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1. Compositioneel redeneren met onzekerheid vereist een definitie van contradictie die niet
rechtstreeks kan worden afgeleid uit de onderliggende driewaardige logica. (Hoofdstuk 3 van
dit proefschrift)

2. De door Shortliffe en Buchanan voorgestelde definitie van de certainty factor combineert het
nadeel van de strenge randvoorwaarden die een probabilistische onzekerheidsmaat oplegt aan
het gebruik van de propagatiefuncties, met het ontbreken van een heldere semantiek. (zie
Definities 4.3, 4.4 en 4.5 in dit proefschrift)

3. Het in convergerende en divergerende verklaringen gebruikte principe voor onzekerheids-
propagatie dient te worden gebruikt bij het ontwikkelen van flexibele oplossingsstrategiegn
voor zoekproblemen (Hoofdstuk 5 van dit proefschrift)

4. Taalconstructies zoals deze binnen Delfi3 zijn ontwikkeld dienen te worden opgenomen in

bestaande vierde-generatie programmeertalen. (Hoofdstuk 6 van dit proefschrift)

5. Kennissystemen dienen in de toekomst niet alleen gebruikt te worden om besluitvormings-
procedures ten aanzien van complexe technologische vraagstukken te ondersteunen, maar
vooral ook om gemaakte keuzes achteraf te kunnen evalueren.



6. De term Informatica in de naam van een faculteit kan niet worden gelegitimeerd door

voldoende eigen wetenschappelijke theorievorming.

7. Het veelgeprezen ontbreken van enige vorm van centraal gezag binnen Internet verhindert
schaalvergroting van de gebruikersgroep.

8. Het door alle politicke partijen zo gewenste maatschappelijk debat over normen en waarden
in de samenleving dient te worden voorafgegaan door een politiek debat waarin het afschaffen
van de militaire dienstplicht wordt gekoppeld aan de invoering van een sociale dienstplicht.

_ 9. Het gebruik van het begrip fizzy in de omschrijving van consumentenelektronica slaat voor-

alsnog voornamelijk op de gebruiksaanwijzing.

10. Het grootste probleem voor arbiters van waterpolowedstrijden is niet zozeer de interpretatie
van een spelregel als wel de matching van de juiste regelpremisse met de gegeven spelsituatie.

11. In plaats van maatschappijkritische stellingen betreffende het milieu te poneren, doet een
promovendus er beter aan het proefschrift te laten drukken op kringlooppapier.
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Summary

Over the past few decades, Artificial Intelligence (Al) has evolved into a serious field of
scientific research. A topic that has received a considerable amount of attention within Al
research is the development of general-purpose reasoning techniques that can be used in various
fields of application. The emphasis of this thesis is on compositional reasoning, a general-
purpose reasoning technique in which elementary reasoning steps (the compositional reasoning
primitives) are combined into complex reasoning processes. Compositional reasoning is the
most widely used strategy in existing knowledge-based systems.

The representation and propagation (or management) of uncertainty in compositional reasoning
is the central theme in this thesis. Throughout the years, the development of real-world Al
applications has shown the necessity for the ability to cope with uncertainty in knowledge-
based systems. Uncertainty has been used to model different aspects of knowledge, since
knowledge can be incomplete, imprecise, invalid and unreliable. This thesis describes a general
framework for reasoning with these aspects of uncertainty in a compositional setting, which

satisfies a set of design constraints formulated for this type of reasoning.
The general framework

The development of a general framework for compositional reasoning with uncertainty is an
evidential first step in the process. The framework is general in the sense that no assumptions
are made with respect to the reasoning type, the uncertainty model and the field of application.
A three-valued logic, of true, false and unknown, is used as the underlying mathematical theory,
allowing the explicit representation (label unknown) of the incompleteness aspect. Clearly,
classical two-valued logic does not support this capability. Since other aspects of uncertainty
do not necessitate a conceptual change to a higher-order logic, the use of a three-valued logic
suffices. However, many-valued logics can be used in the framework when they are considered

to model an uncertainty measurement.

Formal definitions are provided for domain, inference, reason maintenance and uncertainty
model (the basic structures of a knowledge-based system). The domain model is concerned
with the representation aspect of compositional reasoning. A hierarchical approach is used,
consisting of an expression, an inference (containing the compositional reasoning primitive)
and a control level. The inference model describes the reasoning strategy for this formalism.
The reason maintenance model contains information on previously executed reasoning
patterns. According to the literature, these patterns can be used to support the inference model
in avoiding the rediscovering of similar patterns and early detection of conflicts (invalid

reasoning patterns).



Uncertainty is introduced into the framework by extending the three-valued labelling to an un-
certainty type. The specification of this uncertainty type, accompanied by a set of propagation
functions for the compositional reasoning primitives, is characteristic for each individual un-
certainty model. Embedding this uncertainty type into the three-valued logic provides a funda-
mental basis for uncertainty representation and guarantees the correctness of uncertainty
propagation in the boundary situations. The presence of a reason maintenance model in the

framework enables a structural approach towards situation-specific propagation of uncertainty.

When the framework uses a deductive interpretation for compositional reasoning primitives, all
existing deductive uncertainty models can be shown to be a special case of the framework. In
a broader sense, it is argued that the framework offers the most general formal description of

uncertain reasoning in a compositional setting.
The model of belief and disbelief

The certainty factor model is the most well-known and frequently used model for compositional
uncertain reasoning when using a deductive reasoning strategy. Former analyses concerning the
certainty factor model have been definite in their rejection of the model. According to these
analyses, the main reason for this rejection is the violation of the suggested probabilistic
foundation by the propagation functions of the model. However, the certainty factor model has
attractive characteristics, for instance its computationally simple propagation functions, and has
produced satisfactory results throughout the years in various applications. As a preliminary
exercise, a part of the model is analysed again, thus clarifying the causes of its misbehaviour in
specific situations.

Some results of this analysis have been used in the development of a new uncertainty model for
compositional deductive reasoning, called the model of belief and disbelief. Uncertainty is
represented by a two-dimensional vector that reflects both the evidence in favour of and against
a domain variable. A set of propagation functions is provided for these belief vectors, which
uses operators that adapt to the situation they are used in. The model was developed in isolation

first, and was embedded into the general framework afterwards.

The information stored in a reason maintenance model not only enables the enhancement of the
inference model, it can also be used to construct more advanced uncertainty propagation
functions. This idea has been used in the design of a set of enhanced propagation functions for
the model of belief and disbelief that are sensitive to the situation in which they are used. These
functions are able to handle a type of problem that cannot be solved within existing deductive
uncertainty models. The computational complexity of this approach is, although exponential in

nature, acceptable for practical applications.

The appropriateness of implementing this model of belief and disbelief is demonstrated by
adding it to an existing environment for knowledge-based system development, Delfi3. The

knowledge representation formalism of this environment was mapped onto the frameworks



domain and inference model. Further, a reason maintenance model was developed for Delfi3,
which enables the implementation of the uncertainty propagation functions. This reason
maintenance model has also been used to increase the performance of the inference model of

Delfi3. The implementation underlines the practical profits derived from the developed theory.
Explanatory reasoning
Existing compositional architectures use a deductive problem-solving strategy. However, the

use of abductive reasoning is increasingly acknowledged in the Al research community.

Abductive reasoning is represented by the following scheme.

Fact: B’
Relation: A—B

Explanation: A’

It has been acknowledged that this kind of reasoning is often used in the human reasoning
process. Abductive reasoning enables more flexibility in reasoning by assuming explanations
that can be retracted in later stages of the reasoning process. A number of formalisms have been
developed to support this type of reasoning, however, none of them uses a compositional
architecture. The extent to which an abductive strategy can be used in compositional uncertain

reasoning has been investigated, this thesis reports on the results of this investigation.

Because of its assumptive characterisation, an abductive reasoning strategy is more difficult to
integrate into the framework than a truth-preserving, deductive strategy. Informal definitions of
abductive reasoning mention the generation of the best or most plausible explanation(s) for the
observations. In this thesis, a restricted abductive interpretation of the reasoning primitives is
introduced for the compositional reasoning environment. Within the scope of this thesis, this

interpretation is called explanatory reasoning.

An explanatory interpretation, which states that a set of explanations is assumed to have caused
some given observation, is defined for the compositional reasoning primitive. Two types of ex-
planations are distinguished: converging and diverging explanations. In a converging explana-
tion the assumed explanations must all be valid at the same time to explain the observation,

where in a diverging explanation the validity of at least one explanation suffices.

Using uncertainty makes explanatory reasoning even more interesting. In this, the explanatory
interpretation of a compositional reasoning primitive provides an initial distribution of belief
for an explanation. When additional information for this explanation is derived by the reasoning
process, the type of the explanation is used to update this initial distribution. Suppose, in a
diverging explanation, an increase in belief is observed for an explanation, then it seems
plausible that belief in the remaining explanations decreases. This behaviour of diverging
explanations is called explain away. Similarly, an increase in belief for one of the converging
explanations will increase the belief in the remaining explanations as well. Being contrary to

the concept of explain away, this behaviour is called joint explain.

iii



This, more or less informal, description of explanatory reasoning has been formally described
in terms of the developed framework. Further, the model of belief and disbelief has been used
to illustrate the development of a set of uncertainty propagation functions for explanatory
reasoning. The notions of explain away and joint explain are clearly reflected by these
propagation functions. To prevent the computational complexity of these propagation functions
from becoming exponential (one of the main merits of compositional reasoning), restrictions
have been added to the concept of explanatory reasoning. The majority of these restrictions are
not severe and must be satisfied by the application area. However, the most important
restriction, the modelling of bidirectional influences, decreases the capabilities of explanatory

reasoning with respect to modelling abduction.

In conclusion, with explanatory reasoning, a formalism has been developed that has attractive
reasoning characteristics (explain away and joint explain) and propagation functions that have
simple computational complexity. However, compositional reasoning fundamentally lacks the
possibility of modelling bidirectional reasoning, and therefore it is concluded that supporting a
general form of abductive reasoning is beyond the limits of the compositional reasoning

architecture.
Using compositional reasoning in problem solving

Comparable to other reasoning formalisms, the compositional reasoning architecture has its
strong and weak points. Advantages of the compositional approach are that domain models can
be constructed easily, that inference is well-defined and that the computational complexity of
uncertainty propagation is simple. Practical applications based on (deductive) compositional
formalisms have proved the applicability of such an approach.

Limitations of compositional reasoning are imposed by the restriction on handling bidirectional
influences and some demands on the problem area in which it is used. However, it is concluded
that compositional reasoning remains an attractive formalism for modelling (parts of) an
intelligent problem-solving system. This thesis clearly outlines both theoretical and practical

constraints of this modelling potential.
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Notations and Abbreviations

In this thesis, the following notations and abbreviations are frequently used.

A

CF(a,e)

CHe)

CS

da

D

E

1§ IR YN 9% S8 1)

The set of Atomic propositions.

Certainty Factor of proposition a given environment e.

Control Function, evaluation function for control steps c.

The set of Control Steps.

The derivation of atomic proposition a.

The set of Derivations.

The set of Expressions.

The uncertainty propagation functions for deductive reasoning.

{f_.fonv-Laiv-fesfy } The uncertainty propagation functions for explanatory reasoning.

I'le = a)
IS
MB(a,d,)
MD(a,d,)
NAF
SLD

T

Tul
UW(e)
Wi(e)
e=a
f,L

Inference Function for the primitive inference steps e = a.
The set of Inference Steps.

Measurement of increased Belief for proposition a, given d,.
Measurement of increased Disbelief for proposition a, given d,.

Negation As Failure inference strategy.

Selection function for Linear resolution of Definite clauses.
Basic type of the three-valued labelling { t,u,f 1.

Basic type of an uncertainty labelling.

Evaluation function for expression e resulting in label of type T.
Evaluation function for expression e resulting in label of type Tj.

Primitive inference step, expression e implies proposition a.

A conflict in reasoning.






Chapter 1

Introduction

Artificial Intelligence (AI) has become a serious field of research over the past few decades. By
no means will we try to provide a definition of Al here, since numerous (informal) definitions
can be found in the literature. The majority of these definitions reflects the connection with
human intelligence or behaviour. In combination with its mathematical nature, this positions Al

between the technical and the cognitive sciences.

For some time, it has been the conviction of the Al research community that a General Problem
Solver [Newell, 1972] could be developed that would be able to solve a great variety of
problems. Feigenbaum was the first to acknowledge that this idea had to be abandoned and
replaced by research, which still concentrated on general purpose reasoning, but applied to
restricted problem areas [Bar, 1981]. Since then, Al research has been carried out in a great
diversity of application fields, from theorem proving to speech recognition, and from medical
diagnosis to robotics. The focus of this study is on the general field of expert systems or, as we
prefer to call it, the field of knowledge-based systems.

1.1 Knowledge-based systems
In this section, we very briefly discuss the constructing components of a general knowledge-

based system.

Three main components can be distinguished in a traditional knowledge-based system. The
knowledge base, or domain model, contains a description of the knowledge that can be used to
solve the problem at hand. The problem solver, or inference model, is a set of reasoning tech-
niques that use the static knowledge from the knowledge base and dynamic knowledge from
the situation at hand to actually find a solution. The interface model takes care of all interfacing
with the environment of the knowledge-based system. This can be the user, an external data
base or external computing facilities. The system components and their communication rela-

tionships are illustrated in Figure 1.1.

interface <&—® problem solver knowledge

base

Figure 1.1 Knowledge-based system.



This structure of a knowledge-based system allows knowledge in the domain model to be made
explicit and the communication with the environment to be defined independently. However,
the significant part of the work of the system, the reasoning part, is still carried out by just one
component of the system, the problem solver. A reason maintenance model was introduced into
knowledge-based systems to lighten the burden of the problem solver and to increase its rea-
soning performance. The reason maintenance model dynamically builds its own knowledge
base, that we will call the reason base, to support the inferencing by the problem solver. The
reason base consists of previously made inferences and detected conflict situations, it can be
viewed as a meta knowledge base. This reason base contains knowledge concerning the domain
model in combination with the situation that it currently obtains (a problem instance or case).
Besides run-time use, the reason maintenance model can also be used in analysing knowledge
bases or implementing case-based reasoning. This is realised by inspecting the recorded reason
bases of a variety of problem instances. The depiction of a knowledge-based system, extended

by a reason maintenance model, is given in Figure 1.2.

knowledge

interface (<& problem solver

base

reason

reason maintenance

base

Figure 1.2 Knowledge-based system extended by reason maintenance.

In the remainder of this thesis, the subject of attention is the problem solver (inference model)
and reason maintenance model of a knowledge-based system. The interface capabilities and

knowledge representation techniques are given less attention.

1.2 Research objectives

In this section, we formulate our research objectives and discuss the motivations. For this
purpose we first give descriptions of terms frequently used throughout the thesis.

When we consider the problem solver of a knowledge-based system we assume that it uses an
inference model that combines small reasoning steps to solve the overall problem. This strategy
is called compositional reasoning [Héjek, 1992]. We claim that the vast majority of existing

knowledge-based systems are of this category.

Generally speaking, three major reasoning types are distinguished: deduction, induction and



abduction. For a long time, deductive reasoning (from cause to consequent) was considered to
be the most important strategy in both human and knowledge-based reasoning. However, the
importance of abductive reasoning (explaining consequences by assuming causes) is increas-
ingly acknowledged. Finally, inductive reasoning (generating relations between causes and

consequences) is concerned with the learning aspect of reasoning.

A second notion that plays a key role in this thesis is uncertainty. It has been widely accepted
that for the development of real-world AI applications, it is inevitable that knowledge-based
systems are able to cope with the fact that knowledge and information is incomplete, imprecise,
invalid and unreliable. These four conceptually different notions are often represented by just
one term: uncertainty. In the closing chapter of the thesis, we comment on the way in which we

have incorporated these notions into the developed theory.

When uncertainty is used in compositional reasoning, propagation functions are necessary to
assign uncertainty measurements to newly derived information. This propagation process is
called the management of uncertainty. In correspondence with the domain, inference and inter-
face and reason maintenance model of a knowledge-based system, the term uncertainty model
is often used for the representation and propagation of uncertainty. The main advantage of the
compositional treatment of uncertainty in knowledge-based systems is its simple computational
complexity.

A survey of the literature on compositional reasoning with uncertainty makes it clear that the
existing models all use assumptions that restrict their use in general situations. In this study, we
report on the analysis of these restrictions and the development of an uncertainty model that can
do with fewer restrictions than the above. However, an even more important observation is the
fact that all existing models are snited for deductive reasoning only. This brings us to the main
issue of this study: Can a formalism for abductive reasoning under uncertainty be realised in a

compositional setting?

If we wish to achieve acceptable results, we have to create a sound theoretical basis first
[Kyburg, 1991]. Therefore, we develop a general framework for compositional reasoning with
uncertainty, consisting of a domain, inference, reason maintenance and uncertainty model. The
framework is general in the sense that no assumptions are made with respect to the type of
reasoning, the uncertainty model and the application area that will be used. The appropriateness
of this framework is demonstrated by showing that all the existing deductive uncertainty
models are a special case of the framework. Based on this framework, an uncertainty model is
developed that uses the structures from the reason maintenance model to eliminate the main
restrictions of existing deductive approaches.

We develop an abductive strategy for compositional reasoning under uncertainty, that is called
explanatory reasoning. We emphasise that the explanatory reasoning strategy is the result of
incorporating an abductive reasoning strategy in a compositional environment. This does not

mean that we defend the standpoint that abduction must be, or can best be, represented by a



compositional system. It might well be that restrictions demanded by explanatory reasoning
make it an awkward choice in a specific application. The concept of explanatory reasoning must

therefore be compared to other abductive formalisms.

Further, uncertainty propagation functions are developed for explanatory reasoning. In this,
special attention is paid to the computational complexity of these propagation functions. Recall
that when simple computational complexity is lost, one of the main advantages of the

compositional approach is lost, and other formalisms might be more appealing.

The development of theories in knowledge-based system research can best be demonstrated by
implementing these theories in applicable environments. We have acknowledged this imple-
mentation aspect and here discuss implementing a part of the developed theory in an existing

knowledge-engineering environment.

1.3 Benchmark problems
Some specific problems frequently appear in discussions on the management of uncertainty in
compositional reasoning. We quote two of these problems from the literature that we think can

be discarded as benchmark problems for these specific problems.

The first type of problem is the situation in which uncertain information which is based on a
common cause for some fact is combined. The problem is that propagation functions in com-
positional reasoning systems do not take the history of some piece of information into account.
We use the news report example from [Henrion, 1987, p. 111] as our benchmark example for
this kind of problem.
"The first radio news bulletin you hear on the accident at the Chernobyl nuclear power plant
reports that the release of radioactive materials may have already killed several thousand people.
Initially you place small credence in this, but as you start to hear similar reports from other radio

and tv stations, and in the newspapers, you believe it more strongly. A couple of days later, you
discover that the news reports were all based on the same wire-service report based on a single

unconfirmed telephone interview."”
The second type of problem is the situation in which the uncertainty of a piece of information
has to be reconsidered when the uncertainty of some other piece of information with which it
causes a common symptom is changed. The problem is that no propagation functions are avail-
able in most uncertainty models to cope with this kind of relationship between pieces of infor-
mation. We use the alarm call example from Kim and Pear] [1983, p. 190] as our benchmark
example for this kind of problem.

"Mr. Holmes received a telephone call from his neighbor notifying him that she heard a burglar

alarm sound from the direction of his home. As he was preparing to rush home, Mr. Holmes
recalled that last time the alarm had been triggered by an earthquake. On his way driving home,

he heard a radio newscast reporting an earthquake 200 miles away."



1.4 Scope of the thesis

After a brief overview of the literature (Chapter 2), both the theoretical aspects (Chapters 3, 4
and 5) and the practical aspects (Chapter 6) of the research objectives are covered and discussed
(Chapter 7).

Chapter 2 contains an overview of important literature on AL Knowledge representation and
reasoning strategies are described in a nutshell, the types of reasoning and existing uncertainty
models and reason maintenance systems are outlined here. In short, the overview describes the
background setting of the research work. This chapter is concluded with the formulation of a

set of design constraints for the theory developed in the following chapters.

In Chapter 3, a general framework for uncertain compositional reasoning is given. Starting from
scratch, we carefully build up the foundation of our theory. In this chapter, a deductive reason-
ing strategy is added to the framework. Further, the framework is extended by the addition of a
reason maintenance model and an embedding facility for uncertainty. The chapter is concluded
by an evaluation of the framework, using both the design constraints given in Chapter 2 and the

most well-known deductive uncertainty models for compositional reasoning.

Chapter 4 is dedicated to a specific uncertainty model for compositional deductive reasoning.
The model is developed in isolation first, and embedded into the general framework (described
in Chapter 3) afterwards. Further, the propagation of uncertainty is enhanced by exploiting
information stored in the reason maintenance model. The enhancement yields a solution for the

first benchmark problem.

Chapter 5 contains the description of an abductive reasoning strategy for the framework, called
explanatory reasoning. The reasons for the chosen approach are discussed. The uncertainty
model given in Chapter 4, is equipped with propagation functions for this type of reasoning. As
a result of this, a solution for the second benchmark problem can be proposed. Finally,

explanatory reasoning is analysed in comparison to other abductive approaches.

In Chapter 6, the knowledge engineering environment Delfi3 is described. We make clear that
the representation language of this environment is a specialisation of the representation
formalism of the general framework (recall Chapter 3). The implementation of an uncertainty
model (as developed in Chapter 4) and a reason maintenance model within Delfi3, according

to the theory from the preceding chapters, is the main topic here.

A discussion of the obtained results is given in Chapter 7. The research objectives, which have
been described in Section 2, are the guidelines in this discussion. Further, we propose further

investigations on some subjects that could not be covered within the scope of this thesis.
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Chapter 2

Fundamentals of
Knowledge Representation and Reasoning

A brief overview is given of the field of knowledge representation and reasoning in knowledge-
based systems. Four major topics are distinguished: knowledge representation formalisms,
inference models, uncertainty models and reason maintenance systems. We provide a global
description of the fundamentals of these subjects as can be found in literature. The objective of
the overview is to obtain some insight into the terminology, formalisms and techniques used in
the field. The chapter is concluded with a discussion on the use of the described formalisms in
the remainder of the thesis.

Each topic is considered to cover a specific aspect of knowledge representation and reasoning.
In Section 1, knowledge representation formalisms are discussed. Within these formalisms the
domain model of a knowledge-based system can be specified. The strategy for reasoning with
this knowledge is specified in the inference model. In Section 2, the main characteristics of
inference models are described, control of the reasoning process and coping with negation and
incompleteness. Uncertainty of knowledge and information is another important aspect with
respect to knowledge-based systems. An uncertainty model should support both representation
and reasoning aspects, Section 3 contains an overview of current approaches. In Section 4, we
discuss the different types of reasoning that can be distinguished. Section 5 is concerned with
a learning aspect of knowledge-based systems. Reason maintenance models have been
developed to administer the reasoning process and to use this information in future inferences.
Finally, Section 6 contains some closing remarks on the presented aspects, and the specification

of a set of design constraints.

2.1 Knowledge representation formalisms

Knowledge representation has a long history in Al In the early days, production rules were the
most frequently used representation structure. The strength of production rules is in the repre-
sentation of heuristic knowledge [Davis, 1977; Clancey, 1983]. It was noted, however, that rep-
resentation formalisms based on production rules have only limited expressive power, while in
complex applications it is necessary to have more advanced formalisms to represent the domain
model of the problem area. The idea of representing this kind of knowledge within objects and
relations traces back to two fundamental representation formalisms: semantic networks and
frames. The advantages of both formalisms have now been merged into a formalism called

structural inheritance networks.



Semantic networks

The introduction of semantic networks is attributed to Quillian [1966]. In his paper he describes
the basic components of semantic networks: nodes (to represent the entities in a world) and
links (to represent the relationships between these entities). Later, inheritance was introduced
into the basic concepts of semantic networks [Collins, 1970]. The main reasons for the success
of semantic networks are the intuitive manner of knowledge representation and the ease of
implementation. However, as pointed out by Woods [1975], there is fundamental criticism of
the original definition of a semantic network. This criticism concerns the lack of coherent se-
mantics for semantic networks, i.e. fundamentally different aspects of knowledge representa-

tion must be represented by the same construct (the link between nodes).
Frames

The idea of representing and structuring knowledge in frames is described by Minsky [1975].
Frames are supposed to describe a situation by clustering all information relevant to that
situation in slots and fillers (the principle of locality). Further, frames that stand for similar
concepts are able to inherit information from each other through the is-a link. A frame system
contains a collection of frames and new concepts are identified by matching them against the
frames already available in the system [Fikes, 1985]. Two main inference strategies are
distinguished in frame systems: inheritance and classification. Inheritance collects slots and
fillers from other frames to which there is an is-a link. Classification tries to insert a new frame
in the right position in a given frame hierarchy. The main advantage of frames is their efficient
representation of structural knowledge, the main weaknesses are the limited inference
capabilities and the restricted possibilities in representing relational knowledge.

Structural inheritance networks

When trying to combine the advantages of frames and semantic networks, some important ob-
servations were made. Firstly, the need for a distinction between knowledge on a definition or
generic level and on an individual level was argued by Levesque [1979]. A second observation
concerned the distinction that should be made between declarative knowledge and procedural
knowledge [Winograd, 1975]. Declarative knowledge is expressed in the domain model,
whereas procedural knowledge is represented in the inference model, by means of expressions
active in the domain model. Finally, a knowledge representation formalism should have a well-

defined formal semantics [McDermott, 1978].

The term structural inheritance networks [Brachman, 1979] is used to describe the new catego-
ry of representation formalisms. In short, the domain model of a structural inheritance network
is a semantic network with frames as nodes and a number of (in a semantical sense) different
links. A topic that has received much attention here is the technique to deal with multiple inheri-
tance and the modelling of exceptions [Sandewall, 1986; Touretzky, 1986].



2.2 Inference models

As stated in the introduction, an inference model is used to specify and use procedural knowl-
edge. Because of its strong theoretical foundations, logic was considered to be the most suitable
candidate. The idea of using first-order predicate logic, or at least a subset thereof, like Horn
clauses, as a programming language stems from Kowalski [1974] and is based on the principle
of resolution [Robinson, 1965], an inference strategy for first-order logic well suited to be han-
dled by computers. Two main problems to be taken into account concerning logic programming
are control and negation [Lloyd, 1984].

Control and negation

The necessity to make a distinction between the logic and the control part of a logic program
was pointed out by Kowalski [1979]. He stated that the programmer should only be concerned
with the logic needed when solving a problem, while the control of the reasoning process
should be handled by the reasoning process itself. However, the most well-known control
strategy for the resolution of logic programs, SLD-resolution (Selection function for Linear
resolution of Definite clauses), does not completely fulfil this demand. The programmer can
influence the control of the program by (dis-) ordering the clauses or by using meta-control

operators.

Various ways to cope with negation have been proposed within the framework of logic
programming. The negation as failure (NAF) inference rule [Clark, 1978], however, is certainly
the most well-known strategy. This inference rule is a weakened consequence of the closed
world assumption which states that negative facts may be inferred from the absence of their
positive counterparts [Reiter, 1978]. Thus, strictly speaking, the negation as failure rule is not

a real negation in terms of classical logic.
The frame problem and non-monotonic logics

Although classical first-order logic is descriptively universal, it is not effective in dealing with
problems as described by the frame problem [Hayes, 1969]. In short, the problem comes down
to the question of which states of the world should change as a result of some action. Non-mo-
notonic logics all emerged as an extension of a first-order logic, as a result of the various at-

tempts to find a formal solution to this problem.

The main difference between a non-monotonic logic and first-order logic is that in the former
assumptions are made about the state of unknown predicates. These assumptions, and all
conclusions derived from them, must be withdrawn when they are proved invalid at some later
time. Traditional deductive inference in first-order logic is not capable of doing this. As a
starting point for a more detailed introduction one is referred to [Lukaszewicz, 1991].

The closed world assumption underlies database completion and predicate circumscription, as
introduced by McCarthy [1980]. Predicate circumscription is based on finding the set of

minimal models for some predicate given a theory base. Later on, McCarthy generalised this



theory to formula circumscription [McCarthy, 1986]. The theory of default logic, as described
in [Reiter, 1980], is based on an extension of first-order predicate logic with a set of inference
rules, called default rules. A default theory consists of a set of premises (first-order formulas)
and a set of default rules. A set of formulas that is consistent with the default theory is called
an extension. In general, there is no description for the deduction process (or proof theory) for
the extensions of a default theory, as there is for normal predicate logic. Instead, the extensions
of a default theory are defined by a fixpoint construction. A model-theoretic semantics for both
circumscription and default logic can be found in [Etherington, 1988].

Autoepistemic logic [Moore, 1985] was introduced as a propositional modal logic. The ideas
were based on earlier work on non-monotonic logic by McDermott [1980; 1982]. In
autoepistemic logic an explicit distinction is made between a proposition and the belief that the
proposition holds. A stable belief set is defined to be a set in which all logical consequences of
its beliefs are known. An autoepistemic extension is a stable belief set grounded in the set of
premises. It is possible to translate the sentences of autoepistemic logic into the rules of a
propositional default theory and vice versa, such that the autoepistemic extensions are

equivalent to the extensions of the default theory [Konolige, 1988].

2.3 Uncertainty models

As argued in the introduction, the ability to cope with uncertain knowledge and data is crucial
to the acceptance of knowledge-based systems. Over the last decades a number of approaches
have been proposed. A distinction is often made in the literature between probabilistic and pos-
sibilistic approaches to uncertainty. A third class that is distinguished is the heuristic approach,
taking the theory of endorsement [Cohen, 1985] as its main exponent. This theory however is
more concerned with the uncertainty of the reasoning process itself, it differs fundamentally
from the probabilistic and possibilistic approaches.

2.3.1 Probabilistic approaches

Since the early days of uncertainty in Al it has been the conviction of many researchers that
probability theory should be the foundation for the handling of uncertainty. In this view,
uncertainty should be modelled through a conditional probability distribution function on a set
of variables. The strength of the dependency of some hypothesis on some evidence should be
determined by prior observation (objective interpretation) or by some degree of gamble based
on the actual truth of the hypothesis (subjective interpretation) [Bonissone, 1991a].

Bayes’ theorem, concerning the conditional probability of some hypothesis on some piece of
evidence, was the starting point for the first uncertainty models. However, quite soon it became
clear that there were some difficulties with the applicability of this theorem in knowledge-based
systems. The theorem requires a disjunct set of all hypotheses and conditional independence of

the pieces of evidence for each hypothesis. Furthermore, an enormous number of prior and
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conditional chances must be known beforehand. Finally, Bayes’ theorem does not support any
explicit propagation functions for the updating of uncertainty through the logical operators like
conjunction and disjunction. The first uncertainty models therefore concentrated on finding
solutions to these problems.

The subjective Bayesian methods

In the subjective Bayesian method [Duda, 1976], the problem of the availability of prior and
conditional chances is solved by allowing them to be estimated by experts. In general, these
estimations are inconsistent. In the subjective Bayesian method, a consistent combination
function is introduced that is based on an interpolation between the expert estimations and the
boundary conditions of probability theory. Further, propagation functions are introduced to
handle the uncertainty of combined pieces of evidence with respect to the logical operators. The
subjective Bayesian method, however, does not present a solution for one of the main problems
of probabilistic reasoning: the demand for the independence of pieces of evidence used in the

propagation functions.
Certainty factor model

The certainty factor model of Shortliffe [1975] and Buchanan [1984] was introduced for the
handling of uncertainty in rule-based systems. The model is based on the idea that pieces of ev-
idence can not only increase but also decrease the belief in some hypothesis. These measures
of belief and disbelief are defined in terms of probability theory. Further, a set of propagation
functions is specified to perform the updating of the belief and disbelief measures. The certainty
factor is based on both measures and the propagation functions for certainty factors are derived
from the propagation functions for the individual measures. The problem of prior and condi-
tional chances is, like in the subjective Bayesian method, solved by expert estimations of the
certainty factors. Because of its simplicity in use and its intuitively appealing semantics, it is by
far the most often used model in practice. However, to establish this, the model has undergone
some pragmatic changes that have weakened its theoretical foundations [van der Gaag, 1990].

Bayesian belief networks

Bayesian belief networks were introduced in [Pearl, 1982]. A Bayesian belief network consists

of two components: a dependency graph and a propagation scheme.

The dependency graph of a Bayesian belief network is a directed acyclic graph, consisting of
nodes and arcs, in which mutual dependencies between real-world entities are modelled. A
probability matrix specifies the degree of dependency between these entities. The direction of
the arcs in the graph is from cause to consequent. The dependency graph has to be acyclic be-

cause otherwise propagation cannot end.

The propagation scheme of a Bayesian belief network consists of updating functions and mes-
sage passing. The propagation scheme is activated by the introduction of new evidence to one

of the nodes of the network and aims to propagate this piece of evidence through the depend-
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ency graph until a new equilibrium is reached. Local updating concerns the updating of uncer-
tainty in a node, due to incoming messages from its direct neighbours. Message passing is used
to pass the uncertainty of a node to its neighbours and is done through A-messages (in the di-

rection of an arc) and m-messages (against the direction of an arc).

An efficient propagation scheme for belief in tree-typed networks was originally proposed in
[Pearl, 1988]. However, as the complexity increases when going from tree-typed networks to
general graphs, the computational complexity becomes exponential [Cooper, 1990]. To handle
such complexities, techniques were introduced to decompose general graphs into less complex
structures (clique trees), as proposed by Lauritzen [1988].

Dempster-Shafer theory

The Dempster-Shafer theory is based on a mathematical theory of uncertainty [Dempster, 1967]
that was further developed in [Shafer, 1976]. The theory is considered to be a generalisation of
probability theory and was not specifically developed for the handling of uncertainty in knowl-

edge-based systems.

The theory is based on a basic probability assignment, assigning a measure of uncertainty to all
subsets of the frame of discernment. This basic probability assignment is transformed into an
uncertainty interval through the Mobius-transform. The lower bound of this interval is called
the belief of a proposition, whereas the upper bound is referred to as the plausibility of the prop-
osition. This Mobius-transform is the static part of the theory and is common in all methods

based on the Dempster-Shafer theory.

The dynamic part of the Dempster-Shafer theory consists of a combination function for the up-
dating of the bounds of the uncertainty interval. In the form described by Shafer, this function
is of exponential complexity. Thus, there are two problems to solve when using the Dempster-
Shafer theory in knowledge-based systems: defining a complete set of propagation functions
and reducing the complexity of the calculations. Over the last decade, a number of approaches

have been developed to tackle these problems [Shenoy, 1990; Voorbraak, 1989].

2.3.2 Possibilistic approaches

In the possibilistic approach, uncertainty is not based on the frequency or the randomness of the
membership of an element of a well-defined set as it is in probabilistic approaches. Instead, un-
certainty is based on the partial membership of an element of an imprecisely defined set. Zadeh
is considered the first to develop this idea into a possibilistic approach which is based on his

theory of fuzzy sets.
Fuzzy set theory

The development of fuzzy set theory [Zadeh, 1965] opened up the possibility for a totally dif-
ferent approach toward uncertainty. Fuzzy set theory is an extension of classical set theory in

the sense that an element is allowed to be a partial member of some set. A membership function,
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or fuzzy set, is introduced to define the degree of satisfiability. All traditional set operations like

union, intersection and Cartesian product are also defined in fuzzy set theory.

Fuzzy set theory has been used as the foundation for fuzzy logic [Zadeh, 1975]. Fuzzy sets are
used to express linguistic notions, and fuzzy operators, as defined in fuzzy logic, are used to
express the meaning of linguistic operations. On the choice of these fuzzy operators, however,

there is much disagreement.

A second important use of fuzzy set theory is found in possibility theory [Zadeh, 1978; 1983].
In this paper, Zadeh made a distinction between meaning and measure of information. He
argued that the possibilistic notion of the meaning of information is best described by a (fuzzy)
membership function, for instance in modelling someone being old or tail. Contrary to this
notion of possibility, the probabilistic notion of the measure of information is the result of
modelling the frequency of occurrence of some characteristic. Clearly, two fundamentally

different notions underlay the two approaches.

Two fuzzy functions are available for the propagation of uncertainty. The generalised modus
ponens is used for the propagation of uncertainty over an implication, the compositional rule of
inference is used for a fuzzy relation. Since the introduction of fuzzy set theory and its use in
fuzzy logic and possibility theory, there has been enormous attention from both the theoretical
and the practical side. Although there is still fundamental criticism of the theory, it has become

a major research field.
Triangular norms and conorms

The theory of triangular norms and conorms (T-norms and S-norms) was not developed in the
context of the management of uncertainty in knowledge-based systems, it is part of the general
mathematical theory on metric spaces. Triangular norms and their dual conorms are the most
general families of binary functions that satisfy the requirements of the conjunction and
disjunction [Schweizer, 1983]. Both norms are monotonic, commutative and associative and
their boundary conditions satisfy the two-valued truth tables of the and and or operators. The
objective of the introduction of these norms was to establish a theoretical basis for a syntactic
and semantic definition of a subset of uncertainty calculi. An uncertainty representation form
is given by a term set of linguistic statements of likelihood [Bonissone, 1986].

Reasoning with uncertainty, as described in [Bonissone, 1987], describes the implementation
of a possibilistic propagation technique. Uncertainty of facts is represented by an interval in
which the lower bound represents the minimal degree of confirmation, the upper bound the
maximal degree of disconfirmation and the width of the interval represents the amount of
ignorance. Uncertainty of dependencies is represented by a degree of sufficiency, indicating the
strength with which the antecedent implies the consequent, and a degree of necessity, indicating
the strength to which a failed antecedent implies a negated consequent. The uncertainty

intervals are propagated and aggregated by triangular norm- and conorm-based calculi.

13



2.4 Types of reasoning
In the literature, three fundamentally different types of reasoning are distinguished: deduction,

induction and abduction.

Deduction is characterised by the derivation of a conclusion, which is based on the presence of
the premise of some causal relation. An important characteristic of this kind of reasoning is that
it is impossible to derive false conclusions from true premises. There is not much disagreement
on the definition of deduction, the notions of the other types of reasoning, induction and abduc-
tion, are less well-defined; we will explain what we mean by these terms. The notion of deduc-

tion can be illustrated by the following scheme.!

Example 2.1 (deduction)
Relation: A—B

Premise: A’

Conclusion: B’

Induction is the process of extracting knowledge which is represented by relations between the
entities in some domain, following from a number of observations of or experiments made on
that domain. In [Thagard, 1992] this process is called generalisation. In fact, deduction and ab-
duction often use relations that have been developed through induction. However, the nature of
induction is rather different from both deduction and abduction (as we use it), and is therefore
not covered in this thesis. The scheme of induction is given in the following example, in which

A, and B, represent multiple observations concerning A and B.

Example 2.2 (induction)

Facts: Ay
Facts: B/
Relation: A—-B

Abduction is probably the less well-defined type of reasoning. Informal definitions concerning
abduction are, among others, given in [Pople, 1973, 1977; Josephson, 1987] as the generation
of hypotheses which, if true, would explain some collection of observed facts. This definition
implicitly assumes that a relationship is available between explanations and observations.
However, abduction is also used in the context of forming theories that explain observed
phenomena. Using abduction this way is called rule abduction by Thagard [1992] or abductive
rule generation by van der Lubbe and Backer [1993]. This form of abduction is based on
abduction as introduced by Peirce [1958], where it was raised in the context of the development
of knowledge theory. Schemes representing both types of abduction are given in Examples 2.3
(pure abduction) and 2.4 (theory abduction).

1. The use of A’ and B’ in the reasoning schemes implies that some form of uncertainty is allowed con-
cerning the presence of characteristics A and B.
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Example 2.3 (pure abduction)
Fact: B’

Relation: A—>B

Explanation: A’

Example 2.4 (theory abduction)

Observation: B’

Relation: A—-B

Explanation: A’
In the remainder of this thesis, we use a definition of abduction in which is assumed that the
relation between observations and explanations is known beforehand. This form of abduction
is called abductive rule inference in [van der Lubbe, 1993]. The conviction that this form of
abductive reasoning is used more frequently in the human reasoning process than was generally
recognised, and allows more flexibility in reasoning, has gained support in recent Al research.
We remark that in rule-based systems, abductive reasoning has often been modelled through a
combination of deductive reasoning and a backward chaining control strategy. We do not use
such an approach, since it ignores an important aspect of abductive reasoning, namely the
possibility to model a dependency relation between explanations or parts of an explanation.
These dependency relations are especially interesting when uncertainty is used in combination

with abductive reasoning.

2.4.1 Formalisms enabling abductive reasoning
We discuss three formalisms from the literature that have incorporated some form of abductive

reasoning.
Parsimonious covering theory

Peng and Reggia [1990] extended the description of abduction with the necessity of a method
to discriminate between explanations, based on their plausibility. Their definition of abduction
is given by inferring the most plausible explanation(s) for a given set of observations. They
developed a framework for diagnostic problem solving, using a combination of both abductive
and deductive reasoning. The abductive component is represented by the parsimonious
covering theory, in which plausible sets of explanations (covers) are generated for the observed
manifestations. These covers are ordered by using deductive reasoning steps (causations), that
are labelled with a probabilistic uncertainty measurement. A branch and bound type search

method is used to select the most plausible set of explanations from the available covers.
Bayesian belief networks

Bayesian belief networks naturally integrate the combination of deductive and abductive
reasoning. The importance of a uniform approach was, among others, acknowledged by Pearl
[1988], it recognised that people do not use two separate rules to express both causal and

diagnostic reasoning steps, i.e. fire implies smoke and smoke makes fire more credible can be
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represented by the same dependency relation. As we saw in the previous section, Bayesian

belief networks are also able to cope with uncertainty.
Abductive Horn clauses

In [Poole, 1991; 1993], a description is given of an extension of Horn clause logic programming
towards abduction. This is done by introducing a construction, the assumable, in which a set of
possible hypotheses is assumed, each associated with a prior probability. To guarantee the cor-
rectness of probabilistic propagation, some assumptions are formulated for this construction.
The possible hypotheses must be independent (both logically and probabilistically), disjoint (or
mutually exclusive) and covering (i.e. be sufficient to explain some observation). Traditional
(deductive) Horn clauses are used to discriminate between possible hypotheses, a strategy that

is also used by Peng and Reggia [1990].

2.5 Reason maintenance systems

A reason maintenance system2 serves as a support system for the problem solver (inference
model) of a knowledge-based system (recail Figﬁre 1.2). A reason maintenance system consists
of a dependency graph (the reason base) and a labelling algorithm (reason maintenance). The
dependency graph consists of nodes, representing entities, and links, representing justifications.
The labelling algorithm assigns labels, representing facts, to the nodes. The intended goal of a
reason maintenance system is to maintain consistency between the labelled facts. Further, the
system allows learning from previously made inferences within one problem instance. For a
more detailed description of reason maintenance theory, the reader is referred to [McDermott,
1991] and [Reinfrank, 1989].

Two important characteristics of reason maintenance systems are that no contradictory facts
may be held simultaneously and that all facts must have some well-defined support. An obser-
vation that can be made on reason maintenance systems is that they are meant to work inde-
pendently from the knowledge representation formalism and inference model used. Although
this is a pleasant characteristic, it introduces the problem of encoding: What information must
be stored in a node and how should information be transferred between the inference model and

the reason maintenance system?

Through the years, a number of reason maintenance systems have been developed. A distinc-
tion can be made between two fundamentally different views: justification-based and assump-
tion-based reason maintenance.

Justification-based reason maintenance

Justification-based reason maintenance was first described by Doyle [1979] and it is the basis

of many reason maintenance systems that have been developed since. Justification-based

2. We use the term reason maintenance system consistently, instead of switching between reason and
truth maintenance system [Doyle, 1979].
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reason maintenance works with a labelling algorithm that labels the nodes either in or out,
depending on the node being in or out of the current set of facts. The labelling algorithm
provides two basic techniques: reason maintenance and dependency-directed backtracking.
Reason maintenance is used when a node with label our is given a valid justification.
Dependency-directed backtracking, the term was introduced in [Stallman, 1977], is used when

a valid justification is found for a node representing a contradiction, a nogood node.

A correct strategy to deal with nogood nodes was described by Elkan [1989]. However, this
strategy introduces a non-monotonic cycle in the dependency graph, which causes the complex-
ity of the labelling algorithm to become exponential. The introduction of three-valued reason
maintenance, with labels in, out and unknown, enables a strategy to construct partial labellings
of dependency graphs with non-monotonic cycles in quadratic time [Witteveen, 1991; 1993].

Assumption-based reason maintenance

A different view of reason maintenance was developed by de Kleer [1986]. His assumption-
based truth maintenance system maintains for each node the set of (minimal) environments in
which it holds, justifications are used to construct these environments. The environment of a
node consists of a number of assumption nodes, nodes representing (retractable) assumptions
made by the problem solver. De Kleer further extended his reason maintenance system with
respect to default reasoning, disjunctions of assumptions and non-monotonic justifications. He
tackled the encoding problem with a consumer strategy. In this, most attention is paid to the
control mechanism used for the communication between the inference model and the reason
maintenance system. Advantages of his approach are that the labelling of a node can be done
efficiently by inspecting its environments, that the consequences of retracting an assumption
can easily be dealt with, and that it is possible to reason with multiple contexts. The construction

of the environments, however, has been proved to be NP-hard [Provan, 1988].
Other views on reason maintenance

There are two other conflicting views on reason maintenance: an implementation-based versus
a logic-based approach and a single-context versus a multiple-context approach. In logic-based
reason maintenance, the emphasis is put on increasing the expressiveness of the formalism,
whereas in implementation-based reason maintenance, the emphasis is on increasing the
efficiency of the labelling algorithm. In the single-context approach only one consistent set of
facts is available at a time, whereas in a multiple-context approach several consistent sets may
be available at the same time [Martins, 1988]. Although the properties are in theory
independent of each other, it should be mentioned that justification-based reason maintenance
is strongly related to the logic-based and single-context approaches and that assumption-based
reason maintenance is strongly related to the implementation-based and multiple-context

approaches [Kelleher, 1988].
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2.6 Closing remarks

Section 1 is concerned with knowledge representation formalisms. With the introduction of
structural inheritance networks, a powerful formalism has come up. Striking problems on the
subject, like exception modelling and multiple inheritance, has been sufficiently solved. No

further attention is paid to research on this subject in the remainder of this work.

As argued in Section 2, first-order predicate logic is considered to be the best descriptive
formalism for the inference model of a knowledge-based system. However, the lack of an
efficient proof theory is known to be a severe objection. Research on this subject is still going
on, but is not covered here. From a practical point of view, it is more convenient to use a subset

of first-order logic, like Horn clauses, for the inference model.

An observation that can be made on uncertainty models, as described in Section 3, is that de-
spite their fundamentally different approaches toward uncertainty, the probabilistic and possi-
bilistic approaches should be regarded as being complementary rather than competitive
[Bonissone, 1991a]. The consequence of this view is that no choice between the two approaches
is necessary and integration of both approaches makes more sense. This view, the use of both
probabilistic and possibilistic approaches as complementary formalisms in a multi-type uncer-

tainty model, is also advocated in [van der Lubbe, 1990].

As outlined in Chapter 1, one of the major problems in probabilistic reasoning is the demand
for the independence of different pieces of evidence. In most uncertainty models, this is solved
by making strong assumptions concerning the mutual and conditional independency relations
of the variables at hand. Most approaches create an environment that shields a variable from
other variables to which no dependency is presumed. A reason maintenance system contains
information concerning all dependencies used in the reasoning process. Extending the Boolean
label of a node to some measurement of uncertainty as label for a node opens a possibility to
use dependency information during the propagation of the uncertainty stored in the labels.

From Section 5 we can conclude that the importance of reason maintenance is twofold. Firstly,
the information stored in a reason maintenance system can be used to optimise the inference
model, see for instance [Dechter, 1989]. Secondly, the use of a reason maintenance system is
considered to be critical to the construction of efficient implementations of non-monotonic
formalisms. It is therefore obvious that a reason maintenance system should be part of a

knowledge-based system.

2.6.1 Specification of design constraints

As outlined in Chapter 1, the global objective of this work is the study of existing models and
the development of new models for the management of uncertainty in compositional reasoning
systems. In Chapter 3, we report on the development of a general framework for compositional
uncertain reasoning that can serve as a basic framework for the development of these new

uncertainty models. In this section, we formulate a number of design constraints that can be
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used to evaluate this general framework, and specific uncertainty models based on it, and

compare them with other approaches.

Specifying constraints is also done in [Bonissone, 1987], where the reasoning with uncertainty
module (RUM) is evaluated using a set of desiderata. The reason for mentioning this specific
work here is the fact that besides a number of constraints concerning the uncertainty model,
some additional constraints are formulated that are related to the inference model. When
developing our general framework, it is necessary to specify a set of constraints not only for the
uncertainty model, but for the inference and even the reason maintenance model as well. In the
following, we specify such a set of constraints, the set is called the design constraints,
accompanied by the underlying arguments. Similarities with the desiderata of Bonissone (given

in Appendix A) are explained as well.

In addition, we state that some enhancements can be made to uncertainty models by using the
combined sources of information of inference, uncertainty and reason maintenance models. The
possibilities of these uncertainty model enhancements must be analysed for each choice of

inference and uncertainty model.
Design constraints on the inference model

Two design constraints are formulated for the inference model. The first constraint is concerned
with the expressiveness of inference models, i.e. the types of reasoning that must be supported.
The second constraint is concerned with the representation of inconsistencies in the inference

model.

1. The inference model should be able to support a deductive as well as an abductive reasoning
strategy.
When we observe the reasoning types deduction, induction and abduction, we distinguish a
fundamental difference between the types. Induction is concerned with the learning or
construction of knowledge bases, where deduction and abduction are concerned with
reasoning. Since we are primarily interested in a framework for reasoning, in the scope of
this thesis we limit ourselves to abduction and deduction only. Inference models for both
reasoning strategies have to be developed within the context of the framework. Clearly, there
is no equivalent demand in the desiderata for this constraint, Bonissone assumes the use of

a deductive reasoning strategy.

2. There should be an explicit representation of inconsistency in reasoning.
Different aspects of uncertainty were outlined in Chapter 1, inconsistency in reasoning is one
of them. The demand for explicit modelling of this characteristic provides a first separation
of these aspects. A comparable demand is formulated by Bonissone (see demand 4). Explic-
itly defining inconsistency at the inference level eases the definition of inconsistency in spe-

cific uncertainty models.
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Design constraints on the uncertainty model

The design constraints that are used for the uncertainty model are very general, since we do not

want to disqualify uncertainty models when we construct a general framework.

3. The representation type of the uncertainty model may not restrict the classes of potential
uncertainty models.
The argument for this demand is trivial, it means that the general framework may not
demand the uncertainty representation type to be, for instance, numerical or symbolic. The
demand is a generalisation of Bonissone’s first, in which is stated that the representation
form should allow explicit representation of evidence supporting, as well as refuting, some

hypothesis.

4. The propagation functions of the uncertainty model should not assume independency rela-
tions between pieces of evidence, or exclusiveness of hypotheses.
Again, from the viewpoint of developing a set of design constraints, this is a trivial demand.
However, uncertainty models that do make these assumptions must be accepted equally well
by the general framework. Comparable demands are formulated by Bonissone (see demands
7 and 8).

Design constraints on the reason maintenance model

We formulate two general design constraints on the reason maintenance model that are often
mentioned in the literature on reason maintenance but rarely used in the specifications of a
knowledge-based system. Clearly, no constraints are formulated by Bonissone on the reason

maintenance model.

5. The reason maintenance model structures must be independent of the characteristics of the
field of application, as specified in the domain model.
It is clear that reasoning processes in a specific field of application influence the contents of
structures in the reason maintenance model. However, in order to develop a general frame-
work for compositional reasoning, it is obvious that the representation formalism of the

model is application independent.

6. The reason maintenance model must work independently of the inference model used by the
problem solver.
This demand prescribes that a well-defined solution must be offered by the framework for
the encoding problem (see Section 5). The advantage of a clear distinction between inference
and reason maintenance model and a unique communication protocol between them is found

in the independent development and implementation of both models.
Model enhancements

The advantage of having a reason maintenance model in the general framework can be used to
enhance the inference model and the handling of uncertainty. For instance, when we have de-

fined a specific uncertainty model, we can tune the propagation functions to the situation they
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are used in, when information concerning this situation is available in the reason maintenance
model. Bonissone specified these kinds of enhancements in the desiderata as well. However,

we prefer to call them model enhancements, instead of constraints.

1. The inference model can be enhanced, the enhancement is based on information offered by
the reason maintenance model.
Examples of enhancements of this type can be the early detection of coming inconsistencies
or the skipping of inferences that have previously been made. This is a generalisation of
Bonissone’s demands 11 and 12, stating that the reasoning process must be tractable, i.e.

there should be an explicit representation of supporting evidence of the hypotheses.

2. The propagation functions of the uncertainty model can be enhanced, the enhancement is
based on information offered by the reason maintenance model.
Enhancements of this type are made by enabling the uncertainty propagation functions to use
a better-specified representation of the environment in which the propagation takes place.
This is a generalisation of Bonissone’s demands 10 and 15, which express that the reasoning

process must be capable of selecting the most appropriate uncertainty propagation rule.

In Chapters 4 through 6, we give some illustrations of these enhancements, as applied in a

specific inference and uncertainty model.
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Chapter 3

A General Framework
for Compositional Uncertain Reasoning

In this chapter, we develop a general model for compositional reasoning, including reason
maintenance and uncertainty management. The model will function as a general framework for

the techniques and formalisms to be developed in the remaining part of this thesis.

To start with, we have to get some more insight into the notion of compositional reasoning. An
informal definition of compositional reasoning is given by constructing complex reasoning
processes by combining small, well-defined reasoning steps. A set of operators is used to
construct the reasoning process out of these primitive reasoning steps. Mathematical logic is
certainty the best known underlying theory that can be found for this principle. We choose a
three-valued logic as the basis of our framework. The choice for the three-valued logic was
supported by the possibility it offers for explicitly representing the lack of knowledge, thus
enabling a method for representing the incompleteness aspect of uncertainty. Introducing
uncertainty into this provides us with a strong fundamental basis and guarantees the correctness
of uncertainty propagation in the boundary situations. In this chapter, a deductive reasoning

strategy for the reasoning primitive is added to the framework.

In Section 1, the representation formalism is introduced for the domain model of the general
framework, where Section 2 contains the description of the reasoning model. In Section 3, a
deductive inference strategy is specified for the primitive reasoning step. The integration of
uncertainty into the general framework is the main topic of Section 4. Finally, in Section 5 the

resulting framework is discussed.

3.1 A domain model for compositional reasoning

In this section, the specification formalism for the domain model of the general framework is
defined. We use a layered approach, consisting of three levels. The expression level is the
bottom level, in which the basic structures for reasoning, like propositions and expressions are
introduced. The middle level, the inference level, contains the primitive reasoning structure.
The top level, the control level, contains structures to enable the construction of problem-

solving strategies based on the inference level.

3.1.1 The expression level
In this section, the specification formalism for the expression level is defined. First, the

definition of the set of atomic propositions is given.
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Definition 3.1
An atomic proposition is a literal.
The set of atomic propositions is called A.

Expressions are defined using the set of atomic propositions and the logical operators for the
negation (—), conjunction (A), and disjunction (v). The expressions are defined in a standard

recursive manner [Héjek, 1992].

Definition 3.2

An expression is defined by

(atomic) each atomic proposition a € A,
(negation)  —e, when e, is an expression,
(conjunction) e; A e, when e, and e, are expressions,
(disjunction) e, v e, when ¢, and e, are expressions.
The set of expressions is called E.

As argued in the introduction, we use a three-valued labelling T; of true (%), false ( ﬁ and

unknown (%) for the set of atomic propositions.

Definition 3.3

A three-valued labelling L is defined as the assignment of a label from {t,u,f } to each
element of A.

In functional notation, L: A — T).

The combination of an atomic proposition and a label is used frequently throughout the
remainder of this chapter, this combination is called a binding.

Definition 3.4
A binding is defined as a 2-tuple consisting of an element from A and label from T;.

Notation: <a,|>whereae Aandle T}
A set of bindings is denoted by {<a; 1>}, the empty set by {}.

Note that a set of bindings that contains bindings for all atomic propositions from A can be

considered equal to a labelling.

According to the three-valued labelling, an evaluation function for the set of expressions is
defined. For compound expressions (expressions containing a logical operator), the evaluation

function is defined using Kleene’s truth tables [Turner, 1985].

Definition 3.5

An evaluation function W is defined as the assignment of a label from {{, u,f } to each
element e € E, where

(atomic) W(e) = L(a), the label of the atomic proposition a € A,

(negation) Wi(e) = W_(e,) according to the truth table of —,

(conjunction) W(e) = W ,(e,,e,) according to the truth table of A,

(disjunction) W(e) = W (e,,e,) according to the truth table of v.

In functional notation, W: E — T;.
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Tables 3.1 through 3.3 contain the truth tables for the evaluation of compound expressions that

are used in the functions W_, W, and W,,.

Table 3.1 Negation Table 3.2 Conjunction Table 3.3 Disjunction

St S

3.1.2 The inference level
In compositional reasoning, basic inference steps are combined into complex reasoning tasks.

From Chapter 2, it has become clear that the basic inference steps for both deduction and
abduction use the same relation; to model this relation we provide Definition 3.6. Whether this

relation is used either deductively or abductively is prescribed by the reasoning type.

Definition 3.6
An inference step is defined by e = a, wheree € Eandae A.
The set of inference steps is called IS.

The inference level is the middle layer of the framework, it is concerned with both the problem
solving by the control level and the labelling of the propositions at the expression level. As a
result of this, two functions are needed, one on each level. For the specification of the influence
of the inference level on the expression level, an additional evaluation function is needed to
update the labelling of propositions by executing inference steps. Further, an inference function
is needed to inform the control level whether the execution of an inference step was successful

or not.

The additional evaluation function for updating the label of a proposition is represented by the
combinatjon function W), it is used to combine two labels of an atomic proposition. The truth

table of function W, is given in Table 3.4.

Table 3.4 Combination
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In the function for the combination W), a special symbol (1) is used when the labels true (#) and

false ( ﬁ are combined. This situation is called a conflict, the reasoning process should be
designed to avoid this situation. The definition of a contlict is given here in terms of the three-

valued labelling.

Definition 3.7
A conflict (1) is defined to be the situation in which the label true () is assigned to an

atomic proposition labelled false (ﬁ or vice versa.

The definition of the combination function can be given by using the notion of a conflict.

Definition 3.8
The evaluation function for the combination W\: T|,T; = T is defined for each element

pair a;,a, € A, where W(a,a,) is specified in Table 3.4.

With the definition of the combination function W, we have completed the set of evaluation
functions for the framework. We call the combination of the three-valued labelling L and the
set of functions (W_, W ,,W,,W)), a three-valued model for the set of atomic propositions. This
three-valued model is used as the fundamental structure when generalising towards the defini-

tion of a general uncertainty model.

Definition 3.9

The three-valued model M for the set of atomic propositions is defined by a three-valued
labelling L, together with the set of four functions (W_,W W W )on L,

where W_: T| = T and W, , W W : T|,;T| = T|.

Now, an inference function (called /%) can be defined in which the evaluation of the primitive
inference steps is described. This inference function specifies the reasoning strategy (either
deductive or abductive) for the primitive inference step. The result of the inference function is
an element from the set {7, F }, where Z'should be interpreted as true (the inference step is
evaluated with success) and Fas false (the inference step has led to failure). To avoid confusion
with the labelling of atomic propositions and the evaluation function for expressions, different
symbols are used here. In the course of this chapter we define a deductive inference function,

an abductive inference function is introduced in Chapter 5.

3.1.3 The control level
The structures of the control level are introduced in this subsection. We have chosen three

general-purpose control steps. The choice step indicates that the inference model can choose
between several alternative inference steps. The concatenate step indicates that the inference
model should concatenate several steps. The denial step indicates that the inference model
cannot continue when a given inference step has succeeded. Choice, concatenate and denial
steps are used to model a reasoning strategy, i.e. how to combine primitive inference steps into

reasoning tasks. Control steps are also defined in a recursive way.
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Definition 3.10

A control step is defined by

(primitive)  each inference step s € IS,

(choice) choose{c,,...c,} when c,....c, are control steps,

(concatenate) concat{c,,...c,} when cy,..,c, are control steps,

(denial) deny(c;) when c; is a control step.

The set of control steps is called CS.
A control function is needed to specify the evaluation result of control steps. As already
described, a label from the set {7, ¥ } is used to denote the outcome. Obviously, for primitive
control steps, the control function is equal to the result of the inference function (/%) for that
inference step. The control functions for the choice and concatenate steps are modelled by the
existential and universal operators, the denial step is modelled by a negation. An actual
execution procedure for control steps is given by the inference model.

Definition 3.11
An control function CF is defined as the assignment of a label from {Z,F } to each
element ¢ € CS, where

(primitive)  CHc) = IKs),

(choice) CHc) = Twhen 3; CHc;) = ‘T, otherwise CHc) = F,

(concatenate) CHc) = Twhen V; CHc;) = 7, otherwise CHc) = F,

(denial) CHc) = Twhen CHc) = F, otherwise CHc) = F.

In functional notation, C'E CS — {1, F}.
Now, the structure of a program can be defined, which is the equivalent of what others call the
knowledge base or domain model. A program consists of a set of constraints Cy, a subset of the
set of all possible control steps CS, a query Q from CS and an initial labelling L, over the set
of propositions A.

Definition 3.12

A program P is defined as a triple (Cy,Q,Lg) consisting of a subset C; < CS, aquery Q

CS and an initial labelling L, over A.
Now we have completely defined the specification formalism of the domain model, a definition
of the desired outcome remains. With respect to a program P, we are interested in labellings L

over A that are consistent with constraint set C, and that fulfil a posed query Q.

Definition 3.13
An extension X for a program P is defined as a labelling Lq over A with CHQ) = T

3.2 An inference model description

In this section, we describe an inference model for the structure of a program, as defined in the

previous section. The description is preceded by the incremental definition of the process state,
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the structure that contains all information needed by the inference model.

Definition 3.14
A trail T = <T, ... ,Ty> is a finite set of control steps (T; € CS) that have been made in

the execution process so far.
Definition 3.15
A course C = <C,, ... ,C> is a finite set of control steps (C; € CS) that still must be made
in the execution process.
Definition 3.16
A process state PS is a description of an intermediate state during the execution of a
program P, given by [T,C,L], where T is a trail, C is a course and L is a labelling.
A process state is used to describe any situation during the execution, according to the set of
control steps that have been and still have to be made at that particular situation. Its semantics

can be compared to that of a trace in [Mellish, 1987].

Definition 3.17

A process state stack PSS is a description of the state of the reasoning process based on

all available alternative process states. It is denoted by

[PSil: ... :[PSq] =

= [Ty.CroLd: - :[T1,C L ] =

= [<T, o T <G, oGS Ll [T T™>,<CpY, . Cy > Ly )
The process state stack is a structure that contains all information necessary to execute a
program. Each stack element contains an alternative reasoning path, which is characterised by
a trail, a course and a labelling. Now, a deterministic procedure can be given for the inference
model according to the four different sorts of control steps. The effect of each situation is

described by changing the general form of the process state stack, given by
<T L, . T <G, Gl L <Ty Y T <Cy R, L O > Ly

In this notation, the current process state is PSy, and the control step to be executed is thus Cy".
This current control step is always removed after execution. Now consider the effect of the four
different types of control steps.

A primitive inference step

The successful execution of a primitive inference step has the following influence on the
process state: The used inference step is added to the trail Ty and the result of this inference step
is added to labelling Ly. The type of reasoning used to execute the inference step is not
important here, its result is used to update the current labelling. The resulting process state stack

has the following form

[<Til, o TP TS <O LS L L o[T,C L))
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Tkm”: C," is the inference step that has been executed,
Ly+ is Ly extended with the result of the inference step.

The effect of a primitive control step leading to failure is that the current process state PSy is

removed from the process state stack. This means that the current reasoning path has led to
failure and that the inference model has to continue with the most recently created alternative

reasoning path. The resulting process state stack is
[Tk~I’Ck—1va-|]: Z[TI,CI,L[].
A choice step

The effect of a choice step C;" = choose(s,..,s;} is that alternative process states PSy,, to
PSy,, are added to the process state stack. The current process state is therefore copied a

number of times and extended with each alternative. The resulting process state stack is
[TeenCrambianl - AT<CM L o OS>l o[ TLCLy L

Ty till Ty, are copies of Ty,

Cyy1 till Gy, are equal to s, till s, respectively,

Ly, till Ly, are copies of L.

A concatenate step

The effect of a concatenate step C" = concat{s,,..,s,} is that new concurrent reasoning paths

are added to the course of the current process state, while the rest of the process state stack

remains unchanged

[T<C™, LG, o G Ll o (TG,
C ™ till ™! are equal to s, till s,, respectively.
A denial step

The effect of a denial step C," = deny(s,) is that the inference step s, is evaluated by the

inference model in isolation, by using process state stack [<>,<s>,Ly].

When no extensions can be found for this program, the denial step as a whole succeeds, and the
same action is taken as with a successfully made primitive control step, except for the fact that
the labelling Ly is unchanged

[<Ty), o T TS <0 L CS Ld: o [TLCL

When one or more extensions can be found for this program, the denial step as a whole fails,

and the same action is taken as with a failed primitive control step, yielding

[T 1Cr b )e o T LC L)
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Initial and final state

The initial process state stack of program P = (Sq,Q.Lo) is given by [T,Q,Lo), where Ty is the
empty trail <> by definition, Q is the query and L, is the initial labelling. The function and

semantics of this initial trail Ty are made clear in the following section.

Two types of final states can be distinguished for the program state stack. A final process state
is characterised by an empty course <>, for instance [Ty,<>,L]. In this, Ly is an extension for
Q, derived through the trail T. When the process state stack is empty [], this means that no

(more) extensions for the given query can be found, and execution can be terminated.

3.3 Deductive inference

The general framework, as defined in the preceding sections, does not depend on a specific type
of reasoning, since we have not given the reasoning strategy for the primitive inference step. In
this section we introduce a deductive inference strategy. Further, a reason maintenance modetl
is outlined for this deductive inference strategy, which enables the proof of correctness of the
inference model (given in Section 2). Other advantages of using a reason maintenance model

are explained in later sections and chapters.

3.3.1 The deductive inference function
The primitive inference step consists of a relation (=), with an expression (e) as its premise and

a proposition () as its conclusion. The deductive strategy for this primitive inference step is
straightforward: successful evaluation of the premise results in a new or additional label for the
proposition in the conclusion, and adds it to the current labelling. This strategy is formalised by
the definition of a deductive inference function.
The inference function for an inference step (e = a), using deductive inference is based on two
criteria, in which both the new label for the conclusion (say L_,) and the propagation function
for the combination (W,) are used. The first criterion demands that the evaluation of the premise
of the inference step results in true (W(e)=9), this is a trivial demand. The second criterion
demands that the application of the inference step may not give rise to a conflict (f). This can
be done by checking the outcome of the combination function W) on the existing label for the
proposition, L(a), and the new label, which is given by L.
As explained, the result of the inference function I¥is an element from the set {TF}, where
Tshould be interpreted as true and Fas false.

Definition 3.18

A deductive inference function IFis defined as the assignment of a label from {TF} o

each element s € IS, where

IRs) = Twhen W(e) = tand W, (L(a),L_,) # T, otherwise IHs) = F.

In functional notation, I'F IS — {T,F ).
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3.3.2 Reason maintenance
According to the prototype of a knowledge-based system, as given in Chapter 1, a reason

maintenance system can be introduced to support the inference model. We develop some basic
reason maintenarce theory here that will serve several purposes: in developing a proof for the

inference model and in supporting relabelling and uncertainty propagation.

Justifications, contradictions and dependency networks are the basic structures in a reason
maintenance model. We define these terms in the context of the framework, and the deductive
inference strategy for the primitive inference step. The definitions given here are based on the
approach found in [Witteveen, 1990].

In general, a justification reflects the dependency of a new label assignment for some proposi-
tion on a set of already labelled propositions. We use a justification to record a successfully
made deductive inference step by the inference model. The propositions that have been used in
the evaluation of the premise expression are recorded in the antecedents of the justification as

a set of bindings {<a;,1;>}. The conclusion of the deductive inference step, which is a single

binding <a,l>, is recorded in the consequent of the justification.

Definition 3.19

A justification is a structure of the form {<a; 1>} — <a,l>, where a,a; € A, L], e T).

The set of bindings {<a;1;>} is called the antecedent (Ante) of the justification, binding

<a,I> is called the consequent (Cons) of the justification.

When the antecedent is equal to the empty binding set {}, the justification is called a

premise justification.
A contradiction is used to store a set of conflicting labels (sometimes called a nogood set in the
literature). We use a contradiction to record failed deductive inference steps made by the
inference model. The propositions that were used in the evaluation of the premise expression
are recorded in the antecedents of the contradiction as a set of bindings {<a;,1;>}. The L symbol

is used to denote the fatlure.

Definition 3.20
A contradiction is a structure of the form {<a;,l;>} — 1, where a; € A, L€ T|.

The set of bindings {<a;,l;>} is called the antecedent (Ante) of the contradiction.

A dependency network can be constructed when the set of atomic propositions is combined
with a set of justifications. Since a deductive inference strategy is used, this is called a deductive

dependency network.

Definition 3.21
A deductive dependency network consists of the set of atomic propositions A and a set of
justifications J.

From Chapter 2, it is concluded that the task of a reason maintenance model is to support the

correctness of the belief set of a knowledge-based system. In terms of the general framework,
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the belief set is represented by the current labelling of the set of atomic propositions. Therefore,

we have to introduce a definition for correctness or validness of a labelling.

Definition 3.22
A labelling L over the set of atomic propositions A satisfies a justification j when Ante(j)
c L implies Cons(j) € L.

Definition 3.23

A labelling L over the set of atomic propositions A is valid for a deductive dependency
network consisting of the set of atomic propositions A and a set of justifications J, when
L satisfies each justification in J.

The task of a reason maintenance model is to support or maintain valid labellings of a deductive
dependency network. A common problem with the construction of valid labellings for these
kinds of networks is the presence of cycles. We give an example of a deductive dependency

network, containing a cycle.

Example 3.1

Consider A={a,b} and J={{<a,t>} — <b,t>,{<b,t>} — <a,t>}, then L=(<a,t>,<b,t>} is
a valid labelling. However, the supporting justifications for propositions a and & are
circular and therefore violate our intuitive notion of a proof.

To overcome these problems a grounded labelling, that will not accept circular proofs is

defined. In order to define a grounded labelling, the notion of a monotonic proof is defined first,
see also [Witteveen, 1990].

Definition 3.24
Let A be the set of atomic propositions, J be a set of justifications and L a labelling. Now
amonotonic proof mp(a) for proposition a € A is a finite enumeration <a, 1,>, ... ,|<ay,l;>,

where 3, € A and |; € T}, with

(1) Vi <ai,li> e L,

(ii) 2, = 2,

(iii) V; 3; ¢ y with Cons(j) = <ajl;> and Ante(j) C {<a; li. >}
The demand we propose for a grounded labelling of a deductive dependency network is that
each atomic proposition a with label / from { t,f } is supported by a justification, having <a,[>

as its consequent, that is satisfied by that labelling.

Definition 3.25

A labelling L over the set of atomic propositions A is grounded with respect to a set of
justifications J when each atomic proposition a € A, labelled true (?) or false ( ﬁ inL, has
a monotonic proof mp(a) in L given J.

It follows from this definition that only the subset of A, propositions that are labelled frue or
false, needs a monotonic proof. The remaining atomic propositions, labelled unknown, do not

need such a proof, which is intuitively correct when the semantics of unknown are considered.
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A dependency network with a grounded labelling can still contain cycles, but they are balanced
[Goodwin, 1987]. This means that at least one atomic proposition in a cycle has at least one
justification that does not belong to that cycle and can therefore be used in constructing a

monotonic proof for that proposition.

Example 3.2
If the premise justification {} — <a,t> is added to justification set J from Example 3.1,

the labelling L={<a,t>,<b,t>} is a grounded labelling over A, since thecyclea > b > a
is balanced at a.

We conclude this section with the proof of correctness of the inference model described in the

previous section.

3.3.3 Correctness of the inference model
Correctness of the inference model given in Section 2 is proved by developing a mapping of the

inference model onto a reason maintenance model and using a theorem developed by Lloyd
[1984] on the immediate consequence operator. This operator updates a model M (equal to
what we call a labelling L), given a set of justifications J, by applying all justifications from J
that can be applied given M. This yields a new model M’ that is equal to M, updated with the
consequents of the used justifications. Repeated application of the Lloyd operator results in a
monotonic update of the models. When a model has not changed after applying this Lloyd

operator, the fixpoint of the operator is found.

The mapping of the inference model structures onto the reason maintenance structures is
straightforward. A trail T, used in the inference model, can be mapped directly onto a set of jus-
tifications J in the reason maintenance model. This is done by taking all atomic propositions
used in the evaluation of the premise of a successful implication and their current labels as the
antecedents of a justification and the conclusion of that implication as the consequent of the jus-

tification. A failed implication can be mapped onto a contradiction in a similar way.

Now, in some program P = (S,,Q,L,) with initial process state [T,,Q,L], none of the atoms from
labelling L, can have a monotonic proof, since T, (and therefore J) is empty at the start of the
inference process. Therefore, J is filled with premise justifications of the form {} — <a,{> for
each atomic proposition a in L, with an initial label [ equal to true or false. This is a common
strategy to define a set of premises in reason maintenance literature.

With the following theorem, we can prove the correctness of the extensions derived by the

inference model given in Section 2.

Theorem 3.1
Given the inference state [T;,C;,L;].

The labelling L, is a grounded labelling over A given a set of justifications J, where J is
the mapping of T;.
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Proof
By induction.
(i) In the case of Ly, the theorem holds by definition, because of the introduced set of

premise justifications.

(ii) Now, consider L; given [T;,C;,L;] and suppose labelling L; , is a grounded labelling
over A given (the mapping of) T;,. Obviously, only the successful application of an
inference step can have changed L;_, into L;. In this case, L; is derived from L;_, by adding
the conclusion of this inference step, some binding <a,/>. This inference step can only be
successfully applied, however, when a has a monotonic proof mp(a) in L;_;, and therefore

L, is a grounded labelling over A given (the mapping of) T;.

The enumeration of labelings Lq,...,.L can be compared with the fixpoint characterisation
M,,...M,, of the immediate consequence operator as defined in [Lloyd, 1984]. Clearly, the
labelling L, is equal to the starting model M, of the Lloyd operator and the final labelling Ly is
equal to the fixpoint, say My, of the Lloyd operator. Since in our model only one justification

is used to come from one labelling to another, it is obvious that n < k. In the following example
we demonstrate this, and also the fact that not all intermediate labellings generated by the

fixpoint construction have equivalent labellings constructed by the inference model.

Example 3.3

Let A = {ab,c,de,g} and Ly=M; = {<a,t>,<b,f>},

resulting in two premise justifications

{} = <a,t>and {} - <b,f>.

Now, suppose the following inference steps are generated

a=» <c, >, ¢ = <e,f>, =b = <d,t> and and = <g, >,

resulting in the following justifications

{<a,t>} = <c,b, {<c,b} = <e,f, (<b,p} = <d,t>and {<a,t>,<d,t>} — <g,t>.
Then the sequence of labellings found by the inference model is

Lo = {<a,t>,<b,f>},

L, = {<a,t>,<b,fo.<c, b},

L, = {<a,t,<b,fo.<c,<e, o),

L, = {<a,t>,<b,fo.<c, t,<d,t>,<e,f>},

L, = {<a,t,<b,f>,<c,t,<d, >,<¢,f>,<g, ).

The immediate consequence operator gives

M, = {<a,t>,<b,>},

M, = {<a,t>,<b,f><c,t>,<d, >},

M, = {<a,t>,<b,f>,<c,t>,<d,t>,<e,f>,<g,t>}.

Now, L, = M, by definition. M, is the fixpoint of the immediate consequence operator
and thus equal to the final labelling L,. However, M, does not have an equivalent
labelling in the enumeration due to the order in which the inference steps are executed by
the inference model.
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3.4 Uncertainty management

The labelling of atomic propositions used so far has been limited to the three labels true, false
and unknown. In this section, we extend this labelling to some measurement of uncertainty in
such a way that only minor changes are necessary to the theory developed for the rest of the
framework. We define only a general model for reasoning with uncertainty, this means that no
choice for a specific uncertainty model is made. Not even the type of the model, probabilistic

or possibilistic, limits our framework.

Therefore, as the uncertainty measure, an unspecified type T is introduced that is used to
replace the definition of the three-valued labelling L by the definition of an uncertainty
labelling UL. The specification of this uncertainty type T, is part of the definition of any

specific uncertainty model.

Definition 3.26
An uncertainty labelling UL is defined as the assignment of a label from type T,; to each

element of A.
In functional notation, UL: A — T;.

As a result of this, the definition of a binding, as given in Definition 3.4, can be extended in a

straightforward manner to an uncertainty binding.

Definition 3.27
An uncertainty binding is defined as a 2-tuple consisting of an element from A and an
uncertainty label from T,;.

Notation: <a,ul>where ae A andul € Ty
A set of uncertainty bindings is denoted by {<a;,ul;>}, the empty set by {}.

As a result of the definition of an uncertainty labelling, the evaluation function for expressions
W, see Definition 3.5, should be changed accordingly. The functions (W_,W,, W) are replaced
by a set of uncertainty propagation functions (f_,f,,f,) that again have to be specified in the
definition of an uncertainty model. Then, the uncertainty evaluation function can be defined

using these uncertainty propagation functions.

Definition 3.28
An uncertainty evaluation function UW is defined as the assignment of a label from T,

to each element e € E, where

(atomic) UW(e) = UL(a),

(negation)  UW(e)=f_ (UW(e))),
{conjunction) UW(e) = f,(UW(e,),UW(e,)),
(disjunction) UW(e) = £ (UW(e,),UW(e,)).
In functional notation, UW: E = T

Similar to the three-valued situation, an additional uncertainty propagation function, f), is

necessary to support the updating of uncertainty labels, in case the successful application of an
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inference step derives a new uncertainty label for a proposition.

When working with uncertainty, it is of interest to assign a measurement of uncertainty to the
used inference step as well. When doing this, an additional uncertainty propagation function,
f_,, is necessary to support the impact of this uncertainty label!. This uncertainty propagation
function has two arguments: one for the strength of the relation and one for the uncertainty label

of the premise given the situation it is used in.

Comparable to the definition of the three-valued model, the uncertainty model is defined con-
sisting of an uncertainty labelling UL and a set of uncertainty propagation functions.

Definition 3.29

An uncertainty model UM for the set of atomic propositions is defined by an uncertainty
labelling UL, together with a set of five uncertainty propagation functions (f_.f,.f,.f_.f)
on UL, where f_: T;: = Ty and £, £,.f_,fi: Ty, Ty — Ty

This definition of the uncertainty model, consisting of a representation and a propagation part,
exactly covers the intuitive description of such a model. The representation aspect is specified
by uncertainty labelling UL of type T, over A. The propagation aspect is covered by a set of
five uncertainty propagation functions (f_,f,.f,.f_,f;) for the update of uncertainty in the basic
reasoning steps. The fill-in of both the uncertainty type T, and the set of propagation functions

determines the character of an uncertainty model.

3.4.1 Embedding the three-valued model
We have extended the three-valued labelling of the set atomic propositions to an uncertainty

labelling. However, it would be attractive if the uncertainty model could be considered as a
generalisation of the three-valued model. To achieve this, we have to define a transition
function from the three-valued model into the uncertainty model, such a transition function is

called an embedding.

Definition 3.30

An embedding B of the three-valued model M in an uncertainty model UM is defined as
a transformation function from the elements of the three-valued labelling L from M into
elements of the uncertainty labelling UL from UM.

In functional notation, B: T} — Ty,

When we wish to maintain the properties that have been set out in the preceding sections, we
must guarantee that the embedding satisfies the boundary constraints of a three-valued model.
The following definition describes the impact of these boundary conditions on an embedding,

if they are satisfied the embedding is called a correct embedding.

1. Using a function W_, in the three-valued model (see Definition 3.9) for the same purpose can be done
straightforwardly. However, this function is meaningless in the three-valued case, since the impact of the
premise can either be true (assign a new label to the conclusion) or unknown/false (the inference step is

ignored).
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Definition 3.31

An embedding B of the three-valued model M in an uncertainty model UM is correct
when the following conditions hold for all 1,1, € L:

@ £, B1) =BW_(1,)),

(1) £,(B(1)),B(1y)) = B(W,(1,,1,)),

(iii) £,(B(1),B(ly)) = B(W . (1;,1)),

(iv) £,(B).B(1y)) = B(W,(l,.1,)).

In the following example, the uncertainty type T, and a correct embedding are given for the

Dempster-Shafer theory.”

Example 3.4
The uncertainty type T,; of the Dempster-Shafer theory is an interval [Bel(x), P1{x)]

consisting of the belief (Bel) and plausibility (Pl) measurements of this theory. Both
measurements are defined on the interval [0..1].

A correct embedding B of the three-valued model into the Dempster-Shafer theory can
be defined through B(#)=[1,1], B(#)=[0,1] and B(ﬁ=[0,0].

When the embedding of the three-valued model in a specific uncertainty model has been
specified, only the definition of an inference function is needed to complete the framework for
compositional reasoning with uncertainty. For deductive models, this definition can be derived
straight from the inference function /%, given in Definition 3.18. In this definition, the notion
of a conflict in reasoning was used to distinguish between valid and invalid inference steps.
Because of this, the definition of a conflict is also necessary in the context of an uncertainty
model. To conclude, the definition of an inference function is specific to the type of reasoning

as well as to the uncertainty model it is used in.

In Example 3.5, an embedding is given of the certainty factor model of Shortliffe-Buchanan’,
followed by the definition of an inference function for this model. The deductive strategy for
the primitive inference step (given by ¢ = a, with strength CF_,) uses two model specific char-
acteristics. First, the premise of the inference step must be evaluated and, secondly, certainty
factors +1 and -1 cannot be combined (the definition of the uncertainty conflict). In evaluating
the certainty factor of the premise, the threshold 0.2, which is also used in most known imple-

mentations of the model, is used.

Example 3.5
The uncertainty type T, of the certainty factor model is equal to a real number (CF) from

the interval [-1..+1].

The propagation functions (f_.f,.f,.f_.f) of the certainty factor model are:
f—\(x)= -X, fA(X’Y)=min{x’y}> fv(X,Y)=maX{X,Y}s f:(X,y)=X*y,

2. For a detailed description of this example, we refer to Appendix B.
3. In Chapter 4, we analyse this model in more detail.
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fu(x,y)= x+y - x*y when x,y > 0,
x*y / (1-min{Ixllyl}) when-1<x*y <0,
x+y + x*y when x,y <0,
1 when x*y=-1.

A correct embedding B of the three-valued model in the certainty factor model can be
defined through B(#)=+1, B(1)=0 and B(f)=-1.

An inference function I'Ffor the certainty factor model is defined by
I%s) = Twhen CF(e) > 0.2 and f;(CF(a),f_(CF(e),CF.)) # 1, otherwise I‘’{s) = F.

The extension from a three-valued labelling to an uncertainty labelling as described here does
not influence the reason maintenance model and the theory developed in Section 3. Of course,
the forms of justification, contradiction and deductive dependency network are changed ac-
cording to the introduction of the uncertainty labelling, but this has no influence on the infer-
ence model or the described reason maintenance techniques.

The introduction of uncertainty can be incorporated in the definitions of a program and an
extension, as can be seen from the following definitions. This concludes the integration of

uncertainty into the general framework.

Definition 3.32
An uncertainty program UP is defined as a triple (S4,Q,UL,) consisting of a subset Sy
CS, aquery Q € CS and an initial uncertainty labelling UL, over A.

Definition 3.33
An uncertainty extension UX for an uncertainty program UP is defined as an uncertainty

labelling ULq over A with CKQ) = L.

3.4.2 The problem of relabelling
Changing from a three-valued labelling to an uncertainty labelling introduces the problem of

relabelling. This problem is characterised by an update in the uncertainty label of a proposition
due to the combination function. The question is, should uncertainty labels of other propositions
that are based on this proposition, also be updated? In the three-valued case, this situation could
not occur, since the only change in the labelling of a proposition is from unknown to true or
false, and no labelling of other propositions could have been based on the unknown label of this
proposition. When using an uncertainty labelling, changes can be made to the uncertainty label

of a proposition that has already been used in the derivation of other propositions.

When using the deductive strategy, the relabelling process is modelled straightforwardly when
one realises that dependencies between propositions are stored in the justifications of the reason
maintenance model. The relabelling process will act similarly to the proof of Theorem 3.1, each
time all justifications that use the relabelled proposition in their antecedents are checked for
their consequent to be relabelled. As a result of this, the relabelled proposition from the

consequent can activate other relabelling processes.
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In Appendix C, a short description is given of the relabelling algorithm, which consists of two
steps: a marking step and a relabelling step. In the marking step, all propositions that have to be
relabelled are marked and placed in an order in which they can be relabelled consecutively. In
the relabelling step, the propositions are actually relabelled. The computational complexity of
this relabelling process is of O(IAllJI), in which lAl is the number of atomic propositions and IJl
is the number of justifications in the dependency network. Here, we illustrate the relabelling on

a simple dependency network.

( proposition a; }
(Grovoions)

premise

conclusion

Figure 3.1 Symbol for deductive inference.

First, we define a symbol for an executed deductive inference step (justification). This symbol
was introduced in [Goodwin, 1987] and reflects the relation between the input (the premise) and
the output (the conclusion) of a deductive inference step. Capital D denotes that the deductive
inference strategy is used on the primitive inference steps. In Figure 3.1, the general form of

this symbol is depicted.

Figure 3.2 An example dependency network.

In Figure 3.2, an example dependency network is given. Depicted inference steps are a, = as

(Dy), ay v a3 = ag (D3), a4 A a5 = a7 (Dy), a5 = ag (Ds) and ag = ag (Dg). The impact of
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executing inference step a; = as and adding it to the network in the form of D is demonstrated.

D3 }—»(C2 )—* D

Figure 3.3 Relabelling in a dependency network.

A relabelling process has to be started at the moment that inference step a; = as is executed
(resulting in D) and added to the dependency network. Obviously, proposition as has to be
relabelled. Further, the consequences of relabelling a5 are the relabelling of propositions a; and
ag. In Figure 3.3, the propositions and inference steps that are visited by the relabelling process

resulting from the inference step a; = a5 are marked.

3.5 Discussing the framework

In this chapter, we have defined a general framework for compositional uncertain reasoning,
supported by a deductive reasoning strategy and a reason maintenance model. The framework
was designed to create a general, coherent basis for the management of uncertainty in compo-

sitional reasoning. In this section, we conclude with an analysis of the developed framework.

First, a brief analysis is given of the inference and reason maintenance models provided by the
framework. Next, a number of well-known uncertainty models, as described in Chapter 2, are
examined in relation to the framework. This gives us some idea of the classes of uncertainty
models that can be defined upon the framework. Finally, we describe the characteristics of the
potential classes of uncertainty models that can be developed, starting from the framework. The
design constraints, formulated at the end of Chapter 2, are used in the evaluation of the general

framework.

3.5.1 The inference model
According to the specification formalism, as described in Section 1, we can see that in fact two

levels of inference can be distinguished. There is inference on the level of expressions and
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inference on the level of inference steps. The inference of expressions is described by the
evaluation function W (see Definition 3.5), and is based directly on Kleene’s truth tables. This
type of inference can better be denoted by the term expression evaluation, in the remainder, the

term inference is used for the inference function of the set of control steps only.

The first design constraint (1. The inference model should be able to support deductive as well
as abductive reasoning) is only half satisfied. A deductive reasoning strategy can easily be used
with the framework, as outlined in this chapter. A discussion concerning abductive reasoning
has been postponed until Chapter 5, where an abductive inference strategy is developed for the
primitive inference step. The definition of a conflict in reasoning (see Definition 3.7) fulfils the
second design constraint (2. There should be an explicit representation of an inconsistency in
reasoning). As expected when formulating the constraint, the explicit definition translates into

the notion of an uncertainty conflict (see Example 3.5).

We briefly discuss the position of the inference model in two well-known reasoning formalisms

for compositional systems, production rules and logic programming.
Production rule systems

It is obvious that production rule systems can be modelled through the general framework. A
production rule is modelled by the deductive strategy for a primitive inference step. The order
in which the production rules are evaluated, i.e. using backward or forward reasoning strategies,
can easily be modelled by using the choice and concatenate control steps. As expected,
production rule systems are a special case of the framework.

Logic programming

Consider the definition of a logic program given in [Lloyd, 1984], as a set of clauses of the form
C ¢ B,....,B,, where C is some atomic formula in a first-order language and B,,....B, is a
conjunction of, possibly negated, atomic formulas. Such a program clause is comparable to the
inference step B, A...A B, = C. We can construct a mapping from the set of control steps CS
(Definition 3.10) into the set of clauses of a logic program in which the primitive control step
is considered as the atomic formula. Then, the concatenate step models the conjunction of
atomic formulas and the denial step can be used to model negated formulas. The choice step
can be used to model a set of formulas sharing the same head clause. The set of control steps
constructed by the choice, concatenate and denial control steps is sufficient to model a set of
clauses as used in the definition of a logic program. The semantics for the set of control steps
CS, given by the control function CF (see Definition 3.11) and the introduction of a grounded
1a5elling (see Definition 3.25), are equal to the grounded model semantics of a logic program.
It should be noted that SLD-resolution and the negation as failure (NAF) strategy (see Chapter
2, the subsection on Control and negation for a description of these strategies) are used to

control the inference model.
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3.5.2 The reason maintenance model
We can be brief in our analysis of the reason maintenance model used. Both design constraints

are satisfied by the reason maintenance model, as defined in Section 3. No application-specific
information is used in justifications and contradictions (5. The reason maintenance model
Structures must be independent of the characteristics of the field of application, as specified in
the domain model). Since justifications only record the primitive inference steps, the reason
maintenance model has no influence on the reasoning strategy (6. The reason maintenance
model must work independently of the reasoning strategy used by the inference model). The
model enhancements for the reason maintenance model discussed in Chapter 2 are further

examined in Chapters 4 and 6.

3.5.3 Existing uncertainty models
In Chapter 2, a brief overview is given of the most used uncertainty models. Here, we discuss

those uncertainty models that support a deductive reasoning type, and are therefore considered

special cases of the general framework as developed in this chapter.

The Bayesian and subjective Bayesian methods

The (subjective) Bayesian method [Duda, 1976], is based directly on probability theory,
especially the use of Bayes’ rule. In the following example, we describe the type T, and the set

of propagation functions of the (subjective) Bayesian model, followed by a correct embedding

of the three-valued model.

Example 3.6
The uncertainty type T of the (subjective) Bayesian model is equal to a probability

number from the interval [0..1].

The propagation functions (f_.f,.£,.f_.f;) of the (subjective) Bayesian model are:
f_(x)=1-x,

f.(x,y)=min{x,y},

f(x.y)=max{x.y},

fi(x.y)=x*y / (x*y+(1-x)*(1-y)),

f_(x,y) is defined by (subjective) Bayes’ rule propagation.

A correct embedding B of the three-valued model into the (subjective) Bayesian model
can be defined through B(#)=1, B(1#)=0.5 and B(f)=0.

The choice for using B(#)=0.5 as the embedding of the unknown label is caused by the choice
of the propagation function for the negation f_(x)=1-x. Although this choice yields a correct
embedding, from a semantic viewpoint one might ask whether a probability of 0.5 can be
considered to model the label unknown. Another approach that can be used here is to consider
all probabilities between O (false) and 1 (true) as unknown, and allow the specification an
embedding term like B(w) € (0..1), i.e. any number between 0 and 1 is considered to represent

label unknown.
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Certainty factor model

The uncertainty model developed by Shortliffe [1975] and Buchanan [1984], the certainty
factor model, can be shown to be a special case of the general framework. In Example 3.5, the
uncertainty type T, the set of propagation functions and a correct embedding of the three-

valued model were already specified. Further, an inference function was given for the primitive
inference step that completes the specialisation of the general framework into the certainty

factor model.
Dempster-Shafer theory

The uncertainty model developed by Dempster [1967] and Shafer [1976] can be shown to be a
special case of the general framework. In Example 3.4, the uncertainty type T, and a correct

embedding of the three-valued model were specified. In Appendix B, the set of propagation
functions and an inference function can be found.

Triangular norms and conorms

From Chapter 2, we know that families of T-norms and S-norms are the most general families
of functions that satisfy a set of conditions for the conjunction and disjunction operators
[Schweizer, 1983]. We use definitions here given in [Bonissone, 1986].

Definition 3.34

A triangular norm T is a function that satisfies
(boundary) T(0,0) =0,

(boundary) T(a,1) =T(1,a) = a,
(commutativity) T(a,b) = T(b,a),

(associativity) T(a,T(b,c)} = T(T(a,b),c),
(monotonicity) T(a,b)<T(c,d)ifa<candb<d.
In functional notation, T: [0..1],[0..1] — [0..1].

Definition 3.35

A triangular conorm S is a function that satisfies
(boundary) S(1,D) =1,

(boundary) S(a,0) = S(0,a) = a,
(commutativity) S(a,b) = S(b,a),

(associativity)  S(a,S(b,c)) = S(S(a,b),c),
(monotonicity) S(a,b)<S(c.d)ifa<candb<d.
In functional notation, S: [0..1],[0..1] — [0..1].

Definition 3.36

A negation norm N is a function that satisfies
(boundary) N@O)=1,

(boundary) N(1)=0,

(involution) N(N(a)) =a,
(monotonicity) N(a)>N(c)ifa<c.

In functional notation, N: [0..1] — [0..1].
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Additionally, a family of functions can be defined that satisfy a set of conditions for the nega-

tion operator [Bonissone, 1986].

This set of conditions does not completely determine the propagation function for the negation,
but we restrict the discussion here to the function that is used in almost all implementations,
N(a) = 1-a. With this propagation function for the negation, the following relation holds for T-
norms and S-norms, T(a,b) = N(S(N(a),N(b))). Now pairs of T- and S-norms can be defined.

Example 3.7

T,(a,b) = max{0,a+b-1} S,(a,b) = min{1,a+b},
T,(a,b) = a*b S,(a,b) = atb-a*b,
T;(a,b) = min{a,b} S,;(a,b) = max{ab}.

Given Definitions 3.32, 3.33 and 3.34, it is obvious that / should be interpreted as true and 0 as
false. In this case, the boundary conditions of these definitions are equal to the boundary
conditions resulting from the definition of a correct embedding of the three-valued model. Now,
one problem remains, the definition of the unknown label. Assume we have chosen some
arbitrary u € (0..1) for B(#%). From Definition 3.32, it is easy to prove that T(u,1)=T(1,u)=u and
T(u,0)=T(0,u)=0, from Definition 3.33 it follows that S(u,1)=S(1,u)=1 and S(u,0)=S(0,u)=u.
Still, three boundary conditions remain to be satisfied: T(u,u)=u, S(u,u)=u and N(u)=u.

Given N(a)=1-a, there is only one possibility for u, and that is u=0.5. Thus, the only pair of T-
norm and S-norm given in Example 3.7, which satisfies the remaining conditions, is (T3,S3).
Other pairs of T- and S-norms violate the conditions T(u,u)=u and S(u,u)=u for this choice of
u. This means that only a subset of the families of T-norms and S-norms can be embedded in
the three-valued mode! of the general framework.

The reason for this, on first sight, disappointing conclusion is simple, the families of T- and S-
norms are developed from classical logic, i.e. a two-valued system. Therefore, if we wish to
construct families of T-norms and S-norms that enable a correct embedding, there are two
distinguishable approaches. Firstly, we can loosen the definition of a correct embedding, for
instance by dropping the constraints on unknown or by allowing B(#) to be modelled by an
interval (as suggested for the (subjective) Bayesian method). Secondly, we can change the
proposed conditions of the families of T-norms and conorms by starting from a three-valued
system. In Chapter 4, we use this latter approach, without losing the characteristics of the theory

developed on triangular norms and conorms.
Fuzzy set theory

The handling of negation, conjunction and disjunction in fuzzy set theory [Zadeh, 1965], is
closely related to the theory of T-norms and S-norms, see [Weber, 1983] for an overview. For
instance, the propagation functions for conjunction and disjunction that Zadeh suggested are
equal to the T, and S; norms (see Example 3.7). We do not repeat this discussion here.

In fuzzy set theory, the attention has been focused on the development of propagation functions

4



for the implication operator (the generalised modus ponens) and for the fuzzy relation (the
compositional rule of inference). Since the primitive inference step of the general framework is
the deductive implication, the generalised modus ponens seems appropriate to model an
uncertainty propagation function for the implication. Numerous examples of these functions

have been developed, a few examples of them are given here, see also [Weber, 1983].

Example 3.8

f_(a,b) = a*b,

f_.(a,b) = min{1,1-a+b},
f_,(a,b) = max{1-a,b},

f_(a,b) = max{1-a,min{a,b}}.

Now, what are the restrictions on the fuzzy implication function that are imposed by the
embedding of the three-valued model. Obviously, when the evaluation function of the premise
evaluates to true, the outcome of the propagation function f_, should be equal to the strength of
the relation. For the fuzzy implication, this results in the condition f_ (B(£),b)=b, where & is the

strength of the relation and B is an embedding of the three-valued model.

Again, it is obvious that / can be interpreted as true and 0 as false. Regardless of the choice of
the embedding result of unknown, we can see that this condition is fulfilled for each of the fuzzy
implication functions from Example 3.8. This means that these functions can be used to model
the uncertainty propagation function in a fuzzy extension of the general framework. Therefore,
no problems are present in finding a fuzzy implication function to produce a correct embedding

of the three-valued model.

3.5.4 Potential classes of supported uncertainty models
We analyse the framework by trying to describe characteristics of the uncertainty models that

are supported by our framework. We pursue this analysis along the traditional lines of the
representation and propagation aspects, and relate the results to the two design constraints for

uncertainty models.

Concerning the representation aspect of potential uncertainty models, a three-valued labelling
was chosen as the underlying logical labelling. Preferring a three-valued labelling to a two-
valued one is the result of the possibility to explicitly represent unknown in a three-valued
labelling. The unknown label is conceptually different from both true and false and cannot be
expressed in any combination of these labels. The possibility to use any other N-valued logic
(N>3) is encapsulated by the uncertainty type Ty;.

We state that the definition of an uncertainty labelling, based on uncertainty type T, is general

enough to leave open the choice between probabilistic and possibilistic typed models. In fact,

concerning the type of uncertainty, we can go even further. There is no reason why type T

should be restricted to either of these approaches. Assuming that it is accompanied by a model-

specific set of propagation functions, any T ; will be supported equally well.
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A second observation on the type of uncertainty T, that can be made is that it is not restricted
by the framework to one-dimensional measurements. The introduction of an N-dimensional
measurement, an uncertainty vector, consisting of equally or differently typed elements is al-
lowed by the framework. Again, the set of propagation functions of the uncertainty model must
be able to cope with these uncertainty vectors. This extension from one-dimensional to N-di-
mensional measurements is useful when the use of several types of uncertainty (imprecision vs.
vagueness vs. incompleteness) is demanded at the same time (recall the approach that is pro-
posed in [van der Lubbe, 1990]).

These two observations on the representation aspect of uncertainty reflect the spirit of the first
design constraint on uncertainty models (3. The representation type of the uncertainty model

may not restrict the classes of potential uncertainty models).

Concerning the propagation aspect of potential uncertainty models, we state that the
introduction of the set of five uncertainty propagation functions (f_f,,f,.f_.f;) is only subject
to the boundary conditions specified in the definition of a correct embedding (see Definition
3.28). Other conditions on propagation functions, like commutativity, associativity and
montonicity, can be formulated but are no part of the general framework itself. The boundary
conditions construct a minimal set of constraints that is necessary to fulfil the axioms of the
underlying three-valued model. Although in this chapter a deductive strategy has been used, the
framework does not impose restrictions on the reasoning type. In Chapter 5, the framework is
used in combination with an abductive strategy, and is still able to use the basic notions of
uncertainty propagation that have been described in this chapter.

It is clear that no conditions are formulated on independencies between propositions that are
used by the five propagation functions, and therefore the second design constraint is also satis-
fied (4. The propagation functions of the uncertainty model should not assume independency
relations between pieces of evidence, or exclusiveness of hypotheses). The use of independency
relations in the uncertainty propagation functions of a specific uncertainty model is of course
still allowed.
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Chapter 4

An Uncertainty Model
for Compositional Reasoning

In this chapter, we develop an uncertainty model to be used with the general framework and the
deductive reasoning strategy. According to Chapter 2, several models are available. The
certainty factor model is the most well-known model for compositional uncertain reasoning
using a deductive control strategy. Former analyses concerning the certainty factor model have
been definite in their disapproval, especially mentioning the fact that the suggested probabilistic
foundations of the model are not respected by its propagation functions. Today, research on
probabilistic typed models is mainly concentrated on two models: Bayesian belief networks and
Dempster-Shafer theory. The arguments for our decision to analyse certainty factor theory first
are given below. In the second part of the chapter, we concentrate on the development of a new
model for compositional uncertain reasoning, based on results from this analysis. With this new
model we introduce a set of propagation functions that take into account the situation in which
they are used. The flexibility that is thus created enables a solution to the first of the benchmark
problems, as described in Chapter 1.

Management of uncertainty through the use of Bayesian belief networks is the best method to
employ when a method to construct a pure probabilistic model is demanded. However, we can
also formulate some objections against their application. Firstly, there is the problem that the
propagation functions used are of exponential complexity and that their effect on a local change
in belief can propagate through the whole network (which can work counterintuitively, as
compared to human reasoning). Furthermore, the basic measurement of Bayesian belief
networks, a probability number, does not allow separate independent support both in favour of
and against the same hypothesis (one of the objectives of our model). Finally, in practical

applications, the model demands that a huge number of conditional probabilities is available.

The aspect of exponential computational complexity is also a strong argument against the use
of the Dempster-Shafer theory. Furthermore, the theory lacks the propagation functions for the
logical operators and even for the implication operator (although there is common agreement
on one such a function). However, the basic uncertainty measurement of the theory, the belief
interval consisting of a belief and a plausibility factor, is suited to be embedded in our frame-
work as developed in Chapter 3. Both aspects are outlined in Appendix B.

Our decision to analyse parts of certainty factor theory is based on the following arguments.
Firstly, the model has attractive characteristics, the reasoning strategy is deductive, its measures

are intuitively clear and its propagation functions are computationally simple. Further, the
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results obtained with the model have been satisfactorily throughout the years, this should have
some rationale. Since the model has been and still is applied in a great number of applications,
it is important to know what are its limitations and demands with respect to specific application
areas. Finally, we feel that some arguments used to reject the model, although they demonstrate
important shortcomings, do not validate its complete rejection. We analyse and clarify the exact
causes of this misbehaviour and specify the limitations of the model for potential application

areas.

The first part of this chapter uses results that can be found in [van der Gaag, 1990]. In this work,
a detailed analysis of the propagation functions of certainty factor theory is given. However, we
feel that some conclusions based on this analysis need further study and that other conclusions
can be drawn with respect to parts of the model. Therefore, we use a quite similar notation of

the basic measurements and adopt some of the proofs.

In Section 1, some basic definitions from probability theory and of the certainty factor model
are described. In Section 2, the original propagation functions of the certainty factor model are
given, together with the proofs of correctness or counterexamples. A study of the logical oper-
ators in terms of the model comprises the contents of Section 3. Arguments for the abandoning
of the certainty factor as uncertainty measurement are given in Section 4, and an uncertainty
model is obtained that is correct with respect to its probabilistic foundation. Section 5 introduc-
es a new uncertainty model which is based on results of the preceding sections. It is shown that
enhancements can be made in uncertainty management by using the information stored in an
underlying reason maintenance model (as was foreseen in Chapter 3). In Section 6, the embed-
ding of the constructed uncertainty model in the framework of Chapter 3 is given. Finally, in

Section 7 a brief discussion can be found on different aspects of the developed model.

4.1 Some basic definitions

The basic definitions of the certainty factor model were defined in terms of probability theory,
therefore some basic knowledge concerning probability theory is necessary. In this section we
concentrate on two important definitions with respect to uncertainty management: mutual
independence and conditional independence of events (or pieces of evidence). These notions

are of importance to the model as is made clear in the remainder of this chapter.

Definition 4.1
Let Q be a sample space and P a probability function on Q. Then two pieces of evidence
e),e, € L are mutually independent when P(e,Me,) = P(e,)P(e,).

Definition 4.2
Let Q be a sample space and P a probability function on Q. Then two pieces of evidence
e,.e, € Q are considered to be conditionally independent given a piece of evidence e € €

when P(e,Mne,le) = P(ele)P(ele).
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It should be noted that the notion of conditional independence is a separate definition and in
general cannot be derived from the definitions of mutual independence and conditional proba-

bility. These two definitions lead to the following theorem.

Theorem 4.1

Let Q be a sample space and P a probability function on Q. When two pieces of evidence
e,6, €  are mutually independent and conditionally independent given a piece of
evidence e € ) then

(a) P(e;Ue,) = P(e))+P(e,)-P(e )P(e,).

(b) P(e,e,le) = P(e,le)+P(e,le)-P(e,le)P(e;le).

Proof
(a) P(e;Uey) = P(e|)+P(ey)-P(e;ne,y) = P(e))+P(e,)-Ple)Pley).
(b) P(e\Ue,le) = P(e,le)+P(e,le)-P(e,Mesle) = P(e,le)+P(e,le)-P(e le)P(e,le).

We continue with the definitions of the measurements of increased belief (MB) and increased
disbelief (MD), see [Shortliffe, 1984, p. 248].

Definition 4.3
Let € be a sample space, P a probability function on Q and e,h € Q with e # .
The measurement of increased belief MB is a function such that

=1 when P(h)=1,
MB(he) - { P(hle)-P(h)

Definition 4.4
Let Q be a sample space, P a probability function on Q and e,h € Q withe #z &,
The measurement of increased disbelief MD is a function such that

= 1 when P(h)=0,
MD(h,e) { P(h)-P(hle)

Ph) } otherwise.

From these definitions the following properties can be derived straightforwardly, proofs can be
found in [van der Gaag, 1990, p. 39].

Theorem 4.2

Let Q be a sample space, P a probability function on Q and e,h € Q. Then
(a) 0 < P(h) = P(hle) < 1 & MB(h,e) = MD(h,e) = 0.

(b) MB(h,e) > 0 = MD(h,e) = 0.

(c) MD(h,e) > 0 = MB(h,e) = 0.

According to the original definitions of the certainty factor model, the certainty factor can now
be defined.

Definition 4.5
Let Q be a sample space, P a probability function on £ and e,h € Q.
The certainty factor CF is a function such that CF(h,e) = MB(h,e)-MD(h,e).
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4.2 The propagation functions of the original model

In [Shortliffe, 1984, p. 255] we find a set of propagation functions to update the measurements
of belief and disbelief for the operators: disjunction, conjunction, (deductive) implication and
the combination of pieces of evidence. We briefly discuss these functions here.

The following theorem describes the propagation function for the implication operator, the
proof is given in [van der Gaag, 1990, pp. 60-63].

Theorem 4.3

Let  be a sample space, P a probability function on Q and e,e;,h e Q.

If h c e, < e, then the propagation functions for the (deductive) implication e, = h, given
e, are given by

MB(h,e) = MB(e,,e)MB(h,e,),

MD(h,e) = MB(e,,e)MD(h.e,),

CF(h,e) = max{0,CF(e,,e) }CF(h,e,).

The impact of the condition h C e, C e on the reasoning process is that this process is narrowing,

i.e. whenever £ is valid, ¢; must be valid and so must be e.

A correct set of propagation functions for the combination operator is given in Theorem 4.4, for

a proof is again referred to [van der Gaag, 1990, pp. 50-57].

Theorem 4.4

Let Q be a sample space, P a probability function on Q and e;,e;,h € Q.

If e, and e, are mutually independent and conditionally independent given h

then the propagation functions for the combination of h, given e, and e,, are given by

MB(h,¢e,lle;) = MB(h,e)+MB(h,e;)-MB(h,e )MB(h,e;),

MD(h,e lley) = MD(h,e;)+MD(h,e,)-MD(h,e )MD(h,e,),

CF(h,elley) =
CF(h,e)+CF(h,e,)-CF(h,e,)CF(h,e,) when CF(h,e|),CF(h,e;) =0,
CF(h,e,)+CF(h,e,)/(1-min{ICF(h,e)I,ICF(he;)I}) when -1 < CF(h,e,)CF(h.e,) £0,
CF(h,e,}+CF(h,e,)+CF(h,e,)CF(h,e,) when CF(h,e,),CF(h,e;) <0,
undefined when CF(h,e)CF(h,e,)=-1.

According to Definition 4.5, Theorem 4.4 implies that the first and third part of the function for
CF(h,e,lle,) are also correct under these conditions. The second part of this function however
cannot be proved to hold under the given conditions. More important, no set of conditions or
assumptions can be found that imply the given combination function for positive and negative
evidence.

These independency conditions have their impact on the applicability of the model, since they
have to be checked for all possible occurrences of possible combinations of hypotheses. This
can be quite a burden when developing the domain model in some application area.

In summary, the propagation functions for both implication and combination, as defined by the

original model, have been given and, under some conditions, have been proved to respect the
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probabilistic definitions of MB and MD, given in Definitions 4.3 and 4.4. However, when we
take a look at the original definitions of the propagation functions for the disjunction and
conjunction operators, we are able to construct examples that illustrate the incorrectness of
these functions. First, the original functions are given.

The propagation functions for the disjunction e ve, are given by

MB(e,ve,,e) = max{MB(e,e),MB(e,.c)},

MD(e,ve,,e) = min{MD(e,,e),MD(e,,e)},

CF(e,ve,,e) = max{CF(e,.e),CF(e;.e)}.

The propagation functions for the conjunction e,ae, are given by
MB(ene,.e) = min{ MB(e;,c),MB(e,,c)},

MD(e Ae,,e) = max{MD(e,,e),MD(e,.e)},

CF(e ney,e) = min{CF(e,,e),CF(e,.e)}.

In [van der Gaag, 1990, pp. 63-65], some very simple counterexamples are generated for these
propagation functions. Even under extreme conditions, like e, C e,, it cannot be shown that the
probabilistic definitions of MB and MD are respected when the above propagation functions

are used.

4.3 New propagation functions for the logical operators

Shortliffe and Buchanan [1984] themselves pointed out that the propagation functions for the
disjunction as well as for the conjunction were pragmatic choices. Therefore, it is not a new
criticism that the measurements of belief and disbelief of expressions, consisting of disjunctions
and conjunctions, are not correct with respect to the probabilistic definition of the model. In this
section, we analyse a set of intuitively appealing interpretations for the set of logical operators

{=AvL

4.3.1 The negation operator
Neither [Shortliffe, 1984] nor [van der Gaag, 1990] contains an explicit propagation function
for the negation operator. On p. 250, Shortliffe and Buchanan state:
"Clearly, this result occurs because (for any h and any e) MB(h,e) = MD(=h,e). This conclusion
is intuitively appealing since it states that evidence that supports a hypothesis disfavours the
negation of the hypothesis to an equal extent."
This remark concerning the propagation function for the negation of MB and MD can easily be
derived from the definitions when the complement h is used for the interpretation of the —h.
This is described by the following theorem, the proof is straightforward and therefore left to the
reader.

1. Por reasons of clarity, these operators are defined on sets and they are therefore unequal to the logical
operators defined on expressions as defined in Chapter 3. The mapping of the model onto the general
framework is explained in Section 6.
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Theorem 4.5

Let Q be a sample space, P a probability function on Q and h € Q, let MB and MD be
defined according to Definitions 4.3 and 4.4, and let negation —h be interpreted by the
complement h,

Then the propagation functions for the negation are given by

(a) MB(—h,e) = MD(h,e).

(b) MD(—h,e) = MB(h,e).

4.3.2 The disjunction and conjunction operators

In [van der Gaag, 1990], the original propagation functions for the disjunction and conjunction
operators have been shown to be incorrect. Further, it is emphasised that conjunction and dis-
junction operators are not defined in probability theory. Therefore, interpretations are necessary
from the logical operators to set operations on the sample space €. The interpretation mapping
that is used for the logical operators in [van der Gaag, 1990, pp. 33-34] is intuitively correct,
the union is used to interpret the disjunction and the intersection is used for the interpretation
of the conjunction. In the following, we take a closer look at this interpretation problem and

present some theorems for the propagation functions of the logical operators.

The union seems to be an intuitively appealing interpretation for the disjunction. We use this

interpretation in the following theorem.

Theorem 4.6
Let Q be a sample space, P a probability function on Q and ¢,e,,e € €2, let MB be defined

according to Definition 4.3 and let disjunction e,ve, be interpreted by the union e,Ue,,
resulting in
= 1 when P(e,Ue,)=1,

MB(e,ve,.e) P(e,Ue,le)-P(e,ue,) )
max{ , } otherwise.

1 -P(el U62)

If e, and e, are mutually independent and conditionally independent given e
then the propagation function for the MB of the disjunction is equal to

MB(e,ve,,e) = MB(e,e)+MB(e;,e)-MB(e,,e)MB(e,.€).

Proof
We distinguish two cases.
(i) P(e)ve;)=1 = P(e;))=1 or P(e;)=1 = MB(e,,e)=1 or MB(e,e)=1 =
MB(e,ve,.e) = MB(e,e)+MB(e,,e)-MB(e,e)MB(e,.e) = 1.
(ii) P(€/U€2)<1 =
P(e,e,le)-P(e,e,) _
1-P(e,Le,) -
P(e,le)+P(e,le)-P(e le)P(e,le)-P(e )-P(ey)+P(e )P(ey)
1-P(e|)-P(e)+P(e))P(e,)
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P(e,le)-P(e,)+P(e,le)-P(e,)+P(e,)P(e,)-P(e,le)P(e,le)
- (I-PEe))(1-P(e) )
_ MB(e,.e) . MB(e,.e) . P(e))P(ey)-Pele)P(eyle)  [1].

(1-P(e)y  (1-P(er)) (1-P(e)X(1-P(e,))
Taking the last term apart:
P(e))P(e;)-P(ele)P(esle)

(1-PEe))(1-Pey)
_ P(e))P(ey)-(MB(ey,€)(1-P(e))+P(e))(MB(e,e)(1-Plep)+P(e))
) (1-P(e)(1-P(e,) )
_ P(e)P(ey)-(MB(ey,e)-MB(e,)P(e)+P(e)))(MB(e,,€)-MB(e.)P(e;)+P(e2))
) (1-P(e)(1-P(e,) -
P(e,)I’*‘(ez)-MB(el,e)MB(e2,e)+MB(el,e)MB(ez,e)P(ez)-MB(e1,e)P(ez)+

(1-Ple)(1-P(ey))
N MB(cl,e)MB(e2,e)P(el)—MB(el,e)MB(ez,e)P(eI)P(ez)+MB(el,e)P(e,)P(ez)+
(1-P(e)(1-P(ey)
. MB(CZae)P(el)P(eZ)'MB(el=C)P(62)'P(CI)P(62)=
(1-P(e)(1-P(ey))
MB(e,,e)MB(e,e)(1-P(e)))(1-P(e,))
(1-P(e))(1-P(ey))

MB(e,,e)P(e2)(1-P(er))  MB(epe)P(e))(1-Pley))
 (1-Pe))(1-P(ey) (1-P(e))(1-P(ey)) )
MB(e;,e)P(e;) MB(eye)P(e))

(IPe)  (I-Pey)
Using this result in [1] gives

= - MB(e,,e)MB(e,.e) -

- MB(e,.e) . MB(e,.e) - MB(e, &)MB(e,.c) - MB(el,e)P(ez)_ MB(ez,e)P(e])=
(1-P(ep))  (1-P(ey)) (1-P(ey) (1-P(ep)

= MB(e,;,e)+MB(e,,e)-MB(e,,e)MB(e,.e).
Using the same interpretation for the MD of the disjunction leads to the following theorem.

Theorem 4.7

Let Q be a sample space, P a probability function on Q and e,e,,e € Q, let MD be defined

according to Definition 4.4 and let disjunction e,ve, be interpreted by the union e,Ue,,
resulting in

= 1 when P(e,Ue,)=0,
MD(e,ve,,c) P(e ' ue,)-Ple e, le) .
= X {O, } otherwise.

P(e,we,)
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If ¢, and e, are mutually independent and conditionally independent given e
then the propagation function for the MD of the disjunction is equal to
MD(e,ve,.e) = MD(e|,e)MD(e,e)+R+R, where?

P(e,le)(P(e;)-P(esle))(1-P(ey) iR P(e,le)(P(e;)-P(ele))(1-P(e;))
= an = .
' P(e))(P(e)+P(e,)-P(e|)P(e)) > Ple))(P(e))+P(ey)-P(e))P(ey))
Proof
Again, we distinguish two cases.
(i) P(e,e,)=0 = P(e,)=0 and P(e,)=0 = MD(e,,e) =1 and MD(e,,e)=1 and R;=R,=0 =
MD(e,ve,.e) = MD(e;,e)MD(e,.e)+R;+R; = 1.
(ii) P(e;vey)>0 =

P(e,e,)-P(eue,le) 3
P(e,e,) -
_ P(e))+P(e,)-P(e,)P(e,)-P(e,le)-P(e,le)+P(e,le)P(e,le) B
B P(e,)+P(ex)-Ple))P(e,) B
P(e|)?P(er)+P(e))P(e2)*-P(e))*P(e,)* N
P(e)P(e)(P(e|)+P(e,)-P(e))P(e,))
i P(e|)P(e,)P(e,le)+P(e,)P(e,)P(e,le)+P(e)P(er)P(e, le)P(esle)
P(e)P(e,)(P(e)+P(e;)-P(e)P(e2)
(P(e)-P(e,le))(P(ey)-P(esle))
P(e)P(e,)
_ (P(e))-P(e,le))(P(e,)-P(e,le))(P(e )+P(e)-P(e))P(e,))
P(e,)P(e,)(P(e))+P(e,)-P(e,)P(e,))
Now [1] - [2] gives
P(e,)P(e, le)P(e,le)-P(e,)*P(e,le)+P(e, )P(e,)*P(e, le)
P(e)P(e,)(P(e,)+P(e;)-P(e)P(e;))
P(el)P(elIe)P(ezle)-P(eI)ZP(ezle)+P(eI)ZP(eZ)P(eZIe)
+
P(e;)P(e,)(P(e))+P(ey)-P(e,)P(ey)
2 P(e,)P(e,)P(ele)P(e,le) _
P(e)P(ex)(P(e)+P(ex)-P(e))P(e2)
_ P(e,le}(P(e,)-P(esle))(1-Pey)) N P(egle)(P(e)-P(e,le))(1-P(ey))
P(e)(P(e )+P(e))-P(e,)P(e;))  P(e)(P(e)+P(ey)-Ple)P(ey))

(11

Since MD(e,,e)MD(e,.e) =

[2].

1HR,.

Theorem 4.7 introduces two rest terms that disturb the concept of modelling the propagation

functions by using MB and MD terms only.

The intersection seems to be an intuitively appealing interpretation for the conjunction.

2. It should be noted that 0<R,<1, 0<R,<1 and 0<R | +R,<1.
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Theorem 4.8
Let Q2 be a sample space, P a probability function on {2 and e,e,,€ € €2, let MB be defined
according to Definition 4.3 and let conjunction e e, be interpreted by the intersection
e;Me,, resulting in

= 1 when P(e;Me,)=1,

MB(el/\ez,e) P(elﬂezkl)-P(e]
= max {

nNe,)
2 } otherwise.
1-P(e;ney)

If ¢, and e, are mutually independent and conditionally independent given e
then the propagation function for the MB of the conjunction is equal to

MB(e;Ae,.e) = MB(e,,e)MB(e,.e)+R+R, where?
_ Ple)(P(esle)-Pley))(1-Plesle)) ind R o P(ey)(P(ejle)-Ple))(1-Plesle))
17 (1-P(e)))(1-P(ey)P(ey) 27 (1-P(ep)(1-P(e))P(ey)

Proof

We distinguish two cases.

(i) P(e;ney)=1 = P(ey)=1 and P(e;)=1 = MB(e,,e)=1 and MB(e,.e)=1 and R ;=R,=0 =

MB(e,Ae,.e) = MB(e,.e)MB(e,,e)+R;+R, = 1.

(ii) P(e;ney)<] =

P(e,ne,le)-Ple;Me,) _ P(e,le)P(e,le)-P(e,)P(e,)

LPeine)  1PEePe)

_ (P(ejle)P(eyle)-P(e)P(ex))(1-Ple))(1-Pley))

B (1-P(e)P(ex)(1-P(e)(1-P(ey)) B

3 P(e1Ie)P(ezie)+P(e1)2P(ez)+P(el)P(ez)2+P(eI)P(eZ)P(elle)P(ezle)+

B (1-P(e)P(ey))(1-P(e))(1-P(e,))

P(e))P(ey)+P(e))P(e le)P(e,le}+P(er)P(e le)P(esle)+P(e ) Pler)”  [1].

(1-P(e)P(e))(1-P(e))X(1-P(er))

(P(e,le)-Pe)XP(e,le)-Ple,))

(I-Pe)(1-Pe,)
_ P(elle)P(ez|e)+P(eI)ZP(eZ)P(ezle)+P(el)P(eQ)zP(elie)+P(el)P(ez)+
) (1-Pley)P(ex))(1-P(en))(1-P(e,))
P(el)P(ez)P(elIe)P(ezle)+P(e,)P(ez!e)+P(e2)P(elIe)+P(el)2P(ez)2 [2].

(1-P(e)P(ex))(1-P(e))(1-P(e,))

Now [1] - [2] gives

_ Ple(1-P(e))(P(e,le)-P(ey))(1-P(e,le)) . P(e;)(1-P(e))(P(eyle)-Ple))(1-Peyle))

(1-P(e))P(ey))(1-P(e)))(1-P(e2)) (1-P(e)P(e,))(1-P(e)))(1-P(ey))

Since MB(e,,e)MB(e,.e) =

3. Again, it should be noted that 0<R <1, 0<R,<1 and 0<R;+R,<l.
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_ Pe)(Plesle)-P(ey))(1-Plejle) R P(e,)(P(e,le)-P(e,))(1-P(ele)) .
(1-P(eP(ex))(1-Pley)) (IPe)PE)(1-Pey))

Again, two rest terms are introduced by this interpretation. Using the same interpretation for

the MD of the conjunction leads to the following theorem.

Theorem 4.9

Let  be a sample space, P a probability function on Q and e|.e,,e € , let MD be defined
according to Definition 4.4 and let conjunction e;Ae, be interpreted by the intersection
e;Me,, resulting in

= 1 when P(e;ne,)=0,

MD(e Ae,.e) P(e,Me,)-P(e,Me,le)

max {0, } otherwise.

P(eine,)
If e, and e, are mutually independent and conditionally independent given e
then the propagation function for the MD of the conjunction is equal to

MD(e Ae,,e) = MD(e,,e)+MD(e,.e)-MD(e|,e)MD(e,,e).

Proof

We distinguish two cases.

(i) P(e;Me,)=0 = P(e,)=0 or P(e,)=0 = MD(e,.e)=1 or MD(e,,e)=1 =
MD(e ne,e) = MD(e,,e)+MD(e,.e)-MD(e,,e)MD(e,.e) = 1.

(”) P(elmez)>0 =
P(e,ne,)-P(e;ne,le) _ P(e|)P(e,)-P(ele)P(e,le) _

P(einey) P(e )P(e;)
_ P(el)P(ez)-P(elle)P(62)+P(elle)P(ez)-P(eIle)P(ezle)+
P(e,)P(e,)
P(e)P(ey)-P(e,le)P(e )+P(e;le)P(e)-P(e,)P(e,)
Ple)P(e;) )
_ P(e)-P(e,le) . P(e;)-P(e,le) R P(e;)P(e,le)+P(e,le)P(e,)-P(e,)P(e,)-P(e,le)P(e,le) _
P(e)) P(e,) P(e)P(e2)

= MD(e,,e)+MD(e,,e)-MD(e.e)MD(e,.e).

Thus, under some conditions and with the commonly accepted interpretations, two propagation
functions for the logical operators can be derived in a straightforward manner and two other
propagation functions introduce rest terms, which are not available during reasoning. So even
under the severe dependency conditions, it is impossible to provide an attractive set of propa-
gation functions. This observation leaves us with two possibilities: change the used interpreta-
tions or reject Definitions 4.3 and 4.4 for the basic measurements. The former requires a
complex probabilistic analysis, without any perspective of losing the severe dependency con-
ditions, therefore, in the remainder of this chapter we concentrate on the latter possibility.
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4.4 A final discussion on certainty factors

The suggested probabilistic foundation of the certainty factor model has been the subject of
serious discussion over the years, see for instance [Shortliffe, 1975, 1984; Adams, 1976, 1984;
Heckerman, 1986; Horvitz, 1986; van der Gaag, 1990; Qiu, 1992; Heckerman, 1992]. The
emphasis of this discussion has been on the definition of the certainty factor and the
(probabilistic) assumptions made with respect to the arguments of the propagation functions. In

this section, we summarise our analysis in terms of these comments.

In the previous sections we adapted the certainty factor model such that it satisfies the axioms
of probability theory. Although we can be satisfied with this result from a theoretical viewpoint,
two important problems remain to be solved. Firstly, when constructing domain models, the
probabilistic conditions of the propagation functions have to be taken into account. Secondly,
when these conditions cannot be met, how can the propagation functions be adjusted without
violating the probabilistic axioms?

Checking the probabilistic conditions of the propagation functions for all possible combina-
tions of pieces of evidence in a given domain model is, in theory, possible. However, checking
these conditions in practice would drastically increase the time needed for the development of
complex domain models. It is even questionable whether these domain models can be con-

structed under these conditions at all.

When the independence conditions (see Theorems 4.6 through 4.9) cannot be guaranteed, the
propagation functions should be able to cope with situations in which dependent pieces of
evidence are provided. Observing the proofs of these theorems, we can conclude that when
other propagation functions can be specified they will certainly contain prior and conditional
probabilities* of the pieces of evidence involved. This results in the loss of one of the most
valuable characteristics of the model: the fact that only the measurements of belief and disbelief

are used in the propagation functions.

Another criticism concerns the semantics of the arguments of the certainty factor. Consider the
propagation function for the combination of evidence, given in Theorem 4.4.

Now, when MB(h,e;) > 0 and MD(h,e,) > 0,

it appears that both MB(h.e,lle,) = MB(h.e,) > 0 and MD(h.e,lle,) = MD(h,e,) > 0,

which is in contradiction with (b) and (c) of Theorem 4.2.
The reason for this behaviour is that no history of the individual pieces of evidence is kept, and
therefore it cannot be seen that MB(h,e,lle;) and MD(h,e,lle,) are not both supported by the
combination of e, and e,, but that each of them is supported by one of the other. This favours
the introduction of a derivation argument in the definitions of the measurements of belief and
disbelief (see also [van der Gaag, 1990, p. 36]). We agree on the observation, but we argue that

the introduction of an extra argument is not necessary when one changes the semantics of the

4. Remember the rest terms in Theorems 4.7 and 4.8.
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second argument of the measurements of belief and disbelief. We change the interpretation of
this argument from the environment that is responsible for increase or decrease of belief to a
structured environment. This interpretation of an environment not only contains the complete
set of propositions used in the evidence, but also the way in which the evidence is structured,
i.e. which (logical) operations have been used to combine the propositions in order to obtain the
evidence. Therefore, this interpretation of the environment implicitly represents the notion of a
derivation argument as proposed by van der Gaag.

A final criticism can be made of the method of using one separate measurement (the certainty
factor) to represent two different notions (belief and disbelief in a proposition). As we feel it,
the interpretation of both measurements can best be done by the user of the results, since he or
she has the insight in the semantics of each individual atomic proposition and expression, and

can therefore make the better interpretation.

Solving the mentioned problems in the given probabilistic setting of the model does not seem
to be a promising objective. We therefore decide to abandon the probabilistic foundation of the
model developed so far. Although this seems to be quite a thing to do, we can make the follow-
ing remarks concerning this decision. The probabilistic foundation was not the starting point of
the development of the original model. It was developed afterwards, when trying to provide
some theoretical basis for the model and a well-defined semantics for the measurements of be-
lief and disbelief. Not only the foundation into probability theory has been subject of discussion
(see for instance [Adams, 1976, 1984; Heckerman, 1986; van der Gaag, 1990]), but also the se-
mantics have more than once been the subject of discussion (see for example {Horvitz, 1986;
Heckerman, 1992]), since it is very tempting to interpret the belief measurements as conditional
probabilities which they are not. In fact, it is easy to construct situations in which a proposition
has a greater conditional probability than another proposition, while it has a measurement of
belief that is smaller. Maintaining the probabilistic foundation for reasons of semantics is there-

fore not an obvious choice.

In conclusion can be stated that the advantages of formulating a probabilistic foundation for the
model are outweighed by the disadvantages. Therefore, we decide to abandon the probabilistic
foundation of the model of belief and disbelief (i.e. we no longer take Definitions 4.3 and 4.4
as the definitions of our measurements). In the next section, we introduce a possibilistic foun-

dation, and develop the model from this perspective.

4.5 The model of belief and disbelief

As a result of the remarks made in the preceding section, we redefine the measurements of
belief and disbelief as possibilistic measurements. This introduces the problem of defining a
semantic for the measurements. For instance, the linguistic term set semantic [Bonissone,
1986], or fuzzy number approach [Zadeh, 1978] can be used for this purpose. In the model, we

use just numbers from [0..1], leaving out the choice for a specific semantic. A set of propagation
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tunctions is developed that can be used on the measurements. Contrary to the set of propagation
functions defined in the probabilistic model, no restrictions are introduced by these propagation

functions.

Although the switch from a probabilistic to a possibilistic model is fundamental, it does not
mean that we have to completely reject the results of the preceding sections. In the following
subsections, we carefully examine which parts of the model can still be used in this new setting.
For instance, the definition of the uncertainty label (MB,MD) as the uncertainty label T, can

still be used. This definition of the uncertainty model shows one of the main characteristics of
the model of belief and disbelief, evidence supporting as well as evidence refuting a hypothesis
are represented in separate measurements. Contrary to the probabilistic approaches, these meas-
urements are not subject to restrictions like P(A)+P(A)=1.

The term derivation is explained and formally defined, after which it is used in the possibilistic
definition of the measurements of belief and disbelief. This is followed by an extension of the
theory of triangular norms and conorms to enable the handling uncertainty labels of type
(MB,MD). Next, a definition is given of independence, when used in the possibilistic context.
Then, the set of previously developed propagation functions is examined, and checked for
validity with respect to triangular norm theory and the new notion of independence. Finally, we
develop a set of possibilistic propagation functions, and show that these functions can be used

to solve the first benchmark problem, as described in Chapter 1.

4.5.1 Defining the derivation

In our analysis of the certainty factor model, it was acknowledged that, apart from the proposi-
tion it is defined upon, a second argument can be helpful in the definition of an uncertainty
measurement. This second argument should reflect the environment in which the uncertainty
for the proposition has been determined. In the context of Chapter 3, such an environment for
propositions is not defined, we therefore introduce the notion of a derivation here. A derivation
is a subset of the set of atomic propositions A and contains all propositions that have been used

when deriving the labelling of a proposition or an expression.

For an atomic proposition (see Definition 3.1), there are three situations in which the derivation
has to be determined. The proposition is part of the initial labelling, it is in the conclusion of a
deductive inference step or a combination of these situations. When the proposition is labelled
by the initial labelling, its derivation is defined to be empty, since no other proposition has con-
tributed to its labelling. When the proposition is labelled by a primitive inference step (e = a),
the derivation is equal to the derivation of the premise expression (¢). Obviously, the inference
step must have been labelled 7 by the inference function IF. When the proposition is labelled
by a combination of two or more contributions, the derivation is equal to the union of the deri-

vations of the contributors.

For an expression (see Definition 3.2), the derivation is based on the derivations of the atomic
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propositions in the subexpressions. The derivation of such a proposition is only enclosed when
it has contributed to the evaluation of the expression (i.e. its label is true () or false( f )), this
means that propositions labelled unknown (1) do not influence the derivation of the expression

they are used in.

Definition 4.6
A derivation d is a subset of the set of atomic propositions A. Derivations can be specified
for both atomic propositions and expressions.

A derivation of an atomic proposition d, is defined as’

(initial) d, = & when a is labelled by the initial labelling (a is a premise),
(primitive)  d, = d, when a is labelled by an inference step and IHe = a)=7,
(combination)d, =d, © d,, when there are two contributions for a.

A derivation of an expression d,, is defined as

(atomic) d, =d, U {a} whenL(a) € {tf}, d. =@ whenL(a) € {u},
(negation)  de=d,, whene=-¢,

(conjunction) d. =de de2 when e =¢; A€,

(disjunction) d.=de dez whene=¢, Ve,

The set of derivations is called D.

As a result of this definition, we can use the terms MB(a,d,) and MD(a,d,) to denote the

measurements of belief and disbelief in terms of the general framework.

4.5.2 The measurements of belief and disbelief

As a result of the arguments given in the beginning of this section, we decided to abandon the
probabilistic foundation of the model of belief and disbelief (i.e. we no longer use Definitions
4.3 and 4.4). Instead, we redefine the measurements of belief and disbelief in a possibilistic
context. In Definition 4.7, the measurements of belief MB(e,d.) and disbelief MD(e,d,) are

specified, again based on two arguments. The first argument, reflecting the hypothesis, is

represented by an expressionﬁ, the second argument, reflecting the environment, is represented
by a derivation. Now, the measurements of belief and disbelief are defined on the interval [0..1],

yielding the following definition.

Definition 4.7
The measurement of belief MB(e,d.) and the measurement of disbelief MD(e,d.) are
defined as the assignment of a label from [0..1] to each tuple, consisting of an expression

and its derivation.
In functional notation, MB,MD: E,D — [0..1].

5. It should be noted that in general a  d,.
6. Remember that the set of atomic propositions A is subsumed by the set of expressions E.



Apart from being possibilistic measurements, there is a lack of a semantics for both MB(a,d,)
and MD(a,d,). The reason for this is twofold, we do not want to restrict ourselves to a specific
semantic and we would like as few demands as possible when developing propagation
functions. This leaves the choice of a semantic to the user of the framework, which at the same
time introduces one of the following two problems. Firstly, an existing semantic can be chosen
(for instance by using entropy functions), resulting in the need for checking whether the
propagation functions specified by the framework remain valid. Secondly, a new semantic can
be developed that must coincide with the semantic used in the development of our propagation

functions.

4.5.3 Triangular norms and conorms for the model of belief and disbelief

Now that we have a possibilistic definition of the measurements, we can proceed with the
development of the propagation functions. Recalling Chapter 2, families of triangular norms
and conorms constitute the most general propagation functions for the logical operators in
possibilistic reasoning. Conditions are formulated for triangular norms (T-norms), triangular
conorms (S-norms) and a norm on the negation operator (N-norm). In Chapter 3, the definitions

according to [Bonissone, 1986] were given for one-dimensional norms.

In our model, we use a two-dimensional uncertainty label (MB,MD), where triangular norms
are based on a single uncertainty value. Here, we adjust the definitions, given in Chapter 3, so
that they can be used on uncertainty labels. We take (0,1) and (1,0) to represent 0 (faise) and 1
(true) respectively. In fact, we have made a preliminary choice for the embedding of the model

(see Section 6).

Definition 4.8

A triangular norm T is a function that satisfies’

(boundary) T((0,1),(0,1)) = (0,1),

(boundary) T(a,(1,0)) =T((1,0),a) = a,

(commutativity) T(a,b) = T(b,a),

(associativity)  T(a,T(b,c)) = T(T(a,b),c),

(monotonicity) T(a,b) <y T(e,d) if a <y c and b <y d.®

In functional notation, T: ([0..1],[0..1]),([0..1],[0..1]) — ([0..1],[0..1]).

Definition 4.9

A triangular conorm S is a function that satisfies

(boundary) S((1,0),(1,0)) = (1,0),

(boundary) S(a,(0,1)) = §((0,1),a) = a,

(commutativity) S(a,b) = S(b,a),

(associativity)  S(a,S(b,c)) = S(S(a,b),c),

(monotonicity) S(a,b) <\, S(e,d) ifa<y cand b 5y, d.

In functional notation, S: ([0..1],[0..1]),([0..11,[0..1]) — ([0..11,[0..1]).

7. In this, a=(MB,,MD,), b=(MBy,MDy), c=(MB_,MD,) and d=(MBy,MDy).
8. The <\ relation is defined as (MB,,MD,) <y (MB_,MD,) when MB,<MB, and MD,<MD...
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Definition 4,10

A negation norm N is a function that satisfies

(boundary) N((0,1)) = (1,0),

(boundary) N((1,0)) =(0,1),

(involution) N(N(a)) = a,

(monotonicity) N(a) <y N(c)ifa<ye.

In functional notation, N: ([0..11,[0..1]) — ([0..1L,[0..1]).
Given the orderings relation <y, the definitions of the T-norm and S-norm are straight exten-
sions of the one-dimensional definitions. Concerning the N-norm, one important change has
been made, the monotonicity condition has changed from strictly decreasing to non-decreasing.
The reason for this change is that belief supporting and refuting a piece of evidence is no longer
represented by just one number. Therefore, an N-norm like N(a)=1-a, as specified in most of
the one-dimensional models, is no longer the most suitable candidate in our model of belief and
disbelief. When we have specified the N-norm for the model of belief and disbelief, we will
show that De Morgan’s law is still valid for pairs of T- and S-norms.

4.5.4 Derivation and independence

One of the characteristics of the set of propagation functions for the probabilistic model is the
presence of the check on the dependence of propositions to be combined. In the possibilistic
approach, we do not want to ignore this check, instead we search for an alternative in the con-
text of the model of belief and disbelief. It is a plausible thought that the resulting belief of a
combination of two independent propositions differs from the combination of two dependent
propositions. In the probabilistic model, this notion of independence was captured by the con-
ditions of mutually and conditionally independence of pieces of evidence. Leaving the proba-
bilistic foundation therefore results in the necessity of a new definition of independence. We

provide the following definition.

Definition 4.11

Two derivations d,,d, € D are considered to be causal independent when d;nd, = &.
The meaning of Definition 4.11 is clear, two derivations are causal independent when they can
be constructed without using a single piece of evidence in both derivations. We use this notion
of causal independence in the definition of the propagation functions of the model of belief and

disbelief, given in the next subsection.

4.5.5 The propagation functions

According to the observations made in the previous subsection, we formulate the propagation
functions of our model of belief and disbelief in terms of propositions, expressions and deriva-
tions. We use the propagation functions of the probabilistic model as the starting point and ex-
plain the choice for their possibilistic counterparts in the model of belief and disbelief.

The propagation function for the negation, as given in Theorem 4.5, is not restricted by any
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probabilistic condition. Further, it is a plausible function for the negation. Therefore, we also
use this function for the negation in the model of belief and disbelief.

Propagation function 4.1
Lete € E, d,,dq € D and MB(e,d,),MD(e,d,) be given.

Then the propagation functions for the negation are defined by
(a) MB(—e,dy) = MD(e,d )
(b) MD(—e,dy,) = MB(e,dy).

This set of propagation functions for the negation fulfils the demands on an N-norm, as given
in Definition 4.10. Further, with the definition of this propagation function for the negation, De
Morgan’s Law on T- and S-norms, T(a,b) = N(S(N(a),N(b))), holds for all pairs of T-norms
and S-norms as defined in Definitions 4.8 and 4.9. Again, pairs of T- and S-norms can be de-

fined for the propagation in conjunction and disjunction operators.

In Section 3, probabilistic conditions were needed for the definition of propagation functions
for the conjunction and disjunction operators in the probabilistic model. By using Definition
4.11, we can reformulate the impact of independence in terms of derivations, and use them to
formulate the propagation functions in the possibilistic model. An observation that can be made
here is that the propagation functions delivered by the probabilistic model have a form that is

well known in the theory on triangular norms and conorms. The functions working on the
separate measurements (MB and MD) are the T, and S, norms’. This results in the following

propagation functions for the conjunction and disjunction.

Propagation function 4.2
Lete,e, € E, dbl,dbz,dd],dd2 € Dand MB(e,,dbl),MD(el,dd1),MB(eZ,dbz),MD(e2,dd2) be

given.
Further, let (dbl,dbz) as well as (dd],dd2) be causal independent.

Then the propagation functions for the conjunction are defined by
(a) MB(e ne,.dy \dy,) = To(MB(e,.dp ), MB(e,.dp, ).

(b) MD(enep,dg \dg,) = SH(MD(e,,dg ),MD(e,dg,))-
Propagation function 4.3
Leteye, € E, dbl,dbz,ddl,dd2 € D and MB(el,dbl),MD(el,ddl),MB(ez,dbz),MD(ez,ddz) be

given.
Further, let (dbl,dbz) as well as (ddpddz) be causal independent.

Then the propagation functions for the disjunction are defined by
(a) MB(elvez,dbludbz) = SZ(MB(el,dbl),MB(ez,dbz)).

(b) MD(e, ve,dg Udy,) = Ta(MD(e;,dg ).MD(e,.d4,).

Since the one-dimensional norms are used on the separate measurements, it can easily be

9. The T,, T3, S; and S; norms are given in Example 3.7.
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checked that these definitions of the propagation functions satisfy the demands of the defini-

tions of the two-dimensional T-norm and S-norm, and De Morgan’s Law.

Recalling Chapter 3, in fuzzy set theory the attention has been focused on the development of
propagation functions for the implication operator. We discussed that numerous propagation
functions have been developed for the implication and gave a few examples. In Theorem 4.3,
we specified the propagation functions for the (deductive) implication operator in the
probabilistic model. The given probabilistic conditions do not demand equivalents in terms of
the derivation. The propagation function used is also well-defined in possibility theory (see
Example 3.8). Therefore, we can formulate the propagation functions for the deductive
inference step without further conditions on the derivation. According to the definition of the

derivation of a proposition, the derivation of the conclusion is equal to that of the premise.

Propagation function 4.4
Letae A, ee E,dp,dg € D and let MB(e,dy,),MD(e,dy) be given as well as the inference

step ¢ = a with strength (MB(a,e),MD(ae)).

Further, let MB(e,dp,) > 0.

Then the propagation functions for deductive inference are defined by10
(a) MB(a,d,,) = MB(a,e)MB(e,dy,).

(b) MD(a,d) = MD(a,e)MB(e,dy,).

In Section 2, probabilistic conditions are specified for the propagation functions of the combi-
nation operator. By using Definition 4.11, we reformulated the impact of independence in terms

of derivations. This results in the following propagation functions for the combination.

Propagation function 4.5
Leta;a, € A, dbl,dbz,ddl,dd2 € Dand MB(al,dbl),MD(al,ddl),MB(a2,db2),MD(a2,dd2) be

given.
Further, let (dbl,dbz) as well as (ddl’ddz) be causal independent.

Then the propagation functions for the combination are defined by
(a) MB(a,llay,dp, dy,) = So(MB(a,,dp, ),MB(a,.dp, ).
(b) MD(a,llay,dg \vdg ) = S»(MD(a;,dg ),MD(az,dq,))-

This concludes the first part on the development of a set of propagation functions for our model
of belief and disbelief. However, due to the independence conditions, the propagation functions
given in Propagation functions 4.2, 4.3 and 4.5 can still only be applied in specific situations.
Therefore, we have to generalise them to make them applicable in each situation.

4.5.6 Enhancements for the propagation functions
The propagation functions of the calculus are still based on the uncertainty measurements of

their direct predecessors. In Section 3, it was argued that this principle of locality in the

10. Note that in both functions the resulting derivation is equal to dy, derivation dy is ignored.
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propagation process should be reconsidered. The use of information concerning the derivation

of a piece of evidence was expected to be of help in creating a better uncertainty propagation.

Observing Propagation functions 4.1 through 4.5, we can see that the functions for both nega-
tion (4.1) and implication (4.4) can be applied in any situation. In the case of the other three
propagation functions, the demand of causal independence of the derivations must be fulfilled.
In Theorem 4.11, we describe how this check can actually be carried out by describing the re-
lation between a derivation and a set of justifications. A question that remains is what we should
do in case the demand cannot be fulfilled (i.e. when the derivations are based on common pieces
of evidence). We propose a strategy here that is capable of handling this situation and subsumes
the propagation functions as given in the previous subsection. Since we treat the three operators
equally, we use the * symbol to denote one of the operators {A,v,l} and the term d« to denote
the obtained derivation.

First, we observe that in the case of independence of evidence, two general forms for these
propagation functions are used, the norms T, and S,. The propagation functions using the T,
norm are used for the measurement of disbelief of the disjunction and the measurement of belief
of the conjunction. Propagation functions using the S, norm are used for the measurement of
belief of the disjunction, the measurement of disbelief of the conjunction and both measure-
ments of the combination. We introduce a propagation function for both types of function,

based on observations concerning their semantics.

In this, we need the notion of a subderivation. From Definition 4.6 we can learn that a derivation
of an atomic proposition or expression can be constructed out of several derivations, provided
by several implications, or belong to subexpressions. When a part of a derivation can function
as a derivation for the proposition or expression on its own, it is called a subderivation. A formal

definition is given below.

Definition 4.12
A derivation dg € D is called a subderivation of a derivation d, € D of expressione € E

when dg € d,, and d; is a derivation for et

Consider the situations in which the measurement of belief or disbelief M'? of two pieces of
evidence {X,,X,} with derivations {d,,d,} have to be combined by the S, norm. From the logical
point of view, the presence of just one of the two pieces of evidence is sufficient. This observa-
tion leads to the idea that in general we can at least use the maximum of both beliefs as the lower
bound of our propagation result. The triangular norm S, can be used to represent this propaga-
tion function: S;(M(x,,d,),M(X,,d,)). The resulting derivation d« is chosen accordingly, yield-

ing either d; or d,. However, we can still use the S, norm when we can find derivations d, and

11. Note that each derivation is a subderivation of itself.
12. Since there is no difference in applying the norms on either MB or MD, we use M for short.
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dy that are subderivations of the derivations d; and d, and that are causal independent, i.e. d, <
d;, dy € d, and dyndy = @. In other words, we are searching for a pair of subderivations that
are causal independent and produce a propagation result, by using S,(M(x,,d,),M(x,,dy)), that

is greater than both original measurements. In this case, the resulting derivation d* is equal to

d,dy. We can capture this in the following description of the propagation function.

Propagation function 4.6
Let x,,X; € A, d;,dz,dy.dy € D and M(x,,d,),M(x,,d,) be given.

Then the general propagation function for measurement M under operation * from
{A,V,ll} is given by

M(x,*x,.ds) = max{S;(M(xl,d]),M(xz,d2)),gla§{SZ(M(Xl,dX),M(XZ,d},))} 1
oy

where the maximum operator is used over all pairs d, c dy, dy < d, with d,;nd, = a.

A similar argument can be used in situations in which the T, norm is used. In these situations,
the presence of both pieces of evidence is necessary when the logical counterpart is examined.
If the derivations of both pieces of evidence are causal independent, the original propagation
function, the T, norm, can still be used: T,(M(x,,d;),M(x,,d,)). Again, the resulting derivation
d« is chosen accordingly, yielding either d, or d,. However, when a (sub)derivation can be
found that supports both pieces of evidence, it is our interpretation that the propagation result
will be greater than the result of the original function. Therefore, the original propagation func-
tion provides the lower bound of the propagation function. To achieve the upper bound of this
result, we have to search for a subderivation d, of d;nd, that supports both pieces of evidence,
this is called a common subderivation. The belief in this case can be assumed equal to the min-
imum of belief in x,*x, given d ., represented by the T norm: T3(M(x,.d~),M(x,,d)). The up-
per bound can be found by maximising over all common subderivations d, of d;"d, and the

resulting derivation d« is of course equal to d.

Propagation function 4.7
Let x,,X; € A, d;,d;,d~ € D and M(x,,d,),M(x,.d,) be given.

Then the general propagation function for measurement M under operation * from
{A,V,lI} is given by

M(XI*XZ,d*) = max{TZ(M(XI’dl)>M(x2ad2))an§ax{TB(M(Xl'dr‘\)»M(Xstm))} }a

(al
where the maximum operator is used over all common subderivations d, € d;"d,.

By using the results of Propagation functions 4.6 and 4.7 in propagation functions for disjunc-
tion, conjunction and combination, we have developed a set of propagation functions for the

model of belief and disbelief that are not restricted by dependence conditions. This set of prop-



agation functions not only subsumes the set of propagation functions given in Propagation func-
tions 4.2, 4.3 and 4.5, but also subsumes the set of propagation functions given in Buchanan
and Shortliffe’s original model (see Section 2). In fact, both Shortliffe and Buchanan’s and our

initial sets are the extremes of this generalised set.

4.5.7 Further enhancements for the propagation functions

The introduction of the propagation functions defined in Propagation functions 4.6 and 4.7 has
solved the problem of restrictive independence conditions. Unfortunately, these functions have
also introduced a problem, since the associativity conditions in the T- and S-norm definitions
are violated by these functions. This is an unwanted effect of these propagation functions, since
the associativity condition is an intuitively appealing condition. In this subsection, we general-
ise the propagation functions in such a way that the associativity condition is satisfied again.

First, we define generalisations of the T- and S-norms, so that they are able to cope with more

than two arguments at the time. We call these generalised norms T and S", definitions are

provided in recursive form.

Definition 4.13

The generalised triangular norm T" is modelled by repeated application of a triangular
norm T, thus T"{m,,...,m,} = T(T™! {my,....my_;},my) and Tz{ml,m«)_} =T(m;,m,).

The generalised triangular conorm S" is modelled by repeated application of a triangular
conorm S, thus S*{m;,....m,} = S(S“'l{ml,...,mn_l},mn) and Sz{ml,mz} = S(m,,my).

In functional notation, T*S": {[0..1]}, - [0..1].

Examples of generalised norms and conorms are given in Example 4.1, these are the general-

ised norms of the T,, T3, S, and S; norms.

Example 4.1
T%{m,,...,m,} =11 (my), §%{my,...my} =1 -1 (1-my),
T%{my,....m,} = min {m;}, S%{m,,...,m,} = max {m;}.

The T" and S™ norms are used in situations where two or more pieces of evidence {x,,...,x,}
have to be combined by an operator from {A,V.ll}, i.e. X AXyAX3 or X lIX,lIX5lix4. Each piece of

evidence is accompanied by its derivation, {d,,...,d,}. Before describing the generalised prop-

agation functions, based on the T" and S" norms, we first introduce the definition of the (in)de-
pendent partition set of a set of derivations {d,,...,d, }.

When constructing Propagation functions 4.6 and 4.7, we searched for a pair of causal inde-
pendent subderivations (in Propagation function 4.6) and a common dependent subderivation
(in Propagation function 4.7). Here, we define similar notions for a set of derivations. An inde-

pendent subset of the set of derivations {d,,...,d,} is a subset in which each pair of derivations
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has a pair of subderivations that are causal independent. A dependent subset of a set of deriva-

tions {d,,...,d,} is a subset in which a common subderivation can be found for each derivation.

Definition 4.14
A dependent subset J of {d,,...d,} is a subset of {d,,...d,} in which a common

subderivation can be found for each derivation in J.

An independent subset J of {dy,...,d,} is a subset of {d,...,d,} in which for each pair of

derivations in J a pair of subderivations can be found that are causal independent.
(In)dependent subsets are used to split up the original derivation set {d,,...,d;}. A disjunct set
of (in)dependent subsets that completely partitions {d,,....d,} is called an (in)dependent parti-
tion of {d,....d,}.

Definition 4.15

An (in)dependent partition 1 of {d,,....d,} is a set of (in)dependent subsets {J;,...,J; } of

{d,.....d,} satisfying

@ Jyu.ul = {d,...d,},

i) J, Nn.n] =0
It is clear that for a given set of derivations {d,,....d,}, it is possible to construct more than one
(in)dependent partition. The set of all possible (in)dependent partitions of {d,,....d,} is called
the (in)dependent partition set of {d,,...,d,}.

Definition 4.16
The (in)dependent partition set P of {d,,....d,} is the set of all possible (in)dependent

partitions {I,,....I,} of {d,....dy )}

Having defined the notion of an (in)dependent partition set, we can proceed with the definition
of general propagation functions that satisfy the associativity condition. The strategy used in
this is to find an (in)dependent partition of {d,....d,} such that the resulting belief for {x,,....x}

is maximal.

We start with the generalisation of Propagation function 4.6. The measurements of belief and

disbelief of a set {x;,...,x,} with derivations {d,....,d,} are calculated for the situation in which
the presence of just one x; is sufficient to satisfy the situation. Similar to the strategy used in

Propagation function 4.6, the maximal belief is found when independent sources are combined,
resulting in the use of the independent partition set P. Thus, we have to maximise the belief over

all independent partitions in the independent partition set (I < P).
For each independent partition I, the measurements of belief and disbelief are calculated by us-

ing the S", norm over all independent subsets of that partition (J < I). This can be done while

the presence of just one independent subset is sufficient to satisfy this situation.
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Similar to the use of the S, norm in Propagation 4.6, the S", norm is used to calculate the meas-

urement of belief or disbelief for each independent subset J, where J = {d;}.

The resulting derivation d. is equal to the union of the derivations in J, i.e.d. is wd;. This results

in the following general propagation function based on S-norms.

Propagation function 4.8

Let x,...x, € A, dy,...d, € D and M(x,,d,),....M(x,,,d,,) be given.!3

Then the general S-norm propagation function for measurement M under operation *
from {A,v,ll} is given by

M(x % *xpde = max {57 { s, { Mxdy) )}
1P Jcl 4

where P is the independent partition set of {d,...,d,}.

Recalling Propagation function 4.6, we can see that this is indeed a special case of Propagation
function 4.8, when {x,,x,} is the evidence set with the set of derivations {d,,d;}. Two cases can
be distinguished. Firstly, if we can find a partition of independent subsets then P={{d,,d,}} and
the S, norm is used in Propagation function 4.6 where the S", norm is used in the Propagation
function 4.8. Since n=2, these functions are equal. Secondly, if we cannot find a partition of
independent subsets then P={{d,},{d,}} and the S; norm is used in Propagation function 4.6
where the S”; norm is used in Propagation function 4.8. In case n=2, these two operations are
equal.

A similar strategy can be used with the generalisation of Propagation function 4.7. Here, the
measurements of belief and disbelief of set {x,,...,x,} with derivations {d,,...,d, } are calculated
for the situation in which the presence of each x; is necessary to satisfy the situation. Similar to
the strategy used in Propagation function 4.7, the maximal belief is found when dependent
sources are combined, resulting in the use of the dependent partition set P. Thus, we have to
maximise the belief over all dependent partitions in the dependent partition set (I  P).

For each dependent partition I, the measurements of belief and disbelief are calculated by using
the T®, norm over all dependent subsets of that partition (J  I). This must be done while the
presence of each dependent subset is necessary to satisfy this situation.

Similar to the use of the T, norm in Propagation 4.7, the T"; norm is used to calculate the meas-

urement of belief or disbelief for one dependent subset J, where I = {d;}.

Again, the obtained derivation d is equal to the union of the derivations in I, i.e. ud, yielding

the following general propagation function based on T-norms.

13. Again, we use M for both MB and MD.
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Propagation function 4.9
Let xp,....x, € A, dy,...,d; € D and M(x,,d),...,.M(x,,,d,,) be given.

Then the general T-norm propagation function for measurement M under operation *
from {A,v,ll} is given by

MGx* A = max { % { T { MOad) } )},
IcP J¢clI d;

where P is the dependent partition set of {d,...,d,}.

Recalling Propagation function 4.7, we can see that this is a special case of Propagation func-
tion 4.9, when {X,,X,} is the evidence set with the set of derivations {d,,d,}. Again, two cases
can be distinguished. Firstly, if we can find a partition of dependent subsets then P={{d,,d,}}
and the T, norm is used in Propagation function 4.7 where the T"; norm is used in Propagation
function 4.9. In case n=2, these functions are equal. Secondly, if we cannot find a partition of
independent subsets then P={{d,},{d,} }and the T, norm is used in Propagation function 4.7
where the T", norm is used in Propagation function 4.9. Again, in case n=2, these two opera-

tions are equal.

4.5.8 Solving the first benchmark problem

We return to one of the fundamental problems concerning uncertainty models, the news report
example [Henrion, 1987], that was described in Chapter 1. We claim that we have found a
solution to the problem when our generalised propagation functions are used.

We first observe that actually two problems arise in the news report example, the problem of
updating one’s belief set when new evidence becomes available and the problem of combining
the belief of some proposition based on dependent evidence. The former should be solved by
the inference model, the latter problem is solved by using the propagation functions as defined

in Propagation functions 4.8 and 4.9.

The news report example illustrates the effect of applying the propagation function for the com-
bination of evidence without checking the condition of causal independence. This results in a
belief update for the fact that several thousand people are killed. This update is based on apply-
ing the combination function twice, using the three sources of information: the radio station, the
tv station and the newspaper. When the generalised propagation functions are used, the deriva-
tions of the three sources contain a common cause: the unconfirmed telephone interview.
Therefore, the maximum operator is used on the measurements of belief of the three deriva-
tions, and the result is a smaller belief in the hypothesis than when calculated with the original
propagation functions. In this case, the selection of the maximal derivation path is simple, since
there are no other combinations of independent subderivations. The situation can be different
when, for instance, the report from the tv station is also based on another source of information.

We demonstrate the enhanced propagation functions with a numerical example. The symbol to
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denote a deductive inference step (justification) was introduced in Chapter 3. Firstly, we denote
the terms we use in the example. The unconfirmed telephone call is denoted by phone call,
while the receiver of the information is denoted by receiver. Three news reports are distin-

guished: newspaper, radio station and tv station.

Now, consider the first steps in the example.'* The phone call is believed with absolute certain-

ty (MB=1.0), and, for reasons of clarity, it is assumed that all news agencies have an equal be-

lief in this call (MB=O.8).15 However, the receiver assigns different beliefs to the different
sources of information, newspaper reports are strongly believed (MB=0.9), the tv reports a little
less (MB=0.8) and the radio reports are weakly believed (MB=0.7). Weighting the belief in the
separate information sources, the receiver has three supporting pieces of evidence: from the
newspaper (MB=0.72), from the tv station (MB=0.64) and from the radio station (MB=0.56).
Assuming independence of these evidence sources, the resulting belief for the receiver would
increase to MB=0.96. When the enhanced propagation functions are used, the resulting belief
is only MB=0.72 (the maximum belief of the subderivations, in this case phone call — news-

paper — receiver). Figure 4.1 depicts this situation.

receiver
[072]

phone call

Figure 4.1 First conclusion of the receiver.

Now, suppose the situation is changed by learning that the tv station has received extra infor-
mation concerning the accident from a local reporter. Following the approach of the first situ-
ation, an equal amount of belief is given to this additional report (MB=0.8). However, the belief
of the tv station itself increases to MB=0.96 (=0.8+0.8-0.8*0.8) by independently combining
the supporting evidence from both the phone call and the local reporter. This results in a change

of belief from tv station to receiver into MB=0.77 (0.96*0.8) and the receiver’s belief can also

14. For reasons of clarity, we use the measurement of belief (MB) only in this example.
15. Skipping the part of first explaining the news reports by the independent sources. We refer to
[D’ Ambrosio, 1990] for an illustration of such a process.
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be updated to MB=0.77 since this is greater than the current MB=0.72. However, there is also
a possible combination that leads to an MB=0.90 (0.72+0.64-0.72*0.64). The two independent
subderivations that are used here are phone call — newspaper — receiver (MB=0.72) and local
report — tv station — receiver (MB=0.64). Other combinations of subderivations all give re-
sults that are less than 0.90. Using Propagation function 4.5 here would result in an MB close
to 1.0 (0.99<MB<1.0) for the receiver. This situation is depicted in Figure 4.2.

The news report example is a typical case in which a common cause disturbs an intuitively cor-
rect propagation of uncertainty. Our generalised set of propagation functions is designed to
cope with all cases of common causes when updating uncertainty of disjunction, conjunction

and combination operators.

newspaper

receiver

phone call

tv station

local report

Figure 4.2 Second conclusion of the receiver.

4.5.9 Computational aspects of the enhanced propagation functions

To here, we have not paid much attention to the computational aspects of the propagation func-
tions. Recalling the beginning of the chapter, the computational simplicity of the Shortliffe and
Buchanan model is one of the strong arguments in favour of its use. Since the new propagation
functions are more general, their computational complexity has to be reanalysed.

Analysing Propagation functions 4.8 and 4.9 (and even 4.6 and 4.7), we must admit that the
propagation functions have indeed raised the complexity from originally being linear to being
exponential. The reason for this is twofold, it is caused by the search for the (in)dependent par-
titions and in the inspection of the subderivations. The complexity of Propagation functions 4.6
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and 4.7 is O(2P) and that of Propagation functions 4.8 and 4.9 is O(2NP), where N is the number
of pieces of evidence to be combined and D is the average number of subderivations that can
be distinguished for the pieces of evidence. Leaving this as it is, we lose one of the advantages

of the compositional approach.

However, the complexity can be decreased by not considering the subderivations of proposi-
tions (D=1). This decreases the complexity of Propagation functions 4.6 and 4.7 to 2. As a
trade-off, the quality of the uncertainty propagation decreases from optimal to suboptimal. For
instance, in Propagation function 4.6, only partitions {{d,;,d,}} and {{d,}{d,}} are considered,
and a choice is made between the application of the S, and S, norm based on the causal inde-

pendence relation of the derivations d; and d,.

The same procedure can be used to decrease the complexity of the complexity of Propagation
functions 4.8 and 4.9. However, the resulting complexity is still exponential in the number of
pieces of evidence (N) to be combined, O(2V). Two additional comments can be made here. By
using a smart strategy when generating the partition set, parts of this set can be pruned and the
total number of partitions is decreased. However, the construction of the partition set remains
an operation of exponential character. Further, it should be noted that N is not the total number
of propositions in some application. In fact, N is the number of evidence sources to be combined
by just one operation, i.e. the number of propositions used in the premise of an inference step
or the number of supporting evidence sources of some proposition. Therefore, it is reasonable
to assume that N will be small in real-world applications, and there will be just a small increase

in computational complexity of the enhanced propagation functions.

4.6 Embedding the model of belief and disbelief in the general framework
In the foregoing, we defined an uncertainty model based on the measurements of belief and
disbelief. In this section, we describe the embedding of this model in the general framework as
developed in Chapter 3.

4.6.1 The embedding function

In the general framework, a conflict is defined as the combination of both true and false labels
assigned to an atomic proposition. When introducing uncertainty into the framework, we have
to redefine a conflict in terms of uncertainty. We define two situations that are considered to
represent a conflict in the uncertainty model that is based on the measurements of belief and
disbelief. Firstly, the situation in which positive (MB) and negative (MD) evidence is
combined, where at least one of the two measurements is equal to 1. Secondly, the situation in
which positive (MB) and negative (MD) evidence that are both using the same derivation
(Recall Theorem 4.2) is combined. We need this definition of an uncertainty conflict in

constructing a correct embedding of the three-valued model.
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Definition 4.17

An uncertainty conflict T is defined to be the combination of MB(a,d,) and MD(a,d,) for
a proposition a € A, with d;,d, € D, when at least one of the following situations occurs
(i) MB(a,d;),MD(a,d,) >0 and MB(a,d;) = 1 or MD(a,d,) = 1,

(i) MB(a,d;),MD(a,d;) >0 and d, = d,.

Using the notions of a derivation and an uncertainty conflict, in Theorem 4.10 we present a cor-
rect embedding of the three-valued labelling L into the uncertainty label (MB,MD), as defined
in the context of the general framework.

Theorem 4.10
Consider the uncertainty labelling UL based on Ty = (MB(a,d,),MD(a,dy)), where MB

and MD are defined in Definition 4.7.

Further, let the set of propagation functions (f_f,.f..f_.f;) be defined according to
Propagation functions 4.1 (f_), 4.2 (f,), 4.3 (f,), 4.4 (f2,) and 4.5 (f}), and supported by the
generalised Propagation functions 4.8 and 4.9.

Then, a correct embedding B of the three-valued model into the uncertainty model based
on UL and (f_f,.f..f..f}) can be defined through

B(£)=(1,0), B(1)=(0,0) and B(f)=(0,1).

Proof
According to the truth tables of f_, £, f, and f, for (MB,MD),l6 see Tables 4.1 through

4.4, and the definition of a correct embedding, as given in Definition 3.31, it can be
concluded that the given embedding B is correct.

The following remark must be made here. When a is a premise, its derivation d, is equal to &
and the measurements belief and disbelief are given by MB(a,d) and MD(a,). We demand
that the values of these measurements are known at the start of the reasoning process and do not
have to be calculated by one of the propagation functions. This is exactly the definition of the
initial (uncertainty) labelling. In [van der Gaag, 1990] this problem is solved by introducing an
extra proposition (u) to the set of atomic propositions A. This method however demands for
each uncertainty labelling to obey MB(u,d,)=1, MD(u,d )=0 and still assumes that there is
some environmernt d,, for which this holds. By explicitly stating that the environment of the in-

itial uncertainty labelling is empty, we gave the initial labelling its place in the embedding.

With the definition of a correct embedding, the boundary constraints of the general framework
are satisfied. The last step to come from the general reasoning framework to an uncertainty
reasoning framework is the definition of a (deductive) inference function. This means that the
inference function, given in Definition 3.18, has to be redefined in terms of the model of belief

and disbelief. Examining this definition closely, we can see that this inference function uses the

16. It should be noted that uncertainty label (MB,MD)=(1,1) that is used in the combination function (see
Table 4.5) is an uncertainty conflict (1), according to Definition 4.7.
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Table 4.1 Negation Table 4.2 Conjunction Table 4.3 Disjunction

- A 1o 0,01 ©D v | (1,00 | (0,0) | (0,1)
(1,0) 1 (0,1) (1,0) | (1,0) | (0,0) | (O,1) (1L,o) | (1,0) | (1,O) | (1,00
(0,0) 1 (0,0) (0,0) | (0,0) | (0,0) | (0,1) (0,0) | (1,0) | (0,0) | (0,0)
0,1) 1 (1,0 O, 10O, |01 @D O, (1,0) | (0,0) | (0,1)

Table 4.4 Combination

I} (1,0) | ©0) | ©D
(LO) | (,0) | (LO) | (1,1)
0,0) ] (1,0) | 0,0) | (0,1)
o, | .1 | ©,1) | (©0,1)

evaluation function Wy and the strength of the inference step L_, in the deductive reasoning
strategy for the inference step.

We start with the evaluation function W for the premise of a primitive inference step. In the
three-valued framework, true is demanded for a successful evaluation. In Propagation function
4.4, MB(e,d.) is used to reflect the belief in the premise expression. In the model of belief and
disbelief it is sufficient to demand for this MB(e,d,.) to be greater than 0 instead of using some

arbitrary value like 0.2.

The second demand for a primitive inference step to be successful is the fact that no conflict
may be derived through it. Therefore, the combination function, W(L(a),W_(L(e),1)) as used
in Definition 3.9 is replaced by f(UL(a),f_(UL(e),(MB(a,e),MD(a,e)))). In this, UL(a) is equal
to the uncertainty label (MB(a,d,),MD(a,d,)) of proposition a and UL(e) to the uncertainty label
(MB(e.d,),MD(e,d,)) of expression e.

Definition 4.18

A deductive inference function I'Ffor the model of belief and disbelief is defined by
IKs) = Twhen MB(e,d,) > 0.0 and f,(UL(a),f_,(UL(e),(MB(a,c),MD(a,e)))) # 1,7
IH(s) = Fotherwise.

In functional notation, I'F: IS — {7, F}.

This concludes the embedding of the three-valued model in the model of belief and disbelief.

17. Recall that UL(a)=(MB(a,d,),MD(a,d,)) and UL(e)=(MB(e,d.),MD(e,d,)).
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4.6.2 The relation between derivations and reason maintenance

The notion of a derivation, as defined in Section 5, was defined especially for enabling a correct
embedding of the uncertainty model. Here, we clarify the position of a derivation in the general
framework. It is not surprising that this position is described in relation to the reason

maintenance model.

In the following theorem, it is shown that the derivation d, of some atomic proposition ¢, can
always be determined by inspecting the subset of justifications that has this atomic proposition
in its consequent. This not only means that the reason maintenance model can be used to
determine the contents of derivations but also their structure, i.e. the combinations in which, in

terms of logical operators, the propositions in the derivation were used.

Theorem 4.11
Let A be a set of atomic propositions, D a set of derivations and J a set of justifications.
Suppose ¢ € A and let d. € D be the derivation of c.

Then d; = {Vjej Cons(j) = <¢,1c> | Upe ante(j) (da U {2}) }-

Proof
The proof consists of two parts.
(i) Consider some x € A and assume x € d, = {according to Definition 4.6}

ey [He=x)=Tand x € d, =

Fieri={<aplp) - <x > =

xe {g} orEaixe dai =

x € {Vjey Cons(j) = <¢,l:> | Upe Ante(j) (da {a}) }.

(ii) Consider an x € A and assume X € {Vjcj Cons(j) = <¢,1:> | Uge ante() (da U {a}) } =
Fieri={<aplp>} = <cl> where x € {a;} or Bai X € dai =

IRe=x)=Tandx € d, =

x € d..

In Section 4, it was stated that the second argument of the measurements of belief and disbelief
should reflect the total structured environment. With Theorem 4.11, it has been shown that the
derivation, as given in Definition 4.6, can be used as this structured environment when it is
supported by a reason maintenance model as defined in Chapter 3. We used this important result
when the structure of derivations was used in the development of propagation functions that are
able to react to the situation they are used in. Theorem 4.11 has cleared the semantics of a
derivation in terms of reason maintenance, and has thereby made a formal link between the

uncertainty model and the reason maintenance model.

4.6.3 The relabelling process
The problem of relabelling was characterised in Chapter 3 and a process model to solve the
problem was described. In the setting of this chapter, relabelling is necessary when the uncer-

tainty labelling (MB(a,d,),MD(a,d,)) changes for some proposition a. Now the labelling of
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each expression e and each proposition ¢ should be changed when proposition a is part of the

derivation of e or ¢ respectively (a € d, or a € d;). This situation can be detected by inspecting

the derivation of each expression and proposition or, in terms of the reason maintenance model,
by inspecting the antecedents of each justification. In Theorem 4.11, the equivalence between
derivation and reason maintenance model has been specified. As a result of this theorem, the

relabelling process given in Chapter 3 can be applied directly here.

4.7 Discussing the uncertainty model

In this chapter, the general framework for compositional reasoning given in Chapter 3 has been
extended toward uncertain reasoning. To start with, an existing model for uncertain reasoning,
the certainty factor model of Shortliffe and Buchanan, was analysed on its probabilistic
foundation. It turned out that, under severe conditions, a part of the original model of Shortliffe
and Buchanan, extended with some new propagation functions, can serve as a probabilistic
uncertainty model, let us call this the revised model. However, it was argued that the practical
impact of the probabilistic conditions in both the original and the revised model prohibits these

models to be used in most real-world applications.

Making use of these results, we developed an uncertainty model based on the measurements of
belief and disbelief, but without their probabilistic interpretation. New possibilistic definitions
for these measurements were introduced, enabling the loss of the severe probabilistic conditions
on the propagation functions. A set of propagation functions was developed to be used in this
possibilistic model of belief and disbelief. These functions are based on both the theory of
triangular norms and conorms (negation, conjunction and disjunction operators) and fuzzy set

theory (implication operator).

We reformulated the condition on the independence of evidence, as used in the probabilistic
models, in terms of our possibilistic model and developed a set of general propagation functions
to be used in any situation. This means that, although an alternative dependency condition was
formulated, the set of propagation functions of the possibilistic model can be also be applied in
situations in which this condition is violated. The resulting model subsumes both the set of
propagation functions given by Shortliffe and Buchanan and the set provided by our revised
model. Finally, a correct embedding was defined for the possibilistic model of belief and dis-
belief with respect to the demands specified in Chapter 3. The embedding was completed by

the definition of a deductive inference function.

In this last section, we compare the model of belief and disbelief with two existing, comparable
approaches, described in [Héjek, 1992] and [Bonissone, 1987].

4.7.1 Compositional uncertain reasoning according to Hajek
As stated in Chapter 1, the term compositional reasoning was due [Héjek, 1992], where another

general approach is presented on the management of uncertainty. Differences and equivalencies
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of both frameworks are briefly analysed here.

Hijek’s general framework is also based on the three-valued labelling of true, false and un-
known. The reason for this choice is similar to ours, instead of just true and false, there must be
the possibility of supplying some neutral label to a proposition. Therefore, the use of at least a
three-valued logic is needed. The logical foundation of H4jek’s framework is developed upon
the algebraic theory of ordered Abelian groups, which gives a set of conditions for the uncer-
tainty propagation functions in a way similar to ours.

Considering the reasoning in Hijek’s framework, there is no distinction between expression

1'8 and no construc-

and inference level, i.e. the inference primitive is part of the expression leve
tions are available to represent the control of the reasoning process. Furthermore, reason main-

tenance is not supported by Hdjek’s framework.

With respect to the representation of uncertainty, Hdjek’s approach is concerned with models
based on probability theory only. However, when the conditions of the algebraic theory are
inspected, close relationship with the conditions of the theory of triangular norms and conorms
can be shown. This is a strong argument for the idea that possibilistic models can be supported

equally well by Hdjek’s approach.

Regarding the management of uncertainty, H4jek considers existing models only. The certainty
factor model and the subjective Bayesian method are proved to be natural extensions of the
framework, and criticised from a probabilistic viewpoint. The Dempster-Shafer theory is given
more attention, since it is considered a fundamentally better method for a probabilistic uncer-
tainty model. However, the main difference between Héjek’s and our approach is the lack of
new developments in the propagation of uncertainty. Where our approach aims at providing
better uncertainty propagation, which yields a solution for a problem of existing uncertainty
models, Hajek’s approach has been developed as a general framework for a number of existing

uncertainty models only.

4.7.2 Reasoning with uncertainty model of Bonissone

In [Bonissone, 1987], the reasoning under uncertainty model (RUM) is introduced. Similar to
our approach, RUM distinguishes an inference and control layer, comparable to our expression,
inference and control level. However, there is no logical foundation in RUM that is comparable
to the three-valued logic in Hajek’s and our approaches. The boundary conditions of uncertain-
ty propagation functions are defined by the definitions of triangular norms and conorms.

The uncertainty model developed in [Bonissone, 1987] is based on an interval measurement,
[L(A),U(A)], where L(A) is the lower bound of belief in A and U(A) is the upper bound. Similar
to our model, a distinction is made between evidence confirming as well as refuting a proposi-
tion, the latter is represented by [L(A),U(A)]. However, these measurements are related by

18. Only the negation and conjunction operators are supported, the disjunction however is omitted.
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L(A)=1-U(A) and U(A)=1-L(A), as in the Dempster-Shafer theory, and therefore reflect just
one measurement. In our model, the measurements of belief and disbelief are defined complete-

ly independently, the only condition on them is defined in the uncertainty conflict.

Further, it is argued that the inference layer should have several uncertainty calculi at its dis-
posal. The choice of a specific calculus, however, has to be specified in the control layer, where
only global knowledge of the calculi and user-preferences concerning the semantics of the
norms and conorms can be used. However, the choice of an uncertainty calculus can only be
made once [Bonissone, 1987, p. 252]:

"Once a calculus has been selected, the combining rules for every value combination are
uniquely determined.”

This results in the use of a fixed set of propagation functions during reasoning. Contrary to this,
our approach is based on a set of generalised propagation functions (using Propagation
functions 4.8 and 4.9) that are implemented at the inference level. The determination of the
appropriate propagation function is not only based on the characteristics of the calculi but also
on the actual situation of the reasoning process in which it is used. This is not just a more
flexible approach, it also enables the decision concerning the propagation function to be taken
at the right moment: when the propositions and their derivations, as used in the propagation

function, are known.
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Chapter 5

Explanatory Reasoning

To here, we have only used a deductive inference strategy for the primitive inference step in the
general framework. Because of the nature of deductive reasoning (its truth-preserving charac-
ter) its interpretation is straightforward. As explained in Chapter 2, abductive reasoning is more
complex, in the sense that explanations are assumed that can be violated later on, without vio-
lating the reasoning process as such. This characteristic is even more interesting when uncer-
tainty is introduced. A set of explanations is assumed with an initial uncertainty distribution
and, according to the results of additional reasoning steps, this initial distribution is updated. In
this chapter is investigated whether such a reasoning principle can be realised in the composi-

tional architecture as developed in the preceding chapters.

According to the introduction in Chapter 2, abduction is concerned with an interpretation of a
causal relation from consequent to cause. Such a definition of abduction is, among others, given
by Pople [1973]: the generation of hypotheses which, if true, would explain some collection of
observed facts. More recent approaches include the notion of selecting the best or most
plausible explanation for the observations, see for instance [Peng, 1990]: inferring the most
plausible explanation(s) for a given set of observations. Today, the latter description is used to

describe the general abduction problem.

In this chapter, we introduce an inference strategy for the primitive inference step of the
framework that can be used in abductive problem solving in a compositional setting. To avoid
confusion, we use the term explanatory reasoning to describe the reasoning strategy developed
in this chapter. Our, informal, definition of explanatory reasoning is given by the compositional
construction of explanations for a collection of observed facts. When compared to the given
description of abductive reasoning, explanatory reasoning primarily distinguishes itself by
explicitly mentioning the compositional architecture. The capability of explanatory reasoning
for abductive problem solving is discussed in the closing section. A part of the theory developed
in this chapter has also been described in [Goedhart, 1994].

In Section 1, we start with the description of the types of explanations that are supported by the
framework and the formal description of the explanatory inference of primitive inference steps.
In Section 2, some semantic considerations are outlined with respect to explanatory reasoning.
A set of propagation functions is developed for explanatory reasoning in the model of belief
and disbelief given in Section 3. Restrictions and limitations of explanatory reasoning are
analysed in Section 4. Finally, the capability of explanatory reasoning for abductive problem

solving and its relation with other formalisms are discussed in Section 5.
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5.1 Defining explanatory reasoning

As discussed in Chapter 2, we use a form of abduction in which relations between explanations
and observations are known beforehand. These relations are represented by the primitive
inference step of the framework, as described in Chapter 3. In this section, we first describe two
types of explanations that are considered meaningful in the context of explanatory reasoning.
The definition of an explanatory reasoning strategy for the primitive inference step reflects
these explanation types. The impact of this strategy on the theory developed for the general
framework is analysed.

5.1.1 Types of explanations

First, we take a closer look at the objective of introducing an explanatory reasoning strategy for
the primitive inference step. We consider explanatory reasoning as a form of compositional
reasoning in which a set of propositions, which we call the explanation, can be assumed to have
caused some actual fact.! However, we need to be more specific to the relation berween the
propositions within an explanation. In the following, we distinguish two types of explanations:

converging and diverging explanations.

In a converging explanation, the assumed propositions in the explanation must all be valid az
the same time to explain the given proposition. The fact that a combination of cat allergy and
the presence of a cat is the explanation of the observation that someone is sneezing is an exam-

ple of a converging explanation.

In a diverging explanation, the validness of at least one proposition in the explanation suffices
to explain the given proposition. The fact that either a dead battery or an empty fuel tank is con-
sidered the explanation of the observation of an engine unwilling to start is an example of a di-
verging explanation.

Combinations of converging and diverging type explanations can be constructed by the nesting
of explanations, i.e. a proposition used in a converging explanation can itself be explained by a
diverging explanation and so on. With these two types of explanations, we have described the

semantics of explanatory reasoning on the level of primitive inference steps.

5.1.2 Explanatory inference

Recalling Chapter 3, the primitive inference step is a causal relation (=), with an expression
(e) as its premise and a proposition (a) as its conclusion. The deductive strategy for this
inference step is given in the definition of the deductive inference function in Chapter 3. This
strategy reasons from premise to conclusion, i.e. in the direction of the causal relation. The

explanatory strategy of this primitive inference step is concerned with reasoning in the opposite

1. The term observation is omitted here, since propositions within an explanation themselves can give
rise to other explanatory reasoning steps. Following the literature, the term observation is used for the
initial input of a diagnostic problem, i.e. comparable to the manifestations from [Peng, 1990].
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direction. Given the labelling of some proposition used in the conclusion, the premise can be
used to explain the labelling of this proposition. In other words, the propositions used in the
premise are assumed to have caused the labelling of the proposition in the conclusion. As a
result of this reasoning strategy, executing a primitive inference step adds a set of labels for

these propositions to the current labelling.

When we consider the types of explanations, converging and diverging, it is clear how these
types are represented by the premise expression. A converging explanation is represented by a
conjunction of propositions, where a diverging explanation is modelled by a disjunction. This
is in line with the semantics of the evaluation functions, W, and W, for these operators, that
have been defined in Definition 3.5. The W_, function is used to model the assignment of a neg-
ative label to the propositions in the explanation. Obviously, the evaluation function for the
combination, W), as given in Definition 3.8, can be used unchanged.

The explanatory inference strategy can be formalised by the definition of an explanatory
inference function. This inference function is based on the type of explanation (converging or
diverging) represented by the premise of an inference step (e = a). Further, an initial labelling
(Li_) of the propositions in the explanation must be provided by the inference step.2 Again, we
demand that the execution of an inference step may not arise a conflict in reasoning (). Similar
to the deductive strategy, this can be done by checking the outcome of the combination function
W,. The current labels of the propositions in the explanation, L(a;), have to be combined with
their new labels, which are given by Li_. The type of explanation, converging or diverging, is

taken into account by using the universal and existential operators.

As explained in Chapter 3, the result of an inference function I%is taken from the set {7, 7},

where 7should be interpreted as true and ¥ as false.

Definition 5.1

An explanatory inference function I'Fis defined as the assignment of a label from {7, F}
to each element s € IS, where

IFs) = Twhen 3, Wi(L(a),Li.) # 1, otherwise I'Ks) = F(diverging),

IRs) = Twhen ¥, W (L(a,),Li_) # 7, otherwise I’Hs) = F(converging).

In functional notation, I'F IS — {7, ¥ }.

The following example illustrates the working of this explanatory inference function when ap-

plied to the example of a converging explanation.

Example 5.1
Consider the primitive inference step for explaining the observation of someone sneezing

by a combination of cat allergy and the presence of a cat to be represented by

2. Contrary to L._,, that is used for the labelling in deductive inference, Lic is used for the initial explan-
atory labelling. This does not mean that the direction of causal relation has changed, it is just interpreted
in the opposite direction.
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cat_allergy A cat_present = sneezing.

When a current labelling L is given by {<cat_allergy, #>,<cat_present,1>,<sneezing,£>},
the result of the explanatory inference strategy for the inference step transforms labelling
L into {<cat_allergy,t>,<cat_present, >,<sneezing,£>}.

However, when L was given by {<cat_allergy,u>,<cat_present,f>,<snﬁezing,t>}, the
result of the explanatory strategy for the inference step would transform labelling L into
{<cat_allergy, t>,<cat_present,>,<sneezing,£>}, which is not allowed since the type of
the explanation is converging. Consequently, another explanation has to be found by the
inference model.
The definitions concerning the domain model of the framework, as discussed in Section 1 of
Chapter 3, are not changed. The only thing that has changed is the reasoning strategy for the
primitive inference step. Similarly, the description of the inference model of the framework can
be used without changes. The only difference between the deductive and explanatory strategy
for the primitive inference step is the fact that in the latter case the current labelling is updated
with a set of bindings (the explanation), where in the case of deduction, the current labelling is
updated with one single binding (the conclusion) only.

5.1.3 Adapting the reason maintenance model

Since the representation structures that can be used by the reason maintenance model depend
on the reasoning type that is used for the primitive inference step, an additional structure is
needed to model the explanatory strategy. This new component is called the assumption, it is
used to record successfully made explanatory inference steps. In the assumption, the antecedent
records the proposition to be explained and the consequent the assumed explanation.

Definition 5.2

An assumption is a structure of the form <a,I> — {<a;l;>}, where a,a, € A, 1}, € T;.
The tuple <a,l> is called the antecedent (Ante) of the assumption, the set {<a, l>} is called
the consequent (Cons).

The contradiction can still be used to model a conflict in reasoning. Similar to the deductive

dependency network, we can define an explanatory dependency network.

Definition 5.3
An explanatory dependency network consists of the set of atomic propositions A and a set
of assumptions U.

In Chapter 3, some additional definitions were given concerning the validity of justifications
and the construction of monotonic proofs. These definitions were primarily used in a theorem
that proved the correctness of the inference model when deductive strategy is used for the prim-
itive inference step. A similar approach can be used for the explanatory strategy but, because
of this strong similarity and lack of new ideas, it is omitted here. The reason maintenance model

is used when uncertainty propagation and relabelling are discussed.
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5.1.4 The explanatory uncertainty model

In Chapter 3, we extended the three valued labelling L into an uncertainty labelling based on
some uncertainty type T ;. Enabling the use of uncertainty throughout the framework, we intro-
duced uncertainty bindings and uncertainty evaluation functions, and concluded with the defi-
nition of a general uncertainty model. We have to reconsider this definition in the context of the

explanatory reasoning strategy.

In the preceding, we argued that when using the explanatory strategy, the evaluation functions
for the logical operators, W_, W, and W, are equally valid. The same remark was made con-
cerning the combination function W). Therefore, the presence of uncertainty equivalents for
these evaluation functions (f_.f, f,.f)) in the definition of an (explanatory) uncertainty model is
obvious. Recalling the deductive strategy, the uncertainty model was extended with a fifth
propagation function (f_,), reflecting the impact of uncertainty of the premise onto the uncer-
tainty of the conclusion. A similar propagation function can be used to represent the influence
of the uncertainty of an observation (or any other proposition to be explained) onto the assumed

explanation.

From the preceding, it is clear that we can still use the definition of an uncertainty model as
given in Definition 3.29. When actually constructing an uncertainty model, the specification of
these uncertainty propagation functions makes the difference between both deductive and
explanatory strategies. Further, the definitions of an embedding and a correct embedding (see
Definitions 3.30 and 3.31) can also be used without any changes. The difference in reasoning
strategy is represented in the uncertainty model by the specific choice of the propagation
functions.

To make the difference in strategies more explicit, we can change the names of three of the
propagation functions that actually represent this difference. Therefore, f, is changed into the
propagation function for converging explanations f,, f, into the propagation function for a
diverging explanation fy;, and f_, into the propagatton function for the influence of the uncer-
tainty of the observation f_. This results in the following definition for an (explanatory) uncer-

tainty model.

Definition 5.4

An (explanatory) uncertainty model UM for the set of atomic propositions is defined by
an uncertainty labelling UL, together with a set of five uncertainty propagation functions
(f_.feonv-Faiv-fesfy) on UL, where f_: Tyy: = Ty, feonvefdivofesrfis TupsTup = Tyt

Also when using the explanatory strategy, a relabelling process must be activated when the
uncertainty label of some proposition changes. The relabelling process acts in a way similar to
the approach used in Chapter 3. In Appendix C, the relabelling algorithm is described, again it
consists of two steps: a marking step and a relabelling step. The computational complexity of
this relabelling process is of O(IAlUI), in which IAl is the number of atomic propositions and
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[Ul is the number of assumptions used in the dependency network. The relabelling process is

demonstrated on an example explanatory dependency network.

proposition a

observation

explanation

Figure 5.1 Symbol for explanatory inference.

First, we define a symbol for the explanatory reasoning. This symbol is equal to the symbol for
a deductive strategy of an inference step, except for the following. Capital D (deductive) has
been replaced by capital E (explanatory), with a subscript denoting the number of the explana-
tion when necessary. Obviously, when using the explanatory strategy, the input consists of one
proposition (the given fact) and the output of at least one proposition (the explanation). In Fig-

ure 5.1, the symbol for the explanatory reasoning strategy is depicted.

Figure 5.2 An explanatory dependency network.
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In Figure 5.2, an example explanatory dependency network is given. A total of 9 inference steps
have been executed, in which 16 different propositions are used. The explanation types of the

depicted inference steps is not important, i.e. Es can be the result of executing a;g v a;; = as
and Eq the depiction of a;5 A a5 = a;,. The impact of executing inference step a; v ag => a3

and adding it to the network in the form of E; is demonstrated.

Figure 5.3 Relabelling in an explanatory dependency network.

A relabelling process has to be started as soon as inference step a; v ag = aj is executed
(resulting in E3), since proposition a5 is relabelled. The direct consequence of relabelling some

proposition is that propositions that are used to explain the proposition also have to be
relabelled. Further, the propositions that share an explanation with a relabelled proposition also
have to be relabelled, according to the type of the common explanation. In our example,
proposition ay is relabelled according to the fact that it is used in both E; and E3. As a result of

this, propositions ag and ag are relabelled since they share an explanation with a;. Propositions
ajy;, a1 and a3 are relabelled since they are used to explain a5 through Eg. Since a;( is used in
the same explanation as ajq, it also has to be relabelled, and so on. In Figure 5.3, the

propositions and inference steps that are visited by the relabelling process are marked.
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5.1.5 Explanatory problem solving

We conclude this section with some remarks concerning the nature of the general framework
when the explanatory strategy is used. The definitions of an (uncertainty) program and an
(uncertainty) extension, given in Chapter 3, can be used unchanged from a syntactic point of
view. Obviously, the semantics of these notions are influenced by the use of the explanatory

reasoning strategy for the primitive inference step.

The constraint set of a program, Cg, consisting of primitive inference and control steps, still
represents the specific knowledge base used in the application area. Using the explanatory
inference strategy, the initial labelling, Ly, represents the collection of observations for which
an explanation has to be found. The query Q is used to represent this request in terms of Cy. An

extension is now characterised by a labelling L, that is the result of an explanatory reasoning

process on Q that has been executed by the inference model with positive result: CRQ=T

It should be noted that the extension L, is a labelling that satisfies the explanatory strategy for
the inference steps that have been made to derive this labelling. Comparable to the deductive
strategy, more than one extension can be found by the inference model. Again, it is not possible
to automatically rank these extensions, since the framework does not include a ranking or or-
dering mechanism. Using explanatory reasoning for abductive problem solving is discussed in

the closing section of the chapter.

5.2 Some semantic considerations on explanatory reasoning

In the preceding section, a formal definition was given of the explanatory reasoning strategy for
primitive inference steps. Apart from this formal aspect, a discussion on the semantics of this
type of reasoning throws light on the attraction of this strategy. The ability to reconsider

previously assumed explanations plays a pivotal role in this discussion.

In the given compositional architecture, two forms of reconsidering previous inference steps
can be distinguished. The explanation provided by the inference step is invalidated when one
or more propositions in the explanation of the inference step receive additional support.
Inference steps that are invalidated (recall Example 5.1) cause the inference model to search for
another reasoning path, since the current one leads to inconsistency. This approach is similar to
the strategy used on the deductive strategy, the control steps are used to find an alternative
reasoning path. The discovery of additional support for some proposition (i.e. the proposition

is used in at least two explanations) is a far more interesting situation.

The strength of explanatory reasoning is in the presence of the relation that can be specified
between the propositions in an explanation. The type of this relation prescribes the changes that
have to be made in the labelling of these propositions when additional support is presented.
When additional support is found for a proposition, the labelling of the propositions that share
a common explanation with this proposition should be reconsidered. The actual changes that



are made to the labelling of other propositions in the explanation depend on the type of the
explanation, which represents two semantically different relations. When uncertainty or belief
measures are used in the labelling, some interesting reasoning characteristics can be supported

by explanatory reasoning.

Consider a primitive inference step with a diverging explanation, assuming that the proposi-
tions in the explanation can explain the given proposition by themselves. When an increase in
belief is observed for one of these propositions, it seems plausible that the belief in other prop-
ositions decreases, since it has become more plausible that the proposition that has received ad-
ditional support explains the given proposition on its own. This behaviour concerning diverging
explanations was called explain away by Pearl [1988]. Applied to the example of a diverging
explanation given in Section 1, this can be seen as decreasing one’s belief in the dead battery
being the explanation of the engine unwilling to start, due to an additional observation (for in-
stance by checking the meter) that supports the explanation of the empty fuel rank.

Similarly, consider a primitive inference step with a converging explanation, assuming a
simultaneous appearance of the propositions in the explanation explains the given proposition.
When an increase in belief is observed for one of these propositions, it seems plausible that the
belief in the other propositions increases as well. Since, in this case, it has become more
plausible that the converging explanation as a whole explains the observation. Being the
opposite of explain away, this behaviour is called joint explain. Applied to the example of a
converging explanation given in Section 1, this is illustrated by increasing the belief one has in

the presence of a cat, as soon as additional support is given to the explanation of cat allergy.

Although the concepts of diverging and converging explanations seem equally important, their
role in explanatory reasoning is different. A major characteristic of abductive reasoning is the
selection between alternative solutions. This characteristic is represented by a diverging
explanation, a converging explanation is used to represent an alternative when it consists of
more than one proposition. Therefore, converging explanations are only of importance when
they are used in a diverging environment. In the example of a converging explanation, this is
illustrated by the existence of some alternative for sneezing, like having a cold. This comment
is supported by the observation that diverging explanations (explain away) have already been
investigated in the literature (for instance [Pearl, 1988]), where converging explanations (and

joint explain) have not.

To conclude, the result of explanatory reasoning is the satisfaction of the individual inference
steps, according to the (uncertainty) propagation functions that have been defined in the uncer-
tainty model. The framework generates all extensions (labellings) that are internally consistent
with respect to the current problem situation (represented by the set of observations) and these
explanatory reasoning principles (represented by the explanation types and accompanying un-

certainty propagation functions).
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5.3 Explanatory reasoning with the model of belief and disbelief

In the preceding sections, we introduced a reasoning strategy for the general framework that
enables reasoning towards explanations. The importance of using uncertainty in this reasoning
strategy has already been acknowledged and can best be demonstrated by developing an
uncertainty model for this strategy. Therefore, in this section we introduce a set of propagation

functions for explanatory reasoning in the context of the model of belief and disbelief.

Since the model of belief and disbelief was developed in a deductive setting (see Chapter 4),
we have to reanalyse its basic representation measurements (MB and MD). Further, the set of
propagation functions is changed from a deductive to an explanatory strategy. From Definition
5.4 we learn that at least three additional propagation functions (f., f..,, and fg,) must be
developed for the model. The result of these changes is demonstrated on the second benchmark

example.

5.3.1 The uncertainty measurements

Obviously, we would like to use the same definition for the measurements of belief and
disbelief that was introduced in Chapter 4. However, this definition is based on the derivation
of an atomic proposition. The notion of a derivation is directly related to the reasoning strategy
used (just like the structures in the reason maintenance model). Therefore, a derivation has to

be redefined for the explanatory strategy.

When using the explanatory strategy, there are three situations to determine the derivation of
an atomic proposition: the proposition is part of the initial labelling, it is part of an explanation
or a combination of these situations. When the proposition is labelled by the initial labelling (it
is part of the observation set) its derivation has to be empty. When the proposition is part of the
explanation (e) of some other proposition (b), through a primitive inference step (e = b), the
derivation is equal to the derivation of that proposition (d,) extended with the proposition itself.
Obviously, in this case the inference step must have been successfully executed by the inference
model: I'He = b)=T. When the proposition is labelled by a combination of two or more con-
tributions, the derivation is equal to the union of the derivations of the contributors. This yields

the following definition of a derivation.

Definition 5.5
A derivation d is a subset of the set of atomic propositions A. Derivations are specified
for atomic propositio}]s.

A derivation of an atomic proposition d,, is defined as

(initial) d, = & when a is labelled by the initial labelling (a is an observation),
(explanation) d, =dy L {b} when a is part of the explanation e for b and IFe = b)="1,
(combination) d, = dall U cla2 when there are two contributions for a.

The set of derivations is called D.
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With this changed definition of a derivation, we can use the terms MB(a,d,) and MD(a,d,) to
denote the measurements of belief and disbelief. Since in explanatory reasoning it is no longer
necessary to assign these measurements to expressions, we can slightly change Definition 4.7

of the measurements.

Definition 5.6
The measurement of belief MB(a,d,) and the measurement of disbelief MD(a,d,) are
defined as the assignment of a label from [0..1] to each tuple, consisting of an atomic

proposition and its derivation.
In functional notation, MB,MD: A,D — [0..1].

5.3.2 Propagation functions for explanatory reasoning

From the definition of an (explanatory) uncertainty model, it can be concluded that at least three
additional propagation functions (f_, f..,y and fy;,) must be developed for the model of belief
and disbelief. We first analyse whether the remaining propagation functions (f_,f;), developed

in Chapter 4, can be used in explanatory reasoning.

The f_ function is used to model the assignment of a negated label to the propositions in the
explanation. Due to the unary nature of the operator there is no need for a redistribution of belief
in the case of additional evidence, as is necessary for the conjunction and disjunction operators.
Further, the semantics of Propagation function 4.1 are also plausible when using the explana-

tory strategy.

Propagation function 5.1
Letac A, dy,dq € D and MB(a,dy,),MD(a,dy) be given.

Then the propagation functions for a negated proposition in an explanation are defined by
(a) MB(—a,dg) = MD(a,dy).
(b) MD(—a,dy,) = MB(a,dy,).

In Chapter 4, a set of propagation functions for the combination (f) was given (Propagation
function 4.5) and generalised later on (Propagation function 4.8). The semantics underlying
these (enhanced) propagation functions for the combination of belief are still attractive in the
explanatory strategy. For the moment, we use the equivalent of Propagation function 4.5 in
which the separate contributions for an explanation are combined through the S, norm. The
restriction on the derivations that is introduced by using this propagation function is discussed
in Section 4. Increasing generality, the propagation function is defined for an arbitrary number
(N) of contributors.

Propagation function 5.2

letae A, dbl""’de’ddl"“’ddN € D and

MB(a,dbl),...,MB(a,de), MD(a,ddl),...,MD(a,ddN) be given.

Let the derivations in the sets {dbi} and {ddi} be causal independent.
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Then the propagation functions for the explanatory combination are defined by
(a) MB”(a,dblu...ude) = SNZ(MB(a,dbl),...,MB(a,de)).

(b) MDy(adg U...0dg ) = S%,(MD(a,dg,)..MD(a.dg ).

Propagation function f_ is used to propagate the influence of the uncertainty of an observation
(or any other proposition to be explained) onto the propositions in the explanation. Given the
primitive inference step (e = a), the measurement of belief in the given proposition MB(a,d;,)
is used to weight the initial belief of the propositions in the <:xp1anation.3 This initial belief con-
sists of either a positive (MB(a;,2)>0) or a negative (MD(a;,a)>0) belief, for each proposition a;
in the explanation.

Propagation function 5.3

Let a,a; € A, d,dg € D and let MB(a,dy),MD(a,dy) be given.

Further, let an explanatory strategy for inference step e = a provide initial belief
(MB(a;,a),MD(a;,a)) for each proposition a; in explanation €.

Then the propagation functions for the propositions in the explanation are defined by*
(a) MB(a;,dpu{a}) = MB(a;,a)MB(a,dy).
(b) MD(a;,dpu{a}) = MD(a;,a)MB(a,dy).

The following example illustrates this propagation function when applied to the example of a

diverging explanation from Section 1.

Example 5.2
Consider the primitive inference step for explaining the observation of a car that won’t

start by either a dead battery, not enough fuel in the tank or a motor defect, given by
dead_battery v —fuel_enough v motor_defect = car_wont_start.

In this example, suppose the initial labelling of the explanation is given by
MB(dead_battery,car_wont_start) = 0.6,

MB(—fuel_enough,car_wont_start) = 0.5,

MB(motor_defect,car_wont_start) = 0.2,

Consider a labelling, in which dead_battery, fuel_enough and motor_defect are labelled

unknown:>

MB(dead_battery) = MD(dead_battery) = 0,

MB(fuel_enough) = MD(fuel_enough) = 0,

MB(motor_defect) = MD(motor_defect) = 0.

Furthermore, suppose in this labelling MB(car_wont_start) = 0.9.

Then, the labelling is updated with MB(dead_battery) = 0.54, MD(fuel_enough) =
0.9*MB(—fuel_enough,car_wont_start) = 0.45 and MB(motor_defect) = 0.18, according
to Propagation function 5.3 (a).

3. This is similar to the weighting of the premise onto the conclusion in the deductive strategy.
4. Note that in both functions the resulting derivation is equal to dyiu{a}, derivation dg is ignored.
5. For reasons of clarity, we have left out the derivation argument.
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As explained earlier, the strength of explanatory reasoning is in the fact that the uncertainty of
propositions in an explanation is changed as soon as the uncertainty of one of the explanations

changes. The functions f,

conv and fy;, must propagate these changes in the uncertain labelling

according to their semantics, as described in Section 2. We introduce a set of simple propaga-
tion functions that possesses this characteristic. Similar to the propagation functions for the
combination, these propagation functions are developed for explanations consisting of an arbi-
trary number (N) of propositions.

Diverging explanations

In a diverging explanation, the propositions are assumed to be able to explain the given fact (or
observation) all by themselves. According to the semantics of explain away, increasing belief
(either MB or MD) in one proposition in the explanation should lead to decreasing the belief in
the remaining propositions.

In the general case, suppose we have a primitive inference step with N propositions in the ex-
planation, from which K propositions receive additional belief. The resulting belief in these
propositions is combined through Propagation function 5.2. The remaining N-K propositions

in the explanation have to be relabelled through the f4;, function.

According to Propagation function 5.2, the propagation functions used for the combination are
increasing6 (i.e. M(a;,d;) > M(a;,d;) for propositions a; receiving additional belief). Thus, in the
case of a diverging explanation, we are interested in a function fg;, that decreases the belief in
the remaining propositions. We first determine the interval for the belief My;,(a;,d;) of a
remaining proposition a;. Clearly, the upper bound is given by the original measurement
M(aj,dj). The lower bound is reached when the increase in belief of the propositions that have
additional support is maximal, i.e. M(a;,d;)=1.0. We argue that in this case, the belief in a
remaining proposition a; cannot be ignored completely (yielding M;,(a;,dj)=0.0), since there is
still a possibility that the proposition has occurred. Therefore, for the lower bound of the
interval we choose the initial belief in the simultaneous occurrence of the propositions. We
recall that the propositions within a diverging explanation are independent. Using this
independency of the propositions, a generalised T, norm can be used to calculate the initial
belief in the simultaneous occurrence of propositions.

For reasons of simplicity, a linear scale is used to model the ratio between the increasing belief
of the propositions with additional support and the decreasing belief of the remaining
propositions. The preceding considerations lead to the following uncertainty propagation

function fy;,.

6. Remember that positive influence is represented by an increasing MB and negative influence by an
increasing MD.
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Propagation function 5.4
Let a,...,ag,....ay € A, dy,....dy € D and M(a,,d;),...,.M(ay,dy) be given.

Now, suppose a,,...,ax receive additional belief, resulting in My(a,.d,),...,.My(ag,dg)-
Then the relabelling propagation function for a diverging explanation is defined by
5 M@d)

Mdiv(ajvdj) = M(a;,dj) 11

forall K <j<N.
i=1 Ml[(aivdi)

The extremes of this, linear, function can be shown to satisfy the semantics we used when de-
veloping the function. The upper bound is found when M(a;,d,) = M(a;,d;) for each updated
proposition a;, and clearly M;,(a;,d;) equals M(a;,d;). The lower bound is found when M,(a;,d;)
= 1.0 for each of the updated propositions a; and M;y(a;,d;) is equal to M(a;,dp) IT (M(a;,dy) =

M(a;d) ToXM(a;d) = T (M(a;.).

An illustration of this propagation function is given in the following example. Consider the di-
verging explanation of a car unwilling to start from Example 5.2. For reasons of clarity, we have

replaced —fuel_enough by proposition empty_fuel_tank.

Example 5.3
The primitive inference step is represented by

dead_battery v empty_fuel_tank v motor_defect = car_wont_start.

Consider an initial labelling of the explanation, provided by this inference step, given by
MB(dead_battery,car_wont_start) = 0.6,

MB(empty_fuel_tank,car_wont_start) = 0.5,

MB(motor_defect,car_wont_start) = 0.2,

Proposition car_wont_start is an observation and thus MB(c:ar_wont_start)7 = 1.0%
Suppose both dead_battery and empty_fuel_tank receive additional belief from other
observations. The combined belief for these propositions is calculated by Propagation
function 5.2, suppose MBy(dead_battery) = 0.8 and MB(empty_fuel_tank) = 0.6.

MBy; {motor_defect) can vary between 0.06 (=0.6*0.5*0.2, the initial belief in the

simultaneous occurrence of the three causes) and 0.2 (the initial belief). The belief in the

remaining proposition, motor_defect, is calculated through Propagation function 5.4:
0.6*0.5

MBg;,(motor_defect) = 0.2 * ——— =0.125.
0.8%0.6

Converging explanations

In a converging explanation, the propositions are assumed to explain the given fact by simulta-
neous occurrence. When using the semantics of joint explain, increasing the belief in one ex-

planation must also increase the belief in the remaining propositions of the explanation.

7. Since the derivation does not play a role in this example, we leave it out.
8. Any value between 0.0 and 1.0 for MB(car_wont_start) is handled by Propagation function 5.3.
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In the general case, suppose we have a primitive inference step with N propositions in the ex-
planation, where K propositions receive additional belief. The resulting belief of these propo-
sitions is again combined through Propagation function 5.2. The remaining N-K propositions

in the explanation have to be relabelled through the f, function.

The propagation functions used for the combination are increasing. In the case of a converging
explanation, we are interested in a function f,;, that also increases the belief in the remaining
propositions. We first determine the interval for the belief M.y, (2;.dj) of a remaining
proposition a;. This time, the lower bound is given by the original measurement M(ay,d;). The
upper bound is reached here when the increase in belief of the propositions that have additional
support is maximal, i.e. M(a;,d;)=1.0. This value of 1.0 can also be used for the maximum of
Mconv(ajsdj)~

Again, a linear scale is used to model the ratio between the increasing belief in the propositions
with additional support and the increasing belief in the remaining propositions. The preceding

considerations lead to the following uncertainty propagation function f .-

Propagation function 5.5
Let a),....ag,...,ax € A, d},....dy € D and M(a,,d)).....M(ay,dy) be given.
Now, suppose ay,...,ax receive additional belief, resulting in My(a,,d,).....M(ag,dx)-

Then the relabelling propagation function for a converging explanation is defined by

K K
( lleH(ai’di) - I1M(a;,d)
Mconv(aj’dj) = M(aj,dj) +(1—M(aj,dj)) = =

forall K<j<N.
(1-TIM(a, dy)
1=

This propagation function is illustrated by applying it to the example of a converging explana-

tion from Section 1. The primitive inference step that is used is also used in Example 5.1.

Example 5.4
The primitive inference step is again represented by

cat_allergy A cat_present = sneezing.

Consider an initial labelling of the explanation given by
MB(cat_allergy,sneezing) = 0.9,

MB(cat_present,sneezing) = 0.8,

Again, sneezing is provided by an observation and therefore MB(sneezing) = 1.0.

Suppose proposition cat_allergy receives additional belief because of other observations.
The combined belief for this proposition is again calculated by Propagation function 5.2,
suppose MBy(cat_allergy) = 0.95.

Then, belief in the remaining proposition cat_present is calculated through Propagation
function 5.5:
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MB,_,(cat_present) = 0.8+(1-0.8) * m =0.9.

1-0.9

As argued in Section 2, the use of converging explanations is mainly considered in a diverging
environment. In the following example, we create such a diverging environment by extending
the explanation with an alternative solution to sneezing by having a cold. Clearly, the belief in
this alternative solution decreases when the converging solution of cat allergy and the presence
of a cat increases. The increase in belief in the converging solution cat allergy and the presence

of a cat is calculated by the relevant part of Propagation function 5.5: MBy(cat_allergy A

cat_present)-MB(cat_allergy A cat_present). The propagation function for the diverging

explanation is then used to adapt the belief in having a cold.

Example 5.5
The primitive inference step is again represented by

(cat_allergy A cat_present) v has_cold = sneezing.

Consider an initial labelling of the explanation given by
MB(cat_allergy,sneezing) = 0.6,

MB(cat_present,sneezing) = 0.5,

MB(has_cold,sneezing) = 0.8,

Again, sneezing is provided by an observation and therefore MB(sneezing) = 1.0.

Suppose proposition cat_allergy receives additional belief because of other observations.
The combined belief for this proposition is again calculated by Propagation function 5.2,
suppose MBy(cat_allergy) = 0.8.

Then, belief in the remaining proposition (cat_present) in the converging part of the

explanation is calculated through Propagation function 5.5:
0.8-0.6

MB, v (cat_present) = 0.5+(1-0.5) * W =0.75.

The initial and updated belief in the converging explanation (cat_allergy A cat_present)
are calculated by Propagation function 5.5:

MB(cat_allergy A cat_present) = 0.6*0.5 = 0.3 and

MB;(cat_allergy A cat_present) = 0.8*0.75 = 0.6.

Now MBy;,(has_cold) is used to calculate the resulting belief in proposition has_cold,

through Propagation function 5.4. In this the preceding results are used for the change in
belief in the updated solution (cat_allergy A cat_present):

MBd-W(has_cold) =028 *% =04.

9



5.3.3 The second benchmark problem

We now consider the second of the benchmark problems concerning uncertainty propagation,
as described in Chapter 1. The propagation functions developed in this section are applied to
the alarm call example by Kim and Pearl [1983].

As with the first benchmark problem (see Chapter 4), it should be noted that actually two prob-
lems arise in the alarm call example. The first problem is again caused by the reasoning process
being non-monotonic. As soon as Mr. Holmes receives the telephone call from his neighbour,
he assumes that a burglary is than taking place. After hearing the radio newscast, he revises this
explanation by stating that either a burglary or an earthquake can have triggered the alarm. This
problem is solved by the inference model of the general framework, which is capable of han-

dling non-monotonic reasoning.

As soon as Mr. Holmes receives the telephone call from his neighbour concerning the burglar
alarm sound, he makes an explanatory inference step. In this step, a diverging explanation
(consisting of both burglary and earthquake) is used, assigning strong belief to the burglary and
less strong belief to an earthquake. Now, hearing the newscast report concerning the
earthquake, additional support is supplied for this to be the explanation for the alarm sound.

According to the semantics of the f;, function, this decreases the belief in other propositions

in a diverging explanation. As a result of this, the framework decreases the belief in a burglary.

We demonstrate this behaviour with a numerical example.

Now, consider the first steps in the example.9 After receiving the phone call from his neighbour,
which is believed with absolute certainty: MB(phone_call)=1.0. Mr. Holmes explains this
phone call by the alarm sound really going off. Suppose the initial labellingm of this explana-
tion is MB(alarm_sound,phone_call)=0.8. Next, Mr. Holmes explains the alarm going off by a
diverging explanation consisting of a burglary and an earthquake. The initial labelling of this
explanation is given by MB(burglary,alarm_sound)=0.9 and MB(earthquake,alarm_sound)=
0.2. With Propagation function 5.3 (a), the belief in the alarm sound is weighted on these ex-
planations. This results in MB(burglary)=0.72 (=0.8%0.9) and MB(earthquake)=0.16
(=0.8%0.2). Figure 5.4 depicts this situation.

burglary

Figure 5.4 First explanation of the phone call.

9. For reasons of clarity, we use the measurement of belief (MB) only in this example.
10. Skipping the non-monotonic part of first explaining the alarm sound by the burglary only.
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The situation is changed as soon as Mr. Holmes hears the newscast report concerning the earth-
quake. Since there is no ground for questioning the authenticity of the report itself, this is rep-
resented by MB(newscast_report)=1.0. However, knowing the reputation of the broadcast
station in question, Mr. Holmes’ faith in the contents of the report (earthquake has actually tak-
en place) is given by MB(earthquake,newscast_report)=0.5. The two contributions for the be-
lief in the earthquake are combined by Propagation function 5.2 (a): MB(earthquake)=0.58
(=0.5+ 0.16-0.5%0.16). The belief in a burglary taking place at the same time is decreased to
My;,(burglary)=0.20 (=0.72*0.16/0.58). This situation is given in Figure 5.5.

Figure 5.5 Second explanation of the phone call.

The alarm call example is a typical example that cannot be solved when traditional (deductive)
compositional reasoning is used. The relation between hypotheses, that can only be represented
in an additional structure, is the central problem. By introducing the explanatory strategy for
the primitive inference step and accompanying semantics, the framework has the possibility to

handle these kinds of situations.

5.4 Discussing restrictions and limitations

During the development of the explanatory reasoning strategy, a number of restrictions was im-
posed. In this section, we analyse these restrictions, separating them into two categories. Some
simple restrictions are discussed that are of importance when developing applications with the
explanatory reasoning framework. These restrictions are simple in the sense that they do not
question the basic concept of explanatory reasoning. Contrary to this, two fundamental restric-
tions can be distinguished that limit the expressiveness of explanatory reasoning. These limita-
tions are discussed more extensively, and are used in the final discussion on the appropriateness

of explanatory reasoning for abductive problem solving.

5.4.1 Some restrictions on explanatory reasoning
During the development of the explanatory reasoning strategy, a number of simple restrictions
were encountered that need some additional explication. These restrictions are related to
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different aspects of the explanatory strategy: the representation of explanations, the model of

belief and disbelief employed, and the intended application area.
Allowing multiple explanations for a proposition

There is no limit to the number of explanatory reasoning steps that can be made to explain one
proposition. In Figure 5.6, a situation is depicted in which two primitive inference steps have

been executed to explain one proposition.

Figure 5.6 Allowing two explanations for one proposition.

In this example, two explanatory inference steps (E; and E,) are used for proposition a;. These
inference steps share a common proposition b, in their explanation. Now consider what will

happen when explanatory reasoning is used.

Explanatory reasoning uses E; to label propositions by and b,. When E; is derived, propositions
by and b are relabelled according to the explanation types of E; and E, respectively and prop-
osition b, is relabelled, using the influence of both E; and E,. In this, propagation function 5.2
is used to combine the belief in b,. This propagation function does not take into account that
the same proposition (a;) has twice activated the explanation in which b, is used. Two ap-

proaches can be used to solve this problem.

The first is simply to forbid the use of two explanatory reasoning steps for one proposition. This
is not too restrictive if one recalls that the types of an explanation can be diverging as well as
converging. The notion of a diverging explanation enables the construction of an explanation
in which just one proposition suffices to explain the given proposition. This is semantically

equivalent to using two separate inference steps to explain the given proposition.

The more general approach is to enhance the propagation function for the combination as
proposed in Chapter 4. In Propagation functions 4.6 through 4.9, the derivation argument is
used to select the appropriate uncertainty propagation function. A similar approach can be
realised here, since the derivation has already been adapted to explanatory reasoning (see
Definition 5.5). Such an approach does not restrict the reasoning process and still excludes the

unwanted update in belief in this situation.
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Independence of propositions in an explanation

In the propagation functions for the converging and diverging explanations, developed for the
model of belief and disbelief, it was assumed that the propositions used are independent. As a
result of this, the generalised T, norm can be used to calculate the belief in the simultaneous
occurrence of the propositions. When this assumption cannot be fulfilled, the propagation
functions for the converging and diverging explanations have to changed.l ! The result of such
a change in the formulation of propagation functions does not interfere with the concept of
explanatory reasoning.

Complexity of propagation functions

The computational complexity of the complete uncertainty propagation process is related to
both the complexity of the propagation functions and that of the relabelling strategy. In
Appendix C, it is shown that the computational complexity of the relabelling strategy is linear
in the number of propositions and assumptions in the dependency network, i.e. O(IAllUI). This
yields that the total complexity of the uncertainty propagation process is dependent on the

complexity of the uncertainty propagation functions.

In analysing the propagation functions in the preceding sections, it is concluded that the only
propagation function that can cause exponential computational complexity is the propagation
function for the combination. In Propagation function 5.2, a linear propagation function is given
for the combination. In Chapter 4, a more advanced version of this propagation function that
provides a satisfactorily performance in practical situations was described. Therefore, the
computational complexity of the explanatory reasoning strategy is equal to that of the deductive
strategy.

The initial uncertainty distributions

When using the model in some application area, the choice of the uncertainty model to be used
depends on the ability to acquire the numbers that are used by the initial uncertainty distribution
in the explanatory reasoning strategy. For instance, when inference step a; v a; v a3 = g is part
of the knowledge base, an initial labelling of a;, a, and a3, based on the presence of g, must be
possible. When a probabilistic uncertainty measurement is used, the acquisition of the initial
labelling is in terms of P(a,lg), P(a;lg) and P(a3lg). In practice, these numbers are more difficult
to acquire than P(gla;), P(gla,) and P(glas). When working with possibilistic uncertainty
models, as we did with the model of belief and disbelief, the acquisition of these initial

distributions for the primitive inference steps must be done by using (experts’) estimations.

11. Recall the enhanced propagation functions in Chapter 4.
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5.4.2 Limitations of explanatory reasoning
Two types of restrictions are fundamental to the concept of explanatory reasoning and are
proved to be real limitations. We describe these limitations using simple examples, and point

out their consequences for explanatory reasoning and compositional reasoning in general.
Prohibiting belief propagation between propositions with additional support

A fundamental restriction is put forward by the prohibition on the mutual influence of proposi-
tions within an explanation that receives additional support. Clearly, the propagation functions
for converging and diverging explanations are defined for the propositions in the explanation
that do not receive additional support. A simple example is used to illustrate the fundamental

problem that is introduced by this restriction.

Figure 5.7 Allowing mutual influencing of explanations.

In this example, propositions by, b, and b are in the explanations of E;, E; and Ej that are used
to explain a;, a, and a5 respectively. Now, when mutual belief influence is allowed, by and b,
influence each other through E,, by and b; through E; and b, and bs through E;. When the

explanatory inference steps are interpreted independently, this introduces cycles in belief

propagation. For instance, belief in by influences the belief in b, through E, b, influences bs
through E4 and by influences by through E,.

A compositional reasoning environment is just too limited to include the dependencies between
propositions that are needed here, i.e. the relation between b, and b, (given in E3) is important
for the calculation of the belief in by, that has no connection with Ej. In fact, in these kinds of
situations one would like to use a more global reasoning step in which by, b, and b; are used to
explain the propositions a;, a; and a5. This cannot be accomplished by separately inspecting the

individual primitive inference steps.
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In the model of belief and disbelief, a restriction is made by prohibiting mutual belief influence
between propositions that have additional support. As a result of this, a clear separation is made
between the propositions that do and that do not have such additional support. We make this
separation explicit by using the terms supported and free propositions in an explanation. These
types of propositions have their own semantics. Supported propositions are labelled according
to the supporting explanatory inference steps, regardless of other propositions in the
explanation. Free propositions are labelled according to the presence of supported propositions.
When observing the final labelling of an explanation, these semantics have to be kept in mind.

The impact of bidirectional influences

In Section 3, it seems that we have found a solution for the second benchmark problem, within
explanatory reasoning. However, a critical remark can be made here that results in a limitation

of the applicability of explanatory reasoning.

Recalling the numerical example, we introduce an extra proposition (the practical joke) that
was not part of the original problem description. This proposition will help us to visualise the
limited capability of explanatory reasoning. According to the situation in Figure 5.4, the ex-
planatory dependency network is adapted to this situation, MB(practical _ joke, phone_call)

=0.1 is assumed for the initial labelling.

Figure 5.8 Adapted explanatory dependency network.

When we turn to the explanation of the phone call as given in Figure 5.8, we can see that there
is no reason to change the initial belief distribution of the phone call. When we think of this a
little longer, it can be considered counterintuitive: The alarm going off seems to be more plau-
sible now, and the explanation of the neighbour’s joke seems to have lost some of its belief be-
cause of the additional information provided by the newscast report. However, the
measurements of belief in the explanation of the phone call have not changed (see Figure 5.9).

Viewing this problem in general, it is acknowledged that additional belief in (a part of) the ex-
planation should not only influence the remaining propositions of the explanation, but also the
fact that is explained by it. On first sight this can be solved by extending the propagation func-
tions for diverging and converging explanations. However, this leads to belief propagation in
opposite directions (bidirectional reasoning), which is beyond the capability of compositional

reasoning.
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Figure 5.9 Second explanation of the phone call.

One could argue that a solution can be found within compositional reasoning by changing the
primitive inference step into e <> a and by merging the semantics of deductive and explanatory
strategies. Although this can easily be realised, it is not the main part of the problem. The actual
problem is in the fact that the compositional reasoning principle is violated by allowing a prim-
itive reasoning step to be used in the interpretation of itself. In the example, the alarm call is
used to generate the explanation consisting of burglary and earthquake. After receiving addi-
tional support for the earthquake, this is used to update the alarm call again. As a consequence,

it is no longer possible to determine the belief in alarm call incrementally.

To conclude, if bidirectional influences are tolerated, the incremental basis of compositional
reasoning must be sacrificed. It is no longer possible to determine the belief of propositions on
local information only, since all propositions in a connected dependency network can influence
each other through these bidirectional relations. This kind of reasoning process demands the use

of a fundamentally different propagation formalism, see Section 5 for a further discussion.

5.5 Concluding remarks

At the end of Chapter 3 we discussed whether the design constraints, as specified in Chapter 2,
were satisfied by the general framework. The discussion on the first design constraint (1. The
inference model should be able to support deductive as well as abductive reasoning) was
postponed until this chapter. Because of the introduction of the explanatory strategy for the
primitive inference step one could argue that the first design constraint is now satisfied.
However, it must be admitted that explanatory reasoning does not cover the complete notion of
abductive reasoning. Therefore, a comparison is made first with other formalisms for handling
abduction. Finally, the profits and limitations of explanatory reasoning are clearly outlined,

especially with respect to abductive problem solving.
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5.5.1 A comparison with other abductive formalisms

In Chapter 2, three formalisms were briefly described that enable abductive reasoning under
uncertainty. It should be noted that all three formalisms use a probabilistic uncertainty
measurement. However, the fype of uncertainty is not the issue here. How these formalisms

treat the problem of abduction when compared to explanatory reasoning is more important.
The parsimonious covering theory

The parsimonious covering theory of Peng and Reggia [1990] was developed from a diagnostic
problem-solving standpoint. The model reasons from consequences (called manifestations) to
causes (called disorders). The model supports an abductive reasoning process in which all
possible disorder sets (called cover sets) that explain a set of manifestations can be generated.
When these cover sets are ordered according to a probabilistic measurement based on the
strengths of the causal links between disorders and manifestations, a best solution can be
selected. A branch and bound type algorithm is used to optimise the search process. When
doing this, only a subset of the total number of cover sets is generated. This approach clearly

distinguishes between the generation of cover sets and their ordering.

Obviously, the generation of cover sets can be modelled in the general framework by an
explanatory reasoning process. In fact, two approaches can be used. The first approach is a
straight copy of Peng and Reggia‘s method, the second approach uses the expressiveness of
explanatory reasoning to model the generation of cover sets. We illustrate both approaches,
using the example of a simple diagnostic problem, given in [Peng, 1990, p. 106], which is given

in Figure 5.10.

Figure 5.10 A simple diagnostic problem [Peng, 1990, p. 106].

A straight copy of the method of Peng and Reggia can be implemented by transforming the
causal links between disorders and manifestations into primitive inference steps. For instance,
causal link <d;,m,> is transformed into primitive inference step d; = m,. A program can be
defined in terms of the general framework by grouping these inference steps (according to the
manifestation) in a control step of type choice. For instance, this choice construct for

manifestation m, is given by choose{d, = m,, d4 = m,}. The generation of cover sets is now

equal to the generation of extensions for a program, in which the set of control steps is given
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by four of these choice constructs and the set of premises is given by the set of manifestations.
To be more precise, it can easily be checked that the set of extensions that is generated by the
framework’s inference model is equal to the set of relevant covers.

Using the second approach, one primitive inference step replaces a set of causal links by a
common manifestation. For instance, the set of causal links {<dy,my>,<d3,my>,<d4,my>} is
transformed into primitive inference step d, v d; v dy = my. When doing this, only four
primitive inference steps are needed to model the simple diagnostic problem (see Figure 5.11).
Again, the extension(s) of a program based on these four inference steps and the set of premises
consisting of the manifestations reflect the generation of cover sets. However, the main profit
of using this modelling approach is in the fact that facilities like explain away and joint explain
can be used in the selection of explanations.

Figure 5.11 Using explanatory reasoning on the simple diagnostic problem.

The second component of the model of Peng and Reggia (the ordering of cover sets) cannot be
simulated in the framework as it is. The problem is that no facility is provided by the framework
to obtain an ordering of extensions. Defining such a function can be done additionally to the
framework (see Chapter 7 for a brief discussion on this subject). Peng and Reggia use the
strengths of the causal relations between disorders and manifestations to define such an order-
ing. A comparable method for ordering extensions can be developed when the first approach

for cover set generation is used.



When the second approach is used to model Peng and Reggia’s method, the ordering can take
advantage of the results of the converging and diverging propagation functions. Belief in dis-
orders that explain only one manifestation is increased or decreased, according to the semantics
of explain away and joint explain. Further, disorders are grouped in the explanations, which

eases the design of the ordering function.

Apart from the lack of an ordering function for explanations, the general framework has some
clear advantages over the model of Peng and Reggia. Firstly, the model of Peng and Reggia
does not support an equivalent of the converging explanation, and therefore there is the
limitation of using disjoint disorder sets only. Secondly, facilities like explain away and joint
explain, which enable plausible human-like reasoning patterns, cannot be expressed in the
reasoning part of the model of Peng and Reggia. These patterns are dealt with in the ordering
of cover sets, which is less clear. Finally, the model of Peng and Reggia cannot cope with
additional evidence, the complete set of manifestations must be supplied beforehand. When
additional manifestations are provided, the cover set generation and solution ordering must be

restarted from the beginning.
Bayesian belief networks

In Pearl [1988], a distinction is made between intensional and extensional systems for the

management of uncertainty.

Extensional systems basically stem from the theory of logic. They treat uncertainty as a
generalised truth value that can be attached to atoms and formulas. Formulas are constructed
incrementally from subformulas (and eventually atoms) by using operators. These operators
have their own, unique, uncertainty propagation function based on the type of the operator and
the uncertainty of the subformulas. The functions are used regardless of other information that

is available in a specific problem instance.

Intensional systems are based on set theory, where uncertainty is assigned to sets of possible
worlds. The representation structure of intensional systems is a network of relevant relations
between variables. Propagation is not performed by static predefined functions on the operators
used to combine sets; instead, a formalism is added that supports a global coherent distribution
of uncertainty over the variables, taking all information on a specific problem instance into
account.

To be more explicit, extensional systems support the modelling of reasoning primitives, where
intensional systems primarily aim at the modelling of structure. Clearly, the compositional
reasoning approach fits the description of an extensional system. Contrary to this, a Bayesian
belief network is an example of an intensional system. Apart from this fundamental difference,
some comparisons can be made.

The notions of explain away and joint explain are supported by both formalisms. The way in
which this is realised is characteristic for the difference between intensional and extensional
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systems. In the compositional approach, the relation that enables explain away and joint explain
must be specified explicitly. In the belief network approach these features are the implicit result

of the belief propagation mechanism that has been added to the network structure,

Pearl [1988] places emphasis on the importance of bidirectional causal influences in modelling
plausible reasoning. The propagation of uncertainty within Bayesian belief networks (or
network models in general) illustrates that this aspect has been uniformly integrated in the
concept of intentional systems. Recalling the limitations imposed by bidirectional reasoning in
Section 4, we agree with Pearl that in this respect intensional systems clearly outperform their

extensional counterparts.

Their simple computational complexity is a strong argument in favour of using extensional
systems. Under the restrictions mentioned in Section 4, explanatory reasoning maintains this
simple computational complexity of uncertainty propagation. Developing serious applications
with Bayesian belief networks demands the use of multiple connected networks. However, the
computational complexity of these kinds of networks is exponential by definition, and requires
the development of special-purpose algorithms for the management of belief in specific

problem instances, see for instance [van de Stadt, 1994].

With respect to abductive problem solving, it is clear that neither the general framework nor the
theory on belief networks supports a method to choose between solutions that are provided. In
[Neapolitan, 1990] it is acknowledged that such an ordering of solutions must be added
separately to the representation and propagation aspects of the theory on belief networks. An
example of such an ordering is given by Neapolitan [1990] based on the joint probability
(conditional on the evidence), maximised over (a subset of) the set of not instantiated variables.
Concerning the general framework, we have already acknowledged the lack of such an ordering
facility and the way in which it can be added to the framework.

Abductive Horn clauses

A method of extending Horn clause logic programming with an abductive construction is given
by Poole [1991; 1993]. The developed language is an extension of Prolog with the disjoint
declaration. A disjoint declaration assigns an initial probability distribution to a set of (mutually
exclusive) hypotheses, which can be either atomic or predicate symbols in the Horn clause
logic. Deductive reasoning on the Horn clauses can be used to discover whether an observation
is actually explained by one of the assumables. Contrary to the notion of explanatory reasoning,
no attempt is made to interpret the Horn clauses in the way explanatory reasoning does.

In essence, the abductive problem-solving capability of the resulting formalism is comparable
to the model of Peng and Reggia. Sets of assumables represent the possible disorders, and
deductive Horn clauses are used (compare to the causal links) to discriminate between the
assumables. The differences between Poole’s method and the general framework are therefore

comparable to the differences between the framework and the model of Peng and Reggia.
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5.5.2 Profits and limitations of explanatory reasoning for abductive problem solving
The final analysis is given of the explanatory reasoning strategy. The main issue in this analysis

is the capability of explanatory reasoning for abductive problem solving.

To start with, it is concluded that explanatory reasoning has attractive reasoning characteristics,
like explain away and joint explain, that have not been realised in compositional reasoning thus
far. Other advantages of using a compositional reasoning approach, like its well-defined
inference pattern and ease of domain model construction, are still present. Another important
characteristic is the fact the computational complexity of the propagation functions, when using
the explanatory reasoning strategy, is simple. In short, these are the profits of using the

explanatory strategy for the reasoning primitives.

Two limitations of the explanatory reasoning approach were described in Section 4. The first
limitation could be omitted by slightly changing the semantics of the explanatory reasoning
strategy, the second limitation proved to be fundamental. Bidirectional reasoning, necessary to
model some aspect of plausible reasoning, was argued to violate the basics of compositional
reasoning by disturbing the incremental form of belief updating. Since this is an indispensable
characteristic of compositional reasoning, it yields the final conclusion that compositional

reasoning is too limited to enable general abductive problem solving.

This does not mean that we have to completely abandon the idea of abductive reasoning in
compositional systems. When, in a specific area of application, the restrictions and limitations
formulated in Section 4 do not apply, a compositional architecture can be used in combination
with the explanatory reasoning strategy. The success of deductive compositional systems has
demonstrated the possibilities of the practical use of such restricted problem-solving methods.

We briefly discuss two types of problems that can be solved.

In the previous first subsection, it is discussed how explanatory reasoning can be used in
abductive problem solving, as described in [Peng, 1990}. The reason for this is the fact that
there is only one single layer between disorders and manifestations. The limitation of not being
able to model bidirectional influences cannot occur in such problem descriptions. Therefore, if
a problem can be formulated in this restricted form, explanatory reasoning can be used in

solving these problems.

These one layer problem descriptions are quite restricting to the range and complexity of the
problems to be solved. However, when a multi-layer model is used, the bidirectional limitation
hampers the explanatory formalism. Still, a special category of these multi-layer problems can
be solved when one realises that apart from the bidirectional influence, a partially consistent
explanatory dependency network is constructed during explanatory reasoning. Now, when one
is able to model the problem in such a way that this partial consistent part suffices to provide a
consistent labelling of the propositions of interest of a problem, the bidirectional influences can

be ignored.
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To illustrate this, we (for the last time) use the example of explaining the telephone call. In Fig-
ure 5.12, we have extended the explanation of the newscast report by an alternative explanation
(some measurement failure of seismic activity). When the solution of the problem is now con-
centrated on just the belief Mr. Holmes has in either a burglary or an earthquake, a consistent

labelling of this part of the network is available.

m———— w! practical_joke )

Coomn)

alarm_sound

‘newscast_report

! seismic_failure )

Figure 5.12 Partial explanation of the phone call.

The characteristics of this category of applications are that the propositions one is interested in
are used in the explanation part of the primitive inference steps only, and that some sort of focus
of attention can be used to separate important parts from the rest of the dependency network.
This focus of attention includes the given observations and the propositions of interest to the
problem solution. Such a set of propositions of interest must be specified by the user of the
system. The definition of a program (see Definition 3.12) can be extended for this purpose by
including this set. When the labelling of this focus of attention can be done consistently and
without using bidirectional influences, meaningful solutions can be found. Obviously, domain
model construction is restricted, and even made impossible, by these criteria. However,

focusing on the important parts of a reasoning process is very human-like.

In Figure 5.12, such a focus of attention is drawn around the two observations (phone call and
newscast report) and includes the two propositions of interest (burglary and earthquake). Both
propositions of interest are labelled consistently (see Section 4), and can be used to determine
a solution for the observations. When one is interested in the measurements of belief of burglary

versus earthquake, meaningful judgements can be made according to this partial solution.
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Chapter 6

The Knowledge Engineering Environment Delfi3

In the preceding chapters, research was concentrated on the theory of uncertainty management
in compositional reasoning. However, in Chapter 1 we had already acknowledged the impor-
tance of using theoretical results in applicable environments, allowing the development of real-
world Al applications. In this chapter, we illustrate that an existing environment for knowledge-
based system development, Delfi3, can be considered a special case of our general framework.
Further, the model of belief and disbelief, as developed in Chapter 4, has been incorporated into
the knowledge representation language of Delfi3, which is called LORE.

In Section 1, the ideas behind the design of both Delfi3 and LORE are briefly described. An
overview of the domain and inference model of the representation language LORE is given in
Section 2. Next, the Delfi3 environment components are described in Section 3, while the
applicability of the environment is briefly discussed in Section 4. The mapping of LORE onto
the general framework is described in Section 5. Further, the integration of the uncertainty
model and the relation with the reason maintenance model are outlined in Sections 6 and 7. The
examples used in Section 2 are from a demonstration knowledge base, in Section 4, some
examples are provided from real-world applications. The chapter is concluded with some

critical remarks in Section 8.

6.1 Introducing Delfi3

In complex domains there is an increasing use of knowledge-based systems. The complexity of
the tasks performed by these systems puts high demands on aspects such as their size, reliability
and maintenance. The development of knowledge-based systems requires representation and
reasoning techniques that are capable of meeting these demands. These techniques are only of
practical use, however, when they are supported by efficient environments. The aim of the Delfi
project is to study such representation and reasoning techniques and develop such environments
[de Swaan Arons, 1991]. Main result of the project is the knowledge engineering environment
Delfi3 [Goedhart, 1991].

The knowledge engineering environment Delfi3 is based on the knowledge representation
language LORE [Jonker, 1990]. This language offers a uniform integration of frames and logic
programming and provides language constructs enabling strong typing, multiple inheritance
and modularisation. The Delfi3 environment consists of a compiler, a linker and an interpreter
for the language LORE.
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6.1.1 Design aspects of LORE
The Delfi3 environment aims to support the development of knowledge-based systems for

complex application domains, such as medicine and engineering. Existing systems often use a
combination of model-based and heuristic reasoning. Further, these systems tend to be large
and are embedded in traditional software environments. During the development of LORE and

Delfi3, these aspects where considered to be of great importance.

In LORE, objects and relations support the construction of domain models, where objects rep-
resent concepts in the application domain and relations represent relationships between these
concepts. Objects are frame-like structures, they have the advantage of information grouping
(which allows fast inferences). Further, objects can be placed in hierarchies which allow mul-
tiple inheritance and the modelling of exceptions. Relations can be defined between an arbitrary
number of objects and have user-defined semantics. The combination of objects and relations

offers the representation power of structural inheritance networks, as discussed in Chapter 2.

Developing reliable complex knowledge-based systems is not only a matter of testing but also
a matter of offering the appropriate language constructs. In LORE, this aspect has received
much attention, and led to the introduction of typing and modularisation. The benefit of strong
type checking is that a lot of programming errors can be detected at compile-time. The key to
large, knowledge-based systems is modularisation. Although found in conventional pro-

gramming languages, modularisation is rarely used in knowledge representation languages.

The inference model of LORE is based on logic programming. The choice for this formalism
was supported by its strong theoretical background and the possibilities it offers for the imple-
mentation of advanced inference techniques (recall Chapter 2). The main difference between
LORE and Prolog expressions is the restriction on relation calls in LORE to contain incomplete
data structures. Although this slightly limits the expressiveness of the language, it has the ad-
vantage of eliminating the occur check when evaluating relation calls, thereby producing a very

fast unification and thus providing a high executive performance.

When developing knowledge-based systems the representation of uncertain knowledge is often
incorporated. Therefore, the uncertainty model, as reported in Chapter 4 was incorporated into
LORE. The propagation functions of the uncertainty model require the presence of a derivation
argument. This argument is supported by a reason maintenance model that has been added to

the Delfi3 interpreter.

6.2 The knowledge representation language LORE

The design aspects as described in the previous section led to the specification of the knowledge
representation language LORE. We briefly outline the language constructs. For a detailed
description of these constructs, we refer to [Jonker, 1990]. Users of the language are referred to
[Goedhart, 1992].
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6.2.1 Objects
In LORE, a distinction is made between the definition level and the individual level. At both

levels objects and relations, which are the basic structures in LORE, can be defined. At the
definition level objects represent concepts, while at the individual level objects represent actual
items. Relations at the definition level represent possible relationships between concepts
(represented by objects at definition level), while relations at the individual level represent

actual relations between items (represented by objects at the individual level),

Objects at the definition level can be compared to frames (recall Chapter 2), in that they have
attributes that characterise the concept or item they represent. Attributes can be shared, which
means that they have the same value for each instantiation of the definition object, or private,
which means that each instantiation can contain a specific value for that attribute. Attributes are
further characterised by facets (type, value, default, if-needed and if-added). In the type facet
the type of the attribute values is given, the value facet can be used to specify the value of a
shared attribute (values of private attributes are specified at the individual level). The default,
if-needed and if-added facets can be used when the value of an attribute has to be found at run-
time. They contain a logical expression that can be evaluated by the inference model, when the

value of an attribute is missing at run-time.

Example 6.1
DOBJ Mammal

SHARED
milk_giving : <BOOL> VAL TRUE
PRIVATE
has_hooves : <BOOL>
IFN [ ASK("Does the animal have hooves? ",“has_hooves) ]
| chews_cud : <BOOL>
IFN [ ASK("Does the animal chew cud? ",‘chews_cud) ]
| ungulate : <BOOL>
DEF FALSE
| food : <TEXT # "meat","grass","insects","leaves”,"fish","others">
IFN [ ASK("What kind of food does the animal eat? ", ‘food) ]
| color: <TEXT>
IEN [ ASK("Give the color of the animal : ",‘color) ]
| stripes : <TEXT # "black", "yellow", "others">
IFN [ ASK("Describe the stripes of the animal : ", ‘stripes) ]
| identity : <TEXT>
EOBJ

In Example 6.1, a definition object Mammal is defined that can be used in a simple example of
a knowledge base on animal recognition. Since all mammals give milk, the attribute
milk_giving is shared and can be given value TRUE. Private attributes are for instance the food
the mammal eats or the colour of its stripes. If-needed and default facets are given that can be
used to find values of attributes (for instance by using the standard predicate ASK, that prompts
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a question to the user of the system). The aim of the knowledge base is to find the value of the
attribute identity.

Objects at the individual level are linked to the objects at the definition level by means of
instance-of connections. A list of values must be supplied to specify the values of private
attributes, values of shared attributes can only be given at the definition level. The special

symbol? is used to denote that the value is unknown.

Example 6.2
10BJ

unknown_mammal : Mammal(?,?,2,2,2,2,7)
| unknown_ungulate : Mammal(TRUE,TRUE,TRUE,"grass",?,2,7)
EOBIJ

In Example 6.2, two individual objects are specified for definition object Mammal. For the first
individual object, unknown_mammal, no attribute values are specified. For the second individ-
val object, unknown_ungulate, four attributes are given an initial value, because of the fact that
the animal is known to be an ungulate from the start.

6.2.2 Relations
Definition relations denote a possible relationship between definition objects; these definition

objects are indicated by the arguments of the definition relation. Apart from these arguments,
definition relations have a view, which is a logical expression in terms of the arguments. The
domain model represented through the combination of definition objects and definition rela-
tions is a structural inheritance network (see Chapter 2).

Example 6.3
DREL Ungulate

DOMAIN a : <Mammal>
[ a.food = "grass"
OR a.has_hooves AND a.chews_cud

]
EREL

DREL Zebra

DOMAIN a : <Mammal>

[ a.color = "white" AND a.stripes = "black” ]

EREL
In Example 6.3, we have presented two definition relations from the animal recognition
knowledge base, Ungulate and Zebra. Both are defined on one argument, of type Mammal.
Evaluation of these definition relations can be done through evaluating the view, which is a
logical expression containing the attributes of domain argument a. The actual individual object

of type Mammal is specified when the definition relation is used. The "." symbol is used to

select an attribute from an object.
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Instances of definition relations can be specified at the individual level. The object-type argu-
ments must be filled with individual objects. When a definition relation is used, the knowledge
base is checked for the presence of individual relations first. If they can be applied in the situ-

ation, they are used. Otherwise the view of the definition relation is evaluated.

Example 6.4
IREL

Ungulate(unknown_ungulate)
EREL
In Example 6.4, an individual relation is specified for definition relation Ungulate. Since we
know that the individual object unknown_ungulate is an ungulate, this fact can be used directly
when definition relation Ungulate is used on this individual object. The evaluation of the view
of the definition relation is not necessary.

The interaction with other software programs is considered vital for the development of serious
applications with knowledge-based systems. External relations are incorporated into LORE to
support this interaction. External programs can be activated and a facility is added to exchange

information between a knowledge-based system and an external program.

External relations can be compared to definition relations except for the fact that they have no
instances at the individual level and the view is replaced by a call statement containing the name
of an external program. When the inference model evaluates the external relation, this external

program is executed.

Example 6.5
XREL MammalDatabase

DOMAIN food,color,stripes : <TEXT>

RANGE identity : <TEXT>

CALL MammalDB

EREL
In Example 6.5, an external relation is specified that can be used in the animal recognition
knowledge base. Suppose we have a database of mammals that is able to uniguely determine
the identity of the mammal based on its attributes food, color and stripes. We implement an
external program MammalDB that supports this query to the database, and use the external

relation MammalDatabase to run this program during the evaluation of the knowledge base.

Query relations are introduced into LORE, to activate the knowledge base. Query relations are
definition relations that have no arguments and no individual relations. The use of query rela-
tions is explained in Section 4.

In Example 6.6, a query relation is specified that can be used in the animal recognition
knowledge base. The query relation uses the standard predicate KNOWN to check the presence
of a value for the attribute identity of individual object unknown_mammal. Since this attribute

does not have a value, the if-needed facet is evaluated, which activates the BRULES predicate
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(see Example 6.8). They lead to the evaluation of production rule IsZebra (see Example 6.7)
and definition relation Zebra (see Example 6.3) and so on.

Example 6.6
QREL FindlIdentity

[ KNOWN(unknown_mammal.identity) AND
WRITE("Aha, it's a ",unknown_mammal.identity) AND WRITELN(2)
OR
WRITE("Sorry, I can't find the identity”) AND WRITELN(2)

]
EREL

6.2.3 Production rules
Production rules are the most well-known construct to represent heuristic knowledge and are

therefore subsumed in the set of LORE language constructs. Production rules are defined at the
definition level, just like definition objects and definition relations, and are activated through
standard predicates.

Example 6.7
RULE IsUngulate

GIVEN a : <Mammal>

IF

[ Ungulate(a) ]

THEN

ABOUT a CONCLUDE ungulate = TRUE
ERUL

RULE IsZebra

GIVEN a : <Mammal>

IF

[ a.ungulate AND Zebra(a) ]

THEN

ABOUT a CONCLUDE identity = "zebra"

ERUL
The format of the production rules is trivial, the given arguments (that are comparable to the
domain arguments of relations) specify the argument(s) the rule is defined upon. The premise
is specified through a logical expression and the conclusion(s) by explicitly stating object and

attribute.

In Example 6.7, two production rules are taken from the animal recognition knowledge base.
The given argument of both rules is of type Mammal. In the premises of the production rules,
definition relations Ungulate and Zebra are used, these have been defined in Example 6.3. The
first rule can be used to conclude whether an animal is an ungulate, the second rule is concerned

with the identity of an animal.
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Backward and forward reasoning are both supported in LORE, by the standard predicates
BRULES and FRULES. When using these special predicates, the values of the given arguments
must be specified together with the attribute that is the starting point of the reasoning process.
The conflict set, the set of production rules that can be fired in a specific situation, depends on
these argument values in the predicate (that must be unified with the given arguments). All
production rules in the conflict set created during backward or forward chaining are evaluated

consecutively.

Example 6.8
DOBJ Mammal

SHARED
PRIVATE
| ungulate : <BOOL>

DEF FALSE
IFN [ BRULES(SELF! ,ungulate) ]

| identity : <TEXT>
IFN [ BRULES(SELF! identity) ]

EOBJ
In Example 6.8, the standard predicate BRULES is used to extend the if-needed facets of
attributes ungulate and identity of definition object Mammal from Example 6.1. When such an
if-needed facet is evaluated, the BRULES predicate determines the conflict set of production
rules that have the given attribute in their conclusion. The remaining arguments in the BRULES
predicate are used to unify with the given arguments of the production rules from the conflict
set. For instance, the value of standard predicate SELF is unified with the given argument a in

rule IsZebra.

6.2.4 Inheritance
In LORE, object hierarchies can be built at the definition level by linking objects by means of

super connections. With these super connections, attributes are inherited from objects higher in
the object hierarchy. The changes construct in LORE allows overruling the default inheritance
by changing facets of inherited attributes. LORE supports multiple inheritance, the only restric-
tion imposed on the object hierarchy is that it should be a directed acyclic graph. The problem
with multiple inheritance is how to distinguish attributes with the same name, which are inher-
ited from different objects. Although in the literature (see also Chapter 2) varjous solutions to
this problem have been suggested, these approaches have their drawbacks. Therefore, in LORE
conflicts must be solved explicitly by using the inherit construct. This deals with conflicts at the

1. The standard predicate SELF can be used to refer to the individual object for which the if-needed facet
is evaluated.
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appropriate level: that of the attributes. In large knowledge bases it is hard to detect conflicts
(even after extensive run-time testing). Therefore, conflict detection in the case of multiple in-
heritance in LORE is carried out at compile-time. A prerequisite is that the object hierarchy
does not change at run-time, which is true in the case of LORE. For an exhaustive description

of the inheritance mechanism we refer to [Jonker, 1990].

6.2.5 Typing
Apart from the set of predefined types (INT, REAL, BOOL, TEXT, LIST), types in LORE are

connected to the names of definition objects. The type set of a LORE knowledge base is a lattice

(T.<y), constructed by the set T of all definition object names and a partial ordering <; on T. The
partial ordering < is derived from the transitive closure of the super connection. The ordering

of types is crucial, the demand for the type of a value to be compatible with the type of the cor-
responding attribute results in more flexible type checking than that of conventional languages.
The typing rules in LORE are part of the static semantics and can thus be checked at compile-
time. However, type checking is also performed at run-time during unification. A variable with

type ty can only be bound to a value with type ty, when the ordering ty <t ty is satisfied. The

typing mechanism is explained in detail in [Jonker, 1990].

6.2.6 Modularisation
LORE offers modules to support the structured design of large knowledge bases. In LORE,

modules are more then just a structure to split up large knowledge bases into manageable parts,
they offer data hiding (the export mechanism), explicit interfacing (the import mechanism), re-
use of knowledge bases and incremental compilation. With the use of the import and export
mechanisms, a hierarchy of modules is built up. The same restriction is placed on this module
hierarchy as on object hierarchies, namely that it should be a directed acyclic graph. Another
equivalence between object and module hierarchies is the possibility of name conflicts;
therefore, no structures with the same name, imported from different modules, may be imported
simultaneously. Modules are considered to be units of compilation. An important aspect with
respect to re-use of modules is that they may not restrict the possible language constructs. To
ensure this, conflict detection and type checking are guaranteed across modules, both at

compile-time and at run-time.

6.3 The Delfi3 environment components

The Delfi3 environment consists of three components, a compiler, a linker and an interpreter
for the language LORE (see Figure 6.1). The user creates a knowledge base consisting of a
number of LORE source modules by using an editor. The source modules are syntactically and
semantically checked for errors by the Delfi3 compiler. Correct source modules are translated

by the compiler into an object and an export module.
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Figure 6.1 The Delfi3 system components.

The object module contains a compact description of the complete contents of the module, the
export module contains a compact description of the part of the module that is qualified to
export. In the compilation process, it may be necessary to consult the export modules of other
modules. The Delfi3 linker links the object modules of all relevant modules into an executable
module, containing the complete contents of the knowledge base. The executable module is
loaded by the Delfi3 interpreter and can be activated by the user through the queries, the calls

to query relations.

The Delfi3 compiler and linker are concerned with the checking of the correctness of the used
language constructs in the source modules. The execution of a knowledge base is done solely

by the Delfi3 interpreter.

6.4 Applicability of the environment

The knowledge engineering environment Delfi3, including the representation language LORE
as described in this chapter, enables the development of knowledge-based systems in various
domains [Goedhart, 1991]. Examples of such applications are Plexus [Jaspers, 1990; van
Daalen, 1993] and Esats [Krijgsman, 1992]. We briefly describe the use of LORE and Delfi3
in the development of two other real-world knowledge-based systems.

Meteodes is a knowledge-based system for the automatic classification of cloud types in
Meteosat imagery [van der Lubbe, 1991]. Statistical image processing techniques are not able
to solve the associated problems on their own. A major reason for this is that, during
classification, the meteorologist uses all sorts of meteorological knowledge concerning the
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scenes. Meteodes is a hybrid system consisting of a reasoning and an image processing
component. A first prototype of the system has already been developed using Delfi3 [Roest,
1992; Schokking, 1992]. Example 6.9 shows an illustration of a production rule used in this
prototype. Recently, a formal model of the complete classification process has been developed
[Wols, 1993] that will be implemented in Delfi3.

Example 6.9
RULE CuContainsCb

GIVEN cs : <Cloud_segment>
IF
[ cs.number_of_pixels < 200
AND HEAD(cs.clist) = "Cumulus”

]

THEN

ABOUT c¢s CONCLUDE type = "Cumulonimbus”
ERUL

Results from the Delfi project, and Delfi3 in particular, have been used in the field of computer
integrated manufacturing [de Swaan Arons, 1991]. The knowledge-based approach has been
applied in the on-line scheduling of production processes. In Esprit project 809, Advanced
Control Systems and Concepts in Small Batch Manufacturing, an expert system was used to
handle disturbances in the production process. In short, a knowledge-based system analyses the
effects of an unexpected event in the production process. When the effect of some event is
expected to be serious, the knowledge-based system advises the generation of a new schedule.
The new schedule is based on the current schedule, the situation at hand, the estimated effect
of the event on the remainder of the schedule and a set of heuristics to be used in rescheduling.

Example 6.10
DREL CheckOverlapping

VAR freelist : <LIST <Orders>>
machines : <LIST <Machine>>

[ GetOperationsAndFreetime(CurrentProblem, ‘freelist, ‘machines)
AND
ForwardShiftLastOperationPossible(freelist,"Overlapping")
AND
DetermineBestOverlap(freelist,machines)
AND
ComputeStartDateTime(CurrentProblem,machines)

]
EREL

In Esprit project 2415, Distributed Manufacturing, Planning and Control, a knowledge-based
system has been developed for improving schedules by applying fine-tuning techniques. These
techniques exploit idle times in a schedule for overlapping operations or splitting existing or-

ders into smaller batches. An important advantage of using these fine-tuning techniques is the
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fact that the original schedule is merely disturbed. As a result, the total production time of an
order can be shortened, and there is a better overall performance [Jansen, 1993]. In Example

6.10, the definition relation CheckOverlapping is given, which is used in the latter application.

6.5 The mapping of LORE onto the general framework

When we want to study the Delfi3 environment as an implementation of the theory developed
in Chapters 3 and 4, a mapping is necessary from LORE onto the formalisms of the general
framework. This is not a trivial step, since LORE was not developed with the general frame-
work in mind, both were developed independently. Therefore, the mapping is not one-to-one.
For instance, LORE does not have a clear distinction between the expression, inference and
control levels that are used in the general framework. We create this distinction in LORE as
well, based on the semantics of the different language constructs. Developing a mapping means
that the LORE constructs have to be defined in terms of propositions, expressions and inference
and control steps, which are the basic constructs of the general framework. We first determine
the set of atomic propositions in LORE, followed by the mapping of LORE expressions onto
the sets of expressions and inference and control steps. Finally, the mapping of LORE knowl-

edge bases onto general framework programs is described.
Mapping LORE variables

In LORE, three sorts of variables are distinguished, the attributes of individual objects and the
arguments and local variables that can be defined in relations, production rules and attribute
facets. Attributes of individual objects can be used throughout the entire knowledge base and
can therefore be considered to be global variables. Arguments of relations and production rules
are replaced by global or local variables that are used when the relation or rule is called. There-
fore, arguments are nothing more than a local rename of a global or local variable, they cannot
be considered explicit variables. Local variables of relations, production rules and the attribute
facets can only be used in the constructs they are defined in, and are only of local importance.
To conclude, the only LORE variables that are of global interest are the attributes of individual
objects and therefore, the set of propositions A for a LORE knowledge base consists of the set

of attributes of all individual objects.

In Examples 6.1 and 6.2, we described a definition object, Mammal, and two individual objects,

unknown_mammal and unknown_ungulate, resulting in the set of propositions A given by

{ unknown_mammal.milk_giving, unknown_ungulate.milk_giving,

unknown_mammal.has_hooves, unknown_ungulate.has_hooves,

unknown_mammal.ungulate, unknown_ungulate.ungulate,
unknown_mammal.food, unknown_ungulate.food,
unknown_mammal.color, unknown_ungulate.color,
unknown_mammal.identity, unknown_ungulate.identity }.
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Further, it must be noted that, although most LORE types allow more than two different values,
variables in LORE can have only one specific value at the time. The propositions in the general
framework do not possess something like a value, therefore the labelling in LORE is based on

a pair which consists of a proposition and its current value.

Returning to Examples 6.1 and 6.2, we can give the initial labelling L, by

{ <unknown_mammal.milk_giving, TRUE,#>, <unknown_ungulate.milk_giving, TRUE, >,

<unknown_mammal.has_hooves,?,1>, <unknown_ungulate.has_hooves, TRUE, >,
<unknown_mammal.ungulate,?,1>, <unknown_ungulate.ungulate, TRUE, &,
<unknown_mammal.food,?,1>, <unknown_ungulate.food,"grass", &>,
<unknown_mammal.color,?,1>, <unknown_ungulate.color,?, 1>,
<unknown_mammal.identity,?, 1>, <unknown_ungulate.identity,?, 1> }.

Mapping LORE expressions

The sets of expressions, primitive inference steps and control steps are less easy to detect in
LORE. This is due to the fact that the set of logical operators provided by LORE (AND, OR,
NOT) is used to model the operators in both the set of expressions (A, v, —) and the set of control
steps (concat, choose, denial). We demonstrate the mapping of LORE operators by observing

the context in which they are used.

A distinction can be made in LORE between simple expressions and compound expressions.
Compound expressions consist of a call to a definition relation, a production rule predicate or
they contain attributes that demand the execution of their facets. The remaining expressions are
called simple expressions. In Example 6.7, the premise of production rule IsZebra consists of
a simple expression, a.ungulate (when the value of the attribute can be given without evaluating
one of its facets), and a compound expression, Zebra(a), connected by the AND operator. The
notions of simple and compound expressions play an important role in the mapping of the

logical operators of LORE.

The OR operator in LORE is used to generate backtrack points (alternative reasoning paths in
terms of the general framework). The OR operator is thus mapped onto the choose operator that
is used in the definition of the set of control steps in the general framework. As a result of this,
there is no LORE equivalent of the v operator that is used in the definition of expressions in the

general framework.

The NOT operator in LORE is less easy to map onto operators used in the general framework.
When the NOT operator is used on simple expressions, it can be considered to model the logical
operator — that is used in the construction of the set of expressions. When the operator is used
on a compound expression, the NOT operator is interpreted by the negation as failure strategy
(see Chapter 2) and it can therefore be considered to model the denial operator from the set of
control steps. Therefore, mapping the NOT operator depends on the context in which it is used.
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In mapping the AND operator in LORE an approach similar to the mapping of the NOT operator
is used. On the one hand the AND operator can be mapped straightforwardly onto the concat
operator used in the set of control steps, when it is used to combine compound expressions. On
the other hand, we can map the AND operator to model the A operator as well, when it is used

between simple expressions.

The generation of justifications and contradictions, as proposed in the general framework, is
closely related to the primitive inference step. To complete the mapping, we have to make clear
what the primitive inference steps are in LORE. Intuitively, structures like definition relations
and production rules, are ideal representations of primitive inference steps. However, definition
relation views and production rule premises consist of LORE expressions that can contain calls
to other definition relations and rule predicates as well (see Example 6.7, definition relation call
Zebra(a) is used in production rule IsZebra). In the general framework this is impossible, i.e.
control steps cannot be part of other primitive inference steps. Theoretically, definition rela-
tions and production rules can therefore not be used as primitive inference steps. When we take
a close look at the evaluation of definition relations and production rules, we can see that during
evaluation these structures are replaced by the logical expressions representing the view and the
premise/conclusion respectively. As a result of this, each (compound) logical expression can in
the end by replaced by a, sometimes large, simple expression. Therefore, it is concluded that
definition relations and production rules? (and the same goes for attribute facets and external

relations) can be considered the primitive inference steps in LORE.

When the interpretation of these primitive inference steps is considered, we must conclude that

the type of reasoning that is supported by LORE is deductive only.
Mapping LORE knowledge bases

The final step of the mapping consists of the mapping of LORE knowledge bases onto general
framework programs (see Definition 3.10). This mapping is straightforward, a knowledge base
consists of a subset of all possible LORE knowledge bases, which is exactly the same demand
as is made with respect to the constraint set Sy. The initial labelling L in terms of LORE was
distinguished when the mapping of the variables was described. Finally, the query relations in
LORE must be used as the equivalents of the queries of a program in terms of the general
framework. In this, LORE is more restricting than the general framework, where a query can
be chosen from outside the subset S, as well, For practical considerations,” the query must be
selected from the LORE knowledge base itself.

2. Definition relations with more than one range argument, and production rules with more than one con-
clusion, should, of course, be modelled by a number of primitive inference steps, each having the same
premise expression.

3. As a result of this, the syntactical correctness of a query can be checked by the Delfi3 compiler and
linker before execution. Otherwise, the Delfi3 interpreter must contain some sort of query parser module,
which is inefficient from a practical point of view.
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6.6 LORE and the model of belief and disbelief

1t has already been argued that the ability to reason with uncertainty is considered of importance
in the development of many real-world knowledge-based systems. Therefore, the uncertainty
mode] reported in Chapter 4 has been incorporated into LORE. Two aspects are important here,
the representation of uncertain measurements in LORE language constructs and the propaga-
tion of uncertainty measurements during reasoning. There are two situations in LORE in which
uncertainty measurements can be specified, in the initial value assignment of an attribute and
in primitive inference steps that enable value assignment during execution.

Initial value assignment is done through the specification of a value facet of a shared attribute,
or through the specification of a value of a private attribute in an individual object definition,

as demonstrated in the following example.

Example 6.11
DOBJ Mammal

SHARED
milk_giving : <BOOL> VAL TRUE MB 0.9
PRIVATE

EOBJ
10BJ
unknown_ungulate : Mammal(TRUE,TRUE,TRUE,"grass" MB 0.8,7,7,7)

EOBJ
In Example 6.11, the value facet of attribute milk_giving is filled with a value and an uncertainty
label, indicating that the value TRUE of this attribute can only be assured by a measurement of
belief (MB) of 0.9. In individual object unknown_ungulate, the value "grass” of attribute food
is specified with a measurement of belief of 0.8. Attributes whose values are specified explicitly

in the knowledge base in this way can be considered as premises, i.e. they belong to the initial
labelling.

A value can be assigned during evaluation through the evaluation of an attribute’s default facet
or through the evaluation of the equation operator in a definition relation view or a production

rule conclusion.
Example 6.12

DOBJ Mammal
SHARED

PRIVATE
| ungulate : <BOOL>

DEF TRUE MB 0.8
EOBJ
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In Example 6.12, the default facet of attribute ungulate is filled with an expression (TRUE) and
an uncertainty measurement, indicating that the result of evaluating the default expression can
only be assured with a measurement of belief (MB) of 0.8. When during reasoning, the value of

attribute ungulate cannot be found, this default facet is used to obtain the value.

Example 6.13
DREL AssignUngulate

DOMAIN a : <Mammal>
[ a.ungulate = TRUE MB 1.0
AND a.has_hooves = TRUE MB 0.9
AND a.chews_cud = TRUE MB 0.7 ]
EREL

In Example 6.13, we have given a definition relation that can be used to fill the values of
attributes has_hooves and chews_cud of an object of type Mammal. When the view of this
definition relation is evaluated, these attributes are given the value TRUE, both with different
measurements of belief, MB 0.9 and MB 0.7. Of course, the attribute ungulate is given 1.0 for

the measurement of belief.

Example 6.14
RULE IsZebra

GIVEN a : <Mammal>

IF

[ a.ongulate AND Zebra(a) ]

THEN

ABOUT a CONCLUDE identity = "zebra" MB 0.9
ERUL

In production rule IsZebra, the conclusion on the value of attribute identity of a given Mammal
being equal to "zebra” can be made with a measurement of belief MB equal to 0.9. With this
measurement, only the strength of the production rule is given. In the propagation of
uncertainty, the MB of the premise, [a.ungulate AND Zebra(a)], is also used.

The propagation of uncertainty during the execution of LORE knowledge bases is done
according to the propagation functions of the possibilistic model of belief and disbelief, as
developed in Chapter 4. Since we have described the mapping of the LORE language constructs
onto the general framework, the application of the correct uncertainty propagation functions is
straightforward.

6.7 LORE and reason maintenance

In order to be able to support the enhanced propagation functions of the model of belief and
disbelief (developed in Chapter 4), the presence of a derivation argument is necessary. By The-
orem 4.11, we described the relation between this derivation and the structures in a reason

maintenance model. Further, the use of reason maintenance techniques can increase the effi-
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ciency of the inference model (problem solver). This observation (recall Chapters 2 and 3) can
also be made with respect to the LORE inference model, since this model is based on chrono-
logical backtracking. Therefore, a reason maintenance model was developed for LORE, not

only to support the uncertainty model, but also to enhance the inference model.

The reason maintenance model is integrated with the inference model, and has no influence on
the domain model. Hence, no changes are necessary to the language LORE as such. The impact
that reason maintenance has on the working of the inference and uncertainty models, however,
is enormous. The impact on the uncertainty model has already been made clear in Chapter 4,
here we briefly discuss what can be expected from a combination of the inference and the

reason maintenance model.

This combined model, which we call the execution model for short, enables control strategies
for intelligent backtracking and learning from inferences. In [Goedhart, 1993c], we provide a
formal description of this execution model, and describe a number of test situations in which

this model has been used. We here give a brief overview of the most important results.

Dependency-directed backtracking [Stallman, 1977] is the basic strategy for using the reason
of a contradiction in searching for the best alternative to restart reasoning. We have used an ap-
proach that is comparable to the one given in [Drakos, 1988] and especially to the backjumping
approach described by Dechter [1989]. Both approaches postpone the construction of the set of
potential alternative search paths until a contradiction has occurred. This is contrary to the
method used by Doyle [1979], in which these sets are recorded all along the reasoning process

and can lead to space capacity problems.

Intelligent backtracking, as implemented in LORE, does not lead to space capacity problems,
but its pruning capacity is very dependent on the structure of the search space. When knowledge
bases (or logic programs or constraint satisfaction problems) are well structured, the gain will
be small. Unfortunately, we think that this is the case in the majority of real-world knowledge-

based systems.

Besides intelligent backtracking, a learning while searching strategy was developed that
enables the inference model to foresee coming conflicts in reasoning and to avoid repeating
inferences that have already been made. In [Dechter, 1989] a comparable approach is described

for solving constraint satisfaction problems.

Most important results are that learning while searching can give great reduction of the search
space, but can also lead to enormous space capacity problems (especially when the full deep
learning strategy [Dechter, 1989] is used). This can be decreased by recording only a subset of
the executed inferences, those containing only few variables (enabling easy pruning). Such an
approach is comparable to the suggested method for decreasing the complexity of the enhanced
uncertainty propagation functions, as given at the end of Chapter 4. Results that are given in

[Goedhart, 1993c] underline this conclusion.
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Apart from the space capacity problem, the development of a general-purpose reason mainte-
nance model was very attractive. It can also be used to develop other facilities (for instance an

explanation facility or run-time debugging options).

6.8 Closing remarks

In this chapter, we have given a demonstration of how theory developed within our general
framework can be used in Delfi3 and LORE. The importance of this demonstration is only
illustrative, it does not increase or decrease the capabilities of the theory delineated in Chapters
3 and 4. The main objective was to give some idea of the practical applicability of the developed
theory and the contours of its implementations. The general framework can be viewed as the
blueprint of an environment for constructing the implementation model of a knowledge-based
system. In this chapter, we have demonstrated an implementation environment that is based on
the framework. In [Jonker, 1993], the Delfi3 environment is used to demonstrate a strategy for

automatically deriving implementations from formally described design models.

The description of the use of uncertainty and reason maintenance within LORE has been rather
informal. A formal description of the execution model (combination of inference and reason
maintenance model) and a detailed discussion of the results can both be found in [Goedhart,
1993c]. Such a formal treatment is very interesting from an implementation point of view, but

clearly lies outside the scope of the thesis.

Since LORE does not support language constructs for abductive reasoning, theory given in
Chapter 5 has not been used throughout the current chapter. However, one could use Chapter 5
as a guideline to introduce abduction into LORE, which would give an abductive reasoning
strategy for LORE constructs. Unfortunately, due to time limitations this interesting objective

could not be realised.
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Chapter 7

Discussion

Specific discussions on the theory set out in this thesis have been given at the end of the relevant
chapters (Chapters 3, 4 and 5). Therefore, in this chapter we discuss some fundamental
questions with respect to uncertainty management in compositional reasoning. Observations on
the various different ideas to deal with the term uncertainty were made in Chapter 1. How are
these notions represented in the general framework? A question that naturally follows from this
is: What is the role of the compositional uncertain reasoning in the construction of real-world
knowledge-based systems?

In Section 1, we comment on the representation of uncertainty by the framework. In Section 2,
the concept of compositional reasoning is analysed as to its capabilities as a representation
formalism for reasoning with uncertainty. In Section 3, we evaluate the partial implementation
of the framework in the Delfi3 environment. Section 4 is used for a brief discussion towards
solution ordering in the context of the framework, a subject that was raised in Chapters 3 and

5. Finally, an indication of related open problems is given in Section 5.

7.1 Characterising uncertainty
In Chapter 1, we distinguished four notions of uncertainty: completeness, preciseness, validity
and reliability. This section contains a brief evaluation of the way in which these notions are

represented by the framework.

It is our conviction, and that of others in literature, that the characteristic of completeness in data
and knowledge can best be handled by both representation and reasoning aspects. In terms of
reasoning, this is realised by the use of the choose inference step (remember the discussion on
logic programming, concluding Chapter 3). The representation aspect of incompleteness is
covered by the use of a three-valued logic, including the label umknown, enabling the
continuation of reasoning in the absence of data. Therefore, incompleteness has a strong link
with the uncertainty model (we have to define the embedding of unknown), but is not
considered the key subject when we think of uncertainty.

In a similar way, we have treated the notion of validity in the framework in the context of the
reasoning process. The definition of (uncertainty) conflicts in reasoning represents this notion
within the framework. Thus, we prevent invalidity to enter the uncertainty labellings and re-
strict validity to the inference model. Again, a link between validity and the uncertainty model

is obvious, but it is not an equality relation.
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We consider the notion of impreciseness, or vagueness, to model a characteristic aspect of
uncertainty. In the framework, specification of this aspect must be done in the definition (or
choice) of the uncertainty label T,. As such, the framework does not provide extensive support
for this notion of uncertainty, which may seem surprising at first sight. However, as we have
already argued in Chapter 3, the specification of the uncertainty type is application specific. The
framework supplies an environment in which these specific uncertainty models can be used and
guaranteed to respect the underlying well-founded fundamentals.

In our opinion, the main characteristic of uncertainty is in the notion of reliability. This notion
reflects the belief or trust (and doubt) one has in the valuation of statements made by a problem
solver. The model of belief and disbelief, as reported in Chapter 4, is an example of an uncer-

tainty model, which supports this aspect of uncertainty.

To conclude, we consider preciseness and reliability to be represented best by the uncertainty
measurement in knowledge-based systems, where completeness and validness are more con-

cerned with the representation of, and reasoning with knowledge.1

7.2 In defence of compositional reasoning

The role of compositional reasoning has been a subject of discussion for a number of years.
Two related subjects are of interest here, the modelling potential of the compositional reasoning
formalism and its practical importance in constructing knowledge-based systems.

In the literature, the most clear analysis concerning compositional uncertain reasoning is given
by Pearl [1988] in his discussion of extensional systems. The merits of compositional reasoning
are the use of efficient propagation functions due to the notion of modularity. This modularity
principle consists of the notions of locality (uncertainty is propagated regardless of other influ-
ences) and detachment (uncertainty is propagated regardless of the way in which it was de-
rived). According to Pearl [1988] and Heckerman [1988], the deficiencies of compositional
reasoning are twofold: plausible, human-like reasoning patterns cannot be modelled, and the

modularity principle is unrealistic in practical situations.

This thesis contains a clear analysis of the compositional uncertain reasoning formalism, which
enables a well-founded evaluation of its benefits and limitations. There is not much disagree-
ment on the advantages of the compositional approach: ease of domain model construction,
well-defined inference principles and simple computational complexity of uncertainty propa-
gation. Concerning the limitations of compositional uncertain reasoning, we can make more

subtle distinctions in our criticism.

As far as the modularity principle is concerned, our investigations have clarified the distinction

1. In this thesis, the notions of completeness and validity of knowledge have been studied with respect to
the reasoning aspect only. With respect to the representation aspect, completeness (are there inference
steps missing?) and validity (are there invalid inference steps present?) are not covered here.

130



between the notions of locality and detachment. The notion of locality is vital to the concept of
compositional reasoning, it is part of its definition. However, the notion of detachment is not
crucial to this concept. The enhanced propagation functions used in the model of belief and dis-
belief, see Chapter 4, violate the principle of detachment by using the derivation of propositions
in the propagation of uncertainty. Therefore, in our opinion, only the principle of locality is fun-

damental for compositional reasoning.

In Chapter 5, we showed that plausible human-like reasoning patterns can be modelled within
the compositional reasoning formalism. Clearly, limitations are formulated for the expressive-
ness of these patterns in the compositional approach. We agree with Pearl that the modelling of
bidirectional influences are beyond the capabilities of compositional reasoning. However, this
does not mean that plausible reasoning has become completely impossible. The strategies
called explain away and joint explain, see again Chapter 5, can be modelled in compositional
reasoning and, when used in situations that fulfil the demanded restrictions, enable these plau-

sible reasoning patterns.

A brief overview of the reasoning formalisms that have been developed in the past decades
(knowledge-based systems, causal networks, neural networks, case-based systems) makes it
clear that no overall, general reasoning technique has yet been found. All formalisms have their
strong points and their weak points, and the development of a general purpose reasoning
formalism is probably impossible. In a broader sense, we are convinced that for solving large
and complex problems, a hybrid problem-solving strategy will likely give the best result. In
such a multi-strategy system, the compositional reasoning formalism is considered an attractive
alternative for modelling parts of the system. However, a lot of research is still needed on the

cooperation of and communication between these approaches within such an environment.

7.3 Implementation aspects

In Chapter 6, the knowledge engineering environment Delfi3 was analysed in the context of the
general framework of Chapter 3. This demonstrated the applicability of (a part of) the theories
developed within the framework in an existing implementation environment. The enhance-
ments primarily concerned the uncertainty model, the existing model (from the literature) could

easily be replaced by the uncertainty model developed in Chapter 4.

Implementing the reason maintenance model for Delfi3, which was not available, proved to be
quite a time-consuming, but not a very difficult piece of work. Once the mapping of the LORE
constructs onto the general framework was defined, the structure and functjonality of the reason
maintenance model were given by the framework. Further, the implementation of the reason
maintenance model increased the execution performance of the inference model of the Delfi3
interpreter. Strategies for intelligent backtracking and learning from past inferences were
implemented [Goedhart, 1993c] and a future implementation of an explanation facility will

certainly profit from the presence of the reason maintenance model.
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7.4 Ordering solutions within the framework

Diagnostic problem solving is concerned with selecting explanations for a number of observed
phenomena. A well-known problem in diagnostic reasoning is that more than one solution can
be found for a particular problem. However, in most cases, one is interested in the most
promising, or most probable one(s). In other words, some ordering or classification of the
solutions is desired. In our framework, this situation occurs when more than one extension is
found for a given program. However, our framework does not offer such a method for the

ordering of extensions.

A trivial approach would be to assume the user of the framework to be able to develop an
intelligent control structure that generates the most plausible extensions first, i.e the ordering is
done through the control structure within the knowledge base. Besides the practical objections,
such an approach would demand the presence of well-defined meta-reasoning constructs at the

control level, which is not supported by the framework as it is.

Given the representation formalism of the framework, there are two fundamental ways to tackle
this problem. Firstly, by changing the outcome of the control function C ¥ (see for instance Def-
inition 3.11) from {7, F} to some more general outcome. This approach introduces a measure-
ment representing the strength of the different types of inference steps, and an accompanying
set of propagation functions. The extensions for the query Q can then be ordered to the results

of CKQ) in terms of this measurement.

An alternative approach is to order the extensions to the outcome of a comparison measure be-
tween the individual extensions. The definition of a partial ordering is a common strategy to
rank extensions or solutions. According to its definition, an extension L is a labelling of the
set of atomic propositions A, satisfying the constraints of the program. The reasoning structure
that has been used in deriving this extension is represented in the underlying dependency net-
work. Therefore, in our model, a partial ordering can be defined on this dependency network,
consisting of propositions, justifications and assumptions. Taking advantage of the equivalence
with dependency graphs, theory from (inexact) graph matching can be used to construct the par-

tial ordering.

When graph matching is used, a transformation cost function must be specified between the
dependency graphs. This transformation cost function can be specified by using the uncertain
labelling of propositions and the strengths of the used deductive and explanatory inference
steps, recorded in the justifications and assumptions. Using the uncertainty labels will provide
a plausible ordering of solutions that can be further enhanced by restricting the transformation
cost function ta be used on selected subsets of propositions and inference steps, depending on

the specific problem instance to be solved.
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7.5 Open questions

It is obvious that, even in the restricted area of research covered by this thesis, numerous open
guestions remain to be answered. We restrict ourselves here to one aspect of (compositional)
reasoning that is considered of major importance from both a theoretical and a practical
viewpoint. Knowledge-based systems are used more and more often in time-critical
environments. It is obvious that such systems must be able to explicitly handle the aspect of
time in both representation and reasoning.

Clearly, the notion of time is not covered by the general framework. Therefore, an interesting
research objective would be to study whether a temporal component can be introduced into the
general framework in a way similar to the integration of the notion of uncertainty. Following
this, it would be even more interesting to study a formalism using the combination of time and
uncertainty in compositional reasoning simultaneously.
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5. There should be an explicit representation of ignorance to allow the user to make non-
committing statements, that is, to express lack of conviction about the certainty of any of the
available choices or events. Some measure of ignorance, similar to the concept of entropy,

should be available to guide the gathering of discriminant information.

A measure of ignorance is not supported by our framework. However, lack of conviction about
uncertainty can be specified by using the unknown label.

6. The representation must be or at least must appear to be natural to the user to enable him or
her to describe uncertain input and to interprete uncertain output. The representation must also
be natural to the expert to enable him or her to elicit consistent weights representing the

strength of the implication of each rule.

A similar comment can be made as was made on demand number 3. When developing an
uncertainty model, the choice of the basic representation measurements must appear natural to
both user and expert (or knowledge engineer). In the model of belief and disbelief, no specific

semantic choice is made, as previously explained in Chapter 4.

A.2 Desiderata for the inference layer

Four demands are specified by Bonissone concerning the inference layer.
7. The combining rules should not be based on global assumptions of evidence independence.

Recalling the propagation functions reported in Chapter 4, we can conclude that this demand is

met.

8. The combining rules should not be based on global assumptions of hypotheses exhaustive-

ness and exclusiveness.

Again, recalling the propagation functions developed in Chapter 4, we state that the conditions

on exhaustiveness and exclusiveness are not assumed.

9. The combining rules should maintain the closure of the syntax and semantics of the repre-

sentation of uncertainty.

From the uncertainty propagation functions set out in Chapter 4 it is clear that this demand is

satisfied.

10. Any function used to propagate and summarize uncertainty should have clear semantics.
This is needed both to maintain the semantic closure of the representation and to allow the
control layer to select the most appropriate combining rules.

During the development of uncertainty propagation functions given in Chapter 4, the semantics
of these functions played a dominant role. The model of belief and disbelief itself contains
selection criteria (recall Propagation function 4.7 through 4.10) to choose between the different

propagation functions. We comment further on this when discussing demand number 15.
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A.3 Desiderata for the control layer

Five demands are specified by Bonissone concerning the control layer.

11. There should be a clear distinction between a conflict in the information (i.e. violation of

consistency) and ignorance about the information.

Since ignorance is not explicitly supported by our framework, this demand does not make much
sense in its evaluation. However, we repeat our comment given on demand number 4, in which
is stated that a conflict is defined explicitly in our framework. This clearly distinguishes the

notion of a conflict in information from uncertainty or ignorance about the information.

12. The aggregation and propagation of uncertainty through the reasoning process must be
traceable to resolve conflicts or contradictions, to explain the support of conclusions, and to

perform meta-reasoning for control.

This demand can be summarised by our statement that the reason maintenance model must be
part of the general framework, since all these characteristics (i.e. contradiction resolving) are

encapsulated in the reason maintenance model.

13. It should be possible to make pairwise comparisons of uncertainty, as the induced ordinal

or cardinal ranking is needed for performing any kind of decision-making activities.

This facility is not supported by our framework. In the closing discussion on the framework this
had already been observed and some hints were given as to satisfying this demand. We agree

on the usability of this demand, but we do not consider it of vital importance.

14. There should be a second-order measure of uncertainty. It is important to measure the

uncertainty of the information as well as the uncertainty of the measure itself.

Again we agree on the attractiveness of the demand, but do not consider it a basic requirement
of a general framework. In our framework such a second-order measurement can be related to
the set of inference steps, i.e. it should be part of the control layer. This would demand a study
of second-order uncertainty propagation in the control layer, a subject that is not covered in this

thesis.

15. It should be possible to select the most appropriate combination rule by using a declarative

Sform of control (i.e. by using a set of context dependent rules that specify the selection policies).

The selection of the most appropriate uncertainty propagation to be used in a specific situation
is supported by the model of belief and disbelief. This means that the selection is made by the
control layer, but on criteria specified in the uncertainty model. No specific formalism is
introduced in our framework to explicitly represent the selection criteria. Although such a
formalism would be more flexible, we claim that these selection criteria are strongly related to
the uncertainty model that is used and can therefore better be formulated by the uncertainty

model itself.
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Appendix B
Embedding Dempster-Shafer Theory

In Chapter 4, we described the embedding of an uncertainty model in the general framework
for compositional uncertain reasoning, as developed in Chapter 3. In the concluding discussion
of Chapter 3, we analysed a number of existing uncertainty models when used with the general
framework. Here, a closer look is taken at the embedding of the Dempster-Shafer theory in this
general framework, this embedding was used in Example 3.4.

In Section 1 the basic definitions of the Dempster-Shafer theory are described. In Section 2,
Dempster’s rule of combination is given, followed by the deductive interpretation that is used
in the Dempster-Shafer theory. The embedding of the theory in the general framework
described in Chapter 3 forms the contents of Section 3. Finally, in Section 4, the appendix is
concluded with a brief discussion on related work on the Dempster-Shafer theory in the context

of its logical foundations and reason maintenance.

B.1 The basic definitions

We only briefly describe the basic definitions of the Dempster-Shafer theory. The basic theory
is developed in [Dempster, 1967; Shafer, 1976]. For an example of the use of the theory in

compositional reasoning systems one is referred to [Gordon, 1984].

The theory starts with the definition of the frame of discernment, a set of disjunct hypothesis
for some variable.

Definition B.1
Let © be a set of disjunct hypotheses for some variable x, then ® is called the frame of
discernment for x.

Then, a function is defined on all subsets of the power set 29 of @, which has the characteristics
of a probability distribution. This basic probability assignment will have a pivoting role within
the theory.

Definition B.2

Let © be a frame of discernment for some variable x.

If there exists a function m: 28 — [0..1] such that for each X ¢ 2°
1) m(X)=0,

(i) m(@) =0,

(iii) T m(X) = 1.

Then m is called a basic probability assignment on ©.
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Based on the basic probability assignment, two functions are defined. A belief or credibility
function that reflects the total belief of some subset X, and a plausibility function that reflects
the total amount of belief that is not assigned to X.

Definition B.3
Let O be a frame of discernment for some variable x and m a basic probability assignment
on ©. The belief function Bel: 2° — [0..1] is defined for each X < 2° by

Bel(X) = 3, m(Y)

YcX

Definition B.4
Let © be a frame of discernment for some variable x and m a basic probability assignment
on ©. The plausibility function P1: 22 — [0..1] is defined for each X < 2° by

PIX) = ) m(Y)
XNnY=z@
The mapping of the basic probability assignment on the belief and plausibility function is called

the Mobius transform.

The following relations between belief and plausibility function can be shown to hold.

Theorem B.1

Let © be a frame of discernment for some variable x, m a basic probability assignment on
0 and Bel(X) and PI(X) the belief and plausibility function. For each X ¢ 29 the follow-
ing relations hold

(1) PI(X) = Bel(X),

(i) PI(X) = 1-Bel(X).

Proof

For the proof of this theorem one is referred to [Shafer, 1976].

Based on this, the belief interval is defined for each subset X < 2®. This interval is considered

to model the lower (Bel) and upper (P1) bound as well as the uncertainty (Pl-Bel) of the belief

in subset X.

Definition B.5

Let © be a frame of discernment for some variable x, m a basic probability assignment on
© and Bel(X) and PI(X) the belief and plausibility function for each X < 2°. Then
[Bel(X),PL(X)] is called the belief interval for X.

B.2 Dempster’s rule of combination
In [Dempster, 1967] we find the definition of the propagation function for the combination of
two pieces of evidence. This function is called Dempster’s rule of combination, it defines an

updated probability mass function for a subset X < 2€. We provide a definition similar to the
one in [Shafer, 1976].
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Definition B.6

Let © be a frame of discernment for variable x and m; and m, basic probability assign-
ments on ©. The combination function m; ® m,: 2° — [0..1] is defined for each X < 2° by
(1) m ®m, (&) =0,

(i) m; & m, (X)=

> m()*m,(Z)

YNnZ=X

Y m(Y)my@)

YNZ»Q

With Dempster’s rule of combination, the propagation function for the combination has been
defined. Unfortunately, this is the only propagation function that is available from the theory.
The missing propagation functions for the implication and the logical operators are not defined
within the Dempster-Shafer theory. Various proposals of these sets of propagation functions
can be found in the literature, but a definite set has not been found yet. With respect to the
propagation function for the implication, there is a common agreement for the function that we

define next,

Definition B.7
Let © be a frame of discernment for variable x and m,, and m_}, basic probability assign-

ments on ©. The implication function mg ® m,_,p,: 2° — [0..1] is defined for E,H 29 by
me @ m._;, (H) = m._,;,(H)*Bel(E).

This definition is intuitively attractive, the basic probability assignment of H is the result of the
product of the strength of the implication e = h, given by m,_;(H) and the belief function of
the premise, given by Bel(E). When there is no belief in the premise, Bel(E)=0, the resulting
belief update in H will also be zero, which can be considered as an unsuccessful attempt to use

the implication.

The propagation functions for the logical operators are again subject to discussion. We do not
go into the discussion on these functions here. Instead, we illustrate an embedding based on the

propagation functions for the implication and combination only.

B.3 Dempster-Shafer theory and the general framework

In the foregoing, we described the Dempster-Shafer theory, based on the basic probability
assignment and the belief and plausibility functions. In this section, we describe the relation
between the Dempster-Shafer theory and the general framework delineated in Chapter 3.
Firstly, a basic probability assignment is formulated for the three-valued labelling of true, false
and unknown. This results in corresponding belief and plausibility functions and enables a
correct embedding of the three-valued model in the Dempster-Shafer theory. Finally, the

uncertainty model is completed by defining a deductive inference function.
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Theorem B.2
Let © be a frame of discernment for variable x.
Then Mye, Megjee ad My nown are basic probability assignments on © for A, X c ©.

I X=A
m,  (X) =
0 otherwise
0 X=A
Me X)) =71 1 X=0-A
0 otherwise
0 X=A
MyownX) = 1 1 X=0
0 otherwise
Proof

Straight from the definition of a basic probability assignment.

Theorem B.3
Let the uncertainty type T, of the Dempster-Shafer theory is equal to [Bel(X),PI(X)], the

belief interval for X according to Definition B.5.

The uncertainty propagation functions (f_,.f)) of the Dempster-Shafer theory are defined
in Definition B.6 and B.7.

Then a correct embedding of the three valued model in the Dempster-Shafer theory can
be defined through B(#)=[1,1], B(#)=[0,1] and B(ﬁ:[0,0].

Proof
According to the truth table of the propagation for the combination for [Bel(X),P1(X)]
(see Table B.1) and that of the general framework (see Table 3.4), it can be concluded that
the given embedding is correct.
It should be noted that Dempster’s rule of combination (see Definition B.6) is indeed undefined
and results in a conflict () when it is calculated for a combination of the labels true=[1,1] and
false=[0,0].
We can complete the model with a definition of a deductive inference function. The strength of

the inference step is given by [Bel_(a),PI_(a)].

Example B.15
A deductive inference function I'f for the Dempster-Shafer theory is defined by

IKs) = Twhen Bel(e) > 0 and f,([Bel(a),Pl(a)],[Bel,(a),Pl()]) # 7, else [ Hsy=*F
In functional notation, I'F IS = {7, F}.
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Table B.1 Combination

(LD | ©1) | 0,0
LHIAH D 1
o1 ]a.n|on|©o0
0o t {0000

B.4 Related research on Dempster-Shafer theory

The Dempster-Shafer theory is still a major field of research in reasoning with uncertainty. We
give some references to different approaches of its use that have a common aspect with our
application.

In [Héjek, 1992], an approach is demonstrated which is based on an algebraic structure, the
ordered Abelian group. An uncertainty model is created for compositional reasoning based on
algebraic group theory with the Dempster-Shafer theory. Propagation functions for the logical
operators, which are lacking from the theory, are introduced by following a defined ordering on
groups. As a result of this construction, the exactness of probability theory is lost, similar to our
construction of the model of belief and disbelief in Chapter 4.

Another approach is described in [Provan, 1990], where the Dempster-Shafer theory is
embedded in classical propositional logic. Further, the possible use of reason maintenance in
combination with the theory is described according to [Laskey, 1989]. In this, a formal
equivalence is given between the theory and assumption based truth mainienance supported by
probabilities. Belief and plausibility functions are defined in terms of ATMS environments and,
therefore, the exponential complexity of the uncertainty calculus is replaced by the exponential

complexity of constructing these environments.
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Appendix C
Relabelling Algorithms

In Chapters 3 and 5, the aspect of relabelling is discussed in global terms. In this appendix, the
algorithms that enable these relabelling processes are outlined. A pseudo language is used to
describe the algorithms, their proofs are given informally, by considering three aspects of the
algorithms: functionality, termination and complexity. The functionality aspect is concerned
with the functional correctness of the algorithm. Termination describes whether the algorithm
has a finite execution time, i.e. the algorithm will not enable infinite loops or endless recursion.
Finally, the computational complexity of the algorithm is analysed.

C.1 Relabelling while deductive reasoning

The relabelling process in a deductive system consists of a marking and a relabelling procedure.
The marking procedure

In the marking procedure all propositions that have to be relabelled are marked, and ordered in
the sense that no proposition will be relabelled until all necessary propositions in its derivation
are relabelled.
Marking
in: a, is element of A;
out: A, is array of element of A;
var: a; is element of A; A;;, is array of element of A;
begin
Ajp =[] Ague =11
while A, # [] do
take a; from A,
mark(a;)
add a; to end A,
for all j € J with a; € Ante(j) do
if Cons(j) € Ay
then move Cons(j) to end A,
elsif Cons(j) ¢ Ay,
then add Cons(j) to end A,
fi
od

od
end.
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Functionality

The array A, must contain all propositions that must be relabelled. Now assume to the
contrary that there is some a € A that must be relabelled, i.e. there is some j € J which has a as
its consequent and has a relabelled a; € A in its antecedent. According to the for all statement,

used on this proposition a;, proposition a is either part of A, or included in A;,. In both cases,

proposition a will eventually be part of A, and will consequently be relabelled.

The second objective of array Ay is the fact that it is ordered in a way that the propositions it
contains can be relabelled consecutively. This requires that all propositions in the antecedents
of the justifications for a specific proposition have to be relabelled before the specific
proposition itself can be relabelled. Observing the marking algorithm, there are two operations
defined on A, Firstly, each marked proposition is added to the end of A, guaranteeing that
each marked proposition will be relabelled. Secondly, within the if construct a proposition can

be moved to the end of Ay, This is done when the consequent of some j € J is already part of
Ay but is discovered to be a straight consequence of the proposition (a;) that is currently
investigated. Clearly, this current proposition a; is now the last element of A, but has to be
relabelled before Cons(j) is relabelled. This is realised by moving the proposition to the end of
Aout

Termination
Since deductive cycles are forbidden, each proposition can only be marked once, and the

marking procedure automatically terminates within [Al executions of the while construct.

Complexity
Clearly, the while construct has order Al the for all construct has order I and the order of the

if construct is given by some constant K. This gives for the total complexity of the marking

procedure, O(AI*IJ*K ).

The relabelling procedure

In the relabelling procedure all propositions that have been marked are actually relabelled.

Relabelling
in: Ay, is array of element of A;

var: g; is element of A; J, is array of element of I;
begin
while A;, # (] do
take a; from Ay,
L=1
for all j € I with a; = Cons(j) do add jto J, od
relabel(a;,J,)
od
end.
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Functionality

The correctness of functionality is obvious. The propositions to be relabelled are given in A,
that is equal to A,y from the marking procedure. The propositions are ordered in such a way
that no proposition will be relabelled until its complete derivation has been relabelled.
Therefore, for each proposition, its supporting justifications are collected in I, The uncertainty
propagation function for the combination can be used to calculate the new uncertainty label for

each proposition a;, based on this set J,.

Termination

Trivial.

Complexity

Similar to the marking procedure, the while construct has order IAl and the for all construct has
order IJI. The computational complexity of the relabelling of a proposition is determined by the
uncertainty propagation function that is used for this purpose. This results in a total complexity
of the relabelling procedure of O(IAI*JI*K,), in which K is the complexity of relabelling a

single proposition.

C.2 Relabelling while explanatory reasoning
In Chapter 5, the relabelling process of the explanatory reasoning strategy was illustrated. This

process also consists of a marking and a relabelling procedure.
The marking procedure

In the marking procedure all propositions are marked that have to be relabelled according to the
fact that the proposition that they explain is relabelled. Again, these propositions must be
ordered in the sense that no proposition will be relabelled until all necessary propositions in its
derivation are relabelled.

Functionality

Array A, contains all propositions that must be relabelled. The only difference with the
marking procedure for the deductive interpretation is the addition of the for all construct on the
consequent of an assumption. This construct is needed to inspect all propositions in an
explanation, where in the deductive relabelling process the conclusion can only contain one
proposition.

The ordering of array A, enabling the consecutive relabelling of its propositions is realised by
exactly the same approach as that used in the deductive marking algorithm.

Termination

Since cycles are forbidden in explanatory reasoning, each proposition can only be marked once,
and the marking procedure automatically terminates within |Al executions of the while

construct.
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Marking
in: a, is element of A;

out: A, is array of element of A;
var: a; is element of A; A, is array of element of A;
begin
Ajp=lac] Aoy =11
while A, # [ do
take a; from A,
mark(a;)
add a; to end Ay
for all u € U with a; = Ante(u) do
for all ¢, € Cons(u) do
ifc,e Agy
then move ¢, to end Ay
elsifc, ¢ A,

then add ¢, toend A,
fi
od
od
od
end.
Complexity

Similar to the deductive marking procedure, the while construct has order IAl and the for all
construct has order Ul Generally, an explanation consists of more than one proposition,
therefore, the extra for all construct has been added. In principle, the complexity of this
construct is IAl but in practice the number of propositions in an explanation will be far fewer
than this |Al, say some constant K. This constant is integrated in the order of the if construct,
some constant K. Therefore, the computational complexity of the first marking procedure can
be given by O(A*IU*K ).

The relabelling procedure

In the relabelling procedure all propositions that have been marked by the marking procedure

are actually relabelled.

Functionality

Because of the close similarity to the relabelling procedure of the deductive approach, the
correctness of the procedure is obvious. Again, the uncertainty propagation function for the

combination can be used to calculate the new uncertainty label for each proposition a;, this time

based on the set of relevant assumptions U,.

Because of the ordering of A, the working of the procedure is straightforward.
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Relabelling
in: Ay, is array of element of A;

var: a; is element of A; U, is array of element of U;
begin
while A, # [] do
take a; from A;,
U, =11
for all u € U with a; € Cons(u) do add uto U, od
relabel(a;,U,)
od
end.

Termination

Trivial.

Complexity
Obviously, the computational complexity of this relabelling procedure is O(A*IU*K,), in

which K, is a constant representing the complexity of relabelling a single proposition.
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Samenvatting

Het onderzoek naar Artificiéle Intelligentie (AI) heeft zich gedurende de afgelopen decennia
ontwikkeld tot volwaardig wetenschappelijk onderzoek. Een onderwerp dat hierbij veel
belangstelling heeft gekregen is de ontwikkeling van algemene redeneermethoden, welke
kunnen worden gebruikt in verschillende applicatiedomeinen. De nadruk van dit proefschrift
ligt op een redeneermethode genaamd compositioneel redeneren, hetgeen inhoudt dat het
redeneerproces is opgebouwd uit elementaire redeneerstappen (de primitieven) die, wanneer in
geschikte combinatie gebruikt, complexe redeneerprocessen kunnen vormen. Compositioneel
redeneren is de meest gebruikte redeneervorm in bestaande kennissystemen.

De representatie en propagatie (kortweg management) van onzekerheid in compositioneel re-
deneren is het thema van dit proefschrift. De ontwikkeling van serieuze Al toepassingen heeft
de noodzaak aangetoond van methoden voor het omgaan met onzekerheid in kennissystemen.
Onzekerheid kan hierbij gebruikt worden voor het modelleren van verschillende aspecten van
kennis: incompleetheid, onnauwkeurigheid, incorrectheid en onbetrouwbaarheid. Dit proef-
schrift beschrijft een algemeen raamwerk voor het redeneren onder onzekerheid, dat voldoet

aan een aantal duidelijk omschreven ontwerpvoorwaarden.
Het algemeen raamwerk

Het ontwikkelen van een algemeen raamwerk voor compositioneel redeneren met onzekerheid
is een evidente eerste stap in het onderzoek. Het raamwerk moet algemeen zijn in de zin dat
geen veronderstellingen worden gemaakt met betrekking tot de oplossingsstrategie, het type
onzekerheid en het toepassingsgebied. Een driewaardige logica, bestaande uit labels waar,
onwaar en onbekend, wordt hierbij gebruikt als onderliggend mathematisch fundament,
waarbij het label onbekend wordt gebruikt als een expliciete modellering van het incompleet-
heidsaspect. Een klassieke tweewaardige logica ondersteunt een dergelijke faciliteit niet,
terwijl het gebruik van een hogere orde logica hierbij geen extra functionaliteit biedt, maar

overigens wel door het raamwerk wordt ondersteund.

Formele definities worden gegeven van de basisstructuren van een kennissysteem: domein-,
inferentie-, ondersteunend redeneer- en onzekerheidsmodel. Het domeinmodel beschrijft de
representatietaal van het raamwerk. Hiervoor is een hiérarchische benadering gekozen, waarbij
kennis in drie lagen wordt gerepresenteerd. Het inferentiemodel legt de voor dit formalisme te
gebruiken oplossingsstrategie vast. Het ondersteunend redeneermodel bevat informatie over de
tijdens de inferentie uitgevoerde redeneerpatronen. Zoals in de literatuur beschreven, kunnen
deze patronen worden gebruikt om gelijkvormige patronen in een redeneerproces te herkennen

en er op te anticiperen.
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Onzekerheid wordt in het raamwerk geintroduceerd door de driewaardige logica uit te breiden
naar een type dat een onzekerheidsmaat representeert. Specificatie van dit onzekerheidstype
vergezeld van een verzameling propagatiefuncties voor de compositionele operatoren, is
karakteristiek voor elk onzekerheidsmodel. Het inbedden van dit type in de driewaardige logica
resulteert in een fundamentele basis voor onzekerheidsrepresentatie en garandeert de
correctheid van onzekerheidspropagatie in de (logische) randgevallen. De aanwezigheid van
een ondersteunend redeneermodel opent de mogelijkheid tot het gestructureerd ontwikkelen
van propagatiefuncties die de situatie waarin ze gebruikt worden in ogenschouw nemen.

Wanneer het raamwerk wordt gebruikt in combinatie met een deductieve oplossingsstrategie
kan worden aangetoond dat alle bestaande deductieve onzekerheidsmodellen een specifiek
geval zijn van het raamwerk. In meer algemene zin kan worden geconcludeerd dat het
raamwerk de meest algemene formele omschrijving biedt voor het redeneren met onzekerheid

in compositionele systemen.
Het model van vertrouwen en wantrouwen

Het certainty factor model is het meest bekende en meest gebruikte model voor compositioneel
redeneren onder onzekerheid. Analyses die in het verleden zijn uitgevoerd zijn unaniem in hun
verwerping van het model, waarbij het schenden van de gesuggereerde probabilistische uit-
gangspunten door de propagatiefuncties als de voornaamste reden geldt. Het certainty factor
model heeft echter een aantal aantrekkelijke kenmerken, zoals de eenvoud van de propagatie-
functies, en heeft bevredigende resultaten opgeleverd in een groot aantal applicaties waarin het
is gebruikt. Een gedeelte van het model is daarom nogmaals geanalyseerd, waarbij duidelijk
wordt wat de oorzaken zijn van het slechte gedrag van het model in bepaalde situaties.

Het proefschrift beschrijft de ontwikkeling van een nieuw model voor compositioneel redene-
ren, het model van vertrouwen en wantrouwen, dat geen gebruik maakt van het probabilistische
uitgangspunt. Onzekerheid wordt hierbij gerepresenteerd door een twee-dimensionale vector
die zowel het geloof in als de twijfel aan een feit weergeeft. Hiervoor zijn propagatiefuncties
ontwikkeld, die gebruik maken van informatie over de situatie waarin ze worden gebruikt. Het

model is als op zich zelf staand ontwikkeld en pas daarna in het raamwerk ingebed.

De informatie die in het ondersteunend redeneermodel is opgeslagen maakt niet alleen een be-
tere werking van het inferentiemodel mogelijk, het kan ook worden gebruikt bij de constructie
van speciale propagatiefuncties. Dit idee is gebruikt bij het ontwikkelen van een verzameling
propagatiefuncties die gevoelig zijn voor de situatie waarin ze worden ingezet. Deze functies
zijn in staat om een klasse van problemen op te lossen die niet kunnen worden opgelost in be-
staande deductieve onzekerheidsmodellen. De berekenbaarheid van deze functies is, hoewel in

theorie exponentieel, acceptabel in praktische toepassingen.

Dat het model van vertrouwen en wantrouwen eenvoudig te implementeren is wordt gedemon-

streerd aan de hand van de implementatie in een bestaande omgeving voor het ontwikkelen van
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kennissystemen, Delfi3. Het representatieformalisme van deze omgeving is afgebeeld op het
domein- en inferentiemodel van het raamwerk. Een ondersteunend redeneermodel is ontwik-
keld voor de implementatie van de propagatiefuncties, en is ook gebruikt voor het verbeteren
van de werking van de Delfi3 interpreter. De totale implementatie onderstreept de praktische

waarde van de ontwikkelde theorie.
Verklarend redeneren

Bestaande compositionele redeneerstructuren gebruiken een deductieve oplossingsstrategie.
Het gebruik van abductief redeneren staat echter in toenemende mate in de belangstelling
binnen het Al onderzoek. Abductie wordt gerepresenteerd in het volgende redeneerschema.
Feit: B’
Relatie: A—B

Verklaring: A’

Deze redeneervorm wordt veelvuldig gebruikt in het menselijk redeneerproces en maakt een
flexibele vorm van redeneren mogelijk waarbij verklaringen kunnen worden verondersteld en
later eventueel weer worden afgezwakt of verworpen. Een aantal formalismen is ontwikkeld
om deze redeneervorm te ondersteunen, geen van deze formalismen gebruikt echter een
compositionele architectuur. Dit proefschrift bespreekt de bruikbaarheid van een abductieve

oplossingsstrategie voor compositioneel redeneren.

Als gevolg van de veronderstellende stijl is abductief redeneren moeilijker in het raamwerk te
integreren dan een deductieve strategie. Informele definities van abductie mikken op de beste
of meest plausibele verklaring(en) voor een verzameling observaties. In dit proefschrift wordt
een abductieve oplossingsstrategie beschreven voor compositioneel redeneren, deze strategie

wordt verklarend redeneren genoemd.

Een verklarende interpretatie is gedefinieerd voor de compositionele redeneerstappen waarin
een combinatie van feiten wordt verondersteld een gegeven observatie te hebben veroorzaakt.
Twee typen verklaringen worden onderscheiden: convergerende en divergerende verklaringen.
In een convergerende verklaring moeten alle feiten tegelijkertijd optreden om de observatie te

verklaren. In een divergerende verklaring is het optreden van tenminste één feit voldoende.

Het gebruik van onzekerheid maakt verklarend redeneren nog interessanter. Bij het vitvoeren
van een verklarende redeneerstap wordt een initiéle verdeling van onzekerheid toegekend aan
de feiten in een verklaring. Wanneer extra informatie beschikbaar komt voor feiten in de ver-
klaring, wordt deze initiéle verdeling aangepast, rekening houdend met het type van de verkla-
ring. In een divergerende verklaring heeft een toegenomen vertrouwen in een bepaald feit tot
gevolg dat het vertrouwen in de resterende feiten afneemt. Dit gedrag wordt explain away ge-
noemd. In een convergerende verklaring heeft een toegenomen vertrouwen in een bepaald feit
juist tot gevolg dat het vertrouwen in de resterende feiten eveneens toeneemt. Dit gedrag is te-

genovergesteld aan explain away en wordt daarom joint explain genoemd.
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Deze, min of meer informele, beschrijving van verklarend redeneren is formeel beschreven in
termen van het ontwikkelde raamwerk. Het model van vertrouwen en wantrouwen is gebruikt
om een verzameling propagatiefuncties te ontwikkelen voor verklarend redeneren. De werking
van deze functies weerspiegelt de begrippen explain away en joint explain. Echter, het stellen
van een aantal restricties is noodzakelijk bij het concept van verklarend redeneren. De meeste
restricties zijn niet zwaar, en hebben betrekking op het applicatiedomein. Een belangrijke
restrictie daarentegen, het modelleren van bi-directionele invloeden, doet afbreuk aan de
capaciteiten van het principe van verklarend redeneren met betrekking tot het modelleren van

abductie.

Concluderend kan worden gesteld dat met verklarend redeneren een formalisme is ontwikkeld
dat aantrekkelijke karakteristicken heeft waar het gaat om redencerprocessen (explain away en
joint explain, simpele berekenbaarheid). Echter, de expressiviteit van het ontwikkelde forma-
lisme is, door de conceptuele onmogelijkheid om bi-directionele invloeden te modelleren, te

gelimiteerd om algemene abductieve redeneerpatronen te ondersteunen.
Het gebruik van compositioneel redeneren in kennissystemen

Zoals elk redeneersysteem heeft de compositionele aanpak sterke en zwakke punten. Voordelen
van compositioneel redeneren zijn dat domeinmodellen eenvoudig te construeren zijn, dat
inferentie duidelijk gedefinieerd is en dat de berekenbaarheid van propagatiefuncties simpel is.
Praktische toepassingen, gebaseerd op (deductieve) compositionele formalismen, hebben

bewezen dat zo’n aanpak tot bevredigende resultaten kan leiden.

Restricties aan compositioneel redeneren worden gesteld door het onvermogen om de eerder
genoemde bi-directionele invloeden te verwerken en door eisen die aan het applicatiedomein
worden gesteld. De slotconclusie is echter dat compositioneel redeneren een aantrekkelijk
formalisme blijft om (gedeelten van) een kennissysteem te modelleren. Dit proefschrift geeft
een duidelijk overzicht van zowel de theoretische als de praktische randvoorwaarden van het

formalisme.
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Dankwoord

Het schrijven van een dankwoord bij een proefschrift is verre van gemakkelijk, zeker wanneer
de promovendus in meerdere vakgroepen en faculteiten werkzaam is geweest. Op het gevaar af

mensen te vergeten volgt hier een kort maar persoonlijk dankwoord.

In de vier jaar dat ik, al dan niet in deeltijd, bij de vakgroep Informatietheorie betrokken ben
geweest heb ik mij er altijd zeer thuis gevoeld. Ik bedank alle leden van de vakgroep voor het
scheppen van de juiste sfeer en de hulp bij alle kleine en grote problemen. Prof. Eric Backer
bedank ik voor de kans die hij mij heeft gegeven dit promotieonderzoek uit te voeren en tot een
goed einde te brengen. Discussies met hem waren altijd inspirerend. Jan van der Lubbe heeft,
in zijn rol als directe begeleider, grote invloed gehad op het werk. Daarnaast heeft hij, als voor-
trekker in het METEODES project en de afgelopen tijd als kamergenoot, blijk gegeven van een
enorm brede deskundigheid. Van talloze gesprekken en discussies met hem over zeer diverse
onderwerpen heb ik veel opgestoken. Erica van de Stadt heeft met haar kritische leeswerk zeker
een bijdrage geleverd aan het eindresultaat. Haar, soms zeer originele, inzichten in de materie
zullen binnenkort zeker tot uiting komen in haar eigen proefschrift. Cees Witteveen heeft ge-
heel belangeloos zijn licht laten schijnen over de eerste versies van hoofdstuk 2. Tim Bedford
voorkwam een fundamentele misstap in het eerste gedeelte van hoofdstuk 4. Tenslotte bedank

ik mw. Zaat-Jones voor haar hulp bij het leesbaar maken van mijn Engelse teksten.

Gedurende een periode van ongeveer vijf jaar heb ik, bij de vakgroep Technische Toepassingen
van de Informatica, gewerkt in het kader van een tweetal ESPRIT projecten. In die tijd heb ik
Henk de Swaan Arons leren kennen als een voortreffelijke baas en collega. Met name wanneer
wij vanwege projectverplichtingen in het buitenland verbleven, wisselden scherts en serieuze
overpeinzingen elkaar in hoog tempo af. Ik herinner mij dat het onderwerp stropdas hierbij
lange tijd een rode-draad-functie vervulde. Naast Henk heeft Wim Jonker mij, misschien wel
als eerste, geinspireerd om gericht naar deze promotie toe te werken. Onze samenwerking in
Delft resulteerde niet alleen in de ontwikkeling van het vermaarde Delfi3, het bezorgde mij later
ook nog een heel plezierig conferentiebezoek aan San Francisco. Een gemeenschappelijke
literaire interesse heeft nog regelmatig een (electronisch) postpakketje tot gevolg. Eveneens in
ESPRIT verband was Eric-Paul Jansen gedurende twee jaar mijn kamergenoot op de Delftse
Julianalaan. Zijn slimme strategie€n voor het verbeteren van werkplannen waren stof tot
nadenken, discussie en zelfs weddenschappen. Op voetbalgebied bleek maar weer eens dat het
hebben van een gemeenschappelijke vijand mensen tot elkaar kan brengen: de rivaliteit tussen
onze beide favoriete clubs verbleekte bij de gedeelde vreugde over weer een nederlaag voor de
Lichtstad.
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Tenslotte bedank ik natuurlijk mijn ouders, die altijd het (toekomstig) nut van doorstuderen
hebben benadrukt. De laatste jaren hebben ze zich misschien afgevraagd of ze hierin niet te ver
waren gegaan, getuige de vraag wanneer ik nu eindelijk eens ging werken. Geheel volgens de
traditie van dit soort bedankjes sluit de partner van de promovendus de rij. Dat deze er in de
praktijk de meeste last van heeft, daar weet Will inmiddels alles van ("Nee, we kunnen niet,
Bob moet leren."). Ondanks het feit dat ze het ook op andere vlakken voor de kiezen heeft gehad
de laatste twee jaar, heeft ze mij toch die steun kunnen geven die nodig was. Dat dit simpele
bedankje hiermee in geen verhouding staat moge duidelijk zijn, ik hoop dan ook dat zij, in de
nabije en verre toekomst, nog net zo veel plezier aan dit proefschrift mag beleven als ik.
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