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A B S T R A C T   

Atrial fibrillation (AF) is the most sustained arrhythmia in the heart and also the most common complication 
developed after cardiac surgery. Due to its progressive nature, timely detection of AF is important. Currently, 
physicians use a surface electrocardiogram (ECG) for AF diagnosis. However, when the patient develops AF, its 
various development stages are not distinguishable for cardiologists based on visual inspection of the surface 
ECG signals. Therefore, severity detection of AF could start from differentiating between short-lasting AF and 
long-lasting AF. Here, de novo post-operative AF (POAF) is a good model for short-lasting AF while long-lasting 
AF can be represented by persistent AF. Therefore, we address in this paper a binary severity detection of AF for 
two specific types of AF. We focus on the differentiation of these two types as de novo POAF is the first time that a 
patient develops AF. Hence, comparing its development to a more severe stage of AF (e.g., persistent AF) could be 
beneficial in unveiling the electrical changes in the atrium. To the best of our knowledge, this is the first paper 
that aims to differentiate these different AF stages. We propose a method that consists of three sets of 
discriminative features based on fundamentally different aspects of the multi-channel ECG data, namely based on 
the analysis of RR intervals, a greyscale image representation of the vectorcardiogram, and the frequency domain 
representation of the ECG. Due to the nature of AF, these features are able to capture both morphological and 
rhythmic changes in the ECGs. Our classification system consists of a random forest classifier, after a feature 
selection stage using the ReliefF method. The detection efficiency is tested on 151 patients using 5-fold cross- 
validation. We achieved 89.07% accuracy in the classification of de novo POAF and persistent AF. The results 
show that the features are discriminative to reveal the severity of AF. Moreover, inspection of the most important 
features sheds light on the different characteristics of de novo post-operative and persistent AF.   

1. Introduction 

Atrial fibrillation (AF) is the most common and sustained arrhythmia 
in the heart, affecting 2% of the world’s population, increasing the 
mortality rate and cost of health care [1]. One out of four individuals is 
expected to experience AF in their lifetime [1]. It is known that early 
detection of AF increases the chance of a timely treatment and improves 
life expectancy. AF is described by uncoordinated atrial activity that is 
represented on the electrocardiogram (ECG) by irregular RR intervals. 
Instead of having a single P wave in the early systolic time, AF is char
acterized by presence of fibrillatory waves or even absence of the P wave 
[2]. Cardiology guidelines classify AF based on the duration of AF epi
sodes [3]. According to this definition, in paroxysmal AF, an AF episode 

lasts between 30 s and 7 days and returns to normal sinus rhythm (NSR) 
by itself, while in persistent AF, an AF episode lasts more than 7 days and 
it is not self-terminating [3–5]. Interestingly, atrial fibrillation is the 
most common complication after cardiac surgery in patients who never 
experienced AF [6]. These patients are commonly referred to as de novo 
post-operative AF (POAF) patients. The specific mechanism of de novo 
POAF is not yet fully understood. Hypotheses state that the patients 
develop AF after cardiac surgery due to reasons such as pericardial 
inflammation, atrial stretch and disharmony in the autonomic nervous 
system, to name a few [7]. All these factors shorten the refractory period 
of the atrial cells, making the wavelets propagate to the atrioventricular 
(AV) node at a higher rate, resulting in fast and irregular ventricular 
contraction [6]. 
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Currently, the gold standard to diagnose AF is considered to be the 
interpretation of the 12-lead ECG by a trained physician [8]. However, 
based on visual inspection of ECG signals with AF episodes only, it is 
impossible for cardiologists to distinguish between de novo POAF and 
persistent AF. Specifically, if the patient suffers from AF for a longer 
time, there are more structural alterations of the atrial tissue (arrhyth
mogenic substrate). Furthermore, the stage of AF (severity of the 
arrhythmogenic substrate) when the patient develops AF cannot be 
determined by visual inspection of the ECG by physicians. In other 
words, AF episodes, do not show a visible difference between de novo 
POAF and persistent AF. This shows the need for an algorithm which can 
help physicians to detect the severity of AF. 

The simplest level in the severity detection of AF is to classify ECGs 
into NSR episodes and AF episodes. Scientists addressed this issue by 
computer-aided diagnosis (CAD) systems. Generally, the methods can be 
classified into two main groups as handcrafted- and deep learning-based 
methods. The handcrafted features are extracted based on the prior 
knowledge which are fed to the classifiers. Due to the nature of AF, the 
handcrafted features can be classified into 4 groups; time-, frequency-, 
time-frequency and nonlinear-based methods. The time-based features 
mostly focused on the irregularity in the RR intervals [9] or the 
discrepancy in atrial activity [10]. The irregularity in the RR intervals is 
demonstrated by the features which rely on the heart rate variability 
(HRV) using Poincaré plots [11,12], density histogram of delta RR in
tervals [13], entropy measures [14,15], probability density estimation 
of the RR interval distribution [16] and calculation of statistics [17–20]. 
On the other hand, the discrepancy in the atrial activity is evaluated by 
the P-R interval variability, the P wave morphology similarity measure, 
the R-R Markov score [21] and absence of a P wave or presence of 
fibrillatory waves using piecewise linear functions [22]. 

But, over and above this, frequency analysis of the fibrillatory waves 
is quite informative. The fibrillatory wave ratio using a power spectral 
density [23] and fibrillatory wave spectrum [24] are common extracted 
features in this category. Although, time/frequency-based features have 
the capability of extracting irregularity of RR intervals and fibrillatory 
waves, techniques based on wavelet transform solve the low fre
quency/time resolution problem of the previous methods by jointly 
localizing in time and frequency. Atrial activity were correctly detected 
by features extracted from the correlation matrix of the wavelet co
efficients [25] and discrete wavelet transform [26]. Furthermore, dy
namic characteristics of AF is extracted by features as higher-order 
spectra (HOS) [27], Hurst exponent, largest Lyapunov exponent (LLE), 
and fractal dimension [28], quadratic sample entropy and LLE [29]. In 
contrast to the handcrafted features, most of the deep learning-based 
methods are independent from the discriminative features [30] or 
less-dependent on the handcrafted features [31]. At the same time, they 
provide less insight into the underlying electropathology of AF. 

Although there exists extensive research for the classification of NSR 
episodes and AF episodes, this is not directly useful for diagnosing the 
severity of AF. This is due to the fact that both de novo POAF and 
persistent AF patients can have both NSR and AF episodes. In this paper, 
we tackle the challenging problem of diagnosing the severity of AF based 
on AF episodes. There is no clear, visually perceivable difference be
tween an AF episode in a de novo POAF patient and an AF episode in a 
persistent AF patient. Our motivation to address this problem is sum
marized as follows. First, since de novo POAF is the first time that a 
patient develops AF, comparing its evolution to persistent AF might lead 
to insights into the exact mechanism of AF and its underlying electro
pathology. Moreover, being able to differentiate between short-lasting 
and long-lasting AF could help physicians to learn how to determine 
the stage of its development. In fact, knowing this is critical for AF 
treatment. Considering that AF is a progressive disease that can lead to 
stroke or heart failure, detection and treatment of AF in the early stages 
will decrease the mortality rate and healthcare costs. In addition, the 
development stage of AF is crucial for predicting the outcome of the 
treatment. An example of this is catheter ablation, the standard therapy 

for AF patients. In the case of paroxysmal patients, the success rate of 
ablation therapy is between 70% and 80% while for patients with 
persistent AF, this rate drops to 45–60% [32]. This shows why early 
detection of AF is of vital importance in the treatment process. Finally, 
this method provides a practical tool to find the severity of AF based on 
the AF episodes. This is valuable since the stages of AF can be detected at 
the time of the developing AF. 

In this paper, we analyze long-term multi-channel surface ECG re
cordings. Our hypothesis is that there is a clear difference between de 
novo POAF and persistent AF. We test this hypothesis by proposing 
features that can differentiate between these two groups. Analyzing 
these differences may give us insight into the physiological changes that 
underlie the occurrence of AF and, subsequently, reveal the underlying 
differences. 

The core of our method therefore consists of careful feature engi
neering preceding machine learning-based classification. To capture 
morphological and rhythmic differences, multi-channel ECGs can be 
analyzed in various ways, e.g., the time domain, the spatial domain, and 
the frequency domain. We propose three corresponding groups of fea
tures. In the time domain, we propose rhythm-based features where we 
look at the irregularity of the RR intervals, an indirect indicator of the 
atrial activity. The second set of features is based on the vectorcardio
gram. Here we extract joint spatial/temporal aspects of the heart’s dy
namics in the cardiac cycles. This is implemented based on image 
descriptors on the 3D structure of the electrical activity of the heart. 
Finally, in the third group of features, frequency-domain aspects of the 
atrial activity during AF episodes are analyzed. The main novelty of the 
proposed method is hidden in the feature extraction. Firstly, we have 
introduced two novel features based on the different usage of autore
gressive modeling and dominant frequency. Secondly, to the best of our 
knowledge, this is the first paper that detects the severity of AF by 
analyzing vectorcardiogram images using image processing techniques 
which unveils the new aspects of this disease. Furthermore, from the 
clinical point of view, we have introduced the first method of classifi
cation between de novo POAF and persistent AF which had not been 
done before. 

The rest of this paper is organized as follows. In Section 2, we 
introduce our method including feature extraction, feature reduction 
and classification. The performance of our proposed method is demon
strated in Section 3. In Section 4, we analyze the feature values extracted 
from de novo POAF and persistent AF patients, to gain insight into the 
most essential differences between their underlying physiology. Finally, 
we draw the conclusions in Section 5. 

2. Methodology 

We hypothesize that differentiating de novo POAF and persistent AF 
can be done by finding features that capture the morphological and 
rhythmic changes in the ECG signal. With multi-channel ECG data, beat- 
to-beat variations in morphology are visible in patterns in the vector 
cardiogram. Rhythmic changes follow from surveying variations in the 
RR intervals (in time domain), and from analyzing the dominant fre
quencies corresponding to atrial activity. 

In Fig. 1 we show a high-level block diagram of our approach out
lining the different steps required for classification. The core of this work 
is the development of features discriminating between de novo POAF and 
persistent AF, as these features might provide more insight in how the 
development of AF can be monitored and how the development stage of 
AF can be determined in more detail. However, as our data originates 
from continuous recordings, noise and artifacts will be present. Prior to 
discussing the actual features, we will therefore discuss the data 
acquisition and the required pre-processing in Sections 2.1 and 2.2, 
respectively. As we hypothesize that differentiation between de novo AF 
and persistent AF lies in morphological and rhythmic beat-to-beat 
changes, we will develop in Sections 2.3–2.5 three groups of features 
capturing these aspects. Subsequently, we discuss the feature selection 
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stage and classification in Sections 2.6 and 2.7, respectively. 

2.1. Data acquisition 

We enrolled in total 151 patients of which 99 were categorised as de 
novo and 52 were categorised as persistent AF patients. The telemetry 
data was collected at the Erasmus Medical Center (EMC). The data 
consists of 12-lead ECG signals with recording durations between 72 h 
and 120 h, at a sample rate of 200 Hz. All patients were labeled as de 
novo POAF or persistent AF by physicians at the EMC. 

2.2. Pre-processing 

The process of recording the ECG signals in the telemetry data takes 
several days per patient. During this period, the ECG leads are connected 
to the patient’s body and it is likely that the leads sometimes get 
disconnected during the recording. Moreover, breathing artifacts, elec
tromyography interference and power-line interference are other inev
itable noise sources. To remove the effect of these perturbations, we 
filter the data with a Butterworth band-pass filter in the frequency range 
between 0.33 Hz and 30 Hz [33–35]. In addition, due to the 
high-amplitude noise, the quality in some segments of the long-term 
recordings is poor. These segments are therefore excluded from the 
signal. To do so, we divide the ECG signals in each lead in the 
pre-processing step into 60s segments and apply the band-pass filter to 
all segments. For each segment and channel, we estimate the 
signal-to-noise ratio (SNR) by calculating the power of the denoised 
signal divided by the power of the residual noise as 

SNR = 10log10

∑N− 1
n=0 s2

d(n)
∑N− 1

n=0 (s(n) − sd(n))2 (1)  

where N is the number of samples in a segment, and s(n) and sd(n) are the 
original and the denoised signals, respectively. After that, we remove the 
segments where the ECG has an SNR < 10 dB. Notice that the SNR is 
determined based on the noise outside the frequency range of 0.33–30 
Hz. Implicitly we thus assume that the noise outside this frequency range 
is also representative for the quality of the ECG signal inside this fre
quency range. The retained segments are normalized with respect to the 
maximum absolute value of the signal, to have an amplitude between −
1 and + 1. For the features which need R peaks detection, we have done 
another step in the pre-processing. By calculating SNR as in Eq. (1) for all 
ECG channels, we select the ECG channel with the highest SNR for 
performing R peak detection. Finally, a wavelet-based ECG delineator 
algorithm [36] is applied to the filtered ECG signal to detect the R peak 
in each cardiac cycle in both forward and reverse directions. 

2.3. Rhythm-based features 

One way in which AF affects the ECG is by increasing the irregularity 
of the RR intervals. Generally these intervals become shorter and less 
predictable. Fig. 2A shows an example of the RR intervals of a de novo 
POAF, and Fig. 2B shows an example of the RR intervals of a persistent 
AF. For this figure, for the de novo POAF patient a data segment was 
selected where AF is present. It is clearly seen that regular (and slower) 
beats are interlaced with irregular and faster beats. For persistent AF, the 
regular beats are absent. 

Another way to visualize this is through Poincaré plots [11]. This is a 
recurrent scatter plot that allows to judge the correlation structure 
present in a time series, in this case a sequence of N RR intervals with the 
individual lengths given by I1, I2, …, IN. The plot shows the points [Ik, 
Ik+1], for k = 1, …, N − 1. As example, Fig. 3A shows a Poincaré plot of a 
normal sinus rhythm (NSR) episode of a de novo POAF patient, Fig. 3B 
shows a Poincaré plot of an AF episode a de novo POAF patient, and 
Fig. 3C shows a Poincaré plot of a patient in persistent AF. Clearly, in the 
latter case the Poincaré plot does not represent any specific pattern and 
the points have an irregular distribution, while during de novo POAF, 
two different patterns are observed. In the area indicated by the symbol 
O, points are concentrated on an ellipsoid oriented around a diagonal 
line (for which Ik = Ik+1), while for the remaining points in the Poincaré 
plot no regular pattern is observed. The latter cloud of points is absent 
for the NSR episodes. 

In the related literature, several parameters have been proposed to 
describe the structure in such plots [37], often refer to as SDNN (stan
dard deviation of NN intervals e.g., the standard deviation of Ik, with 
outliers removed), SD1 and SD2 (the axis lengths of a fitted ellisoid), 
SDSD (the standard deviation of successive differences Ik+1 − Ik), and 
RMSSD (the root mean square of successive differences), etc. As dis
cussed in Ref. [38], these are all related, and we offer the following 
perspective from statistical system theory to explain this further. 

Consider the measured RR intervals I1, …, IN as a realization of a 
wide sense stationary random process. Let I denotes the sample mean, 
that is, 

I =
1
N
∑N

k=1
Ik. (2) 

We will work from now on with the zero mean sequence xk := Ik − I. 
The Poincaré plot is related to the modeling of xk by a first-order 

autoregressive (AR) model, AR(1), as 

xk+1 = a xk + ek, (3)  

where ek is a zero mean Gaussian random process with variance σ2, and a 
is the AR coefficient (|a| ≤ 1). If a = 1, σ = 0, then xk+1 = xk and the RR 
intervals are constant and perfectly predictable. If a = 0, then the RR 

Fig. 1. Block diagram of the proposed method.  

H. Moghaddasi et al.                                                                                                                                                                                                                           



Computers in Biology and Medicine 143 (2022) 105270

4

intervals are completely uncorrelated. 
For some upper bound L, not too large, we form the sample auto

covariance sequence 

r̂ℓ =
1

N − L
∑N− L

k=1
xk+ℓxk, ℓ = 0, 1,…, L. (4) 

These are estimates of rℓ = E[xk+ℓxk]. Then the AR(1) model satisfies 
[39]. 

⎧
⎨

⎩

r0 =
σ2

1 − a2

r1 = a r0

⇔

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a =
r1

r0

σ2 =
r2

0 − r2
1

r2
0 

We can also construct the 2 × 2 correlation matrix 

R =

[
r0 r1
r1 r0

]

=
σ2

1 − a2

[
1 a
a 1

]

.

The eigenvalue decomposition of R can be computed in closed form 
as 

R =
1
2

[
1 1
1 − 1

][ σ2
a 0

0 σ2
d

][
1 1
1 − 1

]

with 

σ2
a = r0 + r1 =

σ2

1 − a

σ2
d = r0 − r1 =

σ2

1 + a
.

This latter parametrization is directly visible in the Poincaré plot: for 
an AR(1) model, the points are scattered on an ellipsoid with center [I,I], 
with the long axis in the direction [1,1] with length σa, and with the 
short axis in the orthogonal direction [1, − 1] with length σd. Further, σa 
is equal to SD1, while σd corresponds to SD2, SDSD, and RMSSD. 

Thus, we have 3 equivalent parametrizations of the AR(1) model: (I,
r0, r1), (I,a,σ2), and (I,σa,σd). 

To measure the irregularity, an index δ is defined as 

δ =
σ2

d

I
(5)  

which is the difference of the time-averaged correlation values with zero 
and one time lags normalized by the mean of the RR intervals. For 
regular RR intervals (e.g., NSR episodes), it is expected that all the points 
are located close to a central point which means that δ is almost zero. As 
the irregularity increases, δ increases. We use this index to filter out the 
NSR episodes in the classification. 

At this point, a relevant question is also whether AR(1) is a good 
model choice at all. We could study the fit to higher-order models, AR 
(ℓ), for ℓ = 1, …, L, and related performance metrics such as final 
prediction error (FPE) [40]. Instead, we will consider more general 
auto-regressive moving average (ARMA) models. For some p, larger than 
the model order we wish to select, construct the p × p Hankel matrix 

H =

⎡

⎢
⎢
⎣

r1 r2 ⋯ rp
r2 r3 ⋯ rp+1
⋮ ⋮ ⋱ ⋮
rp rp+1 ⋯ r2p− 1

⎤

⎥
⎥
⎦.

Then system theory tells us that for an ARMA(ℓ) model, the rank of H 
is ℓ. For example, for an AR(1) model, 

H = r0

⎡

⎢
⎢
⎣

a a2 a3 ⋯
a2 a3 a4 ⋯
a3 a4 a5 ⋯
⋮ ⋮ ⋮ ⋱

⎤

⎥
⎥
⎦

which is clearly of rank 1. To detect the rank, consider the singular 
values of H sorted in non-increasing order, λ1 ≥ λ2 ≥⋯ ≥ λp. If the rank of 
R is ℓ, then λℓ > 0 while λℓ+1 = 0. 

As feature to detect rank 1 in our data sets, we propose to use p = 5, 

Fig. 2. RR intervals for A) de novo POAF, B) persistent AF.  

Fig. 3. Poincaré plots: A) NSR intervals in de novo POAF, B) irregular intervals in de novo POAF, C) persistent AF.  
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and define the feature 

ϱ =
λ1

λ2
. (6) 

If a first order model is a good fit, then ϱ ≫ 1. Fig. 4 shows as example 
plots of the eigenvalues of H for de novo POAF and persistent AF, 
respectively. It is seen that for de novo POAF λ1 ≫ λ2, while for persistent 
AF λ1 is not much larger than λ2. Thus, for de novo POAF, ϱ is much larger 
than for persistent AF, and a rank 1 model seems appropriate. 
Comparing to Fig. 3B, we expect that points in the narrow ellipsoidal 
area indicated by the symbol O dominate the model structure. 

Altogether, to compute the rhythm-based features, we first exclude 
the NSR episodes by excluding segments for which δ is almost zero 
(corresponding to a highly regular/predictable RR interval sequence). 
By analyzing our dataset, a threshold δ > 0.01 is defined to exclude NSR 
episodes. For the classification, considering the shortest AF episode in 
our dataset, we used a window that contains 1000 RR intervals (from the 
most irregular part of the signal as measured by the δ parameter) and 
extracted four features from the best quality lead: I, σa, σd, and ϱ. 

2.4. Vector cardiogram-based features 

In the previous section, we extracted features from the time domain. 
In this section, we investigate spatial information of the ECG signals. 

Different degrees of AF are expected to represent themselves in terms 
of variations across time on the parameters required to model the 
different ECG components. This becomes even more prominent if we 
take multiple leads into account, as morphology may vary across 
different leads. In order to summarize multi-channel ECG information in 
a compact way, we make use of the vector cardiogram (VCG). The VCG 
is an alternative representation of the multi-channel ECG information 
that allows to track the electrical activity of the heart along the three 
orthogonal body planes: left-right (x), head-to-feet (y) and front-back 
(z). Using Frank’s transformation [41,42], the 3-lead VCG 
(v= [Vx,Vy,Vz]

T
) is obtained using 8 leads out of the 12-lead ECG by 

v = F e (7)  

where e = [V1,V2,V3,V4,V5,V6, I, II]T and F is a 3 × 8 transformation 
matrix derived from Frank’s equation [41]. 

As an example, Fig. 5A and Fig. 5B show the orthogonal leads as a 
function of time for an NSR episode and an AF episode in a persistent AF 
patient, respectively. The corresponding 3D VCGs are shown in Fig. 5C 
and D. For NSR, each cardiac cycle creates a complete P loop (red), QRS 
loop (green) and T loop (blue). However, for persistent AF, the P loops 
are not clearly visible, but replaced by a chaotic trajectory before the 
start of the QRS loops. Moreover, for persistent AF, beat-to-beat 

variations of the QRS loop are greater than for NSR. The most important 
differences between the 3D VCG of NSR and persistent AF are the sub- 
patterns within the image representing the electrical activity of the 
heart along the three orthogonal body planes. A suitable discriminator is 
therefore a feature describing the local patterns in this 3D VCG image. 

To capture these differences, we propose to use local binary pattern 
(LBP) analysis [43] on a segmented version of the 3D VCG image. LBP is 
an image descriptor that has been successfully used to describe texture 
in various applications ranging from face detection and detection of 
facial expressions [44,45], to diagnosing heart diseases [46,47]. 

The main idea behind LBP analysis is to first capture and categorize 
the local texture of the image around a given pixel using the so-called 
LBP operator, and subsequently summarize the information from all 
pixels using a histogram. The LBP operator computes an 8-bit binary 
code word for each pixel by comparing its grayscale value to its 8 
neighbors in a 3 × 3 neighborhood (see Fig. 6). If the intensity of the 
given pixel is smaller than that of its ith neighbor, the corresponding bit 
is set to ‘1’, and otherwise it is ‘0’. In the original LBP algorithm [43], 
this leads to a total of 28 possible binary patterns. Then, the number of 
occurrences of each pattern is counted to build a histogram. This his
togram describes the distribution of all possible local patterns in the 
image. However, not all 256 possible patterns are equally interesting. 
Firstly, many of these patterns can be obtained from each other by a 
circular shift. There are only 36 unique rotationally invariant patterns 
(see Ref. [48] for the visualization of all these patterns). Secondly, it has 
been shown empirically that a vast majority of all patterns found in real 
images share a certain property, namely, that they are ‘uniform’. Here, 
uniformity means that a circular pattern has at most 2 transitions from 
black to white and vice versa. For example, the pattern 00 000 001 (2 
transitions, considering a cyclic extension where the last bit is also 
compared to the first) is uniform while the pattern 11 001 001 (4 
transitions) is non-uniform. Interestingly, the most frequent uniform 
patterns turn out to represent important microfeatures in the image such 
as dots or edges. Out of the 36 rotationally invariant patterns only 9 are 
uniform. These patterns are shown in Fig. 7. The first and last pattern 
capture bright spots and black spots or homogeneous surfaces, respec
tively. The other seven patterns capture edges between a bright and a 
dark surface. Finally, in our adaptation of the uniform rotation invariant 
LBP (URILBP) we construct a histogram by counting the number of oc
currences in these categories. As such, our VCG-based URILBP feature 
has a length of 9. 

The original 3D VCG image is a large binary volume. Before applying 
URILBP, we first discretize and segment this volume in such a way that 
the resulting set of grayscale images individually capture meaningful 
parts of the VCG. We first discretize the 3D image into 2D planes along 
the x, y, and z-direction with a resolution of 100 pixels per unit of 
normalized ECG voltage. As a result, binary images (2D planes) are 

Fig. 4. Singular values of matrix H: A) de novo POAF, B) persistent AF.  
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created along all three directions. Next, the binary images are divided 
into 5 batches in each direction. The images in the batches are summed 
together, resulting in 5 2D grayscale images in each direction, i.e. 15 
planes in total. We emphasize that the major motivation behind this 
preprocessing is to segment the 3D VCG into P loops, QRS loops and T 
loops. In Figs. 10 and 5 planes in x-direction are shown. Plane 3 and 
plane 4 mainly contain the P loops and T loops, respectively, while QRS 
loops can be detected in plane 1, plane 2 and planes 5. As the P and T 
loops occupy just part of the plane, the planes are further divided into 9 
non-overlapping sub-images and the URILBP histogram is calculated for 
each sub-image. When the loops follow the same or similar trajectory 
across subsequent heartbeats, the subimages (in the direction perpen
dicular to the local trajectory) will contain a majority of black pixels 
with bright areas (see for example bottom left of plane 3). The edges of 
such areas may be captured by bins 4–8 in the URILBP histogram. 
Conversely, chaotic trajectories will result in numerous discrete bright 
dots (see for example bottom right of plane 1), that can be captured by 
bins 2–3 of the URILBP histogram. 

The nine histograms extracted from the sub-images are concatenated 

to create a feature vector for that plane (see Fig. 8). Finally, the feature 
vectors of the 15 planes are concatenated into one final feature vector 
(see Fig. 9). We refer to the resulting procedure as 3DLBP. 

To compare the 3DLBP between de novo AF and persistent AF, we 

Fig. 5. A) Orthogonal leads for an NSR episode, and B) for a persistent AF patient; C) corresponding 3D VCG for the an NSR episode, and D) for the persistent 
AF patient. 

Fig. 6. LBP operator.  

Fig. 7. URILBP: There are in total 9 possible uniform rotationally invariant 
local binary patterns. 
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divide the filtered ECG signals into frames of 60 beats. We select the 
frame with the highest degree of irregularity, as measured by the δ 
parameter (see Eq. (5)). This frame is selected for the following reasons. 
First, the highest δ frame is representative of the most irregular parts of 
the signal, so by using 3DLBP on this frame, we can extract the texture 
information of the VCG trajectory in the most irregular segment of the 
signal. Therefore, this enables us to compare the VCG trajectory in the 
AF episodes in de novo AF and persistent AF. Moreover, this will suppress 
the repetitive information of NSR episodes in de novo patients and AF 
episodes with the same trajectory in the VCG. In other words, this en
ables us to compare a small portion of the signals that is the most 
characteristic of the ECG in AF patients. 

2.5. Frequency-based features 

The time domain and the spatial domain information are extracted in 
Section 2.3 and Section 2.4. As a third feature class, we propose to use 
specific frequency components of de novo POAF and persistent AF. 
During AF episodes, multiple wavefronts propagate simultaneously 
through the atrium. As a result, a surface ECG will show a broader fre
quency spectrum. Indeed, in NSR episodes the frequency range of atrial 
activity is typically between 0.6 Hz and 1.5 Hz, while during an AF 
episode the atrial activity is typically in the frequency range between 4 

and 9 Hz [49,50]. We hypothesize that features which are related to the 
frequency components of atrial activity might also provide a distinction 
between de novo POAF and persistent AF. 

To analyze the frequency content in the range 4–9 Hz, we follow the 
approach presented in Ref. [51]. Namely, we use a stationary wavelet 
transform with a Daubechies-5 mother wavelet to obtain the power 
spectrum SD

l (f) of the detail coefficients dl at the lth level. In order to 
cover the desired frequency range, we first upsample the signal to 500 
Hz and then use l = 6 levels of decomposition. The stationary wavelet 
transform has been used as a bandpass filter to extract the frequency 
range 4–9 Hz and then a Fourier transform is applied on the detail co
efficients dl at l = 6 to obtain the SD

l (f). 
Then, we propose to find the dominant frequency (DF), which carries 

the fundamental frequency of the signal and can be calculated by finding 
the maximum peak in the power spectrum. In addition, the width of the 
power distribution profile of the signal, can be captured by the average 
power in the bandwidth of interest [51]. Therefore, we define the 
DF-to-average-power ratio, for the lth level, as 

ρ =
arg maxf∈FSD

l (f )∫

f∈FSD
l (f ) df

. (8) 

To compare the DF-to-average-power ratio between de novo POAF 
and persistent AF, we divide the filtered ECG signals into 60 s segments 
and calculate the δ parameter according to Eq. (5). Then, we select the 
frame with highest δ (this indicates the most irregular and thus the most 
AF containing segment), because we want to compare the AF episodes in 
de novo POAF and persistent AF, while avoiding NSR episodes. This will 
increase the robustness of the classifier since frequency information in 
the AF episodes are only compared among each other. Since leads V1, 
aVF and III have the largest atrial contribution in the ECG signal [52], 
we determine this feature from these three leads. 

To compare the DF and DF-to-average-power ratio in de novo POAF 
and persistent AF, we divide the filtered ECG signals into 60 s segments 
and select the segments with the highest δ index. Then, we sub-divide 

Fig. 8. The URILBP feature vector of an image consists of a concatenation of the histogram of URILBP scores of each sub-image.  

Fig. 9. 3DLBP feature vector.  

Fig. 10. Projected planes at x-direction.  
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each segment into 5 s non-overlapping frames. The estimated power 
spectral densities (PSDs) for all consecutive time frame of the detail 
coefficient in l = 6 are plotted on top of each other in gray for a de novo 
POAF patient and a persistent patient in Fig. 11A and Fig. 11B, respec
tively. The average PSD over time is shown in blue. Persistent AF has a 
larger DF with wider power distribution, while de novo POAF achieves a 
lower DF with narrower power distribution. Frequency components of 
atrial activity (AA) in persistent AF vary more than in de novo POAF. In 
the power spectrum for persistent AF, the peak is therefore lower and the 
width larger. In persistent AF, more frequency components with a lower 
signal amplitude are thus involved. Moreover, the frame-to-frame 
variation of the maximum peak of the PSD in de novo POAF is smaller 
than for persistent AF. This can be explained by the hypothesis that 
during persistent AF, more inconsistent wavelets travel across the 
atrium which is represented on the surface ECG by the multiple fre
quency components with most likely slightly different frequencies. 
Looking at the spectrograms (Fig. 11. C and Fig. 11. D), DF in de novo 
POAF is more consistent across time frames than persistent AF. It shows 
that by considering the whole sequence of spectra across 60 s, there are 
more variations in the activated frequency components in persistent AF. 

2.6. Feature selection 

When the number of features in a classification task is too large or/ 
and features are correlated, feature selection is a critical pre-processing 
step for selecting the features with the highest relevance. This not only 
might reduce the computational burden of training the classifier but in 
many instances boosts its performance. In this work, we use ReliefF as 
our feature selection method [53]. ReliefF is a filter-based feature se
lection method which finds weights for the features. In the ReliefF al
gorithm, a feature from a random training sample is selected as Ri and 
then the algorithm searches for its two nearest neighbors as nearest hit 

Hj (from the same class) and nearest miss Mj (from the different class) 
[53]. The importance of a feature is represented by a weight. The weight 
increases if the feature and miss have different values while it decreases 
if the feature and hit have different values. This algorithm is repeated m 
times where m is a user-selected parameter. The highest weighted fea
tures are selected to train the classifier. 

2.7. Classification 

The performance of the extracted features is evaluated by imple
menting two supervised methods. In sections (2.7.1) and (2.7.2), we 
explain these methods used to classify patients into de novo POAF or 
persistent AF. 

2.7.1. Support vector machine 
With Support Vector Machines (SVMs), a decision boundary with a 

maximum margin is found for separating data points of different classes. 
Although an SVM is originally a linear classifier, the use of kernel 
functions enables SVM to perform nonlinear classification. Given a 
training set of P points as pi: i = 1, 2, …, P with defined labels qi, either 
− 1 or +1, SVM classifies a test data p as [49]. 

f (p) = sgn

(
∑P

i=1
βiqiK(pi, p) + o

)

(9)  

where sgn is the sign function, βi are Lagrange multipliers, K is the kernel 
function and o is the bias of the hyperplanes. In this work, we use the 
radial basis function (RBF) kernel function where we fixed the kernel 
parameter σ = 1. We empirically found that for our dataset this value 
represented a good trade-off between flexibility, i.e, higher testing ac
curacy, and the risk of overfitting. 

Fig. 11. Power spectral density and spectrogram, A) PSD of 60 s in a de novo POAF (gray) and the average PSD (blue), B) PSD of 60 s in a persistent AF (gray) and the 
average PSD (blue), C) spectrogram in a de novo POAF, D) spectrogram in a persistent AF. 
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2.7.2. Random forest 
Random Forest (RF) is an ensemble learning method which is used 

for classification or regression problems. RF combines multiple decision 
trees for the final result in which each decision tree consists of three 
types of nodes, namely, the root node, inner nodes, and leaf nodes. Each 
decision predicts a result and the final result is produced by the majority 
voting among all trees. The advantage of using RF in our problem is that 
it solves the overfitting problem and the problem of unbalanced datasets 
and normalization of features is not necessary [54]. We trained a bagged 
ensemble of 150 classification trees with the maximum number of splits 
set to 13, using the highest weighted features. 

3. Results 

3.1. Feature analysis 

The performance of the extracted features is demonstrated in this 
section. As in most de novo POAF patients AF develops after 48 h (day 
three), we extracted features starting from the third day (48 h–72 h) to 
observe AF episodes in patients. Considering the three groups of features 
(i.e., rhythm-, VCG- and frequency-based features) and after selecting 
the most irregular segments, we have used 121 979 s, in total. More 
specifically, we used 84 883 s from de novo POAF patients and 37 096 s 
from persistent AF patients. In the rhythm-based features, 1000 RR in
tervals have been used per patient which vary between 372s and 938s. 
For the VCG-based features, we used 60 beats per patient which vary 
between 24s and 57s. In the frequency-based features, we used 60s per 
patient. Four features, namely, I, σa, σd, ϱ are extracted from the rhythm- 
based feature, in total. From the frequency-based features, ρ is calcu
lated for the leads V1, aVF, and III (three features). For the VCG-based 
features, using URILBP for the most irregular (highest δ) frame of the 
3D VCG, results in a feature vector with length 1215. Therefore, the 
initial length of the feature vector, for each patient, is 1222. Negative 
weights estimated by ReliefF are not suitable predictors for the classifier 
[53], so by using ReliefF, we then selected the 32 highest weighted 
features (positive ones) for training the classifier, which turned out to be 
all rhythm-based features (I, σa, σd, and ϱ), ρ from lead V1, and some bins 
of the URILBP histogram. 

Fig. 12 shows the box plots of some of the selected features. In 
Fig. 12A and Fig. 12B three rhythm-based features (σa, σd and I) and two 
ratios (ϱ and ρ) are shown, respectively. Four selected bins of the VCG- 
based features are shown in Fig. 12C. Looking at Fig. 12A, in the denovo 
POAF patients, the σa, σd and I are larger than for persistent AF. 
Comparing ϱ and ρ (Fig. 12B) in de novo POAF and persistent AF, ϱ in de 

novo POAF is larger than for persistent AF which shows that the rank 1 
model is appropriate for de novo POAF. Also, ρ is larger in de novo POAF 
than in persistent AF, as there are more frequency components in 
persistent AF than in de novo POAF. For the VCG-based features, 27 bins 
are selected by the ReliefF algorithm. Here, we have interpreted a few of 
these bins (four patterns which are shown in Fig. 12C) for the following 
reasons. At first, some of the VCG bins are discriminative independently 
and the rest are jointly insightful. In this section, we focus on the in
dependent bins. Second, VCG-based features are extracted from three 
directions (X–Y planes, X-Z planes and Y-Z planes). So, examples from all 
three directions are shown. Third, these bins have the highest weights in 
the ReliefF algorithm. Therefore, we have interpreted the most 
discriminative bins. The selected features are mainly concentrated on 
the sub-images that correspond to the P loops area. In Fig. 12C, patterns 
5 and 6 belong to the P loops area on the X–Y plane. The patterns 
represent the edges in the image. The edges are indicators for a partic
ular pattern in an image. These patterns can show the difference be
tween a loop and a chaotic pattern. In the de novo patients, the number of 
pixels that represent patterns 5 and 6 is larger than in persistent AF 
patients. It shows that there are more edges for de novo patients than for 
persistent AF. Conversely, patterns 1 and 2 represent single dot and 
double dots in the 3 × 3 neighborhood, respectively. In Fig. 12C, pattern 
1 is a bin on the P loops area on the X-Z plane and pattern 2 is on the Y-Z 
plane. In persistent AF, the number of pixels that represent patterns 1 
and 2 is larger than in de novo POAF patients. The more chaotic the 
pattern, the more dots there are on the LBP image. In other words, these 
box plots represent that in the bins that correspond to edges (i.e. regular 
loops), the number of pixels in the de novo POAF is higher than in 
persistent AF, while in bins that correspond to dots (i.e. chaotic pat
terns), the number of pixels in persistent AF is higher than in de novo 
POAF. 

For the validation of the classifier, we report the mean (M) and 
standard deviation (SD) of 5-fold cross validation on 151 patients (99 de 
novo POAF patients and 52 persistent AF patients). To keep the same 
proportion for each group in the training set as in whole dataset, we 
applied 5-fold splitting on each class separately. In 5-fold cross valida
tion testing, we have under-sampled the majority class (i.e., de novo 
POAF) to have the same number of patients to evaluate in both classes 
[55]. 

3.2. Performance evaluation parameters 

To check the performance of the classifier, we evaluate our results 
using common performance metrics such as accuracy (ACC), sensitivity 

Fig. 12. Box plots of the selected features, A) Rhythm-based features (σa: ellipsoid long axis, σd: ellipsoid short axis and I: RR intervals mean), B) Ratios (ϱ: singular 
values ratio Eq. (6), ρ: DF-to-average-power ratio Eq. (8)), C) VCG-based features. 
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(SEN), specificity (SPE), precision (PRE), and F1 score. These metrics are 
defined as 

ACC =
TP + TN

TP + TN + FP + FN
× 100 (10)  

SEN =
TP

TP + FN
× 100 (11)  

SPE =
TN

TN + FP
× 100 (12)  

PRE =
TP

TP + FP
× 100 (13)  

F1 = 2
PRE × SEN
PRE + SEN

× 100 =
2TP

2TP + FP + FN
× 100, (14)  

where TP and TN are the numbers of correctly detected and rejected 
cases in class one, respectively, and FP and FN are the numbers of 
wrongly detected and rejected cases in class one, respectively. We report 
the classification results for the random forest and SVM classifiers with 
kernel function RBF with scaling factor 1. Considering TP as the number 
of correctly detected cases of persistent AF, in Table 1 and Table 3, the 
performance of the SVM and RF classifier are shown, respectively. 
Considering TP as the number of correctly detected de novo POAF cases, 
in Table 2 and Table 4, the performance of the SVM and RF classifier are 
shown, respectively. To investigate the importance of each group of 
features, we trained the classifiers with each group of features separately 
(group 1: rhythm-based features, group 2: VCG-based features, group 3: 
frequency-based features). Then, we merged the groups with a combi
nation of two out of three groups and finally, all three groups were used 
for training the classifiers. Looking at tbl1Tables 1 and 2tbl2, it is clear 
that all three groups and both classifiers are able to differentiate de novo 
POAF patients from persistent AF patients. The rhythm-based features 
and the combination of rhythm- and frequency-based features have the 
highest accuracy in the classification using one group and two groups, 
respectively. Moreover, the random forest has the highest accuracy and 
F1 score. The classifier achieving the highest accuracy is the random 
forest classifier using all three groups of features, reaching an accuracy 
of over 89%. 

Looking at Tables 1–4, Fig. 13, and Fig. 14, RF performs better than 
SVM. The performance of the SVMs depends on the kernel function. 
Although the RBF kernel is known to be a universal approximator [56], 
finding the optimal kernel parameters given our relatively limited 
dataset is a challenging problem. Note that in the current paper, our 
main goal was to demonstrate that classification is possible. Optimizing 
classification performance is out of the scope, however, we believe that 
SVM classification could be further improved by resolving the issues 

mentioned above. 
In this work, we presented features which are able to differentiate 

between de novo POAF and persistent AF patients. Using these features 
might provide insights into the degree of the pathological damage in the 
tissue in AF patients. We studied explainable features from three 
different natures exploiting both morphological and rhythmic change 
information. The tracking of the progression of AF from the early stages 
(paroxysmal) to severe stages (persistent) is one of the most important 
actions in the treatment of AF. Since de novo POAF is the first stage 

Table 1 
The performance of the SVM classifier on the selected features, Group 1: 
Rhythm-based features, Group 2: VCG-based features, Group 3: Frequency-based 
features TP: Persistent AF.  

Features Metric Acc Sen Spe Pre F1 

Group 1 M 71.84 75.89 67.48 71.77 73.33 
SD 3.28 8.13 10.01 6.55 3.73 

Group 2 M 67.63 68.93 64.59 65.91 66.09 
SD 6.16 9.31 6.57 5.64 7.32 

Group 3 M 68.91 71.25 66.12 67.82 68.89 
SD 4.38 4.12 9.32 8.01 7.56 

Groups 1 & 2 M 72.91 74.77 71.40 70.50 72.14 
SD 4.61 8.14 7.08 6.17 3.22 

Groups 1 & 3 M 74.14 64.04 82.90 76.33 66.28 
SD 5.45 6.23 6.92 5.46 5.62 

Groups 2 & 3 M 72.99 73.98 71.51 70.76 71.94 
SD 5.68 7.20 7.26 7.16 5.79 

All groups M 79.00 81.38 75.96 78.30 79.69 
SD 5.65 4.82 8.95 7.44 7.12  

Table 2 
The performance of the SVM classifier on the selected features, Group 1: 
Rhythm-based features, Group 2: VCG-based features, Group 3: Frequency-based 
features TP: De novo POAF.  

Features Metric Acc Sen Spe Pre F1 

Group 1 M 71.84 67.48 75.89 72.05 69.14 
SD 3.28 10.01 8.13 9.18 6.86 

Group 2 M 67.63 64.59 68.93 69.77 65.95 
SD 6.16 6.57 9.31 6.17 7.81 

Group 3 M 68.91 66.12 71.25 69.81 66.96 
SD 4.38 9.32 4.12 5.49 6.42 

Groups 1 & 2 M 72.91 71.40 74.77 74.89 72.62 
SD 4.61 7.08 8.14 5.67 7.69 

Groups 1 & 3 M 74.14 82.90 64.04 75.33 77.41 
SD 5.45 6.92 6.23 6.21 6.75 

Groups 2 & 3 M 72.99 71.51 73.98 74.22 72.34 
SD 5.68 7.26 7.20 6.62 7.25 

All groups M 79.00 75.96 81.38 79.18 77.40 
SD 5.65 8.95 4.82 4.68 6.30  

Table 3 
The performance of the RF classifier on the selected features, Group 1: Rhythm- 
based features, Group 2: VCG-based features, Group 3: Frequency-based features 
TP: Persistent AF.  

Features Metric Acc Sen Spe Pre F1 

Group 1 M 80.93 78.73 83.12 83.46 80.37 
SD 6.71 5.09 10.78 6.22 6.70 

Group 2 M 77.01 70.21 82.58 80.95 72.66 
SD 5.05 6.18 4.98 5.22 5.79 

Group 3 M 79.17 82.46 75.78 76.62 79.08 
SD 4.22 4.97 4.78 4.29 6.46 

Groups 1 & 2 M 83.42 84.89 82.73 78.93 81.61 
SD 4.00 4.66 5.21 5.3 4.95 

Groups 1 & 3 M 86.38 89.40 83.78 82.20 85.27 
SD 3.82 3.7 6.58 3.95 3.16 

Groups 2 & 3 M 82.27 85.88 79.08 79.84 82.50 
SD 4.59 5.17 6.81 6.46 2.94 

All groups M 89.07 92.57 86.23 83.95 87.93 
SD 2.77 3.63 6.24 6.00 2.81  

Table 4 
The performance of the RF classifier on the selected features, Group 1: Rhythm- 
based features, Group 2: VCG-based features, Group 3: Frequency-based features 
TP: De novo POAF.  

Features Metric Acc Sen Spe Pre F1 

Group 1 M 80.93 83.12 78.73 78.11 80.10 
SD 6.71 10.78 5.09 6.91 5.88 

Group 2 M 77.01 82.58 70.21 75.91 77.55 
SD 5.05 4.98 6.18 6.12 5.91 

Group 3 M 79.17 75.78 82.46 81.17 78.10 
SD 4.22 4.78 4.97 5.35 6.47 

Groups 1 & 2 M 83.42 82.73 84.89 88.63 87.02 
SD 4.00 5.21 4.66 4.23 4.02 

Groups 1 & 3 M 86.38 83.78 89.40 90.64 86.72 
SD 3.82 6.58 3.7 4.71 5.26 

Groups 2 & 3 M 82.27 79.08 85.88 83.31 80.93 
SD 4.59 6.81 5.17 4.9 5 

All groups M 89.07 86.23 92.57 90.96 89.76 
SD 2.77 6.24 3.63 3.12 2.76  
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wherein a patient develops an AF episode, its early detection will help 
physicians to accurately monitor the progress of AF in the patient. 

4. Discussion 

4.1. Relation to literature 

In general, detecting AF and doing the follow-up gives insights into 
the gradual progress of the pathological damage in the tissue. In the past, 
many studies have been done to find discriminators between AF and 
NSR. However, the stages of AF are often not included in these studies 
and the discrimination is based on the presence of an AF episode or an 
NSR episode. Self-terminating and sustained AF have been studied in 
recent works. Most of these studies focused on the dominant frequency 
of the AA, heart rate variability, sample entropy phase variations and 
fractal dimension [57–61]. However, they do not address the classifi
cation of de novo POAF and persistent AF. For instance, Refs. [59,60] 
compared self-terminating AF versus sustained AF, and e.g., Ref. [62] 
aimed to differentiate paroxysmal versus persistent AF. Notice that 
despite the fact that our problem overlaps with these classification tasks, 
it is not completely included in any of them. In addition, some of these 
works only compared AF episodes in short-length signals, e.g. Ref. [32], 
so the global features introduced in the current work cannot be directly 
compared with these. 

In this work we considered both morphological (VCG-based and 
frequency-based features) and rhythmic (rhythm-based features) 
changes by extracting features from AF episodes. However, the perfor
mance of the rhythm-based and VCG-based features depends on the 
detection of the R peaks. We deal with this problem by extracting 
frequency-based features which are independent from the detection of R 
peaks. Therefore, it makes the algorithm more robust in case of missed-R 
peak detection. Related to the frequency-based features, Petrutiu et al. 
[57] calculated the dominant frequency of ECG signals by using tem
plate matching QRS-T cancellation and showed differences for 

paroxysmal and persistent AF. The dominant frequency in paroxysmal 
AF obtained was 5.2 ± 0.4 Hz while for persistent AF was 6.6 ± 0.6 Hz. 
Similarly, Chiarugi et al. [60] used the dominant frequency and average 
heart rate to discriminate between non-terminating and terminating AF 
episodes on 1-min ECG signals. These studies demonstrate the ability of 
the dominant frequency for differentiating paroxysmal/persistent AF or 
terminating/non-terminating AF. In the current study, we considered 
normalizing with the average power to take all involved frequency 
components into account. 

4.2. Comparison with invasive wave mapping 

Regardless of their discriminating capabilities, the dominant fre
quency and average power reveal pathological characteristics of both de 
novo POAF and persistent AF. That is, from a physiological point of view, 
the level of atrial fibrosis in paroxysmal AF patients is lower than that in 
persistent AF patients. So, paroxysmal AF patients tend to present a 
lower dominant frequency in comparison with persistent AF [32]. This 
observation is confirmed by our results. Using electrogram data, Allessie 
et al. [63] studied the wave maps and dissociation maps for the acute AF 
and longstanding AF obtained from the intra-operative mapping on the 
right atrium. It is noted that the number of waves entering the area of the 
mapping in acute AF is less than that in longstanding AF. The number of 
waves is also related to the boundaries of the conduction blocks and 
collisions. To compare our frequency-based features with the observa
tion of wave mapping, we investigate the distribution of 
frequency-based features over the time. To do this, we divide the 
pre-processed signals into 60 s segments and calculate the index δ ac
cording to Eq. (5). Then, for AF episodes, we sort segments according to 
the δ from the highest to the lowest and select 20 segments with the 
highest δ. These are thus the most irregular segments. Then, we 
sub-divide each segment into 5 s non-overlapping frames and calculate 
the DF and ρ in each frame. Fig. 15 shows the histogram of the 
frequency-based features for 20 segments with the highest δ in a de novo 
POAF patient and a persistent AF patient. Comparing DF in a de novo 
POAF patient (Fig. 15A, red plot) and a persistent AF patient (Fig. 15A, 
purple plot), frame-to-frame variation of DF in de novo POAF is smaller 
than for persistent AF. It shows that by considering the whole spectrum, 
there are more frequency components in persistent AF that are activated. 
Looking at ρ in Fig. 15B, in the de novo POAF patient, the ρ is more 
concentrated than in persistent AF, which means that there is no direct 
relationship between DF and ρ in the persistent AF. Moreover, looking at 
ρ, there is less overlap between the de novo POAF and persistent AF 
compared to the DF, which shows that ρ could be a valuable discrimi
nator for this classification. Therefore, combining these observations 
with wave mapping results, we hypothesize that there exists a rela
tionship between the number of waves in the intra-operative mapping 
with the dominant frequency and power spectrum of the wavelet detail 
coefficients of the ECG signal. To test this hypothesis, we will extend this 

Fig. 13. Receiver operating characteristic (ROC) curve on the testing dataset, A) SVM, B) RF.  

Fig. 14. Confusion matrix of the training dataset (the whole dataset), A) SVM, 
B) RF. 
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in future work to instances where the electrogram and ECG signals are 
recorded simultaneously. The ρ will be calculated from leads aVF and III 
of the ECG (since V1 is not available during an open-heart surgery) and 
then we will compare it with the results from the wave maps and 
dissociation maps obtained from the electrograms. 

4.3. Limitation and future work 

Although the performance of the proposed algorithm is good and it 
can assist clinicians in differentiating between two conditions, it has 
some limitations. First, we cannot really compare our work to other 
features/classification schemes as this is the first study on de novo POAF 
and persistent AF as far as we know. Moreover, the lack of telemetry 
data in the persistent AF cases limited our evaluation to a small group of 
patients. Results shown in the tables in Section 3 are based on a 5-fold 
cross-validation within our dataset of 151 patients. In order to investi
gate the robustness of our approach, future work will aim to validate the 
algorithm on an independent (preferably prospective and multi-center) 
dataset. Furthermore, body mass index (BMI) is an important factor in 
the amplitude of the recorded ECG signals, as well as for VCG signals. To 
be able to compare the surface of the QRS loops in de novo POAF and 
persistent AF effectively, BMI should also be considered. Finally, we 
focused on a specific frequency range in the frequency-based features to 
measure the dominant frequency of AA, however, in such a frequency 
range, the effects of VA are not completely removed. To improve the 
frequency-based features, QRS-T cancellation or AA extraction by source 
separation methods might lead to further improvement. Although our 
short-term goal is to improve the performance of the classification by 
finding the optimal classifier using a larger prospective dataset, there is 
a great interest in knowing if the features can unveil electro-pathological 
changes in AF patients. For this purpose, we will study the ECG signals 
and electrograms simultaneously to find the relationship between the 
wave maps and the frequency-based features. Finally, as predicting AF is 
necessary for increasing the success of treatments, we will concentrate 
on identifying features from the NSR episodes of the signal to predict AF. 
As de novo POAF is the most common complication after surgery, 
telemetry data from a large population of de novo POAF can be collected. 
Therefore, deep learning techniques could then be viable to identify 
features from the NSR episodes in a data-driven manner when combined 
with expert knowledge of the underlying physiological principles. 

5. Conclusion 

In this paper, we proposed a feature engineering machine learning- 
based classification approach for the detection of short- and long-term 
AF based on the extracted features from the multi-channel ECG sig
nals. We introduced three groups of features (rhythm-, VCG- and 
frequency-based features) to cover both morphological and rhythmic 
changes from AF episodes. The performance of our method is evaluated 
by implementing RF and SVM classifiers in which RF could achieve 
89.07% accuracy. Furthermore, the introduced features unveil the ir
regularity differences of the RR intervals and the morphological differ
ences of the fibrillatory waves between de novo POAF and persistent AF 
patients. In other words, from the medical point of view, these features 
give important insight into the different nature of electropathology in de 
novo POAF vs persistent AF. Future work will focus on finding the 
relationship between the extracted features and the wave maps of intra- 
operative mapping. 
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