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Abstract
On-demand mobility systems in which passengers use the same vehicle simultaneously are 
a promising transport mode, yet difficult to control. One of the most relevant challenges 
relates to the spatial imbalances of the demand, which induce a mismatch between the 
position of the vehicles and the origins of the emerging requests. Most ridepooling mod-
els face this problem through rebalancing methods only, i.e., moving idle vehicles towards 
areas with high rejections rate, which is done independently from routing and vehicle-to-
orders assignments, so that vehicles serving passengers (a large portion of the total fleet) 
remain unaffected. This paper introduces two types of techniques for anticipatory routing 
that affect how vehicles are assigned to users and how to route vehicles to serve such users, 
so that the whole operation of the system is modified to reach more efficient states for 
future requests. Both techniques do not require any assumption or exogenous knowledge 
about the future demand, as they depend only on current and recent requests. Firstly, we 
introduce rewards that reduce the cost of an assignment between a vehicle and a group of 
passengers if the vehicle gets routed towards a high-demand zone. Secondly, we include a 
small set of artificial requests, whose request times are in the near future and whose origins 
are sampled from a probability distribution that mimics observed generation rates. These 
artificial requests are to be assigned together with the real requests. We propose, formally 
discuss and experimentally evaluate several formulations for both approaches. We test 
these techniques in combination with a state-of-the-art trip-vehicle assignment method, 
using a set of real rides from Manhattan. Introducing rewards can diminish the rejection 
rate to about nine-tenths of its original value. On the other hand, including future requests 
can reduce users’ traveling times by about one-fifth, but increasing rejections. Both meth-
ods increase the vehicles-hour-traveled by about 10%. Spatial analysis reveals that vehicles 
are indeed moved towards the most demanded areas, such that the reduction in rejections 
rate is achieved mostly there.
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Introduction

Centrally controlled on-demand ridepooling systems, in which different users can ride the 
same vehicle at the same time if their paths are compatible, are a promising mobility sys-
tem for the future of cities, because they can exhibit many of the advantages of popular 
(non-shared) on-demand systems more sustainably without increasing congestion.

Massive on-demand systems (apps) have become popular due to a number of virtues: 
short waiting times, door-to-door service, ease of payment, an increase of comfort, and 
no need for parking nor driving (Rayle et al. 2016; Tirachini and del Río 2019; Tang et al. 
2019). All these positive features can be kept when rides are shared (pooled) as well.

Moreover, sharing can effectively fight congestion and emissions if an adequate fleet is 
selected (Tirachini et al. 2019; Li et al. 2021). Empirical studies have shown that carshar-
ing systems in which rides are not shared have increased congestion, as they attract many 
users from public transport (Henao and Marshall 2019; Tirachini and Gomez-Lobo 2020; 
Agarwal et al. 2019; Roy et al. 2020; Diao et al. 2021; Wu and MacKenzie 2021). When 
rides are shared, vehicles make more efficient use of the scarce vial space.

However, such mobility systems are quite hard to operate, as they combine the princi-
ples of two classic NP-Hard problems: the Dynamic-Vehicle-Routing-Problem (as they are 
on-demand) and the Dial-A-Ride-Problem (due to the sharing aspect). Despite this com-
plexity, some algorithms have been able to effectively decide how to match groups of users 
and how to assign them to vehicles (Ota et al. 2016; Alonso-Mora et al. 2017a; Tsao et al. 
2019; Simonetto et al. 2019; Kucharski and Cats 2020), and their simulations have con-
firmed the potential of ridepooling.

One of the main difficulties of massive on-demand systems is related to their dynamics. 
The system needs to decide the assignments as the requests appear. Even if these assign-
ments are decided optimally according to the current conditions, they might leave the sys-
tem in a state that is inefficient to serve the demand that will emerge afterward. Let us 
consider an extreme and simplified example that helps to visualize the situation: a circular 
city, in which the users are located at the border and are all traveling to the center. Figure 1 

Fig. 1  A ridepooling system in 
an extreme version of a morn-
ing peak situation. If the time 
required to drive R exceeds the 
maximum waiting time, all vehi-
cles will get stuck in the center
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shows such a scenario, simulating an exaggerated version of a morning peak situation. 
This unbalanced demand pattern will make all the cars converge rapidly at the center; if 
there are bounds on the maximum waiting time (a usual assumption in these models) and 
the time required to go back to the border exceeds this bound, then vehicles will not be 
assigned to any new request, and the system would collapse.

To prevent such situations, most of the algorithms include a rebalancing step, in 
which cars that are not being used are sent to some zone in which they are expected to 
be required. Note that underlying this idea, there has to be some way to determine which 
zones of a city will require vehicles in the future, i.e., there are some anticipatory deci-
sions. The corresponding scheme of decisions can be synthesized in the following steps: 

1. One or more trips are requested to the system.
2. The system decides how to assign the request(s) to the set of vehicles, i.e., which new 

users will travel together, in which vehicle(s) and following which route. This process 
is performed according to some optimization rules and constraints that deal with the 
quality of service. Sometimes it is not possible to serve all the requests, and some get 
rejected.

3. After assigning or after some predefined lapse of time, the system determines which 
vehicles are not being used and decides how to rebalance them.

Two relevant aspects underlie the recent description: rebalancing does not interact directly 
with assignments, and it only deals with idle vehicles. These aspects can have substantial 
drawbacks. A relevant limit to rebalancing strategies is given by the number of vehicles 
that can be controlled, which might be much lower than the total number of vehicles in 
the system when only idle vehicles are considered. Such a situation is particularly relevant 
when the system is serving close to its maximum capacity, in which case most vehicles are 
being used constantly and thus are not available for rebalancing. This is quite problematic 
as these heavily loaded scenarios are the ones in which the system needs to work as effi-
ciently as possible.

Furthermore, sometimes the assignment process may produce some inefficient matches, 
which cannot be corrected through rebalancing. In particular, some vehicles might be 
directed towards low-demand areas to give a better quality of service at a specific time, but 
being barely shared. Such situations worsen future service, as vehicles move to zones in 
which they are not likely to be required or used to their full potential (if the remain being 
low-demand).

These phenomena can be observed in Fig. 2 (from Fielbaum et al. (2021)), which shows 
the quality of service when modeling a ridepooling system (based on the model by Alonso-
Mora et  al. (2017a)) during one hour in Manhattan. It reveals that the level of rejected 
requests, the average waiting time, and the average delay are all higher at the center of the 
network, precisely the most demanded zone. Similarly, Alonso-Mora et  al. (2017a) pro-
vides a video1 that shows the daily performance of the system. In this video, two facts are 
noteworthy: there are almost no rebalancing vehicles, and the number of passengers per 
vehicle is much higher in the most demanded zone than in the rest of the network.

These problems are inherent to the system’s combination between sharing and having 
flexible routes. When cars are shared but rides are not (i.e., on-demand taxis), finding a 

1 A full version of the video is available at https://youtu.be/xHWrRci0H54. Accessed: 29/06/2020.



1924 Transportation (2022) 49:1921–1962

1 3

single passenger is as good as possible, so there is no need to go to the most demanded 
zones if there is some demand in the rest of the network. In public transport, lines are 
designed a priori to serve better the most demanded zones through higher frequencies, 
shorter distances to bus stops, and more direct services (Mohring 1972; Chang and 
Schonfeld 1991; Daganzo 2010; Fielbaum et al. 2020), i.e., the mismatch between sup-
ply and demand is prevented thanks to having fixed routes.

To prevent such situations, techniques that are beyond rebalancing are needed. In 
this paper, we study methods that introduce anticipatory decisions at an earlier stage, 
namely when deciding the assignments (i.e., which vehicle is carrying which passen-
gers) and the routes (i.e., in which order are they served), in order to have the whole 
system better prepared for future service. The techniques we propose do not require any 
exogenous assumptions about future requests. They take as input only the endogenous 
information that is generated while operating the system, namely the origins of current 
and recent requests (we also study the use of historical data as a benchmark, and we 
show it performs worse). As revealed by our simulations based on real-life data, current 
and recent requests can be used as an efficient proxy for what will happen in the near 
future when applying our techniques. Moreover, by these means, our techniques adapt 
endogenously to the different situations in which they might be applied.

We study two types of techniques: First, by modifying the cost of each possi-
ble assignment between vehicles and set of requests, favoring those assignments that 
conduct the vehicle towards the most demanded zones; second, we introduce artificial 
future requests to the pool of requests that have to be assigned at each time, with origins 

Fig. 2  Left: Rejection rate (the more red the higher, and no color means almost no rejections). Center: 
average waiting time (the clearer the higher). Right: average delay (the clearer the higher). All three are 
obtained for trips departing at each node in Manhattan’s network, after simulating one hour of a ridepooling 
system, just after midday on 15/01/2013. They all show that the most demanded zone, at the center of the 
network, faces a worse quality of service. Source: Fielbaum et al. (2021)
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in those same high-demanded zones so some vehicles might be sent towards them. Sev-
eral specific implementations for each technique are analyzed and compared.

The paper is structured as follows: “Related works” section   synthesizes previous 
research on the topic and highlights the contributions of this paper over the state of the art. 
“Two anticipatory methods” section explains the two main techniques that we propose in 
this paper, which depend on some “generation” and “rejection” rates, that are explained 
in “Different definitions for generation and rejection rates” section. In “Numerical simu-
lation” section we run simulations to analyze the impact of the methods over a real-life 
case (in Manhattan), together with a deep analysis of how the spatial mismatch between 
vehicles, requests, and rejections is modified. Finally, in “Conclusions and future research” 
section  we conclude and propose several directions for future research.

Related works

On‑demand ridepooling systems

The research over on-demand ridepooling systems has rapidly expanded during the last 
years, boosted by the success of on-demand mobility apps (both shared and non-shared) 
and the need for more sustainable systems in which vehicles are used for more than one 
passenger. A review of the different methods available in the literature to control such sys-
tems is offered by Zardini et al. (2021).

Many studies deal with the problem of how to assign passengers and vehicles, either 
through agent-based models (like (Merlin 2017; Fagnant and Kockelman 2018; Lokhand-
wala and Cai 2018; Vosooghi et al. 2019) among others) or through centralized algorithms 
(like (dOrey et al. 2012; Pelzer et al. 2015; Alonso-Mora et al. 2017a; Gao et al. 2017; Qian 
et al. 2017; Wang et al. 2018; Tsao et al. 2019; Simonetto et al. 2019; Fielbaum et al. 2021; 
Levin et al. 2017; Lin et al. 2018) among others). Some of these assignment methods have 
rebalancing or anticipatory techniques, which are described in the following subsection.

Algorithmic-based assignment methods are specially important for this paper, as our 
techniques are based on affecting specific steps in the execution of such algorithms. Out of 
those, the method by Alonso-Mora et al. (2017a) has been quite impactful because it is able 
to find, within a receding horizon approach, optimal solutions thanks to a smart search of 
all the feasible combinations between users and vehicles. Such a method has been modified 
by Simonetto et al. (2019), who assign no more than one passenger to each vehicle during 
each time window to reduce the computational burden, and by Fielbaum et al. (2021), who 
use some heuristics to optimize the pick-up and drop-off points of each passenger. A differ-
ent approach is followed by Tsao et al. (2019), who models the problem as a flow network, 
which is more efficient from a computational standpoint and is able to decide how to assign 
and rebalance in a single step, but is limited to vehicles of capacity two. Most other papers 
depend on heuristics that are designed specifically to this type of problems (Levin et al. 
2017; Ota et al. 2016)). Finally, some learning techniques have been proposed to improve 
the decisions of how to assign users to vehicles (Lin et al. 2018; Haliem et al. 2020).

These systems have been further analyzed in a number of other directions. A relevant 
issue related to this paper is that on-demand ridepooling can be more unreliable (i.e., it is 
harder for users to predict which quality of service they will experience) than other mobil-
ity systems. This happens due to the same dynamics that call for anticipatory techniques, 
i.e., flexible routes that respond to the emerging demand. These unreliability sources are 
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described in detail by Fielbaum and Alonso-Mora (2020), which focus on those sources 
related to vehicles’ assignments. On a related note, Kucharski et al. (Forthcoming), Hyland 
and Mahmassani (2020) study the impact of late passengers, while (Liu et al. 2019) ana-
lyzes the impact of traffic congestion, all of which affect the future performance of the 
system.

Rebalancing and predictive methods

Many of the ridepooling2 systems proposed in the literature include some rebalancing 
method that decides how to move idle vehicles. The general idea underlying all of them is 
the following: if a vehicle is idle right now, the place in which it is currently located has an 
oversupply of vehicles, so it should move to a different location where it is more likely to 
be required. The decisions of which vehicles to move and towards which zones may also 
try to prevent the rebalancing vehicles to drive for too long distances.

The methods present in the literature differ mostly on how to measure the need for vehi-
cles in each region. Some papers consider the current demand (Vosooghi et al. 2019; Lioris 
et al. 2016; Sayarshad and Chow 2017); Spieser et al. (2014) seeks for an even distribution 
of the vehicles; Alonso-Mora et al. (2017a) (the model we use here for the simulations, and 
whose rebalancer we also include) takes the origin of the rejected requests as the mark that 
defines that a vehicle is needed there, an approach that is adapted by Liu and Samaranay-
ake (2020), who excludes from the rebalancing process vehicles that were already being 
rebalanced, and by Tsao et al. (2019), who keeps some predefined number of vehicles idle 
to be able to serve unexpected demand; van Engelen et al. (2018) assumes that the prob-
abilities of having new trips in a zone are known, based on historical data, and compares it 
with the current number of vehicles that are currently in such zone; and Wallar et al. (2018) 
estimates the future demand using a particle filter method that considers the temporal evo-
lution of the demand within each zone. Finally, Wen et al. (2017) uses an approach that is 
different from the ones explained so far, as they use reinforcement learning techniques for 
rebalancing, which they show to outperform a rebalancer similar to the ones previously 
described, and a simpler rebalancer that randomly moves a vehicle to its neighboring areas, 
with probabilities proportional to their demand rates. As discussed in the introduction, all 
these rebalancing methods affect idle vehicles only.

Few papers deal with anticipatory routing or assignments, as we do here. In a simpli-
fied context, in which users travel between specific stations among the area covered by the 
system, Barth et al. (2004) propose a method that could be used in more general schemes: 
splitting groups of passengers into many vehicles if their destinations are located in a zone 
that is expected to require more vehicles in the near future, thus routing more vehicles into 
those areas. van Engelen et  al. (2018) works with an event-based model, in which each 
time a new request emerges, it is assigned to a vehicle that is chosen using demand fore-
cast, trying to match the number of empty seats of that vehicle with the number of users 

2 Many rebalancing methods have been proposed for non-shared systems: (Yu et al. 2019; Braverman et al. 
2019; Zhang and Pavone 2016; Pavone et al. 2012; Gao et al. 2018), among others. We are not studying 
them in detail here because there are fundamental differences when sharing is admitted. In the non-shared 
case, finding a single request as fast as possible is the best that can be done, whereas here, we aim to maxi-
mize the number of requests that a vehicle can find soon. In this last case, it is much more relevant to send 
the rebalancing vehicles to high-demand areas instead of zones in which is likely to find at least one request.
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that it might pick up when transporting the original request; similar ideas are proposed by 
Wang et al. (2020), but assigning several requests at a time.

Two papers propose predictive routing and assignment ideas building upon the same 
model that we use for simulations (Alonso-Mora et  al. 2017a), and using related tech-
niques: Alonso-Mora et  al. (2017b)) estimates historical demand for each zone, and 
includes some artificial requests according to this estimated demand in order to push the 
whole system towards a better preparation for the future, an approach that we extend here 
considering alternative ways of defining the artificial requests, other than based on his-
torical data; Huang and Peng (2018) modifies the cost function with an additive term that 
depends on the spatial distribution of the vehicles and its distance to the optimal one. These 
papers have some drawbacks: the former requires historical data that is not always avail-
able, it increases the computational time heavily, and it does not have a meaningful impact 
on reducing the number of rejected requests of the system (it does reduce average waiting 
times and delay); while the latter requires a perfect knowledge of the demand distribution, 
and it does not affect the routes of the vehicles for a given set of pick-ups and drop-offs.

On a related note, some authors have proposed pricing mechanisms to reduce the mis-
match between the position of the vehicles and the origins of the users: Zakharenko (2020) 
studies a system in which users rent a vehicle but do not leave it where they picked it up, 
and Haliem et al. (2020) analyze ridepooling as currently provided by Transportation Net-
work Companies, where drivers have a say regarding which users to serve. Those scenarios 
do not coincide exactly to the systems we study here, but they both propose that trips end-
ing in high-demand areas should face lower fares. By this means, such trips become prior-
itized when deciding which ones should be served, and the system gets more balanced. It is 
noteworthy that these techniques affect which requests to serve, but not necessarily which 
routes to follow when doing so. In the context of on-demand delivery of goods, other antic-
ipatory techniques have been proposed that look longer into the future, such as dynamic 
programming (Ulmer et al. 2018) and scenario-based analyses (Voccia et al. 2019). How-
ever, such techniques have been applied only in cases with small fleets.

In all, there is a vast literature showing that rebalancing techniques for idle vehicles can 
have significant impacts on the efficiency of ridepooling systems, but just a few papers that 
deal with the assignments and routes for vehicles that are actually being utilized, which 
might be the majority within the fleet. Such papers work over specific assignment methods, 
and usually require some knowledge either about historical data or future demand, instead 
of leveraging the information generated endogenously by the system when operated.

Contribution

The contributions of this paper are threefold: 

1. We propose two new methods to modify the decision scheme of a ridepooling system, 
aiming to face future requests with a better quality of service. Unlike previous works, 
these methods affect the system’s decision process at every stage and are compatible 
with different assignment procedures. The theoretical virtues and drawbacks of both 
methods are discussed in detail.

2. We propose several ways to define generation and rejection rates per zone in the city, 
which are required by the anticipatory methods but can be used for other purposes as 
well. Such rates are computed using data that is endogenously generated when operating 
the system, so that no exogenous information or assumptions are required.
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3. We run detailed experiments to analyze under which conditions the methods improve the 
system’s performance, and propose various ways and metrics to analyze how vehicles’ 
routes are modified, allowing us to measure whether the methods push the system in the 
expected direction. Results show that the methods are able to improve the system, and 
that they do so by reducing the mismatch between the positions of vehicles and requests, 
i.e., the methods effectively allocate more vehicles in zones where they are needed to 
serve their large demand.

Two anticipatory methods

This paper proposes two anticipatory methods to modify already existing algorithms that 
decide how to assign requests and vehicles in an on-demand ridepooling system. The 
first one (“introducing rewards”) modifies how to value each possible route for a vehicle, 
impacting which route to select and how to assign vehicles to requests. The second method 
(“insertion of artificial requests”) includes future trips to the list of requests to be served, 
which imposes a heavier computational burden, but with the virtue of acting through a 
global evaluation of the system, moving some vehicles towards the origins of such future 
requests.

To explain both methods in detail, we first introduce some terminology and the formal 
statement of the assignment problem.

Problem statement

We aim to match requests together and assign them to vehicles efficiently, during some pre-
defined period of operation that lasts PO. However, the requests that are going to be served 
are not known beforehand but emerge throughout the operation. Therefore, this prob-
lem belongs to the well-studied family of stochastic optimization, as surveyed by Powell 
(2019), although we shall not assume any probability distribution for the unknown future 
events.

Terminology

Let us first introduce relevant terminology and notation3:

• The problem takes place over a directed graph G = (V ,E) representing the road net-
work used by the vehicles.

• A request r is a single call from a user (or a number of them traveling together) that 
emerges at time trr , and needs to be transported from an origin or to a destination dr , 
both located on the nodes of the graph. The set of all requests that emerge during the 
period of operation is denoted Rall . Requests that have emerged up to time t (i.e., such 
that trr ≤ t ) can be divided into four sets: Rs(t),Re(t),Rc(t) and Rr(t) representing, 
respectively, those that are being served by the system (either waiting for an assigned 
vehicle or en-route), those that have recently emerged and are waiting to be assigned, 

3 A glossary with all the math symbols used throughout the paper is provided in the appendix (Table 1).
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Table 1  Glossary of symbols used throughout the paper, and the numeric value of the parameters in the 
models

Symbol Meaning Numeric 
value (if 
applies)

G = (V ,E) Graph representing the network –
tV (u,w) Shortest time required to go from node u to node w –
PO Length of the period of operation 1 [h]
� Time-lapse between each assignment process (receding horizon) 1 [min]
r A single request –
trr Time at which r emerges –
or , dr Origin and destination of r –
Rall Set of requests emerged throughout the operation period –
Rs(t) Requests that are being served at time t –
Re(t) Requests that are waiting to be assigned at time t –
Rc(t) Requests that were dropped off before t –
Rr(t) Requests that were rejected before t –
V(t) State of the fleet of vehicles at time t –
v A single vehicle –
Posv(t) Position of v at time t –
Reqv(t) Requests being served by v at time t –
�v(t) Planned route of v at time t –
T One trip (set of requests) –
C Constraints over feasible assignments –
c(v, T ,�, t) Cost of assigning T to v, with updated route � , at time t –

cU , cO Users’ and operator’s costs –
Ψ = {�1, ..., �N} Instants in which an assignment is decided –
A Assignment between vehicles and requests –
Q(�i,A) Set of requests rejected by A –
cR(Q(�i,A)) Cost of rejecting Q(�i,A) –
A(Re(�i),V(�i), C) Set of feasible assignments between Re(�i) and V(�i) fulfilling C –
Rok,Rko Requests served and rejected throughout the operation period –
Πv Route followed by v throughout the operation period –
cA Cost function with rewards –
pw User’s cost of waiting one unit of time 4.64 

[$US/h]
tw Waiting time –
pv User’s cost of spending one unit of time over the vehicle 2.32 

[$US/h]
D Detour –
pO Operator’s cost of moving a vehicle one unit of time 3.48 

[$US/h]
pKO Cost of rejecting a request 3.09 [$US]
L Length of a route –
R Reward function –
Θ Tuning parameter for reward functions 0-6
LN(�) Last node of route � –
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those that are completed and those that were rejected by the system. Note that, at the 
end of the operation ( t = PO ), it must hold that Rall = Rs(t) ∪Re(t) ∪Rc(t) ∪Rr(t).

• A vehicle v is characterized at each time t by its capacity �v , its current position Posv(t) , 
a set of requests that it is currently serving Reqv(t) , and its planned route �v(t) (i.e., a 
path over the graph). The set of vehicles at time t is denoted V(t).

• A trip T = (r1, ..., rk) is a set of requests in Re(t) . Such a trip is feasible to be trans-
ported by a vehicle v at time t, if there exists a route � that serves the requests in T 
and in Reqv(t) , fulfilling a set of constraints denoted by C . Usual constraints include 
maximum waiting times and delay for each request, the vehicles’ capacities, and can 
consider some additional rules like FIFO (first-in-first-out).

• Consider a feasible matching between a vehicle v and a trip T at time t, that instructs 
v to follow a new route � . We define the cost c(v,T , �, t) induced to the system, that 
might include the costs for requests in T, extra costs for requests in Reqv(t) (because 
the updated route might induce longer traveling times for such requests), and operator’s 
costs cO . Users’ costs cU usually depend on the time they spend waiting to be picked up 
by a vehicle and the time spent en-route, and might also take into account other features 
such as the number of co-travelers or the discomfort induced by new changes on the 
vehicle’s route (Fielbaum and Alonso-Mora 2020).

Table 1  (continued)

Symbol Meaning Numeric 
value (if 
applies)

IN(v, T ,�) First node in � such that the vehicle is not full from there on –
m Number of artificial future requests 50
Γ Ratio between rejection rates of real and artificial requests ∈ (0, 1)

� Time between artificial request times 1 [min]
GenB(u, �i) Basic generation rate of node u at time �i –
RejB(u, �i) Basic rejection rate of node u at time �i –
GenS(u, �i) Smooth generation rate of node u at time �i –
RejS(u, �i) Smooth rejection rate of node u at time �i –
GenPF(u, �i) Generation rate of node u at time �i , based on particle filters –
RejPF(u, �i) Rejection rate of node u at time �i , based on particle filters –
GenH(u, �i) Generation rate of node u at time �i , based on historical data –
� Tuning parameter of the smooth method 1
M Number of zones in the network 167
tM Upper bound to the distance between a node and the center of its 

zone
150 [s]

� Number of samples for the Montecarlo method 100
�zi Auxiliary variables for the particle filter method –
wzi Weights for the particle filter method –
�2 Volatility parameter in the particle filter method 0.05
D Number of the days considered for the historical dataset 9
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A problem that is decided over time with partial information

As this is a dynamic problem, there will be a set of time instants Ψ = {�1, ..., �N} , such 
that at each instant �i the system decides an assignment between V(�i) and Re(�i) , i.e., the 
system allocates the requests in Re(�i) (the ones waiting to be assigned) to the fleet of vehi-
cles. How to define Ψ is a decision of the operator of the system. If the decisions are taken 
too often, the system will not collect much information each time, which might yield inef-
ficient decisions; on the other hand, if there is a long lapse of time between two consecu-
tive decisions, some requests will have to wait too long before getting assigned to a vehicle, 
yielding a bad quality of service.

Two usual approaches for defining Ψ are i) event-based ones, in which each time a 
request emerges it is immediately assigned to a vehicle (like van Engelen et al. 2018), i.e., 
Ψ = {trr ∶ r ∈ Rall} and ii) to perform an assignment process each fixed � (like Alonso-
Mora et al. 2017a), i.e., Ψ = {k ⋅ � ∶ k = 1, ..., ⌈PO∕�⌉} . The first approach could be easily 
extended to assign each time a fixed number of b requests have emerged. According to the 
terminology discussed by Powell (2019), the first approach corresponds to an online algo-
rithm, while the second one is a receding horizon (or model predictive control, or rolling 
horizon). Both ideas share that no knowledge about the future is assumed, a character-
istic that we assume for the rest of the paper. Instead, we will exploit the fact that there 
is some correlation between recent and upcoming demand.

Consider a time �i ∈ Ψ . Formally, an assignment A decided at that time is a set of 
vehicle-trip-route tuples (v,T , �) , so that v is told to serve T following the route � , with 
T ⊆ Re(𝜏i) . An assignment is feasible if every matching between a vehicle and a trip ful-
fills the constraints C , every vehicle is assigned to no more than one trip, and every request 
is assigned to no more than one vehicle. Note that some requests might not be assigned 
to any vehicle, forming the set of rejected requests Q(�i,A) . An assignment might include 
reassignments, i.e., updating some decisions taken before; for instance, it could modify the 
vehicle assigned to a request that has not been picked up yet, which is formally done by 
keeping those requests in Re(�i).

The set of all possible feasible assignments at time �i is denoted by A(Re(�i),V(�i), C) . 
Each assignment A has a total cost that depends on the specific costs c(v,T , �, �i) for each 
tuple (v,T , �) ∈ A , and a penalty for the rejections cR(Q(�i,A)) (for instance, proportional 
to the size of Q(�i,A) ). Once an assignment has been decided, each vehicle’s information is 
updated, as well as the status of each request (i.e., to which R∙(�i+1) they belong).

The assignment problem over the period of operation

Putting everything together, we can now formally define the assignment problem. With no 
future information4, the assignment problem consists in solving Eq. (1) iteratively at each 
�i:

(1)min
A∈A(Re(�i),V(�i),C)

∑

(v,T ,�)∈A

c(v, T ,�, �i) + cR(Q(�i,A))

4 Other papers assume some probability distribution regarding future requests, so their approach is optimiz-
ing the expected value of the corresponding objective function.
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Intuitively, Eq. (1) selects an assignment between the requests to be assigned and the vehi-
cles, minimizing the total costs of the system, which is determined by the costs faced by 
each trip-vehicle assignment and the penalty due to the rejected requests.

The whole process is synthesized in Figure 3. At each stage (i.e., at each �i ∈ Ψ ), the 
requests in Re have to be assigned to the current status of the vehicles. The anticipatory 
techniques we propose in this paper alter how to choose the optimal assignment, repre-
sented by the thick red arrow in Figure 3. This new assignment (with or without anticipa-
tory techniques) updates the vehicles’ routes, which defines the new status of the system 
until a new set of requests is inputted into the system, and a new stage begins.

Determining the feasible assignments A(Re(�i),V(�i), C) , as well as solving Eq. (1), can 
be challenging from a combinatorial point of view, so some heuristics might be applied 
throughout the process, yielding to approximate solutions.

For synthesis, to decide how to form the groups and how to assign the vehicles, a method 
needs to define: Ψ , the cost functions, the constraints, and the techniques to compute 
A(Re(�i),V(�i), C) and to solve Eq. (1). We encompass all of this with the concept of assign-
ment procedure P . This concept is useful, because the anticipatory techniques will work on 
top of a predefined assignment procedure (for instance, when we run numerical simulations 
we will use the assignment procedure by Alonso-Mora et al. (2017a)).

In “Assignment introducing rewards” and “Assignment inserting future artificial 
requests” sections we propose techniques that affect how to solve one stage of the system, 
i.e., how to compute the assignments for a fixed �i . The idea is to obtain a feasible assign-
ment in A(Re(�i),V(�i), C) , whose cost might be higher than the optimal, but that yields 
better results in subsequent stages. The purpose is to reduce total costs at the end of the 
operation, i.e., to minimize the a-posteriori-cost-function given by Eq. (2). There, Rok is 
the set of all the requests that were served at the end of the operation, Rko are those that 
were rejected, and Πv is the plan followed by v through the operation; cU , cR and cO rep-
resent the costs of the served users, the rejected users and the operator, respectively. It is 
worth noting that Eq. (2) cannot be computed by adding up the value reached by Eq. (1) at 
every �i , because some of the requests that are assigned at �i might be reassigned to a dif-
ferent vehicle (or even rejected) at future assignments, which is why we need to compute 
everything a posteriori.

As the demand is not known beforehand, this function cannot be optimized a priori, but it 
is the underlying objective of the whole process, so it provides the benchmark to determine 
if the anticipatory techniques do improve the system’s performance.

In Assignment introducing rewards” and “Assignment inserting future artificial 
requests” sections, we assume that we have an assignment procedure. That is to say, we 
propose anticipatory techniques for generic definitions of the set Ψ , constraints C and cost 
functions c(T , v,�, �i) , and we explicitly explain when we require some extra assumptions 
on any of them. To simplify the notation, we omit the reference to �i , because it is fixed. 
Numerical simulations in “Numerical simulations” section utilize a particular assignment 
procedure (by Alonso-Mora et al. (2017a)) that is explained in that same section.

(2)
∑

r∈Rok

cU(r) + cR(Rko) +
∑

v

cO(Πv)
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Assignment introducing rewards

The first assignment method we propose consists in modifying the cost functions of feasi-
ble assignments to favor those that move the vehicles towards high-demand zones. Without 
any anticipatory technique, the system does not account for where the vehicle will be situ-
ated when new requests emerge, so we aim to face this issue by affecting the optimization 
procedure (Eq. 1) by reducing the costs of those routes and assignments that instruct the 
vehicles to move toward more convenient locations for the future.

Recall that c(v,T , �) is the original cost (without anticipatory methods) of inserting trip 
T into vehicle v if the updated route including T is � (that is required to serve all requests in 
T and all the previous requests being served by v). The route before inserting the new trip is 
�v . The anticipatory routing and assignment are achieved by modifying this cost function, 
adding a reward R, which is a (negative) additive term:

The impact of Eq. (3) on the system can be twofold: on the one hand, if v is assigned to 
serve T, there might be more than one feasible route that fulfills all the constraints C , so 
usually (and we assume this is the case for the analyses that follow) the route is chosen 
minimizing the cost function; thus, different routes might be selected when using cA instead 
of c. On the other hand, the decision of which vehicles assign to which trips is taken mini-
mizing the sum of the costs of the selected assignments (Eq. 1), a procedure that yields dif-
ferent results when cA is used instead of c.

Parameter Θ in Eq. (3) is a tuning parameter that controls how much weight is given to 
the reward. The same Θ is used everywhere in the network, meaning that the differences 
across zones depend solely on the reward R. Low values of Θ would have almost no impact. 
When Θ increases, some vehicles will take routes that are not the shortest ones and induce 
higher waiting times and detours for current users, so VHT (vehicle-hours-traveled) should 

(3)cA(v, T ,�) = c(v,T , �) − ΘR(v, T ,�)

Current state of the fleet
V(τi)

Emerging requests
Re(τi)

Input Assignment
A

Exogenous

Decision

Time propagates τi ← τi+1

Fig. 3  A diagram that synthesizes the assignment process during the whole period of operation. Exogenous 
requests emerge and need to be assigned to the available fleet of vehicles. The anticipatory techniques we 
introduce in this paper take place during the assignment decision (marked with a red arrow). Then time 
propagates forward (marked by the dotted arrow), and the fleet’s status is updated until new requests emerge 
and the following assignment occurs. The green background represents exogenous inputs, whereas the blue 
background represents what is decided by the system
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increase, as well as users’ total travel times5. However, if the method effectively locates 
the vehicles into better positions concerning future demand, the number of rejections will 
decrease. Waiting times for current passengers will increase (again, because the selection 
of the optimal route is modified by Eq. 3), but might decrease for future ones, making the 
global effect uncertain. If Θ is too high, the system might get degraded in all its indicators, 
as the primary purpose of the system will be getting better prepared for the future, without 
looking at current users and inducing very long detours.

We provide the pseudo-code description of the method in Algorithm 1. Recall that we 
are solving a single stage of the overall assignment problem (a specific �i ), meaning that 
the set Re contains those requests that are to be assigned at that specific time. We assume 
some assignment procedure P is going to be modified by the rewards, and we highlight in 
bold the steps affected by the rewards (steps 3 and 5). Introducing rewards first affects how 
to determine the routes, where we admit that P might consider some rules (e.g., FIFO) that 
must be respected when optimizing (step 3), and then affects the decision of which vehicles 
are serving which requests (step 5). Note that even if P is event-based, i.e., if it assigns 
requests individually as soon as they appear, these modifications are still valid.

Algorithm 1: Introducing rewards over an assignment procedure P.
1: Input: The directed graph (V,E), a set of requests Re = (r1, ..., rn), a set of vehicles

V = (v1, ..., vq), and a reward function R.
2: Compute the feasible matches between trips T and vehicles V; % This computation is done using the

original assignment procedure P
3: for all (T, v) feasible do determine the optimal route π according to

cA(v, t, π) = c(v, t, π)−ΘR(v, t, π) and to other possible rules; % These other possible rules are given by

the assignment procedure P
4: end for
5: Determine the optimal assignment between vehicles and trips according to cA; % How to determine

this optimal assignment is given by the assignment procedure P
6: Move the vehicles according to their updated itinerary until the assignments are re-updated;
7: Output: For each vehicle an updated itinerary and position, and for each request a vehicle that

will serve it or a notification that it is rejected.

The crucial question is how to define the reward R. We propose several specifications 
(explained in detail in “Different definitions for generation and rejection rates” section); 
for the sake of simplicity, all of them depend on some characteristics of a particular 
node of the induced route � . Two questions naturally arise: which node to look at, and 
what to observe from that node? We study two possible answers for both questions. Let 
us begin with the first one:

• The rewards will be a function of one specific node in �:

– The last node of � , denoted as LN(�) , or
– The first node u in � verifying the following condition: the vehicle has idle capac-

ity after visiting u, and it does not get full in any node afterward. This node is 
called “idle node” and is denoted IN(v, T ,�).

5 Some studies consider VKT (vehicles-kilometers-traveled) as a measure of operators costs that takes 
congestion into account. As in our simulations we are not considering congestion, we prefer to use VHT 
because it captures better some other negative externalities such as the noise.
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An example of these definitions is provided in Figure 4, in which a vehicle has idle 
capacity before its last node, so IN and LN do not coincide. Note that LN(�) depends 
only on the route, whereas IN(v, T ,�) also depends on the vehicle and the trip. We now 
turn to analyze what to look at in the selected node.

• Given the node u (either u = LN(�) or u = IN(v, T ,�) ), the reward at time t will be a 
function of:

– Either the number of requests that departs there Gen(u, t) (a generation rate, as in 
Vosooghi et al. (2019), Lioris et al. (2016)), or

– The number of requests that are rejected there Rej(u,  t) (a rejection rate, as in 
Alonso-Mora et al. (2017a)).

There might be several ways to define the generation and rejection rate of a particular node. 
We propose three methods, explained in “Different definitions for generation and rejection 
rates” section . As discussed in “Problem statement”, none of these definitions shall require 
any knowledge about the future. We do consider a fourth method as a benchmark that is based 
on historical requests, which does not imply assumptions regarding the future but require 
exogenous data.

Analysis and discussion: Some characteristics, virtues, and drawbacks of this method can 
be identified, regardless of the assignment method and of the specific scenario in which it is 
applied.

Parameter Θ controls the impact of the method. Note that as routes and assignments are 
discrete decisions, there are specific values of Θ in which the system is modified. That is, 
there exists Θ1,Θ2, ...,ΘQ such that when Θ reaches each of them, some decision changes: 
either a vehicle changes the order in which to serve its assigned requests, or some assignment 
between vehicles and users is modified. Therefore, selecting Θ means deciding how many of 
these changes are introduced.

Let us analyze the advantages of this method. One of the main difficulties of optimizing 
ridepooling systems is related to the computational time required to decide the assignments: 
The number of feasible trips can be huge, and each trip-vehicle combination requires some 
computation as different routes can be followed. The rewards work over exactly the same set 
of feasible solutions (in other words, the set A from Eq.  1 remains the same, but the cost 
of each A ∈ A is adapted), so if an assignment procedure has been shown to work properly 
in regard to the computational burden, this will continue to be true when this anticipatory 
method is included.

Another virtue of this method is its predictability. It affects the system in a clear-cut way, 
pushing some vehicles to move more often towards the most demanded zones (or with the 
highest rejection rates) instead of going elsewhere. Therefore, we can know in which scenarios 
we should expect this technique to perform well: when vehicles can choose whether to go 
to a high-demand zone or to a low-demand one. Note that in the extremely unbalanced sce-
nario depicted in Figure 1, vehicles have no choice but going to the unique destination, so 
that rewards would play no role there. However, if requests are emerging from different places 
within a city (which is the usual real-life case), vehicles do have a choice.

This technique does not increase at all the computational time because it affects the system 
only at an “individual level”, i.e., at each combination of vehicle and trip. This is also a disad-
vantage, as no global analysis of the system performance is included. In other words, we mod-
ify the cost of each feasible assignment, which enters as an input to the overall decision that 
remains otherwise unaffected. In particular, all the rewards point towards the same directions, 
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and there is no explicit control of how many vehicles are indeed directed towards each zone, 
so that a new imbalance might be induced. The value of Θ plays a key role here: as the rewards 
are included in the cost function, they will affect the behavior of the vehicles only if the reward 
is large enough to compensate the difference in the original costs between the routes or assign-
ments being compared. Therefore, the larger the Θ , the more number of vehicles affected. We 
require tuning this parameter to find intermediate values that affect the system, but not all the 
vehicles.

Assignment inserting future artificial requests

The method explained above has the virtue of affecting the system’s decisions at every 
level (routing and assignments). However, it lacks a global insight into the system’s per-
formance: all the rewards are evaluated equally if evaluated in the same nodes, so all 
the vehicles are pointed towards the same zones. There is no mechanism to achieve a 
balance at a whole-network level. With this in mind, we implement a method based on 
Alonso-Mora et al. (2017b) but able to work with different generation rates (other than 
requiring historical data) and assignment procedures (other than the one from Alonso-
Mora et al. (2017a)).

As the introducing rewards method, this method can also be used with different 
assignment procedures, as long as they can handle requests with future request times, 
and that the reject penalty from Eq. (1) is a fixed value per rejected request, i.e., that the 
cost of rejecting a set Q of requests is defined as some rejection penalty pKO times the 
size of Q.

Recall that we are deciding how to assign the vehicles to a set of requests during a 
single stage of the whole operation. At a high-level description, this anticipatory method 
consists in adding to that set of requests some future artificial ones, whose origins are 
located in high-demand zones, so that some vehicles might get assigned to them and 
move towards their origins:

• First, define a generation rate per node. The same generation rates used to define the 
rewards will be considered, which are explained in “Different definitions for genera-
tion and rejection rates” section.

• Second, generate m artificial random requests whose:

– Origins are selected randomly, following a distribution given by the generation 
rates.

– Destinations are selected such that the length of the artificial requests is simi-
lar to the average length of the real ones. This is done to yield operator’s costs 
that are close to the ones of the real requests. By this means, the operator’s costs 
do not play a too determinant role when deciding whether to serve the artificial 
requests.

Cap.=3 A
+2 pax.

B
-1 pax.

C
-2 pax.

1 pax. 3 pax. 2 pax.

Fig. 4  Example of last node LN and idle node IN. A vehicle of capacity 3 is following the route 
� = (A,B,C) , so its last node is LN(�) = C . The vehicle becomes full at A, and it stops being full at B, such 
that it is never full again. Therefore, this route’s idle node is IN(v, T ,�) = B
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– Times at which they emerge are �i + k ⋅ � with k = 1, ...,m , where �i is the cur-
rent time and � is some parameter (that has time units). Artificial requests are 
equidistant in time to prevent them from being too close, which could make them 
either impossible to group (if they are close in space), or feasibly to be matched 
with any vehicle (in the opposite case). Therefore, � should be large enough so 
that the artificial requests are not too close to each other, but not too large so that 
some future requests could be matched with the current ones.

– The assignments are decided following the same original assignment procedure, 
considering both the real and the artificial requests. Artificial requests, however, 
present a lower rejection penalty p�

KO
= Γ ⋅ pKO , where pKO is the rejection pen-

alty for a real request and Γ ∈ (0, 1).
– The artificial requests are erased after deciding the assignment and updating 

vehicles positions. That is, they are not kept in vehicles’ lists. Therefore, they are 
never served, and they do not affect subsequent assignments. They only impact 
the immediate routes followed by the vehicles.

We provide a pseudo-code description of the method in Algorithm  2. The artificial 
requests are created in step 2 and participate in all the following steps of the assignment 
procedure.

Algorithm 2: Including artificial requests over an assignment procedure P.
1: Input: The directed graph (V,E), a set of requests Re = (r1, ..., rn), a set of vehicles

V = (v1, ..., vq), and a generation rate Gen.
2: Compute m artificial requests R = {r1, ..., rm} according to Gen;
3: R ← Re ∪R;
4: Assign requests in R to vehicles in V according to the assignment procedure P;
5: Move the vehicles according to their updated itinerary until the assignments are re-updated;
6: for all v ∈ V do Remove every artificial request (if any) in the itinerary of v;
7: end for
8: Output: For each vehicle an updated itinerary and position, and for each real request a vehicle

that will serve it or a notification that it is rejected.

Analysis and discussion:  First, let us understand how the system compares the costs 
of future requests with those of real requests. Users’ costs of a future request are usually 
low because vehicles can arrive before the future request yielding zero waiting times. On 
the other hand, the destinations of futures requests are defined so that the operator’s costs 
are similar for real and future requests. Therefore, parameter Γ plays a key role. If Γ is 
close to 1, i.e., if the rejection penalty is almost the same for future and real requests, then 
artificial requests are less costly (due to the users’ costs) than the real ones, and the system 
will always prioritize them. In the opposite case, if Γ ≈ 0 then future requests will never be 
selected because rejecting them is almost costless. Therefore, it is crucial to select a bal-
anced value for this parameter, so that the system selects only those artificial requests that 
could be served very efficiently, i.e., when moving the vehicles towards their origins is not 
too costly.

A virtue of this method is that it considers the set of vehicles as a whole. Indeed, future 
requests are assigned to the vehicles together with the current ones, so no more than one 
vehicle will be directed to each artificial request. Moreover, an artificial request might be 
rejected if serving it is too costly, i.e., if the system needs to make a considerable effort to 
move some vehicle towards its origin. Therefore, this mechanism is balanced at a whole-
network level.
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Although the method directly affects the algorithm only when deciding the assignments, 
routes are altered as well, and differently than when introducing rewards. To see this, con-
sider the following example: a vehicle is on its way to pick up a passenger p, but the new 
assignment sends it to pick-up a future request r first. Although the vehicle is not necessar-
ily arriving at the origin of r, its route is modified until the system updates its assignments. 
Therefore, when this method is applied, the vehicle does not always follow the shortest 
paths between consecutive stops. Although this induced detour might be seen as a draw-
back, it is actually something pursued by the anticipatory method, as the new route will 
likely cross some high-demand areas that increase the chance of receiving a new passenger 
while driving there.

However, there are also drawbacks. This technique increases the computational load, 
as new requests imply new feasible trips. Moreover, as the emerging time of the artificial 
requests is in the future, a large portion of the vehicles can get to their origins before the 
respective request times; therefore, most feasible trips containing only real requests can be 
combined with many subsets of future requests, leading to an increment in the number of 
trips that might be exponential. In many ridepooling algorithms (like the one proposed by 
Alonso-Mora et al. (2017a), which we use here in the simulations), computing the feasi-
ble vehicle-trips matching is the heaviest burden, which might become much slower with 
future requests.

Moreover, the impact of the artificial requests on the system is hard to predict. Three 
types of effects can be identified: first, some vehicles that could have become idle without 
this method will move towards the artificial origins, which is similar to the rebalancing 
steps that are usually present in these models (see “Rebalancing and predictive methods” 
section); second, some vehicles will add future requests to their non-empty lists of requests 
they are serving, which will modify the route in which these real requests are visited; and 
third, some vehicles might have to decide if serving a future request or a real one. The first 
effect is not too relevant, as a rebalancer could replace it; the second effect is the one we 
pursue; the third effect might be troublesome because if a vehicle prioritizes serving the 
future request, the technique will induce some rejections that could be saved. Again, select-
ing a Γ that allows for the second effect and not for the third one is ideal, but it might not be 
possible. Such a parameter is again constant throughout the network, so that all the differ-
ences between nodes get captured by the origins of the artificial requests.

Different definitions for generation and rejection rates

There can be several ways to define the generation and rejection rates for a specific node. 
Here we focus on definitions that can be computed utilizing only the information that is 
generated by the system while operating, so that we do not require any exogenous infor-
mation. To be precise, at time � we will only look at the origins of the requests that have 
emerged throughout the period of operation until � : while the generation rates can use all 
this information, the rejection rates consider solely the origins of those requests that have 
been rejected by the system.

To be concrete, we consider three definitions: a basic one ( GenB,RejB ), a smoothed one 
( GenS,RejS ), and one based on particle filters ( GenPF ,RejPF ). Moreover, we also consider 
an additional way to compute the generation rates that is based on historical data ( GenH ), 
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so that we can evaluate whether using recent information is more appropriate; we cannot 
use historical data to compute a rejection rate, as rejections depend not only on the exog-
enous requests but also on the operation of the system. The first two methods are calculated 
for each node, whereas the other two need to first cluster the nodes in the graph into zones. 
The temporal evolution of the system plays a role in the definitions that follow, so it is 
worth including the explicit reference to the decision times �i . We now explain each rate in 
detail:

Basic rates

The simplest way to define the generation (rejection) rate of a node u is to look at the num-
ber of requests that have just been generated (rejected) at u. Note that the generation rate 
depends only on the set of requests, and the rejection rate also depends on how they are 
assigned. Denoting Rej(�i, u) as the number of requests emerging from u that were rejected 
by the system at the corresponding assignment, the basic rates are defined by:

For i = 1 , the rejection rates are defined as zero everywhere.
Eq.  4 considers, for each node u, the number of requests that emerged since the last 

assignment, and the number of requests rejected in the last assignment, respectively. The 
intuition is straightforward: a node having a large generation rate means that many users 
currently require a vehicle there, so it is worth directing part of the fleet in that direction. 
On the other hand, a large rejection rate represents a lack of vehicles in the last assignment.

Despite being an intuitive method, it might be somewhat unstable: as the �i cannot be 
too widely spaced in time, the chance that a node has no requests is high, and the random-
ness might play a too relevant role.

Smooth rates

The aim of anticipatory routing is that vehicles remain closer to where demand is expected. 
From that point of view, the rates of a node could also consider the information of its 
neighboring nodes: for instance, it might be better for a vehicle to be in a node that does 
not generate requests if all its neighbors do. With this in mind, the GenS and RejS rates are 
defined considering also the requests that depart from close nodes:

Where tV (x, y) is the time-length of the fastest path between x and y, and � is a tuning 
parameter (the higher this parameter, the more uniform the resulting rates). This method is 
called “smooth rates” because rates become more stable in space. Note that all nodes are 
included in Eq. (5), but distant nodes do not affect much.

Particle filters

This method applies the ideas from Wallar et al. (2018) (based on the particle filter meth-
ods proposed by Arulampalam et al. (2002)) to calculate the generation/rejection rates of a 

(4)GenB(u, �i) = |{r ∈ Re,�i
∶ or = u}|,RejB(u, �i) = Rej(�i−1, u)

(5)GenS(u, �i) =
∑

w∈V

GenB(w, �i)

� + tV (u,w)
,RejS(u, �i) =

∑

w∈V

RejB(w, �i)

� + tV (u,w)
.
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zone, although (Wallar et al. 2018) used it for rebalancing purpose. It requires first divid-
ing the nodes into clusters C1, ...,CM , which are obtained by minimizing the number of 
required “centers”, such that each node in the network can be reached from at least one 
center in a time lower than a parameter tM . This problem is solved through an ILP that is 
fully described in Wallar et al. (2018), and each node is then assigned to its closest center. 
All the nodes assign to the same center comprise a zone. Note that by this method all the 
zones have a similar area. This is crucial to have rates that are comparable (otherwise, 
larger zones could present higher absolute rates but having a lower density of requests, so 
that it would be unclear whether to prioritize them).

Once the M centers and zones have been obtained, auxiliary variables (that represent a 
proxy for the rates) �z� are defined for each zone z and for � = 1, ..., � , where � is a large 
number of Montecarlo simulations. Each �z� has a weight wz� . These values will be updated 
at each �i , and the idea is that the rates at each zone are calculated as the weighted averages 
of the �z� . To simplify the notation, we omit the reference to �i when referring to variables 
z and w. Parameters �z� are initialized randomly, with wz� =

1

�
 . Denoting 

G(z, �i) =
∑

u∈z GenB(u, �i) the generation rate of each zone, let us explain how rates are 
updated (the procedure is analogous for the rejection rates): 

1. For each zone z, � samples are selected (with replacement) from �z� , with probabilities 
given by the weights wz� . These samples are denoted �z� .

2. Variables �z�  are perturbed6: �z� = �z� + �(0, �2) , with �2 a “volatility parameter”.
3. Weights are updated according to the observed generation rate of the zone, as the prob-

ability that a Poisson process of parameter �z� reaches the generation rate of the zone: 
wz� = e−�z�

�
G(z,�i )

z�

G(z,�i)!
 . By these means, those �z� that are closer to the observed rates get a 

higher weight, which affects the calculated generation rate (step 5) and the next update 
(in �i+1 ) for �z� (step 1).

4. Weights are normalized: wz� =
wz�∑N

j=1
wzj

5. Generation rates for each zone are calculated as the weighted averages: 
GenPF(z, �i) =

∑�

�=1
wz��z� . Each node u ∈ z has the same generation rate 

GenPF(u, �i) = GenPF(z, �i).

Using zones instead of single nodes might make the system more robust as it does not 
depend on events on single nodes, but changes in the boundaries of a zone might be trou-
blesome. The particle filter method has the virtue of providing some temporal stability, 
as the parameters �z� are updated at each �i from their previous values (see step 3 above). 
However, the stability might be a problem when big changes take place (for instance, when 
passing from the peak to the off-peak period).

An additional definition and comparison of the rates

As explained above, we only use information that is endogenously generated by the sys-
tem when assigning. The only exception is the rates we explain now, which are based on 
exogenous historical data so that they might be used as a benchmark to analyze how useful 

6 An almost-zero lower bound is required because negative rates are senseless. In our experiments, this 
bound was never reached.
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current requests are to approximate what will happen in the near future. Note that using 
historical data does not violate the principle of not requiring any assumptions regarding 
future requests (e.g., in the form of a probability distribution).

This method adapts the ideas from Alonso-Mora et  al. (2017b). They also divide the 
nodes into clusters, so we keep here the technique used for the particle filter method (previ-
ous subsection). Then, they estimate the number of requests emerging from a zone using 
a historical dataset. Which dataset to use is not a trivial issue, as transport demand can be 
heavily affected by weather, traffic events, recent transport-related changes -such as new 
transit/metro lines or new highways- or urban projects, among others (Böcker et al. 2013; 
Zhou et al. 2013; Xue et al. 2015; Pereira et al. 2014; Liu et al. 2021), which makes data-
based demand prediction a quite complex challenge, beyond the scope of this paper. Never-
theless, we do take this discussion into account: instead of considering a whole year of data 
(as Alonso-Mora et al. 2017b), we use only some weekdays in the past, which are expected 
to have more similar weather (same season) and fewer differences in the private and public 
transport networks. Denoting D the set of days in the dataset, and G(u, d, t1, t2) the number 
of requests emerging from node u during (t1, t2) on day d:

With all the zones beginning with a nil generation rate. And

We only use this method for generation rates, as there is no such thing as “historical rejec-
tion rates”. The advantages of this method relate to the potential predictive power that 
historical data might provide, which can be particularly relevant when the demand faces 
sudden changes that will not be anticipated by methods that rely on the current and past 
states of the system. Therefore, it can be used to compare the results obtained by the other 
methods. On the other hand, historical data is not always available, and using it effectively 
for predicting the demand is not an easy task.

The three methods that are based on endogenous information use it to approximate 
the short-run demand. A positive long-run effect is expected thanks to the continuous 
updates applied to the rates when requests emerge, which has to be tested in the numerical 
simulations.

A graphical comparison of the four methods based on generation rates is offered in Fig-
ure  5, in which each node’s color represents its generation rate at a particular time (the 
brighter the color, the higher the rate). Although all the methods present higher rates at the 
center of the network, the differences among them are highlighted as follows: in the basic 
method, most nodes present nil generation rate (black nodes), with a few nodes concentrat-
ing all the positive rates; the smooth method builds a much more continuous pattern, which 
yields positive values even in the extreme sectors of the network; the last two methods 
are based on zones, with the particle filter achieving a higher concentration at the center 
(brighter colors). The rejection rates cannot be shown at this point, as they depend on the 
specific conditions of the ridepooling system and not only on the demand itself.

The apparent differences among the resulting rates suggest that the effectiveness of the 
anticipatory techniques shall depend greatly on which rates are being used. Recall that we 
aim for balanced values for the parameters Θ and Γ that control the weight of the anticipa-
tory techniques. The larger the differences among the generation rates per node, the more 
significant the differences introduced by the anticipatory techniques when deciding the 

(6)GenH(z, �i) =
∑

u∈z

∑

d∈D

G(u, d, �i−1, �i)

|D|

(7)GenH(u, �i) = GenH(z, �i)∀u ∈ z
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routes and assignments. In other words, while Θ and Γ refer to the overall weight between 
current requests and anticipatory techniques, the intensity of a method refers to how dis-
tributed (more or less concentrated) this weights are in space. Therefore, having such vary-
ing rates provides yet another source of flexibility (together with the parameters Θ and Γ ) 
to control the anticipatory methods, which might enable better results.

Numerical simulations

In this section, we run simulations using over a real-life case using the assignment proce-
dure by Alonso-Mora et al. (2017a). We first explain such a procedure (“The assignment 
procedure” section), and then describe the real-life case (“The real-life study case” section) 
to present detailed results and sensibility analyses (“Global performance of the anticipatory 
methods”–“Sensibility analysis” sections)).

The assignment procedure

The anticipatory ideas we propose in this paper are tested on top of the assignment pro-
cedure studied by Alonso-Mora et  al. (2017a), which assigns passengers to vehicles. 
This procedure is based on deciding each � (here we use � = 1 minute ) how to assign the 
requests that have emerged during that lapse of time: how to group them, which vehicle 
(that might be serving some previous passengers) assign to each group, and in which order, 
i.e., Ψ = {k ⋅ � ∶ k = 1, ..., ⌈PO∕�⌉} . The set of constraints C requires that the capacity 
of the vehicles is never exceeded, and deals with the quality of service, imposing that no 
served requests can face a waiting time large than some upper bound Ωw , nor a total delay 
larger than Ωd . We now explain how the assignments are decided in each iteration at time 
�i . 

1. First, for each request r ∈ Re,�i
 and vehicle v it is analyzed if it is feasible that v serves 

r without violating the constraints C . A heuristic might be implemented after this step 
to reduce the number of feasible requests (and thus, the computational time): for each 
request r, consider the set of all feasible to serve r, and discard the most costly ones.

2. Assuming that the feasible assignments between vehicles and trips of size j are known 
(the previous bullet point explains the case j = 1 ), study the feasible matches between 
vehicles and trips of size j + 1 based on the following fact: if an assignment between a 
trip and a vehicle is feasible, then the assignment between the same vehicle and all the 
subsets of that trip must be feasible as well. When a feasible link between a vehicle and 
a trip is found, it includes how to update the vehicle’s route, which is done by minimiz-
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ing the total additional costs (see Eq. 8 below for details), which can be done using an 
exhaustive search or some insertion heuristic.

3. Build an ILP that decides which of the feasible trip-vehicle assignments are taking place, 
ensuring that each request is either assigned to a single vehicle or rejected, and that each 
vehicle is assigned to no more than one trip. The objective function includes the costs 
of the chosen assignments, plus a penalty pKO for each rejected request.

4. A rebalancing step moves the idle vehicles, i.e., those that had no passengers before 
deciding the assignment and received none in step 3. They are moved towards the ori-
gins of the rejected requests through another ILP, minimizing the total distance driven 
by these vehicles and without sharing (i.e., no more than one rejected request can be 
assigned to each idle vehicle). Note that these vehicles are not actually meant to serve 
those rejected requests, so the feasibility constraints regarding waiting times, delay, and 
capacity of the vehicles are not included in this ILP.

Some comments are noteworthy:

• In Alonso-Mora et al. (2017a), when the assignment is decided, those requests that are 
not picked up before � are kept for the next iteration, which allows the system to reas-
sign. That is to say, these requests might be served by a different vehicle or can even 
become rejected, if doing so increases the total efficiency of the system. We introduce 

Fig. 5  The generation rate of each node according, from left to right, to GenB,GenS,GenPF , and GenH in 
Manhattan, at 12:50 on 15/01/2013, considering requests emerged in the previous minute. The brighter the 
color, the higher the generation rate
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a slight modification in this paper: the first request that will be picked up (i.e., the next 
pick-up in the vehicle’s list) is not reassigned in the next iteration. This change is needed 
because when routing is modified through the anticipatory techniques, the time required 
to arrive at the first pick-up might increase because the vehicle does not necessarily fol-
low shortest paths; therefore, the number of accumulated requests for reassigning might 
increases, which has an exponential impact on the computational burden. Moreover, 
experiments show that this change reduces the number of rejections in the system.

• If a reassignment of an individual request takes place, Alonso-Mora et al. (2017a) for-
bids an increase in the achieved waiting time (compared to the one of the previous 
assignment), while in Fielbaum et al. (2021) they forbid rejections for a subset of the 
requests (those that are required to walk, an option that is not considered here). In this 
paper, requests that are being reassigned face the same constraints as the new requests 
and can be rejected.

• Once a request becomes rejected, it is removed from the system, instead of kept for 
reassigning as done in Alonso-Mora et al. (2017a).

We use the following cost function when assigning trip T to vehicle v, if the route of the 
vehicle is updated from �v,�i to � (prior to introducing rewards):

Where the first line in Eq. (8) represents users’ costs: the first term refers to the waiting 
time tw and the detour D faced by the requests r in the new trip, and the second term to the 
extra waiting time Δtw and extra detour ΔD imposed to the requests r0 that were already 
being served by the vehicle v, due to the changes induced to its route. Parameters pw and pv 
are the costs of one time-unit waiting and over the vehicle, respectively. The second line in 
Eq. (8) deals with the operator’s costs, which are proportional to the increase in the length 
of the route.

A detailed explanation of the assignment method per iteration, already affected by 
the anticipatory techniques, is shown in the pseudo-code of Algorithm 3 that introduces 
rewards, where we say that c(v,T , �) = ∞ if the assignment is unfeasible. The algorithm 
including future requests is the same, but considering c instead of cA , and adding the future 
requests to R at the beginning of the algorithm.

(8)

c(v, T ,�) =
∑

r∈T

[
pwtw(r,�) + pvD(r, �)

]

+
∑

r0∈Reqv,�i

[
pwΔtw(r0,�,�v,�i ) + pvΔD(r0,�,�v,�i )

]

+ pO
(
L(�) − L(�v,�i )

)
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Algorithm 3: The assignment algorithm with rewards utilized in the numerical simulations.
1: Input: The directed graph (V,E) and a set of requests Re = (r1, ..., rn), a set of vehicles

V = (v1, ..., vq). % The set of requests contains those that have just emerged, and those that might be reassigned

2: T = [ ], C = [ ];% T will contain the feasible trip-vehicle assignments, C will contain the respective costs

3:
4: for all r ∈ Re, v ∈ V do
5: if ∃ route π such that c(v, r, π) < ∞ then
6: Find π′ that minimizes cA(v, r, π); % cA is the cost function modified with the rewards. This route can be

found through an exhaustive search or using an insertion heuristic.

7: T ← [T, (r, v)], C ← [C, cA(v, r, π′];
8: end if
9: end for

10:
11: for all r ∈ Re do
12: Remove from T and C a portion of the assignments involving r, those with the highest costs in

C; % This is a heuristic step, which is optional. The more assigments that are removed, the higher the impact of the

heuristic.

13: end for
14:
15: for all v ∈ V do
16: Define Rv = {r ∈ Re : (r, v) ∈ T}; % The requests that can be served by v

17: for all S ⊆ Rv do
18: if ∃ route π such that c(v, S, π) < ∞ then
19: Find π′ that minimizes cA(v, S, π);
20: T ← [T, (S, v)], C ← [C, cA(v, S, π′)];
21: end if
22: end for
23: end for
24:
25: Select a subset T ′ from T , such that each vehicle and request are in no more than one element in

T ′, minimizing the total cost of T ′ plus the penalty for each non-assigned requests; % T ′ contains
the assignments that are taking place. The optimization problem is solved as an ILP.

26: Output: T ′

It is worth recalling that the anticipatory methods we propose here do not require this 
specific assignment procedure to work. Different assignment methods and different cost 
functions may also incorporate the anticipatory techniques explained above.

The real‑life study case

The proposed methods are tested over a publicly available dataset of real trips performed 
by taxis in Manhattan, New York, that started between 1-2 p.m. on January 15th, 20137. 
The total number of requests is 7,748, while 4,091 nodes and 9,452 edges form the city 
network. The numeric value of the chosen parameters is shown in the Appendix. Some 
conditions are modified to analyze the robustness of the system in “Sensibility analysis” 
section.

A fleet of 1,000 vehicles of capacity 3 was considered. This is a small fleet, unable to 
serve all the demand. Having a significant rejection rate enables us to analyze the impact of 
the methods over rejections in a crisp way, as well as how anticipatory techniques affect the 
trade-off between the number of served requests and the quality of service for those who 

7 See https:// data. cityo fnewy ork. us/ Trans porta tion/ 2013- Yellow- Taxi- Trip- Data/ 7rnv- m532, accessed on 
05/July/2021.

https://data.cityofnewyork.us/Transportation/2013-Yellow-Taxi-Trip-Data/7rnv-m532


1946 Transportation (2022) 49:1921–1962

1 3

are served. In “” section, we show that the main analyses and conclusions we obtain for 
this fleet remain vSensibility analysisalid when a larger fleet is used.

Let us first analyze the results obtained when only the methods that provide rewards at 
the routing stage are included (“Assignment introducing rewards: final node or first idle 
node” and Assignment introducing rewards: comparison of the different rates sections). 
We then study the effects of the artificial requests (“Assignment inserting future artificial 
requests: comparison of the different rates” section), we compare the methods (“Coupling 
and comparison of the methods” section), we study in detail the operational effects of the 
anticipatory techniques (“Detailed analysis of the impact over the system” section), and we 
finally provide a sensibility analysis (“Sensibility analysis” section).

Global performance of the anticipatory methods

Assignment introducing rewards: final node or first idle node

Recall that, as explained in “Assignment introducing rewards” section, rewards depend 
on the generation rate of one of the nodes in the route that is being analyzed. Figure  6 
compares the results obtained when using the final node of the route (“Last node” in the 
images) versus using the first detention of the route from which there is always idle capac-
ity (“Idle node” in Figure 6), when using the basic rates, and considering three indicators 
of the quality of the system: Average users’ costs -an adimensional value calculated as the 
weighted average of waiting times, total delays and number of rejections, according to the 
same parameters used in the optimization, including the rejection penalty-, percentage of 
requests being rejected and VHT.

Results in Figure 6 are questionless. When the reward depends on the idle node of the 
route, the impact is mild, but when it depends on the last node, it can be quite meaningful: 
compared to the case with no rewards ( Θ = 0 ), the number of rejections can be reduced by 
a bit more than 10%, at the cost of increasing VHT in about 10%. Users’ costs also drop, 
but less significantly than rejections, meaning that delay and waiting times might increase. 
These changes will be studied in more detail in the following subsections that compare the 
different rates and methods. From now on, all the results are calculated with the rewards 
depending on the final node.

Assignment introducing rewards: comparison of the different rates

In “Different definitions for generation and rejection rates” section, four definitions for the 
rates were provided: basic (B), smooth (S), calculated through particle filters (PF), and 
through historical data (H). The first three ones can be applied to generation or rejection 
rates of each node (that, as just explained, is the final node of the route), whereas historical 
data only gives generation rates. All this together makes seven methods to define the differ-
ent rates.

The results obtained with each of these seven rates are shown in Figure 7. The following 
conclusions emerge:

– Some of the rates are much more effective in reducing the number of rejections and 
users’ costs than others. Two rates highlight as the best ones: RejPF and GenB . While the 
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former achieves the minimum values for the rejection rates and the users’ costs, the lat-
ter achieves slightly worse results in those measures, requiring a lower increase in VHT. 
It is worth saying that if Θ is further increased, GenB does not longer improve its results.

– The results of the best methods show that these rewards can be very fruitful. For 
instance, the number of rejected requests with RejPF drops from 3,025 to 2,631. Of 
course, whether this is good news depends on how opposing objectives are evaluated, 
as increasing VHT is unavoidable.

– The tuning parameter Θ emerges as a crucial issue for these models. Which is the best Θ 
depends on what rate is being used. The good news is that for all of them, the range of 
values of Θ that yields good results is wide, meaning that these methods are robust even 
if the optimal Θ is not known.

– Rates that are based on rejections have, in general, better results concerning both lower 
users’ costs and VHT. The only exception is GenB , which increases VHT much less 
than RejB , with similar (although worse) results regarding users’ costs.

– Regarding smoothing rates, they can improve the system if based on rejections.
– The rates based on historical data perform worse than the ones based on recent infor-

mation. That is to say, our results highlight the potential of utilizing the information 
that is directly generated by the system.

To understand the trade-off between the different user-related quality measures better, 
Figure 8 shows the average waiting time and average detour (i.e., the difference between 
each user’s in-vehicle time and the time-length of the shortest path he/she could have 
followed), considering only the two rates that achieved the best results GenB and RejPF . 
Indeed, both quality measures get worse when rewards are applied. However, recalling that 
GenB achieves its minimum reject rate at Θ = 6 and RejPF at Θ = 2 , we can also conclude 
that there is some synergy between these objectives, as waiting times and detour do not 
increase that much for these optimal values of Θ.

As a synthesis, the introduction of rewards reduces the percentage of rejections of 
the system if the right generation or rejection rates are selected, at the cost of provid-
ing worse service for the users that are transported.

Assignment inserting future artificial requests: comparison of the different rates

The same four generation rates GenB,GenS,GenPF and GenH were used to determine the 
origin of m artificial requests. We take � = � (1 minute). Inserting future requests makes 
the algorithm much slower, as they can be combined with most of the current requests 
without violating the constraints regarding maximum waiting times and delay, which 
increases the number of feasible groups. To overcome this issue, we tighten the heuristic 
explained in step 2 of the assignment model (“The assignment procedure” section), i.e., we 
discard a larger amount of feasible-but-costly vehicles when analyzing trips of size one.

Figures 9 and 10 show the results when inserting the artificial trips with each of the 
generation rates. The baseline (in black) corresponds to the results shown in the previous 
subsection for Θ = 0 (i.e., without tightening the heuristic that discards vehicles), whereas 
the results for Γ = 0 include the change on the heuristic and are equivalent to having no 
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artificial requests. The comparison of the results against Γ = 0 shows the direct effect of 
introducing these artificial requests. However, the most relevant comparison is against the 
baseline because it is achieved if no artificial requests are added. Note that Γ = 0 (i.e., when 
the heuristic is tightened) includes more rejections than the baseline, but better results in 
the other indices (much lower waiting times and detours just a bit larger), which is a natural 
consequence of removing the most costly vehicles for each request: each request has fewer 
options to be served, but the options that remain are less costly, i.e., provide a better quality 
of service (recall that the cost is defined as the sum of users’ costs and operator’s costs).

In general, all the rates are able to reduce waiting times and detours significantly. The 
percentage of rejections, on the other hand, is always higher than in the baseline: when 
compared with Γ = 0 , rejections are sometimes larger and sometimes fewer, but changes 
are always minor (these results are similar to the ones obtained by Alonso-Mora et  al. 
(2017b)).

These results can be synthesized by stating that inserting artificial requests by itself 
improves the quality of service for those users that are transported, but the induced 
increase to the computational time requires using heuristics that might increase the 
number of rejections. The interpretation is as follows: Artificial requests effectively 
push the vehicles towards the origins of future requests. However, when they are inserted, 
they compete with current requests for the same vehicles so that sometimes the system 
will prioritize serving the artificial ones despite their lower rejection penalty. VHT always 
increases.

The method that achieves the best results is8 GenB : it presents the largest reduction in 
the rejection rate with Γ =

1

80
 , and in detours for Γ =

1

60
 . Reductions in waiting times are 

similar for all the generation rates, except for GenH when Γ =
1

40
 . Results obtained by GenS 

and GenPF are almost identical. The fact that GenH might yield the worst results if Γ is not 
properly selected (i.e., it is a less robust method) reinforces the conclusion that the direct 
use of past information can be an unfruitful idea for these transportation systems.

Fig. 6  Average users’ costs (left), percentage of rejected requests (center), and vehicle-hours-traveled 
(right) in the basic model introducing rewards, as a function of the parameter Θ , depending on whether the 
last node (LN) of the route is considered or the first node from which the vehicle always has an idle capac-
ity (IN). Θ = 0 represents no anticipatory methods

8 A sensibility analysis with respect to the number of artificial requests and their temporal distance pre-
serves the same conclusions. When compared to the results exhibited in this subsection, waiting times 
and detours remain almost equal, whereas the number of rejections increases when inserting fewer future 
requests.
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In all, the insertion of future requests achieves reductions precisely where rewards fail: 
waiting times and detours. This happens because both methods move the vehicles towards 
high-demand zones, but inserting future requests might yield to rejecting some real current 
ones, so that the gains in efficiency translate into waiting and delay for the requests that 
will emerge afterward.

Coupling and comparison of the methods

The different results obtained by the two methods proposed in this paper, introducing 
rewards and inserting artificial requests, might suggest that using both simultaneously is 
promising, as they achieve good performance in complementary indices. However, our 
simulations show the opposite. As they both push the system towards the same direction, 
the results are much worse when used together, as rejection rates jump from less than 40% 
in the baseline scenario to more than 50%. This bad news can be explained: rewards move 
the vehicles towards the same zones in which the future requests are inserted. If a vehicle 
has to choose between waiting for a future artificial request or serving a current real one, it 
might prioritize the future one despite its lower rejection rate, as being in a close position 
makes the cost of serving it very low.

Therefore, an operator should decide between using only one of the two methods. A 
detailed comparison among them is offered in Figures 11-12, in which we show the results 
when running the methods for the real requests from ten consecutive weekdays, always 
between 1-2 p.m. We compare the baseline (no anticipatory techniques), and the best ver-
sions of each of the two methods: GenB with Θ = 6 when introducing rewards, and GenB 
with Γ =

1

80
 when inserting future artificial requests.

Figures 11-12 synthesize the most relevant conclusions of the simulations. Both meth-
ods effectively impact the performance of the system, achieving different goals: whereas 
introducing rewards decreases the rejection rate of the system, including artificial future 
requests improves the quality of service for those requests that get served, and both meth-
ods require an increase in VHT. Moreover, these conclusions are robust, as they are shown 
to be valid for each of the ten days.

In general, introducing rewards is better for most situations, as serving more passengers 
is usually the most relevant purpose, even more recalling that waiting times and delay are 

Fig. 7  Average users’ costs (left), percentage of rejected requests (center), and vehicle-hours-traveled 
(right), as a function of the parameter Θ , for each of the generation and rejection rates when introducing 
rewards. Solid lines represent results based generation rates, whereas dotted lines represent results based on 
rejection rates. Θ = 0 represents no anticipatory methods
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always bounded. This method also has the virtue of not increasing the computational times 
at all. However, if the operator is most interested in improving the service for those passen-
gers that are being served, inserting artificial requests is the best option.

Detailed analysis of the impact over the system

So far, we have analyzed the methods in terms of the most relevant indices of the system. 
However, when we introduced the need for this type of method, we justified it by analyzing 
the spatial heterogeneity of the results, and the influence of deciding without knowing the 
demand beforehand. Therefore, we now turn to analyze how the operation of the system 
is being modified. We focus on the method that introduces rewards, as it yields the best 
results, considering the rates GenB and RejPF that proved stronger.

Impact over the temporal evolution of the system

We first study how the number of rejections evolves in time, compared to the case with no 
anticipatory methods ( Θ = 0 ). We know that GenB and RejPF have less rejection in total, 
but when does this happen? Figure 13 shows how many rejections are being saved thanks 
to introducing rewards. This is done by depicting the difference between the accumulated 
rejections with no rewards, and the accumulated rejections with rewards for both rates: as 
before, the solid blue curve represents GenB , and the dotted green curve represents RejPF.

Both curves begin quite flat and even take negative values, meaning that in the first 
iterations, rewards worsen the system’s quality. The RejPF ’s curve rapidly starts to increase 
(i.e., to have fewer rejections than the method with no anticipation), whereas GenB requires 
almost half an hour to do so, which verifies that the central motivation of these methods 
is achieved: modifying its current decisions to be better prepared for future requests. Note 
that, after about 40 minutes of operation, both methods reach an almost-linear increase, 
i.e., they keep saving rejections at a rate that keeps somewhat constant.

Fig. 8  Average waiting times 
(left) and detours (right), as a 
function of the parameter Θ , for 
GenB and RejPF , when introduc-
ing rewards. Θ = 0 represents no 
anticipatory methods
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Impact over the spatial mismatch between vehicles and requests

We now analyze how the operation changes in space. We have noticed before that the most 
demanded zones were receiving a worse quality of service, so that more vehicles seemed to 
be required there. To analyze the changes, Figure 14 shows, at the end of the hour that was 
modeled, the differences in the vehicles’ positions between having no anticipatory methods 
and GenB (left) or RejPF (right). We partition the whole map into the same zones used for 
the methods with particle filters and historical data, and each vehicle is assigned to the 
zone corresponding to its closest node. A red sector means that there were more vehicles 
assigned with rewards, whereas blue means the opposite: the more intense the color, the 
higher the difference.

Both Figures have almost only blue zones at the north of the network. In the center, 
intense red zones clearly dominate for RejPF , and not so clearly for GenB . That is to say, 
rewards are indeed moving some vehicles from the north of the network (a low demand 
area) to the center. It is worth saying that GenB makes no noticeable difference in the south-
west (at the bottom of the network), while RejPF increases the number of vehicles there.

A similar analysis can be done to see where the rejects are concentrated. In Figure 15, 
each zone is an origin, that is blue if the percentage of rejected requests emerging there was 
higher with no rewards than with GenB (left) or RejPF (right), and red in the opposite case. 
Again, the more intense color, the higher the difference. The reduction of the rejections 

Fig. 9  Rejection rates (left), and vehicle-hours-traveled (right), when inserting artificial requests as a func-
tion of the parameter Γ , for each of the four generation rates. The baseline results, i.e. with no anticipatory 
methods and without modifying the heuristics of the assignment algorithm, are shown in black

Fig. 10  Average users’ waiting 
time (left), and detour (right) 
when inserting artificial requests, 
as a function of the parameter Γ , 
for each of the four generation 
rates. The baseline results, i.e. 
with no anticipatory methods and 
without modifying the heuristics 
of the assignment algorithm, are 
shown in black
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rates in the central zones is apparent. Notably, we see that the overall reduction is achieved 
by increasing the number of rejections in some zones, mostly at the south and north of the 
network.

When describing methods that insert rewards, a possible drawback was identified: as 
there is no global control of the effects introduced by the rewards, many vehicles could be 
sent towards the same places, which could yield a worse mismatch between vehicles and 
requests than with no anticipatory methods. To analyze if this is the case, we create the fol-
lowing indices per zone z, also evaluated after 60 minutes. For each zone z, define vz as the 
proportion of the vehicles inside z, and rz as the proportion of current requests departing 
from z. A perfectly balanced system would require that vz ≈ rz∀z . Therefore, a measure for 
the level of mismatch at z is:

We choose these absolute values rather than normalized so that high-demand zones weigh 
more when calculating average values of Mz.

We now study how these values Mz change when anticipatory methods are used. We 
use RejPF for the comparison because it presents the largest impact on the system. A first 
analysis can be done by looking at the mean and median values of Mz , which is shown 
in Table  1. As apparent, the level of mismatch is reduced when using the anticipatory 
scheme. Note that the absolute numbers of Mz depend on many different structural aspects 
of the problem (such as fleet size, number of shareable requests, distances), so the relevant 
insight we obtain from Table 2 is how the numbers change when the anticipatory method 
is included. It is also noteworthy that Mz might not take other relevant features into account 
(for instance, how shareable are the requests emerging from each zone), so the analysis is 
meaningful at a global scale rather than for specific conclusions.

Conclusions from Table 1 are reinforced by looking at Figure 16, in which we show the 
level of mismatch at each zone, without anticipatory methods (left), and using the rewards 
technique with RejPF (center). Introducing the rewards builds a figure with more dark 
zones, i.e., more zones with a low level of mismatch. The difference is mostly achieved 

(9)Mz = |vz − rz|

Fig. 11  Rejection rates (left) and 
vehicle-hours-traveled (right) 
induced by the two anticipatory 
methods and the baseline, when 
running the methods over ten 
different days

Fig. 12  Average users’ waiting 
times (left) and detour (right) 
induced by the two anticipatory 
methods and the baseline, when 
running the methods over ten 
different days
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at the north of the network. Recalling that the rewards remove vehicles from that area, we 
conclude that an oversupply is now prevented there.

In all, this subsection allows us to synthesize the impact of the rewards over the ride-
pooling system: using anticipatory rewards improves the system only after some ini-
tial lapse of time; the improvement is achieved by moving vehicles towards the high-
demand zones, which decreases the quality of service in the low-demand zones but 
achieves better overall results. Moving these cars decreases the mismatch between vehi-
cles and requests.

Sensibility analysis

So far, we have shown results for a particular network, for a fixed demand and a given fleet. 
We now show that the proposed techniques are robust, i.e., that they also work properly 
under different conditions, although results are not exactly equal. In particular, the optimal 
values for Θ and Γ are highly sensitive to the specific conditions.

Two alternative scenarios will be used for the sensibility analysis. In the first one, we 
serve the same demand and the same network, but using a fleet of 2000 vehicles of capac-
ity 4, to study whether the methods are effective when the number of rejections is lower.

The second scenario uses data from Didi Udian, a real ridepooling company in Shenz-
hen, China. As on-demand ridepooling is an emerging mobility system, the scale is much 
smaller: 311 requests during 12 hours. The simulation considers a fleet of 10 vehicles of 
capacity 5. The network is formed by 5,502 arcs and 2,201 nodes, clustered into 96 zones. 
A heatmap exhibiting the location of the origins is shown in Figure 17, showing that this 
case is of smaller case and presents a different demand structure, with two separated high-
demand zones.

Sensibility of the method that introduces rewards

Let us begin analyzing the method that introduces rewards. We focus on the two rates that 
presented the best results in the previous sections: GenB and RejPF . Figure 18 shows the 
results in the same Manhattan case with a larger fleet of vehicles with a greater capacity. 
The most relevant conclusions are:

Fig. 13  Difference in the 
accumulated rejections with or 
without anticipatory methods. 
The y-axis shows the differ-
ence between the number of 
accumulated rejections if using 
no anticipatory methods at all, 
or introducing rewards and using 
GenB (solid blue curve) or RejPF 
(dotted green curve); the x-axis 
represents the number of itera-
tions (evolution in time), where 
we run one iteration per minute
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• Introducing rewards can reduce the number of rejections even when this number is 
already low. The relative decrease is similar (about 10% of the original rejections), 
which means that the absolute decrease is less significant.

• The best value for the parameter Θ , however, changes a lot. In the original scenario 
GenB should select Θ = 6 and RejPF should select Θ = 2 , and now these numbers turn 
to Θ = 2 and Θ = 2∕3 , respectively. Using a smaller Θ means that the rewards are less 
weighted in the objective function, which is reasonable as more vehicles can provide 
better results at the current time. A relevant question for future research emerges: how 
to determine the optimal Θ according to the external and internal conditions of the sys-
tem. Note that an erroneous selection for Θ can lead to awful results, as shown by the 
RejPF curve when Θ ≥ 2.

• GenB presents much better results than RejPF in this context, as it increases VHT just 
mildly.

Shenzhen’s case presents several differences. The low amount of requests and vehi-
cles allows us to analyze whether the introducing-rewards methods depend on some scale 
effects to be effective. Moreover, as we are now simulating 12 hours of operation, the long-
run effects of this technique can be studied.

The small scale permits describing the results in a very synthetic way and are identical 
for GenB and RejPF : the rejection rate drops from 40.8% to 37.3% when Θ reaches 6 (there 
is no effect for lower Θ ), with VHT increasing from 26.9 to 27.6. That is, the results show 
that the methodology is sound, reducing rejections also in this scenario.

Sensibility of the method that includes future artificial requests

To analyze the robustness of this method, we consider the same two scenarios. We use the 
basic generation rate because it has presented the best results so far. When applied over 
Manhattan with a greater fleet of larger vehicles, results are exhibited in Figures 19 and 20. 
Results are consistent with the base scenario: this method allows for a reduction in waiting 
times and detours at the cost of increasing the number of rejections and VHT. However, the 

Fig. 14  Differences in the loca-
tion of the vehicles when using 
no anticipatory methods at all, 
or introducing rewards and using 
GenB (left) or RejPF (center). 
Each vehicle is assigned to the 
zone corresponding to its clos-
est node after sixty minutes of 
operation of the system. A red 
zone means that more vehicles 
are assigned there in the anticipa-
tory scheme, whereas a blue 
zone means the opposite; the 
more intense the color, the higher 
the difference, as shown in the 
colormap (right). Figures are 
normalized with respect to the 
maximum values
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relative losses regarding rejection rates are worse here than in the base scenario, and the 
gains are similar, i.e., this method is less effective when using a larger fleet.

However, when solving the Shenzhen case (Figures  21 and 22), results are inverted 
compared with the base scenario: the rejection rate drops from 40.8% to 27.7% in the most 
extreme case ( Γ =

1

60
 ), while average waiting time increases from 3 [min] to 3.29 [min] 

average detours from 0.45 [min] to 0.8 [min], and VHT increases from 26.9 to 36.1.
This situation might look paradoxical but can be explained. Let us first say that in 

this case, we only insert one future request per iteration ( m = 1 ) to preserve a proportion 
between real and artificial requests that is somewhat similar to the one used in Manhattan 
(where total future requests represent between a third and a half of total real requests). Nev-
ertheless, the low number of real requests in Shenzhen implies that several iterations have 
none, meaning that the artificial requests are not competing with the real ones on those 
occasions; recall that such a competition was identified as the explanation of why the rejec-
tion rate could increase with this anticipatory technique. Moreover, no heuristic is needed 
in this case, which was the other crucial factor in explaining the increase in the rejection 
rate for the basic scenario.

In conclusion, we can state that this method outperforms the one that introduces rewards 
when the scale of the problem is small. Moreover, in the small scale case, the computa-
tional time (that was said to be a relevant drawback of this method) is not an issue at all.

Fig. 15  Differences in the spatial 
distribution of the rejection 
rates when using no anticipatory 
methods at all, or introducing 
rewards and using GenB (left) or 
RejPF (center). For each zone, we 
calculate the change in the per-
centage of the requests departing 
from there that were rejected by 
the system. A red zone means 
that more requests are rejected in 
the anticipatory scheme, whereas 
a blue zone means the opposite; 
the more intense the color, the 
higher the difference, as shown 
in the colorbar (right)

Table 2  Comparison of the mean and median of the level of mismatch per zone, whith and without antici-
patory methods

Methods Mean(Mz) Median(Mz)

No rewards 0.0051 0.0035
Reward given by 
RejPF

0.0043 0.0028
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Conclusions and future research

In this paper, we propose techniques to reduce the mismatch between vehicles’ positions 
and users’ origins that tends to occur in on-demand ridepooling systems (when the assign-
ment decisions do not take the future into account). Our techniques only require the infor-
mation that is generated when operating the system, by looking at the zones where most 
requests are emerging and being rejected.

We propose two anticipatory techniques that affect how to assign vehicles to users, and 
which routes are chosen to serve those assignments. In the first one, we modify the objec-
tive cost function by introducing a reward (a negative additive term) to each feasible match-
ing between a vehicle and a group of requests, such that the reward increases when the 
vehicle’s route finishes in a high-demand area. This technique acts at an individual level, 
i.e., it does not include control of the system’s operation as a whole, which permits not to 
increase the computational burden. The second technique includes artificial future requests 
emerging from the high-demand zones, to be assigned together with the real current ones, 
so that if a vehicle is assigned to a future request, it will be moved towards its origin. This 
technique yields a system-wide decision, at the cost of increasing the computational time, 
that might require including other heuristics to compensate.

How “high-demand” an area is, is defined as a function of the number of requests 
emerging there (generation rates), or of the number of rejected requests that departed from 
there (rejection rates). We propose three ways of calculating the rates of a node: i) the 
direct number of users departing from it, ii) a spatial smoothing of that direct number, and 
iii) a temporal stabilization of that direct number through a particle filter method. The last 
one requires aggregating the nodes into zones.

These approaches are applied over the assignment method proposed by Alonso-Mora 
et  al. (2017a), using Manhattan as a study case. Results reveal that introducing rewards 
effectively reduces the number of rejections, at the cost of increasing total delay for the 
served users. In contrast, the inclusion of artificial future requests reduces total delay but 
increasing the number of rejections unless the number of requests is small enough to have 

Fig. 16  Spatial distribution of 
the level of mismatch without 
anticipatory methods (left), and 
introducing rewards given by 
RejPF (center). Brighter colors 
reveal a higher level of mis-
match, as shown in the colorbar 
(right). Values are normalized
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zero real requests during some minutes. Both methods require vehicles to move more. 
Results depend on the rates being used, and applying both methods together does not yield 
good results.

A detailed analysis of the impact of the rewards method over the system’s operation 
reveals that the immediate effect can be negative, but after some minutes, the system begins 
to show an enhanced performance, which is expected as these are anticipatory techniques. 
Vehicles are shown to be moved from low to high-demand areas, which might degrade the 
quality of service for users departing from low-demand nodes, but the improvement in the 
high-demand zones outperforms this worse quality of service.

The fact that both techniques are able to achieve good results reveals that current and 
accumulated demand can be used as an effective proxy for the upcoming requests. How-
ever, if the system is operated in a scenario with very high stochasticity, with no correlation 
between the origins of the emerging users, this idea would not work well. If that was the 
case, it is noteworthy that both techniques can also be applied with exogenous information, 
such as historical data (as shown in this paper) or some assumed probability distribution.

As on-demand ridepooling is an emerging mobility system, there is plenty of room for 
future research. A relevant direction identified through the paper is the optimal selection of 
the parameters Θ and Γ , i.e., the relative weight of the anticipatory components. Different 
methods and scenarios require adapting Θ and Γ , so using a non-constant value would be 
ideal. How to tune this value according to the external and internal conditions is a chal-
lenging and relevant question that could be addressed using learning procedures.

Our results suggest that the technique that introduces rewards is the most effective one 
to prevent rejections. Therefore, a relevant avenue for future research is how to further 
sophisticate it. For instance, by including an overall control step when deciding how to 
assign vehicles to users, in order to prevent that too many vehicles are directed towards the 

Fig. 17  Heatmap of the origins 
of the requests in Shenzhen, 
China. Red colors represent the 
zones with the highest demands, 
as shown in the colorbar (right). 
Values are normalized

Fig. 18  Rejection rate (left) and 
vehicles-hour-traveled (right) for 
GenB and RejPF , as a function 
of the parameter Θ , when more 
and larger vehicles are used 
compared with the base scenario. 
Θ = 0 represents no anticipatory 
methods
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Fig. 19  Rejection rate (left) and 
vehicles-hour-traveled (right) 
when inserting future requests 
according to GenB , as a function 
of the parameter Γ , when more 
and larger vehicles are used 
compared with the base scenario. 
Γ = 0 represents no anticipatory 
methods

Fig. 20  Average waiting time 
(left) and detour (right) when 
inserting future requests accord-
ing to GenB , as a function of 
the parameter Γ , when more 
and larger vehicles are used 
compared with the base scenario. 
Γ = 0 represents no anticipatory 
methods

Fig. 21  Rejection rate (left) and 
vehicles-hour-traveled (right) 
when inserting future requests 
according to GenB , as a function 
of the parameter Γ , in the Shenz-
hen study case. Γ = 0 represents 
no anticipatory methods

Fig. 22  Average waiting time 
(left) and detour (right) when 
inserting future requests accord-
ing to GenB , as a function of the 
parameter Γ , in the Shenzhen 
study case. Γ = 0 represents no 
anticipatory methods
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high-demand areas: this could be done either by lowering the rewards when more trips that 
end in the same area are selected, or by some ad-hoc heuristics such as geofencing (Reclus 
and Drouard 2009). Additional research questions deal with the relationship between these 
techniques and rebalancing methods: is it possible to adapt the rebalancers to take better 
advantage of the anticipatory techniques, and vice-versa?
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