zoelen, Feijenoord, John F Kennedyweg, Van Brienenoordbrug, Rotterdam Cen-
trum, Nieuwe Maas, N210}

The additional set of terms that is used with respect to the VILD-strategy is the
following:
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∪ f ullV ILDterms−∪V ILDterms = {brug, Feijenoord, John F Kennedyweg, Van
Brienenoordbrug, Nieuwe Maas}

In this example the additional 5 terms potentially increases the recall of the linked
tweets. The drawback of the increase of recall could be a decrease in the precision
of our methodology. In chapter 6, where we discuss the performed experiments, we
evaluate the impact on the precision.

full-VILD+ strategy

Besides the possible loss in precision of the full-VILD strategy the time-constraint
from the start (estart) to the end (eend) of an event also can form a limitation to the
performance of the (full)-VILD linkage strategy. The problem of the time filter is that
we are only able to link direct tweets: tweets that are composed during an event. The
events that we use from the EI dataset are detected events: events that are in some way
spotted and registered. As soon as an event is registered for the first time it gets the
start time that we use in our methodology: estart . The actual event occurs a little bit
earlier, since it costs some time to detect and register the event. With the (full-)VILD
linkage strategy we are not able to find tweets that are composed between the start of
the actual event and the start of the detected event:

∀t ∈ T |eactStart ≤ tcreatedAtDate < edetectStart .

In this formula is T the set of all collected tweets, createdAtDate the creation time
of a tweet, eactStart the start time of the actual event and edetectStart the start time of the
detected event as described in the EI dataset.

Besides tweets composed between eactStart and edetectStart there also exists tweets
about events before they actually happen. Consider for example the following tweet:

@vid @ A1 links thv hmp 92.4 loslopende honden op snelweg beginnende
file. (@vid @A1 left nearby hmp 92.4 stray dogs on highway: starting traffic jam)

In case this situation is actually evolved into a serious traffic disturbance we could
say that this tweet is of a predictable kind: it is about a traffic event that did not start yet.
It is not expected that we received many tweets of this kind. Because the complexity
and availability of this kind of tweets they are beyond the scope of our research.

Besides the tweets composed before the actual event and the tweets composed
between the actual and the detected event there is a third kind of tweets that our current
linkage strategies can not detect. This is the kind where people tweet about a traffic
disturbance, after it happened. People tweet about accidents they have seen or the
jams they were into at a later point in time; when they are done driving and reached
the place of destination. By that time, the actual event might be over. Because our
goal is to enrich traffic events in a more real time setup, e.g. at the moment the event
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is valid, this kind of tweets are less interesting. Therefore our methodology disregards
this kind of tweets.

Of the three different types of tweets we just described that is not yet covered by a
linkage strategy, the interesting one for our methodology is the first one: tweets com-
posed between the start of the actual event and the start of the detected event. Therefore
we introduce the full-VILD+ strategy: an extension to the full-VILD strategy. We still
use all chained VILD points between the start- and end location of the event, but we
also include tweets that are composed 30 minutes before estart .

In chapter 6 we will experiment with the different linkage strategies and investigate
the consequences of the increased time frames.

4.4 Classification

The result of the linkage step, regardless of the used linkage strategy, is that a subset of
all retrieved tweets is linked to events and each linked tweet has a match percentage be-
tween 0 and 100 with ‘the event’. Each linked tweet is composed by either a bot or real
user. Furthermore the tweet can be related to the linked event, related to another traffic
event or not related to traffic at all. Combining these properties gives us the follow-
ing 5 combinations, as displayed in table 4.2: {related− real,related− bot,other−
real,other− bot,not − related}. Tweets not related to traffic are, by definition, not
interesting for our research. There we do not distinguish between ‘not-related-real’
and ‘not-related-bot’, but just merge those two into the ‘not-related’-category.

Table 4.2: Possibilities for linked tweets (candidates)

related to linked
traffic event

related to other
traffic event

not related to traffic
at all / unknown

tweet from ‘real
user’ related− real other− real not− related

tweet from ‘bot’ related−bot other−bot not− related

In the classification step we try to characterize traffic events by deriving informa-
tion from tweets of the related-real category. We try to determine the cause type of a
traffic event based on the information available in the related-real tweets. The cause
type of an event is something that cannot be directly derived from the open traffic data
and plays a very important role in the estimation of the severity of a traffic event. We
created a finite set of possible cause types. This set is displayed in table 4.4.

The high level overview of the classification phase is given in figure 4.5. We
start by retrieving a linked event from our database. This event has, because of the
previous linkage phase, zero or more connected tweets. Each tweet is of exactly one
of the categories described in 4.2. We make the assumption that the useful related-real
tweets have a match percentage higher than zero. We collect all tweet with a match
percentage > 0. We strip their tweet texts by removing all punctuation symbols: dots,
hashtags, etc.

The next step in the classification phase is retrieving an ordered set of traffic terms
from our database. This set forms our traffic dictionary. We will construct this dictio-
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nary semi-manual by investigating the tweets that are linked to events by the linkage
module of our developed system. The ordered set maps traffic cause types to related
traffic terms.

linked events

traffic terms
dictionary

retrieve linked event from db start

Collect all tweet texts from tweets with a match percentage > 0

strip set of tweet texts

retrieve traffic terms for different cause types from db

Decide cause type for traffic event using most occuring cause types

Determine cause type for each tweet by matching with traffic terms

Figure 4.5: High level overview of the classification steps

An minimal example of an ordered set of traffic terms is the following:

accident {accident, crash}

technical related road problem {matrix, open bridge}

heavy weather {snow, rain, mist}

The cause type for each tweet is estimated by matching the stripped tweet text with
traffic terms from the dictionary. The most occurring cause type is used as final cause
type decision for the classification.
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tweet 1 What a major accident at the A13, near exit Delft

tweet 2 Car accident at #A13 [photo]

Table 4.3: Example of two ‘accident tweets’. Matching terms are underlined, traffic terms of
dictionary are italic

Table 4.4: Set of cause types

Cause type key Cause type Examples

rush-hour (casual) rush hour jam

accident (earlier) accident

event Event Festival

non-technical Non technical related
road problems

Mud or oil on road

Animals on road

technical Technical related road
problems

A bridge that is not able to close

Matrix signs that do not function
correctly

construction Construction zones Construction zones / road works

weather Bad weather Snow
Many rain
mist

breakdown Breakdowns Car breakdowns / defect vehicles

other Other A causetype not in any of the previous
categories

unknown Not applicable / un-
known

Tweet is not about congestion or cause
type is not included

4.5 Conclusion

In this chapter we discussed our proposed methodology to characterize traffic events
by using social media. In the next chapter we discuss our developed demonstration
system: an implementation of the methodology. Chapter 6 than discusses the perfor-
mance of several parts of this system.
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Chapter 5

Implementation

In this chapter we discuss the technical details of the developed systems. All collected
data is stored into Apache CouchDB databases1. We started to deploy the software
on a Virtual Private Server (VPS), but switched to local development and deployment
later on in the research to increase performance.

CouchDB allows you to create CouchApps that enable you to create web applica-
tions that are stored within the same database as where your data lives. We created a
CouchApp to monitor our data flows during the collection phase, to analyse our data
afterwards and to perform our linked events experiments. With Couch you can create
views: advanced indexes of your data. We created many indexes for our data: sim-
ple ones and more complex ones. We constructed several user interfaces within the
CouchApp. Besides the CouchApp we also constructed several other scripts in the
PHP and Python language to collect and link data.

In the first section we describe the architectural overview of the developed system.
In the other sections we describe the details of the different modules.

5.1 Architectural overview of developed system

The architectural design of the developed system is illustrated in figure 5.1. The ver-
tical line between the different modules separates the presentation layer or front-end
from the data access layer or back-end.

1http://couchdb.apache.org/
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5.2 Data presentation

The presentation layer is powered by the CouchApp which has a (local) website as
front-end to display the collected data and to perform analysis with. As can be seen in
figure 5.2 the developed web-interface has 7 different tabs, each with an other purpose.

5.2.1 Map

Figure 5.2: Live map with data.

The first tab, map, illustrated in figure 5.2, is mainly used to display (live) events
from the Eventinfo (EI) dataset from NDW and to display tweets. This panel was
created and used during the Twitter detection approach, as explained in the first part of
the thesis. Furthermore in the current methodology it was used during the collection
and extraction & analysis phases. It was a powerful tool to retrieve (first) insights in the
retrieved data. Where are crowded regions in the country? How do traffic disturbances
develop throughout a (common) work day?

Tweets that are geo-tagged can be plotted directly to the map. Tweets without a
geo-location will occur only in the right column of the panel. During the collection
phase tweets that were retrieved by the Twitter crawler module and stored into the
Couch database were almost instantly visible in the web interface thanks to the changes
feeds that CouchDB offers2. Thanks to the attached Lucene indexer we could search
for tweets by creation date and by tweet texts. We also built in a feature to perform a
geo bounding box search which enabled us to quickly reveal all tweets composed at a
specific place during a certain amount of time.

We created filtering options to filter geo- and non-geotagged tweets and to block
tweets composed by bots using the results of the bot-detection algorithm described
in section 4.2.1. Together with the real-time behaviour of the system and the attached

2http://docs.couchdb.org/en/latest/api/database/changes.html
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Lucene indexer the tool was very useful to monitor traffic jams and tweets during rush-
hour: we enabled the ‘block bots’ filter, searched for ‘file’ (traffic jam) and monitored
the incoming tweets that full-filled this condition. This gave us great first insights
about the kind of information people talk about when they are in a traffic jam.

5.2.2 Bots

The bots panel is a simple panel that displays the bot status for the collected Twitter
users. It is a simple table with 4 different columns: screen_name, is bot?, reason and
recent tweets. The screen_name column displays the Twitter user names available in
our database. The second column, is bot, displays the boolean value true or false in-
dicating if the system identified the user as a bot or not. This bot status is determined
once for every user: as soon as the first tweet composed by this user is crawled by
our Twitter crawler Module. The reason column can have tree different values: null,
screen_name and recent tweets. ‘Null’, when the user is not identified as bot. The
‘screen_name’ value is used when the Twitter user is identified as bot based on suspi-
cious terms in the screen_name. The last value, ‘recent tweets’, is used when the user
is identified as bot based on its 25 most recent tweets. Too many of the most recent
tweets contain query terms, making them too suspicious to be composed by real users.
More details about the bot detection algorithm can be found in section 4.2.1.

5.2.3 Events

The events panel gives a list of the retrieved events from the EI dataset. When the NDW
data crawler- and data parser modules are active this list is automatically refreshed
as soon as a new EI dataset is retrieved and parsed. The events panel displays the
following information in a table view: the situation version time of the event, the
situationId of the event, the length of the queue (if available) and the cause description
of the event. Furthermore each event has a ‘view the doc’ button. When clicking this
button all parsed data for the particular event is shown in a pop-up window. This data
consists of all available data for the event. An example of this data can be found in
appendix A.5.

5.2.4 Linked Events list

The linked events list panel was a panel built for visualising the first results of the link-
age module. It is very similar to the events panel with as only difference an additional
column which list the VILD terms of the event and for every linked tweet the matching
terms and the tweet content. The VILD terms consist of the location description, the
first- and second name and the road number. More information about the VILD terms
is available in section 2.2 and in section 4.3.

5.2.5 Linked Events

The linked events panel is the graphical version of the linked events list panel. It
displays the linked events on a map in the same way that ‘normal events’ are plotted
in the map panel (figure 5.2). When clicking on a linked event a pop-up windows is
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shown that displays the tweets that are linked to the event. For each tweet the raw data
can be viewed by clicking on the ’view the doc button’.

5.2.6 Linked Events Experiments

The linked events experiments tab differs from all other tabs in the sense that the data
is not only displayed, but also extended by user interactions with the system. The
panel is used to construct the ground truth for the linkage experiments and to test the
different linkage strategies. The linked events experiments panel is displayed in figure
5.3.

Figure 5.3: Link tweets to events experiments interface
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5.3 Data collection

The topmost block on the right side of figure 5.1 is the data collection layer. The
modules in this layer must make sure that all required data, as described in section 4.1,
is gathered. The Twitter crawler Module is responsible for collecting all tweets needed
for the other phases. The advantage of the Twitter Streaming API’s3 is that they are
able to return the data in the JSON file-format, making it very easy to store into our
Couch database. The open traffic data can not be retrieved in the JSON-file format and
therefore we need to convert this data in order to save the data in our database. The
NDW data parser module is responsible for this conversion. In the next sections we
discuss the implementation details of the different data collection modules.

5.3.1 Twitter crawler Module

The Twitter crawler module is written in the Python2 language4. We used the Twython
package5 to easily setup a connection with Twitter and retrieve tweets. The Twython-
Streamer module of the Twython package enables you to directly communicate with
the Streaming API’s of Twitter. Using the Twython package we were able to create
two different Twitter crawlers: a keyword crawler and a geo crawler. The final ver-
sion of the keyword crawler crawls the Twitter streaming API with the following set
of keywords:

{file (traffic jam), ongeluk (accident), pech (failure), brug (bridge), langzaam
rijden (slow traffic), traag rijden (tardy traffic), spits(rush-hour), km, verkeer (traf-
fic), gekanteld (tilted), gekantelde (tilted), aanrijding (collision)}.

Because of the used Twython package crawling the keyword streaming API of
Twitter is as easy as executing a few lines of code, as displayed in code block 5.1.

1 stream.statuses.filter(
2 track="file,ongeluk,pech,brug,langzaam rijden,traag rijden,spits,km,verkeer,gekanteld,gekantelde,

aanrijding",
3 language="nl",
4 )

Code 5.1: Performing a keyword search using the Twitter streaming API and the Twython
package.

For our geo crawler we need to provide a rectangular bounding box. We choose our
four coordinates in such a way that the whole Netherlands is covered. As described in
literature we expect that we receive at most 1% of all tweets that are actually composed
in this area[4]. To perform a geo-based search on Twitter is again fairly easy when
using a library, as shown in 5.2.

3https://dev.twitter.com/docs/streaming-apis
4https://www.python.org/
5https://twython.readthedocs.org/en/latest/
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1 stream.statuses.filter(
2 locations=GEOCODE
3 )

Code 5.2: Performing a geo-based search using the Twitter streaming API and the Twython
package. GEOCODE is defined as ‘3.0322265625 50.54747185651962 7.53662109375
53.67637481706787’

5.3.2 NDW data crawler- and data parser modules

The NDW crawler module is responsible for collecting the open traffic data that the
NDW is distributing. Most of the distributed data comes in the XML data format.
Since we decided to store our data into a Couch database, which stores documents in
the JavaScript Object Notation data format (JSON6), we need to parse and convert the
NDW data to make storage possible. The NDW data parser Module is responsible for
this parsing and conversion.

The raw NDW datasets are available on a FTP server7. The XML datasets are
stored on this server in compressed format to minimize the download time from the
server to other computers. For comparison: ‘measurement.gz’, containing information
about all traffic measurement points is 2.9 megabytes in compressed form, whereas the
uncompressed or unpacked version is 151 megabytes. The raw datasets are crawled us-
ing a simple PHP script. The script monitors the last modification dates of the datasets
on the FTP server. As soon as a datasets modification date has changed the script starts
to download the new version of the dataset. The crawled datasets are picked up by the
parser module which transforms all data into the JSON format and stores the data into
the databases.

In the following sections we provide details about the most important datasets for
our system: the VILD- and the EI datasets.

VILD

The VILD tables, which come as semicolon separated CSV files with a file size of just
a few megabytes are parsed using the Python language. To convert the rows in the
CSV-files to JSON objects we use the table header row as keys for the object and the
body rows as values. After each bulk conversion of 50 rows into JSON objects we save
a set of parsed VILD points into our Couch database. Examples of the VILD data are
given in Appendix A.4. Codeblock A.4 shows a few rows of the raw data as delivered
by the NDW. Codeblock A.5 is an example of how a converted row looks like in the
JSON format.

EI

As explained in section 2.2 the Eventinfo or EI dataset covers all kind of traffic events
that are happening on the road around the time the events are being distributed. The
distribution of the events in the EI set are of a real time behaviour and therefore very

6http://json.org/
7At time of writing the following server is used: ftp://83.247.110.3/
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useful for our experiments to use as a ground truth when we are searching tweets for
reasoning about events. An example of how an EI dataset looks like is provided in
appendix A.6. We initially started parsing events using a parser written in the PHP
language. There are a couple of difficulties to overcome when parsing XML files from
the NDW. First of all many "out of the box" libraries for the PHP language operate by
loading the complete XML tree into the memory. Since many files are quite big, this
is a memory intensive operation that requires many resources. Since these resources
are not always available it is wiser to parse the relatively big XML files ‘line by line’.
We therefore written or own parser. Furthermore there is no standard ‘rule’ for parsing
XML into JSON: there are multiple possibilities. We choose a common used method
that is intuitive and consistent.

To illustrate this conversion an example of a piece of the EI dataset and its con-
verted JSON counterpart are given in code block 5.3 and 5.4.

Code 5.3: A small piece of XML in an EI dataset

1 <values>
2 <value lang="nl">NLRWS</value>
3 </values>

Code 5.4: The conversion of XML into JSON of a piece of an event

1 {
2 "nodes": [
3 {
4 "nodes": [
5 "NLRWS"
6 ],
7 "name": "value",
8 "attrs": {
9 "lang": "nl"

10 }
11 }
12 ],
13 "name": "values",
14 "attrs": {}
15 }

This resulted in quite a verbose JSON object with lots of nesting and hidden data, as
you can already see from the previous simple example. It is time inefficient when you
have to search your whole data object each time that you are looking for a particular
property of your data. To make some properties of events more accessible we imple-
mented a feature in the parser that made important properties direct accessible under
‘special keys’. This enabled us to get quick access to properties as creation time, lat-
itude, longitude and cause types. When we needed more data of the EI dataset to be
quickly accessible we rewrote the parser. This became a very time consuming job,
because we needed more and more properties. Furthermore it resulted in inconsis-
tent data, because we were already collecting data while the parser changed over time.
Therefore we decided to write a ’re parser’ in Python that made all properties directly
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available. We started with the data available under the ‘nodes’ part of the previous cre-
ated JSON objects and could therefore maintain the data that had been already parsed.
The new JSON structure of our stored events made them much more practical to work
with.

5.4 Data extraction

The data extraction module was created to obtain first insights in the retrieved data.
To extract entities from the tweet texts and get a better understanding of what people
talk about we annotated a part of our retrieved tweets using DBPedia Spotlight for the
Dutch language. Furthermore we added sentiments scores and labels to get insights
on how people react to different traffic circumstances using two different services.
Finally, in the data extraction module we extract roads and places from tweet contents
and add a ‘bot status’-flag for each Twitter user from who we retrieved at least one
tweet. All data extraction features are implemented using the Python language. In the
following sections we discuss some noteworthy details about the different features.

5.4.1 Annotations

DBPedia Spotlight is an annotation service that is able to find different kind of entities
for the Dutch language. We use two different endpoints8 to annotate our tweets. The
first endpoint identifies entities and provide the offset of the occurrence of the entity
in the provided text. The second endpoint provides a list of candidate entities for the
given input text. The endpoints are able to present their results in JSON format, which
makes them perfect to be stored along the tweet data documents themselves, as they
are in JSON too, thanks to our Couch DB storage engine. The results of the different
services on the following tweet text can be found in appendix B.

@fileinformatie_ Morning! Afrit #28 naar #A1 #hoevelaken > A’dam is een
drama. A1 bij 41,5 gaat nu weer rijden.. langzaam.. ANWBverkeer

During our research we did not notice any API restriction or limitation of DBPedia
Spotlight: it was able to annotate all the tweets we put in. The result of the annotations
are provided in chapter 6.

5.4.2 Sentiments scores and labels

To get insights on how people react to different traffic circumstances we added sen-
timent scores and labels to our data. We found two semi-free services for the Dutch
language: text-processing9 and AI Applied10. Both services return their results in
JSON, demonstrated in appendix C.

8http://nl.dbpedia.org/spotlight/rest/spot?spotter=SPOTTER&text=TEXT and http://
nl.dbpedia.org/spotlight/rest/candidates?text=TEXT are used to annotate Dutch tweets

9http://text-processing.com/api/sentiment/
10http://api.ai-applied.nl/api/sentiment_api/
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AI-applied provides one sentiment label or class per tweet text, together with a
confidential score. Text-processing provides sentiment scores for all three labels: neg-
ative, neutral and positive. The highest score determines the final sentiment label.

The advantage of having multiple services for the same purpose is that you can
compare the results of the services on your dataset. The comparison can increase or
decrease the confidence one has in a service.

5.4.3 Bot status

As explained in section 4.2 a bot detection algorithm is needed in order to be able to
filter out tweets composed by traffic news- or media providers. The bot status for each
unique Twitter user is determined ones by the bot detection algorithm. The status of
a Twitter user is saved into our CouchDB database after is has been determined. The
following code block demonstrates a Twitter user that is classified as bot, because it
has a ‘suspicious screen name’. The bot detection algorithm is described in algorithm
1.

Code 5.5: Example of a Twitter user database document that is classified as ‘bot’

1 {
2 "_id": "news1117_twitter_user",
3 "_rev": "1-258eb707365aa7294a428d51f73d7d24",
4 "screen_name": "news1117",
5 "is_bot": true,
6 "reason": "screen_name",
7 "time": 1398873447378,
8 "tweets": [
9 ],

10 "type": "twitter_user"
11 }

As document _id we use the Twitter screen name concatenated with the string
‘_twitter_user’. Since Twitter screen names are unique it is impossible to get conflict-
ing documents in our database when storing Twitter users11. Besides the bot status
itself we also store information about the time the bot status is saved into the database,
the type of the document, the reason why a user is classified as bot and potentially the
25 most recent tweets when a user is classified as bot based on too much occurrences
of suspicious terms in its most recent tweets. In the given example the tweets array is
empty, because the user was already classified as bot based on its screen name. The
suspicious terms are saved in a separate Couch document:

Code 5.6: Suspicious keywords that lead to ‘bot status is true’ when used in Twitter screen
names

1 {
2 "_id": "BOT_KEYWORDS",
3 "keywords": [
4 "file",

11Each document in a CouchDB database needs to have a unique document id
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5 "verkeer",
6 "news",
7 "nws",
8 "nieuws",
9 "weer",

10 "112",
11 "headline"
12 ]
13 }

5.4.4 Roads

We wanted to extract roads from tweet texts, because during manual exploration we
got the presumption that many interesting traffic related tweets contained references
to road numbers. By pattern match each retrieved tweet to the regular expression
[A||N][0− 9]+ we were able to enrich the data with arrays of road numbers that start
with either an A (all highways in the Netherlands) or and N (provincial roads) and is
followed by at least one number. To detect all kind of appearances of these roads, such
as #N24, a12 and A12, we remove punctuation and hash-tag symbols from tweets texts
and add the ‘IGNORECASE’ option to our extraction module.

5.4.5 Places

When places are used in tweet texts they potentially refer to the location the text is
talking about. This is particularly handy in an environment with a very low rate of
precise locations: the amount of tweets containing a precise geo location in our key-
word dataset is just 3.39%. By extracting places from tweets you potentially add a
location to them, making them much more valuable. To extract places we used the
free available Geonames database12. On the Geonames website you can download
datasets containing names and geographical coordinates of city centres for places of
many countries. We downloaded the dataset for the Netherlands and stored all infor-
mation in our own database. Afterwards we created a CouchDB view to map all places
to their corresponding geo location. This gives us a quick accessible index of places.

5.5 Data linkage

It is the task of the linkage module to link tweets to traffic events using four differ-
ent linkage strategies. The VILD strategies are explained in chapter 4. A couple
of mathematical functions were created in order to perform measurements with geo
locations. The two most important ones are the ‘distance’ and the ‘boundingBox’
functions. The distance function takes four input arguments (latitude1, longitude1,
latitude2, longitude2), representing two different geographical points, and outputs the
distance between the two points in metres. The boundingBox function takes three ar-
guments (latitude, longitude and offsetInMetres) as input and calculates and outputs
the four coordinates that represent a bounding box around the input point at the given

12http://www.geonames.org/
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input offset. This function is used to create the boundaries for ‘geo tweets’ in order to
be linked to a particular event. To increase performance and reduce the time needed
to link all our retrieved traffic events to tweets all VILD points and Twitter user bot
statuses are loaded into memory at the start of the linkage execution. Furthermore
tweets are linked to events in batches of 50 events before the linkage data is saved to
our database. Reducing the amount of reading from and writing to the database is a
significant improvement on the performance of our linkage. For each event all differ-
ent linkage strategies are executed after each other, because strategies share metadata
that is needed to calculate the matching between tweet texts and VILD terms. A spe-
cial state database document is maintained to keep track of the linkage status. This
document contains statistics about performed linkage runs and information about the
last linked event. Thanks to the state document the linkage module can continue where
it left off in case of system crashes or whatsoever. After many optimizations we were
able to link our complete set of 316.649 events to our keyword dataset and geo-dataset
consisting of respectively 825.928 and 5.667.04 tweets in approximately 4 hours. The
structure of the relevant data part of a traffic event, after it has been linked can be found
in appendix D.

The keys of the linkedTweets object in structure D.1 represent the different link-
age strategies: geoTweets, timeAndVildBased, timeAndFullVildBased, timeAndFul-
lVildBased+. The timeAndFullVildBased+ object is fold out to demonstrate how
linked tweets are stored. The other strategy object are collapsed since they have
a similar structure. The ‘10%’ key represent the matching percentage of the tweet
with the VILD terms and is also available as ‘10’ under the matchPercentage key.
The vildTerms key displays all VILD terms for the event categorised by VILD type:
first_name, secnd_name, etc. matchTerms contains the VILD terms that exists in the
tweet text of this tweet composed by ‘yourvipdriver’. As can be seen in the struc-
ture the matching terms consists of two items for this tweet: "afrit" and "a1". The
total number of VILD terms is 14. However, terms in the ‘loc_des’ category are ig-
nored for matching. Therefore ‘afrit’ in matchTerms is excluded and the total number
of VILD terms is 10 instead of 14. Hence the match percentage for this tweet is
1/10× 100% = 10%. The reason for excluding location descriptions (loc_des) was
born during experimenting and is not included in the original developed methodology.
The reason is explained in section 6.4.3.

All other properties speak for themselves. More information about the function
of VILD points can be found in section 2.2: a section about open traffic data. The
experiments that use the linkedTweets data are described in chapter 6.

5.6 Data classification

The last module of the developed system is the classification module. The classifi-
cation module tries to extract the traffic cause types from tweet texts. The module
starts by loading the semi manual built cause dictionary (see 4.4) into memory. This
dictionary maps the different cause types (rush-hour, accident, event, non-technical,
technical, construction, weather, other and unknown) to a set of related words or word
groups. For example ongeluk (accident) and aanrijding (collision) are included in the
dictionary for the accident cause type. After the initialization of the dictionary the
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classification module is ready to be fed with (tweet) texts.
Each tweet text of a related-real tweet is parsed to the getCauseTypesForTweet

function of the classification module. The function starts by removing all punctuation
from the tweet text. This removes all hash tags, mentions, etc. The resulting string
is more suitable for matching with words and word groups in our dictionary. After
the tweet text has been stripped the module searches for matches between the stripped
tweet text and words/word groups in the dictionary by using regular expressions. The
module generates a set of cause types that matches with the input text. It is possible that
a text matches with multiple cause types. So the following set could be a perfect valid
set, although it is a strange combination: {accident, technical,rush−hour}. When no
matches are found the set: {unknown} is returned for the particular (tweet) text.

The classification module combines the results of the getCauseTypesForTweet func-
tion for all related-real tweets that are linked by a certain strategy to a specific event.
The final cause type for an event is than given by the most occurring cause type.
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Chapter 6

Experiments

In this chapter we describe the results and analysis of several experiments that have
been done. This involves both quantitative and qualitative results. We start by describ-
ing the different datasets that we created for our experiments: two Twitter datasets
and the traffic events dataset. More information about the structure of the traffic event
dataset can be found in section 2.2. In the remaining sections we describe and analyse
the results of the experiments with reference to the different steps of our methodology,
as described in chapter 4. In this chapter we will refer to the following list of tweets
categories:

{related-real, related-bot, other-real, other-bot, not-related}

This set of possibilities is explained in section 4.4. Furthermore we will refer to
different traffic cause types, as explained in 4.4, using the following cause type keys:

{rush-hour, accident, event, non-technical, technical, construction, weather,
breakdown, other, unknown}

6.1 Dataset description

6.1.1 Twitter

We collected two different Twitter datasets.

Geo dataset

The first dataset consists of tweets that contain a geo tag somewhere in the Nether-
lands. For this we used a geographical bounding box search on the Twitter streaming
API with the following coordinates: (50.54747185651962,3.0322265625) for the bot-
tom left of the box and (53.67637481706787,7.53662109375) for top right. This box
includes some parts of Belgium, France and Germany, but since we only take tweets
into account that are close enough to traffic events in our Eventinfo dataset this is not
a problem.
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Based on the literature[4] we assume that we receive at most 1% of the total amount
of geo-tagged tweets composed in the area of interest.

Keyword dataset

The second dataset used consists of tweets collected using a keyword based search on
the Twitter streaming API. The initial set of traffic related terms is the following:

{file (traffic jam), ongeluk (accident), pech (failure), brug (bridge), langzaam
rijden (slow traffic), traag rijden (tardy traffic), spits(rush-hour)}.

The most important keywords in this set are ‘file’ (traffic jam) and ‘ongeluk’ (ac-
cident). These search words are likely to provide us more relevant tweets about traffic
events than the other keywords. In order to increase the set of potentially interesting
tweets we added additional keywords to the search set by creating word-clouds from
the tweets collected up to a certain amount in time that either contained ‘file’ or ‘on-
geluk’. An example of such a word cloud can be found in figure 6.1 The generated

Figure 6.1: Word cloud of size 1000 for the ‘file’ keyword

word-clouds provided us the following set of search words that we added to the system:

{km,verkeer,gekanteld,gekantelde,aanri jding}

6.1.2 Traffic events

For our experiments we make use of the Eventinfo dataset. During this chapter we will
refer to this dataset by using the abbreviation EI. The traffic events that are described
in these datasets consists for the most part of manually entered traffic information. The
traffic events are described as situation records in which each unique traffic event on the
roads gets a unique situationId. This unique situationId is repeatedly used in successive
EI datasets as long as the situation is active or valid. Furthermore a situation record has
a version time and an overall start time that we use to bound our events in time. In the
linkage phase we combine the location points that each event has with terms that occur
in VILD tables. The structure and use of the VILD tables are described in chapter 2.
More information about the EI dataset can be found in section 2.2. An example of an
EI dataset can be found in appendix A.5.
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6.2 Collection

We collected 5.666.878 ‘geo tweets’, 825.928 ‘keyword tweets’ and 315.994 events
in the overall period from 22 February 2014 to 4 August 2014. Due to limitations in
disk space and the fact that our thoughts about what data we needed changed over time
the time span of the different data sets are not the same. This can be seen in figure
6.2. Due to some technical issues with the Python library that we used to crawl tweets
using the Twitter streaming API there are some days that we were not able to receive
tweets for the complete day or did not receive any tweet at all. The lack of tweets
on some days should not be a problem as long as we construct our test datasets wise.
However, we should be aware of this fact when analysing the results to prevent us to
make wrong conclusions.

Mar
2014

Apr May Jun Jul Aug

Geo dataset

Keyword dataset

Traffic events

Figure 6.2: Timespan of the created datasets

6.2.1 Quantitative results of Twitter datasets

Table 6.1: Results of geo dataset

February 479.563 Avg per month (Feb 22th - May 1st) 2.537.408(2.698.513)
March 2.499.923 Avg per day (Feb 22th - May 1st) 82.129(87.183)
April 2.651.214 Median per day 90.186(90.560)
May 36.304 Std dev per day 26.064(16.562)

Min per day 0(20.112)
Max per day 106.666

5.666.878

Table 6.2: Results of keyword dataset

March 121631 Avg per month (Mar 8th - Aug 2nd) 170.882(206.482)
April 231753 Avg per day (Mar 8th - Aug 2nd) 5619(6821)
May 176286 Median per day 7284(7316)
June 161639 Std dev per day 2317(2117)
July 131710 Min per day 0(564)
August 2909 Max per day 10.199

Geo-tagged tweets 27.960(3.39%)

825.928

55



6.3 Extraction and Analysis Experiments

The quantitative results of our collected tweets are in table 6.1 and 6.2. Due to
technical issues of our collection implementation there were days we did not receive
any tweets: 4 days for the ‘Geo collector’ and 25 days for the ‘keyword collector’.
This explains the min per day values of ‘0’ in the tables. To get an idea of the impact
of the technical issues on the statistics, we included numbers where we filtered out the
‘issue days’. These numbers are between parenthesis. As often in series, it is clearly
visible that the averages are much more affected than the medians. Also the standard
deviation show a significant decrease when we exclude days with zero tweets. The
days that our collection module was not able to receive any tweet from Twitter should
not affect our experiments. Therefore we should construct test datasets that do not
include any of the days that we did not receive the full amount of tweets.

6.2.2 Quantitative results of collected traffic events

In table 6.3 the quantitative results of our collected traffic events are presented.

Table 6.3: Results of collected traffic events

March 25.195 Avg per month (Mar 17th - Aug 4th) 68.644(73.649)
April 91.136 Avg per day (Mar 17th - Aug 4th) 2.154(2.412)
May 60.706 Median per day 1.920(2.111)
June 71.391 Std dev per day 2.955(2.998)
July 62.775 Min per day 0(126)
August 4.791 Max per day 32.586

316.649

As explained in section 2.2 each event contains a situationId which is increased
for every new unique event: an event that is not directly related to any already existing
one. For example: an accident usually starts as an point event in the EI dataset and as
soon as a traffic jam occurs as a consequence of the accident a link event is created with
the same situationId of the previous point event. A point event is an event that takes
place at one location. A link event has a start- and an end point. Later on in this chapter
we discuss experiments that make use of bundling events with the same situationId. It
is therefore interesting for us to know how table 6.3 will look like for unique events:
grouping events that share the same situationId. This table is given in 6.4. The numbers
in this table are significantly lower than the ones in table 6.3: on average just above
11.1% of the non-unique variants. Events in EI of the type ‘road construction’ are
the main cause of large amounts of repeating events. For example: when a bridge
is broken for a long amount of time (a couple of days, weeks) the event ‘bridge is
open’ is repeatedly put in all EI datasets that are distributed as long as the bridge is
malfunctioning. This example actually happened for a bridge in Waddinxveen.

6.3 Extraction and Analysis

In this section we describe the results of the extraction and analysis step of the method-
ology. We start by providing an estimation of our bot detection algorithm, continue
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Table 6.4: Results of unique traffic events

March 3.013 Avg per month (Mar 17th - Aug 4th) 7.190(7752)
April 8.406 Avg per day (Mar 17th - Aug 4th) 236(254)
May 6.695 Median per day 216(237)
June 8.687 Std dev per day 202(198)
July 6.118 Min per day 0(23)
August 156 Max per day

738
33.075

with road and place extraction and end with providing the results of the annotation and
sentiment analysis.

6.3.1 Detecting bot accounts

To estimate the performance of our bot detection algorithm we randomly selected 100
‘bots’ and 100 ‘no-bots’ out of our collection of 180.694 Twitter users. The results are
presented in table 6.5.

Table 6.5: Results of bot status for 100 randomly selected ‘bots’ and 100 ‘no-bots’

actual true actual false
classified true 89 11
classified false 12 88

In this experimental setup our bot detection algorithm is able to detect true posi-
tives with a precision of 89% and a recall of 88%. This shows that our algorithm is
capable of detecting bot users, but the values must be put in perspective. Since many
bot users produce a lot of traffic tweets, each user that is not detected by our algorithm
pollutes our data and has a big impact on the system. Therefore any improvement to
the bot detection algorithm is welcome. This is considered future work.

6.3.2 Roads and places

The described method in section 4.2 for extracting roads and place names from tweets
is quite simplistic. The road extraction rule is only able to extract roads that start with
either a N or an A symbol, followed by one or more numbers. This means the rule
is able to detect highways and provincial roads for the Netherlands. When a tweet
contains at least one road we say the hasRoad property for that tweet is true, otherwise
false. The similar property for a place is called hasPlace. The ‘hasRoad rule’ has the
following advantages and disadvantages.

Advantages:

1. The rule is (almost) always right: the chance that a term in a tweet like ‘A13’ or
‘N206’ is not referring to a road is negligible.
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2. The rule is easy to implement: just match the set of tokens a tweet consist of
against the regular expression of the road rule.

3. It does not take many time to determine the hasRoad property for the complete
Twitter keyword dataset

Disadvantages:

1. The rule can only detect highways and provincial roads. City street names,
names of bridges, etc. can not be detected.

To search for place names in tweets we make use of the freely available Geonames
database1. Similar to the road extract rule we use tokenized tweets for matching. The
method performs quite well in practise. However, it has some problems that should
be taken into account. First of all place names that consist of more than one word, for
example ‘Den Haag’, cannot be found by this method. This is because of the tokeniza-
tion of the tweet text and the exact matching that searches for place name matches for
each individual token. Furthermore only precise place names can be matched. When
someone makes a spelling mistake or uses a different / secondary name for a place
name, the place is simply not recognised.

Another problem is that some places in the Geonames database are ambiguous:
besides places in the Netherlands they are common Dutch words. Because these com-
mon words occur much more often than that they are used as place names we decided
to remove them from the database to increase the performance. The following places
were removed:

{dorp,brug,echt}

With a resulting amount of 21713 place names still available in the database for
matching the potential loss of information because of this removal is minimal.

After the extraction phase 119.298(24%) of the tweets in our keyword database
has the property hasRoad and 330.653(40%) has the property hasPlace.

6.3.3 Annotations and sentiments

In the previous extraction step we extracted places and roads from tweet texts, because
we believe that tweets containing either a road name or a place are potential relevant
tweets that talk about traffic events. To push the extraction a step further and get a
better understanding of what is talked about in our Twitter dataset we used DBPedia
Spotlight to annotate our dataset. In total we annotated 106.237 tweets from our key-
word dataset. Figure 6.3 shows the quantitative result of the automated annotation task.
The large majority of our data, 76.38%, contain no terms recognised by DBPedia. We
were a little bit disappointed about this number and expected a bit higher.

A percentage of 76.38 of zero recognised terms automatically means that still over
23%, more than 25.000 tweets of our test set, has at least one recognised term by
DBPedia. To get an overview of the most recognised terms we constructed word cloud

1http://www.geonames.org/
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6.4 and the related term frequency table 6.6 of the 15 most occurring terms of our
dataset.

0 81.147 76.38%
1 16.079 15.14%
2 5.123 4.82%
3 2.636 2.48%
4 531 0.50%
5 296 0.28%
6 235 0.22%
7 143 0.13%
8 42 0.04%
9 5 0.00%

Figure 6.3: Annotation results using DBPedia Spotlight

Figure 6.4: Word cloud of annotation results
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Table 6.6: 15 most occurring terms in annotation
results

# Occurrences Term
1 408 NAP
2 331 A1
3 238 E40
4 227 Brussel
5 216 Utrecht
6 205 Amersfoort
7 192 A13
8 188 Amsterdam
9 186 A10
10 183 E313
11 182 Antwerpen
12 178 Km/u | Schoonebeek
13 177 Breda
14 147 A12
15 137 A27

Besides ‘NAP’ and ‘Km/u’ all
terms are roads or place names: the
elements we already extracted our-
selves in the previous step! ‘NAP’
and ‘Km/u’ occur a lot in our test
dataset, because of a large amount of
weather tweets. This could be inter-
esting tweets for road users. However,
since our methodology starts with the
detection of traffic events using open
traffic data, weather information is not
included.

Unfortunately the automated an-
notation task using DBPedia did not
provide us much new insights in our
data than we already earned using
road and place names extraction.

To get insight in how people react
to different traffic disturbances senti-
ment analysis can be supportive. We
tried to add sentiment scores and labels to a subset of our keyword dataset using the
API’s of two Dutch sentiment services: ‘AI Applied’ and ‘Text processing’. AI Ap-
plied had a restriction on the amount of API calls per day and was therefore not able
to enrich many of our collected tweets with sentiment evaluation. Text processing did
not know this limitation, but classified almost all tweets as ‘neutral’, which feels like
a ‘save choose’, but do not provide us any information on the reaction of people on
traffic events. We concluded that sentiment analysis for the Dutch language, at least
without paying, is not on a level that it is useful for research.

6.3.4 Conclusion

After the extraction and analysis phase we were a bit wiser of what our large set of
tweets is talking about. Unfortunately, the sentiment analysis and automated annota-
tion tasks did not produce the desired result. Thanks to the road and place extraction
we saw many tweets about traffic disturbances; some of them with relevant pictures
attached. We also know that it is not easy to find the relevant tweets about traffic dis-
turbances. Tweets are noisy. In the next section we discuss experiments related to the
linkage phase of our methodology.

6.4 Filtering and linking

One important step in our methodology is the linkage step. For what type of events do
we have relevant tweets? And when there are relevant tweets for a particular event, how
do we find these? To recall from chapter 4, a tweet can be related to the linked traffic
event, related to another traffic event or not related to any traffic event. Furthermore
the tweet can be composed by a news- or traffic announcement provider, a bot, or it can
be from a ‘real’ user. The abbreviations for all combinations of these properties are:

60



Experiments 6.4 Filtering and linking

related-real, other-real, related-bot and other-bot. Besides these properties we also try
to detect the cause type of events based on the information that can be retrieved from
the context of the linked tweets.

In this section we describe the results of the different strategies that linked tweets to
the traffic events from the EI dataset. It is important to collect quantitative results and
perform analysis on them. Related questions to the quantitative aspect of the linking
are the following:

• Which part of the verified events have at least one tweet of the related-real cat-
egory? This question tells us which fraction of the events have correct traffic
related tweets linked to them.

• How often are pictures attached to traffic related tweets?

• What is the relation between the collected traffic related tweets and the different
cause types; e.g. how many (correctly linked) tweets did we find for all different
cause types.

Besides quantitative results it is also important to do a qualitative analysis. When
there is a photo attached to a tweet it makes quite a difference when that photo reveals
useful information about a road construction zone or it is just an ordinary car in some
traffic jam. We consider the first case as being relevant and the latter as not-relevant:
it does not provide any useful additional information for the traffic event. However,
we must be careful to not classify pictures to easily in the non-relevant category. This
qualitative analysis also applies to tweet texts: ‘the A16 is closed in both directions
near exit 10 due to an accident’ provides a lot more useful information than ‘Oh no,
I’m stuck in a traffic jam again’. Relevant questions related to the qualitative aspect
are the following:

• When tweets of related-real and other-real category provide more information
about the event than the descriptions in EI, what kind of additional information
do they provide?

• Are the tweets only more relevant when there are relevant pictures attached in
most cases or can the tweet texts themselves also be useful?

• Is there a relation between relevant tweets (related-real and different-real) and
the extracted information: annotations, sentiments, roads and places?

6.4.1 Constructing a ground truth

During the extraction and analysis phase we noticed that tweets containing either a
place or a road are quite often related to traffic events. However, basic filtering rules
that search for these properties do not automatically bring the right tweets to the right
events. Therefore we constructed several linkage strategies for this purpose. The first
thing we need to do is to construct a solid and correct ground truth. We assume that
the point and link locations of traffic events, as well as the cause descriptions and
comments, as described in the EI dataset are correct. A precise location together with
a short description describing the cause of the traffic disturbance provides us enough
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information to verify or falsify linked tweets. Additionally, sometimes the events have
general public comments attached to them with information about alternatives routes.
This information is also useful in determining the correctness of linked tweets.

6.4.2 Precision and recall

To calculate the precision of our different linkage strategies we need to check for a
significant test dataset which tweets are correctly linked to events. As described in
the previous section this verification is based on the information that can be retrieved
from the EI dataset. To estimate the recall of the different strategies we use one basic
filtering rule: time. All tweets that are collected and available in our database with a
creation date or ‘tweet time’ within the start and end time of an event can potentially
provide traffic information:

estart ≤ tweet time ≤ eend

All tweets composed in this time frame that are related to the traffic event, but
not linked by a certain link strategy are reducing the recall. We’ve chosen for this
estimation for the recall, because it’s too hard for manual investigation to take tweets
into account that are composed outside the time constraint. Furthermore there will
always be tweets related to the event that are not captured by our crawling services
and therefore not available in our database.

6.4.3 Testing different linkage strategies

The first strategy tested is the VILD strategy. Tweets are linked to events when the
tweet texts have a non-empty intersection with the VILD terms that describe the start
and end point of the event in the EI dataset. The strategy is explained in more detail
in section 4.3. Without calculating actual values for the precision and recall yet, first
insights of the performance of this strategy, using the test interface from figure 5.3,
showed that the precision and recall were not good at all. Many related traffic tweets
were not linked and many tweets not related to traffic at all were linked to our collection
of traffic events. The main reason for the bad precision was the fact that many location
descriptions of the VILD terms, like bridge, intersection, highway and exit, are too
generic. Many tweets were linked to events because the tweet texts had matching
terms with these generic location descriptions. In case of bridge quite many tweets
were related to traffic events, but very sporadically to the linked event. Intersection
is an example of a term that caused many not traffic related tweets to be linked to
events. We decided to remove the location description in the calculation of the match
percentage, though we still keep track of them.

The next strategy that we tested more thoroughly was the full-VILD strategy. Be-
sides the removal of the location description for match determination we also included
VILD terms from VILD points that are in between the start and end point of a traffic
event. The reason for this was too increase the recall of the VILD strategy without
reducing the precision too much. The full-VILD strategy is described in more detail in
section 4.3.
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The initial idea was to use the experimental linkage setup, as described in section
5.2, to construct the ground truth, determine the precision and recall of the full-VILD
strategy and annotate the cause type of the events based on the information found in
the tweets all in one huge experiment. The construction of the ground truth in this ex-
perimental setup is possible, because every linkage strategy also includes tweets within
the time frame of the event that have 0% matching (so related tweets not recognised by
a strategy are also tested). This was our basic filtering rule that we decided to use for
building our ground truth. When we test all these properties the outcome will become
more reliable when we evaluate more and more events.

full-vild+ strategy

The only difference between the full-vild+ and the full-vild strategy is that tweets that
are composed 30 minutes before the start time of the event in the EI dataset are also
linked:

estart −30 minutes ≤ tweet time ≤ eend

It would be nice if we could discover some tweets related to traffic events that are
constructed before the event was included in an EI dataset.

We expect that the overall recall increases when we use the full-vild+ strategy to
link tweets, but the precision might suffer from it. Because decreasing all events by 30
minutes might introduce overlapping events. Tweets therefore have a higher chance to
be linked to the wrong events.

Link rules and restrictions

Each event can contain up to 250 linked tweets. This limit was introduced during
the development of the linkage module to make sure that it could link enough events
and tweets within a reasonable amount of time. Furthermore this limit enables the
construction of the ground truth and the testing of the linkage strategies, which requires
lots of manual work.

The properties contaisUrl and containsPicture are automatically annotated based
on the meta data of the collected tweets.

Related traffic tweets without relevant information are not categorised as ‘related’.
Suppose a tweet is geo-tagged and it’s tweet text is something as ‘I am in a traffic jam’.
This tweet only tells us that there might be a traffic disturbance. As we discussed in
part one this detection can be done much more precise and more easily by using open
traffic data.

It often happens that a traffic disturbance at place A is causing another disturbance
at place B, because people are avoiding the main traffic disturbance. We decided that
tweets that are related to the disturbance at place B are also related to the event at
place A when they clearly show a relation between the two events. Since the two
traffic disturbances are directly related to each other these kind of tweets tell us that
potential redirecting routes to bypass a traffic disturbance are useless.

Traffic jams in the opposite direction of another event, often caused by people
staring at the original traffic event, are not considered as related.
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As explained in 2.2 event records in the EI dataset are accomplished with a sit-
uationId. As long as the event is valid, according to Rijkswaterstaat and NDW, the
situationId is maintained in the successive EI datasets. Since the start time of events
that share the same situationId are the same, the tweets linked to these events are also
very similar. To speed up the linkage experiments and prevent double work we only
annotate every last event in a range of events that share the same situationId. This
event has the largest timespan and therefore the most linked tweets.

The following enumeration summarizes the discussed linkage rules:

1. Do not annotate tweets that are composed by bot users. Add bots to a list of ig-
nored users so that future tweets from these users can automatically be excluded.

2. Annotation of the containsUrl property is fully automated.

3. Annotation of the containsPicture property is automated.

4. Do not annotate tweets that haven’t any useful information inside.

5. A tweet related to a traffic disturbance at place B that is related, as a conse-
quence, to a disturbance at place A is categorized as related for both the traffic
event at place A and place B. Note that this is not always easy to identify.

6. Tweets from a traffic disturbance in the opposite direction of another disturbance
(same road) are categorized as other.

7. Do not annotate an event when there exists a more recent event with the same
situationId.

Following these rules we hope to construct a ground truth and test the performance
of the linkage strategies for enough events within a reasonable amount of time. Be-
cause of the linkage restrictions we only have to change the selected values in the
experimental setup (see figure 5.3) for only two categories of tweets: related-real and
other-real. In practice this means that many tweets that are not in one of these cate-
gories can be ’clicked away’ quite fast.

In the next sections we provide the results of several performed linked experiments.
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6.4.4 Experiment 1: full-vild linkage strategy

Datasets used Traffic events and keyword dataset

Test datasets description 34 successive unique events on 12, 16, 19, 20 and 21 May
2014 and 5339 unique tweets connected to these events using the full-vild strat-
egy

Goal of experiment To find out how well, and how often, the full-vild linkage strat-
egy can bring the right traffic tweets to the right events and to see how many
traffic tweets reveal information about the cause types of traffic events.

As discussed in the previous section we use the last event in a range of events that
share the same situationId. To perform this experiment we used the ‘linked events
experiments’ tab of our developed system. A screenshot of this tab can be found in
figure 5.3. Besides finding out the precision and recall of the full-vild strategy we
also determine, when possible, the cause type of an event based on the tweet texts.
The properties containsPicture and containsUrl are automatically detected using the
meta-data of a tweet.

Results
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Figure 6.5: Related-real tweets distribution of events

Figure 6.5 shows that we did not find any related-real tweet for 24 out of 32 (75%)
tested events. For one event we had 14 unique tweets in the related-real category. This
event was a major accident, indicated by the pictures attached to some of the tweets.
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For all tweets that we manually classified into the ‘related-real’ or ‘related-other’
category figure 6.6 shows the cause type distribution we extracted from these tweets.

accident
unknown
rush-hour
technical
other
construction
non-technical

36

41 63

Figure 6.6: Cause type distribution of related-real and other-real tweets

picture
no picture8

108

Figure 6.7: hasPicture distribution of related-real and
other-real tweets

From the 41 ‘unknown tweets’
that did not gave us any in-
formation about the cause type
of a traffic event 0 contained
the hasPicture property, but 12
tweets contained an url (29%).
The information that is pro-
vided by these external urls
can still provide valuable infor-
mation about the linked traffic
events. The url can for exam-
ple be a link to an Instagram
post. Following urls is outside
the scope of our implemented
system, but could be an interest-
ing addition.

Figure 6.7 and 6.8 provide
the results of the distribution of the hasPicture and hasUrl property. Pictures can some-
times be very supportive for understanding an event or to add to news articles about
serious traffic incidents.

This experiment shows us that tweets can be used to understand a traffic event.
Tweet texts can be used to extract the cause type of a traffic disturbance. In particu-
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lar accidents seem to be very suitable to be identified using information from tweets.
In the next experiment we investigate to what extend all different cause types, as dis-
played in methodology section 4.4, could be identified using the information from our
Twitter datasets.

In total 51 unique tweets in our test dataset had a positive matching percentage. 49
out of of this 51 were actually related to the linked event. In total we found 61 tweets
in the related-real category.

urlno url
21

95

Figure 6.8: hasUrl distribution of related-real
and other-real tweets

This means that the full-vild strat-
egy has precision and recall values of
96% and 80% for this particular dataset.
These are high values, but must be put
into perspective, because there are only
51 tweets. For comparison: in total we
tested 5339 unique tweets. We can con-
clude that the fraction of traffic tweets
composed by real users in our datasets is
quite low. One reason for this observa-
tion is that many tweets related to traffic
are composed by traffic news and media
providers (bots). Furthermore tweets can
be about different domains than traffic:
we received many tweets in the football
and weather domains. This is caused by search keywords that are put into our data
crawlers that have ambiguous meanings. ‘Spits’, for example, is a Dutch word for
both a rush-hour and a football striker. It is also hard to distinguish ‘real-time traffic
tweets’ from generic ones. The following tweet, for example, is a generic tweet about
traffic:

@KristinHelene Geen dag gaat voorbij of we staan hopeloos in de file! Gekan-
telde vrachtwagens, ongelukken met vrachtwagens/auto’s.

In the next experiment we test randomly selected unique events happened in the
week between March 31 and April 6.

6.4.5 Experiment 2: vild linkage strategies

Datasets used Traffic events, keyword dataset and geo dataset

Test datasets description 100 random unique events equally distributed in the week
of March 31 till April 6. All tweets from the keyword dataset that are connected
to the selected events using one of the following strategies: vild, full-vild, full-
vild+. All tweets from the geo dataset with a location within 500 metres from
one of the locations of the event.

Goal of experiment To find out how well, and how often, different linkage strategies
can bring the right traffic tweets to the right events. To find out to what extend
different cause types of events could be identified using tweets.
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Table 6.7: Number of events and tweets for one week: March 31 - April 6

date events unique events geo keyword
Mon 31 Mar 2014 1.609 246 89.908 7.806
Tue 1 Apr 2014 3.472 485 92.130 6.443
Wed 2 Apr 2014 2.199 254 90.560 8.217
Thu 3 Apr 2014 3.012 471 85.091 8.441
Fri 4 Apr 2014 3.398 250 86.955 7.352
Sat 5 Apr 2014 1.453 77 90.186 7.143
Sun 6 Apr 2014 397 53 100.248 8.108

15.540 1.836 635.078 53.510

In table 6.7 is displayed how many data there is available in the week of March 31
till April 6. The number of unique events is significantly lower than the total number
of events: 1836/15540 ≈ 0.118 ≈ 12%. Furthermore the number of events in the
weekend, especially on Sunday, is a lot lower than during weekdays. This is expected
since the EI dataset also include many common rush hour events that happen during
weekdays.

We selected 100 events for our test dataset: 14 for weekdays and 15 for Saturday
and Sunday. All events were randomly selected, with the only restriction that an event
may not enter the test dataset if another event with the same situationId is already in.

After the test dataset had been constructed we tested the performance of our link-
age strategies using the test interface of figure 5.3. Instead of testing a fixed amount
of linked tweets per event, we now test all tweets that are composed 3 minutes before
(full-vild+ strategy) or after the start time of the event. This sharp time constraint has
been chosen for the following two reasons:

1. We aim to construct a method that can be used in a near real-time environment:
as soon as a traffic disturbance has been detected we want to collect the related
social media content and extract the relevant information for the detected event.

2. It is very time-consuming to check all tweets composed between the start and
end time of an event. From experiment 1 we already know that the total amount
of related tweets per event is very low.

For geo-related tweets we use a different time constraint: from the start till the end
of the event. We test this linkage strategy independent of the vild strategies and are
therefore allowed to use a different time span. For each event we first determine the
cause type using the traffic information provided by the event description. Afterwards
we annotate all tweets which comply with the previous described constraints.

In this experiment we are much more interested in the tweets that áre linked to traf-
fic events instead of the ones that are missed. We are much more focused in correctly
derive the cause type of a traffic disturbance using information from social media in-
stead of trying to identify as much traffic events as possible. We know that certain
traffic events, like rush-hour jams and construction areas, are hard to identify using
Twitter. The amount of tweets composed about these cause types are much lower
than, for example accidents. Since many of the events that are hard to identify by our
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method are expected events these events could also be identified using already known
(historical) data.

Related questions for this experiment are:

• Which part of the tweets are correctly linked to events?

• To what extend can these tweets provide information about the causes of the
traffic disturbances?

Results

Table 6.8: Number of events with at least one ‘related-real’ tweet for different cause types and
linkage strategies

events combined vild full-vild full-vild+ geo
accident 24 17 13 13 17(6) 2
technical 4 3 3 3 3(0) 1
non-technical 1 0 0 0 0(0) 0
event 2 0 0 0 0(0) 0
construction 33 3 2 2 3(1) 0
rush-hour 29 1 1 1 1(0) 0
breakdown 5 1 1 1 1(0) 0
unknown 2 0 0 0 0(0) 0

100 25 20 20 25 3

Table 6.7 and figure E.1 (appendix) display for how many events our methodology
correctly linked at least one tweet of the related-real category. The data is displayed
for different cause types and different linkage strategies. The combined row and bar
show the result when combining all different linkage strategies. The number between
parenthesis in the full-vild+ row show the amount of events for which this strategy
found tweets composed before the actual start time of the event stated in the EI dataset.
Because our three vild linkage strategies are dependent (vild ≤ full-vild ≤ full-vild+)
and the fact that we could not identify additional events using the geo linkage strategy
the results for ‘combined’ and ‘full-vild+’ are the same.

For 25 of the 100 tested events the cause type is present in at least one linked
tweet with a match percentage > 0. As explained in chapter 4 rush-hour, event and
construction are cause types of the expected kind. Rush-hour events can be more or
less predicted using fixed times2 and historical data. Construction zones are available
as open data3 and also the ‘event’ cause type is available by forehand, although more
complicated to collect because you need to combine different data sources. When
we exclude the expected cause types: event, construction and rush-hour our tweets
contain cause type information for 21 out of 36 (58%) events.

In total we found 57 unique tweets with a match percentage > 0 for the related-
real category. 56 tweets were found using a vild linkage strategy. 1 tweet was found
using the geo strategy, but could also have been found using a vild matching strategy.

2Usually between 7h and 9h in the morning and 16h30-18h30 in the afternoon/evening.
3The NDW distributes a construction-zone dataset with a similar structure as the EI datasets
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The fact that this tweet was only linked using the geo linkage strategy was because it
came from our geo database and we only performed the vild linkage strategies to our
keyword dataset. 9 tweets out of the 57 (15.8%) contained a picture. In this experiment
all tweets matched by the full-vild strategy were also found by the vild-strategy. This
means that all matching VILD terms came from the start or end VILD point of the
events. The only difference between the two vild strategies are the actual values of
the matches. As explained in the methodology chapter a higher matching percentage
does not necessarily mean that it is ‘more related’ or whatsoever. We found one tweet
containing a cause type that should have been linked to an event, but did not match to
any of the VILD terms of the event.

Spread

Another interesting aspect to know is how the related tweets of our experiment are
spread with respect to the duration of traffic events. We therefore constructed the graph
displayed in E.2 (appendix). In this graph a dark blue line represent the active state of a
traffic event. An event is bounded by its start and end time according to the information
from the EI dataset. In this graph we ignore the dates of traffic events and only take the
time into account in order to create a compact graph. For each traffic event we plotted
all related tweets that contained cause type information. As can be seen from the graph
there are 6 accident events for which we have tweets with a creation time before the
start time of the event. The lowest green dot in the graph is another remarkable thing:
a correctly linked related-real tweet about a construction event composed before the
actual start time of the corresponding event in the EI dataset. The tweet of this green
dot clearly stated a traffic jam as a result of a road construction zone:

File #A6 ri Almere #werkzaamheden na Ketelbrug

For 7 traffic events we have tweets with a creation time < estart . The time differ-
ences between the earliest tweet and estart for these events are: 20, 17, 25, 25, 24, 7
and 22 minutes.

This experiment shows that our linkage strategies are able to correctly link tweets
to traffic events. These tweets contain valuable information about the cause type of an
event. Especially accidents seem very suitable to identify using social media content.
Some tweets are even composed before the event is actually stated in the EI dataset.

The performance of the geo linkage strategy is, as expected, poor. The fact that
Twitter does not provide you all tweets for a larger geographical area and the partition
of tweets containing geographical coordinates is ≤ 3% are two of the reasons for this
performance. In the next experiment we will test a large set of tweets to get a better
understanding of the geo linkage strategy performance.
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6.4.6 Experiment 3: geo linkage strategy

Datasets used Traffic events and geo dataset

Test datasets description All events (11.666 unique) and geo tweets that are within
50 meters of a traffic event between March 17 and May 1.

Goal of experiment Estimate the performance of the geo linkage strategy and inves-
tigate which interesting related tweets can only be found using the geo linkage
strategy.

In the previous experiment the geo linkage strategy, with access to two different
Twitter datasets, was performing worse than the vild linkage strategies. It was able to
find 3 related tweets with cause type information for 3 out of 100 events. This tweets
could also have been found using a vild linkage strategy. In this experiment we test a
large dataset of events and geo tweets and hope to find some relevant tweets that can
not be found using a vild linkage strategy.

In order to achieve a high precision we consider tweets that are within 50 meters
of a traffic event. We manually investigate all tweet texts of those tweets.

Results

We found 32 tweets not related to any kind of traffic event, but linked to one by the
strategy. Event halls, like the Amsterdam RAI, and other popular places that are close
to roads causing non-traffic tweets to be linked to events. To get rid of these kind of
tweets you could decrease the event distance of 50 meters to a smaller number, but this
automatically also means a decrease in recall, which is already very low.

88 tweets were related to the linked traffic event, but did not provide any addi-
tional information. Many of these tweets were check-ins from social media apps like
Swarmapp and Foursquare.

19 correctly linked tweets did provide additional information to the detected traffic
events.

Without further filtering the precision of the geo linkage strategy with a value
of 50 meters close to an event is: (88 + 19)/(88 + 19 + 32) ≈ 0.77 ≈ 77%. This
is a good value, but finding only 19 relevant tweets for 11.666 unique events make
this linkage strategy unusable in practice to perform on its own. Even when our 107
related tweets where equally distributed over all tested events we have a coverage of
107/11.666 < 1%. We can conclude that in our setup this linkage strategy on its own
is not able to find a significant amount of tweets that can be given to the classification
module to extract cause types for events.

6.4.7 Conclusion

In this section we described the results of several performed linkage experiments. Ex-
periment 2 showed that our vild linkage strategies were able to correctly link tweets
containing cause type information for 25 out of 100 randomly selected traffic events.
Experiment 3 showed that the geo linkage strategy on its own, in our setup, is not use-
ful in practice for linking tweets to traffic events. The only way that it can make itself
a little bit useful is in a supportive role next to the vild linkage strategies.
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In the next section we evaluate the performance of the classification step.

6.5 Classification

6.5.1 Experiment 4: classifications

Datasets used Traffic events and keyword dataset

Test datasets description 116 unique events between March 17 and April 1. Events
with a start time estart between 7h-9h and 16h30-18h30 (rush-hour) are excluded.

Goal of experiment To estimate the performance of our cause type classifier.

In this experiment we evaluate the performance of our developed demonstration
system regarding the traffic event cause type classification. Each linked tweet is either
related or not-related to the linked traffic event. As discussed in 4.4 all linked tweets
using the full-vild+ linkage strategy with a positive match percentage are considered
‘related’. We determine the cause type of detected traffic events using these related
tweets. As discussed in section 4.4 we use a dictionary approach to extract the cause
types from the filtered set of tweets. To construct this dictionary we investigated five
a4 pages with related-real and related-other tweets from experiment 1 and 2 to search
for specific frequently occurring traffic cause terms. The system uses all related-real
tweets to decide the cause type of each detected traffic event.

From experiment 2 we know that our system is not able to find many tweets regard-
ing rush-hour traffic jams. To speed up our experiment we exclude all traffic events
between 7h-9h and 16h30-18h30.

Results

Table 6.9: Actual cause types of traffic events compared with system cause types
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Actual cause type

rush-hour (17) 15 2
accident (59) 1 34 2 2 20

event (1) 1
technical (3) 1 2

non-technical (1) 1
construction (14) 3 1 2 8

weather (0)
breakdown (18) 6 1 11

other (3) 3
unknown (0)
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Two accident events were classified by our system as accident, but investigating the
tweets that were used to come to this decision revealed that they were actually about
a different accident. 34 out of 58 (57%) accident events were correctly identified by
our system. In 12 of the 34 detected accident events (35%) our system was able to
classify the cause type before the actual start of the event, thanks to the full-vild+
linkage strategy.

When performing this experiment we found the first cause type that we were forced
to put in the ‘other’ category: a traffic event caused by people on the opposite side of
the road that are staring at the accident that caused the original traffic jam on the other
side. We had three different traffic events of this type. Each time our system matched
the tweets to the original traffic jam, causing the event to be classified as accident.
These type of events are extremely difficult to identify correctly with our developed
methodology. Vild terms of two directions of the same road are very similar and
therefore our system cannot distinguish between different directions.

The ‘event’-event was caused by a traffic jam nearby the theme park ‘de Efteling’.
Our vild linkage strategy did match some tweets of people on their way to the theme
park that were stuck in this jam. Our system is not able to identify the event cause type
in this situation, because terms related to Efteling, including Efteling itself, are simply
not presented in the minimalistic cause type dictionary. An enhancement of this cause
type dictionary can significantly increase the performance of the cause type classifier.

6.5.2 Conclusion

Our system was not able to identify the traffic cause type for 37% of our tested events.
It classified 33% correctly and made the wrong decision for 30% of the tested events.
These numbers are far from great, but expected when using a very simple cause type
classifier based on a minimalistic self-constructed dictionary. The most important rea-
sons for incorrect cause type classification are the following:

1. Tweets linked to detected events are about other traffic events. They are classi-
fied as ‘related’ by our linkage strategy, most of the time, because of a matching
secnd_name vild property.

2. Tweets that are considered as related are of non real-time nature. It are tweets of
traffic events that will happen in the future or happened in the past. It is difficult
to filter these kind of tweets.

3. The system always tries to decide. Even if there exist only one related tweet that
matches with a particular cause type, it uses this cause type as its final decision.
In cases where our system decided the cause type based on more than 10 tweets,
it was almost always right. So, in order to make safer decisions a threshold could
be built into the system: only decide on a sufficient amount of related tweets.
As a drawback the amount of ‘unknown’ cause type will also increase. Another
possibility would be to provide a confidence level for the decided cause type(s).

In chapter 8 possible improvements for the cause type classifier are presented.
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Chapter 7

Conclusions

In this chapter we answer our research question: ‘To what extent can social media
support traffic information during uncommon disturbances on the road?’. We discuss
our project contributions and reflect on our developed methodology.

7.1 Conclusions

In Part I we focused on the detection of traffic events using Twitter as social media
platform. We choose several areas where we knew particular events would take place
and roads should get crowded. In order to estimate a base level to be able to detect
traffic disturbances we collected tweets containing geographical coordinates within a
short range to our chosen areas. We monitored the areas for several days and searched
for irregular tweet behaviour. When an abnormal amount of tweets is composed within
a certain amount of time you know that something is going on. The power of this kind
of event detection[2][3] is that it is relatively easy to set up and can detect all different
kinds of events.

We were able to detect the events that took place at our monitored areas. However,
although the amount of tweets composed before, during and after the events were
significantly above the normal level of activity, they did not provide us enough detailed
information about the traffic congestion around the areas. We needed more data input
than we received in order to compete and compare to open traffic data. We expect
similar results when using other social media platforms and therefore conclude that
social media is not able to operate as an appropriate alternative to open traffic data.

In Part II we presented a methodology that extracts traffic information from social
media content and links this information to detected traffic disturbances. In our devel-
oped system we use predefined datasets from the NDW that contain all kinds of traffic
events. We assume that most of these traffic events could also have been detected using
raw open traffic data[8]. Our system is able to extract cause type information and pro-
vide images using social media content for a significant amount of unexpected traffic
events. These cause types include technical road issues, accidents and car and truck
breakdowns. Non real-time traffic tweets are difficult for our system to deal with. They
can easily be incorrectly linked to traffic events, because they are hard to distinguish
from real-time tweets.
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7.2 Discussion/Reflection

Studies[7][1] claim to be able to detect traffic events using a keyword based approach.
In countries where the Intelligent transportation systems (ITS) are less developed than
the Netherlands we believe this could be a low-cost solution for traffic event detection.
However, this methodology is expected to be far less detailed and reliable than precise
real-time collected traffic data.

Our Twitter datasets and developed system show that it is hard to find plenty of
interesting traffic material that is not composed by ‘bot users’ for all kind of traffic
events. But, as soon as our linkage strategy links a tweet to a detected traffic event it
has a high chance of being related to that event. When such a related tweet contains
a nice picture or a possible cause type it definitely is a valuable addition to a detected
traffic event. Because of the low availability of traffic material our cause type classifier
has to make decisions based on just a few tweets. This means that it can be easily
misled when a wrong, not-related tweet is linked to a traffic event.

Information about expected traffic events, like rush-hour jams and construction
zones, is far less presented in our system. People obviously tweet more easily when
they see an impressive accident or are stuck in a traffic jam in the middle of the night
than when they do when they are in a common traffic disturbance. Most of the expected
traffic events can also be identified using common sense, historical data and open traffic
data1. The lack of this information in our system should therefore not be considered
as a major shortcoming.

It should be possible to apply our work in other countries under the following
conditions:

• The ITS must be sufficiently developed. Since our method uses a set of pre-
defined events, a technology that is able to detect traffic disturbances must be
implemented in the country of interest.

• Mobile internet must be sufficiently developed. This means it is stable and has
an adequate coverage in order to extract cause types for traffic disturbances near
real time.

• Twitter must be available and be at ‘a certain level of popularity’.

Our vild linkage strategies make use of VILD tables: tables describing traffic mea-
suring points by providing names and road numbers. When similar tables exist in
other countries this definitely can support linking the right tweets to the right events.
However, linking should also be possible based on a set of places and roads.

Furthermore our work could also be applied to other social media platforms, as
long as they show some similarities with Twitter like short messages, a keyword search
possibility/API and a real-time nature.

1The NDW distributes construction-zone datasets that are available long before the events actually
take place.
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7.3 Contributions

In the scientific field there exist keyword based approaches [7][1] that use Twitter to
detect and classify traffic events. These researches use people as social sensors in order
to detect disturbances. Our developed methodology differs from these approaches in a
way that it uses more precise and reliable open traffic data to do the detection part and
use social media content to enrich detected events with cause types and pictures.

A demonstration system has been developed that is able to link tweets to traffic
events using different linkage strategies. From the related linked tweets it tries to
derive the cause type of a traffic event using a dictionary approach.

In the practical field the automatically extracted traffic information can be useful
for news sites. Especially the cases when the system finds relevant tweets that contain
interesting pictures can be of great value in this application. Furthermore our system
can be useful for road users. When people are unexpectedly stuck in traffic they are
often curious about what is happening. That is the question that we aimed to solve in
our developed system. The advantage of reasoning from detected traffic events using
reliable measuring equipment is that we cannot provide information for disturbances
that do not exists. At time of writing there exist many mobile traffic applications that
display user mentioned traffic disturbances on a map. I have experienced in practice
that these applications display many incorrect events. It is confusing and misleading
when a Google map shows a green road together with a stop icon that says ‘road
closure’, without any notion of time or details about the closure.
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Future Work

In this chapter future work to improve the system is presented.

8.1 Bot detection algorithm

Our simple bot detection algorithm is able to classify Twitter users as ‘bot users’ with
a high precision. Unfortunately there also exists a relatively high amount of false
negatives: bot users that are not detected by the algorithm. We had to manually set the
bot status for these users to make sure that they did not disturb our experiments and
unintentionally influence our system. Improving the bot detection algorithm means an
improve of the overall system, because bot users pollute our data in all phases of the
methodology. It is likely that in the future new traffic bot users will be created. An
improvement of the detection algorithm can reduce or even eliminate the amount of
manual work that needs to be done to identify them.

One potential improvement of the algorithm is to investigate the distribution of
tweets. When this distribution show suspicious patterns this can indicate the presence
of a bot. They are often silent for a certain amount of time and than spread several
tweets within a very short amount of time.

8.2 Collection

To collect more potential interesting tweets more keywords could be added to the sys-
tem. We now use 12. The Twitter streaming API allow you to add up to 400 key-
words. For example roads that are known to cause lots of traffic disturbances could be
added. Furthermore collecting tweets using multiple Twitter accounts might help to
work around the Twitter API limitations.

As discussed in chapter 7 our methodology should not be restricted to Twitter as
only working social media platform. Therefore adding different social media plat-
forms, such as Instagram, might add value to our system.

8.3 Linkage

To increase the recall of related tweets we can enrich the set of VILD terms. Our
method now uses a small extension to the original set of VILD terms: terms that
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contain ‘van’, like ‘van Brienenoordbrug’, are also put in the list of match candidates
without the preposition ‘van’. There probably exists more terms that are often referred
to by different synonyms or acronyms. To match tweets by these different formats they
must be added to the list of match candidates.

The positive match percentage that is used as heuristic to determine related tweets
works quite well in practice. However, it can not distinguish non real- time tweets from
real-time tweets. Non real-time tweets can easily ‘fool’ the heuristic and potentially
causes the system to extract the wrong cause type for a detected event. To develop
a more stable classifier a filter must be created that is able to eliminate non real-time
tweets. This is not easy.

The secnd_name property of the VILD points, that at this moment can be used for
matching, is not always leading to related tweets. We had cases where this property
linked traffic tweets to wrong traffic events, because the secnd_name property refers to
intersecting roads. It is wise to investigate if this property actually increases the recall
of related tweets. Perhaps it is better to remove this property, just as we did with the
loc_des (location description) property. This property had a very bad impact on the
precision of our linkage strategies.

8.4 Classification

The developed cause type classification step is primitive. It determines cause types
for traffic events by scanning the related tweets of the linkage step for terms available
in a self-constructed dictionary. The rule could certainly be improved. Extending the
dictionary might help, but this can also lead to wrong decisions. Some terms only
indicate a particular cause type when they coexist with other terms. This dependency
feature, together with other features, might be used in a supervised machine learning
environment to extract cause types from a set of tweets.

Besides traffic cause types, other type of information could also be extracted from
the retrieved data. Sometimes tweets contain very detailed descriptions of accidents
that happened. This information can be useful for other road users and (local) news
sites. Some tweets also contain information about road and lane closures. This could
also be interesting information for our system.
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Appendix A

NDW Dataset examples

A.1 MST

Code A.1: An MeasurementSiteTable (MST) example dataset containing measuring locations.
The complete xml file consists of over 3.5 million lines

1 <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"><soap:Body><
d2LogicalModel xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.
org/2001/XMLSchema−instance" xmlns="http://datex2.eu/schema/2/2_0" modelBaseVersion="2"
>

2 <exchange>
3 <supplierIdentification>
4 <country>nl</country>
5 <nationalIdentifier>NDW−CNS</nationalIdentifier>
6 </supplierIdentification>
7 </exchange>
8 <payloadPublication xsi:type="MeasurementSiteTablePublication" lang="nl">
9 <publicationTime>2014−10−31T12:00:00Z</publicationTime>

10 <publicationCreator>
11 <country>nl</country>
12 <nationalIdentifier>NDW−CNS</nationalIdentifier>
13 </publicationCreator>
14 <headerInformation>
15 <confidentiality>noRestriction</confidentiality>
16 <informationStatus>real</informationStatus>
17 </headerInformation>
18 <measurementSiteTable id="NDW01_MT" version="657">
19 <measurementSiteRecord id="PZH01_MST_0007_00" version="1">
20 <measurementSiteRecordVersionTime>2014−02−16T22:00:00Z</

measurementSiteRecordVersionTime>
21 <computationMethod>arithmeticAverageOfSamplesInATimePeriod</computationMethod>
22 <measurementEquipmentTypeUsed>
23 <values>
24 <value lang="nl">lus</value>
25 </values>
26 </measurementEquipmentTypeUsed>
27 <measurementSiteName>
28 <values>
29 <value lang="nl">N206 km 9.742</value>
30 </values>
31 </measurementSiteName>
32 <measurementSiteNumberOfLanes>2</measurementSiteNumberOfLanes>

85



A.1 MST NDW Dataset examples

33 <measurementSpecificCharacteristics index="1">
34 <measurementSpecificCharacteristics>
35 <accuracy>95.0</accuracy>
36 <period>60.0</period>
37 <specificLane>lane1</specificLane>
38 <specificMeasurementValueType>trafficFlow</specificMeasurementValueType>
39 <specificVehicleCharacteristics>
40 <lengthCharacteristic>
41 <comparisonOperator>lessThan</comparisonOperator>
42 <vehicleLength>5.60</vehicleLength>
43 </lengthCharacteristic>
44 </specificVehicleCharacteristics>
45 </measurementSpecificCharacteristics>
46 </measurementSpecificCharacteristics>
47 <measurementSpecificCharacteristics index="2">
48 <measurementSpecificCharacteristics>
49 <accuracy>95.0</accuracy>
50 <period>60.0</period>
51 <specificLane>lane1</specificLane>
52 <specificMeasurementValueType>trafficFlow</specificMeasurementValueType>
53 <specificVehicleCharacteristics>
54 <lengthCharacteristic>
55 <comparisonOperator>greaterThanOrEqualTo</comparisonOperator>
56 <vehicleLength>5.60</vehicleLength>
57 </lengthCharacteristic>
58 <lengthCharacteristic>
59 <comparisonOperator>lessThanOrEqualTo</comparisonOperator>
60 <vehicleLength>12.20</vehicleLength>
61 </lengthCharacteristic>
62 </specificVehicleCharacteristics>
63 </measurementSpecificCharacteristics>
64 </measurementSpecificCharacteristics>
65 <measurementSiteLocation xsi:type="Point">
66 <locationForDisplay>
67 <latitude>52.13606</latitude>
68 <longitude>4.48862</longitude>
69 </locationForDisplay>
70 <supplementaryPositionalDescription>
71 <affectedCarriagewayAndLanes>
72 <carriageway>mainCarriageway</carriageway>
73 </affectedCarriagewayAndLanes>
74 </supplementaryPositionalDescription>
75 <alertCPoint xsi:type="AlertCMethod4Point">
76 <alertCLocationCountryCode>8</alertCLocationCountryCode>
77 <alertCLocationTableNumber>5.7</alertCLocationTableNumber>
78 <alertCLocationTableVersion>A</alertCLocationTableVersion>
79 <alertCDirection>
80 <alertCDirectionCoded>positive</alertCDirectionCoded>
81 </alertCDirection>
82 <alertCMethod4PrimaryPointLocation>
83 <alertCLocation>
84 <specificLocation>10824</specificLocation>
85 </alertCLocation>
86 <offsetDistance>
87 <offsetDistance>842</offsetDistance>
88 </offsetDistance>
89 </alertCMethod4PrimaryPointLocation>
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90 </alertCPoint>
91 </measurementSiteLocation>
92 </measurementSiteRecord>
93 </measurementSiteTable>
94 </payloadPublication>
95 </d2LogicalModel></soap:Body></soap:Envelope>

A.2 TFTS

Code A.2: An Traffic Speed Traffic Flow (TFTS) dataset example containint real time traffic
speeds and flow values

1 <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"><soap:Body><
d2LogicalModel xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.
org/2001/XMLSchema−instance" xmlns="http://datex2.eu/schema/2/2_0" modelBaseVersion="2"
xsi:schemaLocation="http://datex2.eu/schema/2/2_0 http://www.ndw.nu/DATEXII/

DATEXIISchema_2_2_1.xsd">
2 <exchange xmlns="http://datex2.eu/schema/2/2_0">
3 <supplierIdentification>
4 <country>nl</country>
5 <nationalIdentifier>NDW−CNS</nationalIdentifier>
6 </supplierIdentification>
7 </exchange>
8 <payloadPublication xmlns="http://datex2.eu/schema/2/2_0" xsi:type="MeasuredDataPublication"

lang="nl">
9 <publicationTime>2014−10−31T17:48:55.000Z</publicationTime>

10 <publicationCreator>
11 <country>nl</country>
12 <nationalIdentifier>NDW−CNS</nationalIdentifier>
13 </publicationCreator>
14 <measurementSiteTableReference id="NDW01_MT" version="657" targetClass="

MeasurementSiteTable"/>
15 <headerInformation>
16 <confidentiality>noRestriction</confidentiality>
17 <informationStatus>real</informationStatus>
18 </headerInformation>
19 <siteMeasurements>
20 <measurementSiteReference id="GEO01_Z_RWSTI650" version="1" targetClass="

MeasurementSiteRecord"/>
21 <measurementTimeDefault>2014−10−31T17:47:00Z</measurementTimeDefault>
22 <measuredValue index="1" xsi:type="_SiteMeasurementsIndexMeasuredValue">
23 <measuredValue xsi:type="MeasuredValue">
24 <basicData xsi:type="TrafficFlow">
25 <vehicleFlow numberOfInputValuesUsed="0">
26 <vehicleFlowRate>0</vehicleFlowRate>
27 </vehicleFlow>
28 </basicData>
29 </measuredValue>
30 </measuredValue>
31 <measuredValue index="2" xsi:type="_SiteMeasurementsIndexMeasuredValue">
32 <measuredValue xsi:type="MeasuredValue">
33 <basicData xsi:type="TrafficFlow">
34 <vehicleFlow numberOfInputValuesUsed="6">
35 <vehicleFlowRate>360</vehicleFlowRate>
36 </vehicleFlow>
37 </basicData>
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38 </measuredValue>
39 </measuredValue>
40 <measuredValue index="3" xsi:type="_SiteMeasurementsIndexMeasuredValue">
41 <measuredValue xsi:type="MeasuredValue">
42 <basicData xsi:type="TrafficFlow">
43 <vehicleFlow numberOfInputValuesUsed="1">
44 <vehicleFlowRate>60</vehicleFlowRate>
45 </vehicleFlow>
46 </basicData>
47 </measuredValue>
48 </measuredValue>
49 <measuredValue index="4" xsi:type="_SiteMeasurementsIndexMeasuredValue">
50 <measuredValue xsi:type="MeasuredValue">
51 <basicData xsi:type="TrafficFlow">
52 <vehicleFlow numberOfInputValuesUsed="0">
53 <vehicleFlowRate>0</vehicleFlowRate>
54 </vehicleFlow>
55 </basicData>
56 </measuredValue>
57 </measuredValue>
58 <measuredValue index="5" xsi:type="_SiteMeasurementsIndexMeasuredValue">
59 <measuredValue xsi:type="MeasuredValue">
60 <basicData xsi:type="TrafficFlow">
61 <vehicleFlow numberOfInputValuesUsed="0">
62 <vehicleFlowRate>0</vehicleFlowRate>
63 </vehicleFlow>
64 </basicData>
65 </measuredValue>
66 </measuredValue>
67 <measuredValue index="6" xsi:type="_SiteMeasurementsIndexMeasuredValue">
68 <measuredValue xsi:type="MeasuredValue">
69 <basicData xsi:type="TrafficFlow">
70 <vehicleFlow numberOfInputValuesUsed="7">
71 <vehicleFlowRate>420</vehicleFlowRate>
72 </vehicleFlow>
73 </basicData>
74 </measuredValue>
75 </measuredValue>
76 <measuredValue index="7" xsi:type="_SiteMeasurementsIndexMeasuredValue">
77 <measuredValue xsi:type="MeasuredValue">
78 <basicData xsi:type="TrafficSpeed">
79 <averageVehicleSpeed numberOfIncompleteInputs="0" numberOfInputValuesUsed="0"

supplierCalculatedDataQuality="100.0">
80 <speed>0</speed>
81 </averageVehicleSpeed>
82 </basicData>
83 </measuredValue>
84 </measuredValue>
85 </siteMeasurements>
86 </payloadPublication>
87 </d2LogicalModel></soap:Body></soap:Envelope>
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A.3 TT

Code A.3: An traveltime (TT) dataset example containing traveltimes between measuring
points

1 <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"><soap:Body><
d2LogicalModel xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.
org/2001/XMLSchema−instance" xmlns="http://datex2.eu/schema/2/2_0" modelBaseVersion="2"
xsi:schemaLocation="http://datex2.eu/schema/2/2_0 http://www.ndw.nu/DATEXII/

DATEXIISchema_2_2_1.xsd">
2 <exchange xmlns="http://datex2.eu/schema/2/2_0">
3 <supplierIdentification>
4 <country>nl</country>
5 <nationalIdentifier>NDW−CNS</nationalIdentifier>
6 </supplierIdentification>
7 </exchange>
8 <payloadPublication xmlns="http://datex2.eu/schema/2/2_0" xsi:type="MeasuredDataPublication"

lang="nl">
9 <publicationTime>2014−10−31T18:00:55.000Z</publicationTime>

10 <publicationCreator>
11 <country>nl</country>
12 <nationalIdentifier>NDW−CNS</nationalIdentifier>
13 </publicationCreator>
14 <measurementSiteTableReference id="NDW01_MT" version="657" targetClass="

MeasurementSiteTable"/>
15 <headerInformation>
16 <confidentiality>noRestriction</confidentiality>
17 <informationStatus>real</informationStatus>
18 </headerInformation>
19 <siteMeasurements>
20 <measurementSiteReference id="PNB01_BEMOB_68" version="8" targetClass="

MeasurementSiteRecord"/>
21 <measurementTimeDefault>2014−10−31T17:59:00Z</measurementTimeDefault>
22 <measuredValue index="1" xsi:type="_SiteMeasurementsIndexMeasuredValue">
23 <measuredValue xsi:type="MeasuredValue">
24 <basicData xsi:type="TravelTimeData">
25 <measurementOrCalculationTime>2014−10−31T18:00:49Z</

measurementOrCalculationTime>
26 <travelTimeType>best</travelTimeType>
27 <travelTime>
28 <duration>168</duration>
29 </travelTime>
30 </basicData>
31 </measuredValue>
32 </measuredValue>
33 </siteMeasurements><siteMeasurements>
34 <measurementSiteReference id="GEO03_D4T−POV_T_HAVER1_ID_8578" version="1"

targetClass="MeasurementSiteRecord"/>
35 <measurementTimeDefault>2014−10−31T17:59:00Z</measurementTimeDefault>
36 <measuredValue index="1">
37 <measuredValue>
38 <basicData xsi:type="TravelTimeData">
39 <travelTimeType>best</travelTimeType>
40 <travelTime numberOfInputValuesUsed="22" standardDeviation="16">
41 <duration>137</duration>
42 </travelTime>
43 </basicData>
44 </measuredValue>
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45 </measuredValue>
46 </siteMeasurements>
47 <siteMeasurements>
48 <measurementSiteReference id="PNB01_BEMOB_70" version="8" targetClass="

MeasurementSiteRecord"/>
49 <measurementTimeDefault>2014−10−31T17:59:00Z</measurementTimeDefault>
50 <measuredValue index="1" xsi:type="_SiteMeasurementsIndexMeasuredValue">
51 <measuredValue xsi:type="MeasuredValue">
52 <basicData xsi:type="TravelTimeData">
53 <measurementOrCalculationTime>2014−10−31T18:00:49Z</

measurementOrCalculationTime>
54 <travelTimeType>best</travelTimeType>
55 <travelTime>
56 <duration>130</duration>
57 </travelTime>
58 </basicData>
59 </measuredValue>
60 </measuredValue>
61 </siteMeasurements>
62 <siteMeasurements>
63 <measurementSiteReference id="GEO03_D4T−RWS_T_0317_ID_324" version="3"

targetClass="MeasurementSiteRecord"/>
64 <measurementTimeDefault>2014−10−31T17:59:00Z</measurementTimeDefault>
65 <measuredValue index="1">
66 <measuredValue>
67 <basicData xsi:type="TravelTimeData">
68 <travelTimeType>best</travelTimeType>
69 <travelTime numberOfInputValuesUsed="33" standardDeviation="26">
70 <duration>40</duration>
71 </travelTime>
72 </basicData>
73 </measuredValue>
74 </measuredValue>
75 <siteMeasurements>
76 <measurementSiteReference id="RWS01_MONIBAS_0021hrr0308ra0" version="1"

targetClass="MeasurementSiteRecord"/>
77 <measurementTimeDefault>2014−10−31T17:59:00Z</measurementTimeDefault>
78 <measuredValue index="1" xsi:type="_SiteMeasurementsIndexMeasuredValue">
79 <measuredValue xsi:type="MeasuredValue">
80 <basicData xsi:type="TravelTimeData">
81 <travelTimeType>best</travelTimeType>
82 <travelTime numberOfIncompleteInputs="0">
83 <duration>19</duration>
84 </travelTime>
85 </basicData>
86 </measuredValue>
87 </measuredValue>
88 </siteMeasurements>
89 </payloadPublication>
90 </d2LogicalModel></soap:Body></soap:Envelope>
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A.4 VILD

Code A.4: A snapshot of a VILD table

1 7616;P1.3;Afrit;A16;;Zwijndrecht
;;0;22;335;326;323;328;;−1;1;1;1;1;;2564;3065;0;7617;7615;0;1;1;0;;;0;367;16;427

2 7617;P1.3;Afrit;A16;;Hendrik−Ido−Ambacht
;;0;23;314;297;294;311;;−1;1;1;1;1;;2501;3065;0;21695;7616;0;1;1;0;;;0;367;16;427

3 7618;P1.14;Verbindingsweg;A16;;A16 vanuit Breda;A15 richting Gorinchem;7619;;280;275;−1;−1;s
;−1;0;1;0;0;;2535;3065;0;7621;21696;0;1;0;0;;;0;367;16;427

4 7619;P1.1;Knooppunt;A16;;Ridderkerk−Zuid;A15
;7619;;287;267;267;287;;−1;1;1;1;1;;2535;3065;7453;7620;7621;0;1;1;0;;;0;367;16;427

5 7620;P1.14;Verbindingsweg;A16;;A16 vanuit Rotterdam;A15 richting Gorinchem
;7619;;−1;−1;249;259;t;−1;0;0;0;1;;2535;3065;0;7622;7619;0;0;1;0;;;0;367;16;427

6 7621;P1.14;Verbindingsweg;A16;;A16 vanuit Breda;A15 richting Europoort;7619;;279;272;−1;−1;y
;−1;0;1;0;0;;2535;3065;0;7619;7618;0;1;0;0;;;0;367;16;427

7 7622;P1.1;Knooppunt;A16;Ring Rotterdam;Ridderkerk−Noord;A15/A38
;7622;;267;246;246;267;;−1;1;1;1;1;;2535;3065;7450;7623;7620;0;1;1;0;;;0;367;16;427

8 7623;P1.14;Verbindingsweg;A16;Ring Rotterdam;A16 vanuit Rotterdam;A15 richting Europoort
;7622;;−1;−1;245;254;p;−1;0;0;0;1;;2535;3065;0;7624;7622;0;0;1;0;;;0;367;16;427

9 7624;P3.47;Viaduct;A16;Ring Rotterdam;Groeninx van Zoelen
;;0;;235;235;235;235;;−1;0;0;0;0;;2536;3065;0;7625;7623;0;1;1;0;;;0;367;16;427

10 7625;P1.3;Afrit;A16;Ring Rotterdam;Feijenoord
;;0;24;230;215;216;225;;−1;1;1;1;1;;2536;3065;26224;7626;7624;0;1;1;0;Rotterdam
;;0;367;16;427

11 7626;P3.47;Viaduct;A16;Ring Rotterdam;John F Kennedyweg
;;0;;215;215;215;215;;−1;0;0;0;0;;2536;3065;0;7627;7625;0;1;1;0;;;0;366;16;425

12 7627;P3.2;Brug;A16;Ring Rotterdam;Van Brienenoordbrug;Nieuwe Maas
;0;;211;207;207;211;;−1;0;0;0;0;;2536;3065;0;7628;7626;0;1;1;0;;;2;366;16;425

13 7628;P1.3;Afrit;A16;Ring Rotterdam;Rotterdam−Centrum;N210
;0;25;200;191;190;201;;−1;1;1;1;1;;2536;3065;26230;7629;7627;0;1;1;0;;;0;366;16;425

14 7629;P1.3;Afrit;A16;Ring Rotterdam;Kralingen
;;0;26;187;187;184;184;;−1;1;1;1;1;;2536;3065;26300;7630;7628;0;1;1;0;Rotterdam
;;0;366;16;425

15 7630;P1.3;Afrit;A16;Ring Rotterdam;Prins Alexander
;;0;27;161;161;160;160;;−1;0;1;1;0;;2536;3065;26245;7631;7629;0;1;1;0;Rotterdam
;;0;366;16;425

16 7631;P1.14;Verbindingsweg;A16;Ring Rotterdam;A16 vanuit Breda;A20 richting Gouda
;7633;;160;150;−1;−1;f;−1;0;1;0;0;;2536;3065;0;7632;7630;0;1;0;0;;;0;366;16;425

17 7632;P1.14;Verbindingsweg;A16;Ring Rotterdam;A16 vanuit Breda;A20 richting Hoek van Holland
;7633;;156;153;−1;−1;v;−1;0;1;0;0;;2536;3065;0;7633;7631;0;1;0;0;;;0;366;16;425

18 7633;P1.1;Knooppunt;A16;Ring Rotterdam;Terbregseplein;A20
;7633;;166;140;156;156;;−1;1;1;1;1;;2536;3065;7682;0;7632;0;1;1;0;;;0;366;16;425
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Code A.5: A snapshot of a converted VILD row into JSON

1 {
2 "_id": "7620_VILD_5.7.A",
3 "_rev": "1−f529f91408687bc6850329bc627ca4f9",
4 "neg_out": 1,
5 "hstart_neg": 249,
6 "aw_ref": 427,
7 "hend_neg": 259,
8 "pos_in": 0,
9 "top_sign": "",

10 "type_code": 0,
11 "pres_neg": 1,
12 "secnd_name": "A15 richting Gorinchem",
13 "first_name": "A16 vanuit Rotterdam",
14 "lin_ref": 3065,
15 "hend_pos": −1,
16 "mw_ref": 367,
17 "version": {
18 "date": "1−04−2014",
19 "number": "5.7.A",
20 "datems": 1396303200000
21 },
22 "neg_in": 0,
23 "rw_nr": 16,
24 "loc_nr": 7620,
25 "type": "vild",
26 "pos_off": 7622,
27 "roadname": "",
28 "far_away": 0,
29 "area_ref": 2535,
30 "roadnumber": "A16",
31 "inter_ref": 0,
32 "junct_ref": 7619,
33 "pos_out": 0,
34 "neg_off": 7619,
35 "city_distr": "",
36 "hecto_char": "t",
37 "loc_des": "Verbindingsweg",
38 "hecto_dir": −1,
39 "pres_pos": 0,
40 "loc_type": "P1.14",
41 "urban_code": 0,
42 "exit_nr": "",
43 "hstart_pos": −1,
44 "dir": ""
45 }
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A.5 Eventinfo

Code A.6: An eventinfo (EI) example dataset containing one event/situation

1 <?xml version="1.0" encoding="utf−8"?>
2 <SOAP−ENV:Envelope xmlns:SOAP−ENV="http://schemas.xmlsoap.org/soap/envelope/">
3 <SOAP−ENV:Header />
4 <SOAP−ENV:Body>
5 <d2LogicalModel modelBaseVersion="2.0" xmlns="http://datex2.eu/schema/2_0/2_0">
6 <exchange>
7 <supplierIdentification>
8 <country>nl</country>
9 <nationalIdentifier>NDWNL</nationalIdentifier>

10 </supplierIdentification>
11 <subscription>
12 <operatingMode>operatingMode1</operatingMode>
13 <subscriptionStartTime>2014−01−15T20:46:56Z</subscriptionStartTime>
14 <subscriptionState>active</subscriptionState>
15 <updateMethod>snapshot</updateMethod>
16 <target>
17 <address></address>
18 <protocol>HTTP</protocol>
19 </target>
20 </subscription>
21 <filterReference>
22 <keyFilterReference>CBS filter</keyFilterReference>
23 </filterReference>
24 </exchange>
25 <payloadPublication lang="nl" xsi:type="SituationPublication" xmlns:xsi="http://www.w3.org

/2001/XMLSchema−instance">
26 <publicationTime>2014−01−15T20:46:56Z</publicationTime>
27 <publicationCreator>
28 <country>nl</country>
29 <nationalIdentifier>NDWNL</nationalIdentifier>
30 </publicationCreator>
31 <situation id="NLRWS_NLSIT001575095">
32 <situationVersion>1</situationVersion>
33 <situationVersionTime>2014−01−15T20:13:46Z</situationVersionTime>
34 <headerInformation>
35 <confidentiality>noRestriction</confidentiality>
36 <informationStatus>real</informationStatus>
37 </headerInformation>
38 <situationRecord xsi:type="RoadOrCarriagewayOrLaneManagement" id="

NLRWS_NLSIT001575095_1">
39 <situationRecordCreationTime>2014−01−15T20:13:00Z</situationRecordCreationTime>
40 <situationRecordVersion>1</situationRecordVersion>
41 <situationRecordVersionTime>2014−01−15T20:13:45Z</situationRecordVersionTime>
42 <probabilityOfOccurrence>certain</probabilityOfOccurrence>
43 <source>
44 <sourceIdentification>NLTIC</sourceIdentification>
45 <sourceName>
46 <value lang="nl"></value>
47 </sourceName>
48 </source>
49 <validity>
50 <validityStatus>definedByValidityTimeSpec</validityStatus>
51 <validityTimeSpecification>
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52 <overallStartTime>2014−01−15T20:10:00Z</overallStartTime>
53 <overallEndTime>2014−01−16T04:00:00Z</overallEndTime>
54 <validPeriod>
55 <startOfPeriod>2014−01−15T20:10:00Z</startOfPeriod>
56 <endOfPeriod>2014−01−16T04:00:00Z</endOfPeriod>
57 </validPeriod>
58 </validityTimeSpecification>
59 </validity>
60 <cause xsi:type="NonManagedCause">
61 <causeDescription>
62 <value lang="nl">Wegwerkzaamheden</value>
63 </causeDescription>
64 <causeType>other</causeType>
65 </cause>
66 <generalPublicComment>
67 <comment>
68 <value lang="nl">Het verkeer wordt geadviseerd een andere route te kiezen</value>
69 </comment>
70 </generalPublicComment>
71 <groupOfLocations xsi:type="Itinerary">
72 <locationContainedInItinerary index="0">
73 <location xsi:type="Linear">
74 <locationForDisplay>
75 <latitude>52.441444</latitude>
76 <longitude>4.668316</longitude>
77 </locationForDisplay>
78 <supplementaryPositionalDescription />
79 <alertCLinear xsi:type="AlertCMethod4Linear">
80 <alertCLocationCountryCode>8</alertCLocationCountryCode>
81 <alertCLocationTableNumber>5.6</alertCLocationTableNumber>
82 <alertCLocationTableVersion>A</alertCLocationTableVersion>
83 <alertCDirection>
84 <alertCDirectionCoded>negative</alertCDirectionCoded>
85 </alertCDirection>
86 <alertCMethod4PrimaryPointLocation>
87 <alertCLocation>
88 <specificLocation>10591</specificLocation>
89 </alertCLocation>
90 <offsetDistance>
91 <offsetDistance>0</offsetDistance>
92 </offsetDistance>
93 </alertCMethod4PrimaryPointLocation>
94 <alertCMethod4SecondaryPointLocation>
95 <alertCLocation>
96 <specificLocation>10594</specificLocation>
97 </alertCLocation>
98 <offsetDistance>
99 <offsetDistance>100</offsetDistance>

100 </offsetDistance>
101 </alertCMethod4SecondaryPointLocation>
102 </alertCLinear>
103 </location>
104 </locationContainedInItinerary>
105 <locationContainedInItinerary index="1">
106 <location xsi:type="Point">
107 <pointByCoordinates>
108 <pointCoordinates>
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109 <latitude>52.441444</latitude>
110 <longitude>4.668316</longitude>
111 </pointCoordinates>
112 </pointByCoordinates>
113 </location>
114 </locationContainedInItinerary>
115 <locationContainedInItinerary index="2">
116 <location xsi:type="Point">
117 <pointByCoordinates>
118 <pointCoordinates>
119 <latitude>52.486115</latitude>
120 <longitude>4.692282</longitude>
121 </pointCoordinates>
122 </pointByCoordinates>
123 </location>
124 </locationContainedInItinerary>
125 </groupOfLocations>
126 <operatorActionStatus>approved</operatorActionStatus>
127 <complianceOption>mandatory</complianceOption>
128 <roadOrCarriagewayOrLaneManagementType>roadClosed</

roadOrCarriagewayOrLaneManagementType>
129 </situationRecord>
130 </situation>
131 </payloadPublication>
132 </d2LogicalModel>
133 </SOAP−ENV:Body>
134 </SOAP−ENV:Envelope>
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Appendix B

DBPedia Spotlight example results

Code B.1: Results of the DBPedia spotter on an example tweet

1 {
2 "annotation": {
3 "@text": "@fileinformatie_ Morning! Afrit #28 naar #A1 #

hoevelaken -&gt; A’dam is een drama. A1 bij 41,5 gaat nu weer
rijden.. langzaam.. @ANWBverkeer",

4 "surfaceForm": [
5 {
6 "@name": "fileinformatie",
7 "@offset": "1"
8 },
9 {

10 "@name": "A1",
11 "@offset": "42"
12 },
13 {
14 "@name": "hoevelaken",
15 "@offset": "46"
16 },
17 {
18 "@name": "A1",
19 "@offset": "83"
20 }
21 ]
22 }
23 }
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DBPedia Spotlight example results

Code B.2: Partially results of the DBPedia candidates service on an example tweet

1 {
2 "annotation": {
3 "@text": "@fileinformatie_ Morning! Afrit #28 naar #A1 #

hoevelaken -&gt; A’dam is een drama. A1 bij 41,5 gaat nu weer
rijden.. langzaam.. @ANWBverkeer",

4 "surfaceForm": [
5 ..
6 {
7 "@name": "hoevelaken",
8 "@offset": "46",
9 "resource": {

10 "@label": "Knooppunt Hoevelaken",
11 "@uri": "Knooppunt_Hoevelaken",
12 "@contextualScore": "0.9999320305275015",
13 "@percentageOfSecondRank": "0.004447682312902582",
14 "@support": "24",
15 "@priorScore": "1.3082359174535842E-6",
16 "@finalScore": "0.9955714958208094",
17 "@types": "Schema:Place, DBpedia:Place, DBpedia:

ArchitecturalStructure, DBpedia:Infrastructure, DBpedia:
RouteOfTransportation, DBpedia:RoadJunction"

18 }
19 },
20 {
21 "@name": "A1",
22 "@offset": "83",
23 "resource": {
24 "@label": "Rijksweg 1",
25 "@uri": "Rijksweg_1",
26 "@contextualScore": "0.9969469089192675",
27 "@percentageOfSecondRank": "2.139943072195324E-4",
28 "@support": "285",
29 "@priorScore": "1.5535301519761313E-5",
30 "@finalScore": "0.9997315439355874",
31 "@types": "Schema:Place, DBpedia:Place, DBpedia:

ArchitecturalStructure, DBpedia:Infrastructure, DBpedia:
RouteOfTransportation, DBpedia:Road"

32 }
33 },
34 ..
35 }
36 ]
37 }
38 }
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Appendix C

Sentiment services example results

Code C.1: Example of sentiment scores and label using the text processing service

1 {
2 "probability": {
3 "neg": 0.5,
4 "neutral": 1,
5 "pos": 0.5
6 },
7 "label": "neutral"
8 }

Code C.2: Example of a sentiment score and label using the AI Applied service

1 {
2 "data": [
3 {
4 "language_iso": "nld",
5 "text": "File%20file%20file%20hoera%21%20Terug%20in%20

Nederland.",
6 "confidence_sentiment": 0.7445227630217524,
7 "sentiment_class": "neutral"
8 }
9 ],

10 "description": "OK: Call processed.",
11 "success": true
12 }
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Appendix D

Linked event example

Code D.1: Tweets linked to an event

1 ..
2 "linkedTweets": {
3 "geoTweets": {},
4 "timeAndFullVildBased+": {
5 "10.0%": [
6 {
7 "twitterScreenName": "yourvipdriver",
8 "matchTerms": [
9 "afrit",

10 "a1"
11 ],
12 "matchPercentage": 10,
13 "linkageTimeDate": 1432293242112,
14 "matches": {
15 "secndNameMatch": false,
16 "roadNumberMatch": true,
17 "firstNameMatch": false,
18 "locDesMatch": true,
19 "roadNameMatch": false
20 },
21 "vildTerms": {
22 "first_name": [
23 "muiderberg",
24 "ronduit",
25 "naarden",
26 "bastion",
27 "naarden-west",
28 "a1 vanuit amersfoort",
29 "naarden-vesting"
30 ],
31 "secnd_name": [
32 "a6 richting lelystad",
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Linked event example

33 "a6"
34 ],
35 "loc_des": [
36 "parkeerplaats",
37 "knooppunt",
38 "verbindingsweg",
39 "afrit"
40 ],
41 "roadname": [],
42 "roadnumber": [
43 "a1"
44 ]
45 },
46 "is_bot": false,
47 "id": "450503270482866176_TWEET",
48 "estimatedDistanceToEvent": [],
49 "linkageTime": "2015-05-22T13:14:02"
50 },
51 ..
52 ],
53 "0.0%": []
54 },
55 "timeAndVildBased": {},
56 "timeAndFullVildBased": {}
57 }
58 ..
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Appendix E

Experiment 2 - Results
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Experiment 2 - Results
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Appendix F

Glossary

In this appendix we give an overview of frequently used terms and abbreviations.

NDW National Data Warehouse for Traffic information (http://www.ndw.nu)

VILD ‘VerkeersInformatieLocatieDatabase (traffic information location database)’.
VILD tables describe the more than 25.000 traffic measuring points that exists
in the Netherlands. The traffic information consists of properties such as road
name and road number. Each VILD point in the table contains references to at
most two other VILD points.

EI Eventinfo; a dataset from the NDW that contains status information about the avail-
ability of the roads: road constructions, accidents, traffic jams are examples of
updates that occur in Eventinfo datasets.

Traffic event A traffic event is a traffic disturbance: a situation at a certain time and
place that causes traffic delay.

ITS Intelligent Transportation System

Bot user A twitter user that is not considered as a real (road) user. Twitter accounts of
bot users are specially created to tweet about traffic congestion or news all the
time. It does not necessarily mean that the user is truly a bot, sometimes there is
still a ‘real user’ behind the profile. We’ve chosen for this name for convenience.
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