
Collaborative
Knowledge Based Engineering
San Kilkis
November 23rd, 2022

Collaborative Knowledge
Based Engineering

San Kilkis

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on November 29, 2022 at 2:00 PM.

Project duration: October 1, 2020 – November 29, 2022

Thesis committee: Dr. ir. Gianfranco La Rocca, TU Delft, supervisor

Ir. Reinier van Dijk, ParaPy B.V., supervisor

Dr. ir. Maurice F. M. Hoogreef, TU Delft

Dr. Christoph Lofi TU Delft

This thesis is confidential and cannot be made public until November 29, 2024.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
This journey started with my desire to combine my dream of software development with my graduate
studies. I am eternally thankful for the opportunity to have done this thesis project at ParaPy. I will
cherish the times that I was able to spar my ideas with Dr. ir. Gianfranco La Roca and ir. Reinier van
Dijk. Even though the thesis itself has been extremely challenging, I am excited to be in a position
where I can use the skills that I have learned during this period to contribute to the ParaPy platform.

I would like to thank both Dr. ir Maurice F.M Hoogreef and Dr. Christoph Lofi for their valuable time
as part of my jury for the defense. Furthermore, I would like to personally thank all my colleagues at
ParaPy, Max, Colin, Anton, Jelle, Brendan and Luc. During the stressful moments of my thesis work,
it was always a joy to discuss what is going on over coffee. Finally, I thank all of my friends who have
been so supportive during the thesis and throughout my academic life, Bryan, Victor, Amit, Kostas,
Kilian, Michael, Miha, Yvonne, Frans, Femke, Floris, Daniel, Rudy, Tejas, and Julien.

Special thanks to my dear family, Siir, Umit, Birol whose loving support has made me the person I am
today. I am also very grateful for the support and love that I have received over the past 2 years from
my lovely girlfriend, Rosalie, as well as her family. I cannot wait to celebrate this result with all of you!

San Kilkis
November 23, 2022

i

Abstract
Present Knowledge Based Engineering (KBE) applications do not facilitate collaborative processes
due to lack of process formalization and orchestration capabilities, leading to ad-hoc solutions. This
increases application development time, reduces re-usability, and increases the cognitive burden of
users leading to decreased design efficiency. Generic solutions from Workflow Management (WfM)
can capture process knowledge in models outside of the KBE application and enable better collabo-
ration. However, a challenge is to maintain flexibility when using WfM, which is rigid compared to
other groupware. The research work of this thesis contributes technologies for saving and accessing
the information of a KBE application to enable a methodology that flexibly facilitates collaboration by
taking advantage of runtime caching and dependency tracking to dynamically populate tasks based
on runtime context. These contributions are highlighted through case studies that demonstrate how
present limitations of KBE and WfM can be overcome to open a new frontier for the next-generation
of engineering software. Based on a verified software prototype, the key research contributions of this
thesis are four-fold: (a) development of an information modeling approach making use of GraphQL
to flexibly query KBE models to support collaborative activities, (b) development of a generic persis-
tence capability for ParaPy to support transactional usage and retain full design history, (c) imple-
mentation of the worklet concept in KBE to increase flexibility of workflows and provide new form
of process automation, and (d) creation of correlated dependency technique which has potential for
use on emergent workflows. These contributions are paramount to undertaking multiple opportu-
nities for collaborative KBE applications. It is expected that these research contributions provide a
theoretical basis for achieving improved collaborative usage of KBE applications.

ii

Table of Contents

Preface i

Abstract ii

List of Symbols v

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Problem Statement . 2
1.2 Research Objective & Questions . 4
1.3 Thesis Structure . 4

2 Theoretical Content 5
2.1 Knowledge Based Engineering . 5

2.1.1 Core Technologies . 6
2.1.2 Limitations . 7
2.1.3 Relevant Literature . 7

2.2 Workflow Management . 9
2.2.1 Task Definition . 9
2.2.2 Fault Tolerance . 10
2.2.3 Control Flow vs. Data Flow . 10
2.2.4 Historical Perspective . 11
2.2.5 Specialized Systems to Automate Workflows . 12
2.2.6 Modeling Techniques . 13
2.2.7 Limitations & Research Trends . 15

3 Methodology 16
3.1 Experimental Set-up . 16
3.2 Information Modeling . 17

3.2.1 Schema Autogeneration . 19
3.2.2 Modeling Approach . 21

3.3 Model Persistence . 22
3.3.1 Persistence Architecture . 23
3.3.2 Handling Geometry . 23
3.3.3 Graph Contraction . 24
3.3.4 Consistency Maintenance . 25

3.4 Process Orchestration . 26
3.4.1 Process Modelling . 27
3.4.2 Service Architecture . 28
3.4.3 Correlated Dependencies . 29
3.4.4 Data Management . 30
3.4.5 Handling User Tasks . 31
3.4.6 Dynamic Workflow . 33
3.4.7 Emergent Workflow . 34

iii

4 Results 38
4.1 Information Modeling . 38
4.2 Model Persistence . 40
4.3 Process Orchestration . 42

4.3.1 Case Study: Earthquake Analysis . 42
4.3.2 Case Study: Hot Air Balloon . 43

4.4 Verification . 45

5 Discussion 46
5.1 Information Modeling . 46
5.2 Model Persistence . 46
5.3 Process Orchestration . 47
5.4 Answers to Research Questions . 49
5.5 Research Contributions . 50
5.6 Limitations & Future Work . 50

6 Conclusion 51

References 52

Appendix A Market Studies 58
A.1 Knowledge Based Engineering . 58
A.2 Workflow Management . 59
A.3 Web Application Programming Interfaces . 60

Appendix B Information Modeling 61

Appendix C Example Queries 65

Appendix D Examples of Dynamism 72

Appendix E Algorithm Formalization 74

iv

List of Symbols
Abbreviations

BPM Business Process Management

BPMN Business Process Model and Notation

BPMS Business Management Systems

CAD Computer Aided Design

CE Collaborative Engineering

CS Computer Science

DAG Directed Acyclic Graph

DBD Decision Based Design

DIKW Data, Information, Knowledge, Wisdom

DoE Design of Experiment

ECM Engineering Change Management

EPCs Event-Process Chains

ETL Extract, Transform, Load

FILO First In Last Out

HDOT Hinge-System Design and Optimization Tool

HESs High-Level Engineering Services

HLAs High-Level Activities

HPC High Performance Computing

iProd Integrated Management of Product Heterogenous Data

KBE Knowledge Based Engineering

KBS Knowledge Based Systems

KM Knowledge Management

MDO Multi-Disciplinary Optimization

MMG Multi-Model Generator

MTO Made-to-Order

OCP Open Closed Principle

OMG Object Management Group

OOP Object-Oriented Programming

PDP Product Development Process

PIDO Process Integration and Design Automation

RPC Remote Procedure Call

SOA Service Oriented Architecture

SSOT Single Source of Truth

SWfMSs Scientific Workflow Management Systems

SWT Semantic Web Technologies

TDD Test-Driven Development

WfM Workflow Management

v

List of Figures

1.1 Current vs. Next Generation Process Modelling Approaches for KBE 2
1.2 Current vs. Next Generation Approach for Earthquake Analysis Process 3
1.3 The Collaborative Work Spectrum, Adapted from . 3

2.1 Data, Information, Knowledge, Wisdom (DIKW) Taxonomy 5
2.2 ACID Transaction Properties Adapted to Reflect Task Boundary 10
2.3 Workflow Execution Models Categorized by Control and Data Flow 11
2.4 BPMN Diagram of a Recruiting Process at Strategic Level 14

3.1 Example of a Selection Set in a Query to Obtain Aircraft Data 18
3.2 UML Class/Object Diagram Depicting Relationship Between ParaPy & GraphQL 18
3.3 Visualization of Origin Type Discovery Algorithm . 19
3.4 Example of When Type Inferencing is Required . 20
3.5 Example of the GraphQL Schema Modeling Approach with Overrides 21
3.6 UML Diagram of Object and Dependency Graph for an Airfoil 22
3.7 Depiction of Untraversed Sub-Graph Requiring Contraction 24
3.8 Wing Construction Methodology Used in the MMG . 25
3.9 Visualization of Consistency Maintenance Algorithm . 26
3.10 Types of Dynamism in Workflows . 26
3.11 Tipping Point Between KBE Assisted and KBE Controlled Workflows 27
3.12 Screenshot of Process Modeling / Formalization in Camunda Modeler 28
3.13 Screenshots of Task Template Implementation to Assist Process Modeling 28
3.14 Service Architecture of KBE-WfM Synthesized Software 29
3.15 Depiction of How a Correlated Dependency Transaction is Executed 30
3.16 Example Process Variables from a Process Instance . 31
3.17 Comparison of Generic KBE User Interface vs. Task Specific Interface 31
3.18 UML Sequence Diagram Depicting User Task Handling 32
3.19 Depiction of How a User Task Subscription is Launched 32
3.20 Worklet Decorator Developed for the ParaPy SDK . 33
3.21 BPMN Pattern Created to Enable the Worklet Concept . 34
3.22 Correlated Dependency Concept for Emergent Workflow Orchestration 35
3.23 UML Sequence Diagram Depicting Worklet Execution . 36
3.24 Process Model of a Generic Tool Transformation . 37

4.1 Schema Transpilation Performance Measured on Example KBE Applications 39
4.2 KBE Applications Used to Test Model Persistence . 40
4.3 Synthetic KBE Model Serialization Benchmark Results . 41
4.4 Earthquake Analysis Workflow BPMN Diagram . 42
4.5 User Interface of the Monolithic Hot Air Balloon Application 43
4.6 Hot Air Balloon Case Study BPMN Diagram . 43
4.7 Segmentation of Hot Air Balloon Design Process into Worklets 44
4.8 KBE Controlled Hot Air Balloon Case Study BPMN Diagram 44

5.1 Differences in Iterative Usage on Static vs. Dynamic Workflows 47
5.2 Hot Air Balloon Workflow Status, Audit Log, & Process Variables 48
5.3 Goals, Enablers, Results of the Conducted Research . 50

A.1 Timeline of Popular API Description Languages . 60

B.1 Comparison of Source Code and Transpiled GraphQL Schema 61

vi

B.2 Transpiled Hot Air Balloon Schema Visualized in GraphQL Voyager 63
B.3 Profiling Result of Warehouse Application (Without Inferencing) 64
B.4 Profiling Result of Warehouse Application (With Inferencing) 64

C.1 Query Formulation for Requesting a Boolean Value Slot 65
C.2 Mutation Formulation for Updating a Boolean Value Slot 65
C.3 Query Formulation for Accessing Dependency Information 66
C.4 Query Formulation for a Requesting a Dynamic Type . 67
C.5 Query Formulation for Accessing Items of a Sequence . 68
C.6 Mutation Formulation for Updating an Item in a Sequence 69
C.7 Query Formulation for Accessing Items of a Dynamic Sequence 70
C.8 Query Formulation for Accessing Geometry . 71

D.1 Example of a Dynamic Selection of Assignee (Who) . 72
D.2 Example of a Dynamic Selection of Worklet (What) . 72
D.3 Example of Dynamic Task Skipping (What) . 73
D.4 Example of Dynamic Timing (When) . 73
D.5 Example of a Dynamic Task Selection (How) . 73

E.1 Graph Contraction Algorithm . 74
E.2 Graph Contraction Algorithm . 75
E.3 Visualization of Graph Contraction Algorithm . 76
E.4 Wing Model Dependencies Before and After Graph Contraction 77

vii

List of Tables

2.1 Categorization of Specialized WfMSs Based on Role and Relevance 12
2.2 Modeling Techniques for Each Dominant Business Process Perspective 14

4.1 KBE Serialization Performance on Real Use Cases . 40

A.1 Market Study of Commercial KBE Systems with Coupled Integration 58
A.2 Survey of Open-Source Workflow Management Systems 59

viii

1 Introduction
Modern engineering projects are challenging because of the need to coordinate geographically dis-
tributed resources. Globalization and market liberalization have led to more direct competition,
which has driven the need for designs of higher performance and quality [1]. However, these de-
signs require more development effort to achieve; thus, new paradigms are required to support them.
Collaborative Engineering (CE) is the application of collaboration sciences to engineering, allow-
ing multiple stakeholders to work together across geographic, disciplinary, temporal, and cultural
boundaries [2, p.176]. However, a higher coordination overhead is required to achieve collabora-
tion [3], placing more burden on the Information Communication Technology (ICT) infrastructure
to support the design process.

In aerospace, a paradigm shift is underway to improve aircraft design by making use of advances in
computing technology to meet the challenges of increasingly stringent safety, health, environmen-
tal, economic, and operational requirements [4, p.2]. Software needed for this change must cope with
unique challenges posed by aircraft design due to increasing complexity, long product lifecycles, and
high volumes of data [5, p.1055]. At present, a single tool that can automate the design process, its
knowledge, and data, is not yet available, which results in a patchwork of specialized tools that are
understood by few and supported by even fewer; leading to misinformed decisions due to inconsis-
tent data [6]. Consequently, a demand emerges for software that enables effective collaboration by
providing an information backbone while simultaneously helping to coordinate tasks. In response,
the sponsor of this research, ParaPy, has set out to improve their novel Knowledge-Based Engineering
(KBE) platform to meet this demand.

KBE facilitates automation of highly repetitive tasks efficiently—through the core technologies of lazy
evaluation, runtime caching, and dependency tracking—enabling the definition of adaptable para-
metric products that elegantly respond to design changes. These core technologies maintain con-
sistency across multiple disciplinary views of a product [7, p.8], reduce human errors, and enable
the exploration of more what-if scenarios by accelerating the design process [8, p.336]. Thus, this
thesis focuses on exploring if it can be used to assist collaboration by maintaining consistency and
making quicker product iterations. However, the initial vision of using KBE software to automate
repetitive tasks, often produces monolithic applications that do not sufficiently facilitate collabora-
tive processes, confining their usage to small teams [9].

This thesis stipulates that the reason is the lack of a “top-down” overview of tasks that represents
when interactions between the application, tools, and humans should take place. This is highlighted
by Figure 1.1a, where a knowledge engineer develops a KBE application according to an envisioned
process model without formalizing it. While the declarative product modeling of KBE systems al-
lows the process to be encoded implicitly through dependency relationships—managing product
complexity—it causes the process to emerge at runtime through demand-driven reasoning. Com-
bined with the lack of process formalization, it leaves users in the dark as to what will execute and
increases the cognitive burden of engineers by requiring them to reconstruct a mental-model of the
process to know when to manually notify others.

Addressing these limitations falls within the domain of Workflow Management (WfM), which has
evolved to facilitate collaboration in the face of long-running tasks where delays caused by people or
external processes are present. Over time, the scope of WfM increased to manage processes across
heterogeneous systems and organizational boundaries reliably [10, p.18-19]; rebranding into Busi-
ness Process Management (BPM) products [11, p.3].

1

1.1. PROBLEM STATEMENT CHAPTER 1. INTRODUCTION

Pr
oc

es
s

Aw
ar

en
es

s

Bo

un
da

ry

Manual Notifcation (E-Mail)

Structures

Expert

ParaPy Client ParaPy Client Aerodynamics

Expert

JSON Snapshot &

Simulation Data

D
es

ig
n

In
st

an
ce

Pr
od

uc
t M

od
el

Develops

Knowledge

Engineer

Pr
oc

es
s

M
od

el

Encodes

Implicit Process Model

KBE Application

? ?

(a) Current Approach

Structures

Expert ParaPy Client ParaPy Client

Aerodynamics

Expert

SSOT Model

Database

D
es

ig
n

In
st

an
ce

Pr
od

uc
t M

od
el

Develops

Knowledge

Engineer

Pr
oc

es
s

M
od

el

Formalizes

Interacts With

KBE Application

Semi-Automated Workflow

Au
to

m
at

ed

N
ot

ifi
ca

tio
n

Process Awareness
in Client

Sy
st

em

Bo
un

da
ry

(b) Next Generation

Figure 1.1: Current vs. Next Generation Process Modelling Approaches for KBE

At present WfM is underutilized in engineering due to the rigidity of dictating a “top-down” process
on ad-hoc design activities [12]. Hence, there is a derived challenge to be able to maintain the dy-
namism of KBE applications, while integrating WfM techniques. This thesis then aims to synthesize
the product modelling capability of KBE and the process modelling of WfM technology in an effort to
overcome their respective limitations. This next generation approach, given by Figure 1.1b, envisions
that a knowledge engineer formalizes intended process models that then interact with the KBE ap-
plication. The synthesized software is also capable of exploiting the demand-driven behavior of KBE
to dynamically “trigger” workflows. It is expected that doing so will reduce the rigidity of describing
the entire process “top-down” while simultaneously alleviating the current lack of process awareness
in KBE applications by automatically notifying users of pending tasks and providing visual feedback
through process models.

1.1 Problem Statement

Lacking process orchestration capabilities in KBE, the current generation of applications suffer from:
(a) increased development time, (b) reduced reusability, and (c) increased cognitive burden for users.
These detrimental problems can best be explained through examination of a real world KBE applica-
tion used within a collaborative process. The purpose of the application is to analyze the structural
integrity of houses with respect to earthquakes to be able to determine if structural stiffness need
to be applied. Overall, the analysis starts with a user responsible for inputting the geometry of the
house to the KBE application. Afterwards, another user is reponsible for modeling the foundation of
the house. Subsequently, one user continues creating a Finite Element Model (FEM) of the house,
while another performs an analysis to derive the ground properties of the house. Finally, once all
users have implemented their tasks, the FEM simulation is run, and its results are used while gener-
ating a report.

In the current approach given by Figure 1.2a, a monolithic KBE application is used to facilitate this
process. However, without process model to guide them, the four specialists involved experience a
cognitive burden due to needing to understand how to use the monolithic application, while also

2

1.1. PROBLEM STATEMENT CHAPTER 1. INTRODUCTION

needing to coordinate when to do their respective tasks amongst each other. This can be seen as a
loss of the “big picture” which leads designers to having a lack of awareness of: (a) tasks that need
to be done, (b) the history of information, (c) how information is consumed, and (d) changes to pro-
cesses [13, p.258]. The attempt to support this collaborative process without process orchestration
has also made this particular application bulky. Not only have developers needed to provide more
documentation on how the application should be used, but they have also needed to resort to ad-
hoc solutions to implement features such as model persistence and geometry checking. Integration
of the latter within the application also means that such a capability to check geometry becomes less
re-usable. Ultimately, these ad-hoc solutions also increase application development time. Instead,
it is desired to be able to orchestrate several tools and KBE applications flexibly within a formalized
process to take advantage of re-usable services while benefiting from generic solutions of WfM for
process orchestration. The desired next generation approach is given by Figure 1.2b.

(a) Current Approach (b) Next Generation

Figure 1.2: Current vs. Next Generation Approach for Earthquake Analysis Process

In the desired approach, the formalized process becomes the backbone for facilitating this collabo-
rative activity by providing users with process awareness, while the KBE application becomes leaner
as developers can focus on implementing task specific logic and interfaces while refactoring func-
tionalities such as the geometry checker into separate re-usable applications. Furthermore, with a
majority of communication in design activities being asynchronous in nature, meaning occuring not
at the same time, [14, p.543] simply adopting information-centric software without process orches-
tration is not sufficient [15, p.43]. As a result, using workflows for solving collaboration challenges
in engineering seems intuitive. However, as will be covered later in thesis using process centric ap-
proaches such as workflows, reduces flexibility, Figure 1.3. Therefore, the challenge is to maintain
flexibility when synthesizing WfM and KBE methodologies to solve the current problem at hand.

Process CentricInformation Centric

CSCW

No Process

Awareness

Adaptive
Workflow

Production

Workflow

No Flexibility

Structured

Unstructured

"Bottom-Up"

"Top-Down"

Figure 1.3: The Collaborative Work Spectrum, Adapted from [16]

3

1.2. RESEARCH OBJECTIVE & QUESTIONS CHAPTER 1. INTRODUCTION

1.2 Research Objective & Questions

Due to the lack of previous research on the integration of KBE and WfM for the purpose of collab-
oration, several open questions remain. Although the identified limitations from literature provide
an additional motivation for researching the synthesis, the primary goal of this research is bounded
by a KBE-centric view to improve its collaborative usage and process orchestration capabilities. The
formal goal of this research is therefore:

“To improve the collaborative usage of KBE applications by means of increasing process
awareness through process modeling and visualization, and facilitating the integration of
KBE with business processes.”

Nonetheless, the literature study revealed that WfM could benefit from KBE technology to increase its
capability to deal with dynamism. Furthermore, using a KBE application as an information backbone
might reduce the overhead required to define tool specific interfaces. Several research questions are
phrased to enrich the scientific understanding of creating a KBE-WfM synthesized software architec-
ture to address the goal and sub-goals. These research questions stem from the abstract question:
“How can a synthesis between KBE and WfM be achieved?”

RQ-1. What technology is suitable to expose the information of a KBE application to external ser-
vices while supporting dynamic types, lazy evaluation, and dependency tracking?

RQ-2. How can the runtime cache of a KBE application be persisted to support the transactional
nature of tasks where each task leads to a new state of the model?

RQ-3. What is the time and memory complexity associated with persisting the runtime caches of a
KBE application?

RQ-4. Can runtime dependency information be used to establish external steering of a WfMS to
modify the control-flow dynamically at runtime based on data dependencies?

RQ-5. If external steering is possible, does it show promise for increasing workflow flexibility?

1.3 Thesis Structure

This thesis summarizes the research done to push the start of the art in collaborative KBE. First
the theoretical content needed to perform this work is presented by Chapter 2. Subsequently, the
methodology and theories developed during the application phase of the thesis work is detailed in
Chapter 3. Afterwards, verification of the software prototype through experiments and case stud-
ies are performed as explained by Chapter 4. These are then reflected upon by Chapter 5. Finally,
conclusions of this research are presented by Chapter 6.

4

2 Theoretical Content
2.1 Knowledge Based Engineering

Since the word “knowledge” is used in day-to-day life, its semantic meaning within computer science
and literature is often overlooked. To get a grasp of what KBE is, as well as how it is related to other
software tools, it is prudent to look into the nature of information and knowledge. For this purpose, a
common illustration of the terms Data, Information, Knowledge, and Wisdom, the DIKW taxonomy,
can be used. The purpose of this taxonomy, presented by Figure 2.1, is to relate these terms and
to describe the process used to transform one entity at the lower-level in the hierarchy to one at a
higher-level [17, p.164].

Data

Know Nothing

Information

Knowledge

Know What

Know How

Wisdom

Know Why

+
C

on
te

xt

N
on

-P
ro

gr
am

m
ab

le

Data in Context

Actionable Information

Insightful Knowledge

+
M

ea
ni

ng

+
In

si
gh

t

Pr
og

ra
m

m
ab

le

Figure 2.1: Data, Information, Knowledge, Wisdom (DIKW) Taxonomy [17]

In Figure 2.1, abundance and programmability decreases from the lowest-level classification, data,
to the most valuable: wisdom. An important distinction is between data and information which
allows one to roughly differentiate Computer Aided Design (CAD) software from KBE. While the for-
mer provides geometric abstractions such as curves, extrudes, and fillets for the user to describe what
the product looks like, the latter enables users to create so-called “information models” by defining
what the product consists of using Object-Oriented (OO) representation. This places product data
in context by drawing relationships between entities and establishes a shared understanding of it
amongst engineers. As described by [18], information models are primarily useful for designers to
describe their domain. For engineers this could be the difference between dealing with curves built
from Cartesian coordinate data in CAD software, as opposed to interacting with an airfoil object in a
KBE system. In the words of [19]: “(KBE) allows an engineer to model a geometric shape by using his
own jargon instead of using points, lines and surfaces. An engineer could for instance model a wing
by stating its length, profile, twist, sweep, etc. and the KBE application, based on the knowledge it
contains, creates the associated points, lines and surfaces.” This is why in this thesis, the classes and
slots of a KBE application are seen as an information model.

While information describes “what” the product is at a given moment in time—in this case the wing
geometry and metadata—knowledge has an actionable component to it that provides a description
of “how” to create the product. This is another fundamental difference between CAD and KBE, where
the former describes “what” the resultant geometry is, whereas KBE describes “how” to create it and
“what” the product model represents [20, p.2, 21, p.211]. Describing the “how” often takes the form

5

2.1. KNOWLEDGE BASED ENGINEERING CHAPTER 2. THEORETICAL CONTENT

of rules, formula, or other parsable representations; allowing one to classify KBE as weak artificial
intelligence since the knowledge is modelled explicitly [22, p.1263]. Additionally, since a KBE appli-
cation has the capability to generate rather than simply communicate the present state of a design it
is referred to as generative modelling [21, p.209].

2.1.1 Core Technologies

Although a pure scripting approach could theoretically be used to create an application like the Multi-
Model Generator (MMG), KBE systems offer several benefits that simplify application development.
Besides providing direct access to a CAD kernel, KBE systems have three core technologies that op-
timize information access. Namely, these consist of: lazy evaluation, runtime caching, and depen-
dency tracking [21, p.222], which are summarized as follows:

Lazy Evaluation: The ability to execute relevant portions of the code as required, instead of running
it eagerly at launch.

Runtime Caching: Memoizing evaluated information such that subsequent requests for the same
values do not result in recomputations. [23, p.4]

Dependency Tracking: Maintaining a record of the data flow used to evaluate the information re-
quested. This allows a KBE system to understand which caches to invalidate when changes are
requested and not recompute everything [23, p.4] [24, p.262].

Unlike scripts that follow an imperative programming paradigm, where one dictates what to run next
explicitly, KBE applications have no pre-determined “start” or “end” [21, p.241]; allowing the process
to instead emerge at runtime based on requests. This emergence is enabled by the declarative pro-
gramming paradigm provided by Object-Oriented Programming (OOP) languages. This paradigm
implicitly resolves the data flow necessary to satisfy a given demand by recursing until previously
evaluated data is reached. Doing so allows complex systems to be modelled bottom-up or “com-
posed” from elementary building-blocks, such as the HLPs in the MMG application, which reference
the information they require. This allows KBE systems to lazily evaluate only the information re-
quested, thereby, efficiently providing multiple “views” of a central product model.

While the property of emergent data flow is inherited from the declarative features of the program-
ming languages KBE systems are built on-top of, arguably their most beneficial feature is unique,
the so-called dependency tracking mechanism that maintains a record of this data flow. This allows
a KBE application to determine what needs to re-evaluate when a design change is made. Using
this functionality alleviates the burden of engineers from writing explicit imperative code to describe
how to maintain all views of the product model or from having to re-run the entire design process.
Coupled with the runtime caching mechanism that memoizes the results of computations, a reduc-
tion of the overall runtime of a design process can be achieved on subsequent runs—assuming that
the caching overhead is less than task execution time—by re-evaluating only tasks that are no longer
valid [21, p.246]. Reducing overall runtime is especially useful when dealing with complex products
where the tasks are time-consuming, either as a byproduct of the level of fidelity or the sheer number
of parts.

Besides potential runtime improvements, the dependency tracking mechanism has a benefit of pre-
venting mistakes during Engineering Change Management (ECM) activities by ensuring that main-
taining consistency is no longer a manual activity. On the other hand, for fully-automated processes
it allows one to expose only the design variables that should be controlled by the process orches-
tration layer [25, p.5]. In other words, reducing the need to define variables to check consistency
constraints, resulting in simpler simulation workflow definitions.

6

2.1. KNOWLEDGE BASED ENGINEERING CHAPTER 2. THEORETICAL CONTENT

2.1.2 Limitations

The systematic phase of the literature study revealed limitations of KBE systems that hamper its us-
ability in collaboration. The reader may refer to articles that discuss further limitations of KBE sys-
tems [7, 26, 27], however, the relevant limitations for this research are:

1. KBE applications become “black-boxes” that provide limited context for understanding what
happens under-the-hood. [2, 27, 28]

2. KBE systems have weak workflow integration [2, 29]

3. KBE systems have limited web collaborative solutions [2, 9, 26, 30, 29]

The black-box nature of KBE applications is perhaps the most widely published and criticized limi-
tation. The notion of a “black-box” is summarized by how a KBE application “produces some output
with some input, but nobody knows what happens in between” [27, p.5]. One cause of black-box
applications is the ad-hoc development process that often embeds knowledge in the product model,
as demonstrated by Figure 1.1a. Although, representing knowledge in code allows greater expres-
siveness, malleability, and debuggability [27, p.8], it has a detrimental affect toward traceability [31].
The reduced traceability makes it difficult for engineers to understand the process used to arrive at
results, which negatively affects collaboration. In the worst case scenario, alienation of resources
can occur due to people loosing track of the “big picture” to which their work is contributing; result-
ing in a loss of productivity [16, p.14]. Similarly, [32, p.3] identified this problem in complex Multi-
Disciplinary Optimization (MDO) workflows that lack a top-level overview, and stated that this leads
to inconsistencies, hampers determination of design trends, proves detrimental to decision-making,
and undermines trust amongst stakeholders.

As identified by [25, p.8] monolithic KBE applications, often prevent an optimizer from directly con-
trolling coupling variables as only input and outputs are directly accessible. Analogously, an engineer
wanting to perform a manual task to modify an intermediate result during the execution of a KBE ap-
plication would be prevented from doing so. The next generation approach of this thesis, Figure 1.1b
aims to overcome this by exposing intermediate results and allowing external decision-making. How-
ever, the lack of this functionality could have prevented stronger workflow integration in KBE systems
in the past, simply because the opportunities to externally control the application are limited.

This relates to the final identified limitation that addresses the restricted collaborative usage of KBE
systems due to the apparent lack of web-based solutions. Even though there are solutions for collab-
orative web-based design and manufacturing systems, such user-friendly solutions for knowledge-
based systems (KBS) are underdeveloped [30, p.261]. Developing a web-based approach for KBE
necessitates a “dynamic information transfer environment”, but updating this information is a criti-
cal issue [27, p.11]. Interfacing KBE with PLM could provide this information transfer environment;
however as identified by the third limitation, lifecycle management of KBE models is challenging. Al-
though, a clear reason is not provided by [28], one can hypothesize that the user-defined information
model in a KBE model varies per application; making it harder to manage than the rigid pre-defined
information model of a CAD system. This is why focusing on information modeling in this research
is paramount to enabling rich collaborative features with KBE.

2.1.3 Relevant Literature

According to [2], the Integrated Management of Product Heterogenous Data (iProd) project was ex-
pected to overcome the lack of workflow integration in KBE. Starting in 2011, this project aimed to
improve the efficiency and quality of the Product Developemnt Process (PDP) by harnessing Knowl-
edge Management (KM), Knowledge-Based Engineering (KBE), and Process Integration and Design

7

2.1. KNOWLEDGE BASED ENGINEERING CHAPTER 2. THEORETICAL CONTENT

Automation (PIDO) [33, p.2]. A collaborative knowledge base was constructed, that became a SSOT
with a single innovative interactive interface [34, p.459].

The core of the iProd project was to create a flexible Service Oriented Architecture (SOA) software
framework to harness reasoning capabilities on formal knowledge models [35, p.2]. Within this scope,
research at the Delft University of Technology focused on utilized the ontology modelling, reasoning,
and querying functionalities of Semantic Web Technologies (SWT) to reduce the overhead required
to define simulation workflows. [36] created a framework to capture product and process knowl-
edge in High-Level Engineering Services (HESs) and High-Level Activities (HLAs) that could then be
reasoned upon to instantiate specific simulation workflows that were implemented in the Optimus
PIDO platform. Building on top of the HES and HLA concept, [37] created the InFoRMA framework
to advise, formalize, and integrate MDO architectures based on product and process knowledge. [25]
subsequently utilized this framework to assist in splitting apart a black-box monolithic ParaPy appli-
cation, the Hinge-System Design and Optimization Tool (HDOT), to expose intermediate variables
to the process orchestration layer. Doing so allowed the optimizer to deduce the complex coupling
between these variables and enabled the user to have greater flexibility to define multi-objective op-
timizations.

Similar to this research, the iProd project aimed at becoming the backbone for collaborative soft-
ware tools such as PLM [35]. Even though [34] remarks that human interaction is required since a
design cannot be made automatically and requires human input, the primary human-system cou-
pling mechanism in iProd is based on capturing changes to the knowledge base when the frame-
work is used. Thus, there seems to be limited process orchestration capability to incorporate human
decision-making inside the managed process. Leaving human decision-making unmanaged, per-
haps allows more flexibility to create ad-hoc “workflows” outside the managed process, yet it reduces
task awareness in the virtual enterprise as constituents are not aware of the human tasks being exe-
cuted. Also, doing so enlarges the divide between automated and manual tasks in a design process.
Going forward, the PDP should include human-system coupling in workflows, since creative tasks
that are not desirable or possible to automate are still a significant contributor to the success of a
design.

Achieving human-system coupling in design overlaps with the field of Decision Based Design (DBD)
where the guiding philosophy to utilize decision workflows to incorporate human judgement [38,
p.2]. Within this field, it was observed that KBE does not yet address the challenges of decision work-
flows in the design of complex systems [38]. Subsequently, the PSIDES KBE platform was created to
address a lack of reusable and executable decision knowledge and user classification through a de-
cision template approach. Ontologies were used to represent a central knowledge base, that could
provide users of different knowledge levels with decision support [38]. However, central process or-
chestration through a workflow was not the focus of this research. On the other hand, [11], focused
on a formal mathematical representation to incorporate a workflow component in Knowledge-Based
Systems (KBS). The KBS4IL developed as part of this research aimed to bring a decision support sys-
tem to the logistics domain [11, p.8].

Relating to the desired ability of a KBE application to influence control flow, [39] addressed the com-
plexities of ECM activities in virtual enterprises through KBE-based workflows. Here, the dependency
tracking capabilities of KBE were harnessed to simulate the impact of an engineering change com-
mitted to a PLM-based SSOT. Therefore, the ECM impact analysis capability greatly resembles the
desired functionality of informing users of the impact of their requested change. However, depen-
dencies determined from the KBE application were not cached in the model database. Instead, the
KBE application was constantly triggered to evaluated proposed changes [39, p.350]. Doing so could
potentially lead to a similar amount of overhead as keeping a KBE application alive. However, as

8

2.2. WORKFLOW MANAGEMENT CHAPTER 2. THEORETICAL CONTENT

this depends on how often the KBE application is invoked as well as its runtime performance this
research can provide insight into when or if shutting down a KBE application is worthwhile.

Overall, the literature on synthesizing KBE and WfM technology is limited and has primarily focused
on harnessing the knowledge capture aspect of KBE technology to simplify the definition of simula-
tion workflows. As such, there is a lack of systemic literature on supporting human-system coupling
through workflows in PDP. Even though the work of [36] determined that using Business Process
Model and Notation (BPMN) was ideal—a visual modeling language that has rich support for human
and manual tasks—manual tasks within the framework were not implemented. Perhaps due the
origin of KBE being rooted in full-automation, the present body of research gravitates toward fully-
automated simulation workflows and re-use of product / process knowledge. While design process
modelling is a “top-down” endeavor where high-level steps get refined into detailed ones, product
modelling is the opposite and takes the form of a “bottom up” approach. [40, p.132]. Therefore, there
is a mismatch of modelling approaches which could explain the limited research available on the
topic of stronger workflow integration in KBE. Consequently, understanding how to solve this mis-
match requires new research that integrates concepts from other fields since KBE research cannot
yet answer this question.

2.2 Workflow Management

Understanding how to address the mismatch of product and process modelling approaches naturally
“flows” toward exploring the field of WfM. The “top-down modelling approach of WfM is becoming
increasingly relevant due its knack for coordinating complex processes that necessitate a subdivision
of activities to execute them efficiently across distributed resources. As product complexity grows,
the functionalities required to support them become too large to implement in a single application.
Therefore, tools that specialize for a specific task are often stitched together with application code [41,
p.26]. WfM is then a means to perform the stitching of these tools—often referred to as “services”—in
a scalable and reliable way such that the impact of failures and delays are minimized.

With web-based applications, cloud-hosted software platforms, machine-learning models, and sim-
ulations growing in complexity, a lot of effort has gone into various types of workflow products. As a
result, WfM is a trending part of modern IT infrastructure [42] and the field of research surrounding
it is quite massive. As with the usage of “knowledge”, the term “workflow” has become commonplace
in natural language, which makes its meaning ambiguous. Resolving this ambiguity is crucial before
delving into the field of WfM in greater detail. At its core a workflow entails an assemblage of tasks
in order to do “work” or accomplish a goal. The formal definition according to the Workflow Man-
agement Coalition (WfMC) is “The automation of a business process, in whole or part, during which
documents, information or tasks are passed from one participant to another for action, according to
a set of procedural rules.”

2.2.1 Task Definition

An aspect of workflow terminology that deserves special attention is the fundamental building-block:
a task. Formally, it is the smallest distinguishable part of the process that is atomic and cannot be sub-
divided further [16, p.7, 32]. However, [43, p.29] makes references to “block” tasks which represent
sub-processes. This can lead to subjectivity due to how a “task” can then be viewed differently de-
pending on context. For example, a manager could view running a CFD analysis as an atomic task,
however, in the viewpoint of the CFD engineer, the analysis comprises many steps such as meshing,
grid convergence studies, and the analysis of results. Therefore, a further classification is required for
which [44, p.6] suggest the application of the widely used ACID properties, originally developed for
databases, to characterize a task from the perspective of a WfMS. [45, p.289-290] originally coined the

9

2.2. WORKFLOW MANAGEMENT CHAPTER 2. THEORETICAL CONTENT

ACID transaction properties, which can be redefined to determine the boundary of what constitutes
a task [44, p.6]. With this idea, an adaptation of the ACID properties is presented by Figure 2.2 below
[16, p.166].

Atomicity

Consistency Isolation

Durability
A task is indivisable

and is either completed
successfully in full

or restarts from
the very beginning

A result of a task leads
to another consistent state

Tasks performed at the
same time should not
influnece one another

Once a task is completed,
the result must be saved
in such a way that
it cannot be lost

Figure 2.2: ACID Transaction Properties Adapted to Reflect Task Boundary

2.2.2 Fault Tolerance

Fault tolerance refers to the ability of a software application to handle and recover from errors. It is
important for this research to recognize that the present usage of KBE applications is not particularly
fault-tolerant due the lack of transactional safety and/or application state persistance. The afore-
mentioned ACID transaction properties represents a prevalent approach to implementation of fault
tolerance in software applications [46, p.295]. The primary motivation of utilizing ACID transaction
properties in a workflow is to ensure that each task performs recoverable actions on product data. In
essence, it prevents the creation of corrupted partial states due to the failure of a task.

An alternative to transactional safety is the implementation of workflow persistence, which involves
either manual or automatic creation of “checkpoints” to store the full state of the workflow. As de-
scribed by [47] workflow persistence provides a “point of recovery for the workflow instance in the
event of system failure, or to preserve memory by unloading workflow instances that are not actively
doing work.” As a side note, the aspect of “unloading” from this quote resembles the desired func-
tionality of shutting down the KBE application to reduce the memory footprint of the workflow. Of
significance to this research, is understanding how to prove the fault tolerance of KBE applications
when used within collaborative processes.

2.2.3 Control Flow vs. Data Flow

Another important concept that is prevalent in workflows is the difference between control flow and
data flow. Theoretically, control flow dictates the execution order of tasks using the aforementioned
basic mechanisms of sequence, selection, parallelization, and iteration. On the other hand, data flow
describes the data dependencies between tasks such that the data produced by one task is consumed
by the other [48, pg.73]. Whereas a data edge is essential to the validity of the computation, a con-
trol edge can be removed if sufficient concurrency can be achieved with the underlying computing
architecture [48, pg.74].

The most common type of data and control flow in workflows is the so-called Directed Acyclic Graph
(DAG) where the tasks are nodes, while the edges represents data and control dependencies [49, p.1].
Here, the acyclic nature means that one cannot trace a closed loop from any of the edges between

10

2.2. WORKFLOW MANAGEMENT CHAPTER 2. THEORETICAL CONTENT

tasks. Consequently, iteration with an acyclic iteration model is not possible and instead requires a
cyclic execution model. Figure 2.3 provides an overview of the different execution models to visually
depict the various control and data flow possibilities within each.

T1 T2

Acyclic Execution Model

T1 T2

WfMS

T1 T2

Cyclic Execution Model

T1 T2

WfMS

T1 T2

WfMS

T1 T2

WfMS E

Sequential / Concurrent Iterative Tightly Coupled External Steering

Control Flow
Data Flow

Figure 2.3: Workflow Execution Models Categorized by Control and Data Flow [50]

Amongst the execution models presented by Figure 2.3, an important one to highlight is cyclic ex-
ternal steering. Although similar to the acyclic execution model, a selection mechanism is used to
incorporate the decision-making of a user or system to “steer” the control flow based on the data
output of T2. Since a cycle can be created if a re-run of T1 is decided, it is classified as a cyclic execu-
tion model. An interesting application of this model would be to use a KBE application to externally
steer a WfMS based on data dependencies. The reason for doing so is a fundamental premise of
this research; namely that the declarative backward control flow approach of KBE is advantageous to
complex product modelling, as opposed the imperative approach of WfM that requires an up-front
forward description of data and control flow.

2.2.4 Historical Perspective

Having highlighted important concepts in WfM, this section describes its historical development to
put these concepts in perspective. The origins of WfM can be traced to the 1970s when researchers at
Xerox PARC working on a project called “Office Automation Systems had the idea to support business
processes through generic tools and methods using petri-net based mathematical representations of
workflows [16, p.27]. Following from this initial work, the need for such systems increased in mid-
1980s during the digitalization of business information as a way to assign and track electronic work to
humans. It was the digital equivalent of dropping mail in somebodys in-box to assign work to them
and therefore heavily focused on the primary form of information: the document [10, p.17]. How-
ever, WfMS were only recognized as a standard part of ICT systems as the first commercial systems
became available in the 90s [11, p.3, 51, p.5-14].

Over time, as the amount and heterogeneity of digital information grew, WfMS began to take on in-
creasing automation duties to process it, notify distributed resources of pending tasks, and await the
completion of long-running tasks before continuing an automated process [10, p.18]. To prevent am-
biguity over the functionality of a WfMS, standardization activities began with the formation of the
WfMC in the mid 90s and The Workflow Patterns Initiative in the late 90s [16, p.149, 43, p.16]. The
next phase of WfMS evolution related to the growth of applications using SOA in the late 90s and early
2000s. Moreover, the onset of globalization resulted in the “outsourcing of activities to external busi-
nesses. As a result, Business Process Management (BPM) was envisaged by WfM vendors to model,
analyze, and run these complex processes across organizational boundaries [10, p.18]. Subsequently,
many WfMS rebranded as BPMS [11, p.3]. Today, there are tremendous amounts of workflow prod-
ucts available on the market and their intended usage has outgrown the initial vision of automating
tasks in an office.

11

2.2. WORKFLOW MANAGEMENT CHAPTER 2. THEORETICAL CONTENT

2.2.5 Specialized Systems to Automate Workflows

While WfM vendors transitioned their office automation systems into comprehensive Business Man-
agement Systems (BPMS), scientific fields requiring workflow technology developed their own spe-
cialized systems. As a result, nowadays WfMS can be generalized under two different categories:
business process and scientific or computational workflows [6, p.231]. Nonetheless, one of the out-
comes of the standardization activities of the WfMC was the creation of a workflow reference model
that provides a basis for WfMS functionalities. This model defines five interfaces linked to a cen-
tral enactment service responsible for the runtime execution of workflows. These interfaces in can
be seen in all workflow systems regardless if they are intended for business processes or scientific
workflows and they are summarized from [52] as follows:

1. Process Definition Tools to model a process in such a way that can be interpreted by the work-
flow engine.

2. Workflow Client Applications to allow humans to perform work items and provide results back
in a machine parsable manner.

3. Invoked Applications to run automated tasks on a variety of applications.

4. Other Workflow Enactment Service(s) to add interoperability with other WfMS such that tasks
can be passed between them.

5. Administration & Monitoring Tools to provide task awareness to resources and gather insight
on how to improve the process definition.

To select a suitable WfMS for fulfilling the desired functionalities it is necessary to create a finer-
grained classification and understand the strengths of each type. Having observed the functionali-
ties of a wide array of WfMSs during the ILR, it was observed that these specialized products can be
classified into four categories. Table 2.1 below summarizes the result of this classification which is
discussed on the next page.

Table 2.1: Categorization of Specialized WfMSs Based on Role and Relevance

Category Primary Role Relevant For Manual Tasks Examples

BPM Modelling and
managing
business processes

Orchestration,
Choreography,
Process Modelling
& Optimization

Yes Camunda,
Kissflow,
ProcessMaker,
Bonita

Scientific WfM Abstractly defining
workflows for HPC

Large / Extreme
Scale Simulations

Noi Pegasus, Taverna,
Kepler, Galaxy

PIDO Defining and
executing
optimization
workflows

MDO, Design
Exploration

No Optimus,
ModeFrontier,
pSeven, RCE

Data Pipeline Batch-processing
large volumes of
data (ETL Tasks)

Data Science,
Machine Learning

Limited Luigi, Prefect,
Airflow, Kubeflow

iImplementing human-in-the-loop workflows in scientific WfMSs is currently state of the art [50]

12

2.2. WORKFLOW MANAGEMENT CHAPTER 2. THEORETICAL CONTENT

Starting with BPMS, one can regard them as specialized WfMS that are catered to supporting com-
plex business processes that span organizational boundaries. As such they often come equipped
with more fault-tolerance and workflow persistence features since the likelihood of failures is higher
when executing process logic across managerially independent and geographically distributed sys-
tems. Furthermore, they often come equipped with more sophisticated process modelling tools to
more easily express the business process. A popular choice is to use BPMN as will be discussed by
Section 2.2.6.

Moving on, Scientific Workflow Management Systems (SWfMSs) are specialized to allow users to de-
scribe highly-parallelized computation workflows through abstractions that can later compile to run
on specific High Performance Computing (HPC) hardware. Due to their focus on automation, they
do not handle work items (manual tasks). Although current research activities are focusing on in-
corporating human-in-the-loop work items to allow workflows to scale to extreme scale [50]. In a
similar category but targeted toward engineering problems are PIDO systems, which are the natural
choice for optimization workflows. Unfortunately, once again they emphasize full-automation and
hence have no support for work items. Although their optimization capabilities are valuable for engi-
neering work, the features of a BPMS fulfill the intended desire to coordinate human-system coupled
processes. Furthermore, it seems easier to add optimization capability to a complex BPMS, than it
is to add BPMS features to a PIDO platform. Therefore, use of a BPMS is found to be ideal for this
research at this stage.

Finally, with an ever-increasing amount of data in modern society, the last group of WfMS specialize
to support streaming processing of large data sets. For example, Spotify uses the Luigi platform to
process data to give customers recommendations, and highlight popular music per genre, amongst a
host of other use-cases [53]. Therefore, these Data Pipeline tools provide abstractions to easily com-
pose so-called Extract, Transform, Load (ETL) tasks in a DAG, that like an assembly line continuously
processes chunks of data as it gets handed off from a source to a destination. However, streaming
processing is less common in engineering design problems as the data sets are heavily interdepen-
dent and heterogeneous as compared to highly uniform datasets such as Spotify’s listening statistics.
As a result, discussing ETL tasks in detail is outside the scope of this thesis; the reader may instead
refer to [54, p.401-421].

2.2.6 Modeling Techniques

Process definition tools are one of the standardized interfaces of a WfMS, as described by Section 2.2.5,
and allow modeling processes in both a human-readable and machine parsable representation. Of-
ten they consist of graphical notations that depict the execution order of activities in a business pro-
cesses and thus provide means to provide task awareness to users of a KBE application. This section
explains the modeling techniques available that could be applied to formalize the envisioned process
model of a Knowledge Engineer in Figure 1.1b.

According to [43, p.6], business process modelling requires three dominant perspectives: control
flow, data, and resource. As explained by Section 2.2.3, although the data and operations performed
on it may necessitate a certain flow; the control flow takes precedence over data flow. Consequently,
the activities contained within a business process and the order in which they are executed are de-
fined by the control flow perspective. Meanwhile, the data perspective defines the data and informa-
tion required during the execution. Finally, the resource view maps humans and systems to activities
to later determine the resource responsible for executing a task. Due to the vision of using the declar-
ative KBE approach for data modeling, an emphasis is placed for now on the control flow perspective.
Table 2.2 summarizes the modeling techniques available for each of these dominant perspectives.

13

2.2. WORKFLOW MANAGEMENT CHAPTER 2. THEORETICAL CONTENT

Table 2.2: Modeling Techniques for Each Dominant Business Process Perspective [43, p.6]

Control Flow Perspective Data Perspective Resource Perspective

BPMN UML Class Diagrams Use Cases

UML Activity Diagrams ER Diagrams Role-Activity Diagrams

Petri Nets & State Charts Object-Role Models Organizational Charts

EPCs X.500

One of the control flow techniques in Table 2.2 is BPMN, which has become a standard recognized
in ISO/IEC 19510:2013 in 2013 and is backed by the Object Management Group (OMG) [55]. The
goal of this modeling notation is to be easily understood by business users, analysts, and developers,
while consolidating other notations such as UML Activity Diagrams, IDEF, and Event-Process Chains
(EPCs) [56, p.1]. While BPMN depicts what types of documents and artifacts flow through tasks, it is
not a data flow language [56, p.20]. This means that expressing data dependencies through a BPMN
diagram is not its primary function. Nonetheless, [36] compared BPMN to other control flow lan-
guages in Table 2.2, based on five categories for its applicability to represent simulation workflows
in KBE. The result of a trade-off was that BPMN was the most applicable language for that purpose
due to its completeness [36, p. 142]. Another study, found that BPMN was most suitable for its ability
to model complex processes [57]. These conclusions are verified by the vast modeling capability of
BPMN; an example being its support of both process orchestration and choreography [56, p.315].

On the surface, BPMN has only five elementary categories: flow objects, data, connecting objects,
swimlanes, and artifacts. However, the main graphical elements consist of the flow objects which
are activities, events, and gateways, along with connecting objects that define the control flow be-
tween them [56, p.25, 58, p.67]. Specializations of these elements, such as sub-processes, allow mul-
tiple levels of abstraction to be defined. As [58, p.273] describes, this allows both strategic process
models—useful for fast comprehension—and operational process models—having sufficient detail
for automation—to be defined. Figure 2.4 below provides a sample strategic process model of a re-
cruiting process. The pools and lanes in the diagram provide clarity on the activities performed by
internal and external participants. For example, dashed arrows connect the “application submis-
sion” activity to denote a process boundary where a message flow is required to involve an external
resource.

In
te

rn
al

H
um

an
 R

es
ou

rc
es

H
iri

ng
 D

ep
t.

Report Vacancy

Vacancy Arises Vacancy Filled

Job
Advertisement

Application
Checking Vacancy Filling

Contact Signed

Ex
te

rn
al

Application
Submission

Lane I

Lane II

Pool II

Pool I

Figure 2.4: BPMN Diagram of a Recruiting Process at Strategic Level [58, p.281]

14

2.2. WORKFLOW MANAGEMENT CHAPTER 2. THEORETICAL CONTENT

2.2.7 Limitations & Research Trends

Due to applicability of WfM to multiple fields, the limitations and research trends identifiable within
it are quite large. As a result, the sole limitation of relevance for this research is:

• WfM is underutilized in engineering due to its rigidity [2, 12, 59, 60, 61, 62]

The desire to formalize business processes surrounding the usage of a KBE applications brings with
it the possibility of over-constraining its usage. After the commercialization of WfM, the latter half of
the 90s were focused on “dynamic workflows” to adjust process definitions quickly to new require-
ments [51, p.14]. As [63] mentions, real-life work is much more dynamic and rich than what can be
represented in process models, therefore users should be able to modify workflow models at runtime.
Although the topic of “dynamic” or “adaptive” workflows has been an ongoing research trend since
this initial effort; the gathered research in this thesis has provided evidence suggesting that limited
progress has been made to bring these methodologies to engineering workflows. For example, [59]
researched how to assist collaboration activities in the aerospace sector. The research gap identified
by their work discusses how the topic of data flow and workflows in complex product development
is lacking sufficient depth [59, p.30]. [2, p.7] adds that WfMSs force companies to organize into pre-
defined structures and are unable to cope with deviations in a design process from the formalized
model. Therefore, the field of WfM itself is underutilized in engineering, which might explain the
weak integration of workflows in KBE as discussed in Section 2.1.2.

There are two conflicting interests in workflows at play here: (a) the high abstraction-level of “top-
down” models detach them from the information required by engineering tasks, (b) the lack of flex-
ibility prevents ad-hoc changes [62, p.1120]. These two interests conflict due to how creating a de-
tailed workflow to address the high abstraction-level would end-up reducing its flexibility even fur-
ther. This conflict severely impacts engineering processes as they require ad-hoc modifications, the
activities within them are difficult to plan ahead of time, and the data transmitted between tasks is
highly interdependent [12, p.1472]. The latter aspect of data interdependence can impact data valid-
ity when enforcing a control flow on a process [61, p.2].

To prevent such issues two flavors of KBE-driven workflows are envisioned: (a) Dynamic Workflows
where the KBE application externally steers the WfMS based on its dependency tracking and slot
evaluation mechanisms, (b) Emergent Workflows where static control flow does not exist ahead of
time and instead “emerges” as a consequence of the transformations applied on data at runtime.
The focus of this research is on the first approach. A solution from literature for introducing dynami-
cism in workflows was identified that involves the representation of control-flow as a composition of
smaller scale workflows. These smaller scale workflows, called worklets are essentially self-contained
and complete workflow processes that are meant to handle specific tasks [64, p.135]. Furthermore,
worklets allow control flow modification by being able to be dynamically selected based on contex-
tual data at runtime. Essentially a top-level parent process can be dynamically altered by changing
the selection of which worklet to run during process execution. The benefits of this approach are:

• Ease of Adoption: Same process modeling methodology can be used for both workflow and
worklets as there is difference between dynamic and “normal” workflow elements

• Ease of Modeling: Makes composition of workflows easier since individual worklets are less
complex to build and verify than monolithic models

• Ease of Comprehensibility: Provides workflow views of differing granularity for different stake-
holders

• Ease of Evolution: New worklets can be added without modifying the macro-level workflow

15

3 Methodology
The present research derives from existing methodologies and theories from KBE, WfM, CE, and
Computer Science (CS). This knowledge was used to formulate the overarching hypothesis of this
work as:

“The use of a KBE application to externally steer a WfMS for parts of a process can address
the lack of process awareness when using KBE applications while simultaneously reducing
the rigidity of WfM.”

The rationale of this hypothesis comes from the declarative demand-driven nature of KBE, which
allows the expression of logic without dictating an execution order [21, p.241] as opposed to the im-
perative goal-driven nature of WfM. Due to this property, KBE simplifies the creation of multi-use
applications, and is expected to allow a workflow to be quickly adapted or extended. The hypothe-
sis is further reinforced by MDO which accredits use of KBE with a reduction in the number of re-
quired consistency constraints and simplifying the integration of heterogeneous tools to conduct
multi-fidelity analysis [21, p.214].

The desired synthesis would only involve users in a process when necessary, allowing low-level tasks
to execute behind-the-scenes, which relates to the concept of conversational composition where so-
called gray-boxes are created [46, p.279]. These “gray boxes” are expected to introduce better process
awareness through high-level BPMN representations that can provide engineers with a meaningful
task overview as depicted by Figure 1.1b. WfM can also provide KBE with better fault tolerance ca-
pabilities from its ability to deal with individual task failures and retry them whilst maintaining an
audit log of what happened during the entire design process. However, to support this functionality
the KBE application should support transactional usage and/or persistence such that changes made
to a KBE application during a task that fails, can be “un-done” or ‘rolled-back” to a previous state of
the application before failure.

These considerations result in the following high-level requirements on the software prototype:

• The information of a KBE application must be accessible to the process orchestrator and all
involved resources (people & tools).

• The information along with its dependency relationships must be persistable to support fault-
tolerance and the desired hybrid workflow concept.

• The KBE application should be able to introduce ad-hoc control flow during a running pro-
cess to dynamically chain together tasks while simultaneously using the runtime cache and
dependency tracking to re-run only what is required during iteration.

These requirements are then directly related to the sections in this chapter, namely first the informa-
tion modelling methodology will be discussed, followed by the persistence mechanism. Finally, the
process orchestration methodology used to enable dynamic worklet publication will be discussed.

3.1 Experimental Set-up

To meet the goals of this research, better understand the validity of the hypothesis, and answer the
research questions, a software prototype is needed. Therefore, the experimental set-up used to con-
duct this research is a modern software development environment using the Python programming
language, the underlying programming language of the ParaPy SDK. Alongside Python, the open-
source Zeebe BPMS is chosen to provide both BPMN modeling and service task definition capability

16

3.2. INFORMATION MODELING CHAPTER 3. METHODOLOGY

through its gRPC-based Python client [65]. These features were important to accelerate the proto-
typing phase. Finally, to handle data-flow between services in workflows, GraphQL a query language
developed by Facebook was selected for its granular query capability, ability to cater for multiple de-
mands through a single end-point, and for its potential to become the dominant API of the future
[66, p.32].

To iteratively verify the software prototype at each phase of development, Test-Driven Development
(TDD) was applied to ensure the building blocks of the prototype function properly. Additionally,
Docker was used to standardize the installed packages and operating system configuration in a so-
called container and Docker Compose was used to orchestrate multiple containers through a single
configuration file. Doing so provided a glimpse into how this software prototype might one day be
operated in the Cloud as this containerization mimics how each service within the architecture is
isolated from on another.

3.2 Information Modeling

The cornerstone of being able to integrate KBE applications within collaborative processes is to en-
able effective communication of information. To do this the so-called information model of the KBE
application consisting of its classes and slots must be formalized and provisioned. The latter mean-
ing that it should be accessible during a process. The aim in this thesis was to find an approach
where the KBE application can be used as-is within processes. More formally, the requirements from
the information modelling approach are:

1. Allow tools and the process orchestrator to obtain information from the KBE application

2. Allow the KBE application developer to define what to expose from the information model

3. Allow the KBE application developer to change how information is represented

4. Prevent burdening the KBE application developer and prevent mistakes by not forcing them to
redefine their types

5. Allow KBE language features to be represented in the exposed information model.

ParaPy currently comes with a generic REST API, that exposes the data model of a KBE application,
including instances and their slots. However, due to the lack of exposing application specific types
and slots, one could not communicate the domain specific abstractions used by engineers, or simply
the information model. As a result, consuming this API from the perspective of the service developer
is difficult without a prior understanding of “what” information is available before querying every-
thing. To overcome both of these issues, the state-of-the-art query language, GraphQL, is used to
expose the information model of a KBE application in a type-safe way, meaning that the types of
classes and slots are represented in the language.

What also distinguishes GraphQL is its selection set concept that allows obtaining partial results from
the backend as a client. While it is possible to obtain type-safe APIs using REST through OpenAPI
specification, or newer Remote Procedure Call (RPC) implementations such as gRPC or tRPC; none of
these technologies support the selection set concept. What makes the selection set concept powerful
is it enables data to be queried flexibly by allowing a user to select exactly what they need. This not
only alleviates under-fetching and over-fetching problems—relating to getting too little data and too
much data respectively—but also alleviates burden during information modeling as use-case specific
types do not need to be generated. This is best illustrated by Figure 3.1.

17

3.2. INFORMATION MODELING CHAPTER 3. METHODOLOGY

type Aircraft {
 name: String!
 span: Float!
 lenght: Float!
 maximumTakeoffWeight: Float!
 operationalEmptyWeight: Float!
 maxRange: Float!
 maxThrust: Float!
 takeoffDistance: Float!
}

(a) Type Definition

query {
 aircraft {
 name
 span
 length
 }
}

(b) Query

{
 "data": {
 "aircraft": {
 "name": "Boeing 737",
 "span": 28,
 "length": 29
 }
 }
}

(c) Response

Figure 3.1: Example of a Selection Set in a Query to Obtain Aircraft Data

Here, a basic Aircraft schema is defined with several fields. A representation of a potential query
is then provided where a selection set including the name, span, and length fields is used. This
means that the response only includes these fields, and not the remaining Aircraft fields defined
in the schema. This essentially allows a client to query exactly what it requires from each type in
the schema. This avoids the necessity to predict how clients will consume data, and instead allows
GraphQL to expose capabilities of the backend [67]. This allows a high degree of flexibility when con-
suming information. For an overview of example queries please consult Chapter C.

Driving the response of each query are so-called resolvers which are functions responsible for return-
ing the value of a given field. The returned value can either be a scalar with no fields, or an object type.
If the latter is returned, then execution continues recursively until no fields remain. [67]. To better
understand the similarities between the GraphQL type system and ParaPy, a UML diagram given by
Figure 3.2 was created.

In
st

an
ce

 L
ev

el
Ty

pe
 L

ev
el

GraphQL Object

Type

GraphQL Field

1..*

ORIGIN_OF ParaPy Class

ParaPy Slot

1..*

BOUND_TO

RETURNS

GraphQL Resolver

1..1

SYNONYMOUS_WITH

RETURNS

ParaPy Slot

Method

1..1

GraphQL Scalar

(String, Int)

MAPS_TO Python Data Type

(str, int)

DEFINES ParaPy ApplicationGraphQL Schema

1..* 1..*

OWNER_OF

IN
ST

AN
C

E_
O

F

GraphQL Object

IN
ST

AN
C

E_
O

F

Base Instance

Figure 3.2: UML Class/Object Diagram Depicting Relationship Between ParaPy & GraphQL

18

3.2. INFORMATION MODELING CHAPTER 3. METHODOLOGY

Here one can see how the aforementioned resolvers are analogous to ParaPy slot methods which
contain logic on how to return a given value. Each slot method is then bound to a slot, which in
GraphQL called fields. GraphQL Object Types are then composed of these fields which are analogous
to ParaPy classes. The collection of these Object Types is then called a GraphQL Schema, which
resembles the collection of classes which make up a ParaPy application. What is interesting to note,
is that resolvers can return either an object or a scalar data type. This is similar to how ParaPy slot
methods can return either base instances or Python data types. What this enables is a heirarchal
representation of product data.

3.2.1 Schema Autogeneration

While GraphQL seems to be a good fit for representing the information model of a KBE application,
generating GraphQL schemas and writing resolvers for each field is a strenuous activity. To not bur-
den the KBE application developer with learning the intracacies of GraphQL and its best practices, a
transpiler, which parses application source code and automatically generates resolvers and types was
developed. Such API autogeneration techniques are becoming commonplace in modern databases
or database services such as Hasura, Edge DB, and Neo4J.

These techniques allow users to maintain a single model of their domain and use it to create database
entities, define API endpoints, and perform validation / authorization on those endpoints. Use of
the KBE-GraphQL transpiler created in this research allows a knowledge engineer to deploy an API
for their application in seconds without modifying their application. Furthermore, the deployed
GraphQL API allows tools and workflow services to communicate with the KBE model in a type-safe
way, whilst also being compatible with KBE-specific language features such as dynamic types, lazy
evaluation, and dependency tracking.

At the core of this functionality is the origin (class) discovery algorithm to traverse the application
source code from a provided root type, and Figure 3.3. This algorithm operates on type-level hence
allowing multiple design instances of the KBE application to be served through the same API. The
basic principle, which is further explained by Chapter E, is to start from the root class of a ParaPy
application, and traverse the application source code via the edges between slots and their return
types. In Figure 3.3 one can see how starting from the root class denoted by “C”, all “discoverable”
edges are traversed in the first iteration. What the latter means is that the return type of some slots
is not known without so-called type inferencing. Although this will be explained subsequently, for
now it suffices to say that it allows one to derive type information from the context of neighboring
source code. Furthermore, it must be said that compared to regular traversal, inferring the return
type of slots is an expensive per-call operation. Therefore, the algorithm shown below attempts to
“batch” inferencing calls by discovering as many edges as possible in one iteration by going depth-
first through the type-tree and caching all slots that require inferencing. The inferencer is then run at
the end of each iteration.

Discoverable
Inferrable

Completed
Iteration 1

Discovered
Inferred

C

C

C

C C C

C

C

C

C

C C

C

Iteration 2

C

C

C

C C

C

C

Initial State Iteration 3

C

C

C

C C

C

C

Figure 3.3: Visualization of Origin Type Discovery Algorithm

19

3.2. INFORMATION MODELING CHAPTER 3. METHODOLOGY

Type Inferencing

While transpilation prevents a developer from needing to manually create types and resolvers, it
would require a fully type-annotated code-base in order to function without inferencing. A type
annotation in Python is a way to instruct type-checkers of what the return type of an assignment
of function is. This is shown by Figure 3.4, with for example the radius slot. However, adding these
annotations for each slot would be laborious and unecessary, as type information can be “inferred”
for slots that make use of the radius slot. For example, in Figure 3.4, this would be how the return type
of the area slot can be inferred to be a float due to its use of the radius slot along with floating-point
arithmetic operations being used. Therefore, type inferencing is a way to prevents developers from
writing unnecessary type-hints by making use of contextual type information and a type inference
system has the benefit of reducing the verbosity of code, making it easier to read and write, due to
prevention of “silly” and “common” type hints [68]. In this research, type inferencing is used to pre-
vent cluttering KBE application source code with unnecessary type hints just for the purpose of being
able to serve a GraphQL API for the KBE application. The Pyright inferencer was selected due to its
efficiency as well its capability and impressive infererencing capability.
i

class Circle:

 radius: Input[float] = Input() # User-defined type annotation

 @Attribute
 def area(self): # Inferred type: float
 return math.pi * self.radius ** 2

Figure 3.4: Example of When Type Inferencing is Required

Slot Resolvers

Whereas the GraphQL Schema provides type information about what data is available, resolvers are
responsible for encoding the knowledge of how to provide and modify that data. Therefore, without
resolvers, the schema would simply be a description of what information the KBE application con-
tains. To make it executable, one needs to define resolvers which are synonymous to slot methods
used in ParaPy applications that encode knowledge of how to return values. In this research, since the
GraphQL backend runs within the same Python process as the KBE application, the SlotResolver
is responsible for directly retrieving the return value of the correct slot, and then converting this data
into a suitable format to be represented in the response. For slots that are settable by the user, a
resolver is also responsible for processing the input data recieved via a mutation operation, and con-
verting that data type to the data-type used within the KBE application.

The knowledge of how to resolve certain slot return types is then encoded in these slot resolvers. To
keep the code-base extendible to the introduction of more advanced slot return types or new lan-
guage constructs in ParaPy, new SlotResolver classes can be defined without requiring changes to
the transpiler. Therefore, this can be seen as an adherence to the Open Closed Principle (OCP) since
as long as new SlotResolver types are introduced that adhere to this “interface”, then the remainder
of the code-base does not need to change. Listing B.1 can be consulted for further clarification.

ihttps://github.com/microsoft/pyright

20

https://github.com/microsoft/pyright

3.2. INFORMATION MODELING CHAPTER 3. METHODOLOGY

3.2.2 Modeling Approach

While the desire to use KBE applications as a starting point for information modeling may be de-
sirable to get going quickly, it may be desirable to separate the KBE application information model,
from the exposed information. This can be due to numerous reasons, including but not limited to a
desire to restrict sensitive information, representing slots different with different names, and filtering
undesired slots from ending up in the final information model. During the architecting phase of the
transpiler, it was envisioned to prevent an approach where source code is generated and saved on
the users workspace. This was done to prevent conflicts if the user modifies the generated source
code and then decides to regenerate a new schema. Instead, an approach was preferred where the
generated schema in-memory.

However, to allow the user to modify how information of the KBE application is represented in the
schema, both a filtering and override mechanism were introduced. The former allows a user to define
filter functions for both classes and slots. For example, this allows one to ignore all ParaPy-derived
slots, such as those originating from the Base class from appearing in the schema. This functionality
is supplemented by an override mechanism that allows definition of custom GraphQL types that
are linked to their ParaPy class. Therefore, when the transpiler encounters an overridden type, the
user-defined GraphQL type is used as a starting point. An example is provided below by Figure 3.5,
which demonstrates how a slot can be represented differently in the schema by defining custom
getter and setter functions. In this use-case, the desire is to maintain backwards compatibility for
tools consuming a span field, when the KBE application has changed to begin using half_span.

from parapy.core import Base, Input
from parapy.wfm import graphql as gql

class Aircraft(Base):

 half_span: Input[float] = Input(5)

@gql.model(origin=Aircraft, name=Aircraft.__name__)
class AircraftModel(gql.Base):

 span: float = gql.auto(
 slot=Aircraft.half_span,
 getter=lambda v: v * 2,
 setter=lambda v: v / 2,
 deprecation_reason="Span is no longer used in calculations.",
)

schema = gql.Schema(root=Aircraft, overrides=(AircraftModel,))
gql.deploy(schema)

Figure 3.5: Example of the GraphQL Schema Modeling Approach with Overrides

21

3.3. MODEL PERSISTENCE CHAPTER 3. METHODOLOGY

3.3 Model Persistence

As workflows are state-machine where tasks are atomic entities that transform one state to the next,
supporting multiple states of a KBE model is necessary to maintain the fault-tolerant nature of work-
flows. The current JSON-based snapshot capability of ParaPy was insufficient for this research as it
only persists the modifications made to a model in terms of JSON-representable inputs and is not ca-
pable of persisting computed values or the runtime dependencies between caches. Furthermore, a
desired functionality of exploiting the dependency tracking capability of KBE in workflows required
the ability to persist the full runtime state of an application, including dependencies. Therefore, a
challenge was to find a way to persist the full state of a ParaPy application. This problem is particu-
larly challenging for the following reasons:

• KBE models are complex objects that contain a high degree of references

• The KBE object graph may contain cycles due to aggregation

• Slots contain arbitrary data types defined by the user and should not be constrained

These challenges, and most importantly the last challenge have led to the creation of unique solu-
tions that take advantage of the KBE paradigm to most notable be able to consistently persist partial
application states. Before, delving into the specifics of these solutions, this thesis makes a distinction
between the object graph and the dependency graph within a KBE application. The former rep-
resents product tree, whereas the latter represents the dependency relationships between this data.
Looking at Figure 3.6, one can see the presence of an unserializable cache value. Additionally, wheras
the dependency graph can be assumed to be acyclic, the object graph can have a high degree of cy-
cles, due to aggregation. In this example, an aggregation is already present when passing down the
value of the root airfoil points down to the curve. Recognizing and serializing such aggregations is
not straightforward when using file formats such as XML, HDF5, or JSON and databases. As a result,
it was decided to use the built-in binary persistence module of Python, pickle for its ability to re-
solve these aggregations. Furthermore, it was selected for its capability to represent a wide range of
Python objects out of the box.

(a) Object Graph (b) Dependency Graph

Figure 3.6: UML Diagram of Object and Dependency Graph for an Airfoil

22

3.3. MODEL PERSISTENCE CHAPTER 3. METHODOLOGY

3.3.1 Persistence Architecture

From the specific challenges given previously, a persistence architecture was needed that overcome
the recursion limits present in the pickle module of Python as well as dealing with unserializable
data. To do this several enhancements were made to the pickle module as follows:

• Creation of a plugin system to enable side-effecting during serialization

• Addition of a rules system to define serializability

• Look-ahead serializer to robustly determine serializability

The first item in the above started as a way to gather all geometries present within a KBE applica-
tion during serialization and then be able to serialize those geometries individually afterwards. The
second item was necessary to define rules to influence the serialization of certain data types. For
example, these rules can be used to toggle if geometry is persisted or not. Finally, the last item was
necessary to be able to detect unserializable values before causing the main serializer to fail.

An important design decision during the architecting process was creating a plugin to postpone the
traversal of the dependency graph until after serialization of the object graph had finished. This was
done in order to be able to serialize the complex objects created by KBE applications, as otherwise
the serializer must recurse until the end of a dependency chain to save a single value. This greatly in-
creases the number of stack frames required to serialize ParaPy objects and would make it infeasible
to persist large objects.

3.3.2 Handling Geometry

A primary reason for needing a way to side-effect during serialization was to be able to handle geome-
tries. The underlying CAD kernel of ParaPy defines a topology as the relationships between geometric
entities in order to be able to link them together to represent complex shapes [69].Because of this a
shape is represented as a composition tree of sub-shapes that may contain solids, shells, faces, wires,
edges, and vertices. Furthermore, these sub-shapes may be arbitrarily organized into compounds.
Once a geometry is instantiated by a slot, ParaPy provides direct access to the underlying topology
of the shape including its potential sub-shapes. However, this capability poses a problem for serial-
ization as although in the CAD kernel understands that these sub-shapes are pointers to the same
objects in memory, inside the Python interpreter they lead to the creation of new unique objects. As
a result, the serialization mechanism would in turn serialize shapes that are identical multiple times.
Persisting sub-shapes individually would then be costly both in runtime and memory consumption.

To address this problem, the properties of the “shape set” data structure, provided by the CAD Ker-
nel are used, which guarantees uniqueness of contained shapes. Therefore, working principle of
this approach is to add all evaluated shapes in the KBE model to the shape set and keep track of
the identifiers provided back by the CAD kernel to elements within this set. Due to the underlying
data structure, if a shape has been previously added, it will return the same identifier. As a result,
this allows data deduplication of “deduping” of the geometry contained within a KBE model.This
methodology is implemented as a plugin within the aforementioned persistence architecture. This
plugin allows geometry to be added to the shape set during traversal of the object graph at serializa-
tion time. Once serialization is complete, the shape set is serialized and stored alongside the KBE
model’s object graph. This process is reversed during deserialization, whereby first the shape set is
deserialized, and then subsequently accessed during object graph traversal and re-instantiation at
deserialization time.

23

3.3. MODEL PERSISTENCE CHAPTER 3. METHODOLOGY

3.3.3 Graph Contraction

Previously, in Section 3.3.1 it was explained how an important architectural choice was made to sep-
arate the serialization of the object and dependency graph. Although this choice was made for good
reason to mitigate the recursion limit, it led to a challenge in dealing with “gaps” or “lost” edges
formed in the dependency graph due to parts of the object tree not being serializable. This is illus-
trated below by Figure 3.7.

T

U

S

S

R S

S

TT
Composed Cache
Dependends on Relationship

S

Lost Dependency

Serializable Cache
U Unserializable Cache
T Untraversed Cache

R Root Instance

U

S

S

R S

S
Untraversed / Unserializable

Sub-Graph

Caused by Trickle Down

Figure 3.7: Depiction of Untraversed Sub-Graph Requiring Contraction

Here what can be seen is how when there exists an unserializable base instance in the object graph,
the dependency relationships of its composed caches are not serialized. This creates a broken de-
pendency between the composed caches and their precedents, which becomes problematic on de-
serialization when these precedent caches are changed. These situations with untraversed caches
typically occurs in the following situations:

• Rule preventing base instance from being serialized

• Base instances contained within an unserializable container, such as Listing 3.1

The former situation occurs often in the ParaPy geom package as certain shapes such as the BSplineCurve
have unserializable inputs and are created within an Attribute slot, meaning that they lack the child
rules necessary to be able to re-evaluate these unserializalbe inputs. As a result, it is safer to mark
these geometric classes as unserializable.

Regardless of the situation in which these inconsistencies occur, the solution to this problem was to
implement a graph contraction algorithm where the contraction takes place along the composition
edges of the composed caches. This algorithm is explained further in Chapter E. Besides restoring
reactivity of the application after deserialization, the graph contraction algorithm can also be used
to simplify the dependency graph. Therefore, this can be used to reduce the storage space required
for persisting the state of a KBE application. Especially in situations where a lot of intermediate ge-
ometries are required to create the desired final shape, the contraction algorithm can be applied
to remove all intermediate caches that are not needed. For example, in the Multi-Model Generator
(MMG), the generation of a wing involves several intermediate geometries as depicted by Figure 3.8.
Replicating the wing generation steps of the MMG, for a simple wing consumed 130.493 kB. With-
out intermediate slots, the serialized model consumed 2.486 kB, which corresponds to a reduction
of 98.1 %. The reason for this drastic reduction in size stems from the sheer number of intermediate
slots and dependencies required to arrive at final result.

24

3.3. MODEL PERSISTENCE CHAPTER 3. METHODOLOGY

x

y

z

Step 1: Construct Rails Step 2: Place Airfoils Step 3: Loft Surface

Figure 3.8: Wing Construction Methodology Used in the MMG [70]

3.3.4 Consistency Maintenance

Alongside the graph contraction algorithm, it was necessary to augment the slot evaluation mech-
anism of ParaPy to cope with unserializable values. The problem is best illustrated by Listing 3.1,
whereby an identity comparison is performed using an object that not serialized due to being a part
of an unserializable container. Here, once the identity_comparison slot is evaluated, it will use the
cached value of the object, but will at the same time cause the unserializable slot to revaluate. This
returns a new object, resulting in the failure of the identity comparison.

1 class ConsistencyExample(Base):
2

3 @Attribute
4 def unpickleable(self):
5 return [lambda: None, Circle()]
6

7 @Attribute
8 def pickleable(self):
9 return unpickleable[-1]

10

11 @Attribute
12 def identity_comparison(self):
13 return unpickleable[-1] is pickleable

Listing 3.1: Example Illustrating the Need for Identity Consistency Maintenence

The working principle of this augmentation is to check the precedents of a slot evaluation for the
presence of unserializable caches. If such a cache exists, then all unserializable precedents of that
cache as well as their respective dependent caches are eagerly invalidated. Although simple to im-
plement when a slot evaluation calls a single cache, this algorithm becomes a bit more complicated
when considering call stacks where previously accessed caches need to be invalidated. To accom-
modate these situations, all visited caches during an evaluation are collected. If any of these caches
would be affected by the invalidation of the unserializable precedents, then the slot evaluation will
be terminated. The slot evaluation is then retried from the originating slot.

25

3.4. PROCESS ORCHESTRATION CHAPTER 3. METHODOLOGY

Evaluation Dependency
Dependends on Relationship

Serializable Cache
Unserializable Cache

Evaluating Cache

E

1

S E

2

Call Order

S

S

U

U

Unserializable Precedent Travesal
Dependent Cache Reset

3

Evaluation

Terminates

Figure 3.9: Visualization of Consistency Maintenance Algorithm

3.4 Process Orchestration

While the information modeling and model persistence phases of the prototype development were
significant to being able to orchestrate processes, the primary goal of this research is to enable a
knowledge engineer to formalize the intended process of a KBE application in order to improve its
collaborative usage. Furthermore, a derived challenge is to be able to facilitate processes flexibly
without over-constraining them with control flow.

Before delving into the methodology developed to achieve these goals, this thesis recognizes three
different types of workflows: (a) static, (b) dynamic, and (c) emergent workflows. Static workflows
are characterized by a predominantly constant control-flow path during runtime. Dynamic work-
flows are then those which are characterized by how the eventual flow taken in a workflow is depen-
dent on logic. This thesis recognizes that logic can be encoded in the business process, however for
simplicity only dynamism encoded inside such inside a central, workflow-steering KBE app in the
form of business rules is considered. Examples of such dynamism are given below by Figure 3.10,
and further explanation can be consulted from Chapter D.

Who

Deciding who should be responsible for performing a task (Jane or John)

What:

Deciding what tasks /workflows to run dynamically (Run A, B, C or just B and C)

Dynamically Published Worklets

How

Deciding how to run a task (either Simulation A or B)

When

Deciding when to run a task (resume task next week monday at 9 am)

Figure 3.10: Types of Dynamism in Workflows

Additionally, as previously mentioned in the theoretical content, this thesis recognizes two forms of

26

3.4. PROCESS ORCHESTRATION CHAPTER 3. METHODOLOGY

control flow: (a) forward, (b) backward. Forward control flow, or goal-driven processes are typical
when the flow is predictable and (relatively) static. It’s characterized as predefined formulation of
tasks, and for which the control flow is governed by the process layer. Backwards flow (demand-
driven) is typical when the objectives are clear but the means are complicated to define upfront and
a result of logic. The latter flow occurs inside KBE applications, which are declarative and where
slot flow happens in reverse and will dictate the means. It’s characterized by having no predefined
formulation of task order, and for which the control flow is governed by the KBE app. These types
of flows then result in two distinct forms of dynamic KBE workflows: (a) KBE assisted, and (b) KBE
controlled, Figure 3.11.

KBE Assisted KBE ControlledTipping Point

Too Abstract

Too Complex

"Task: Do Something"
Statically Defined
KBE Published

Figure 3.11: Tipping Point Between KBE Assisted and KBE Controlled Workflows

Observing Figure 3.11, one can define KBE assisted workflows as exhibiting forward control flow that
is augmented with the aforementioned forms of dynamism. On the other hand KBE controlled work-
flows are a form of external steering where the slot evaluation, runtime cache, and dependency track-
ing mechanism of the KBE application is used to dynamically alter the control flow of the process.

Often, one can recognize a tipping point where a certain KBE-driven workflow methodology will be
favorable. The tipping point is subjective, but it depends on (a) the ability of process owners to artic-
ulate the process, and (b) the fluidity that process owners expect. This is due to how, forward control
flow predefines the possible paths that can be taken in a workflow, leading to a form of rigidness and,
thus, limited re-use. To illustrate the differences between these two approaches, this thesis will focus
on either extreme.

3.4.1 Process Modelling

Having defined the taxonomy of this thesis with respect to workflows, the next important topic is
to discuss how processes are modelled. This thesis focuses on manual formalization of processes,
where a user utilizes BPMN software to compose workflows out of a sequence of tasks. These BPMN
models are then linked to the KBE applications through accessing their respective GraphQL APIs. The
envisioned methodology has a clear distinction between the responsibilities of the BPMN model and
the KBE product model:

• Process Model: Define “How” / “When” users and services should interact with the product
model

• Product Model: Define “What” users and services should interact with and “How” some com-
puted values should be provided (geometry, engineering rules)

This thesis utilized the Camunda ii a BPM software for both process modelling and orchestration.
As shown by Figure 3.12 a visual BPMN editor is used to develop process models. To make it easier

iihttps://camunda.com/

27

https://camunda.com/

3.4. PROCESS ORCHESTRATION CHAPTER 3. METHODOLOGY

for developers to create these models, task templates were defined for typical tasks such as starting,
saving, loading, shutting down, and querying a KBE application Figure 3.13.

Figure 3.12: Screenshot of Process Modeling / Formalization in Camunda Modeler

(a) Task Template Catalog (b) User Task Template

Figure 3.13: Screenshots of Task Template Implementation to Assist Process Modeling

3.4.2 Service Architecture

An important enabler of the collaborative KBE software prototype is the adoption of a service ori-
ented architecture which exploits Camunda Zeebe’s horizontal scalability model. Although currently,
horizontal scaling was out of scope for this thesis, all major components within the architecture: task
workers, persistence, KBE application instances, and the workflow engine itself, are decoupled such
that they can be scaled independently from one another, as seen in Figure 3.14. Furthermore, in this
diagram it is important to note that the generic KBE services are lightweight “controllers” written in
Python that do not need the ParaPy runtime to function. They simply send instructions to the model
via GraphQL API. To illustrate this, an example task service is provided by Listing 3.2. Furthermore,

28

3.4. PROCESS ORCHESTRATION CHAPTER 3. METHODOLOGY

simulation tools and arbitrary services can also be defined by the end-user using the same gRPC
based-Python client. This allows all involved services within this architecture to be scaled based on
load. For example, if a KBE application is very frequently used, then multiple service instances can
be deployed to cater to this demand.

ParaPy Cloud Private Network

Public Network (Internet)

Application
Registry
(Docker)

Process Orchestrator (Zeebe)

Generic KBE Services

Audit Log & Exporters

KBE Application Process

Object

Store

(Minio)

gRPC

H
TT

P
/ W

S

KBE Task Services

KBE Application

Instance

HTTP

KBE API

GraphQL

WS

KBE Web GUI

GraphQL API

KBE Application

InstanceKBE Application

Instance

KBE Task Services

Distributed Workflow
Engine

(Zeebe)

HTTPElastisearch

Workflow Gateway

H
TT

P
/ W

S

KBE Process
Spawner & Gateway

Gateway & Ingress

Controller

gRPC

WS

Human Task Client
(WebGUI Frontend)

gRPC

Simulation Tool

Client

User Management

& Authorization

Service

User
Management

Database

Communication via API

Communication via Contextual State

Requires Implementation

Implemented Service

KBE Web GUI

Backend

HTTP HTTP

Figure 3.14: Service Architecture of KBE-WfM Synthesized Software

1 @router.task(task_type="parapy.services.saveModel", timeout=TIMEOUT)
2 async def save_model(job: zeebe.Job, model: Model, logger: Logger) -> None:
3 persistor = get_persistor(job) or "PICKLE"
4 state = await model.save(persistor=persistor)
5

6 job.stateVariables["model"].update(
7 {"state": state, "persistor": persistor}
8)

Listing 3.2: Example of a Generic KBE Task Service

3.4.3 Correlated Dependencies

To support the need of flexibly integrating tools with KBE applications, a methodology has also been
developed to be able to maintain dependency tracking even when changing (mutating) the values of a
KBE application from an external tool. The basic principle is to track the queried inputs of a tool, with
a correlationKey as seen in Figure 3.15a. Subsequently, when the same key is used on a mutation,
the KBE application treats the mutated caches as dependent on the queried caches, Figure 3.15b.

29

3.4. PROCESS ORCHESTRATION CHAPTER 3. METHODOLOGY

In this example, the height of the balloon becomes dependent on the radius, due to the performed
correlated dependency transaction. This concept is used later in Section 3.4.7.

BalloonDesigner

BalloonBalloon

Implements

Base

AbstractBase

ParaPyObject

Fields

id:PyID!

refchain:String!

openingRadius(value:Float):
FloatValue!

radius(value:Int):IntValue!

halfHeight(value:Int):IntValue!

tubeHeight(value:Float):FloatValue!

height(value:Int):IntValue!

basketWidth(value:Int):IntValue!

BalloonDesigner

BalloonBalloon

Implements

Base

AbstractBase

ParaPyObject

Fields

id:PyID!

refchain:String!

openingRadius(value:Float):
FloatValue!

radius(value:Int):IntValue!

halfHeight(value:Int):IntValue!

tubeHeight(value:Float):FloatValue!

height(value:Int):IntValue!

basketWidth(value:Int):IntValue!

GraphiQL
query {1▾

root {2▾
selectedDesign {3▾

radius {4▾
value5

}6
}7

}8
}9

query {1▾
root {2▾

selectedDesign {3▾
radius {4▾

value5
}6

}7
}8

}9

query {1▾
root {2▾

selectedDesign {3▾
radius {4▾

value5
}6

}7
}8

}9

query {1▾
root {2▾

selectedDesign {3▾
radius {4▾

value5
}6

}7
}8

}9

Variables Headers

{"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1

"value": 5
}

}
}

},

"message": "Correlated dependency
transaction started",

"key": "9f680cb4-d14d-4782",
"operation": "query",
"success": true

}
}

}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"radius": {▾

"extensions": {▾
"correlatedDependency": {▾

"value": 5
}

}
}

},

"message": "Correlated dependency
transaction started",

"key": "9f680cb4-d14d-4782",
"operation": "query",
"success": true

}
}

}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"radius": {▾

"extensions": {▾
"correlatedDependency": {▾

"value": 5
}

}
}

},

"message": "Correlated dependency
transaction started",

"key": "9f680cb4-d14d-4782",
"operation": "query",
"success": true

}
}

}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"radius": {▾

"extensions": {▾
"correlatedDependency": {▾

"value": 5
}

}
}

},

"message": "Correlated dependency
transaction started",

"key": "9f680cb4-d14d-4782",
"operation": "query",
"success": true

}
}

}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"radius": {▾

"extensions": {▾
"correlatedDependency": {▾

BalloonDesigner

BalloonBalloon

Implements

Base

AbstractBase

ParaPyObject

Fields

id:PyID!

refchain:String!

openingRadius(value:Float):
FloatValue!

radius(value:Int):IntValue!

halfHeight(value:Int):IntValue!

tubeHeight(value:Float):FloatValue!

height(value:Int):IntValue!

basketWidth(value:Int):IntValue!

BalloonDesigner

BalloonBalloon

Implements

Base

AbstractBase

ParaPyObject

Fields

id:PyID!

refchain:String!

openingRadius(value:Float):
FloatValue!

radius(value:Int):IntValue!

halfHeight(value:Int):IntValue!

tubeHeight(value:Float):FloatValue!

height(value:Int):IntValue!

basketWidth(value:Int):IntValue!

GraphiQL
query {1▾

root {2▾
selectedDesign {3▾

radius {4▾
value5

}6
}7

}8
}9

query {1▾
root {2▾

selectedDesign {3▾
radius {4▾

value5
}6

}7
}8

}9

query {1▾
root {2▾

selectedDesign {3▾
radius {4▾

value5
}6

}7
}8

}9

query {1▾
root {2▾

selectedDesign {3▾
radius {4▾

value5
}6

}7
}8

}9

Variables Headers

{"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1

"value": 5
}

}
}

},

"message": "Correlated dependency
transaction started",

"key": "9f680cb4-d14d-4782",
"operation": "query",
"success": true

}
}

}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"radius": {▾

"extensions": {▾
"correlatedDependency": {▾

"value": 5
}

}
}

},

"message": "Correlated dependency
transaction started",

"key": "9f680cb4-d14d-4782",
"operation": "query",
"success": true

}
}

}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"radius": {▾

"extensions": {▾
"correlatedDependency": {▾

"value": 5
}

}
}

},

"message": "Correlated dependency
transaction started",

"key": "9f680cb4-d14d-4782",
"operation": "query",
"success": true

}
}

}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"radius": {▾

"extensions": {▾
"correlatedDependency": {▾

"value": 5
}

}
}

},

"message": "Correlated dependency
transaction started",

"key": "9f680cb4-d14d-4782",
"operation": "query",
"success": true

}
}

}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"radius": {▾

"extensions": {▾
"correlatedDependency": {▾

BalloonDesigner

BalloonBalloon

Implements

Base

AbstractBase

ParaPyObject

Fields

id:PyID!

refchain:String!

openingRadius(value:Float):
FloatValue!

radius(value:Int):IntValue!

halfHeight(value:Int):IntValue!

tubeHeight(value:Float):FloatValue!

height(value:Int):IntValue!

basketWidth(value:Int):IntValue!

BalloonDesigner

BalloonBalloon

Implements

Base

AbstractBase

ParaPyObject

Fields

id:PyID!

refchain:String!

openingRadius(value:Float):
FloatValue!

radius(value:Int):IntValue!

halfHeight(value:Int):IntValue!

tubeHeight(value:Float):FloatValue!

height(value:Int):IntValue!

basketWidth(value:Int):IntValue!

GraphiQL
query {1▾

root {2▾
selectedDesign {3▾

radius {4▾
value5

}6
}7

}8
}9

query {1▾
root {2▾

selectedDesign {3▾
radius {4▾

value5
}6

}7
}8

}9

query {1▾
root {2▾

selectedDesign {3▾
radius {4▾

value5
}6

}7
}8

}9

query {1▾
root {2▾

selectedDesign {3▾
radius {4▾

value5
}6

}7
}8

}9

Variables Headers

{"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1

"value": 5
}

}
}

},

"message": "Correlated dependency
transaction started",

"key": "9f680cb4-d14d-4782",
"operation": "query",
"success": true

}
}

}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"radius": {▾

"extensions": {▾
"correlatedDependency": {▾

"value": 5
}

}
}

},

"message": "Correlated dependency
transaction started",

"key": "9f680cb4-d14d-4782",
"operation": "query",
"success": true

}
}

}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"radius": {▾

"extensions": {▾
"correlatedDependency": {▾

"value": 5
}

}
}

},

"message": "Correlated dependency
transaction started",

"key": "9f680cb4-d14d-4782",
"operation": "query",
"success": true

}
}

}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"radius": {▾

"extensions": {▾
"correlatedDependency": {▾

"value": 5
}

}
}

},

"message": "Correlated dependency
transaction started",

"key": "9f680cb4-d14d-4782",
"operation": "query",
"success": true

}
}

}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"radius": {▾

"extensions": {▾
"correlatedDependency": {▾

BalloonDesigner

BalloonBalloon

Implements

Base

AbstractBase

ParaPyObject

Fields

id:PyID!

refchain:String!

openingRadius(value:Float):
FloatValue!

radius(value:Int):IntValue!

halfHeight(value:Int):IntValue!

tubeHeight(value:Float):FloatValue!

height(value:Int):IntValue!

basketWidth(value:Int):IntValue!

BalloonDesigner

BalloonBalloon

Implements

Base

AbstractBase

ParaPyObject

Fields

id:PyID!

refchain:String!

openingRadius(value:Float):
FloatValue!

radius(value:Int):IntValue!

halfHeight(value:Int):IntValue!

tubeHeight(value:Float):FloatValue!

height(value:Int):IntValue!

basketWidth(value:Int):IntValue!

GraphiQL
query {1▾

root {2▾
selectedDesign {3▾

radius {4▾
value5

}6
}7

}8
}9

query {1▾
root {2▾

selectedDesign {3▾
radius {4▾

value5
}6

}7
}8

}9

query {1▾
root {2▾

selectedDesign {3▾
radius {4▾

value5
}6

}7
}8

}9

query {1▾
root {2▾

selectedDesign {3▾
radius {4▾

value5
}6

}7
}8

}9

Variables Headers

{"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1

"value": 5
}

}
}

},

"message": "Correlated dependency
transaction started",

"key": "9f680cb4-d14d-4782",
"operation": "query",
"success": true

}
}

}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"radius": {▾

"extensions": {▾
"correlatedDependency": {▾

"value": 5
}

}
}

},

"message": "Correlated dependency
transaction started",

"key": "9f680cb4-d14d-4782",
"operation": "query",
"success": true

}
}

}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"radius": {▾

"extensions": {▾
"correlatedDependency": {▾

"value": 5
}

}
}

},

"message": "Correlated dependency
transaction started",

"key": "9f680cb4-d14d-4782",
"operation": "query",
"success": true

}
}

}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"radius": {▾

"extensions": {▾
"correlatedDependency": {▾

"value": 5
}

}
}

},

"message": "Correlated dependency
transaction started",

"key": "9f680cb4-d14d-4782",
"operation": "query",
"success": true

}
}

}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"radius": {▾

"extensions": {▾
"correlatedDependency": {▾

Execute query (Ctrl-Enter)

BalloonDesigner

BalloonBalloon

Implements

Base

AbstractBase

ParaPyObject

Fields

id:PyID!

refchain:String!

openingRadius(value:Float):
FloatValue!

radius(value:Int):IntValue!

halfHeight(value:Int):IntValue!

tubeHeight(value:Float):FloatValue!

height(value:Int):IntValue!

basketWidth(value:Int):IntValue!

BalloonDesigner

BalloonBalloon

Implements

Base

AbstractBase

ParaPyObject

Fields

id:PyID!

refchain:String!

openingRadius(value:Float):
FloatValue!

radius(value:Int):IntValue!

halfHeight(value:Int):IntValue!

tubeHeight(value:Float):FloatValue!

height(value:Int):IntValue!

basketWidth(value:Int):IntValue!

GraphiQL
query {1▾

root {2▾
selectedDesign {3▾

radius {4▾
value5

}6
}7

}8
}9

query {1▾
root {2▾

selectedDesign {3▾
radius {4▾

value5
}6

}7
}8

}9

query {1▾
root {2▾

selectedDesign {3▾
radius {4▾

value5
}6

}7
}8

}9

query {1▾
root {2▾

selectedDesign {3▾
radius {4▾

value5
}6

}7
}8

}9

Variables Headers

{"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1

"value": 5
}

}
}

},

"message": "Correlated dependency
transaction started",

"key": "9f680cb4-d14d-4782",
"operation": "query",
"success": true

}
}

}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"radius": {▾

"extensions": {▾
"correlatedDependency": {▾

"value": 5
}

}
}

},

"message": "Correlated dependency
transaction started",

"key": "9f680cb4-d14d-4782",
"operation": "query",
"success": true

}
}

}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"radius": {▾

"extensions": {▾
"correlatedDependency": {▾

"value": 5
}

}
}

},

"message": "Correlated dependency
transaction started",

"key": "9f680cb4-d14d-4782",
"operation": "query",
"success": true

}
}

}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"radius": {▾

"extensions": {▾
"correlatedDependency": {▾

"value": 5
}

}
}

},

"message": "Correlated dependency
transaction started",

"key": "9f680cb4-d14d-4782",
"operation": "query",
"success": true

}
}

}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"radius": {▾

"extensions": {▾
"correlatedDependency": {▾

BalloonDesigner

BalloonBalloon

Implements

Base

AbstractBase

ParaPyObject

Fields

id:PyID!

refchain:String!

openingRadius(value:Float):
FloatValue!

radius(value:Int):IntValue!

halfHeight(value:Int):IntValue!

tubeHeight(value:Float):FloatValue!

height(value:Int):IntValue!

basketWidth(value:Int):IntValue!

BalloonDesigner

BalloonBalloon

Implements

Base

AbstractBase

ParaPyObject

Fields

id:PyID!

refchain:String!

openingRadius(value:Float):
FloatValue!

radius(value:Int):IntValue!

halfHeight(value:Int):IntValue!

tubeHeight(value:Float):FloatValue!

height(value:Int):IntValue!

basketWidth(value:Int):IntValue!

GraphiQL
query {1▾

root {2▾
selectedDesign {3▾

radius {4▾
value5

}6
}7

}8
}9

query {1▾
root {2▾

selectedDesign {3▾
radius {4▾

value5
}6

}7
}8

}9

query {1▾
root {2▾

selectedDesign {3▾
radius {4▾

value5
}6

}7
}8

}9

query {1▾
root {2▾

selectedDesign {3▾
radius {4▾

value5
}6

}7
}8

}9

Variables Headers

{"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1

"value": 5
}

}
}

},

"message": "Correlated dependency
transaction started",

"key": "9f680cb4-d14d-4782",
"operation": "query",
"success": true

}
}

}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"radius": {▾

"extensions": {▾
"correlatedDependency": {▾

"value": 5
}

}
}

},

"message": "Correlated dependency
transaction started",

"key": "9f680cb4-d14d-4782",
"operation": "query",
"success": true

}
}

}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"radius": {▾

"extensions": {▾
"correlatedDependency": {▾

"value": 5
}

}
}

},

"message": "Correlated dependency
transaction started",

"key": "9f680cb4-d14d-4782",
"operation": "query",
"success": true

}
}

}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"radius": {▾

"extensions": {▾
"correlatedDependency": {▾

"value": 5
}

}
}

},

"message": "Correlated dependency
transaction started",

"key": "9f680cb4-d14d-4782",
"operation": "query",
"success": true

}
}

}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"radius": {▾

"extensions": {▾
"correlatedDependency": {▾

BalloonDesigner

BalloonBalloon

Implements

Base

AbstractBase

ParaPyObject

Fields

id:PyID!

refchain:String!

openingRadius(value:Float):
FloatValue!

radius(value:Int):IntValue!

halfHeight(value:Int):IntValue!

tubeHeight(value:Float):FloatValue!

height(value:Int):IntValue!

basketWidth(value:Int):IntValue!

BalloonDesigner

BalloonBalloon

Implements

Base

AbstractBase

ParaPyObject

Fields

id:PyID!

refchain:String!

openingRadius(value:Float):
FloatValue!

radius(value:Int):IntValue!

halfHeight(value:Int):IntValue!

tubeHeight(value:Float):FloatValue!

height(value:Int):IntValue!

basketWidth(value:Int):IntValue!

GraphiQL
query {1▾

root {2▾
selectedDesign {3▾

radius {4▾
value5

}6
}7

}8
}9

query {1▾
root {2▾

selectedDesign {3▾
radius {4▾

value5
}6

}7
}8

}9

query {1▾
root {2▾

selectedDesign {3▾
radius {4▾

value5
}6

}7
}8

}9

query {1▾
root {2▾

selectedDesign {3▾
radius {4▾

value5
}6

}7
}8

}9

Variables Headers

{"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1

"value": 5
}

}
}

},

"message": "Correlated dependency
transaction started",

"key": "9f680cb4-d14d-4782",
"operation": "query",
"success": true

}
}

}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"radius": {▾

"extensions": {▾
"correlatedDependency": {▾

"value": 5
}

}
}

},

"message": "Correlated dependency
transaction started",

"key": "9f680cb4-d14d-4782",
"operation": "query",
"success": true

}
}

}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"radius": {▾

"extensions": {▾
"correlatedDependency": {▾

"value": 5
}

}
}

},

"message": "Correlated dependency
transaction started",

"key": "9f680cb4-d14d-4782",
"operation": "query",
"success": true

}
}

}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"radius": {▾

"extensions": {▾
"correlatedDependency": {▾

"value": 5
}

}
}

},

"message": "Correlated dependency
transaction started",

"key": "9f680cb4-d14d-4782",
"operation": "query",
"success": true

}
}

}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"radius": {▾

"extensions": {▾
"correlatedDependency": {▾

BalloonDesigner

BalloonBalloon

Implements

Base

AbstractBase

ParaPyObject

Fields

id:PyID!

refchain:String!

openingRadius(value:Float):
FloatValue!

radius(value:Int):IntValue!

halfHeight(value:Int):IntValue!

tubeHeight(value:Float):FloatValue!

height(value:Int):IntValue!

basketWidth(value:Int):IntValue!

BalloonDesigner

BalloonBalloon

Implements

Base

AbstractBase

ParaPyObject

Fields

id:PyID!

refchain:String!

openingRadius(value:Float):
FloatValue!

radius(value:Int):IntValue!

halfHeight(value:Int):IntValue!

tubeHeight(value:Float):FloatValue!

height(value:Int):IntValue!

basketWidth(value:Int):IntValue!

GraphiQL
query {1▾

root {2▾
selectedDesign {3▾

radius {4▾
value5

}6
}7

}8
}9

query {1▾
root {2▾

selectedDesign {3▾
radius {4▾

value5
}6

}7
}8

}9

query {1▾
root {2▾

selectedDesign {3▾
radius {4▾

value5
}6

}7
}8

}9

query {1▾
root {2▾

selectedDesign {3▾
radius {4▾

value5
}6

}7
}8

}9

Variables Headers

{"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1

"value": 5
}

}
}

},

"message": "Correlated dependency
transaction started",

"key": "9f680cb4-d14d-4782",
"operation": "query",
"success": true

}
}

}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"radius": {▾

"extensions": {▾
"correlatedDependency": {▾

"value": 5
}

}
}

},

"message": "Correlated dependency
transaction started",

"key": "9f680cb4-d14d-4782",
"operation": "query",
"success": true

}
}

}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"radius": {▾

"extensions": {▾
"correlatedDependency": {▾

"value": 5
}

}
}

},

"message": "Correlated dependency
transaction started",

"key": "9f680cb4-d14d-4782",
"operation": "query",
"success": true

}
}

}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"radius": {▾

"extensions": {▾
"correlatedDependency": {▾

"value": 5
}

}
}

},

"message": "Correlated dependency
transaction started",

"key": "9f680cb4-d14d-4782",
"operation": "query",
"success": true

}
}

}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"radius": {▾

"extensions": {▾
"correlatedDependency": {▾

Execute query (Ctrl-Enter)

(a) Start of Transaction

BalloonDesigner

BalloonBalloon

Implements

Base

AbstractBase

ParaPyObject

Fields

id:PyID!

refchain:String!

openingRadius(value:Float):
FloatValue!

radius(value:Int):IntValue!

halfHeight(value:Int):IntValue!

tubeHeight(value:Float):FloatValue!

height(value:Int):IntValue!

basketWidth(value:Int):IntValue!

BalloonDesigner

BalloonBalloon

Implements

Base

AbstractBase

ParaPyObject

Fields

id:PyID!

refchain:String!

openingRadius(value:Float):
FloatValue!

radius(value:Int):IntValue!

halfHeight(value:Int):IntValue!

tubeHeight(value:Float):FloatValue!

height(value:Int):IntValue!

basketWidth(value:Int):IntValue!

GraphiQL
mutation {1▾

root {2▾
selectedDesign {3▾

height(value: 20){4▾
value5

}6
}7

}8
}9

mutation {1▾
root {2▾

selectedDesign {3▾
height(value: 20){4▾

value5
}6

}7
}8

}9

mutation {1▾
root {2▾

selectedDesign {3▾
height(value: 20){4▾

value5
}6

}7
}8

}9

mutation {1▾
root {2▾

selectedDesign {3▾
height(value: 20){4▾

value5
}6

}7
}8

}9

Variables Headers

{"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1

"value": 20
}

}
}

},

"message": "Correlated dependency
transaction ended",

"key": "9f680cb4-d14d-4782",
"operation": "mutation",
"success": true,

"root.radius"
],

"root.height"
]

}
}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"height": {▾

"extensions": {▾
"correlatedDependency": {▾

"precedents": [▾

"dependents": [▾

"value": 20
}

}
}

},

"message": "Correlated dependency
transaction ended",

"key": "9f680cb4-d14d-4782",
"operation": "mutation",
"success": true,

"root.radius"
],

"root.height"
]

}
}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"height": {▾

"extensions": {▾
"correlatedDependency": {▾

"precedents": [▾

"dependents": [▾

"value": 20
}

}
}

},

"message": "Correlated dependency
transaction ended",

"key": "9f680cb4-d14d-4782",
"operation": "mutation",
"success": true,

"root.radius"
],

"root.height"
]

}
}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"height": {▾

"extensions": {▾
"correlatedDependency": {▾

"precedents": [▾

"dependents": [▾

"value": 20
}

}
}

},

"message": "Correlated dependency
transaction ended",

"key": "9f680cb4-d14d-4782",
"operation": "mutation",
"success": true,

"root.radius"
],

"root.height"
]

}
}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"height": {▾

"extensions": {▾
"correlatedDependency": {▾

"precedents": [▾

"dependents": [▾

BalloonDesigner

BalloonBalloon

Implements

Base

AbstractBase

ParaPyObject

Fields

id:PyID!

refchain:String!

openingRadius(value:Float):
FloatValue!

radius(value:Int):IntValue!

halfHeight(value:Int):IntValue!

tubeHeight(value:Float):FloatValue!

height(value:Int):IntValue!

basketWidth(value:Int):IntValue!

BalloonDesigner

BalloonBalloon

Implements

Base

AbstractBase

ParaPyObject

Fields

id:PyID!

refchain:String!

openingRadius(value:Float):
FloatValue!

radius(value:Int):IntValue!

halfHeight(value:Int):IntValue!

tubeHeight(value:Float):FloatValue!

height(value:Int):IntValue!

basketWidth(value:Int):IntValue!

GraphiQL
mutation {1▾

root {2▾
selectedDesign {3▾

height(value: 20){4▾
value5

}6
}7

}8
}9

mutation {1▾
root {2▾

selectedDesign {3▾
height(value: 20){4▾

value5
}6

}7
}8

}9

mutation {1▾
root {2▾

selectedDesign {3▾
height(value: 20){4▾

value5
}6

}7
}8

}9

mutation {1▾
root {2▾

selectedDesign {3▾
height(value: 20){4▾

value5
}6

}7
}8

}9

Variables Headers

{"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1

"value": 20
}

}
}

},

"message": "Correlated dependency
transaction ended",

"key": "9f680cb4-d14d-4782",
"operation": "mutation",
"success": true,

"root.radius"
],

"root.height"
]

}
}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"height": {▾

"extensions": {▾
"correlatedDependency": {▾

"precedents": [▾

"dependents": [▾

"value": 20
}

}
}

},

"message": "Correlated dependency
transaction ended",

"key": "9f680cb4-d14d-4782",
"operation": "mutation",
"success": true,

"root.radius"
],

"root.height"
]

}
}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"height": {▾

"extensions": {▾
"correlatedDependency": {▾

"precedents": [▾

"dependents": [▾

"value": 20
}

}
}

},

"message": "Correlated dependency
transaction ended",

"key": "9f680cb4-d14d-4782",
"operation": "mutation",
"success": true,

"root.radius"
],

"root.height"
]

}
}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"height": {▾

"extensions": {▾
"correlatedDependency": {▾

"precedents": [▾

"dependents": [▾

"value": 20
}

}
}

},

"message": "Correlated dependency
transaction ended",

"key": "9f680cb4-d14d-4782",
"operation": "mutation",
"success": true,

"root.radius"
],

"root.height"
]

}
}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"height": {▾

"extensions": {▾
"correlatedDependency": {▾

"precedents": [▾

"dependents": [▾

BalloonDesigner

BalloonBalloon

Implements

Base

AbstractBase

ParaPyObject

Fields

id:PyID!

refchain:String!

openingRadius(value:Float):
FloatValue!

radius(value:Int):IntValue!

halfHeight(value:Int):IntValue!

tubeHeight(value:Float):FloatValue!

height(value:Int):IntValue!

basketWidth(value:Int):IntValue!

BalloonDesigner

BalloonBalloon

Implements

Base

AbstractBase

ParaPyObject

Fields

id:PyID!

refchain:String!

openingRadius(value:Float):
FloatValue!

radius(value:Int):IntValue!

halfHeight(value:Int):IntValue!

tubeHeight(value:Float):FloatValue!

height(value:Int):IntValue!

basketWidth(value:Int):IntValue!

GraphiQL
mutation {1▾

root {2▾
selectedDesign {3▾

height(value: 20){4▾
value5

}6
}7

}8
}9

mutation {1▾
root {2▾

selectedDesign {3▾
height(value: 20){4▾

value5
}6

}7
}8

}9

mutation {1▾
root {2▾

selectedDesign {3▾
height(value: 20){4▾

value5
}6

}7
}8

}9

mutation {1▾
root {2▾

selectedDesign {3▾
height(value: 20){4▾

value5
}6

}7
}8

}9

Variables Headers

{"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1

"value": 20
}

}
}

},

"message": "Correlated dependency
transaction ended",

"key": "9f680cb4-d14d-4782",
"operation": "mutation",
"success": true,

"root.radius"
],

"root.height"
]

}
}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"height": {▾

"extensions": {▾
"correlatedDependency": {▾

"precedents": [▾

"dependents": [▾

"value": 20
}

}
}

},

"message": "Correlated dependency
transaction ended",

"key": "9f680cb4-d14d-4782",
"operation": "mutation",
"success": true,

"root.radius"
],

"root.height"
]

}
}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"height": {▾

"extensions": {▾
"correlatedDependency": {▾

"precedents": [▾

"dependents": [▾

"value": 20
}

}
}

},

"message": "Correlated dependency
transaction ended",

"key": "9f680cb4-d14d-4782",
"operation": "mutation",
"success": true,

"root.radius"
],

"root.height"
]

}
}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"height": {▾

"extensions": {▾
"correlatedDependency": {▾

"precedents": [▾

"dependents": [▾

"value": 20
}

}
}

},

"message": "Correlated dependency
transaction ended",

"key": "9f680cb4-d14d-4782",
"operation": "mutation",
"success": true,

"root.radius"
],

"root.height"
]

}
}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"height": {▾

"extensions": {▾
"correlatedDependency": {▾

"precedents": [▾

"dependents": [▾

BalloonDesigner

BalloonBalloon

Implements

Base

AbstractBase

ParaPyObject

Fields

id:PyID!

refchain:String!

openingRadius(value:Float):
FloatValue!

radius(value:Int):IntValue!

halfHeight(value:Int):IntValue!

tubeHeight(value:Float):FloatValue!

height(value:Int):IntValue!

basketWidth(value:Int):IntValue!

BalloonDesigner

BalloonBalloon

Implements

Base

AbstractBase

ParaPyObject

Fields

id:PyID!

refchain:String!

openingRadius(value:Float):
FloatValue!

radius(value:Int):IntValue!

halfHeight(value:Int):IntValue!

tubeHeight(value:Float):FloatValue!

height(value:Int):IntValue!

basketWidth(value:Int):IntValue!

GraphiQL
mutation {1▾

root {2▾
selectedDesign {3▾

height(value: 20){4▾
value5

}6
}7

}8
}9

mutation {1▾
root {2▾

selectedDesign {3▾
height(value: 20){4▾

value5
}6

}7
}8

}9

mutation {1▾
root {2▾

selectedDesign {3▾
height(value: 20){4▾

value5
}6

}7
}8

}9

mutation {1▾
root {2▾

selectedDesign {3▾
height(value: 20){4▾

value5
}6

}7
}8

}9

Variables Headers

{"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1

"value": 20
}

}
}

},

"message": "Correlated dependency
transaction ended",

"key": "9f680cb4-d14d-4782",
"operation": "mutation",
"success": true,

"root.radius"
],

"root.height"
]

}
}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"height": {▾

"extensions": {▾
"correlatedDependency": {▾

"precedents": [▾

"dependents": [▾

"value": 20
}

}
}

},

"message": "Correlated dependency
transaction ended",

"key": "9f680cb4-d14d-4782",
"operation": "mutation",
"success": true,

"root.radius"
],

"root.height"
]

}
}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"height": {▾

"extensions": {▾
"correlatedDependency": {▾

"precedents": [▾

"dependents": [▾

"value": 20
}

}
}

},

"message": "Correlated dependency
transaction ended",

"key": "9f680cb4-d14d-4782",
"operation": "mutation",
"success": true,

"root.radius"
],

"root.height"
]

}
}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"height": {▾

"extensions": {▾
"correlatedDependency": {▾

"precedents": [▾

"dependents": [▾

"value": 20
}

}
}

},

"message": "Correlated dependency
transaction ended",

"key": "9f680cb4-d14d-4782",
"operation": "mutation",
"success": true,

"root.radius"
],

"root.height"
]

}
}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"height": {▾

"extensions": {▾
"correlatedDependency": {▾

"precedents": [▾

"dependents": [▾

BalloonDesigner

BalloonBalloon

Implements

Base

AbstractBase

ParaPyObject

Fields

id:PyID!

refchain:String!

openingRadius(value:Float):
FloatValue!

radius(value:Int):IntValue!

halfHeight(value:Int):IntValue!

tubeHeight(value:Float):FloatValue!

height(value:Int):IntValue!

basketWidth(value:Int):IntValue!

BalloonDesigner

BalloonBalloon

Implements

Base

AbstractBase

ParaPyObject

Fields

id:PyID!

refchain:String!

openingRadius(value:Float):
FloatValue!

radius(value:Int):IntValue!

halfHeight(value:Int):IntValue!

tubeHeight(value:Float):FloatValue!

height(value:Int):IntValue!

basketWidth(value:Int):IntValue!

GraphiQL
mutation {1▾

root {2▾
selectedDesign {3▾

height(value: 20){4▾
value5

}6
}7

}8
}9

mutation {1▾
root {2▾

selectedDesign {3▾
height(value: 20){4▾

value5
}6

}7
}8

}9

mutation {1▾
root {2▾

selectedDesign {3▾
height(value: 20){4▾

value5
}6

}7
}8

}9

mutation {1▾
root {2▾

selectedDesign {3▾
height(value: 20){4▾

value5
}6

}7
}8

}9

Variables Headers

{"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1

"value": 20
}

}
}

},

"message": "Correlated dependency
transaction ended",

"key": "9f680cb4-d14d-4782",
"operation": "mutation",
"success": true,

"root.radius"
],

"root.height"
]

}
}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"height": {▾

"extensions": {▾
"correlatedDependency": {▾

"precedents": [▾

"dependents": [▾

"value": 20
}

}
}

},

"message": "Correlated dependency
transaction ended",

"key": "9f680cb4-d14d-4782",
"operation": "mutation",
"success": true,

"root.radius"
],

"root.height"
]

}
}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"height": {▾

"extensions": {▾
"correlatedDependency": {▾

"precedents": [▾

"dependents": [▾

"value": 20
}

}
}

},

"message": "Correlated dependency
transaction ended",

"key": "9f680cb4-d14d-4782",
"operation": "mutation",
"success": true,

"root.radius"
],

"root.height"
]

}
}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"height": {▾

"extensions": {▾
"correlatedDependency": {▾

"precedents": [▾

"dependents": [▾

"value": 20
}

}
}

},

"message": "Correlated dependency
transaction ended",

"key": "9f680cb4-d14d-4782",
"operation": "mutation",
"success": true,

"root.radius"
],

"root.height"
]

}
}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"height": {▾

"extensions": {▾
"correlatedDependency": {▾

"precedents": [▾

"dependents": [▾

BalloonDesigner

BalloonBalloon

Implements

Base

AbstractBase

ParaPyObject

Fields

id:PyID!

refchain:String!

openingRadius(value:Float):
FloatValue!

radius(value:Int):IntValue!

halfHeight(value:Int):IntValue!

tubeHeight(value:Float):FloatValue!

height(value:Int):IntValue!

basketWidth(value:Int):IntValue!

BalloonDesigner

BalloonBalloon

Implements

Base

AbstractBase

ParaPyObject

Fields

id:PyID!

refchain:String!

openingRadius(value:Float):
FloatValue!

radius(value:Int):IntValue!

halfHeight(value:Int):IntValue!

tubeHeight(value:Float):FloatValue!

height(value:Int):IntValue!

basketWidth(value:Int):IntValue!

GraphiQL
mutation {1▾

root {2▾
selectedDesign {3▾

height(value: 20){4▾
value5

}6
}7

}8
}9

mutation {1▾
root {2▾

selectedDesign {3▾
height(value: 20){4▾

value5
}6

}7
}8

}9

mutation {1▾
root {2▾

selectedDesign {3▾
height(value: 20){4▾

value5
}6

}7
}8

}9

mutation {1▾
root {2▾

selectedDesign {3▾
height(value: 20){4▾

value5
}6

}7
}8

}9

Variables Headers

{"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1

"value": 20
}

}
}

},

"message": "Correlated dependency
transaction ended",

"key": "9f680cb4-d14d-4782",
"operation": "mutation",
"success": true,

"root.radius"
],

"root.height"
]

}
}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"height": {▾

"extensions": {▾
"correlatedDependency": {▾

"precedents": [▾

"dependents": [▾

"value": 20
}

}
}

},

"message": "Correlated dependency
transaction ended",

"key": "9f680cb4-d14d-4782",
"operation": "mutation",
"success": true,

"root.radius"
],

"root.height"
]

}
}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"height": {▾

"extensions": {▾
"correlatedDependency": {▾

"precedents": [▾

"dependents": [▾

"value": 20
}

}
}

},

"message": "Correlated dependency
transaction ended",

"key": "9f680cb4-d14d-4782",
"operation": "mutation",
"success": true,

"root.radius"
],

"root.height"
]

}
}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"height": {▾

"extensions": {▾
"correlatedDependency": {▾

"precedents": [▾

"dependents": [▾

"value": 20
}

}
}

},

"message": "Correlated dependency
transaction ended",

"key": "9f680cb4-d14d-4782",
"operation": "mutation",
"success": true,

"root.radius"
],

"root.height"
]

}
}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"height": {▾

"extensions": {▾
"correlatedDependency": {▾

"precedents": [▾

"dependents": [▾

BalloonDesigner

BalloonBalloon

Implements

Base

AbstractBase

ParaPyObject

Fields

id:PyID!

refchain:String!

openingRadius(value:Float):
FloatValue!

radius(value:Int):IntValue!

halfHeight(value:Int):IntValue!

tubeHeight(value:Float):FloatValue!

height(value:Int):IntValue!

basketWidth(value:Int):IntValue!

BalloonDesigner

BalloonBalloon

Implements

Base

AbstractBase

ParaPyObject

Fields

id:PyID!

refchain:String!

openingRadius(value:Float):
FloatValue!

radius(value:Int):IntValue!

halfHeight(value:Int):IntValue!

tubeHeight(value:Float):FloatValue!

height(value:Int):IntValue!

basketWidth(value:Int):IntValue!

GraphiQL
mutation {1▾

root {2▾
selectedDesign {3▾

height(value: 20){4▾
value5

}6
}7

}8
}9

mutation {1▾
root {2▾

selectedDesign {3▾
height(value: 20){4▾

value5
}6

}7
}8

}9

mutation {1▾
root {2▾

selectedDesign {3▾
height(value: 20){4▾

value5
}6

}7
}8

}9

mutation {1▾
root {2▾

selectedDesign {3▾
height(value: 20){4▾

value5
}6

}7
}8

}9

Variables Headers

{"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1

"value": 20
}

}
}

},

"message": "Correlated dependency
transaction ended",

"key": "9f680cb4-d14d-4782",
"operation": "mutation",
"success": true,

"root.radius"
],

"root.height"
]

}
}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"height": {▾

"extensions": {▾
"correlatedDependency": {▾

"precedents": [▾

"dependents": [▾

"value": 20
}

}
}

},

"message": "Correlated dependency
transaction ended",

"key": "9f680cb4-d14d-4782",
"operation": "mutation",
"success": true,

"root.radius"
],

"root.height"
]

}
}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"height": {▾

"extensions": {▾
"correlatedDependency": {▾

"precedents": [▾

"dependents": [▾

"value": 20
}

}
}

},

"message": "Correlated dependency
transaction ended",

"key": "9f680cb4-d14d-4782",
"operation": "mutation",
"success": true,

"root.radius"
],

"root.height"
]

}
}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"height": {▾

"extensions": {▾
"correlatedDependency": {▾

"precedents": [▾

"dependents": [▾

"value": 20
}

}
}

},

"message": "Correlated dependency
transaction ended",

"key": "9f680cb4-d14d-4782",
"operation": "mutation",
"success": true,

"root.radius"
],

"root.height"
]

}
}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"height": {▾

"extensions": {▾
"correlatedDependency": {▾

"precedents": [▾

"dependents": [▾

BalloonDesigner

BalloonBalloon

Implements

Base

AbstractBase

ParaPyObject

Fields

id:PyID!

refchain:String!

openingRadius(value:Float):
FloatValue!

radius(value:Int):IntValue!

halfHeight(value:Int):IntValue!

tubeHeight(value:Float):FloatValue!

height(value:Int):IntValue!

basketWidth(value:Int):IntValue!

BalloonDesigner

BalloonBalloon

Implements

Base

AbstractBase

ParaPyObject

Fields

id:PyID!

refchain:String!

openingRadius(value:Float):
FloatValue!

radius(value:Int):IntValue!

halfHeight(value:Int):IntValue!

tubeHeight(value:Float):FloatValue!

height(value:Int):IntValue!

basketWidth(value:Int):IntValue!

GraphiQL
mutation {1▾

root {2▾
selectedDesign {3▾

height(value: 20){4▾
value5

}6
}7

}8
}9

mutation {1▾
root {2▾

selectedDesign {3▾
height(value: 20){4▾

value5
}6

}7
}8

}9

mutation {1▾
root {2▾

selectedDesign {3▾
height(value: 20){4▾

value5
}6

}7
}8

}9

mutation {1▾
root {2▾

selectedDesign {3▾
height(value: 20){4▾

value5
}6

}7
}8

}9

Variables Headers

{"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1 {"correlationKey":"9f680cb4-d14d-4782"}1

"value": 20
}

}
}

},

"message": "Correlated dependency
transaction ended",

"key": "9f680cb4-d14d-4782",
"operation": "mutation",
"success": true,

"root.radius"
],

"root.height"
]

}
}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"height": {▾

"extensions": {▾
"correlatedDependency": {▾

"precedents": [▾

"dependents": [▾

"value": 20
}

}
}

},

"message": "Correlated dependency
transaction ended",

"key": "9f680cb4-d14d-4782",
"operation": "mutation",
"success": true,

"root.radius"
],

"root.height"
]

}
}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"height": {▾

"extensions": {▾
"correlatedDependency": {▾

"precedents": [▾

"dependents": [▾

"value": 20
}

}
}

},

"message": "Correlated dependency
transaction ended",

"key": "9f680cb4-d14d-4782",
"operation": "mutation",
"success": true,

"root.radius"
],

"root.height"
]

}
}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"height": {▾

"extensions": {▾
"correlatedDependency": {▾

"precedents": [▾

"dependents": [▾

"value": 20
}

}
}

},

"message": "Correlated dependency
transaction ended",

"key": "9f680cb4-d14d-4782",
"operation": "mutation",
"success": true,

"root.radius"
],

"root.height"
]

}
}

{▾
"data": {▾

"root": {▾
"selectedDesign": {▾

"height": {▾

"extensions": {▾
"correlatedDependency": {▾

"precedents": [▾

"dependents": [▾

(b) End of Transaction

Figure 3.15: Depiction of How a Correlated Dependency Transaction is Executed

3.4.4 Data Management

Another important aspect to mention in process orchestration is the management of data to capture
the evolution of changes throughout the process. Zeebe, make use of JSON process variables that are
scoped to their current process instance and logged in the so-called audit log. These process variables
are used to execute business logic in the process models. Loosely, this can be envisioned as a sort of
“Git” versioning approach for processes. However, Zeebe’s use of an in-memory database means that
the process variables are limited to 34 MB [65]. As a result, it is necessary to store large files and
persisted models externally to the process engine. For this purpose Minio iii an open source object
store, is used. Furthermore, to keep track of external data, several stateVariables as defined shown
by Figure 3.16 are used to track the latest state of the KBE application within the process instance.

iiihttps://min.io/

30

https://min.io/

3.4. PROCESS ORCHESTRATION CHAPTER 3. METHODOLOGY

{
 "customerFeedback": {
 "order_placed": true,
 "requested_changes": null
 },
 "stateVariables": {
 "bucket": {
 "name": "parapy.flows.runtool-2251799813740053"
 },
 "model": {
 "name": "examples.balloon.model",
 "server": "http://127.0.0.1:8001/graphql",
 "state": "2a75f8d2-24f1-49fa-a095-4c89178174c3",
 "persistor": "PICKLE"
 },
 "processInstanceKey": "9fc39d2cb71641d79fe605ce197c8f5a"
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Process Variable for

Decision Making

State Variables

for Management

of Product Data

Figure 3.16: Example Process Variables from a Process Instance

3.4.5 Handling User Tasks

The final component to facilitating collaboration on processes is to be able to break apart the mono-
lithic user interfaces of traditional KBE applications into task specific interfaces intended for one
person. This difference is highlighted by Figure 3.17.

Product Tree 3D Viewer

Activity Ribbon T1 T2 T3 T4

x
yy

z

(a) Generic Interface

Task Specific User Interface

Task Name

x
yy

z

Cancel Task Show Workflow Submit Task

(b) Task Specific Interface

Figure 3.17: Comparison of Generic KBE User Interface vs. Task Specific Interface

31

3.4. PROCESS ORCHESTRATION CHAPTER 3. METHODOLOGY

Here, the emphasis is placed on allowing the developer to place anything within the canvas using
ParaPy’s WebGUI technology. However, to facilitate tasks, three buttons are added by default to the
user interface. Namely, these are buttons to cancel or submit the task and to launch a viewer of the
current active workflow. The way in which these user interfaces are launched during a process is
depicted by Figure 3.18. The working principle relies on the use of a GraphQL Subscription, which
makes use of a websocket connection to maintain a connection between the launched user-interface
and the task service. Once a user-task is required, the task service sends a subscription query, Fig-
ure 3.19, with task inputs. Once a connection is established, the KBE Application launches a WebGUI,
and responds to the task service with a dynamic URL. This URL can then be sent to the user via any
notification service. Once the user finishes their task, the open subscription completes with the out-
puts of the task.

Figure 3.18: UML Sequence Diagram Depicting User Task Handling

Docs

SubscriptionSubscription

Fields

notifyOnChange(
refchain:String!
inde�nite:Boolean!=true

):ChangeNoti�cation!

userTask(
task:UserTasks!
taskInputs:JSON
taskName:String!
taskInstance:String!
processName:String!
processInstance:String!

):UserTask!

Launch and subscribe to User
Task state.

Docs

SubscriptionSubscription

Fields

notifyOnChange(
refchain:String!
inde�nite:Boolean!=true

):ChangeNoti�cation!

userTask(
task:UserTasks!
taskInputs:JSON
taskName:String!
taskInstance:String!
processName:String!
processInstance:String!

):UserTask!

Launch and subscribe to User
Task state.

GraphiQL
subscription {1▾

userTask(2
task: SELECT_DESIGN3
taskInputs: {selectedDesign: 200}4
taskName: "Select Design"5
taskInstance: "123918402"6
processName: "HotAirBalloonDesign"7
processInstance: "90192012817"8

) {9▾
status10
frontend11
outputs12

}13
}14

subscription {1▾
userTask(2

task: SELECT_DESIGN3
taskInputs: {selectedDesign: 200}4
taskName: "Select Design"5
taskInstance: "123918402"6
processName: "HotAirBalloonDesign"7
processInstance: "90192012817"8

) {9▾
status10
frontend11
outputs12

}13
}14

subscription {1▾
userTask(2

task: SELECT_DESIGN3
taskInputs: {selectedDesign: 200}4
taskName: "Select Design"5
taskInstance: "123918402"6
processName: "HotAirBalloonDesign"7
processInstance: "90192012817"8

) {9▾
status10
frontend11
outputs12

}13
}14

subscription {1▾
userTask(2

task: SELECT_DESIGN3
taskInputs: {selectedDesign: 200}4
taskName: "Select Design"5
taskInstance: "123918402"6
processName: "HotAirBalloonDesign"7
processInstance: "90192012817"8

) {9▾
status10
frontend11
outputs12

}13
}14

Variables Headers

"status": "PENDING",
"frontend": "http:��127.0.0.1�8001/tasks/task/123918402",
"outputs": null

}
}

}

{▾
"data": {▾

"userTask": {▾
"status": "PENDING",
"frontend": "http:��127.0.0.1�8001/tasks/task/123918402",
"outputs": null

}
}

}

{▾
"data": {▾

"userTask": {▾
"status": "PENDING",
"frontend": "http:��127.0.0.1�8001/tasks/task/123918402",
"outputs": null

}
}

}

{▾
"data": {▾

"userTask": {▾
"status": "PENDING",
"frontend": "http:��127.0.0.1�8001/tasks/task/123918402",
"outputs": null

}
}

}

{▾
"data": {▾

"userTask": {▾

Docs

SubscriptionSubscription

Fields

notifyOnChange(
refchain:String!
inde�nite:Boolean!=true

):ChangeNoti�cation!

userTask(
task:UserTasks!
taskInputs:JSON
taskName:String!
taskInstance:String!
processName:String!
processInstance:String!

):UserTask!

Launch and subscribe to User
Task state.

Docs

SubscriptionSubscription

Fields

notifyOnChange(
refchain:String!
inde�nite:Boolean!=true

):ChangeNoti�cation!

userTask(
task:UserTasks!
taskInputs:JSON
taskName:String!
taskInstance:String!
processName:String!
processInstance:String!

):UserTask!

Launch and subscribe to User
Task state.

GraphiQL
subscription {1▾

userTask(2
task: SELECT_DESIGN3
taskInputs: {selectedDesign: 200}4
taskName: "Select Design"5
taskInstance: "123918402"6
processName: "HotAirBalloonDesign"7
processInstance: "90192012817"8

) {9▾
status10
frontend11
outputs12

}13
}14

subscription {1▾
userTask(2

task: SELECT_DESIGN3
taskInputs: {selectedDesign: 200}4
taskName: "Select Design"5
taskInstance: "123918402"6
processName: "HotAirBalloonDesign"7
processInstance: "90192012817"8

) {9▾
status10
frontend11
outputs12

}13
}14

subscription {1▾
userTask(2

task: SELECT_DESIGN3
taskInputs: {selectedDesign: 200}4
taskName: "Select Design"5
taskInstance: "123918402"6
processName: "HotAirBalloonDesign"7
processInstance: "90192012817"8

) {9▾
status10
frontend11
outputs12

}13
}14

subscription {1▾
userTask(2

task: SELECT_DESIGN3
taskInputs: {selectedDesign: 200}4
taskName: "Select Design"5
taskInstance: "123918402"6
processName: "HotAirBalloonDesign"7
processInstance: "90192012817"8

) {9▾
status10
frontend11
outputs12

}13
}14

Variables Headers

"status": "PENDING",
"frontend": "http:��127.0.0.1�8001/tasks/task/123918402",
"outputs": null

}
}

}

{▾
"data": {▾

"userTask": {▾
"status": "PENDING",
"frontend": "http:��127.0.0.1�8001/tasks/task/123918402",
"outputs": null

}
}

}

{▾
"data": {▾

"userTask": {▾
"status": "PENDING",
"frontend": "http:��127.0.0.1�8001/tasks/task/123918402",
"outputs": null

}
}

}

{▾
"data": {▾

"userTask": {▾
"status": "PENDING",
"frontend": "http:��127.0.0.1�8001/tasks/task/123918402",
"outputs": null

}
}

}

{▾
"data": {▾

"userTask": {▾

Docs

SubscriptionSubscription

Fields

notifyOnChange(
refchain:String!
inde�nite:Boolean!=true

):ChangeNoti�cation!

userTask(
task:UserTasks!
taskInputs:JSON
taskName:String!
taskInstance:String!
processName:String!
processInstance:String!

):UserTask!

Launch and subscribe to User
Task state.

Docs

SubscriptionSubscription

Fields

notifyOnChange(
refchain:String!
inde�nite:Boolean!=true

):ChangeNoti�cation!

userTask(
task:UserTasks!
taskInputs:JSON
taskName:String!
taskInstance:String!
processName:String!
processInstance:String!

):UserTask!

Launch and subscribe to User
Task state.

GraphiQL
subscription {1▾

userTask(2
task: SELECT_DESIGN3
taskInputs: {selectedDesign: 200}4
taskName: "Select Design"5
taskInstance: "123918402"6
processName: "HotAirBalloonDesign"7
processInstance: "90192012817"8

) {9▾
status10
frontend11
outputs12

}13
}14

subscription {1▾
userTask(2

task: SELECT_DESIGN3
taskInputs: {selectedDesign: 200}4
taskName: "Select Design"5
taskInstance: "123918402"6
processName: "HotAirBalloonDesign"7
processInstance: "90192012817"8

) {9▾
status10
frontend11
outputs12

}13
}14

subscription {1▾
userTask(2

task: SELECT_DESIGN3
taskInputs: {selectedDesign: 200}4
taskName: "Select Design"5
taskInstance: "123918402"6
processName: "HotAirBalloonDesign"7
processInstance: "90192012817"8

) {9▾
status10
frontend11
outputs12

}13
}14

subscription {1▾
userTask(2

task: SELECT_DESIGN3
taskInputs: {selectedDesign: 200}4
taskName: "Select Design"5
taskInstance: "123918402"6
processName: "HotAirBalloonDesign"7
processInstance: "90192012817"8

) {9▾
status10
frontend11
outputs12

}13
}14

Variables Headers

"status": "PENDING",
"frontend": "http:��127.0.0.1�8001/tasks/task/123918402",
"outputs": null

}
}

}

{▾
"data": {▾

"userTask": {▾
"status": "PENDING",
"frontend": "http:��127.0.0.1�8001/tasks/task/123918402",
"outputs": null

}
}

}

{▾
"data": {▾

"userTask": {▾
"status": "PENDING",
"frontend": "http:��127.0.0.1�8001/tasks/task/123918402",
"outputs": null

}
}

}

{▾
"data": {▾

"userTask": {▾
"status": "PENDING",
"frontend": "http:��127.0.0.1�8001/tasks/task/123918402",
"outputs": null

}
}

}

{▾
"data": {▾

"userTask": {▾

Docs

SubscriptionSubscription

Fields

notifyOnChange(
refchain:String!
inde�nite:Boolean!=true

):ChangeNoti�cation!

userTask(
task:UserTasks!
taskInputs:JSON
taskName:String!
taskInstance:String!
processName:String!
processInstance:String!

):UserTask!

Launch and subscribe to User
Task state.

Docs

SubscriptionSubscription

Fields

notifyOnChange(
refchain:String!
inde�nite:Boolean!=true

):ChangeNoti�cation!

userTask(
task:UserTasks!
taskInputs:JSON
taskName:String!
taskInstance:String!
processName:String!
processInstance:String!

):UserTask!

Launch and subscribe to User
Task state.

GraphiQL
subscription {1▾

userTask(2
task: SELECT_DESIGN3
taskInputs: {selectedDesign: 200}4
taskName: "Select Design"5
taskInstance: "123918402"6
processName: "HotAirBalloonDesign"7
processInstance: "90192012817"8

) {9▾
status10
frontend11
outputs12

}13
}14

subscription {1▾
userTask(2

task: SELECT_DESIGN3
taskInputs: {selectedDesign: 200}4
taskName: "Select Design"5
taskInstance: "123918402"6
processName: "HotAirBalloonDesign"7
processInstance: "90192012817"8

) {9▾
status10
frontend11
outputs12

}13
}14

subscription {1▾
userTask(2

task: SELECT_DESIGN3
taskInputs: {selectedDesign: 200}4
taskName: "Select Design"5
taskInstance: "123918402"6
processName: "HotAirBalloonDesign"7
processInstance: "90192012817"8

) {9▾
status10
frontend11
outputs12

}13
}14

subscription {1▾
userTask(2

task: SELECT_DESIGN3
taskInputs: {selectedDesign: 200}4
taskName: "Select Design"5
taskInstance: "123918402"6
processName: "HotAirBalloonDesign"7
processInstance: "90192012817"8

) {9▾
status10
frontend11
outputs12

}13
}14

Variables Headers

"status": "PENDING",
"frontend": "http:��127.0.0.1�8001/tasks/task/123918402",
"outputs": null

}
}

}

{▾
"data": {▾

"userTask": {▾
"status": "PENDING",
"frontend": "http:��127.0.0.1�8001/tasks/task/123918402",
"outputs": null

}
}

}

{▾
"data": {▾

"userTask": {▾
"status": "PENDING",
"frontend": "http:��127.0.0.1�8001/tasks/task/123918402",
"outputs": null

}
}

}

{▾
"data": {▾

"userTask": {▾
"status": "PENDING",
"frontend": "http:��127.0.0.1�8001/tasks/task/123918402",
"outputs": null

}
}

}

{▾
"data": {▾

"userTask": {▾

Docs

SubscriptionSubscription

Fields

notifyOnChange(
refchain:String!
inde�nite:Boolean!=true

):ChangeNoti�cation!

userTask(
task:UserTasks!
taskInputs:JSON
taskName:String!
taskInstance:String!
processName:String!
processInstance:String!

):UserTask!

Launch and subscribe to User
Task state.

Docs

SubscriptionSubscription

Fields

notifyOnChange(
refchain:String!
inde�nite:Boolean!=true

):ChangeNoti�cation!

userTask(
task:UserTasks!
taskInputs:JSON
taskName:String!
taskInstance:String!
processName:String!
processInstance:String!

):UserTask!

Launch and subscribe to User
Task state.

GraphiQL
subscription {1▾

userTask(2
task: SELECT_DESIGN3
taskInputs: {selectedDesign: 200}4
taskName: "Select Design"5
taskInstance: "123918402"6
processName: "HotAirBalloonDesign"7
processInstance: "90192012817"8

) {9▾
status10
frontend11
outputs12

}13
}14

subscription {1▾
userTask(2

task: SELECT_DESIGN3
taskInputs: {selectedDesign: 200}4
taskName: "Select Design"5
taskInstance: "123918402"6
processName: "HotAirBalloonDesign"7
processInstance: "90192012817"8

) {9▾
status10
frontend11
outputs12

}13
}14

subscription {1▾
userTask(2

task: SELECT_DESIGN3
taskInputs: {selectedDesign: 200}4
taskName: "Select Design"5
taskInstance: "123918402"6
processName: "HotAirBalloonDesign"7
processInstance: "90192012817"8

) {9▾
status10
frontend11
outputs12

}13
}14

subscription {1▾
userTask(2

task: SELECT_DESIGN3
taskInputs: {selectedDesign: 200}4
taskName: "Select Design"5
taskInstance: "123918402"6
processName: "HotAirBalloonDesign"7
processInstance: "90192012817"8

) {9▾
status10
frontend11
outputs12

}13
}14

Variables Headers

"status": "PENDING",
"frontend": "http:��127.0.0.1�8001/tasks/task/123918402",
"outputs": null

}
}

}

{▾
"data": {▾

"userTask": {▾
"status": "PENDING",
"frontend": "http:��127.0.0.1�8001/tasks/task/123918402",
"outputs": null

}
}

}

{▾
"data": {▾

"userTask": {▾
"status": "PENDING",
"frontend": "http:��127.0.0.1�8001/tasks/task/123918402",
"outputs": null

}
}

}

{▾
"data": {▾

"userTask": {▾
"status": "PENDING",
"frontend": "http:��127.0.0.1�8001/tasks/task/123918402",
"outputs": null

}
}

}

{▾
"data": {▾

"userTask": {▾

Docs

SubscriptionSubscription

Fields

notifyOnChange(
refchain:String!
inde�nite:Boolean!=true

):ChangeNoti�cation!

userTask(
task:UserTasks!
taskInputs:JSON
taskName:String!
taskInstance:String!
processName:String!
processInstance:String!

):UserTask!

Launch and subscribe to User
Task state.

Docs

SubscriptionSubscription

Fields

notifyOnChange(
refchain:String!
inde�nite:Boolean!=true

):ChangeNoti�cation!

userTask(
task:UserTasks!
taskInputs:JSON
taskName:String!
taskInstance:String!
processName:String!
processInstance:String!

):UserTask!

Launch and subscribe to User
Task state.

GraphiQL
subscription {1▾

userTask(2
task: SELECT_DESIGN3
taskInputs: {selectedDesign: 200}4
taskName: "Select Design"5
taskInstance: "123918402"6
processName: "HotAirBalloonDesign"7
processInstance: "90192012817"8

) {9▾
status10
frontend11
outputs12

}13
}14

subscription {1▾
userTask(2

task: SELECT_DESIGN3
taskInputs: {selectedDesign: 200}4
taskName: "Select Design"5
taskInstance: "123918402"6
processName: "HotAirBalloonDesign"7
processInstance: "90192012817"8

) {9▾
status10
frontend11
outputs12

}13
}14

subscription {1▾
userTask(2

task: SELECT_DESIGN3
taskInputs: {selectedDesign: 200}4
taskName: "Select Design"5
taskInstance: "123918402"6
processName: "HotAirBalloonDesign"7
processInstance: "90192012817"8

) {9▾
status10
frontend11
outputs12

}13
}14

subscription {1▾
userTask(2

task: SELECT_DESIGN3
taskInputs: {selectedDesign: 200}4
taskName: "Select Design"5
taskInstance: "123918402"6
processName: "HotAirBalloonDesign"7
processInstance: "90192012817"8

) {9▾
status10
frontend11
outputs12

}13
}14

Variables Headers

"status": "PENDING",
"frontend": "http:��127.0.0.1�8001/tasks/task/123918402",
"outputs": null

}
}

}

{▾
"data": {▾

"userTask": {▾
"status": "PENDING",
"frontend": "http:��127.0.0.1�8001/tasks/task/123918402",
"outputs": null

}
}

}

{▾
"data": {▾

"userTask": {▾
"status": "PENDING",
"frontend": "http:��127.0.0.1�8001/tasks/task/123918402",
"outputs": null

}
}

}

{▾
"data": {▾

"userTask": {▾
"status": "PENDING",
"frontend": "http:��127.0.0.1�8001/tasks/task/123918402",
"outputs": null

}
}

}

{▾
"data": {▾

"userTask": {▾

Docs

SubscriptionSubscription

Fields

notifyOnChange(
refchain:String!
inde�nite:Boolean!=true

):ChangeNoti�cation!

userTask(
task:UserTasks!
taskInputs:JSON
taskName:String!
taskInstance:String!
processName:String!
processInstance:String!

):UserTask!

Launch and subscribe to User
Task state.

Docs

SubscriptionSubscription

Fields

notifyOnChange(
refchain:String!
inde�nite:Boolean!=true

):ChangeNoti�cation!

userTask(
task:UserTasks!
taskInputs:JSON
taskName:String!
taskInstance:String!
processName:String!
processInstance:String!

):UserTask!

Launch and subscribe to User
Task state.

GraphiQL
subscription {1▾

userTask(2
task: SELECT_DESIGN3
taskInputs: {selectedDesign: 200}4
taskName: "Select Design"5
taskInstance: "123918402"6
processName: "HotAirBalloonDesign"7
processInstance: "90192012817"8

) {9▾
status10
frontend11
outputs12

}13
}14

subscription {1▾
userTask(2

task: SELECT_DESIGN3
taskInputs: {selectedDesign: 200}4
taskName: "Select Design"5
taskInstance: "123918402"6
processName: "HotAirBalloonDesign"7
processInstance: "90192012817"8

) {9▾
status10
frontend11
outputs12

}13
}14

subscription {1▾
userTask(2

task: SELECT_DESIGN3
taskInputs: {selectedDesign: 200}4
taskName: "Select Design"5
taskInstance: "123918402"6
processName: "HotAirBalloonDesign"7
processInstance: "90192012817"8

) {9▾
status10
frontend11
outputs12

}13
}14

subscription {1▾
userTask(2

task: SELECT_DESIGN3
taskInputs: {selectedDesign: 200}4
taskName: "Select Design"5
taskInstance: "123918402"6
processName: "HotAirBalloonDesign"7
processInstance: "90192012817"8

) {9▾
status10
frontend11
outputs12

}13
}14

Variables Headers

"status": "PENDING",
"frontend": "http:��127.0.0.1�8001/tasks/task/123918402",
"outputs": null

}
}

}

{▾
"data": {▾

"userTask": {▾
"status": "PENDING",
"frontend": "http:��127.0.0.1�8001/tasks/task/123918402",
"outputs": null

}
}

}

{▾
"data": {▾

"userTask": {▾
"status": "PENDING",
"frontend": "http:��127.0.0.1�8001/tasks/task/123918402",
"outputs": null

}
}

}

{▾
"data": {▾

"userTask": {▾
"status": "PENDING",
"frontend": "http:��127.0.0.1�8001/tasks/task/123918402",
"outputs": null

}
}

}

{▾
"data": {▾

"userTask": {▾

Docs

SubscriptionSubscription

Fields

notifyOnChange(
refchain:String!
inde�nite:Boolean!=true

):ChangeNoti�cation!

userTask(
task:UserTasks!
taskInputs:JSON
taskName:String!
taskInstance:String!
processName:String!
processInstance:String!

):UserTask!

Launch and subscribe to User
Task state.

Docs

SubscriptionSubscription

Fields

notifyOnChange(
refchain:String!
inde�nite:Boolean!=true

):ChangeNoti�cation!

userTask(
task:UserTasks!
taskInputs:JSON
taskName:String!
taskInstance:String!
processName:String!
processInstance:String!

):UserTask!

Launch and subscribe to User
Task state.

GraphiQL
subscription {1▾

userTask(2
task: SELECT_DESIGN3
taskInputs: {selectedDesign: 200}4
taskName: "Select Design"5
taskInstance: "123918402"6
processName: "HotAirBalloonDesign"7
processInstance: "90192012817"8

) {9▾
status10
frontend11
outputs12

}13
}14

subscription {1▾
userTask(2

task: SELECT_DESIGN3
taskInputs: {selectedDesign: 200}4
taskName: "Select Design"5
taskInstance: "123918402"6
processName: "HotAirBalloonDesign"7
processInstance: "90192012817"8

) {9▾
status10
frontend11
outputs12

}13
}14

subscription {1▾
userTask(2

task: SELECT_DESIGN3
taskInputs: {selectedDesign: 200}4
taskName: "Select Design"5
taskInstance: "123918402"6
processName: "HotAirBalloonDesign"7
processInstance: "90192012817"8

) {9▾
status10
frontend11
outputs12

}13
}14

subscription {1▾
userTask(2

task: SELECT_DESIGN3
taskInputs: {selectedDesign: 200}4
taskName: "Select Design"5
taskInstance: "123918402"6
processName: "HotAirBalloonDesign"7
processInstance: "90192012817"8

) {9▾
status10
frontend11
outputs12

}13
}14

Variables Headers

"status": "PENDING",
"frontend": "http:��127.0.0.1�8001/tasks/task/123918402",
"outputs": null

}
}

}

{▾
"data": {▾

"userTask": {▾
"status": "PENDING",
"frontend": "http:��127.0.0.1�8001/tasks/task/123918402",
"outputs": null

}
}

}

{▾
"data": {▾

"userTask": {▾
"status": "PENDING",
"frontend": "http:��127.0.0.1�8001/tasks/task/123918402",
"outputs": null

}
}

}

{▾
"data": {▾

"userTask": {▾
"status": "PENDING",
"frontend": "http:��127.0.0.1�8001/tasks/task/123918402",
"outputs": null

}
}

}

{▾
"data": {▾

"userTask": {▾

Figure 3.19: Depiction of How a User Task Subscription is Launched

32

3.4. PROCESS ORCHESTRATION CHAPTER 3. METHODOLOGY

3.4.6 Dynamic Workflow

To support the ultimate form of dynamicism, referred to as KBE controlled workflows, the KBE ap-
plication can be responsible for publishing instructions to the workflow manager to execute certain
workflows in a demand-driven manner. From the literature study, it was observed how “worklets”
which are small workflows to achieve a single goal, can be used to increase process flexibility. This
research extends on this concept put forth by [61, 64], by linking worklets to slots within a KBE ap-
plication. The goal is to allow runtime caching and dependency tracking to be used to influence the
execution of these worklets to prevent re-doing tasks unnecessarily.

To accomplish this, the Worklet decorator was added to the ParaPy SDK. Figure 3.20 below, demon-
strates this decorator through a basic use-case that illustrates how the slot evaluation mechanism
of the KBE application is used to dynamically chain together worklets, which are defined by de-
velopers in BPMN. In this example, if one were to query for the volume of the cylinder, then the
top_area slot will be called, which in turn is another worklet. This results in the calculateArea
worklet being published to the process orchestrator, which receives inputs from the KBE application,
executes the worklet, and then and returns its outputs. After the outputs are recieved by the KBE
application, they are cached on the top_area slot. Therefore, when the initial query for the volume
is repeated, the calculateArea worklet is skipped, and instead the calculateVolume worklet is
published. Due to the re-use of the slot evaluation mechanism of ParaPy, the runtime dependencies
between these cached values is known. Therefore, these worklets are only re-run if their precedent
slot values change. This concept enables dynamism as task execution order becomes tied to the de-
pendencies within the KBE application and not to the process model. For example, if there would
be a scenario where only the height of the model is modified in a subsequent task, then only the
calculateVolume worklet would need to be re-run by the system.

class Cylinder(GeomBase):
 radius: Input[float] = Input()
 height: Input[float] = Input()

 @Worklet(definition=BPMN("calculateArea.bpmn"), keep_alive=True)
 def top_area(self) -> Generator[Dict[str, float], Dict[str,float], float]:
 inputs = {"radius": self.radius}
 outputs = yield inputs
 return outputs["area"]

 @Worklet(definition=BPMN("calculateVolume.bpmn"), keep_alive=False)
 def volume(self) -> Generator[Dict[str, float], Dict[str,float], float]:
 inputs = {"area": self.top_area, "height": self.height}
 outputs = yield inputs
 return output["volume"]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Instruct KBE App to remain alive
during Worklet execution

Provide inputs to the
calculateArea Worklet

Indicate which Worklet to
Publish / Execute

Recieve outputs
from result of

calculateArea
Worklet

Filter output(s) to
return what is

desired

Calculate Area

Calculate
Volume

Is Valid?

No

Check
Calculation

Yes

Executes

Instruct KBE App to be shutdown
during Worklet Execution

Make volume slot and calculateVolume worklet
dependent on top_area worklet and height

Figure 3.20: Worklet Decorator Developed for the ParaPy SDK

The worklet methodology entails that a KBE application publishes a message to the process orches-
trator containing the inputs and process model required to respond to the initial query of the task
service. Within the same message, the KBE application provides information to the process orches-
trator to know if it can be shutdown. Once the worklet finalizes, if the KBE application was shutdown
then it is first relaunched. Afterwards, the KBE application spawns a background thread to poll the
process orchestrator for a finalization task. Since service tasks in Zeebe poll for a given task name, the
finalization task contains a workletKey unique for that given worklet. A detailed explanation of the
sequence flow can be seen in Figure 3.23. Overall, the worklet concept allows the KBE application to
establish external steering. Even though it is not materialized as such in the process orchestrator, one
can think this chain of worklets as a First In Last Out (FILO) call stack. This is because the execution
order of worklets is dictated by the logic encoded within the slot methods. Furthermore, since these
slot methods happen to often call other slots, a call stack is formed within the KBE runtime. With this
stack analogy, worklets execute sequentially until the initial demand is satisfied.

33

3.4. PROCESS ORCHESTRATION CHAPTER 3. METHODOLOGY

Run Query

Call Worklet
Manager

Requires Worklet

Figure 3.21: BPMN Pattern Created to Enable the Worklet Concept

To enable the worklet concept, a boundary event must be added to the query task to intercept the
publication message by the KBE application. This boundary event can be seen in the Run Query in
Figures 3.21 and 3.24. The use of this event, makes worklets an opt-in functionality, meaning that
it is possible to restrict the workflow to only running pre-defined tasks if desired. In this situation,
an exception will be raised that the query cannot complete without the worklet. Although it would
have been possible to introduce the worklet concept through message brokers, using BPMN to ac-
complish this orchestration makes communicating the process model to non-developers easier. The
hypothesized benefits of the worklet concept include: (a) ability to run simulation outside of the KBE
model while maintaining dependency tracking, (b) Ability to intermix human inputs with KBE slot
evaluation (conversational composition), and (c) ability to extend KBE slot evaluation behavior in
process models.

3.4.7 Emergent Workflow

The ability for a workflow to be completely agnostic to task order is a powerful concept to support
highly dynamic business processes that change from day to day to suit requirements. Support for
such processes in BPMN is accomplished with ad-hoc subprocesses which allows CMMN modeled
sub-processes to be embedded in BPMN models. Since ad-hoc subprocesses are not currently sup-
ported by Zeebe, they were not directly researched in this thesis. Nonetheless, to support the func-
tionality of an ad-hoc subprocess, a methodology was developed to allow a tools or humans to run
anything for a given task while still exploiting the KBE application dependency tracking mechanism
to afterwards derive a logical sequence of tasks and what data those tasks depend on.

In this research, the ability to derive a logical order of tasks post-execution is referred to as the Emer-
gent Workflow. The working principle is that the KBE dependency tracking system correlates queried
slots to mutated slots in a so called correlated dependency operation. These correlated dependen-
cies associate the transformation that was applied to the KBE model to the individual that performed
them. This allows one to derive an order of tasks after execution that was not explicitly modeled. Fig-
ure 3.22 below demonstrates how the query and mutation applied by two ad-hoc tasks allows these
tasks to be placed sequentially based on these data dependencies.

34

3.4. PROCESS ORCHESTRATION CHAPTER 3. METHODOLOGY

 ProductProcess

Emergent

Process

Dependency

QUERY

Model Transformation A Model Transformation B

MUTATE

KBE Model

QUERY
MUTATE M

P1

M

P1

Correlated Dependency
P2

M

P1

P2

M

P1

P2

Correlated Dependency
P3

Queried Property
Mutated Property

State 1 State 2 State 3

M

P1

M

P1

P2

P3

M

P1

P2

Model Transformation A Model Transformation B

Figure 3.22: Correlated Dependency Concept for Emergent Workflow Orchestration

In this example, since Model Transformation B depends on property P2 which is set by Model Trans-
formation A, one can infer that Model Transformation B is dependent on Model Transformation A.
As a consequence, one can use this information for several purposes:

• Allow ad-hoc processes to be later formalized into a statically defined process model if desired

• Provide an audit-log of what happened, who set values, and how were those values consumed

• Inform users of what tasks will require re-evaluation if a change is made

• Provide an impact analysis of approximately how long a proposed change to the design will
take.

35

3.4. PROCESS ORCHESTRATION CHAPTER 3. METHODOLOGY

F
ig

u
re

3.
23

:U
M

L
Se

q
u

en
ce

D
ia

gr
am

D
ep

ic
ti

n
g

W
o

rk
le

tE
xe

cu
ti

o
n

36

3.4. PROCESS ORCHESTRATION CHAPTER 3. METHODOLOGY

KBE Tool Transformation Participants

Tool Service KBE (ParaPy) Services

En
d

To
ol

M

an
ag

er

St
ar

t T
oo

l

R
un

 T
oo

l

Q
ue

ry
 C

om
pl

et
ed

Be

fo
re

 T
im

eo
ut

Q
ue

ry
 C

om
pl

et
ed

Af

te
r T

im
eo

ut

Sh
ut

do
w

n
To

ol

Aw
ai

t T
im

eo
ut

Sh
ut

do
w

n
or

C

on
tin

ue
?

Pu
bl

is
h

M
ut

at
io

n

Fo
rk

 Q
ue

ry

St
ar

t T
oo

l
M

an
ag

er

St
ar

t T
oo

l
Pu

bl
is

h
Q

ue
ry

M
ut

at
e

M
od

el

St
ar

t M
ut

at
io

n

Sa
ve

 M
od

el

En
d

M
ut

at
io

n

R
un

 M
ut

at
io

n

Q
ue

ry
 M

od
el

C
al

l W
or

kl
et

M

an
ag

er

St
ar

t Q
ue

ry

En
d

Q
ue

ry
Ke

ep
 M

od
el

Al

iv
e?

Sh
ut

do
w

n
M

od
el

Sa
ve

 M
od

el

R
un

 Q
ue

ry
St

ar
t M

od
el

R
eq

ui
re

s
W

or
kl

et

M
od

el
 A

lre
ad

y
St

ar
te

d

N
o

Ye
s

Al
lo

w
 to

ol
 to

sh

ut
do

w
n

in
de

pe
nd

en
t o

f
qu

er
y

flo
w

F
ig

u
re

3.
24

:P
ro

ce
ss

M
o

d
el

o
fa

G
en

er
ic

To
o

lT
ra

n
sf

o
rm

at
io

n

37

4 Results
After developing the software prototype, in order to verify its proper function several experiments
were performed. Similar to the Chapter 3 section, this chapter will concetrate on explaining the re-
sults of these experiments on the topics of (a) information modeling, (b) model persistence, and
finally (c) process orchestration. After the presentation of these results, an explanation of the verifi-
cation steps before and after these experiments is explained.

4.1 Information Modeling

The starting point for coupling a KBE application to a business process starts with the information
modeling phase. To test the performance of how well the GraphQL transpiler can expose the informa-
tion of a KBE application, 8 example applications were selected. These applications were specifically
selected by their complexity measured in terms of the number of user-defined slots in the source
code. The purpose was to see if the transpiler was able to consistently represent the information of a
KBE application across varying code-base sizes.

Furthermore, these experiments were repeated with different configurations to observe the effect of
type inferencing and the allowance of dynamic typing. The latter should not be confused with the
dynamic type in KBE applications, and instead refers to the availability of a strong type for a given
slot. Strong typing can be obtained in three ways: (a) deriving it from the default value, (b) type
annotations, (c) type inferencing. This means that the transpiler is able to ahead-of-time (i.e. before
runtime) determine the return type of a slot instead of representing it as JSON which has the potential
to return any data type, granted that it is serializable. When dynamic typing is allowed, the function-
ality of the GraphQL API, resembles the REST API of ParaPy, wherby a user is not able to know what
the exact data type of a slot is when formulating a query.

The first experiment, given by Figure 4.1a shows that the majority of applications are only partially
representable in the GraphQL schema. The only two exceptions to this in this experiment were the
balloon application and the crane application, which notably made strong use of default values in
most input slots. By contract, the remainder of the applications often had required inputs with no
default value, which meant that it was possible to derive the expected return type of these slots. As
a result, a significant portion of the applications were not representable in the schema. On the flip
side, when dynamic typing is allowed, given by Figure 4.1b, the previous failures are almost all re-
solved, with more than 90 % discovered slots being representable. However, use of these dynamic
typed slots carry the risk of runtime errors in the situation that a slot return value is not JSON serial-
izable. Nonetheless, use of dynamic typing in the schema allows more slots to be queried. It is also
worthy to note that the transpilation time, tt , increases with the number of representable slots. This
is due to the necessity to create more GraphQL object types to represent these slots in the schema.

The same difference between statically typed, and dynamically typed schemas can be seen in the
third and fourth experiment, given by Figure 4.1d respectively. However, in both of these experi-
ments, type inferencing was enabled. This resulted in the ability to discover more user-defined slots
contained within classes that were previously untraversed by the transpiler due to lack of return types
from other slots linking to these classes. However, this comes at the cost of increased transpilation
time, due to the need to run the type inferencer, represented by the inferencing time, ti . Interest-
ingly, for simpler applications, the majority of transpilation time is due to type inferencing. Wheras
on larger applications, such as the warehouse application, the time required for type inferencing is
overshadowed by the time required to create GraphQL object types. Chapter B provides a profiling
result to clarify this finding.

38

4.1. INFORMATION MODELING CHAPTER 4. RESULTS

0 100 200 300 400 500 600 700 800
Number of Discovered User Defined Slots

Warehouse

Crane

Bridge

Jacket

Boat Hull

ParaPie

Pipe Routing

Balloon

197

323

132

89

46

29

308

115

208

214

76

505 (tt = 4.084s)

438 (tt = 2.689s)

340 (tt = 2.435s)

303 (tt = 2.289s)

122 (tt = 0.713s)

21 (tt = 0.072s)

8 (tt = 0.054s)

37 (tt = 0.408s)
Untyped
Inferred
Transpiled
Failed

(a) No Inferencing, Static Typing Enforced

0 100 200 300 400 500 600 700 800
Number of Discovered User Defined Slots

Warehouse

Crane

Bridge

Jacket

Boat Hull

ParaPie

Pipe Routing

Balloon

345

114

234

214

76

503

422

338

303

122

37

505 (tt = 6.957s)

438 (tt = 3.578s)

340 (tt = 4.420s)

303 (tt = 4.028s)

122 (tt = 1.344s)

21 (tt = 0.140s)

8 (tt = 0.090s)

37 (tt = 0.474s)
Untyped
Inferred
Transpiled
Failed

(b) No Inferencing, Dynamic Typing Allowed

0 100 200 300 400 500 600 700 800
Number of Discovered User Defined Slots

Warehouse

Crane

Bridge

Jacket

Boat Hull

ParaPie

Pipe Routing

Balloon

164

79

149

91

368

398

274

185

47

35

24

37

256

57

165

186

75

624 (tt = 11.880s, ti = 5.945s)

455 (tt = 6.169s, ti = 2.938s)

439 (tt = 8.448s, ti = 4.807s)

371 (tt = 7.418s, ti = 4.210s)

122 (tt = 1.937s, ti = 1.207s)

49 (tt = 2.831s, ti = 2.585s)

39 (tt = 2.622s, ti = 2.448s)

37 (tt = 1.749s, ti = 1.249s)
Untyped
Inferred
Transpiled
Failed

(c) Inferencing Enabled, Static Typing Enforced

0 100 200 300 400 500 600 700 800
Number of Discovered User Defined Slots

Warehouse

Crane

Bridge

Jacket

Boat Hull

ParaPie

Pipe Routing

Balloon

289

46

173

174

75

164

79

149

91

595

431

415

359

122

47

38

37

29

24

24

624 (tt = 14.351s, ti = 5.964s)

455 (tt = 6.586s, ti = 2.957s)

439 (tt = 9.896s, ti = 4.820s)

371 (tt = 8.990s, ti = 4.259s)

122 (tt = 2.604s, ti = 1.205s)

49 (tt = 2.941s, ti = 2.589s)

39 (tt = 2.700s, ti = 2.402s)

37 (tt = 1.787s, ti = 1.283s)
Untyped
Inferred
Transpiled
Failed

(d) Inferencing Enabled, Dynamic Typing Allowed

Figure 4.1: Schema Transpilation Performance Measured on Example KBE Applications

39

4.2. MODEL PERSISTENCE CHAPTER 4. RESULTS

4.2 Model Persistence

Similar to the testing of the information modeling, the behavior of the developed model persistence
extension to ParaPy was tested using several example applications ranging from simple to complex
geometries, as shown by Figure 4.2. The purpose of these experiments was to determine if the afore-
mentioned problems in Chapter 3, due to the recursion limits of Python, were overcome by the im-
plemented approach. This testing was important to guarantee that ParaPy models are persistable no
matter the complexity of the application.

(a) Balloon (b) Bottle (c) Crane (d) Boat

Figure 4.2: KBE Applications Used to Test Model Persistence

These example applications are then benchmarked based on several timings: the evaluation time,
te , the serialization (pickling) time, tp , the deserialization (unpickling) time, tu , the re-evaluation
time, tr , and finally, the time gained by serializing ∆t . The latter is measured based on the difference
between the sum of the evaluation and serialization time with the sum of the deserialization and re-
evaluation time. In essence, this shows how much time could be gained by restoring the state of a
ParaPy application from a persisted representation instead of recreating it from scratch. The results
of this benchmark are provided by Table 4.1 below.

Table 4.1: KBE Serialization Performance on Real Use Cases

Model te [s] tp [s] tu [s] tr [s] ∆t [s] Size [KB]

Balloon 0.01000 0.00700 0.01500 0.00012 -0.01212 49

Bottle 0.12700 0.01000 0.01500 0.00039 0.10161 99

Crane 1.38100 0.52200 0.79300 0.00200 0.03861 8297

Boat 35.36400 5.15100 5.08700 0.02100 23.78800 76498

In the results, one can see how all applications serialize and deserialize faster than the evaluation
time. However, in the case of the balloon the application, there is no time gained by loading the
model from a persisted representation. This contrasts with the boat application where there is a
large time gain of 23.79 s. This can be explained by the geometric complexity of the two models.
Whereas the balloon application comprises only of elementary shapes such as boxes, and a revolved
surface; the boat application requires the computation of many boolean computations. As a result,
the time consumed to perform these calculations is much higher than the time required to serialize
the resulting shape.

Besides these real applications, synthetic benchmarks were performed to better understand the time
and memory complexity of serialization. Furthermore, these benchmarks were used to determine
the dominant parameters influencing these complexities during serialization. Four situations were
benchmarked. Namely, (a) full geometry, where the entire geometry is serialized, (b) partial geom-
etry, where only the end-result is serialized using graph contraction, (c) no geometry, where no ge-
ometry is serialized, and finally (d), where no geometry is serialized, and a partial evaluation is per-

40

4.2. MODEL PERSISTENCE CHAPTER 4. RESULTS

formed where only a derived property of the geometry is accessed. The geometry used in the pre-
sented benchmarks is a sequence of boxes that are instantiated on top of each other, and then fused
together using a FusedSolid. The partial evaluation in question is accessing the center of gravity of
the resultant shape.

These synthetic benchmarks results are provided by Figure 4.3. Since the same geometry has to be
created in each of the 4 cases, the evaluation time is roughly constant. What varies is the total restore
time which is the summation of serialization, deserialization, and revaluation times. As can be seen
when comparing Figure 4.3a to Figure 4.3b, the lack of persisting intermediate geometries along with
the use of the graph contraction algorithm to remove the need to serialize intermediate dependency
edges, reduces the total restore time. Furthermore, it also reduces memory consumption since the
dependencies between intermediate results are not serialized. In the final two cases, given by Fig-
ure 4.3c and Figure 4.3d, one can also see that the O (n) memory complexity can be reduced to O (1)
in the best case where all intermediate results and geometry are excluded from the serialization. This
comes at the cost of achieving no runtime speedup when deserializing as evaluating the geometry
will take roughly the same time to re-evaluate, Figure 4.3c. However, in Figure 4.3d one can see the
effect of only requesting the evaluation of the center of gravity of the FusedSolid. Since no geometry
is needed to access this persisted value, the most significant speed-up is achieved in this case.

0 500 1000 1500 2000
Number of Instances [-]

0

1

2

3

4

5

6

Ru
nt

im
e

[s
]

Evaluation Time
Pickle Time
Unpickle Time
Restore Time
Speedup
Slowdown

10 50 100 250 500 1000 2000
Number of Instances [-]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
em

or
y

Co
ns

um
pt

io
n

[B
]

1e7
Model
Geometry
Dependencies

(a) Full Geometry

0 500 1000 1500 2000
Number of Instances [-]

0

1

2

3

4

5

6

Ru
nt

im
e

[s
]

Evaluation Time
Pickle Time
Unpickle Time
Restore Time
Speedup
Slowdown

10 50 100 250 500 1000 2000
Number of Instances [-]

0.0

0.2

0.4

0.6

0.8

1.0

M
em

or
y

Co
ns

um
pt

io
n

[B
]

1e7
Model
Geometry
Dependencies

(b) Partial Geometry

0 500 1000 1500 2000
Number of Instances [-]

0

1

2

3

4

5

6

Ru
nt

im
e

[s
]

Evaluation Time
Pickle Time
Unpickle Time
Restore Time
Speedup
Slowdown

10 50 100 250 500 1000 2000
Number of Instances [-]

0

200

400

600

800

1000

M
em

or
y

Co
ns

um
pt

io
n

[B
]

Model
Geometry
Dependencies

(c) No Geometry

0 500 1000 1500 2000
Number of Instances [-]

0

1

2

3

4

5

6

7

Ru
nt

im
e

[s
]

Evaluation Time
Pickle Time
Unpickle Time
Restore Time
Speedup
Slowdown

10 50 100 250 500 1000 2000
Number of Instances [-]

0

200

400

600

800

1000

M
em

or
y

Co
ns

um
pt

io
n

[B
]

Model
Geometry
Dependencies

(d) No Geometry, Partial Evaluation

Figure 4.3: Synthetic KBE Model Serialization Benchmark Results

Overall, the synthetic benchmarks reveal that the time complexity of serializing ParaPy KBE models
is O (n). Since the memory complexity is also O (n), one can quickly verify this result by ensuring that
the increase in serialization time is proportional to an increase in memory consumption as given
by Table 4.1. For example, the boat application consumes roughly 10x the memory consumption as
compared to the crane application. This same ratio exists between the two applications for the seri-
alization time. In addition to this back-of-the-envelope verification, a curve fitting library in Python
was used to determine whether a linear or quadratic curve fit the measured values. The result was
that a linear curve was a better fit of the data provided in Figure 4.3.

41

4.3. PROCESS ORCHESTRATION CHAPTER 4. RESULTS

4.3 Process Orchestration

The process orchestration phase of the experiment is the most significant to verify that the primary
goal of this research is achieved: to improve the collaborative usage of KBE applications and facilitat-
ing the integration of KBE applications with business processes. For this purpose, two case studies
are explored. First the earthquake analysis case study introduced at the start of this report is used to
provide a glimpse into a real-world application of the software prototype. However, to concentrate
on the differences between static and dynamic workflows, a simpler case study on the design of a hot
air balloon is also explored.

4.3.1 Case Study: Earthquake Analysis

As presented at the start of this report, the business process surrounding the earthquake analysis
involves several users, tasks, and most notably the parallel flow as given by Figure 4.4. To properly
facilitate this process as compared to using a monolithic KBE application interface, several task in-
terfaces were defined, which can be seen in Figure 1.2b. Additionally, the external tasks that were
previously coordinated by users, have now been explicitly modelled in business process. These are
namely, the STEP file upload whereby a CAD draftsman uploads the geometry of the house to an-
alyze, the geotechnical analysis—performed either manually through Excel or via Plaxis—and the
Finite Element Model (FEM) simulation run via Abaqus.

Recieve
Earthquake

Housing Analysis
Request

Upload STEP
Files

Is Valid?

Check
Geometry

Create
Foundation

Refine House
Model

Which Analysis?

Pick
Geotechnical

Analysis

Results Valid? Send Earthquake
Analysis Results

to Design
Department

Generate
Report

Run FEM
Simulation
(Abaqus)

Once a foundation is created, refinement of the house
model and the geotechnical analysis can be parallelized

Yes

No

Yes

Requires
Adjustment

Run Plaxis

Perform
Geotechnical

Analysis

Export FEM
Model

Automated

Manual

Figure 4.4: Earthquake Analysis Workflow BPMN Diagram

Formalizing these tasks, allows the process orchestrator to be used to “keep the ball rolling” during
the process, alleviating the cognitive burden on users to keep track of who is doing what tasks. Fur-
thermore, the segregation of the monolithic user interface into several task specific interfaces, allows
a user to more easily understand what they should be doing at each task. In this research, this is re-
ferred to as process awareness.

After implementing this case study, which took 3 days of development effort to accomplish, several
benefits compared to using the monolithic KBE application were observed. First, it became possible
to split apart the house geometry upload and checking logic into a separate tool. This had the benefit
of simplifying the KBE application, which no longer required such logic. Additionally, this opens the
door for the re-usability of the geometry checker in other KBE apps. Finally, the use of state variables
along with the process bucket, allowed data from multiple states of the process to be persisted. Along
with the audit log of the process orchestrator, this makes it possible to retrospectively understand
how the final results in the generated report was obtained.

42

4.3. PROCESS ORCHESTRATION CHAPTER 4. RESULTS

4.3.2 Case Study: Hot Air Balloon

Although useful to verify the function of the software prototype on a real-world application, the com-
plexity of the earthquake analysis case study proved detrimental to effectively testing workflow flexi-
bility due to the time required to develop the workflow itself. Therefore, to practically test the specific
characteristic of worklets at increasing process flexibility, a simpler case study was required. For this
purpose, an example developed by ParaPy, the Hot Air Balloon KBE application was selected as it
exemplifies a Made-to-Order (MTO) design process, whereby a customer places an order, and the
design department works to create a design that fulfills the requirements of that order. As a base-
line, the application has 4 steps: Design of Experiment (DoE) Generation, Design Selection, Design
Refinement, and Reporting, Figure 4.5.

Figure 4.5: User Interface of the Monolithic Hot Air Balloon Application

Applying the same methodology as the earthquake analysis, the resulting formalization of the process
is given by Figure 4.6. As can be seen in Figure 4.6 the application is a natural fit to integrate into a
collaborative process as several decision and approval gates could be added. This contrasts with
the original application which defined an intended sequence of tasks via the “stepper” widget at the
top of the user interface. As a result, the original application did not enforce a control flow for how
the application should be used. Although this made it possible to support ad-hoc usage, as users
could freely navigate between the various steps of the application, the lack of representing these
conditional flows in a process model, did not allow users to understand what will happen in the
process based on certain decisions.

Recieve Order for
Balloon Is Approved?

Refine Design Show Report to
Customer

Suitable Design
Found?

Is Approved?
Send Quote to

Customer

End Order

Generate
Design of

Experiments

Generate
Manual DoE

Select Design
ApproveYes Yes, Place Order

No, Request
Changes

No, Cancel Order

No

Request New
Design

Figure 4.6: Hot Air Balloon Case Study BPMN Diagram

43

4.3. PROCESS ORCHESTRATION CHAPTER 4. RESULTS

An important result from this case study is to realize that the addition of control flow to model de-
cisions within the process as well as the segmentation of the process into tasks, ends up enforcing a
rigid process that inhibits ad-hoc usage. This is because, whereas before users would be able to flexi-
bly navigate between steps of the application, they are now forced into following the process defined
in Figure 4.6. For example, a user was previously able to “jump” from the reporting step back to de-
sign selection. In the modeled static workflow, to accomplish the same, the user must first propose
changes, leading back to the refine design step, where another user must then reject the design in
order to end up back at design selection.

To counter this rigidity, the worklet concept discussed previously by Section 3.4.6 was applied. Specif-
ically, the various segments of the static workflow were separated into worklets as depicted by Fig-
ure 4.7. Furthermore, the Worklet decorator was applied to modify the source code of the balloon
application to link slots to these worklets. The resulting dynamic workflow is then given by Figure 4.8.
Note how the entire design process is now handled by a single call activity, and a new task to apply
changes is added if the design is rejected.

Recieve Order for
Balloon Is Approved?

Refine Design Show Report to
Customer

Suitable Design
Found?

Is Approved?
Send Quote to

Customer

End Order

Generate
Design of

Experiments

Generate
Manual DoE

Select Design
ApproveYes Yes, Place Order

No, Request
Changes

No, Cancel Order

No

Request New
Design

Start Design
Selection

Select Design

Suitable Design
Found?

Generate
Manual DoE

End Design
Selection

No

Refine Design
Generate
Design of

Experiments

Figure 4.7: Segmentation of Hot Air Balloon Design Process into Worklets

Recieve Order for
Balloon

Is Approved?

Get Customer
Feedback

Is Approved?
Send Quote to

Customer

End Order

Apply Changes

Design Hot Air
Balloon

Approve

No, Request
Changes

Yes, Place Order

No, Cancel Order

No, Request
Changes

Figure 4.8: KBE Controlled Hot Air Balloon Case Study BPMN Diagram

44

4.4. VERIFICATION CHAPTER 4. RESULTS

The dynamic adaptation of this process is then an example of a KBE controlled workflow as the design
process control flow is handled by the KBE application. Hence, the KBE application is able to exploit
its runtime caching and dependency tracking mechanisms to externally steer the process. The result
is the ability to support ad-hoc design activities, similar to that of the original application, while
still benefiting from process orchestration for portions of the business process. Take for example
how the design call activity in Figure 4.8, which represents the dynamic portions of the workflow,
co-exists with the static portions of the workflow representing the customer feedback loop. As a
result, depending on the feedback of the customer, the applied change to the design determines
which worklet executes. For example, if only a change to the color of the balloon is requested, then
no worklets are required to run. However, a change to the dimensions of the balloon require the
design refinement worklet. These aspects are discussed further in Section 5.3.

4.4 Verification

The most important goal of this research was to improve the collaborative usage of KBE applica-
tions through process formalization and orchestration. Since experimentation in this research has
been limited to isolated case studies, it is not possible to validate the software in real-world usage.
Nonetheless, the case studies allow the requirements of the software prototype to be verified. For
example, the earthquake analysis case study allowed verification of the general principle for how a
monolithic KBE application can be modified and later integrated into a real-world use case. Further-
more, it allowed assessment of how well the developed software prototype can adapt to new features
and functionalities. Besides highlighting the differences between static and dynamic workflows, the
hot air balloon case study was also used to verify the functionality of external tool integration into a
KBE application. Whereas in the original application, the DoE generation step was embedded into
the KBE application, in the modeled process, this logic is externalized into a tool transformer, en-
abled through Figure 3.24. This allowed testing of the correlated dependencies method to maintain
dependency tracking, even for external tools.

Besides the case studies, the entire development process of the software prototype was verified us-
ing automated unit tests written and run continuously in compliance with Test Driven Development
(TDD). The most technically challenging functionalities: GraphQL transpilation and model serializa-
tion were tested rigorously using this methodology. In total 272 tests were written, 154 for the tran-
spiler and 118 for the serialization capability. To quantify the quality of these tests the code coverage
metric was used. This demonstrates the percentage of source code lines touched by tests compared
to the total number of source code lines. The code coverage metric, which provides a percentage of
source code lines that are covered by tests, was 74% and 97% for the transpiler and serializer respec-
tively. Achieving higher code coverage on the transpiler was less critical as verifying schemas visually
was much easier than testing the intricacies of the graph contraction algorithm. Finally, as explained
in the beginning of the chapter, several real-world use cases were used to verify the time complexity
of serialization; demonstrating that even the most complex geometry, the Royal Huisman Boat Ap-
plication, was serializable, as demonstrated by Table 4.1.

On the service and process orchestration side, manual integration testing was conducted during de-
velopment to verify the functionality of all services. For this purpose, the audit log and fault tolerance
capabilities of Zeebe were helpful in revealing incorrect variable names, invalid workflow token ex-
ecution, and improperly configured tasks. Furthermore, a demonstration of the capabilities of the
software was given live to employees of ParaPy. Here fellow software engineers had the opportunity
to ask questions and verify that the software was exhibiting the intended behavior as desired since
the start of the project. Namely, the ability to flexibily integrate KBE applications within business
processes.

45

5 Discussion
After conducting experiments on the developed software prototype, this section will discuss these
results individually before providing answers to the posed research questions. Afterwards, the con-
tributions of this research will be discussed along with its limitations.

5.1 Information Modeling

An important cornerstone of this reserach is the ability to expose the information of a KBE appli-
cation through a strongly typed GraphQL API. This allows any service in a collaborative process to
access and change the data of a KBE application to be able to use it as an information backbone in
workflows. Through experimentation on various case studies as well as the example applications, it
was observed that KBE applications at the moment do make use of extensive type-hints. As a result,
an important technology to be able to represent types in a schema statically has been the use of type
inferencing. This technology has not only allowed the discovery of more slots in KBE application
source codes, but also increased the percentage of these slots that can be represented statically.

While use of dynamically typed slot return values is possible, it is the opinion of the author to dis-
courage such usage as it burdens tool developers with additional type checking and increases the
chances for mistakes. Overall, for the case studies experimented on in this thesis, the use of a KBE
application as an information model within workflows functions properly, however the generated
schemas are often not catered to use within a process. The main issue is that the current genera-
tion of KBE applications have been developed without the present use-case in-mind. As a result, the
generated information models are either too verbose to be consumed easily in a workflow or, do not
contain the process specific values needed to make decisions within the process model. Therefore,
either the development of KBE applications in the future should make use of this technology during
development to model the application around the intended process, or a “wrapper” ParaPy class can
be used to embed the original application into a suitable representation for process orchestration.

5.2 Model Persistence

The result of generic serialization capability added to ParaPy as part of this thesis shows that of the
applications sampled, all of them are able to be persisted. The creation of the persistence capability
was perhaps the most difficult endeavor of this work. However, several fruitful ideas have come out
of this effort to take advantage of KBE’s unique position of dependency tracking to accomplish partial
persistence capabilities.

Besides creating an extendible architecture persistence capability, two important achievements were
obtained: the graph contraction algorithm, and the consistence maintenance methodology. These
two concepts combined provide a powerful way to deal with serializable values as well as enable
users to selectively choose which parts of their application they would like to save. From a more crit-
ical perspective, the use of pickle means that a KBE application must be alive in order to be queried
for information. While such a limitation is not critical at the moment, the memory consumption of
hosting ParaPy applications in the cloud might mean that the current methodology results in higher
cost as compared to using a database to store application data.

Especially with the earlier remark on how the full information model of a KBE application is not nec-
essarily useful in workflows, it might be prudent to explore the creation of lighter-weight alternative
to the full KBE runtime. Such a lighter-weight alternative would not come with a CAD kernel, but
instead support the core technologies of KBE. Regardless of the implementation however, use of per-

46

5.3. PROCESS ORCHESTRATION CHAPTER 5. DISCUSSION

sistence technology has been vital to the implementation of the worklet methodology to increase
process flexibility. As a result, the author believes that such a breakthrough in database technology is
required to support these workflows. For lack of a better word, there is a need to create a tailored en-
gineering database that has the ability to calculate computed values, if needed launch a CAD kernel,
and track dependencies between data elements.

5.3 Process Orchestration

The results show that the primary goals of the research have been fulfilled. On both fronts, namely
static and dynamic workflows the integration of KBE into business processes has been demonstrated.
Furthermore, the hypothesis of this research related to the ability of external steering with a KBE ap-
plication to improve the flexibility of a process has been verified. This was observed in the hot air
balloon case study by how the static definition of the process resulted in constraining the control
flow to a rigid way of working. This meant that during more ad-hoc design activities where simply
the KBE application is desired to be used flexibility, users would have been forced to go through the
order of steps defined in order to perform an iteration Figure 5.1.

This constrasts with the use of the worklet methodology, which allowed for the design process to
make use of runtime caching and dependency tracking to cope with ad-hoc changes. For example,
when a query was performed to change the population size of the initial design of experiments, the
full three worklets were published. However, for a simple change for modifying the radius only the
Refine Design worklet was published. This put less of a burden on users as only those individuals
necessary to perform the given design modification were notified.

St
at

ic
 W

or
kfl

ow
D

yn
am

ic
 W

or
kfl

ow
 w

/ W
or

kl
et

s

Recieve Order for
Balloon Is Approved?

Refine Design Show Report to
Customer

Suitable Design
Found?

Is Approved?
Send Quote to

Customer

End Order

Generate
Design of

Experiments

Generate
Manual DoE

Select Design
ApproveYes Yes, Place Order

No, Request
Changes

No, Cancel Order

No

Request New
Design

Recieve Order for
Balloon

Is Approved?

Get Customer
Feedback

Is Approved?
Send Quote to

Customer

End Order

Apply Changes

Design Hot Air
Balloon

Approve

No, Request
Changes

Yes, Place Order

No, Cancel Order

No, Request
Changes

12

3

Start Design
Selection

Select Design

Suitable Design
Found?

Generate
Manual DoE

End Design
Selection

No

Refine Design
Generate
Design of

Experiments

Workflow After Changing Population Size Workflow After Changing Radius

Refine Design

Figure 5.1: Differences in Iterative Usage on Static vs. Dynamic Workflows

47

5.3. PROCESS ORCHESTRATION CHAPTER 5. DISCUSSION

In light of this result, use of KBE control is advised when the design process must account for ad-hoc
changes and is highly iterative. Furthermore, although this present research has focused on collabo-
ration, the same underlying technology can be applied to lazily launch simulations within an auto-
mated design process.

Besides the ability to collaborate and integrate the KBE application within business processes, through
the hybrid workflow concept, KBE applications also gain new functionalities from WfMS that were
not available before. Most importantly is the ability to view exactly what has happened, what is cur-
rently running, and what could run in the future. This task awareness is provided by the Operate
frontend application of Camunda given by Figure 5.2.

Figure 5.2: Hot Air Balloon Workflow Status, Audit Log, & Process Variables

During the adaption of the original KBE applications, a notable challange was in synchronizing vari-
able and task names between their implementation in the KBE application and the process model;
causing the highest number of failures during development. In the future, to improve user experi-
ence the KBE application source code should be parsed to provide auto-completion functionality in
the process model during variable name assignment. As a final remark, in complicated use cases the
implicit order of tasks within the KBE application could become an issue when the same developer is
not in charge of both creating the product and process model. Such issues can be fixed either through
more significant adoption of the worklet approach—thereby allowing the KBE model to define over-
all workflow control flow—or to statically define required inputs in tasks to allow a process linter to
detect invalid task ordering. However, the latter is not preferable as it would increase tool interface
complexity in the process model.

48

5.4. ANSWERS TO RESEARCH QUESTIONS CHAPTER 5. DISCUSSION

5.4 Answers to Research Questions

Based on the developed software prototype and its use within use cases, the research questions posed
by this thesis can be answered as follows:

LQ-1: What technology is suitable to expose the information of a KBE application to external services
while supporting dynamic types, lazy evaluation, and dependency tracking?

As demonstrated by Section 3.2 and Section 4.1, the use of GraphQL in this research has shown promise for
exposing the information of a KBE application. The key features of GraphQL that make it a suitable
technology are its hierarchical structure that mirrors the product tree of a KBE application, selection sets
which support both lazy evaluation and dependency tracking, and type unions that allow for the flexibility
of modeling dynamic types. Besides these features, the strongly typed nature of GraphQL makes it easier to
query for information within a KBE application by being able to know ahead of time what information is
available and the type of data that will be returned.

LQ-2: How can the runtime cache of a KBE application be persisted to support the transactional nature of
tasks where each task leads to a new state of the model?

As demonstrated by Section 3.3 and Section 4.2, the use of Python’s builtin binary persistence module pickle
has demonstrated applicability for persisting the runtime cache of a KBE application. However, due to the
current limitation of Python with respect to recursion, the recursive implementation of pickle required
handling of the object and dependency graph separately. Nonetheless, transaction usage in processes has
been achieved by allowing the full state of a ParaPy application to be persisted. Therefore, if failures occur a
previous state can be used to load a version of the application state before the failure occurred.

LQ-3: What is the time and memory complexity associated with persisting the runtime caches of a KBE
application?

As demonstrated by Section 4.2 the time and memory complexity of persisting the runtime caches of a KBE
application is O (n). It was observed that the graph contraction algorithm can be used along with partial
persistence functionality to reduce the memory required to persist these caches. In extreme cases, where no
geometry is needed and intermediate results can be ignored, an O (1) memory complexity can be achieved.
However, real-world applicability for such use cases is expected to be limited.

LQ-4: Can runtime dependency information be used to establish external steering of a WfMS to modify the
control-flow dynamically at runtime based on data dependencies?

Yes, as demonstrated by Section 3.4.6 and its implementation in Section 4.3.2, external sterring can be
established using the worklet concept. This enables the runtime caching and dependency tracking
mechanisms to be used to dynamically publish worklets using demand-driven evaluation. This allows for
runtime control flow to change based on previous execution results.

LQ-5: If external steering is possible, does it show promise for increasing workflow flexibility?

Yes, as demonstrated by Section 4.3.2, the application of the worklet concept allowed for more flexible
support of an ad-hoc design process where several iterations were performed. Without the worklet approach
the additional control flow added on top of the KBE application, made the process rigid as a strict order of
tasks needed to be followed in order to perform design iterations. By adoption of the worklet concept, such
restrictions on control flow are reduced as the process does not have to execute from start to finish, and
instead smaller portions of the process can be run based on context. However, the flexibility gained by this
concept comes at the cost of reduced process awareness due to the current lack of visualization techniques.

49

5.5. RESEARCH CONTRIBUTIONS CHAPTER 5. DISCUSSION

5.5 Research Contributions

This thesis project has from the beginning has strived to establish the next generation of collabo-
rative KBE. Through a methodology that has focused on process formalization and orchestration,
several key contributions have been made in order to achieve this goal. First, an information mod-
eling approach making use of GraphQL has been developed to be able to flexibly query KBE models
to support collaborative activities. Furthermore, generic persistence capability has been added to
ParaPy to support transactional usage as well as retaining the full history of a design. Moreover, the
implementation of the worklet concept in KBE has opened doors to a new form of process automa-
tion making use of runtime caching and dependency tracking to influence control flow based on
context. This has shown promise to increase the flexibility of workflows. Finally, this research has
theorized about emergent workflows whereby the correlated dependency technique may be applied
in the future to enable true flexibility, whereby no control-flow is dictated ahead of time. Figure 5.3
provides an overview of the research contributions.

GOALS RESULTS

ENABLERS
Architect

Exper iment

Process
Modeling

Manual
Tasks

Workflow
Execution

Schema
Generation

Model
Database

Product
Modeling

Increase Process
Awareness of Experts

Using KBE Apps

Support the Integration
of KBE Apps with

Business Processes

Demonstrate Improved
Collaborative Capabilities
of ParaPy with a Prototype

Enrich KBE, WfM, and CE
with a Hybrid Workflow
Software Architecture

Hybrid
Workflow

Figure 5.3: Goals, Enablers, Results of the Conducted Research

5.6 Limitations & Future Work

Although able to represent a fair part of KBE applications, the GraphQL transpiler does have its lim-
itations. While some aspects are not yet modeled due to limitations with the GraphQL specification,
others are not implemented due to time intensity. In the future, more slot resolvers can be imple-
mented to be able to represent a larger portion of KBE applications. Additionally, a considerable
portion of application launch time is schema generation. Therefore, persistence capability for the
in-memory schema could be added to support faster launch times.

One limitation of the current persistence capability is lack of support for meshses. Using the plugin
architecture defined, this can be solved by creating a plugin. However, what is more problematic is
the lack of so-called “delta-encoding” when making use of the persistence capability in processes.
This essentially means that every time the application is persisted, a full copy of the data is created.
What delta encoding enables is the ability to only store the changed data between states. This can be
especially useful for large applications saved multiple times in a process.

In terms of process orchestration, the worklet concept has revealed that although external steering
using a KBE application has been achieved, currently the worklet “call stack” is not representable
within the available BPMN features in Camunda. Without such visualization techniques it is difficult
to provide users with an overview of what is expected to happen and what has executed. Future
work should explore custom visualization techniques. Furthermore, unit tests should be added to
the process orchestration layer to provide confidence for developers when building new features.

50

6 Conclusion
This thesis achieves the synthesis between KBE and WfM, pushing the state-of-the-art into next-
generation solutions. Based on the research goal, a strenuous process has led to improving the col-
laborative usage of KBE applications through novel means and hybrid workflows, thereby increasing
process awareness through process modeling and visualization, and facilitating the integration of
KBE with business processes. The new software prototype that is developed addresses an important
gap in the literature for a tool that can automate the design process, its knowledge and data through
the development of novel techniques for the KBE platform of ParaPy.

The developed software prototype addresses three key high-level requirements as verified in this
thesis: (a) providing access of KBE application information to the process orchestrator and all con-
nected resources, (b) allowing dependency relationships to be serializable to support fault tolerance
and a hybrid workflow concept, and (c) dynamically chaining together tasks through ad-hoc control
flow during running processes. To enable these high-level requirements, new advances are realized,
which include a KBE-GraphQL transpiler that parses application source code and automatically gen-
erates resolvers and types to reduce the burden on developers. In addition, advancements to the
serialization of KBE applications is made through the introduction of a graph contraction and con-
sistency maintenance algorithm. Also, a way to maintain dependencies when coupling external tools
to KBE applications is introduced through the correlated dependency concept. Finally, a way to link
worklets to slots in KBE applications has enabled the usage of the runtime caching and dependency
tracking mechanism to dynamically alter the control flow at runtime.

Based on the results of the experiments for the software prototype for information modeling, model
persistence and process orchestration, the main findings for these topics are summarized below:

• Information Modeling: Based on 8 example applications with different geometric complexi-
ties, it is found that if both type-inferencing and dynamic typing are enabled then almost all
slots in these example applications can be represented.

• Model Persistence: The tested models are all found to be serializable regardless of geometric
complexity. The time and memory complexity of serialization is found to be O (n).

• Process Orchestration: A real-world application based on an earthquake analysis case verifies
that the collaborative usage of KBE applications can be improved while facilitating the inte-
gration of KBE applications with business processes. In addition, the case study of a hot air
balloon demonstrates how the worklet concept enables greater flexibility for ad-hoc usage in
design processes.

Overall, the advances that are put forward in this thesis enable and empower a knowledge engineer to
formalize the intended process of a KBE application to improve its collaborative usage. More specif-
ically, these advances allow integrating process awareness to improve the collaborative usage of KBE
applications, meaning that there is sufficient awareness on what has happened, what is currently
running, and what could run in the future in the process.

51

References
[1] Knut Erik Bang and Tore Markeset. “Impact of Globalization on Model of Competition and

Companies’ Competitive Situation”. In: Advances in Production Management Systems. Value
Networks: Innovation, Technologies, and Management. Ed. by Jan Frick and
Bjørge Timenes Laugen. Vol. 384. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 276–286. ISBN: 978-3-642-33979-0 978-3-642-33980-6. DOI:
10.1007/978-3-642-33980-6_32.

[2] Josip Stjepandi, Nel Wognum, and Wim J.C. Verhagen, eds. Concurrent Engineering in the 21st
Century. Cham: Springer International Publishing, 2015. ISBN: 978-3-319-13775-9
978-3-319-13776-6. DOI: 10.1007/978-3-319-13776-6.

[3] Dirk Ahlers et al. “Challenges for Information Access in Multi-Disciplinary Product Design
and Engineering Settings”. In: 2015 Tenth International Conference on Digital Information
Management (ICDIM). Jeju Island, South Korea: IEEE, Oct. 2015, pp. 109–114. ISBN:
978-1-4673-9152-8. DOI: 10.1109/ICDIM.2015.7381865.

[4] Dimitri N. Mavris and Olivia J. Pinon. “An Overview of Design Challenges and Methods in
Aerospace Engineering”. In: Complex Systems Design & Management. Ed. by Omar Hammami,
Daniel Krob, and Jean-Luc Voirin. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 1–25. ISBN: 978-3-642-25203-7.

[5] F. Mas et al. “A Review of PLM Impact on US and EU Aerospace Industry”. In: Procedia
Engineering 132 (2015), pp. 1053–1060. ISSN: 18777058. DOI:
10.1016/j.proeng.2015.12.595.

[6] Massimo D’Auria and Roberto D’Ippolito. “Process Integration and Design Optimization
Ontologies for Next Generation Engineering”. In: On the Move to Meaningful Internet Systems:
OTM 2013 Workshops. Ed. by David Hutchison et al. Vol. 8186. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 228–237. ISBN: 978-3-642-41032-1 978-3-642-41033-8. DOI:
10.1007/978-3-642-41033-8_31.

[7] Wim J.C. Verhagen et al. “A Critical Review of Knowledge-Based Engineering: An
Identification of Research Challenges”. In: Advanced Engineering Informatics 26.1 (Jan. 2012),
pp. 5–15. ISSN: 14740346. DOI: 10.1016/j.aei.2011.06.004.

[8] G. La Rocca and M.J.L. Van Tooren. “Enabling Distributed Multi-Disciplinary Design of
Complex Products: A Knowledge Based Engineering Approach”. In: J. of Design Research 5.3
(2007), p. 333. ISSN: 1748-3050, 1569-1551. DOI: 10.1504/JDR.2007.014880.

[9] Dirk Jodin and Christian Landschützer. “Knowledge-Based Methods for Efficient Material
Handling Equipment Development”. In: 12th IMHRC Proceedings. Gardanne, France, 2012,
p. 20.

[10] Layna Fischer and Workflow Management Coalition. Workflow Handbook 2005. Lighthouse
Point, FL: Future Strategies Inc., 2006. ISBN: 978-0-9703509-8-5.

[11] A I Pavlov and A B Stolbov. “The Workflow Component of the Knowledge-Based Systems
Development Platform”. In: Proceedings for the 2nd Scientific-practical Workshop Information
Technologies: Algorithms, Models, Systems. Vol. 2463. Irkutsk, Russia: CEUR, Sept. 2019, p. 11.

[12] Matthew Daniels et al. “An Engineering Prototype Workflow Management System”. In: IFAC
Proceedings Volumes 46.9 (2013), pp. 1471–1476. ISSN: 14746670. DOI:
10.3182/20130619-3-RU-3018.00428.

[13] Claudia Eckert, Anja Maier, and Chris McMahon. “Communication in Design”. In: Design
Process Improvement. Ed. by John Clarkson and Claudia Eckert. London: Springer London,
2005, pp. 232–261. ISBN: 978-1-85233-701-8 978-1-84628-061-0. DOI:
10.1007/978-1-84628-061-0_10.

52

https://doi.org/10.1007/978-3-642-33980-6_32
https://doi.org/10.1007/978-3-319-13776-6
https://doi.org/10.1109/ICDIM.2015.7381865
https://doi.org/10.1016/j.proeng.2015.12.595
https://doi.org/10.1007/978-3-642-41033-8_31
https://doi.org/10.1016/j.aei.2011.06.004
https://doi.org/10.1504/JDR.2007.014880
https://doi.org/10.3182/20130619-3-RU-3018.00428
https://doi.org/10.1007/978-1-84628-061-0_10

REFERENCES

[14] Weiming Shen, Jean-Paul Barthès, and Junzhou Luo. “Computer Supported Collaborative
Design: Technologies, Systems, and Applications”. In: Contemporary Issues in Systems Science
and Engineering. Ed. by Mengchu Zhou, Han-Xiong Li, and Margot Weijnen. Hoboken, NJ,
USA: John Wiley & Sons, Inc., Apr. 2015, pp. 537–573. ISBN: 978-1-119-03682-1
978-1-118-27186-5. DOI: 10.1002/9781119036821.ch14.

[15] Carlos Vila et al. “Workflow Methodology for Collaborative Design and Manufacturing”. In:
Cooperative Design, Visualization, and Engineering. Ed. by Yuhua Luo. Vol. 4674. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, pp. 42–49. ISBN: 978-3-540-74779-6
978-3-540-74780-2. DOI: 10.1007/978-3-540-74780-2_5.

[16] Wil van der Aalst and Kees Max van Hee. Workflow Management: Models, Methods, and
Systems. Cooperative Information Systems. Cambridge, Mass: MIT Press, 2002. ISBN:
978-0-262-01189-1.

[17] Jennifer Rowley. “The Wisdom Hierarchy: Representations of the DIKW Hierarchy”. In:
Journal of Information Science 33.2 (Apr. 2007), pp. 163–180. ISSN: 0165-5515, 1741-6485. DOI:
10.1177/0165551506070706.

[18] A. Pras and J. Schoenwaelder. On the Difference between Information Models and Data
Models. Tech. rep. RFC3444. RFC Editor, Jan. 2003, RFC3444. DOI: 10.17487/rfc3444.

[19] A.W. Reijnders. “Integrating Knowledge Management and Knowledge-Based Engineering”.
MA thesis. Delft, The Netherlands: Delft University of Technology, Oct. 2012.

[20] Martyn Pinfold and Craig Chapman. “The Application of KBE Techniques to the FE Model
Creation of an Automotive Body Structure”. In: Computers in Industry 44.1 (Jan. 2001),
pp. 1–10. ISSN: 01663615. DOI: 10.1016/S0166-3615(00)00079-8.

[21] “Knowledge Based Engineering”. In: Multidisciplinary Design Optimization Supported by
Knowledge Based Engineering. John Wiley & Sons, Ltd, 2015, pp. 208–257. ISBN:
978-1-118-89707-2.

[22] P. C. Gembarski. “Three Ways of Integrating Computer-Aided Design and Knowledge-Based
Engineering”. In: Proceedings of the Design Society: DESIGN Conference 1 (May 2020),
pp. 1255–1264. ISSN: 2633-7762. DOI: 10.1017/dsd.2020.313.

[23] Dave Cooper and Gianfranco LaRocca. “Knowledge-Based Techniques for Developing
Engineering Applications in the 21st Century”. In: 7th AIAA ATIO Conf, 2nd CEIAT Int’l Conf on
Innov and Integr in Aero Sciences,17th LTA Systems Tech Conf; Followed by 2nd TEOS Forum.
Belfast, Northern Ireland: American Institute of Aeronautics and Astronautics, Sept. 2007.
ISBN: 978-1-62410-014-7. DOI: 10.2514/6.2007-7711.

[24] C.B Chapman and M Pinfold. “Design Engineeringa Need to Rethink the Solution Using
Knowledge Based Engineering”. In: Knowledge-Based Systems 12.5-6 (Oct. 1999), pp. 257–267.
ISSN: 09507051. DOI: 10.1016/S0950-7051(99)00013-1.

[25] Akshay Raju Kulkarni, Maurice Hoogreef, and Gianfranco La Rocca. “Combining Semantic
Web Technologies and KBE to Solve Industrial MDO Problems”. In: 18th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference. Denver, Colorado: American
Institute of Aeronautics and Astronautics, June 2017. ISBN: 978-1-62410-507-4. DOI:
10.2514/6.2017-3823.

[26] Gianfranco La Rocca. “Knowledge Based Engineering: Between AI and CAD. Review of a
Language Based Technology to Support Engineering Design”. In: Advanced Engineering
Informatics 26.2 (Apr. 2012), pp. 159–179. ISSN: 14740346. DOI:
10.1016/j.aei.2012.02.002.

[27] Jayakiran Esanakula, ·Naga venkata Sridhar, and Vootukuri Rangadu. “Knowledge Based
Engineering: Notion, Approaches and Future Trends”. In: American Journal of Intelligent
Systems 2015 (Jan. 2015), pp. 1–17. DOI: 10.5923/j.ajis.20150501.01.

53

https://doi.org/10.1002/9781119036821.ch14
https://doi.org/10.1007/978-3-540-74780-2_5
https://doi.org/10.1177/0165551506070706
https://doi.org/10.17487/rfc3444
https://doi.org/10.1016/S0166-3615(00)00079-8
https://doi.org/10.1017/dsd.2020.313
https://doi.org/10.2514/6.2007-7711
https://doi.org/10.1016/S0950-7051(99)00013-1
https://doi.org/10.2514/6.2017-3823
https://doi.org/10.1016/j.aei.2012.02.002
https://doi.org/10.5923/j.ajis.20150501.01

REFERENCES

[28] P. Bermell Garcia and I S. Fan. “Practitioner Requirements for Integrated Knowledge-Based
Engineering in Product Lifecycle Management”. In: International Journal of Product Lifecycle
Management 3.1 (2008), p. 3. ISSN: 1743-5110, 1743-5129. DOI:
10.1504/IJPLM.2008.019968.

[29] Eugen Rigger, Kristina Shea, and Tino Stankovic. “Task Categorisation for Identification of
Design Automation Opportunities”. In: Journal of Engineering Design 29.3 (Mar. 2018),
pp. 131–159. ISSN: 0954-4828, 1466-1837. DOI: 10.1080/09544828.2018.1448927.

[30] Jayakiran Reddy Esanakula et al. “Online Knowledge-Based System for CAD Modeling and
Manufacturing: An Approach”. In: Intelligent Systems, Technologies and Applications. Ed. by
Sabu M. Thampi et al. Vol. 910. Singapore: Springer Singapore, 2020, pp. 259–268. ISBN:
9789811360947 9789811360954. DOI: 10.1007/978-981-13-6095-4_19.

[31] Kelbey Wheeler. “Methodological Support for Knowledge Based Engineering Application
Development: Improving Traceability of Knowledge into Application Code”. MA thesis. Delft,
The Netherlands: Delft University of Technology, Mar. 2020.

[32] Imco van Gent et al. “Knowledge Architecture Supporting the next Generation of MDO in the
AGILE Paradigm”. In: Progress in Aerospace Sciences 119 (Nov. 2020), p. 100642. ISSN:
03760421. DOI: 10.1016/j.paerosci.2020.100642.

[33] Nick Tzannetakis and Roberto d’Ippolito. iProd Fact Sheet. Feb. 2011.

[34] Maurice F. M. Hoogreef et al. “An Application of the IProd Software Framework to Support the
Product Development Process in Te Automotive and Aerospace Domain”. In: Tools and
Methods of Competitive Engineering: Proceedings of the Tenth International Symposium on
Tools and Methods of Competitive Engineering - TMCE 2014, May 19 - 23, Budapest, Hungary.
Delft: Faculty of Industrial Design Engineering, Delft University of Technology, 2014, p. 14.
ISBN: 978-94-6186-177-1 978-94-6186-176-4.

[35] Nick Tzannetakis and Roberto d’Ippolito. iProd Publishable Summary 2014. Apr. 2014.

[36] P.K.M Chan. “A New Methodology for the Development of Simulation Workflows”. MA thesis.
Delft, The Netherlands: Delft University of Technology, Mar. 2013.

[37] Maurice F M Hoogreef. “A Multidisciplinary Design Optimization Advisory System for Aircraft
Design”. In: 5th CEAS Air & Space Conference. CEAS, 2015, p. 15.

[38] Zhenjun Ming et al. “PDSIDESA Knowledge-Based Platform for Decision Support in the
Design of Engineering Systems”. In: Journal of Computing and Information Science in
Engineering 18.4 (Dec. 2018), p. 041001. ISSN: 1530-9827, 1944-7078. DOI:
10.1115/1.4040461.

[39] Dag Bergsjo, Amer Catic, and Johan Malmqvist. “Implementing a Service-Oriented PLM
Architecture Focusing on Support for Engineering Change Management”. In: International
Journal of Product Lifecycle Management 3.4 (2008), p. 335. ISSN: 1743-5110, 1743-5129. DOI:
10.1504/IJPLM.2008.027010.

[40] Dante Pugliese, Giorgio Colombo, and Maurizio Saturno Spurio. “About the Integration
between KBE and PLM”. In: Advances in Life Cycle Engineering for Sustainable Manufacturing
Businesses. Ed. by Shozo Takata and Yasushi Umeda. London: Springer London, 2007,
pp. 131–136. ISBN: 978-1-84628-934-7. DOI: 10.1007/978-1-84628-935-4_23.

[41] Martin Kleppmann. Designing Data-Intensive Applications: The Big Ideas behind Reliable,
Scalable, and Maintainable Systems. First edition. Boston: O’Reilly Media, 2017. ISBN:
978-1-4493-7332-0.

[42] Tristan Pollock. Automated Workflows Are Eating the World.
https://venturebeat.com/2020/11/21/workflows-are-eating-the-world/amp/. Technology
News. Nov. 2020.

54

https://doi.org/10.1504/IJPLM.2008.019968
https://doi.org/10.1080/09544828.2018.1448927
https://doi.org/10.1007/978-981-13-6095-4_19
https://doi.org/10.1016/j.paerosci.2020.100642
https://doi.org/10.1115/1.4040461
https://doi.org/10.1504/IJPLM.2008.027010
https://doi.org/10.1007/978-1-84628-935-4_23

REFERENCES

[43] Nick Russell, Wil van der Aalst, and Arthur Ter Hofstede. Workflow Patterns: The Definitive
Guide. Cambridge, MA: MIT Press, 2015. ISBN: 978-0-262-02982-7.

[44] Reijers HA (Hajo). “Design and Control of Workflow Processes : Business Process
Management for the Service Industry”. In: (2002). DOI: 10.6100/IR557134.

[45] Theo Haerder and Andreas Reuter. “Principles of Transaction-Oriented Database Recovery”.
In: ACM Computing Surveys 15.4 (Dec. 1983), pp. 287–317. ISSN: 0360-0300, 1557-7341. DOI:
10.1145/289.291.

[46] Michael Rosen, ed. Applied SOA: Service-Oriented Architecture and Design Strategies.
Indianapolis, IN: Wiley Pub, 2008. ISBN: 978-0-470-22365-9.

[47] Microsoft. Workflow Persistence. Mar. 2017.

[48] Patrick R. Schaumont. A Practical Introduction to Hardware/Software Codesign. Boston, MA:
Springer US, 2010. ISBN: 978-1-4419-5999-7 978-1-4419-6000-9. DOI:
10.1007/978-1-4419-6000-9.

[49] Athanassios M. Kintsakis, Fotis E. Psomopoulos, and Pericles A. Mitkas. “Reinforcement
Learning Based Scheduling in a Workflow Management System”. In: Engineering Applications
of Artificial Intelligence 81 (May 2019), pp. 94–106. ISSN: 09521976. DOI:
10.1016/j.engappai.2019.02.013.

[50] Rafael Ferreira da Silva et al. “A Characterization of Workflow Management Systems for
Extreme-Scale Applications”. In: Future Generation Computer Systems 75 (Oct. 2017),
pp. 228–238. ISSN: 0167739X. DOI: 10.1016/j.future.2017.02.026.

[51] Stefan Jablonski and Christoph Bussler. Workflow Management: Modeling Concepts,
Architecture and Implementation. London: ITP, Internat. Thomson Computer Press, 1996.
ISBN: 978-1-85032-222-1.

[52] David Hollingsworth. Workflow Management Coalition The Workflow Reference Model.
Tech. rep. TC-1003. Avenue Marcel Thiry 204, 1200 Brussels, Belgium: Worklow Management
Coalition, June 1996.

[53] Michael Thelin. Luigi Is Now Open Source: Build Complex Pipelines of Tasks. Developer Blog.
Sept. 2012.

[54] Brian Knight, ed. Professional SQL Server 2005 Integration Services. Wrox Professional Guides.
Indianapolis, IN: Wrox/Wiley Pub, 2006. ISBN: 978-0-7645-8435-0.

[55] International Organization for Standardization. Object Management Group Business Process
Model and Notation. ISO/IEC/IEEE Standard 19510:2013. ISO/IEC JTC1 Information
technology, July 2013, p. 507.

[56] Business Process Model and Notation (BPMN), Version 2.0.

[57] Marcelo Bernardino Araújo and Rodrigo Franco Gonçalves. “Selecting a Notation to Modeling
Business Process: A Systematic Literature Review of Technics and Tools”. In: Advances in
Production Management Systems. Initiatives for a Sustainable World. Ed. by Irenilza Nääs et al.
Cham: Springer International Publishing, 2016, pp. 198–205. ISBN: 978-3-319-51133-7.

[58] Jakob Freund and Bernd Rücker. Real-Life BPMN: Using BPMN and DMN to Analyze, Improve,
and Automate Processes in Your Company. Trans. by James Venis, Kristen Hannum, and
Jalynn Venis. 4th edition. Berlin: Camunda, 2019. ISBN: 978-1-08-630209-7.

[59] Wei Han. “Modelling for Data Management & Exchange in Concurrent Engineering - A Case
Study of Civil Aircraft Assembly Line Development Process”. MA thesis. Cranfield University,
Nov. 2013.

55

https://doi.org/10.6100/IR557134
https://doi.org/10.1145/289.291
https://doi.org/10.1007/978-1-4419-6000-9
https://doi.org/10.1016/j.engappai.2019.02.013
https://doi.org/10.1016/j.future.2017.02.026

REFERENCES

[60] K. Rouibah, S. Rouibah, and W. M. P. Van Der Aalst. “Combining Workflow and PDM Based on
the Workflow Management Coalition and STEP Standards: The Case of Axalant”. In:
International Journal of Computer Integrated Manufacturing 20.8 (Dec. 2007), pp. 811–827.
ISSN: 0951-192X, 1362-3052. DOI: 10.1080/09511920600930038.

[61] Pouria G. Bigvand and Alexander Fay. “Optimal Path-Finding in a Context-Aware Workflow
Support System for Process and Automation Engineering of Plants”. In: 2017 22nd IEEE
International Conference on Emerging Technologies and Factory Automation (ETFA). Limassol:
IEEE, Sept. 2017, pp. 1–8. ISBN: 978-1-5090-6505-9. DOI: 10.1109/ETFA.2017.8247672.

[62] Pouria G. Bigvand and Alexander Fay. “A Workflow Support System for the Process and
Automation Engineering of Production Plants”. In: 2017 IEEE International Conference on
Industrial Technology (ICIT). 2017, pp. 1118–1123. DOI: 10.1109/ICIT.2017.7915519.

[63] M.M. Kwan and P.R. Balasubramanian. “Dynamic Workflow Management: A Framework for
Modeling Workflows”. In: Proceedings of the Thirtieth Hawaii International Conference on
System Sciences. Vol. 4. Wailea, HI, USA: IEEE Comput. Soc. Press, 1997, pp. 367–376. ISBN:
978-0-8186-7743-4. DOI: 10.1109/HICSS.1997.663409.

[64] Michael Adams. “Dynamic Workflow”. In: Modern Business Process Automation. Ed. by
Arthur H. M. Hofstede et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 123–145.
ISBN: 978-3-642-03122-9 978-3-642-03121-2. DOI: 10.1007/978-3-642-03121-2_4.

[65] Camunda. Zeebe.
https://docs.camunda.io/docs/1.0/product-manuals/zeebe/zeebe-overview. Software
Documentation. 2021.

[66] Cloud Elements. The State of API Integration 2021. Apr. 2021.

[67] GraphQL Specification. Oct. 2021.

[68] Benjamin C. Pierce and David N. Turner. “Local Type Inference”. In: ACM Transactions on
Programming Languages and Systems 22.1 (Jan. 2000), pp. 1–44. ISSN: 0164-0925, 1558-4593.
DOI: 10.1145/345099.345100.

[69] Open Cascade Technology. Modeling Data.
https://dev.opencascade.org/doc/overview/html/occt_user_guides__modeling_data.html.
Software Documentation. Oct. 2022.

[70] Gianfranco La Rocca, T.H.M. Langen, and Y.H.A. Brouwers. The Design and Engineering
Engine. Towards a Modular System for Collaborative Aircraft Design. Vol. 5. Jan. 2012.

[71] ParaPy. ParaPy Documentation. 2020.

[72] Dave Cooper. Genworkd GDL: A User’s Manual. 2021.

[73] D. Cooper and R.E.C. Van Dijk. “Gendl Meets X3DOM: The Declarative Web, All the Way
Down”. In: Web3D ’12: Proceedings of the 17th International Conference on Web3D Technology,
Los Angeles (CA), USA, 04-05.08.2012. New York (NY): A.C.M., 2012, p. 187. ISBN:
978-1-4503-1432-9.

[74] Siemens Digital Industries Software. Rulestream for Engineer-to-Order Process Automation:
Enabling Manufacturers to Rapidly Engineer Products to Unique Customer Specifications.
2017.

[75] TechnoSoft Inc. The Adaptive Modeling Language. A Technical Perspective. 2003.

[76] TechnoSoft Inc. AMEnterprise Product Sheet. 2004.

[77] Jeffrey Zweber et al. “Towards an Integrated Design Environment for Hypersonic Vehicle
Design and Synthesis”. In: AIAA/AAAF 11th International Space Planes and Hypersonic Systems
and Technologies Conference. Orleans, France: American Institute of Aeronautics and
Astronautics, Sept. 2002. ISBN: 978-1-62410-123-6. DOI: 10.2514/6.2002-5172.

56

https://doi.org/10.1080/09511920600930038
https://doi.org/10.1109/ETFA.2017.8247672
https://doi.org/10.1109/ICIT.2017.7915519
https://doi.org/10.1109/HICSS.1997.663409
https://doi.org/10.1007/978-3-642-03121-2_4
https://doi.org/10.1145/345099.345100
https://doi.org/10.2514/6.2002-5172

REFERENCES

[78] Universal Robots. JT File Format for UR Robots. https://www.universal-
robots.com/articles/ur/application-installation/jt-file-format-for-ur-robots/. Support Page.
June 2021.

[79] A. Molina, J. Aca, and P. Wright. “Global Collaborative Engineering Environment for Integrated
Product Development”. In: International Journal of Computer Integrated Manufacturing 18.8
(Dec. 2005), pp. 635–651. ISSN: 0951-192X, 1362-3052. DOI: 10.1080/09511920500324472.

[80] Uber. Cadence Use Cases. https://cadenceworkflow.io/docs/use-cases/. Software
Documentation. 2021.

[81] Camunda. Camunda Compared to Alternatives: Guide to The Process Automation Landscape.
July 2021.

[82] Camunda. The Camunda Platform Manual. https://docs.camunda.org/manual/7.15/.
Software Documentation. 2021.

[83] NSA Cybersecurity Directorate. Welcome to WALKOFF’s Documentation.
https://walkoff.readthedocs.io/en/latest/. Software Documentation. 2019.

[84] Sartography. What Is SpiffWorkflow? https://spiffworkflow.readthedocs.io/en/latest/.
Software Documentation. 2021.

[85] Prefect. Prefect Core. https://docs.prefect.io/core/. Software Documentation. 2021.

[86] Uber. Cadence Overview. https://cadenceworkflow.io/docs. Software Documentation. 2021.

[87] Alfrick Opidi. GraphQL vs. REST: A Comprehensive Comparison. Technology Blog. Sept. 2020.

[88] SmartBear. The State of API 2020 Report. Aug. 2020.

[89] Ajay. Why GraphQL. Technology Blog. Nov. 2017.

[90] Imco van Gent et al. “A Critical Look at Design Automation Solutions for Collaborative MDO
in the AGILE Paradigm”. In: 2018 Multidisciplinary Analysis and Optimization Conference.
Atlanta, Georgia: American Institute of Aeronautics and Astronautics, June 2018. ISBN:
978-1-62410-550-0. DOI: 10.2514/6.2018-3251.

57

https://doi.org/10.1080/09511920500324472
https://doi.org/10.2514/6.2018-3251

A Market Studies
A.1 Knowledge Based Engineering

A market study was performed to understand if modern KBE systems currently provide workflow
functionalities. For this purpose, commercial KBE systems that have a coupled integration to a CAD
kernel were analyzed. Functional compliance during the study was grouped into the categories of:
Process Orchestration (PO), Human-System (HS) coupling, and Model Database. The latter describes
if the KBE system can persist and share product state between multiple applications. The PO metric,
measures if a KBE system provides explicit process modelling to enable an overview of tasks within
an application. An implicit process orchestration capability signifies the default behavior of a KBE
system to automate a design process through an emergent flow that is abstracted from the user.
Meanwhile, HS Coupling determines the primary mechanism for providing users with information
and asking them for decisions. Finally, the Model Database capability determines if a KBE system
can persist model information and transfer it to multiple clients without running. The KBE systems
included in this market study as well as how they fulfill these needs are provided by Table A.1.

Table A.1: Market Study of Commercial KBE Systems with Coupled Integration

KBE System CAD Kernel Persistence PO HS Coupling Model Database

ParaPy [71] Open Cascade JSON Snapshot Implicit Forms No

GDL [72, 73] SMLib Binary Model Implicit Forms No

Rulestream [74] Siemens NX JT Model Explicit Forms Yes, through Siemens TeamCenter

AML [75, 76, 77] Parasolid XML Model Implicit Forms Yes, through AMEnterprise

At present, the ParaPy SDK and the Genworks GDL KBE systems have no capability to persist and
transfer the information of the product model without the KBE system running. Although ParaPy
provides support for transferring data through STEP and IGES, the information model containing
evaluated attributes is not transferred. Furthermore, the persistence mechanism of ParaPy is a light-
weight JSON snapshot that records user-inputs to be able to reconstruct the model at launch. This
means that evaluated attributes and geometry is not available in the snapshot. In the case of GDL, its
use of a binary persistence format means that model information can only be accessed when GDL is
running. However, unlike ParaPy, the saved “world” can be launched instantly without requiring the
KBE system to re-evaluate [72, p.20].

On the contrary, Rulestream and AML have a model database functionality. Rulestream enables this
functionality by persisting model geometry and metadata to JT files [74, p.4] which can be used for
product visualization, collaboration, and data sharing with Siemens PLM software [78]. AML enables
collaboration on a distributed KBE model through an Object Request Broker (ORB) which allows
multiple users to be connected across different time zones, and edit models collaboratively [77, p.2].
Although AML through AMEnterprise has functionalities to enable geographically distributed teams
to collaborate, [79] found in their study that AML is not suitable to use in a web-browser, and must
be installed locally on the remote machine. As a result, this hampers usability of AML in a virtual
enterprise, where not every company will desire to install the client on their machines. Nonetheless,
in their white-paper, AML advertise “a single underlying object-oriented database”, thus the possibil-
ity exists to create a web-based client using this underlying technology [75, p.5]. With the exception
of AML, all other KBE systems in this survey provide capabilities to deploy the application on the web.

Most KBE systems analyzed have implicit process orchestration and all use forms as their primary
mechanism for human-system coupling; allowing a user to be roughly guided through a process by

58

A.2. WORKFLOW MANAGEMENT APPENDIX A. MARKET STUDIES

sequence of forms. Only RuleStream has a type of explicit process modelling by separating product
and process trees, allowing a design procedure to be represented separately to the product model [40,
p.132]. Therefore, this market study aligns with the observation of that KBE applications have weak
workflow integration [2, p.262].

A.2 Workflow Management

As the synthesis of KBE and WfM is a new field of research, the features required are not available from
a single product. However, creating a bespoke workflow engine would be time-consuming and error-
prone. Therefore, extending open-source workflow engines can utilize the tremendous research and
development that has gone into them. These were evaluated based on the presence of features listed
below and a summary of their capabilities is presented by Table A.2. Polling capability enables execu-
tion of long-running tasks and “fault-tolerance” signifies if a WfMS has built-in support for workflow
persistence and compensation actions.

The Camunda Platform is a BPMS written in Java, that has a strong open-source community and
maintains the BPMN-js library for modelling and visualization purposes. It is the only surveyed sys-
tem that provides all the desired features. Its counterpart, Zeebe, is poised to enable greater hori-
zontal scaling capability And enhanced usability through auto-generated clients utilizing gRPC. This
is similar to Uber’s Cadence workflow manager that uses Apache Thrift instead of gRPC for client
generation. A unique aspect of Cadence is its ability to persist full-state of multithreaded applica-
tions. Interestingly, Cadence does not have BPMN modelling capability and argues that low-code
platforms are limited when processes grow beyond simple “hello-world” use-cases [80]. Camunda
confirms this by stating that low-code platforms lack the capability for end-to-end orchestration of
complex business processes and do not scale well [81, p.7]. However, they assert that the combi-
nation of BPMN with the presence of a flexible and modular interface for developers prevents the
pit-falls of previous low-code products [81].

The remainder of the surveyed workflow managers are Python-based which is advantageous to easily
interface with the ParaPy SDK. Although Prefect has a feature-set that geared toward data pipelines
and ETL tasks instead of WfMS, it is the most complete and easy-to-use Python package available
and has a GraphQL API. The advantages of the latter will be covered in Section A.3. It also supports
long-running tasks through a configurable “heartbeat” and has optional flow-state caching. Com-
paratively, the NSA’s WALKOFF prioritizes security and has no persistence capabilities, while Spiff-
Workflow introduces BPMN capabilities but is not useable on its own for this research. A potential
solution is to overcome the lack of a BPMN engine in Prefect by using the parser of SpiffWorkflow.
However, the most straight-forward solution is to use Zeebe through the Python gRPC client or Ca-
munda through its REST API.

Table A.2: Survey of Open-Source Workflow Management Systems

Workflow Engine Language Type API Visualization Polling Fault Tolerance

Camunda [82] Java BPMS REST BPMN Yes Yes

Zeebe [65] Java BPMS gRPC BPMN Yes Yes

WALKOFF [83] Python WfMS REST Proprietary Yes No

SpiffWorkflow [84] Python WfMS None BPMN No No

Prefect [85] Python Data Pipeline GraphQL Proprietary Yes Yes

Cadence [86] Go WfMS Thrift Proprietary Yes Yes

59

A.3. WEB APPLICATION PROGRAMMING INTE . . . APPENDIX A. MARKET STUDIES

A.3 Web Application Programming Interfaces

Application Programming Interfaces (APIs) expose the functionality of a service to clients through a
representation that is both human and machine-readable. The human-readable component allows
creation of a Domain Specific Language (DSL) to add semantic meaning to what the service provides.
Therefore, an API created for a KBE product model can facilitate information exchange in a workflow.
Over the years, several popular API description languages have emerged as illustrated by Figure A.1.

RPC (Remote
Procedure Call)

1981 1991

CORBA (The Common
Object Request Broker

Architecture)

1998 2000 2015 2016

SOAP (Simple Object

Access Protocol)

REST
(Representational

State Transfer)

GraphQL

gRPC

Figure A.1: Timeline of Popular API Description Languages [87]

Since its release in 2000, REST has become the backbone of the modern web and is the standard
choice of 82 % of developers [88, p.49]. A REST API, exposes several URI “end-points” that accept
requests to be encoded in a JSON body. Since each end-point exposes a single data-type such as
“users” or “comments”, under-fetching and over-fetching problems are common. The former means
that requests to multiple end-points are needed to retrieve a user’s comments. The latter means that
unnecessary data is received in the response that must then be filtered. These problems cause over-
head for client devices and incur additional data bandwidth.

Addressing these problems for mobile devices motivated Facebook to develop GraphQL [89]. Instead
of forcing the client to do extra processing to normalize data, GraphQL allows all data types to be
served over a single end-point, enabling clients to ask for exactly the data they expect to receive.
The “graph” part of the name originates from its usability for resolving queries such as obtaining the
friends of an individual who have all seen a particular movie; thereby traversing the edges of a data
graph. In a recent survey of industry professionals, the highest demanded customer features were
APIs that fit a specific business need and better documentation [66, p.18]. GraphQL’s query capabil-
ity, typing system, integral documentation, and ability to be served over a single end-point make it
attractive to supply semantically rich and flexible APIs.

The most recent addition to the API landscape is Google’s gRPC, which supports bi-directional stream-
ing and uses a binary format that is more efficient than the JSON strings used by REST and GraphQL.
However, it lacks the same degree of tooling that is available for the GraphQL ecosystem. These
tools enrich the developer experience through code-completion and type-hinting features available
as plugins for most Integrated Development Environments (IDEs). A unique feature of the GraphQL
ecosystem is Apollo Federation, which tackles the limitations of monolithic schemas by enabling ge-
ographically distributed development teams to relate their GraphQL schemas to form a unified API.
Here, the versionless principle of GraphQL allows companies to develop their APIs gradually; letting
the federated schema naturally emerge over time. This could provide the flexibility needed to al-
low “ad-hoc” extensions and speed-up the slow development pace of CPACS [90, p.16]. Overall, 75 %
of respondents state that GraphQL will become the dominant API of the future, and might achieve
critical mass in the coming years [66, p.32]. Combined with its impressive features, the state-of-the-
art nature of GraphQL make it attractive to investigate as the API description language to serve KBE
product models.

60

B Information Modeling
The purpose of this section is to provide additional information for how the information modeling
through the use of GraphQL functions behind the scenes. First off it is useful to examine how the gen-
erated GraphQL schema relates to application source code. This relationship is given by Figure B.1.
Here, one can observe how slots within the KBE application are represented by fields on the resultant
GraphQL schema. Furthermore, input slots (or any settable slot for that matter) can be recognized
by the presence of a value argument. This allows these fields to be used in mutations to perform
updates to the inputs of the application. An example is the openingRadius field. One can also no-
tice in the schema that inheritance is implemented via interfaces. For example, the Balloon inherits
from Base. In the GraphQL schema, one can then see the Method Resolution Order (MRO) starting
with Base, and progressing onto the superclasses AbstractBase and ParaPyObject. Representing
inheritance this way is beneficial to be able to query the common attributes of classes when they are
used in type unions. An example of this is provided later in Chapter C.

1 class Balloon(Base):
2 opening_radius = Input(0.5)
3 radius = Input(5)
4 half_height = Input(3)
5 tube_height = Input(0.5)
6 height = Input(10)
7 basket_width = Input(2)
8 basket_length = Input(2)
9 rope_length = Input(2)

10

11 @Attribute
12 def curve(self):
13 return BSplineCurve(
14 control_points=[
15

Point(self.opening_radius,
0, 0),

,→
,→

16

Point(self.opening_radius,
0,
self.tube_height),

,→
,→
,→

17 Point(self.radius, 0,
self.half_height),,→

18 Point(self.radius, 0,
self.height),,→

19 Point(0, 0,
self.height),,→

20]
21)
22

23 @Part
24 def balloon(self):
25 return RevolvedSurface(
26 basis_curve=self.curve,

center=Point(),
direction=VZ

,→
,→

27)

(a) ParaPy Source Code (b) GraphQL Schema

Figure B.1: Comparison of Source Code and Transpiled GraphQL Schema

61

APPENDIX B. INFORMATION MODELING

As mentioned in Section 3.2.1, without slot resolvers the generated schema would not have the knowl-
edge required to be able to serve queries. The basic function of a slot resolver as demonstrated below
by Listing B.1, is to convert between GraphQL and ParaPy types. Each slot resolver defines a can_-
resolve method which is called by the transpiler to determine if the current SlotResolver is capa-
ble of representing the provided slot. Using this methodology makes it possible to add new slot re-
solvers without needing to modify existing code, which makes it easier to improve the coverage of the
transpiler gradually over time. In this case, Listing B.1 provides the source code of a BaseResolver,
which is responsible for obtaining a base instance from a given parent, here referred to as an owner.
One can see in Line 21, how a getattr call is made using the encoded slot name to retrieve the re-
quested instance. Then the encoded GraphQL type is instantiated by passing the obtained instance
as its owner. In this way, the product tree can be traversed as each accessed child will put itself as an
owner until the selection set of the query is fully resolved.

Whats more is that a SlotResolver is responsible for determining the correct return type of the
generated resolver method. This returned resolver function is defined as a closure, which makes
it convenient to access data such as the GraphQL Object Type as well as the name of the ParaPy slot
this resolver should be bound to. On a side note, a way to understand where GraphQL gets is name is
to examine the nodes and edges of a GraphQL schema, Figure B.2. Essentially, an Object type relates
to other types through its fields which are then the edges of a graph.

1 class BaseSlotResolver(OptionalSlotResolver[V], register=True):
2 @staticmethod
3 @exclude_union
4 @exclude_sequence
5 @exclude_builtin_sequence
6 def can_resolve(slot_data: SlotData) -> bool:
7 return_type = strip_optional(slot_data.return_type)
8 if get_origin(return_type) is None:
9 bases = extract_baseclasses(return_type)

10 return len(bases) == 1
11 return False
12

13 def compile_resolver(
14 self,
15) -> Callable[..., Awaitable[V]]:
16

17 gql_type = self.graphql_type
18 slot_name = self.slot.__name__
19

20 async def resolver(self: Base):
21 instance = getattr(self.owner, slot_name)
22 if instance is None:
23 return None
24 return gql_type(owner=instance)
25

26 resolver.__annotations__.pop("self")
27 resolver.__annotations__["return"] = self.return_annotation
28 return resolver
29

30 @cached_property
31 def graphql_type(self) -> Type[Any]:
32 base_class = extract_baseclasses(self.slot_data.return_type).pop()
33 return self.type_map[base_class]

Listing B.1: Example Slot Resolver used to Access ParaPy Base Instances

62

APPENDIX B. INFORMATION MODELING

Q
ue

ry
cu

rre
nt

St
at

e
St

at
eI

nf
o

st
at

es
[S

ta
te

In
fo

!]!

ro
ot

Ba
llo

on
D

es
ig

ne
r!

St
at

eI
nf

o
st

at
e

St
rin

g

pe
rs

is
to

r
Pe

rs
is

to
rs

Q
ue

ry
:c

ur
re

nt
St

at
e

Q
ue

ry
:s

ta
te

s

Ba
llo

on
D

es
ig

ne
r

id
Py

ID
!

re
fc

ha
in

St
rin

g!

co
lo

r
St

rV
al

ue
!

st
ep

In
tV

al
ue

!

po
pS

iz
e

In
tV

al
ue

!

he
ig

ht
JS

O
N

Va
lu

e!

ra
di

us
JS

O
N

Va
lu

e!

sh
ap

e
JS

O
N

Va
lu

e!

se
le

ct
ed

D
es

ig
n

Ba
llo

on
!

de
si

gn
Po

in
ts

JS
O

N
Va

lu
e!

m
od

el
s

Ba
llo

on
Se

qu
en

ce
!

de
si

gn
Fo

un
d

Bo
ol

Va
lu

e!

de
si

gn
Ap

pr
ov

ed
Bo

ol
Va

lu
e!

ap
pr

ov
ed

D
es

ig
n

Ba
llo

on
!

Q
ue

ry
:ro

ot

St
rV

al
ue

id
Py

ID
!

py
th

on
N

am
e

St
rin

g!

re
fc

ha
in

St
rin

g!

de
pe

nd
en

ts
[C

ac
he

!]!

pr
ec

ed
en

ts
[C

ac
he

!]!

m
et

ad
at

a
JS

O
N

py
th

on
Ty

pe
St

rin
g!

va
lu

e
St

rin
g!

Ba
llo

on
D

es
ig

ne
r:c

ol
or

In
tV

al
ue

id
Py

ID
!

py
th

on
N

am
e

St
rin

g!

re
fc

ha
in

St
rin

g!

de
pe

nd
en

ts
[C

ac
he

!]!

pr
ec

ed
en

ts
[C

ac
he

!]!

m
et

ad
at

a
JS

O
N

py
th

on
Ty

pe
St

rin
g!

va
lu

e
In

t!

Ba
llo

on
D

es
ig

ne
r:s

te
p

Ba
llo

on
D

es
ig

ne
r:p

op
Si

ze

JS
O

N
Va

lu
e

id
Py

ID
!

py
th

on
N

am
e

St
rin

g!

re
fc

ha
in

St
rin

g!

de
pe

nd
en

ts
[C

ac
he

!]!

pr
ec

ed
en

ts
[C

ac
he

!]!

m
et

ad
at

a
JS

O
N

py
th

on
Ty

pe
St

rin
g!

va
lu

e
JS

O
N

!

Ba
llo

on
D

es
ig

ne
r:h

ei
gh

t
Ba

llo
on

D
es

ig
ne

r:r
ad

iu
s

Ba
llo

on
D

es
ig

ne
r:s

ha
pe

Ba
llo

on
D

es
ig

ne
r:d

es
ig

nP
oi

nt
s

Ba
llo

on
id

Py
ID

!

re
fc

ha
in

St
rin

g!

op
en

in
gR

ad
iu

s
Fl

oa
tV

al
ue

!

ra
di

us
In

tV
al

ue
!

ha
lfH

ei
gh

t
In

tV
al

ue
!

tu
be

H
ei

gh
t

Fl
oa

tV
al

ue
!

he
ig

ht
In

tV
al

ue
!

ba
sk

et
W

id
th

In
tV

al
ue

!

ba
sk

et
Le

ng
th

In
tV

al
ue

!

ro
pe

Le
ng

th
In

tV
al

ue
!

cu
rv

e
BS

pl
in

eC
ur

ve
!

ba
llo

on
R

ev
ol

ve
dS

ur
fa

ce
!

ba
sk

et
Ba

sk
et

!

vo
lu

m
e

Fl
oa

tV
al

ue
!

w
ei

gh
t

Fl
oa

tV
al

ue
!

co
st

Fl
oa

tV
al

ue
!

co
st

R
ev

en
ue

JS
O

N
Va

lu
e!

Ba
llo

on
D

es
ig

ne
r:s

el
ec

te
dD

es
ig

n

Ba
llo

on
D

es
ig

ne
r:a

pp
ro

ve
dD

es
ig

n

Ba
llo

on
Se

qu
en

ce
id

Py
ID

!

re
fc

ha
in

St
rin

g!

fir
st

Ba
llo

on
Ite

m
!

la
st

Ba
llo

on
Ite

m
!

le
ng

th
In

t!

ite
m

s
[B

al
lo

on
Ite

m
!]!

Ba
llo

on
D

es
ig

ne
r:m

od
el

s

Bo
ol

Va
lu

e
id

Py
ID

!

py
th

on
N

am
e

St
rin

g!

re
fc

ha
in

St
rin

g!

de
pe

nd
en

ts
[C

ac
he

!]!

pr
ec

ed
en

ts
[C

ac
he

!]!

m
et

ad
at

a
JS

O
N

py
th

on
Ty

pe
St

rin
g!

va
lu

e
Bo

ol
ea

n!

Ba
llo

on
D

es
ig

ne
r:d

es
ig

nF
ou

nd

Ba
llo

on
D

es
ig

ne
r:d

es
ig

nA
pp

ro
ve

d

C
ac

he
id

Py
ID

!

py
th

on
N

am
e

St
rin

g!

re
fc

ha
in

St
rin

g!

de
pe

nd
en

ts
[C

ac
he

!]!

pr
ec

ed
en

ts
[C

ac
he

!]!

m
et

ad
at

a
JS

O
N

St
rV

al
ue

:d
ep

en
de

nt
s

St
rV

al
ue

:p
re

ce
de

nt
s

In
tV

al
ue

:d
ep

en
de

nt
s

In
tV

al
ue

:p
re

ce
de

nt
s

JS
O

N
Va

lu
e:

de
pe

nd
en

ts

JS
O

N
Va

lu
e:

pr
ec

ed
en

ts

Ba
llo

on
:ra

di
us

Ba
llo

on
:h

al
fH

ei
gh

t

Ba
llo

on
:h

ei
gh

t

Ba
llo

on
:b

as
ke

tW
id

th

Ba
llo

on
:b

as
ke

tL
en

gt
h

Ba
llo

on
:ro

pe
Le

ng
th

Ba
llo

on
:c

os
tR

ev
en

ue

Fl
oa

tV
al

ue
id

Py
ID

!

py
th

on
N

am
e

St
rin

g!

re
fc

ha
in

St
rin

g!

de
pe

nd
en

ts
[C

ac
he

!]!

pr
ec

ed
en

ts
[C

ac
he

!]!

m
et

ad
at

a
JS

O
N

py
th

on
Ty

pe
St

rin
g!

va
lu

e
Fl

oa
t!

Ba
llo

on
:o

pe
ni

ng
R

ad
iu

s

Ba
llo

on
:tu

be
H

ei
gh

t

Ba
llo

on
:v

ol
um

e
Ba

llo
on

:w
ei

gh
t

Ba
llo

on
:c

os
t

BS
pl

in
eC

ur
ve

id
Py

ID
!

re
fc

ha
in

St
rin

g!

po
si

tio
n

Po
si

tio
n!

sh
ap

e
Sh

ap
e!

Ba
llo

on
:c

ur
ve

R
ev

ol
ve

dS
ur

fa
ce

id
Py

ID
!

re
fc

ha
in

St
rin

g!

po
si

tio
n

Po
si

tio
n!

sh
ap

e
Sh

ap
e!

Ba
llo

on
:b

al
lo

on

Ba
sk

et
id

Py
ID

!

re
fc

ha
in

St
rin

g!

po
si

tio
n

Po
si

tio
n!

w
id

th
Fl

oa
tV

al
ue

!

le
ng

th
Fl

oa
tV

al
ue

!

bo
xH

ei
gh

t
Fl

oa
tV

al
ue

!

ra
ck

H
ei

gh
t

In
tV

al
ue

!

he
ig

ht
Fl

oa
tV

al
ue

!

fra
m

eD
im

Fl
oa

tV
al

ue
!

bo
x

Bo
x!

at
ta

ch
m

en
tP

oi
nt

JS
O

N
Va

lu
e!

at
ta

ch
m

en
tP

oi
nt

Ba
sk

et
JS

O
N

Va
lu

e!

ve
ct

or
s

JS
O

N
Va

lu
e!

ra
ck

C
yl

in
de

rS
eq

ue
nc

e!

co
nn

ec
to

rs
Bo

xS
eq

ue
nc

e!

bu
rn

er
Bo

x!

Ba
llo

on
:b

as
ke

t

Ba
llo

on
Ite

m
in

de
x

In
t!

ne
xt

Ba
llo

on

pr
ev

io
us

Ba
llo

on

ch
ild

Ba
llo

on
!

Ba
llo

on
Se

qu
en

ce
:fi

rs
t

Ba
llo

on
Se

qu
en

ce
:la

st

Ba
llo

on
Se

qu
en

ce
:it

em
s

Bo
ol

Va
lu

e:
de

pe
nd

en
ts

Bo
ol

Va
lu

e:
pr

ec
ed

en
ts

C
ac

he
:d

ep
en

de
nt

s
C

ac
he

:p
re

ce
de

nt
s

Fl
oa

tV
al

ue
:d

ep
en

de
nt

s

Fl
oa

tV
al

ue
:p

re
ce

de
nt

s

Po
si

tio
n

id
Py

ID
!

re
fc

ha
in

St
rin

g!

lo
ca

tio
n

Po
in

t!

or
ie

nt
at

io
n

O
rie

nt
at

io
n!

BS
pl

in
eC

ur
ve

:p
os

iti
on

Sh
ap

e
O

C
C

Ba
se

64
!

ST
EP

St
rin

g!
BS

pl
in

eC
ur

ve
:s

ha
pe

R
ev

ol
ve

dS
ur

fa
ce

:p
os

iti
on

R
ev

ol
ve

dS
ur

fa
ce

:s
ha

pe

Ba
sk

et
:ra

ck
H

ei
gh

t

Ba
sk

et
:a

tta
ch

m
en

tP
oi

nt

Ba
sk

et
:a

tta
ch

m
en

tP
oi

nt
Ba

sk
et

Ba
sk

et
:v

ec
to

rs

Ba
sk

et
:w

id
th

Ba
sk

et
:le

ng
th

Ba
sk

et
:b

ox
H

ei
gh

t

Ba
sk

et
:h

ei
gh

t

Ba
sk

et
:fr

am
eD

im

Ba
sk

et
:p

os
iti

on

Bo
x

id
Py

ID
!

re
fc

ha
in

St
rin

g!

po
si

tio
n

Po
si

tio
n!

sh
ap

e
Sh

ap
e!

Ba
sk

et
:b

ox
Ba

sk
et

:b
ur

ne
r

C
yl

in
de

rS
eq

ue
nc

e
id

Py
ID

!

re
fc

ha
in

St
rin

g!

fir
st

C
yl

in
de

rIt
em

!

la
st

C
yl

in
de

rIt
em

!

le
ng

th
In

t!

ite
m

s
[C

yl
in

de
rIt

em
!]!

Ba
sk

et
:ra

ck

Bo
xS

eq
ue

nc
e

id
Py

ID
!

re
fc

ha
in

St
rin

g!

fir
st

Bo
xI

te
m

!

la
st

Bo
xI

te
m

!

le
ng

th
In

t!

ite
m

s
[B

ox
Ite

m
!]!

Ba
sk

et
:c

on
ne

ct
or

s

Ba
llo

on
Ite

m
:n

ex
t

Ba
llo

on
Ite

m
:p

re
vi

ou
s

Ba
llo

on
Ite

m
:c

hi
ld

Po
in

t
x

Fl
oa

t

y
Fl

oa
t

z
Fl

oa
t

Po
si

tio
n:

lo
ca

tio
n

O
rie

nt
at

io
n

x
Ve

ct
or

!

y
Ve

ct
or

!

z
Ve

ct
or

!

Po
si

tio
n:

or
ie

nt
at

io
n

Bo
x:

po
si

tio
n

Bo
x:

sh
ap

e

C
yl

in
de

rIt
em

in
de

x
In

t!

ne
xt

C
yl

in
de

r

pr
ev

io
us

C
yl

in
de

r

ch
ild

C
yl

in
de

r!

C
yl

in
de

rS
eq

ue
nc

e:
fir

st

C
yl

in
de

rS
eq

ue
nc

e:
la

st

C
yl

in
de

rS
eq

ue
nc

e:
ite

m
s

Bo
xI

te
m

in
de

x
In

t!

ne
xt

Bo
x

pr
ev

io
us

Bo
x

ch
ild

Bo
x!

Bo
xS

eq
ue

nc
e:

fir
st

Bo
xS

eq
ue

nc
e:

la
st

Bo
xS

eq
ue

nc
e:

ite
m

s

Ve
ct

or
x

Fl
oa

t

y
Fl

oa
t

z
Fl

oa
t

O
rie

nt
at

io
n:

x

O
rie

nt
at

io
n:

y
O

rie
nt

at
io

n:
z

C
yl

in
de

r
id

Py
ID

!

re
fc

ha
in

St
rin

g!

po
si

tio
n

Po
si

tio
n!

sh
ap

e
Sh

ap
e!

C
yl

in
de

rIt
em

:n
ex

t

C
yl

in
de

rIt
em

:p
re

vi
ou

s
C

yl
in

de
rIt

em
:c

hi
ld

Bo
xI

te
m

:n
ex

t

Bo
xI

te
m

:p
re

vi
ou

s
Bo

xI
te

m
:c

hi
ld

C
yl

in
de

r:p
os

iti
on

C
yl

in
de

r:s
ha

pe

F
ig

u
re

B
.2

:T
ra

n
sp

il
ed

H
o

tA
ir

B
al

lo
o

n
Sc

h
em

a
V

is
u

al
iz

ed
in

G
ra

p
h

Q
L

Vo
ya

ge
r

63

APPENDIX B. INFORMATION MODELING

With the model persistence functionality inplace, it was quickly realized that the performance of
the GraphQL API startup time is often worse than the time it takes for an application instance to
be relaunched. This is detrimental in situations where a KBE application is restarted often within
a process. Although the intended usage for the GraphQL API is for a single process to be kept alive
that is capable of serving multiple design instances at once, it is still worthwhile to investigate what
consumes the most time. For this purpose the profiling tool pyinstrument is used to determine
which calls within the transpilation algorithm consume the most time. The results of this analysis
on the Warehouse application for both with and without inferencing are given by Figures B.3 and B.4
respectively. Here it is striking to see that the majority of time is spent creating GraphQL object types
during schema launch. In fact, the transpilation algorithm developed for the thesis consumes just
1.1 % of the total transpilation time. Even with inferencing enabled, the majority of transpile time is
still due to creation of GraphQL object types. One can argue that the high number of generics types
used to model the transpiled schema could be causing this slowdown. Nonetheless, this requires
further investigation.

pyinstrumentpyinstrument
Absolute time on Recorded: 11/18/2022, 10:37:48 AM Duration: 10.8 seconds

Proportional time on Samples: 10757 CPU time: 10.8 seconds

100.0% analyze analyzer.py:147
100.0% Schema.__init__ parapy\wfm\graphql\schema.py:110

98.9% Schema.__init__ parapy\wfm\graphql\schema.py:57
98.9% Schema.__init__ strawberry\schema\schema.py:47

98.8% GraphQLSchema.__init__ graphql\type\schema.py:131
5 frames hidden (graphql)
98.0% <lambda> strawberry\schema\schema_converter.py:413

98.0% GraphQLCoreConverter.get_graphql_fields strawberry\schema\schema_converter.py:292
98.0% _get_thunk_mapping strawberry\schema\schema_converter.py:265

64.8% StrawberryField.type strawberry\field.py:231
33.1% GraphQLCoreConverter.from_field strawberry\schema\schema_converter.py:217

1.1% AnalysisTranspiler.transpile parapy\wfm\graphql\transpiler.py:585

Figure B.3: Profiling Result of Warehouse Application (Without Inferencing)

pyinstrumentpyinstrument
Absolute time on Recorded: 11/18/2022, 10:28:47 AM Duration: 19.3 seconds

Proportional time on Samples: 13009 CPU time: 13.1 seconds

100.0% analyze analyzer.py:147
100.0% Schema.__init__ parapy\wfm\graphql\schema.py:110

67.0% Schema.__init__ parapy\wfm\graphql\schema.py:57
67.0% Schema.__init__ strawberry\schema\schema.py:47

67.0% GraphQLSchema.__init__ graphql\type\schema.py:131
5 frames hidden (graphql)
66.4% <lambda> strawberry\schema\schema_converter.py:413

66.4% GraphQLCoreConverter.get_graphql_fields strawberry\schema\schema_converter.py:292
66.4% _get_thunk_mapping strawberry\schema\schema_converter.py:265

43.6% StrawberryField.type strawberry\field.py:231
22.8% GraphQLCoreConverter.from_field strawberry\schema\schema_converter.py:217

33.0% AnalysisTranspiler.transpile parapy\wfm\graphql\transpiler.py:585
32.4% cached_property.__get__ backports\cached_property__init__.py:60

32.4% AnalysisTranspiler.model_map parapy\wfm\graphql\transpiler.py:468
32.4% AnalysisTranspiler.populate_models parapy\wfm\graphql\transpiler.py:481

32.0% AnalysisInferrencer.infer analyzer.py:130
32.0% AnalysisInferrencer.infer parapy\wfm\graphql\inferencers\abstract.py:77

31.9% AnalysisInferrencer.run parapy\wfm\graphql\inferencers\pyright.py:346
31.9% PyrightLauncher.run parapy\wfm\graphql\inferencers\pyright.py:149

31.9% PyrightProcess.analyze parapy\wfm\graphql\inferencers\pyright.py:232
31.9% BufferedReader.readline <built-in>:0

1 frames hidden (<built-in>)

Figure B.4: Profiling Result of Warehouse Application (With Inferencing)

64

C Example Queries
The purpose of this appendix is to demonstrate how the information of a KBE application can be ac-
cessed via the GraphQL API. Furthermore, the aim is to demonstrate how this query language satifies
the primary language features in KBE. Starting off with a simple query given by Figure C.1, the is_-
sphere slot of a KBE application is queried using the provided syntax code. Notice how the provided
response structurally resembles the provided query.

query {
 root {
 isSphere {
 value
 }
 }
}

(a) Query

{
 "data": {
 "root": {
 "isSphere": {
 "value": false
 }
 }
 }
}

(b) Response

Figure C.1: Query Formulation for Requesting a Boolean Value Slot

If one were to then desire to change the value of is_sphere a so-called mutation would be required.
An example of a mutation is then provided by Figure C.2. Here the operation type is specified as a
mutation and a value argument is passed, in this case a true value to change the value of the slot
from the previous query. Note that a selection set is always required when dealing with scalar values
such as booleans as currently GraphQL does not support scalar unions. Therefore, for this reason
along with the desire to expose further metadata within a value, an Object type is chosen to represent
scalars.

mutation {
 root {
 isSphere(value: true) {
 value
 }
 }
}

(a) Mutation

{
 "data": {
 "root": {
 "isSphere": {
 "value": true
 }
 }
 }
}

(b) Response

Figure C.2: Mutation Formulation for Updating a Boolean Value Slot

65

APPENDIX C. EXAMPLE QUERIES

Dependency Tracking

As previously mentioned it is desirable to access the dependents or precedents of the caches of a
ParaPy instance. In the example below, the same is_sphere slot is queried for dependent values. At
the same time a dynamic type in the KBE application is queried which depends on the truethliness of
is_sphere. While dynamic types will be covered in the subsequent section, the inline fragment used
is required as otherwise the specific field radius is not otherwise accessible on the other available
type in this schema, which is a Box. As a result, if one where to leave out the inline fragment, then the
radius field would not be queriable, and GraphiQL or other GraphQL linters would raise an error.

query {
 root {
 isSphere {
 dependents {
 refchain
 }
 }
 dynamicType {
 ... on Sphere {
 radius {
 precedents {
 refchain
 }
 }
 }
 }
 }
}

(a) Query

{
 "data": {
 "root": {
 "isSphere": {
 "dependents": [
 {
 "refchain": "root.dynamic_type"
 }
]
 },
 "dynamicType": {
 "radius": {
 "precedents": [
 {
 "refchain": "root.dimension"
 }
]
 }
 }
 }
 }
}

(b) Response

Figure C.3: Query Formulation for Accessing Dependency Information

Dynamic Type

Similar to the previous example, an inline fragment is once again required to access the different
slots of a field returning a type union. The difference here is that the query includes both the Box
and Sphere type. Such a query could be required at runtime to handle the unknown return type.
For example, if a tool were being developed to analyze the volume of these shapes, the tool would
need to be aware that the returned type can either by a Box or a Sphere. If the tool then had the
capability to calculate the volume of both of these types, then it would perform a query like the one
given below. Although only one type will be returned, the tool would perform the query with the
intention of fetching either of the two types. As a result, type unions in GraphQL are a powerful
concept that provide support for the dynamic type construct in the KBE paradigm.

66

APPENDIX C. EXAMPLE QUERIES

query {
 root {
 isSphere {
 value
 }
 dynamicType {
 ... on Sphere {
 radius {
 value
 }
 }
 ... on Box {
 width {
 value
 }
 length {
 value
 }
 height {
 value
 }
 }
 }
 }
}

(a) Query

{
 "data": {
 "root": {
 "isSphere": {
 "value": true
 },
 "dynamicType": {
 "radius": {
 "value": 1
 }
 }
 }
 }
}

(b) Response

Figure C.4: Query Formulation for a Requesting a Dynamic Type

67

APPENDIX C. EXAMPLE QUERIES

Sequence

Another important aspect to support in KBE applications is the ability to index specific items from
within a sequence. Although GraphQL has the Relay Specification i, for engineers, especially those
using ParaPy are used to working with Python. As a result, adoption of the Python slices seemed more
intuitive. As can be seen from the example below, the first two items in the sequence can be queried
through the GraphQL API.

query {
 root {
 sequence {
 items(start: 0, stop: 2) {
 child {
 position {
 location {
 x
 }
 }
 }
 }
 }
 }
}

(a) Query

{
 "data": {
 "root": {
 "sequence": {
 "items": [
 {
 "child": {
 "position": {
 "location": {
 "x": 0
 }
 }
 }
 },
 {
 "child": {
 "position": {
 "location": {
 "x": 10
 }
 }
 }
 }
]
 }
 }
 }
}

(b) Response

Figure C.5: Query Formulation for Accessing Items of a Sequence

Similarly, slice syntax can be used to mutate a specific item in a sequence as shown below. Here the
width of the 5th item in sequence is changed to a value of 2. What is important to grasp, is that the
ability to perform such fine-grained queries and mutations is a cornerstone to enabling the corre-
lated dependency feature.

ihttps://relay.dev/docs/guides/graphql-server-specification/

68

https://relay.dev/docs/guides/graphql-server-specification/

APPENDIX C. EXAMPLE QUERIES

mutation {
 root {
 sequence {
 items(start: 4, stop: 5) {
 index
 child {
 width(value: 2) {
 value
 }
 }
 }
 }
 }
}

(a) Mutation

{
 "data": {
 "root": {
 "sequence": {
 "items": [
 {
 "index": 4,
 "child": {
 "width": {
 "value": 2
 }
 }
 }
]
 }
 }
 }
}

(b) Response

Figure C.6: Mutation Formulation for Updating an Item in a Sequence

69

APPENDIX C. EXAMPLE QUERIES

Dynamic Sequence

Dynamic type functionality can also be used on sequences as ParaPy supports the notion of a dy-
namic sequence. In the query below, the sequence can either consist of a Square or a Box. While
the syntax for accessing the dynamic type is similar to before, an interesting aspect to this query is
the inclusion of the GeomBase interface. What this shows is that even with the presence of dynamict
types, common fields between the Square and Box can be queried if the inline fragment is set to a
common interface. In this case, both Box and Sphere derive from GeomBase, making it possible to
query the position on both return types.

query {
 root {
 dynamicSequence {
 items(start: 0, stop: 2) {
 child {
 __typename
 ... on Box {
 width {
 value
 }
 }
 ... on Sphere {
 radius {
 value
 }
 }
 ... on GeomBase {
 position {
 location {
 x
 }
 }
 }
 }
 }
 }
 }
}

(a) Query

{
 "data": {
 "root": {
 "dynamicSequence": {
 "items": [
 {
 "child": {
 "__typename": "Box",
 "width": {
 "value": 1
 },
 "position": {
 "location": {
 "x": 0
 }
 }
 }
 },
 {
 "child": {
 "__typename": "Sphere",
 "radius": {
 "value": 1
 },
 "position": {
 "location": {
 "x": 10
 }
 }
 }
 }
]
 }
 }
 }
}

(b) Response

Figure C.7: Query Formulation for Accessing Items of a Dynamic Sequence

70

APPENDIX C. EXAMPLE QUERIES

Geometry

Another feature of the GraphQL API is the ability to ask for the geometry of a specific shape within
the product tree. What makes this feature worthwhile is the ability for the client to specify in what
exchange type it would like to receive the shape. In this case STEP is used and the query specifies
that the dimensions should be in mm. Note that the output is truncated for in order to be able to
represent the response on the page. In the future, this feature could allow heterogeneous tools to
query for the geometry in a suitable exchange format, and make use of the geometry generated by
the KBE application. As a result, a KBE service could be deployed that is in charge of generating
geometries for optimizations. A potential use-case could be the MMG.

query {
 root {
 dynamicType {
 ... on DrawableShape {
 shape {
 STEP(unit: MM)
 }
 }
 }
 }
}

(a) Query

{
 "data": {
 "root": {
 "dynamicType": {
 "shape": {
 "STEP": "ISO-10303-21;..."
 }
 }
 }
 }
}

(b) Response

Figure C.8: Query Formulation for Accessing Geometry

71

D Examples of Dynamism
The purpose of this appendix is to provide examples for when KBE assisted dynamism can be intro-
duced into workflows. Use of KBE assistance to achieve greater dynamism in workflows is often a
necessity if the business rules needed to reach a decision are difficult to formalize outside of code.
Starting off with an example where one may need formulate rules within the KBE application to de-
termine who should be assigned as task, Figure D.5. In this hypothetical scenario, an human-in-the-
loop optimization is running where certain constraint violations require manual intervention from
different engineers. Since the business logic of what type of constraint violations are possible lives
within the KBE application, it may be wiser to keep such logic closer to the application itself.

class Constraints(Enum):

 MTOW_EXCEEDED = "MTOW_EXCEEDED"
 PROFIT_MARGIN_NOT_MET = "PROFIT_MARGIN_NOT_MET"
 MAXIMUM_STRESS_EXCEEDED = "MAXIMUM_STRESS_EXCEEDED"

CONSTRAINTS_TO_RESOLVEE = {
 Constraints.MTOW_EXCEEDED: ["AERODYNAMIC_ENGINEERS", "MATERIAL_ENGINEERS"],
 Constraints.PROFIT_MARGIN_NOT_MET: ["LEAD_ENGINEERS"],
 Constraints.MAXIMUM_STRESS_EXCEEDED: ["MATERIAL_ENGINEERS"],
}

@Attribute
def design_refinement_assignee(self):
 groups = []
 for constraint in self.constraint_violations:
 groups.extend(CONSTRAINTS_TO_RESOLVEE[constraint])
 return groups

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Figure D.1: Example of a Dynamic Selection of Assignee (Who)

Another form of dynamism, is the selection of which worklet to run. This should not be confused with
the @Worklet decorator, however the worklet terminology is reused as Figure D.2 depics a situation
where the KBE application is responsible for deciding which simulation to run. In this hypothetical
case, the decision is based off of a flag variable to determine if a high fidelity simulation is required.

@Attribute
def aerodynamic_simulation_workflow(self):
 if self.high_fidelity:
 return "VSAEROWorkflow"
 else:
 return "AVLWorkflow"

1
2
3
4
5
6

Run
Aerodynamic

Simulation

Create Aircraft
Model

Create
Discretized

Geometry Model

Run VSAERO

Create
Discretized
Wake Model

Enter Flight
Conditions

Run AVL
Interface

Used to Select

VSAERO Worklet

AVL Worklet

Figure D.2: Example of a Dynamic Selection of Worklet (What)

Another example of KBE assisted dynamic control flow is the usage of the runtime cache to skip
a certain task. Figure D.3 below demonstrates how the design of experiments task can be skipped
based on if the design points are already available.

72

APPENDIX D. EXAMPLES OF DYNAMISM

class BalloonDesigner(Base):

 ...
 @Input
 def design_points(self) -> List[Dict[str, float]]:
 ...

1
2
3
4
5
6

Query if Design Points are Cached

Figure D.3: Example of Dynamic Task Skipping (What)

Moving onto timing related dynamism, Figure D.4 depicts an example situation where the report
must be shown to a customer within business hours. In this particular use-case the calculation for
determining the timer delay necessary to send the report at the right time would be complicated to
express in the business process itself. As a result, use of the KBE application can help in this situation.

@Attribute
def business_day_timer(self) -> timedelta:
 now = datetime.now()
 if now.weekday() <= 4:
 if 9 <= now.hour <= 18:
 delta = timedelta()
 elif now.hour <= 9:
 delta = datetime(now.year, now.month, now.day, hour=9) - now
 else:
 tomorrow = now + timedelta(days=1)
 tomorrow = datetime(
 tomorrow.year, tomorrow.month, tomorrow.day, hour=9
)
 delta = tomorrow - now
 else:
 days_to_monday = 7 - now.weekday()
 monday = now + timedelta(days=days_to_monday)
 monday = datetime(monday.year, monday.month, monday.day, hour=9)
 delta = monday - now
 return delta

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Query Business
Day Timer

Show Report to
Customer

Await Business
Hours

Figure D.4: Example of Dynamic Timing (When)

Finally, the last form of dynamism recognized is “how”, whereby a dynamic selection is made be-
tween a number of options. In Figure D.5, the KBE application is responsible for making a call to a
backend service to determine if an automated tool is currently available. If the tool is available, then
the workflow will make use of it. Otherwise, a user task is will be activated.

class BalloonDesigner(Base):

 @Attribute
 def doe_generator(self) -> str:
 tool_registry = ToolRegistry()
 tool = tool_registry.query("DoEGenerator")
 if tool:
 return "Automated"
 else:
 return "Manual"

1
2
3
4
5
6
7
8
9

10
11

Figure D.5: Example of a Dynamic Task Selection (How)

73

E Algorithm Formalization
The purpose of this appendix is to explain two algorithms that were developed during this thesis.
Expressed as psuedo-code the first algorithm below is the one implemented by the GraphQL tran-
spiler to create GraphQL Object Types (Models) and traverse through KBE application source code,
Figure E.1. Notable aspects of this algorithm is how slot inferencing, which is an expensive per-call
operation is deferred to infer as many slots at the same time as possible.

Input: Initial Set of Origins: O ← {oi . . . on}
Input: Initial Set of GraphQL Models: M ← {mi . . .mn}
Input: Map of Origins to GraphQL Models: f : O →M

/* Outer Loop for Handling Deferred Inferencing */
1 while O 6= ∅ do
2 I ← ∅ /* Set of slots to infer */

/* Inner Loop for Depth-First Origin Discovery */
3 while O 6= ∅ do

/* Remove an origin from set */
4 O ← O \ {on}
5 if f(on) /∈M then

/* Create new model type and update mapping */
6 mn ← CreateModel (on)
7 M ←M ∪ {mn}
8 mn 7→ f(on)

9 end
10 forall s ∈ GetSlots (mn) do
11 D ← {d ∈ DiscoverOrigins (s) | f (d) /∈M}
12 if D 6= ∅ then

/* Update set with discovered origins */
13 O ← O ∪D

14 else
/* Defer slot inferencing by adding to set */

15 I ← I ∪ {s}
16 end
17 end
18 end

/* Run inferencer and update set with inferred origins */
19 O ← O ∪ {i ∈ InferOrigins (I) | f (i) /∈M}
20 end

Figure E.1: Graph Contraction Algorithm

The second algorithm on graph contraction, Figure E.2, which is visually represented by Figure E.3,
allows simplification of the dependency graph from an original representation given by Figure E.4a
to Figure E.4b. The algorithm works by traversing the dependencies of composed caches of an unse-
rializable base instance until a serialized value is found. To prevent traversing the same path multiple
times, discovered dependencies are back propagated along the initial traversal path. Therefore, akin
to how a Merkle tree stores the hashes of its descendant nodes, a record is maintained for all visited
caches that stores its discovered dependents. To prevent premature contraction, the number of out-
going paths from a node is counted to make sure that results are back propagated only when all paths
have been traversed.

74

APPENDIX E. ALGORITHM FORMALIZATION

Input: Set of Serialized Caches: S ← {si . . . sn}
Input: Set of Unserializeable Base Caches: U ← {ui . . . un}
Input: Map of Serialized Caches to Precedents: fp : si → {pi . . . pn}
Input: Map of Serialized Caches to Dependents: fd : si → {di . . . dn}

1 fc : ci → {di . . . dn} /* Map of Caches to Contracted Dependents */

/* Outer Loop to Iterate of All Unserializable Base Caches */
2 forall u ∈ U do
3 Vd ← ∅ /* Set of Visited Dependents */
4 Vp ← ∅ /* Set of Visited Precedents */

5 ρ← (u) /* Path Sequence to Current Cache */
6 T ← ((u, ρ)) /* Sequence of Cache, Path Pairs to Contract */

/* Inner Loop to Traverse over Dependencies */
7 while |T | ̸= 0 do
8 (cn, ρn)← PopLast (T)
9 forall d ∈ Dependents (cn) do

/* Use Previous Contraction Result */
10 if fc (d) ̸= ∅ then
11 forall e ∈ fc (d) do
12 fd (u)← fd (u) ∪ {e}
13 fp (e)← fp (e) ∪ {u}
14 end
15 Backpropagate (fc (d) , ρn)

16 end
/* Found New Dependency */

17 else if d ∈ S then
18 fd (u)← fd (u) ∪ {d}
19 fp (d)← fp (d) ∪ {u}
20 Backpropagate (fc (d) , ρn)

21 end
/* Reached Previously Traversed Dependency */

22 else if d ∈ Vd then
23 EnquePath (d, ρn)
24 end

/* Add Current Cache and Path to Iteration Sequence */
25 else
26 T ← (t0, . . . , ti, . . . , (d, ρd))
27 Vd ← Vd ∪ {d}
28 end

/* Prevent Visiting Dependent as Precedent */
29 Vp ← Vp ∪ {d}
30 end
31 forall p ∈ Precedents (cn) /∈ Vp do
32 if p ∈ S then
33 fd (p)← fd (p) ∪ {u}
34 fp (u)← fp (u) ∪ {p}
35 end
36 end
37 end
38 end

Figure E.2: Graph Contraction Algorithm

75

APPENDIX E. ALGORITHM FORMALIZATION

UR
S T

T

C
om

po
se

d
C

ac
he

D
ep

en
de

nd
s

on
 R

el
at

io
ns

hi
p

S

Lo
st

 D
ep

en
de

nc
y

Se
ria

liz
ab

le
 C

ac
he

U
U

ns
er

ia
liz

ab
le

 C
ac

he
T

U
nt

ra
ve

rs
ed

 C
ac

he

R
R

oo
t I

ns
ta

nc
e

T

T
T

S

U

S

T

S
T

UR
S T

T

T

T
T

S

U

S

T

T

UR
S T

T

T

T
T

S

U

S

T

T
S

Ite
ra

tio
n

1
Ite

ra
tio

n
2

C
ur

re
nt

 C
ac

he

En
d

C
ac

he

D
is

co
ve

re
d

S

UR
S T

T

T

T
T

S

U

S

T

T
S

Ite
ra

tio
n

2

UR
S T

T

T

T
T

S

U

T

T
S

Ite
ra

tio
n

3

S

UR
S T

T

T

T
T

S

U

T

T
S

Ite
ra

tio
n

4

S

D
ef

er
re

d

Ba

ck
pr

op
ag

at
io

n

UR
S T

T

T

T
T

S

U

T

T
S

Ite
ra

tio
n

5

S

UR
S T

T

T

T
T

S

U

T

T
S

Ite
ra

tio
n

6

S

UR
S T

T

T

T
T

S

U

T

T
S

Ite
ra

tio
n

7

S

UR
S T

T

T

T
T

S

U

T

T
S

Ite
ra

tio
n

8

S

D
is

co
ve

re
d

Se
ria

liz
ed

Pr

ec
ed

en
t

In
iti

al
 G

ra
ph

UR
S

S

U

S

S

Fi
na

l G
ra

ph

Ba
ck

pr
op

ag
at

ed
 D

ep
en

de
nc

y
D

ef
er

re
d

Ba
ck

pr
op

ag
at

io
n

D
is

co
ve

re
d

D
ep

en
de

nc
y

Q
ue

ue
d

C
ac

he
Vi

si
te

d
C

ac
he

Q
ue

ue
d

Ed
ge

Tr
av

er
se

d
Ed

ge

O
bs

er
ve

d

C

ac
he

F
ig

u
re

E
.3

:V
is

u
al

iz
at

io
n

o
fG

ra
p

h
C

o
n

tr
ac

ti
o

n
A

lg
o

ri
th

m

76

APPENDIX E. ALGORITHM FORMALIZATION

root
data

root.airfoils[1]
filename

root.airfoils[7]
filename

root.sections[2]
reference

root.airfoils[0]
filename

root.sections[5]
reference

root.sections[8]
reference

root.airfoils[8]
filename

root.sections
quantify

root.airfoils[2]
filename

root.airfoils[9]
filename

root
le_points

root.sections[6]
reference

root.sections[3]
reference

root.sections[4]
reference

root.sections[0]
reference

root.sections[1]
reference

root.sections[7]
reference

root.airfoils[3]
filename

root.airfoils[10]
filename

root.airfoils[4]
filename

root.airfoils[5]
filename

root
te_points

root.airfoils[6]
filename

root.airfoils[1]
points

root.airfoils[7]
points

root.sections[2]
position

root.airfoils[0]
points

root.sections[5]
position

root.sections[8]
position

root.airfoils[8]
points

root.sections
_list

root.sections
type_list

root.airfoils[2]
points

root.airfoils[9]
points

root
le_curve

root.sections[6]
position

root.sections[3]
position

root.sections[4]
position

root.sections[0]
position

root.sections[1]
position

root.sections[7]
position

root.airfoils[3]
points

root.airfoils[10]
points

root.airfoils[4]
points

root.airfoils[5]
points

root
te_curve

root.airfoils[6]
points

root.airfoils[1]
curve

root.airfoils[7]
curve

root.sections[2]
Handle_Geom_Surface

root.airfoils[0]
curve

root.sections[5]
Handle_Geom_Surface

root.sections[8]
Handle_Geom_Surface

root.airfoils[8]
curve

root
section_te_points

root
section_le_points

root.airfoils[2]
curve

root.airfoils[9]
curve

root
span

root.sections[6]
Handle_Geom_Surface

root.sections[3]
Handle_Geom_Surface

root.sections[4]
Handle_Geom_Surface

root.sections[0]
Handle_Geom_Surface

root.sections[1]
Handle_Geom_Surface

root.sections[7]
Handle_Geom_Surface

root.airfoils[3]
curve

root.airfoils[10]
curve

root.airfoils[4]
curve

root.airfoils[5]
curve

root.airfoils[6]
curve

root.airfoils[1].transformed
Handle_Geom_Curve

root.airfoils[1]
from_position

root.airfoils[1].transformed
curve_in

root.airfoils[7].transformed
Handle_Geom_Curve

root.airfoils[7].transformed
curve_in

root.airfoils[7]
from_position

root.airfoils[0].transformed
Handle_Geom_Curve

root.airfoils[0].transformed
curve_in

root.airfoils[0]
from_position

root.airfoils[8].transformed
Handle_Geom_Curve

root.airfoils[8]
from_position

root.airfoils[8].transformed
curve_in

root.airfoils[5]
te_point

root.airfoils[8]
te_point

root.airfoils
quantify

root.airfoils[10]
te_point

root.airfoils[2]
te_point

root.airfoils[6]
te_point

root.airfoils[7]
te_point

root.airfoils[3]
te_point

root.airfoils[1]
te_point

root.airfoils[4]
te_point

root.airfoils[0]
te_point

root.airfoils[9]
te_point

root.airfoils[7]
le_point

root.airfoils[10]
le_point

root.airfoils[2]
le_point

root.airfoils[5]
le_point

root.airfoils[4]
le_point

root.airfoils[1]
le_point

root.airfoils[9]
le_point

root.airfoils[6]
le_point

root.airfoils[3]
le_point

root.airfoils[0]
le_point

root.airfoils[8]
le_point

root.airfoils[2].transformed
Handle_Geom_Curve

root.airfoils[2]
from_position

root.airfoils[2].transformed
curve_in

root.airfoils[9].transformed
Handle_Geom_Curve

root.airfoils[9]
from_position

root.airfoils[9].transformed
curve_in

root.airfoils[3].transformed
Handle_Geom_Curve

root.airfoils[3]
from_position

root.airfoils[3].transformed
curve_in

root.airfoils[10].transformed
Handle_Geom_Curve

root.airfoils[10]
from_position

root.airfoils[10].transformed
curve_in

root.airfoils[4].transformed
Handle_Geom_Curve

root.airfoils[4].transformed
curve_in

root.airfoils[4]
from_position

root.airfoils[5].transformed
Handle_Geom_Curve

root.airfoils[5]
from_position

root.airfoils[5].transformed
curve_in

root.airfoils[6].transformed
Handle_Geom_Curve

root.airfoils[6].transformed
curve_in

root.airfoils[6]
from_position

root.airfoils[1].transformed
_Adaptor3d_Curve

root.airfoils[1].scaled
Handle_Geom_Curve

root.airfoils[1].transformed
from_position

root.airfoils[1].transformed
u1

root.airfoils[1].transformed
start

root.airfoils[1].scaled
_Adaptor3d_Curve

root.airfoils[1].scaled
TopoDS_Shape

root.airfoils[1].transformed
_trsf

root.airfoils[1].scaled
reference_point

root.airfoils[1].scaled
u2

root.airfoils[1].scaled
end

root.airfoils[1].scaled
start

root.airfoils[1].scaled
u1

root.airfoils[1].wire
wires

root.airfoils[1].scaled
_trsf

root.airfoils[1].wire
curves_in

root.airfoils[1].wire
TopoDS_Shape

root.airfoils[1].wire
TopoDS_Wire

root.solid
builder

root.solid
TopoDS_Shape

root
outer_moldline

root.airfoils[7].scaled
Handle_Geom_Curve

root.airfoils[7].transformed
_Adaptor3d_Curve

root.airfoils[7].transformed
from_position

root.airfoils[7].scaled
TopoDS_Shape

root.airfoils[7].scaled
_Adaptor3d_Curve

root.airfoils[7].transformed
start

root.airfoils[7].transformed
u1

root.airfoils[7].transformed
_trsf

root.airfoils[7].wire
wires

root.airfoils[7].scaled
u1

root.airfoils[7].scaled
start

root.airfoils[7].scaled
u2

root.airfoils[7].scaled
end

root.airfoils[7].scaled
reference_point

root.airfoils[7].wire
TopoDS_Shape

root.airfoils[7].wire
curves_in

root.airfoils[7].scaled
_trsf

root.airfoils[7].wire
TopoDS_Wire

root.airfoils[5]
chord

root.airfoils[5]
to_position

root.airfoils[8]
to_position

root.airfoils[8]
chord

root.airfoils
_list

root.airfoils
type_list

root.airfoils[10]
chord

root.airfoils[10]
to_position

root.airfoils[2]
chord

root.airfoils[2]
to_position

root.airfoils[6]
to_position

root.airfoils[6]
chord

root.airfoils[7]
chord

root.airfoils[7]
to_position

root.airfoils[3]
to_position

root.airfoils[3]
chord

root.airfoils[1]
chord

root.airfoils[1]
to_position

root.airfoils[4]
chord

root.airfoils[4]
to_position

root.airfoils[0]
to_position

root.airfoils[0]
chord

root.airfoils[9]
to_position

root.airfoils[9]
chord

root.airfoils[5].scaled
factor

root.airfoils[5].transformed
to_position

root.airfoils[8].transformed
to_position

root.airfoils[8].scaled
factor

root.solid
profiles

root.airfoils[10].scaled
factor

root.airfoils[10].transformed
to_position

root.airfoils[2].scaled
factor

root.airfoils[2].transformed
to_position

root.airfoils[6].transformed
to_position

root.airfoils[6].scaled
factor

root.airfoils[7].scaled
factor

root.airfoils[7].transformed
to_position

root.airfoils[3].transformed
to_position

root.airfoils[3].scaled
factor

root.airfoils[1].scaled
factor

root.airfoils[1].transformed
to_position

root.airfoils[4].scaled
factor

root.airfoils[4].transformed
to_position

root.airfoils[0].transformed
to_position

root.airfoils[0].scaled
factor

root.airfoils[9].transformed
to_position

root.airfoils[9].scaled
factor

root.airfoils[5].scaled
_trsf

root.airfoils[5].scaled
non_uniform

root.airfoils[5].transformed
_trsf

root.airfoils[8].transformed
_trsf

root.airfoils[8].scaled
_trsf

root.airfoils[8].scaled
non_uniform

root.solid
ruled

root.airfoils[10].scaled
_trsf

root.airfoils[10].scaled
non_uniform

root.airfoils[10].transformed
_trsf

root.airfoils[2].scaled
non_uniform

root.airfoils[2].scaled
_trsf

root.airfoils[2].transformed
_trsf

root.airfoils[6].transformed
_trsf

root.airfoils[6].scaled
_trsf

root.airfoils[6].scaled
non_uniform

root.airfoils[7].scaled
non_uniform

root.airfoils[3].transformed
_trsf

root.airfoils[3].scaled
_trsf

root.airfoils[3].scaled
non_uniform

root.airfoils[1].scaled
non_uniform

root.airfoils[4].scaled
_trsf

root.airfoils[4].scaled
non_uniform

root.airfoils[4].transformed
_trsf

root.airfoils[0].transformed
_trsf

root.airfoils[0].scaled
_trsf

root.airfoils[0].scaled
non_uniform

root.airfoils[9].transformed
_trsf

root.airfoils[9].scaled
_trsf

root.airfoils[9].scaled
non_uniform

root.airfoils[5].scaled
Handle_Geom_Curve

root.airfoils[5].scaled
TopoDS_Shape

root.airfoils[5].scaled
_Adaptor3d_Curve

root.airfoils[5].wire
wires

root.airfoils[5].scaled
end

root.airfoils[5].scaled
u2

root.airfoils[5].scaled
start

root.airfoils[5].scaled
u1

root.airfoils[5].wire
TopoDS_Shape

root.airfoils[5].wire
curves_in

root.airfoils[5].wire
TopoDS_Wire

root.airfoils[5].transformed
_Adaptor3d_Curve

root.airfoils[5].transformed
u1

root.airfoils[5].transformed
start

root.airfoils[5].scaled
reference_point

root.airfoils[8].scaled
Handle_Geom_Curve

root.airfoils[8].transformed
_Adaptor3d_Curve

root.airfoils[8].transformed
start

root.airfoils[8].transformed
u1

root.airfoils[8].scaled
_Adaptor3d_Curve

root.airfoils[8].scaled
TopoDS_Shape

root.airfoils[8].scaled
reference_point

root.airfoils[8].scaled
end

root.airfoils[8].scaled
start

root.airfoils[8].scaled
u2

root.airfoils[8].scaled
u1

root.airfoils[8].wire
wires

root.airfoils[8].wire
curves_in

root.airfoils[8].wire
TopoDS_Shape

root.airfoils[8].wire
TopoDS_Wire

root.airfoils[10].scaled
Handle_Geom_Curve

root.airfoils[10].scaled
_Adaptor3d_Curve

root.airfoils[10].scaled
TopoDS_Shape

root.airfoils[10].scaled
u2

root.airfoils[10].scaled
end

root.airfoils[10].scaled
start

root.airfoils[10].scaled
u1

root.airfoils[10].wire
wires

root.airfoils[10].wire
curves_in

root.airfoils[10].wire
TopoDS_Shape

root.airfoils[10].wire
TopoDS_Wire

root.airfoils[10].transformed
_Adaptor3d_Curve

root.airfoils[10].transformed
start

root.airfoils[10].transformed
u1

root.airfoils[10].scaled
reference_point

root.airfoils[2].scaled
Handle_Geom_Curve

root.airfoils[2].scaled
TopoDS_Shape

root.airfoils[2].scaled
_Adaptor3d_Curve

root.airfoils[2].wire
wires

root.airfoils[2].scaled
u1

root.airfoils[2].scaled
start

root.airfoils[2].scaled
end

root.airfoils[2].scaled
u2

root.airfoils[2].wire
TopoDS_Shape

root.airfoils[2].wire
curves_in

root.airfoils[2].wire
TopoDS_Wire

root.airfoils[2].transformed
_Adaptor3d_Curve

root.airfoils[2].transformed
start

root.airfoils[2].transformed
u1

root.airfoils[2].scaled
reference_point

root.airfoils[6].scaled
Handle_Geom_Curve

root.airfoils[6].transformed
_Adaptor3d_Curve

root.airfoils[6].scaled
_Adaptor3d_Curve

root.airfoils[6].scaled
TopoDS_Shape

root.airfoils[6].transformed
u1

root.airfoils[6].transformed
start

root.airfoils[6].scaled
end

root.airfoils[6].scaled
start

root.airfoils[6].scaled
u2

root.airfoils[6].scaled
u1

root.airfoils[6].wire
wires

root.airfoils[6].scaled
reference_point

root.airfoils[6].wire
curves_in

root.airfoils[6].wire
TopoDS_Shape

root.airfoils[6].wire
TopoDS_Wire

root.airfoils[3].scaled
Handle_Geom_Curve

root.airfoils[3].transformed
_Adaptor3d_Curve

root.airfoils[3].transformed
start

root.airfoils[3].transformed
u1

root.airfoils[3].scaled
_Adaptor3d_Curve

root.airfoils[3].scaled
TopoDS_Shape

root.airfoils[3].scaled
reference_point

root.airfoils[3].scaled
end

root.airfoils[3].scaled
u2

root.airfoils[3].scaled
u1

root.airfoils[3].scaled
start

root.airfoils[3].wire
wires

root.airfoils[3].wire
curves_in

root.airfoils[3].wire
TopoDS_Shape

root.airfoils[3].wire
TopoDS_Wire

root.airfoils[4].scaled
Handle_Geom_Curve

root.airfoils[4].scaled
TopoDS_Shape

root.airfoils[4].scaled
_Adaptor3d_Curve

root.airfoils[4].wire
wires

root.airfoils[4].scaled
u1

root.airfoils[4].scaled
start

root.airfoils[4].scaled
end

root.airfoils[4].scaled
u2

root.airfoils[4].wire
TopoDS_Shape

root.airfoils[4].wire
curves_in

root.airfoils[4].wire
TopoDS_Wire

root.airfoils[4].transformed
_Adaptor3d_Curve

root.airfoils[4].transformed
start

root.airfoils[4].transformed
u1

root.airfoils[4].scaled
reference_point

root.airfoils[0].scaled
Handle_Geom_Curve

root.airfoils[0].transformed
_Adaptor3d_Curve

root.airfoils[0].scaled
_Adaptor3d_Curve

root.airfoils[0].scaled
TopoDS_Shape

root.airfoils[0].transformed
u1

root.airfoils[0].transformed
start

root.airfoils[0].scaled
end

root.airfoils[0].scaled
u2

root.airfoils[0].scaled
start

root.airfoils[0].scaled
u1

root.airfoils[0].wire
wires

root.airfoils[0].scaled
reference_point

root.airfoils[0].wire
curves_in

root.airfoils[0].wire
TopoDS_Shape

root.airfoils[0].wire
TopoDS_Wire

root.airfoils[9].scaled
Handle_Geom_Curve

root.airfoils[9].transformed
_Adaptor3d_Curve

root.airfoils[9].scaled
TopoDS_Shape

root.airfoils[9].scaled
_Adaptor3d_Curve

root.airfoils[9].transformed
u1

root.airfoils[9].transformed
start

root.airfoils[9].wire
wires

root.airfoils[9].scaled
u1

root.airfoils[9].scaled
start

root.airfoils[9].scaled
end

root.airfoils[9].scaled
u2

root.airfoils[9].scaled
reference_point

root.airfoils[9].wire
TopoDS_Shape

root.airfoils[9].wire
curves_in

root.airfoils[9].wire
TopoDS_Wire

root.airfoils[0].transformed
from_position

root.airfoils[8].transformed
from_position

root.airfoils[2].transformed
from_position

root.airfoils[9].transformed
from_position

root.airfoils[3].transformed
from_position

root.airfoils[10].transformed
from_position

root.airfoils[4].transformed
from_position

root.airfoils[5].transformed
from_position

root.airfoils[6].transformed
from_position

(a) Before

root
data

root
le_points

root
airfoils

root
sections

root
te_points

root
le_curve

root
solid

root
outer_moldline

root
section_le_points

root
section_te_points

root
te_curve

root
span

(b) After

Figure E.4: Wing Model Dependencies Before and After Graph Contraction

77

	Preface
	Abstract
	List of Symbols
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Research Objective & Questions
	Thesis Structure

	Theoretical Content
	Knowledge Based Engineering
	Core Technologies
	Limitations
	Relevant Literature

	Workflow Management
	Task Definition
	Fault Tolerance
	Control Flow vs. Data Flow
	Historical Perspective
	Specialized Systems to Automate Workflows
	Modeling Techniques
	Limitations & Research Trends

	Methodology
	Experimental Set-up
	Information Modeling
	Schema Autogeneration
	Modeling Approach

	Model Persistence
	Persistence Architecture
	Handling Geometry
	Graph Contraction
	Consistency Maintenance

	Process Orchestration
	Process Modelling
	Service Architecture
	Correlated Dependencies
	Data Management
	Handling User Tasks
	Dynamic Workflow
	Emergent Workflow

	Results
	Information Modeling
	Model Persistence
	Process Orchestration
	Case Study: Earthquake Analysis
	Case Study: Hot Air Balloon

	Verification

	Discussion
	Information Modeling
	Model Persistence
	Process Orchestration
	Answers to Research Questions
	Research Contributions
	Limitations & Future Work

	Conclusion
	References
	Appendix Market Studies
	Knowledge Based Engineering
	Workflow Management
	Web Application Programming Interfaces

	Appendix Information Modeling
	Appendix Example Queries
	Appendix Examples of Dynamism
	Appendix Algorithm Formalization

