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Preface 
 
Automating the process of map generalisation has been a scientific challenge for over 30 
years and still there is no comprehensive practical method. In this study I deal with the 
database part of the problem which has received relatively little attention in comparison 
with the total effort put into map generalisation research. This way I hope to contribute to 
a generic map generalisation system that should be possible before long, by combining 
the research results of the past few decades. 

This study was carried out during a few distinct periods. I first got involved in the subject 
of map generalisation in 1992 at the Canada Centre for Remote Sensing in Ottawa, where 
I assisted Dianne Richardson in implementing the method she had developed for her PhD 
research. A period that I look back upon with great pleasure. Subsequently, in 1994, I 
started a four-year PhD research project at Wageningen University, which was a follow-
up of Dianne’s work. It was during this time that I developed the concept of aggregation 
based on co-occurrence of classes. After this period the project came to a temporary 
standstill. Although I never lost the intention to finish it, it was only last year that I 
picked it up again and finished it, resulting in this dissertation. 

During these periods a number of people have been involved. I would like to thank 
Martien Molenaar for his patience when it might have seemed that I would not finish my 
study with a dissertation, for providing me with the conceptual framework for my study 
and for leaving me the freedom to find my own solutions. Arnold Bregt, who got 
involved in the project at a later stage, but still provided invaluable input and very 
practical comments when most needed. As during one meeting at ITC, when we solved 
the remaining issues in a very constructive 15-minute discussion.  

I would further like to thank all colleagues at the Surveying department (Landmeetkunde) 
for their collegiality and countless gezellige lunches at Unitas on Tuesdays when there 
were pannekoeken on the menu. Special thanks go to John Stuiver for introducing me to 
GIS in the first place and making me enthusiastic about its possibilities. René van der 
Schans for inspiring and animated discussions during the early stages of my study. Ron 
van Lammeren for all his help and enthusiasm. Elisabeth Addink, of course, for her wit 
and our collegial discussions, occasionally on the subject but most of the time diverting 
into the most ridiculous directions, which also made the time at Landmeetkunde 
memorable.  

Further thanks go to Kees Bol for salvaging files that I had accidentally deleted from the 
server and Prof. Kruidhof, founder of the Landmeetkunde laboratory, for providing us 
with such an exceptional place to work, overlooking the ever-changing sight of the river 
Rhine flood plains.  

Lots of thanks go to my parents, who have always encouraged me to study. Well mum, 
dad, this is about all I can do. And finally my girlfriend Ingrid for her love and support, 
as well as patiently answering people’s questions whether I had finished my PhD yet. 
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Chapter 1: Introduction 

1.1 What is generalisation? 
Geographic information is gathered, structured and stored with a certain purpose in mind. 
Optimising data for a specific use often means that they become less suitable for other 
purposes. One of the issues relevant for the intended use is the determination of the 
appropriate level of spatial and thematic detail. Using a very detailed dataset is often not 
desirable as this may make it difficult to get an overview. Generalising the data is then an 
option. One possibility is to ‘thin’ the original data, but more often the original data will 
have to be transformed to create new, composite objects.  

In cartography, generalisation is generally carried out manually, focusing on the graphic 
representation at different scale levels. Most of the early research into the automation of 
procedures for map generalisation also focused mainly on cartographic, and therefore 
graphic aspects. Nowadays generalisation is part of the framework of geographic 
information processing. In this context we speak of conceptual or model generalisation, 
i.e. the process that creates a derived dataset with properties that are more desirable and 
usually less complex than the ones in the original dataset (João et al. 1993). Conceptual 
generalisation disregards the graphic limitations of the output medium and related 
operations like exaggeration, displacement and smoothing. Instead, it concentrates on 
operations such as classification, aggregation and elimination. Attempts have been made 
to create comprehensive systems for automated map generalisation. These attempts were 
often based on rules for manual generalisation, but these proved unsuitable for automated 
environments. Systems based on new rules specific to automated generalisation were 
more successful but their use was still limited to well-defined situations, regarding either 
the input data or the purpose of the generalised data, or both. Multi-purpose systems do 
not exist. 

Generalisation holds an important position in the development of a theoretical framework 
for handling geographic information, as it deals with the structure and transformation of 
complex spatial notions at different levels of abstraction. A better understanding of these 
processes will also improve our understanding of data acquisition, analysis and 
visualisation.  

Generalising a geographic dataset is like creating an abstract of a text: main and 
secondary issues are differentiated. A text is written for a certain purpose (to entertain, to 
inform, to influence etc.) and for a certain audience (children, students, employees etc.) 
An abstract is either meant for readers to determine if the text is worth reading, by giving 
an impression of the contents, or to be informed to a basic level. The target group an 
abstract is aimed at is often larger than the group that would read the text itself. The same 
applies to the generalisation of geo-data. A generalised presentation is a tool to aid in 
understanding and gaining access to the underlying, more detailed data. It all has to do 
with the context in which the information is used: what is communicated to whom and 
why? 

1.2 Why generalise? 
Maps of different scale levels have coexisted for centuries, so apparently there is a need 
for information at different levels of detail. There is a need to present data at a less 
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detailed level in order to extract structural patterns from the dataset, patterns that are 
otherwise overlooked because of the sheer amount of data. Or simply because of a 
limited amount of space on the output medium.  

Since the introduction of geographic information systems there has been another reason 
for generalising data, which is for data integration purposes. Generalisation plays an 
important role in the integration of spatial information from various sources. All of these 
reasons have one thing in common: they are context transformations (see section 3.3). 
The initial data are collected for a certain purpose and then adapted for another type of 
use by means of generalisation. 

1.3 Problem definition 
The current research into automated map generalisation appears to be in a cul-de-sac. It 
seems impossible to disconnect the issue of conceptual generalisation from the traditional 
environment of map generalisation. The requirement of an aesthetically pleasing map as 
the end result of the generalisation process often distracts from the actual issues involved. 
By dropping this constraint it should be possible to simplify matters significantly and get 
to the core of the problem more easily. The resulting database after generalisation is not 
necessarily suitable for visualisation in the form of a map. The database may contain 
objects that are relatively small or narrow so that they cannot be readily visualised. The 
visualisation of these objects becomes a secondary issue that is dealt with separately. 

Thus far, most generalisation research worked towards a known end result, usually 
resembling a traditional paper map. 

For real insight into the generalisation process we will concentrate on large generalisation 
steps. Most current research concentrates on small generalisation steps. The objects after 
generalisation are commonly the same objects as the ones in the initial dataset, except 
that some are omitted and the remaining simplified. With larger generalisation steps it is 
not possible to just select and eliminate. Instead, objects have to be combined to create 
new objects. Not different descriptions of the same object, but entirely new object 
classes. 

In the past several generalisation operations have been developed for individual objects 
and dichotomous maps but the number of procedures for categorical maps is still limited 
(Peter and Weibel 1999, Galanda 2001) and the methods that do exist rely on similarity 
and importance factors that are hard to determine (van Putten and van Oosterom 1999, 
Bregt and Bulens 1996).  

1.4 Objectives and limitations 
The goal of this study is to develop a framework and a working prototype for the 
generalisation of object- and vector-based categorical maps - such as large-scale 
topographic data - based on inter-object relationships. We strive for a system that is to a 
large extent automated and can be operated by non-expert users. 

Large-scale topographic maps are commonly object-based, categorical maps. The objects 
are classified: 'road', 'building' etc. The spatial inter-object relationships in large-scale 
datasets are often complicated. We will concentrate on the aggregation of objects 
belonging to distinct object classes, based on the spatial and thematic relationships 
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between the objects in these classes. Not based on similarity but rather on relationships 
that indicate functional units at higher levels of abstraction.  

This study is based on concepts from database systems research. These appear to be a 
sounder basis for a conceptual generalisation system as outlined than most current geo-
generalisation research which is still strongly influenced by cartographic considerations. 
We will concentrate on conceptual generalisation, i.e. on operations such as aggregation 
and elimination rather than cartographic operations such as displacement, amalgamation 
and exaggeration. The method is therefore not based on manually generalised maps and 
existing rules for manual generalisation. We will concentrate on rules that are not bound 
to specific classes since their use is limited. The implementation uses regular database 
software, to prevent the method from being too dependent on any of the current GIS 
software packages. There is still much development going on in this area and the trend is 
towards a more open environment, in which the integration of spatial and non-spatial data 
will become easier and more and more common.  

Two large-scale topographic datasets, the TOP10vector dataset of the Topographic 
Survey of the Netherlands and the Grootschalige Basiskaart Nederland (Large-scale base 
map of the Netherlands) are used as case study material. The cases are used to illustrate 
generalisation using the developed method. 

1.5 Research questions 
1. What are the consequences if we concentrate completely on conceptual, that is non-

cartographical aspects of the generalisation process? What are the relevant 
operations in that case and how do we assess the result? 

2. How are the objects in a categorical map interrelated thematically and spatially and 
how can we use these relationships for the definition of generalisation rules? 

3. What parameters can be defined for the user to control the outcome of the 
generalisation process? 

4. How can we minimise errors, such as shifts in thematic values and topological 
inconsistencies? 

1.6 Relevance 
The relevance of this research is motivated by the fact that generalised datasets are 
currently produced manually from detailed ones by skilled personnel at great expense, or 
new data are collected in the field. Mapping agencies produce datasets at different levels 
of detail. The production of large-scale datasets, in particular, is labour-intensive. At 
present, they are created relatively independently from one another, re-interpreting the 
field situation from aerial photographs, for instance. In other words: by means of an at 
least partly redundant data acquisition process. Or datasets are generalised manually from 
detailed ones. This requires skilled personnel and is therefore also an expensive method. 
Automated procedures are used in this manual process, but only to perform specific, 
detailed tasks like simplifying buildings and smoothing linear objects. 

Some agencies are starting up combined efforts to share information. The Dutch Cadastre 
and the Topographic Survey of the Netherlands, for example, are looking into the 
possibilities of using the Grootschalige Basiskaart Nederland (GBKN) as a basis for the 
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TOP10vector produced and marketed by the Topographic Survey. This, too, calls for 
generalisation procedures.  

The use of these expensive, large-scale datasets is currently quite limited, and 
sophisticated generalisation methods could expand this use significantly by enabling 
conversion of the information to suit specific applications. This study hopes to establish 
the requirements with regard to the structure and content of the input data in order to 
facilitate generalisation. 

Moreover, generalisation performed by an average user is currently not possible, as there 
are no systems for real-time conceptual generalisation that require no expert knowledge. 
Generalisation for exploratory purposes is therefore not possible. 



 

Chapter 2: Related literature 

2.1 The early years: individual objects 
Research into the possibilities of computer-assisted map generalisation started in the late 
1960’s with algorithms for line generalisation. This early work focused on the 
generalisation of individual objects (Robinson 1995). The goal was to simplify the spatial 
delineation of particular objects in order to represent them on a map at a smaller scale. 
Research into line generalisation issues continues up until this day, using increasingly 
advanced techniques (e.g. Herbert et al. 1992, Müller and Wang 1993, Werschlein and 
Weibel 1994, Plazanet et al. 1998). The line-generalisation algorithms were later joined 
by more specialised operations like the simplification of buildings (Lee 1999). For the 
most part, these algorithmic generalisation operations act locally. 

2.2 Dichotomous or presence/absence maps 
Work in the late 1970’s and early 1980’s concentrated on issues like object selection. It 
incorporated inter-object relationships, but only within single classes (Brassel and Weibel 
1988). Different classes were generalised independently. This could explain, or be 
explained from, the focus on small-scale maps. Unlike large-scale maps, which contain 
mainly areal objects, small-scale maps contain mainly linear and point objects. The 
spatial interrelationships between these objects tend to be simpler, which allows them to 
be treated independently during generalisation (Robinson 1995).  

The spatial data models used were still intended for drawing maps, not for modelling 
geographic information. These models failed to support more complex processes (Grelot 
1986). It was acknowledged that a more comprehensive approach was needed to handle 
several objects simultaneously. This required data models that support spatial proximity, 
structure recognition and composite objects (Grelot 1986). Various data models emerged, 
primarily to enable operations such as the displacement and amalgamation of 
unconnected objects. These models were predominantly based on Delauney triangulation 
(Peng 1995, Bundy et al. 1995, Jones et al. 1995, Jones and Ware 1998, Liu 2002). More 
recently, methods for object displacement using the snakes concept (Burghardt and Meier 
1997, Barrault et al. 2000) and finite elements analysis (Højholt 1998, Bader and Barrault 
2001) were introduced. Besides these purely cartographic operations, the data models 
based on Delauney triangulation also enable operations such as object collapse or 
skeletonisation (e.g. Chithambaram et al. 1991). These are used on network structures 
such as road networks and hydrographical features to create topological linear graphs, 
either for presentation or analysis purposes. The creation of topological graphs by 
skeletonisation is often a pre-stage of the structural generalisation (Molenaar 1998) of 
network data. Skeletonising operations have since become part of regular GIS software 
(Lee 1999, Lee 2001). 

Directed networks like hydrographical networks can be generalised based on various 
existing classification methods for stream elements like the Strahler and Horton 
classifications. Elements of the lowest stream order are eliminated first (Richardson 
1993). Martinez Casasnovas generalised a dataset of a gully erosion pattern and matching 
catchment areas. This approach is scale-related; upstream leaves of the gully network that 
are too narrow to be represented at the target scale are eliminated and their catchment 
areas merged with their downstream neighbours (Martinez Casasnovas 1994). The 
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catchment areas are assigned erosion severity measures, resulting in choropleth maps 
with different levels of spatial abstraction before and after generalisation. Both use a 
network of connected and directed arcs and nodes to describe the hydrological systems 
and use the topological structure to determine the significance values of the elements. 

Undirected networks like roads are generally more difficult to classify automatically. 
They can be generalised using the shortest-path spanning trees method (Richardson and 
Thomson 1996). Within the road network, points of interest are identified. In small-scale 
data these could be towns, for example. These points are connected using a shortest-path 
algorithm. More frequently used segments remain existent at higher levels of 
generalisation than less used ones. More recent studies lean more on the directional 
continuity of the network’s elements (Thomson and Richardson 1999). Peng described an 
elimination method for urban road networks (Peng 1997). In this approach, elements are 
eliminated taking into account the size of the enclosed areas as well as the topology of the 
network.  

A common characteristic of the procedures for network generalisation as described above 
is that they are all essentially database enrichment (Mackaness et al. 1997) operations. 
Elements are classified according to their importance within the network. The 
classification is used to describe the same process or model at various levels of spatial 
abstraction, leaving out the least important elements with every step. Certain process 
variables remain invariable throughout the various levels of abstraction. In a road 
network, for example, the traffic intensity at intersections remains invariant, irrespective 
of the level of detail of the contributing network. In the hydrological network the 
discharge at the outlet of each segment stays invariant after generalisation of the 
upstream network. This happens as a consequence of merging the watersheds belonging 
to the eliminated network elements with their downstream neighbours (Martinez 
Casasnovas 1994). Generalisation based on the topological structure of the network is an 
example of structural generalisation (Molenaar 1998). 

Selection and elimination are important operations in generalising dichotomous maps. 
They are generally based on quantitative attribute values like size - a spatial attribute -, 
but sometimes on ordinal attributes. Selection can also be based on a combination of 
attribute values. Populated places, for example, can be eliminated according to their 
status (city, town, village etc.) and population. These two attributes can be combined in 
several ways to create different selection methods (Richardson 1993).  

2.3 Aggregation methods for categorical maps 
Categorical maps are based on area partitions1. As a consequence, objects cannot simply 
be eliminated; the area of the eliminated object has to be reoccupied. There are several 
ways to achieve this. 

Geometry-driven generalisation refers to a collection of methods where the local 
geometry is the driving factor for the generalisation process (Molenaar 1998). Merging 
small areas with one of their neighbours on the basis of the largest common boundary is a 
common technique in this category (ESRI 1995). Small areas can also be joined with the 
largest adjacent area (Bregt and Bulens 1996). Both methods result in contaminated 

                                                 
1 In an area partition, each point in the 2D domain belongs to exactly one of the areas (polygons): that is, 
there are no overlaps or gaps. 
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objects. In an attempt to minimise these incorrect classifications, combinations with the 
smallest generalisation error can be joined first (Bregt and Bulens 1996). This approach 
utilises attributes and geometry. The user must supply similarity measures for all object 
classes. 

Generalisation errors can be avoided if classification hierarchies are used. Adjacent areas 
are merged if they belong to the same superclass. This method was employed on land 
cover data by Richardson (Richardson 1993). By assigning an - application-specific - 
importance factor to the classes, some classes can be excluded from the aggregation 
process (Bregt and Bulens 1996). A disadvantage of this method is that these importance 
factors are hard to assess. Class-driven generalisation (Molenaar 1998) is based on 
attribute values, geometry playing a secondary role. 

Class-driven generalisation is based on similarity, unlike functional generalisation 
(Molenaar 1998). Looking at a city, a number of different components can be 
distinguished: houses, roads, parks etc. These components are not related in the sense that 
they are similar, but when put together a new object - the city - is formed. They are 
related in a functional sense: the city cannot function properly without any one of these 
components. The components that make up the city are also connected in a spatial 
manner. Only components that are mutually connected can create a city. Map 
generalisation applications based on these functional relationships do not exist currently. 

A common feature of the more sophisticated aggregation approaches is that they are all 
based on either an existing classification hierarchy or a similarity matrix, containing 
similarity measures for all possible combinations of object classes in the dataset. 
Classification hierarchies are seldom readily available and similarity matrices are very 
difficult to establish. The aggregation methods described employ a topological data 
model, based on a topological graph (Langran 1991), to enable the determination of 
neighbours. 

2.4 Cartographic vs model generalisation 
Speaking about the generalisation of geographic information we have to realise that its 
origins lay in map generalisation. With the advent of geographic information systems an 
important change occurred. The notion of ‘scale’, which in a map implicitly acts as a 
measure for the level of generalisation, is no longer a property of the data. The term scale 
should therefore be abandoned and replaced by precision, accuracy and resolution 
(Müller et al. 1995). Scale only enters the picture when the data are visualised in the form 
of a map, using a restricted display area.  

The distinction between cartographic and model generalisation (Figure 1) began to 
appear in literature in the mid-1980’s (Grünreich 1985, Brassel and Weibel 1988). It was 
emphasised that the conceptual generalisation and the problems related to the graphical 
limitations of the output medium should be handled separately (Kilpelaïnen 1992). Real-
world features should be modelled instead of their cartographic representations (Mark 
1991). Kilpelaïnen even made a distinction between the actual generalisation problems 
and the problems related to the graphic display. Nyerges identifies only four conceptual 
operations: classification, class generalisation, association and aggregation (Nyerges 
1991). Displacement (Müller et al. 1995), exaggeration, simplification and smoothing, on 
the other hand, are operations that are typically restricted to the cartographic domain.  
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Object generalisation
(Grunreich 1985)

Geographic information
abstraction (Nyerges
1991)

Model-oriented (Grunreich 1995),
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(Grunreich 1985, Nyerges 1991)
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Landscape
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world

table
simple map

graph
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Digital
Cartographic
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FIGURE 1. DISTINCTION BETWEEN CONCEPTUAL AND CARTOGRAPHIC GENERALISATION 

 

In the early 1990’s generalisation research evolved from seeking specific solutions to 
more comprehensive approaches and the definition of strategic models. The approach 
was top-down; instead of just working towards a desired and known result (how), the 
approaches encompassed the determination of why and when to generalise (Brassel and 
Weibel 1988, McMaster 1991). Although the approaches were intended to be general, the 
resulting sets of rules are usually very specific and scale-related (Mark 1991, McMaster 
1991, Shea 1991). Moreover, the top-down approaches have thus far scarcely led to 
operational systems (McMaster 1995). 

The French IGN takes a bottom-up approach to achieve a comprehensive model for 
generalisation (Ruas and Lagrange 1995). They integrate their existing generalisation 
algorithms and routines - which are largely cartographic in nature - to create a 
comprehensive system. The desired end result is clear from the start of the procedure and 
resembles a traditional paper map. The operators they established are basically 
cartographic and geometric in nature; there are no operations based on attribute values 
such as class generalisation. The focus is on local operators and semantic rules are scarce. 
Bottom-up approaches like this lead to operational systems but as valuable as the 
developed operations are, it is questionable whether the general scheme is applicable in 
interactive, digital mapping.  

2.5 Knowledge acquisition 
Several authors have described knowledge bases for generalisation purposes and stressed 
the need of this information to enable automated generalisation (McMaster 1991, 
McMaster 1995, Shea 1991, Mark 1991). Knowledge-based systems require formalised 
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expert know-how. This calls for knowledge acquisition; capturing human knowledge and 
structuring it into a computer-implementable form. In the case of map generalisation: this 
means research into the formalisation of expertise applied by cartographers. 

Several procedures for knowledge acquisition have been mentioned, ranging from the 
analysis of text documents to sophisticated methods such as machine learning and neural 
networks. While the more advanced methods have not or hardly ever been implemented, 
the more straightforward methods invariably led to very specific knowledge or rule bases 
(Mark 1991) that lack meta-rules (Shea 1991) and hierarchical ordering, which is 
considered essential for effective expert systems (Hayes-Roth et al. 1983).  

An alternative approach worth mentioning is the amplified intelligence method where the 
human expert initiates, controls and evaluates automated procedures that substitute 
labour-intensive tasks. Entire generalisations can be rerun and analysed to allow 
knowledge acquisition by logging the user’s interactions (Weibel 1991). 

Manually generalised maps are still considered the source of information for the creation 
of rule-bases. However, this is debatable because of the different requirements of digital 
mapping (Müller et al. 1995) and the questionable quality of material that has been 
generalised manually (João 1998). Rules for manual generalisation are generally not 
suitable for automated use either, being either too vague or too specific (Robinson 1995). 

2.6 Rule-based systems 
Rule-based systems use either a predetermined rule execution sequence or an inference 
engine to control the rule execution sequence. Many authors have mentioned the use of 
inference engines (Shea 1991, Armstrong 1991, Keller 1995), but we have not found any 
operational systems. This could be a consequence of problems with connecting the 
technology to geographic information systems but it could also arise from unpredictable 
results. Either way, actually creating generalisation expert systems based on inference 
engine technology seems difficult. Attempts to create generalisation systems based on 
predetermined sequences of generalisation rules were more successful. It is difficult to 
determine whether this is the result of intrinsic advantages of the method or whether such 
systems are simply easier to realise. 

The OSGEN system, developed for the Ordnance Survey of Great Britain, is an expert- or 
rule-based system that uses a hierarchical approach with composite objects. It uses 
aggregation hierarchies for built-up areas containing object types like ‘building’, 
‘building group’, ‘block’ etc. OSGEN was developed for the generalisation of large-scale 
data and uses rather specific rules, addressing particular situations and object classes. 
Such a rule base works fine in well-defined situations such as a typical large-scale 
Ordnance Survey map, but fails in less specific situations (Robinson 1995). Rulebases for 
generalisation are generally considered to be strongly application-dependent (Kilpelaïnen 
1992). 

Richardson developed a system for the generalisation of datasets for the National Atlas of 
Canada (Richardson 1993). Land cover, hydrography and populated places are 
generalised separately but are related through tables of ‘necessity factors’ for the different 
target scales. The base scale is 1:1 million, the target scales range from 1:2 million to 
1:30 million. A necessity factor determines the percentage of objects in a certain object 
class to be retained at the specified scale. The necessity factor depends on the map’s 
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purpose (spatial analysis, map design), the subject of the map, the intended scale, and the 
functional requirements (orientation etc.). It is defined on the basis of interviews with 
cartographers as well as reviews of existing map series. An attenuation factor can be 
applied to the necessity factor to fine-tune the generalisation. 

Map generalisation is always a battle between what should be maintained - based for the 
most part on the importance of the object class for the application - and what cannot be 
represented in the available presentation space, i.e. the reduction in the number of objects 
needed for the target ‘scale’. These two aspects are typically translated into parameters 
(Richardson 1993, van Oosterom 1995).  

2.7 Assessment of generalisation effects 
Generalisation effects can be evaluated visually or automatically. Quantitative measures 
for the evaluation of generalisation results are global, geometrical, topological or 
software-related (Weibel 1995). Global measures include object density and distribution. 
Some parameters merely reflect the decrease in the number of objects while others imply 
that an error is introduced during the aggregation process. The error occurs when small 
polygons are merged with adjacent ones and reclassified. The attribute change index 
(Bregt and Bulens 1996) expresses this shift in attribute classes whereas the area 
reduction index (Bregt and Bulens 1996) and reduction factor (Richardson 1993) 
demonstrate a mere decrease in polygon numbers. Geometrical measures comprise 
objects that are too small or too close as well as changes in line length and sinuosity. 
Displacograms (João 1995) provide measures for the lateral displacement of map objects. 
Violations of topological relations can occur in the form of unintended intersections or 
broken connections. Software-related measures include labour-intensiveness, speed and 
equipment cost.  

Manual generalisation often causes large inaccuracies. Manually generalised maps by 
national mapping agencies, for instance, show displacements that are significantly larger 
than what is considered acceptable. That is why for GIS analysis data of the largest 
possible scale must be used or else automatically generalised data, which are preferable 
to manually generalised material (João 1998). This raises the question whether manually 
generalised data should be used to assess the results of automated generalisation 
processes (Müller et al. 1995). 

2.8 Multi-scale data models 
Creating ‘intelligent zoom’ applications in which the information density increases while 
zooming in and decreases while zooming out (Timpf and Frank 1995). In the multi-scale 
approach, various cartographic representations of a single object are stored to allow for 
viewing at different levels of abstraction. The levels of abstraction are linked by a tree 
structure; the level of the tree to be displayed is dependent on the zooming level (Jones 
1991, van Oosterom 1995, Timpf and Frank 1995). As one moves up and down the tree 
structure, objects are combined or split, drawn or omitted etc.  

A method specifically aimed at area partitionings is the Generalised Area Partitioning 
(GAP)-tree (van Oosterom 1995). The GAP-tree ensures that no gaps appear where 
objects are left out, but that instead a higher-level object is returned. The tree is a pre-
computed and stored aggregation hierarchy, based on a class generalisation hierarchy and 
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the length of the common boundaries between the objects. Objects with low 
‘importance’, a function based on object type and size, are aggregated first. No method is 
provided for determining these importance factors, the classification hierarchy is that of 
DLMS DFAD (DGIWG DIGEST 1992). The reactive tree (van Oosterom 1990) enables 
a fairly constant number of objects to be returned, irrespective of the zoom level.  

Multi-scale research is aimed at connecting and accessing existing geographic databases 
(of the same area) of different levels of abstraction rather than creating the different 
levels. The multi-scale database can be created from a single detailed database or built 
from various existing datasets. The first method still requires generalisation methods to 
be developed. The main difficulty of the second option is in matching the objects in one 
dataset to objects in the other (Sester et al. 1998, Uitermark 2001). Some have connected 
the multi-scale database approach with the issue of update propagation from the detailed 
level to the more abstract levels (Kilpelaïnen and Sarjakoski 1995), which leads us back 
to the initial issue of defining generalisation operations. 

2.9 Summary 
The more advanced area aggregation methods (van Oosterom 1995, Bregt and Bulens 
1996), i.e. methods that are not solely based on geometry, all use importance factors and 
compatibility measures for the object classes. It is commonly acknowledged that these 
factors are difficult to determine. There are virtually no examples of generalisation 
systems that use functional aggregation hierarchies. 

The ‘top-down’ method of designing generalisation methods has yet to result in an 
operational system. The ‘bottom-up’ methods have led to working systems with 
shortcomings, especially strong application dependency. Nevertheless, the bottom-up 
approach did and does lead to operations that will be required once a universal 
generalisation framework has been defined. 

The multi-scale database approaches add little to the actual generalisation process, i.e. 
creating the levels of abstraction. They do, however, contribute to the development of 
data models which support composite entity addressing. 

Existing maps and rules for manual generalisation appear not to be suitable as a source of 
information for automated generalisation for digital mapping. Neither is scale a suitable 
unit of measurement for conceptual generalisation. 

 





 

Chapter 3: Conceptual data model 

3.1 Introduction  
Data models for spatial information come in different shapes and sizes. Some data 
models are best suited for storing and retrieving large amounts of data. Others are 
designed to support certain spatial analyses. A data model that suits one purpose might be 
less appropriate for another. There is no ultimate data model, which is not a problem as 
long as we have the possibility to translate the information from one model to another 
without losing relevant information. Generalisation research has long suffered from a 
lack of appropriate data models for geographic information. The models were intended 
for drawing maps and were not meant to support complex spatial operations like 
generalisation (Grelot 1986). In the introduction we stated that generalisation is a form of 
context transformation, this means that the data model has to support context information. 
But before the matter of context can be explained, an introduction is in order, an 
introduction starting with the way reality is modelled in geographic information systems. 

3.2 Object versus field approach 
A dataset is the representation of a certain perception of reality in the computer, a model 
of reality. The representation of real-world phenomena in a geographic information 
system incorporates the choice of an appropriate conceptual model. Spatial phenomena 
with identifiable boundaries are generally modelled using the object approach. In the 
object approach, spatial units - the objects - are identified and attributes are attached to 
these units. In situations where the spatial variation is more gradual the field approach is 
commonly used. In the field approach continuity is the principal element; attribute values 
are directly linked to positions in space (Laurini and Thompson 1992). The discrete 
character of topographic data argues in favour of the object approach for this application.  

3.3 Objects 
Objects have spatial (geometric) and thematic attributes (Molenaar 1989, Figure 2). One 
example of a thematic attribute is ‘colour’, with the attribute value ‘red’. A spatial 
attribute is the position of a node with values (xn,yn). These examples show that attributes 
can either be simple or atomic, or composite (Elmasri and Navathe 1989). In a 
geographic database comprising objects, the objects are distinguished by the values 
assigned to their spatial and thematic attributes. Objects can be distinguished if at least 
one of their attribute values differs. The fact that the spatial attributes also identify an 
object means that two thematically identical objects can be distinguished if their positions 
are different. But objects usually get a unique object identifier (Figure 2), often in the 
form of a number. 
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FIGURE 2. OBJECTS CONSIST OF A THEMATIC AND A GEOMETRIC DESCRIPTION 
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Objects are defined according to a certain context (Richardson 1993). A single object can 
be classified in different ways depending on the context. A road object can be classified 
based on its importance (motorway, secondary road etc.) or according to its management 
(e.g. provincial or national road). A building has a different meaning to a utility company 
than it has to a landscape planner. Both are interested in different properties of the 
building and might therefore employ different definitions of a building. 

In section 1.1 the context of information transfer was described as: what is communicated 
to whom and why? But where do we find this information in a geographic dataset? 
According to Bishr (Bishr 1997), context information finds its expression in the 
combination of: 

• classes 
• class intension 
• geometric representation. 

These concepts are explained in the following sections. 

3.4 Classes 
In order to comprehend large amounts of data, people tend to categorise. We speak of 
houses, roads, trees etc. because we deal with them in different ways. These general 
notions refer to a number of actual objects that can be represented and operated in the 
same way although not even one is completely identical to another. This concept of 
categorising things into groups, or classes, based on similarity is called classification. 
The relationship between objects and classes is of the ‘is a’ type. 

3.4.1 Data class 
A common way of indicating that an object is a member of a class is to store the class 
name to the object in the form of an attribute value. The objects are in this case assigned 
to data classes (Molenaar 1998). All objects reside in the same database table and 
therefore share the same attribute structure. Attributes that do not apply to certain classes 
are left empty. The database is therefore not fully normalised. A data class is a class for 
which the intension can be specified by means of attribute values. 

3.4.2 Object class 
Sets of objects that are so different that this cannot be expressed by their attribute values 
alone, should have their own sets of attributes (Molenaar 1998). Such a set of objects 
with a common attribute structure is called an object class (Molenaar 1993, Richardson 
1993). The list of attributes of an object class is unique to that object class and 
distinguishes the class from other object classes. The individual objects belonging to the 
object class are called instances of the class. The collection of instances is referred to as 
the extension of the object class.  

3.4.3 Taxonomies 
Some classifications are more detailed than others. If an object is said to be a building, 
one roughly knows what it will look like, but it can still be many diverse kinds of 
building. If it is referred to as being a house, one can make a far more accurate estimation 
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of its properties. The class of buildings is called a superclass of the class ‘house’, the 
class ‘house’ is a subclass of the class ‘building’. The subclass presents a more detailed 
description of the object. Thus, classification may proceed from the bottom up, that is by 
grouping individual occurrences to make larger sets, or it may subdivide existing groups 
into subgroups (Laurini and Thompson 1992). Subclasses and superclass are related in 
the generalisation plane (Smith and Smith 1989), also called classification hierarchy or 
taxonomy (Figure 3). The basic taxonomy relationship or taxon is between a subclass Csub 
and its superclass Csuper (Uitermark 2001): 

 TAXON[Csub , Csuper] = 1 
If such a taxonomy relationship exists, then the extension of Csub is a subset of the 
extension of Csuper: 

 Ext(Csub ) ⊂ Ext(Csuper ) 
This means that an object oi that is a member of class Csub is also a member of Csuper: 

 MEMBER[oi , Csub] = 1 ⇒ MEMBER[oi , Csuper] = 1 
 

 

double detached 

factory house 

building 

 

FIGURE 3. PART OF A TAXONOMY 

 

Moving up in the taxonomy is called class generalisation, moving down class 
specialisation. As we move up and down in a taxonomy not only the class label changes, 
but more importantly the object is referenced in different ways, revealing different levels 
of detail (Figure 4). Class generalisation should not be confused with the broader use of 
the word generalisation in map generalisation, which encompasses many other 
operations.  
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FIGURE 4 SUBCLASSES AND SUPERCLASSES REVEAL DIFFERENT LEVELS OF DETAIL 
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Taxonomies can also be implemented as data classes, either in the form of hierarchical 
attribute values, or attached to the basic classes in the form of a related table. In that case 
class generalisation and specialisation do not affect the number of attributes of an object, 
since no distinct object classes are discerned. 

3.4.4 Inheritance 
An important aspect of taxonomies in object-oriented modelling is the inheritance of 
attributes from the top down. An object subclass inherits the attributes of the object class 
it descends from and gets some additional attributes that are specific for that subclass. For 
example, houses and barns are both buildings and share properties such as ‘wall 
material’. The subclass ‘house’ restricts the degree of freedom of the object by adding 
attributes and limiting the domain of existing ones. For example, the attribute ‘no. of 
residents’ is part of the class description of a house but not of buildings in general (Figure 
4). The attribute is inappropriate for some buildings, like barns and office buildings. The 
other way round: if an object is referenced as a member of a certain object superclass 
instead of its ‘normal’ object class, a number of attributes of the object becomes 
inapplicable. 

3.5 Class intension 
The intension of a class is the set of conditions that applies to all members of a class and 
not to any object that is not a member of the class (Richardson 1993). It is by this set of 
conditions that objects are associated with a class. It is important to bear in mind that no 
actual instances are captured; only rules and possible values of the attributes (i.e. their 
domains) are defined (Bishr 1997). A class intension often includes the class intension of 
another, higher-level class (superclass), incorporating additional conditions. For instance: 
'village'; a 'populated place' with 100 to 10,000 inhabitants. 'Populated place' is in this 
example considered to be a class intension that was defined earlier. 

3.6 Geometric representation of objects 

3.6.1 Raster and vector representation 
In geographic information systems two types of geometric representations are 
distinguished. Rasters are based on a regular grid of raster cells, every cell having a value 
for a specified attribute. Rasters are generally used to represent field data, but can also be 
used to store objects. In a vector representation, spatial objects are represented by points, 
lines and faces (and bodies in three-dimensional space). The vector representation is 
generally used in combination with the object model. It can, however, be used to describe 
field data, as in the direction and force vectors indicating wind in meteorological 
applications. Topographic datasets are typically stored in vector format.  

Although physical geographical entities occupy space in three dimensions, most current 
GIS applications only support two-dimensional data storage and processing. This study is 
also limited to two-dimensional spaces. 
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3.6.2 Formal data structure 
An important element in the determination of spatial inter-object relationships is 
topology. Topology can be stored or derived when needed. We adapt the Formal Data 
Schema (FDS) vector model as described by Molenaar (Molenaar 1998), a data model 
with stored topology. Objects in the FDS are composed of nodes, segments and faces. 
These are called the geometric primitives (Figure 5). The geometry of a node is expressed 
in the form of an x,y co-ordinate. Segments are lines or polylines between a begin node 
and an end node and are consequently directed. 

 Segment sa has node nc as the begin node  BEGIN[sa , nc ] = 1  
 Segment sa has node nd as the end node  END[sa , nd ] = 1 
 Node nc  is a node of segment sa     NODE[sa , nc ] 
 = BEGIN[sa , nc ] + END[sa , nc ] ≠ 0 
Segments do not cross; when this occurs they are split into four segments joining at a 
common node.  

Faces are described by their boundary, a polygon consisting of one or more segments. 
References to the left and right adjoining faces are stored with each segment. Faces do 
not overlap, segments have one face on each side: 

 LEFT[sa , fg ] = 1 and for any fi ≠ fg ⇒ LEFT[sa , fi ] = 0 and 
 RIGHT[sa , fh ] = 1 and for any fj ≠ fh ⇒ RIGHT[sa , fj ] = 0 

Segment Sa is part of the boundary of face fg if:  
 BOUNDARY[sa , fg ] = LEFT[sa , fg ] + RIGHT[sa , fg ] = 1 
The spatial description of objects consists of one or more of these primitives. In this study 
it is assumed that nodes and segments do not represent objects - only faces do - for the 
reason that it significantly simplifies the definition of topological queries based on the 
segment-face model. 

Face fg  is part of area object ok if: 

 PART22 [fg , ok ] = 1 
If each face is part of an area object, segments have an area object on each side: 

 LEFT[sa , ok ] = 1 and 
 RIGHT[sa , om ] = 1 
Segment sa is part of the boundary of area object ok if: 

 BOUNDARY[sa , ok ] = LEFT[sa , ok ]+ RIGHT[sa , ok ] = 1 
The set of segments S∂ok that are part of the boundary of area object ok is defined by the 
function: 

 S∂ok = { sn | BOUNDARY[sn , ok ] } 
Two area objects ok and om are adjacent at segment sa if: 

 ADJACENT[ok , om | sa ] = 1 ⇔ sa∈ S∂Ok ∩ S∂Om 



18 Chapter 3 

 

The value of this function can be found by means of the following expression: 
 ADJACENT[ok , om | sa ] =  
  Max(Min(LEFT[sa , ok ], RIGHT[sa , om ]), Min(LEFT[sa , om ], RIGHT[sa , ok ])) 
In large-scale topographic datasets the objects are typically represented by faces. Points 
and segments are used in other applications to describe objects for the reason that this 
type of primitive enables operations, e.g. route calculations on a network of segments, 
which would be more difficult or impossible if the objects were represented by faces. 

 
segment

face

node  

FIGURE 5. THE FORMAL DATA STRUCTURE (FDS) 

 

A map2 is the representation of a certain perception of reality, a model of reality. The set 
of objects in the map is called the universe of discourse of that map (Molenaar 1998). 
The area of interest (Molenaar 1998) is a spatially delimited region for which the 
identified universe of discourse is described.  

The set of area objects covers the complete area of interest and objects do not overlap, i.e. 
the objects form a geometric partition (Molenaar 1998) or area partitioning (van 
Oosterom 1995). If, furthermore, any object in the dataset is a member of some class and 
each object is a member of one class only, then these classes from a thematic partition of 
the dataset (Molenaar 1998). If the objects form a geometric and a thematic partition we 
speak of a single-valued vector map (SVVM, Molenaar 1998).  

Dichotomous or presence/absence maps contain objects belonging to only one class. 
Categorical or multi-class maps contain objects of several classes. Categorical themes 
form a thematic and geometric partition.  

3.7 Inter-object relationships 
Like real-world objects, the objects in a geographic dataset do not occur independently; 
they are related to other objects. In the previous sections two types of inter-object 
relationships have been implicitly introduced; objects could have common attribute 
values or belong to the same class. These are both examples of thematic relationships 
based on similarity of object properties. Here another type of thematic relationship 
between objects is introduced, the functional relationship, as well as the spatial 
relationships that can occur (Figure 6). Within the category of spatial relationships 
topological and geometric relationships are distinguished but only topological 
relationships will be discussed further. In the case of a thematic relationship the objects 
                                                 
2 We refer here to the electronic, GIS form of a map 
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are related through their thematic attributes; a spatial relationship between objects means 
that they are related through their geometric attributes (see Figure 2). 
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FIGURE 6. TYPES OF INTER-OBJECT RELATIONSHIPS 

 

3.7.1 Thematic relationships 
Objects can be thematically similar in the sense that they belong to the same class or 
share a common superclass. Objects can also have similar attribute values. The class 
relationship and the attribute value relationship are both based on similarity between the 
objects involved. But there is also another type of thematic relationship: the functional 
relationship. This relationship will become clearer if we look at a city. A number of 
different components can be distinguished: roads, buildings, parks etc. These components 
are not related in the sense that they are similar, but when put together a new object, the 
city, is formed. They are related in a functional sense, i.e. the city cannot function 
properly without any of these components. The components that make up a single city are 
also related in a spatial sense; only mutually connected components can create a 
functional city.  

3.7.2 Spatial relationships 
An important type of spatial relationship is topology. In a topological description the 
exact locations of the nodes and the paths that arcs follow are not important as long as the 
contiguity is represented correctly (Gatrell 1991). The two vector graphs in Figure 7, for 
example, are topologically identical, even though they have distinct geometric 
descriptions. The adjacency graph is identical for both situations (Figure 8). Topology 
can be described for 1) connected objects, e.g. Arc/Info vector format, FDS (Molenaar 
1998), and 2) unconnected objects, using a Delauney triangulation to connect the objects 
in order to enable extended adjacency relationships, e.g. EFDS (Peng 1997), IEFDS (Liu 
2002).  

 
 

 

  

 

 

  

FIGURE 7. TWO GRAPHS WITH DISTINCT GEOMETRY BUT 
EQUAL TOPOLOGICAL DESCRIPTIONS 

FIGURE 8. ADJACENCY GRAPH FOR BOTH 
GRAPHS IN FIGURE 7 
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A common use of topology is for the determination of an object’s neighbours. In a single-
valued vector map the connected neighbours of an area object are those objects that have 
an arc (first-degree neighbour) or node (second-degree neighbour) in common with the 
object. We will work only with first-degree neighbour relationships in this study. 

An important aspect of spatial inter-object relationships is the determination of the level 
of abstraction at which the relationship occurs. Mixed forest is forest where individual 
coniferous trees and deciduous trees are found next to each other, not where plots of 
deciduous forest and plots of coniferous forest occur side by side. 

3.8 Composite objects 
Objects that are in some way, thematically or spatially, related and form a meaningful 
unit at a higher level of abstraction can be represented as composite objects. A composite 
object or aggregate is a relationship between two or more objects seen as a new object 
(Smith and Smith 1977, Hansen and Hansen 1992). Objects can therefore consist of other 
objects, thus creating an object hierarchy (Molenaar 1998). The relationship between a 
component and a composite object is of the ‘part-of’  type. 

The operation of creating a composite object from its components is called aggregation. 
Aggregation is explained further in chapter 4. Composite objects are not necessarily 
contiguous. They can consist of several spatially unconnected parts. Starting point for this 
study, however, is that the composite objects are contiguous. 

Both the geometry and the thematic information of composite objects are normally 
derived from the geometric and thematic information of their component objects, 
although it is possible to append additional information (Figure 9). When objects are 
aggregated their thematic descriptions become one. If composite objects are derived 
completely through rules, they can only have derived attributes like area and the portions 
of original object classes in the composite object. At higher abstraction levels the derived 
attributes could be ‘road density’, ‘fragmentation index’ etc. The behaviour of attributes 
under aggregation depends on their domain: the type, units and scale type used to 
describe the attribute. 
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FIGURE 9. COMPOSITE OBJECT CONSISTING OF TWO ELEMENTARY OBJECTS 
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Composite objects are an important concept, not only for generalisation purposes - spatial 
abstraction depends highly on the possibility to combine objects - but for data and geo-
data modelling in general. Datasets offer much more flexibility for querying and 
processing if multiple levels of object abstraction are distinguished. For example, road 
networks can be identified per segment (Figure 10a) or entire roads can be identified 
(Figure 10b). But it is often preferable to distinguish more than one object level (Figure 
10c). This offers the most flexibility in constructing other objects different from the ones 
which were initially defined. It allows the identification of road segments as well as 
roads. It is easier to combine spatial objects than to break them apart, as it is necessary to 
add geometry to split up objects. 
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FIGURE 10. SINGLE OR MULTI-LEVEL CLASSIFICATION OF ROAD OBJECTS 

 

3.9 Composite classes 
Like a composite object, a composite class can be seen as a relationship type between 
two classes viewed as a new object class. In the case of Figure 11 the topological 
relationship type between the classes ‘building’ and ‘lot’ (buildings are on lots) is seen as 
the composite class ‘property’. The constitutive classes are called component classes. 
Component classes are non-exclusive, they can be shared by several composite classes. 
At the same time, composite classes are related to 1, 2 or more component classes. The 
relationship type between component and composite classes is therefore M:N. 
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FIGURE 11. EXAMPLE OF A RELATIONSHIP BETWEEN TWO  
COMPONENT CLASSES BECOMING A COMPOSITE CLASS 

 

The hierarchy of relationships between composite and component classes is called 
aggregation hierarchy or partonomy (Uitermark 2001). The basic partonomy relationship 
or parton is between a component class Ccomponent and its composite class Ccomposite 
(Uitermark 2001): 

 PARTON[Ccomponent , Ccomposite ] = 1 
The partonomy presents possibilities for object aggregation.  
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3.10 The basic conceptual abstraction operations 

3.10.1 Aggregation 
Grouping multiple individual objects to form a new composite object is called 
aggregation (Figure 12, Frank and Egenhofer 1988). A number of component objects 
create a single composite object at the next higher aggregation level in the object 
hierarchy. If the component objects are adjacent, their spatial descriptions are usually 
merged, but it is also possible to just assign a common identifier to the components. 
Merging and aggregation are therefore two distinct operations. Aggregation mainly 
involves combining the thematic information attached to the objects, whereas merging 
only concerns the spatial component. 
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FIGURE 12. AGGREGATION FOLLOWED BY MERGING OF THE COMPONENTS’ GEOMETRY 

 

3.10.2 Elimination 
If we assume a dataset with area objects to constitute a single-valued vector map, 
elimination can be considered a special case of aggregation. One of the consequences of a 
geometric partition is that objects cannot simply be removed, as this would create gaps. If 
an object is eliminated the released area has to be reclaimed by an adjacent object in 
order to maintain a geometric partition.  

The set of faces F = {…, fi , …} form an area partition; every face is part of an object: 

 ∀f∈F, ∃o ⇒ Part [ f, o ] = 1 
Object ok is removed but becomes part of adjoining object om: 

 PART[ ok , om ] = 1 
Then the faces of ok become part of om , retaining the area partition: 

 PART[ f, ok ] = PART[ f, ok ] * PART[ok , om ] ⇒ PART[ f, om ] = 1 
This means that objects have to be combined just as in the case of aggregation, but with 
this distinction that the properties of the eliminated object do not become part of the 
composite object’s description (Figure 13, Figure 14). An example of elimination in a 
categorical area partitioning is the frequently used method of merging small area objects 
with one of their neighbours based on the largest common boundary.  
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FIGURE 13. THE DIFFERENCE BETWEEN AGGREGATION AND ELIMINATION (QUANTITATIVE ATTRIBUTE) 

 
 

 

4. Lot

2. House

elimination !

2. House

1. Garage 

3. Lot  

FIGURE 14. ELIMINATION (NOMINAL ATTRIBUTE) 

 

A dataset is a description of reality and generalisation is just a way to make reality 
manageable; objects removed in a generalisation process still exist in reality. The fact that 
elimination is considered to be a kind of aggregation is related to the fact that all objects 
are more than one-dimensional. If an object is removed from the dataset, its area has to be 
merged with another, adjacent object, thus contaminating this adjacent object. So in fact a 
new, contaminated object is created.  

Elimination can be predetermined, or be the result of what started as an aggregation 
operation. If one of the objects of the composite is insignificant compared to one or more 
of the others, it is possible that the composite object is not reclassified completely, but 
that instead the properties of the insignificant component are ignored. In this case the 
process which started as an aggregation ends up as an elimination. If the elimination is 
predetermined, the aggregation relationship is usually strictly spatial, i.e. the eliminated 
object is merged with one of its neighbours. There is generally no thematic relationship 
between the object and its neighbour. 

Elimination is application-independent and can be used when shifts in the thematic 
content are not a problem. If a choice can be made for an object to be eliminated or 
aggregated, aggregation is generally to be preferred for its advantage of maintaining the 
most thematic information. 

3.11 Summary 
In this chapter a topological data model was introduced. This model contains the spatial 
relationships needed for aggregation. The aggregation operations are also supported by a 
partonomy or aggregation hierarchy of object classes and composite classes to determine 
aggregation options and by an object hierarchy of objects and composite objects to enable 
storage of the aggregation results. The difference between aggregation and elimination in 
a geometric partition was explained. The third type of hierarchy introduced is the 
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taxonomy or classification hierarchy in which objects are members of classes and classes 
may be generalised to superclasses. In the next chapter the operations mentioned above - 
aggregation, elimination and class generalisation - will be the constituents of conceptual 
abstraction strategies. 

 



 

Chapter 4: Abstraction process 
 
Having described the data model, the abstraction process can be defined. It is obvious 
that the abstraction process depends highly on the possibilities offered by the data model, 
because the new, abstract descriptions are derived from and stored in the described 
model. In this chapter we zoom in on strategies and operations for the conceptual 
generalisation of a categorical area partitioning.  

4.1 Thematic and spatial abstraction 
Conceptual generalisation of geo-data has two aspects, thematic and spatial abstraction, 
which are - as we will see later - closely related. We speak of thematic abstraction if the 
number of distinct attribute values is reduced, i.e. the domain is limited. This reduction is 
achieved by classifying quantitative values. If the attribute values refer to classes already, 
the domain can be limited by moving to superclasses. Thematic abstraction is the 
conceptual GIS equivalent of combining legend items in traditional cartography. Spatial 
abstraction is achieved by reducing the number of objects by means of aggregation or 
elimination. Reducing the number of spatial dimensions of an object, for example, 
converting area objects to point objects, is not considered a conceptual generalisation 
operation within the framework of this study. Although it is an example of context 
transformation, not every context transformation is a generalisation. Spatial abstraction 
can be compared to simplifying the map image in map generalisation. Thematic 
abstraction triggers spatial abstraction when objects with an identical class value after 
classification or class generalisation are subsequently aggregated. Spatial abstraction 
frequently depends on a preceding thematic abstraction. In this study, the prime objective 
is spatial abstraction. 

Abstraction is based on inter-object relationships. This means that we can draw a scheme 
of abstraction types which looks very similar to the diagram of relationship types in the 
previous chapter (Figure 15).  
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FIGURE 15. TYPES OF ABSTRACTION 

 

4.2 Categorical maps need a holistic approach 
It is possible to split up a categorical map into several dichotomous maps, i.e. to ‘lift out’ 
certain classes in order to generalise these maps independently and recombine them 
afterwards. Infrastructure, for example, can be part of a land cover map but may also 
create an independent map (Figure 16). In the first case the map is categorical, in the 
second case we have a dichotomous map.  
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FIGURE 16. ‘LIFTING’ A CLASS OUT OF A CATEGORICAL MAP TO CREATE A DICHOTOMOUS MAP 

 

Generalising the different classes independently is only possible if the objects of these 
classes are represented by lines or points in the initial, categorical map. If area objects 
were eliminated, holes would appear after recombination of the maps. But even with 
point and line objects this method is problematic, because important relationships 
between objects belonging to different classes can be overlooked (railway bridge without 
a river). Categorical maps really demand a holistic approach, i.e. dealing with different 
types of objects and the interaction between them – not dividing the map up into layers 
containing only one type of objects and then attempting to recombine them after 
generalisation (Bundy et al. 1995). 

Nevertheless, splitting up a categorical map into several dichotomous maps can be 
beneficial, even if the map only contains area objects. This is when we want to perform a 
database enrichment process (see next chapter). The objects can be classified using the 
dichotomous map, according to spatial structure, for instance, and this classification can 
subsequently be transferred to the original, categorical map to aid in its simplification.  

4.3 Metaclasses 
There are a number of problems in using existing rules. Rules for manual generalisation 
are generally only applicable within a limited resolution range because generalisation is 
usually carried out from one mapscale to the next. They also leave too much room for 
individual interpretation to be used in an automated environment. The additional 
knowledge used by the cartographer turns out to be difficult to identify and formalise, 
and the resulting rules are therefore either too general (e.g. if an object is too small it can 
be omitted) or too specific (e.g. if a lake is too small it should be omitted, except if it is 
part of a set of small lakes close to each other, in which case… (Ruas and Lagrange 
1995)). Most rule-based systems described in literature are based on rules that are too 
specific (Shea 1991, McMaster 1991). The rules tend to be very detailed and address 
particular classes of specific datasets. 
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Because of these problems we opt for a different approach. In order to make the rule-base 
less dependent on the dataset a typology of classes would be beneficial. That way, rules 
can be defined for metaclasses instead of specific classes. Metaclasses are categories of 
classes that share some characteristics (Molenaar 1998). We distinguish three 
metaclasses: classes containing ‘network-forming’ objects like roads; classes with 
relatively small ‘island’ objects, e.g. buildings; and the remaining ‘normal’ area objects 
with parcels as a typical example. The properties of the objects in these classes offer 
possibilities for database enrichment and at the same time offer opportunities, but also set 
constraints, for aggregation. 

Although this distinction may only appear to hold true for ‘small-scale’ datasets, where 
infrastructure is represented by line segments and settlements by points, this distinction 
also applies to ‘large-scale’ datasets where all objects are represented by faces. Although 
all objects are represented through faces, some objects can be characterised as ‘linear’, 
e.g. roads and waterways, while others are ‘point-like’, e.g. buildings.  

Island and ‘unimportant’ network segments are ideal candidates for elimination whereas 
it is generally not advisable to merge adjacent objects with objects belonging to a 
network structure, because this might disturb network topology in case an accidental 
shortcut is created (Figure 17). However, small ‘island’ objects, e.g. refuges, which are 
fully enclosed by objects belonging to the network, could be merged into the network 
without consequences. 

 
 

  

 

   

FIGURE 17. DISTURBING NETWORK TOPOLOGY BY AGGREGATION 

 

Elimination based on simple properties like size is common in classes of ‘island’ objects. 
Objects that belong to network structures, like road and waterway systems, cannot simply 
be eliminated based on size. That way, structurally essential elements could accidentally 
be removed (Figure 18). Instead, elimination should be based on the importance or rather 
unimportance of the object within the network structure. This requires a classification of 
network segments based on the topological structure of the network. Usually, these more 
sophisticated classifications are not readily available. Pre-processing of the data or 
database enrichment is therefore required. Once importance-based classifications are 
available they can also be used for aggregation; with least important classes, such as 
blind alleys, as likely candidates for aggregation or elimination. 
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FIGURE 18. EXAMPLE OF SMALL ROAD SEGMENT THAT IS VITAL IN RETAINING CONNECTIVITY 

 

4.4 Strategies for conceptual geo-generalisation (aggregation methods) 
Molenaar distinguished four spatial generalisation strategies (Molenaar 1998). All are 
intended for the generalisation of single-valued vector maps, i.e. area partitions. The four 
types are: 

• Geometry-driven generalisation 
• Structural generalisation 
• Similarity-driven generalisation 
• Functional generalisation. 

4.4.1 Geometry-driven generalisation  
Geometry-driven generalisation is a rather crude method based on geometric 
relationships between the objects only. Objects, especially small ones, are eliminated by 
merging their geometry with a neighbouring object based on the largest shared boundary 
(Figure 19). Thematic compatibility between the objects plays no part in the process. In 
the case of nominal data, geometry-driven aggregation easily causes shifts in attribute 
values, enlarging some classes excessively while others may disappear.  
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FIGURE 19. EXAMPLE OF GEOMETRY-DRIVEN GENERALISATION 

 

4.4.2  Structural generalisation  
Structural generalisation is based on the hierarchical relationships in a network structure. 
The elements of the network are usually represented by segments of a graph. Yet this 
network structure can be related to a geometric partition of area objects to direct the 
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aggregation of the area objects, for example in the aggregation of catchment areas 
following the elimination of stream elements in order to retain a constant flow at the 
outlet (Figure 20, Martinez Casasnovas 1994). This approach was developed for 
quantitative information, such as catchment area and flow rate; whether the method can 
be applied to nominal, categorical data is as yet unclear.  

 
 

 

FIGURE 20. EXAMPLE OF STRUCTURAL GENERALISATION 

 

In the case of geometry-driven generalisation and structural generalisation, 
reclassification becomes necessary after merging the units. This contrasts with similarity-
driven and functional generalisation where reclassification drives the generalisation 
process. We will now go more deeply into the last two, being two of the more advanced 
methods for object aggregation in a categorical area partition.  

4.4.3 Similarity-driven generalisation  
Evaluating similarity relationships between objects requires the comparison of attribute 
values. Attributes with a ratio scale cause few problems, as the ‘distance’ between two 
attribute values can be measured objectively. Problems occur when the attributes have a 
nominal scale. These attributes often refer to classes, the values being class identifiers. It 
is obvious that different classes cannot readily be compared. These nominal data raise 
questions like: what is similar and which combinations are more similar than others? 
Bregt and Bulens encountered this problem and introduced the similarity matrix, a matrix 
in which every possible combination of class values is assigned a similarity measure. An 
important drawback of this approach is the labour-intensiveness of creating a similarity 
matrix (Bregt and Bulens 1996), and they are therefore hardly available. Moreover, 
similarity matrices are application-specific and can therefore not often be reused. 

A special case of similarity-driven generalisation is class-driven generalisation (Molenaar 
1998). Class-driven generalisation is based on the use of an existing taxonomy to 
establish whether the class values are related to a common superclass. In Figure 21, for 
example, we can see that ‘coniferous forest’ and ‘deciduous forest’ are both related to the 
superclass ‘forest’. These relationships can be used as a basis for aggregation. Since 
‘deciduous forest’ and ‘coniferous forest’ are both types of forests, adjacent lots of both 
types can be aggregated, resulting in composite objects of the type ‘forest’ (Figure 22). 
This approach can only be followed if this kind of taxonomy is available. Like similarity 
matrices, taxonomies are context-dependent but reusability is better because the number 
of choices is smaller. The relationship is binary; there is a relationship or there is not, 
with, in contrast to similarity matrices, nothing in between. 
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FIGURE 21. PART OF A TAXONOMY OR CLASSIFICATION HIERARCHY  
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FIGURE 22. EXAMPLE OF CLASS-DRIVEN GENERALISATION, BASED ON THE TAXONOMY IN FIGURE 21 

 

Class-driven generalisation can follow the strict rules of object modelling, as the 
superclasses have a less intricate attribute structure. But often the classes involved are 
mere data classes and the taxonomy takes the form of hierarchical attribute values or a 
related table. Richardson’s (Richardson 1993) method for the generalisation of land cover 
data is based on this principle. Another example is Bregt and Bulens’ attribute class 
method (Bregt and Bulens 1996). Many datasets contain hierarchical attribute values that 
will support this practice. The Dutch topographic ‘TOP10vector’ dataset, for example, 
shows an hierarchical classification for roads. 

4.4.4 Functional generalisation 
Aggregation based on classification hierarchies works well in some cases, as examples by 
Richardson and Bregt and Bulens have shown, and is therefore a very valid approach, but 
not necessarily the right one to follow. It is often required that non-similar objects are 
aggregated in order to create meaningful composites, because: 

• Adjacency of objects belonging to the same superclass is more or less coincidental. 
It is therefore far from certain that the spatial complexity of the dataset will reduce 
significantly. 

• The approach only works within a limited spatial range as the objects basically 
remain the same, it is just the label that changes. Whether an object is referred to as 
a ‘house’ or a ‘building’, it is still the same object. The spatial resolution does not 
change. 

Classes can only be applied within a limited range of spatial resolutions. The class 
‘building’ for example is only valid within a limited spatial resolutions domain, since 
there are generally no buildings larger than a few hectares. If we want to describe an area 
at a higher level of abstraction, we will have to switch to classes like ‘built-up area’, 
composed of objects that bear little similarity, like buildings and roads. Thus, small steps 
towards higher levels of abstraction can be accomplished by merging similar objects. The 
larger steps should be based on other relationships, such as functional ones. 
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Functional relationships can play an important part in a spatial abstraction process, but 
they are only occasionally mentioned in map generalisation literature. One example 
related to topographic data that comes close was described by Robinson (Robinson 
1995). He described an aggregation hierarchy of buildings, aggregated buildings, 
building groups and blocks (Figure 23). Also, Ruas and Lagrange (Ruas and Lagrange 
1995) observed that a hospital is composed of a set of buildings and areas. But these are 
examples of the few times that functional relationships appear in map generalisation 
literature. It appears that most literature describes generalisation processes comprising 
relatively small generalisation steps, which can still be realised by elimination and 
reclassification based on similarity. 

 

 

FIGURE 23. ROBINSON’S EXAMPLE OF AN AGGREGATION HIERARCHY 

 

Functional generalisation is based on the functional coexistence of the objects involved. 
These functional relationships are generally much more interesting than relationships 
based on similarity. Take the example of a leopard. The leopard depends on a varied 
habitat with both forested areas and more open vegetation. An aerial image is available 
with a resolution of 5m2. In the image we will be able to recognise trees, shrubs, 
grassland etc., and we can aggregate adjoining trees and shrubs into larger areas of higher 
vegetation, keeping the larger areas that emerge and eliminating the smaller ones. 
However, in this process we will entirely lose the specific domain of the leopard which is 
in fact characterised by the variation in higher and lower, denser and more open 
vegetation. To find the leopard we will have to look at spatial units which contain both 
types of vegetation, high and low, and we have to look at the right level of abstraction; 
the open spaces must be large enough but not too large. To the leopard, the shrubs and 
open field are functionally related, the shrubs providing cover for the animal to stalk its 
prey grazing in the open.  

But, just as with the methods based on similarity, the relationships need to be known 
beforehand. That is why we will now focus on the development of a method for 
automated determination of the relationships needed for functional aggregation. 
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4.5 Spatial co-occurrence of classes 
How can we detect functional relationships between objects of different classes? Think of 
a workplace that consists of a chair and a desk. These items show less similarity than two 
chairs or two desks, but when put together they create a workplace, unlike two chairs or 
two desks. The fact that the items are found close to one another makes them a 
workplace. If we reverse this line of thought and look at an office without knowing the 
concept of workplaces we will probably only see chairs and desks. But, if we look closer 
we might observe that the spatial distribution shows that chairs and desks occur in pairs: 
one desk with one chair. There might be one chair too much or a chair away from its 
desk, but if we look at a test set that is statistically large enough, this relationship between 
instances of the class of chairs and instances of the class of desks will most likely show. 

This approach is based on functional dependencies rather than similarity of the objects. It 
is assumed that the spatial correlation of the instances of classes can indicate an 
associative relationship, in conformity with Tobler’s ‘first law of geography’: ‘everything 
is related to everything else, but near things are more related than distant things’ (Tobler 
1970). It is also assumed that associative relationships can indicate functional 
dependencies. 

4.5.1 Class adjacency index 
The class adjacency index (CAI) is a global measure for the spatial adjacency of thematic 
classes; this index can be used to identify combinations of classes of which the mutually 
adjacent members might be aggregated (van Smaalen 1996b, van Smaalen 1999).  

In the case of a single-valued vector map, the spatial adjacency or co-occurrence of 
classes is translated into cumulative adjacency for all members of the class. The class 
adjacency index of two classes will be evaluated by taking the sum of the lengths of 
shared boundary segments for all adjacent members of the two classes divided by the 
total boundary length of either of the two classes. By doing so for all combinations of 
classes in the dataset we can produce a list of values of class adjacency indices.  

Note that the class adjacency index is directional, i.e. the class adjacency index between 
‘building’ and ‘lot’ is different from the one between ‘lot’ and ‘building’ (see Table 1). 
The class adjacency index is defined as: 

∑Length(sr | ADJACENT[od , oe | sr ] = 1)  
  r 

∑Length(st | BOUNDARY[st , od ] = 1) 
CAI (Ca | Cb)  = 

   t 

 with MEMBER[od ,Ca]=1 (object od  is a member of class Ca) 
 and MEMBER[oe ,Cb]=1 (object oe  is a member of class Cb) 
Many aggregation studies use measures that express compatibility between classes (van 
Putten and van Oosterom 1999, Bregt and Bulens 1996). The class adjacency index can 
be seen as a type of compatibility measure based on topological information. 

4.5.2 Cardinality 
For efficiency reasons it is important that only class combinations that appear in a 
significant number of cases are reclassified. Each class contains a percentage of the total 
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number of objects in the dataset. This percentage is taken into account along with the 
class adjacency index to select a class combination. The combination with the highest 
ratio is used for reclassification and aggregation of adjoining objects. The significance 
ratio is defined as: 

Card(Ca ) 
SR (Ca | Cb) = CAI (Ca | Cb) * Card(OM )

The aggregation process is performed repeatedly with other combinations of classes to 
produce subsequently higher levels of abstraction. Repetition of the procedure on the 
newly created composite classes may show new relationships previously undetected and 
create a new, next higher level in the object hierarchy. Combinations that have been used 
once are not used again. Moreover, combinations where Cb is a network-forming class 
are excluded from the process since this could create unwanted shortcuts that disturb 
network topology (see section 4.3). 

4.6 Object aggregation factor 
Once the combination of classes (Ca,Cb) with the highest significance ratio has been 
identified, the actual aggregation of objects starts. But not all adjoining objects of the two 
classes will be aggregated. The object aggregation factor (OAF) is used to determine 
whether a particular combination of two objects should be aggregated (this is determined 
for each of the two objects involved). The object aggregation factor is a local measure, in 
contrast to the class adjacency index which is a global measure. The object aggregation 
factor for area object od is: 

• the sum of the lengths of the segments (sr) that are part of the boundary of object od (of 
class Ca or Cb) and that are also part of the boundary of objects of the complementary 
class Cc of the selected class combination Ca,Cb 

times 
• the average area of all objects in the map: Area
divided by the product of  
• the perimeter of object od  
and 
• the area of object od 

 

∑Length(sr | ADJACENT[od , oe | sr ] = 1)  * Area
  r  

OAF (od) = 
Perimeter(od) * Area(od) 

 with MEMBER[oe ,Cc]=1 (object oe  is a member of the complementary class Cc ) 
 and Cc = Cb if od is a member of Ca else if od is a member of Cb then Cc = Ca 
The threshold value for object aggregation will be determined empirically. Once set, this 
value should work for any categorical area partition since it is based on measures that are 
not dataset-specific. The threshold value evaluates the degree of inclusion of the object in 
the composite versus the size of the object. This means that objects that are only 
marginally connected, and also relatively large objects, have less chance of being 
aggregated. In the first case this is because the resulting objects should preferably be 
compact; in the second because it would create composite objects with a very coarse 
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spatial distribution of the constituting classes, in which case the spatial relation between 
the classes in the composite is not very strong.  

4.6.1 Merging the geometry 
Once the new composite objects have been created, there will be faces that belong to the 
same object.  

PART22 [ fr , oar ] = 1 
PART22 [ fl , oar ] = 1 

These faces can then be merged: 
Merge( fr , fl ) = fm 
- The boundary of fm is the union of existing boundaries minus their common 

segments; the latter are the segments where the original faces are adjacent: 
S∂fm = S∂fr ∪ S∂fl - S∂fr ∩ S∂fl  where 
S∂fr ∩ S∂fl  = { si | ADJACENT[ fr  , fl | si ] = 1 } 

- The set of segments inside the new face contains all segments that have this face 
on both sides, this is: 
SInside(fm) = { si | BOUNDARY[si , fm ] = 2} 
The segments in this set carry no semantic information as the study is limited to 
area objects 

- The set of segments related to the new face is then the union of the set of boundary 
segments and the set of segments inside the face: 
Sfm = SInside(fm) ∪ S∂fm 

4.7 Solving specific scenes by general rules 
In order to evade the common generalisation problem of rules that are too specific, it is 
necessary to develop a method that enables specific situations to be resolved by general 
rules. With the class adjacency index and a typology of classes we propose two 
mechanisms to avoid the problems related to using existing manual generalisation rules. 

The class typification is used to define rules that are dataset-independent. Instead of the 
classes of a specific dataset at hand, metaclasses are addressed (section 4.3). This way it 
is possible to design a set of more comprehensive rules. Dataset-specificness is 
introduced with the class adjacency index. The class adjacency index is used to define 
aggregation rules automatically. Once the relationships at class level are clear, specific 
cases can be resolved quite easily. In general, generalisation rules are preferably not 
based on particular spatial configurations, but rather on statistical relationships like the 
class adjacency index.  

Figure 24 illustrates the steps involved in the abstraction process (van Smaalen 1996a, 
van Smaalen 1996b). The bottom row illustrates a geographic dataset at different levels 
of abstraction. Four levels of an object hierarchy (Molenaar 1998) are shown, every level 
forming a single-valued vector map. The middle row shows the topological structure of 
the geometric descriptions in the bottom row in the form of adjacency graphs. In the 
adjacency graph every area object is represented by a node and the adjacency 
relationships between the objects are represented by edges connecting the nodes. As an 
addition to the plain adjacency graph as described by Molenaar (Molenaar 1998), a value 
representing the length of shared boundaries between the objects is attached to the edges. 
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In the implementation, this value is used to determine the significance of the adjacency 
relationship. The top row in Figure 24 shows the classes and the relationships between 
them. Taxonomy relationships are drawn vertically and partonomy relationships 
horizontally. The partonomy relationships connect the aggregation levels. The taxonomy 
relationships only play a part within the aggregation levels (see below). 
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FIGURE 24. MULTI-LAYER MODEL FOR SPATIAL ABSTRACTION 

TABLE 1. CLASS ADJACENCY INDICES FOR THE ABSTRACTION LEVELS IN FIGURE 24 

Abstraction level 0  Abstraction level I Abstraction level II Abstraction level III
Combination CAI   Combination CAI Combination CAI Combination CAI
building-lot 1  roadway-pavement 0,96 street-block 0,87 street-block 1 
roadway-pavement 0,96  pavement-roadway 0,51 block-street 0,73 block-street 1 
lot-building 0,62  pavement-block 0,49 blind alley-block 0,7   
pavement-roadway 0,51  block-pavement 0,36 blind alley-street 0,3   
pavement-lot 0,49  roadway-block 0,04 block-blind alley 0,27   
lot-pavement 0,36  block-roadway 0,02 street-blind alley 0,13   
roadway-lot 0,04        
lot-roadway 0,02        
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The whole abstraction process operates at the topological and class level. The class 
adjacency index is a measure at class level based on information that can be derived from 
the topological description. The aggregation process also works at the topological level; 
all information needed for the object aggregation factor is available in the adjacency 
graph. The geometrical level only plays a part at the beginning, using it to derive an 
adjacency graph, and at the end of the abstraction process when adjoining faces that 
belong to the same object after aggregation, are merged. 

In the example of Figure 24 the distinction between houses and factory buildings was not 
considered relevant. These classes were therefore generalised to ‘building’. The class 
adjacency indices (Table 1) for abstraction level 0 show that the adjacency relationship 
between buildings and lots is the strongest of all combinations, with value 1 (the 
maximum value of the class adjacency index). This combination is therefore selected to 
be aggregated into ‘block’. The ‘property’ level of Figure 12 was omitted because it is 
very difficult in practice to determine the inter-object boundaries between adjacent 
objects of the same composite class3. The class adjacency indices for abstraction level I 
show the highest correlation between ‘roadway’ and ‘pavement’. This combination is 
aggregated into ‘street’ in abstraction level II. Level II would only have had two classes, 
and thus only one possibility for aggregation, if the class ‘street’ had not been subdivided 
into blind alleys and other streets. With more aggregation options, the highest 
correlations are now between ‘street’ and ‘block’ and ‘block’ and ‘street’. But now an 
additional rule comes into play which states that objects belonging to the metaclass of 
network-forming elements can only be aggregated in order of their importance within the 
network structure. This means that the blind alley is aggregated before other streets, 
resulting in the level III situation. Level IV consists of a single object. 

Note that the class intension of ‘street’ changes between level I and level II. In level I the 
class intension includes blind alleys, whereas from level II upwards these are not part of 
the class. Strictly speaking, the name of the class should be changed in such a case, since 
the name is used to identify the class, but usually this is not done. 

In an object-based geographic database each object instance is a member of a class, e.g. a 
certain object is a ‘house’. Sometimes this classification is not entirely suited for the 
application. In that case the classes may need to be generalised or specialised. Class 
generalisation and class specialisation are both types of database enrichment. Database 
enrichment will be treated more extensively in chapter 5. Database abstraction is often 
preceded by database enrichment because abstraction, quite contradictorily, often 
requires the introduction of more detail to begin with. Figure 25 shows an example of 
class generalisation preceding an aggregation operation: the object subclasses ‘house’ and 
‘factory’ belong to the superclass ‘building’. In this case it is the superclass that holds the 
relationship to the lot, not the subclasses, as a distinction between ‘residential property’ 
and ‘industrial property’, by aggregating houses and lots, and factory buildings and lots 
separately, was not considered relevant. 

 

                                                 
3 Although this is not particularly the case with objects of the ‘island’ metaclass, such as buildings, but 
more with objects that are alternately connected. 
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FIGURE 25. CLASS GENERALISATION PRECEDING THE COMBINATION OF CLASSES 

 

It may also be necessary to specialise an existing classification prior to aggregation. 
Members of the subclasses may subsequently be aggregated with members of another 
class. It is not always necessary to create a real object subclass - with a more detailed 
class intension than the original class - a mere data class might also suffice (see section 
3.4). Class specialisation is often based on spatial properties and relationships. The 
classification of the objects in a hydrological network, for instance, can be specialised 
based on the position of the object in the network structure, an example being the 
identification of blind alleys in Figure 26. Blind alleys may be found by searching for 
road objects that have only a single connection to another road object. 
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FIGURE 26. SPECIALISATION OF AN OBJECT CLASS TO ENABLE THE CREATION OF A COMPOSITE CLASS 

 

4.8 Steering parameters 
Having described the abstraction process, what are the parameters by which the user can 
influence this process? The full abstraction procedure is depicted in Figure 27. The 
system can be operated in auto mode or step mode. Auto mode means that the user sets a 
stopping criterion first after which the system will aggregate class combinations 
repeatedly until the criterion is met. A stopping criterion can be a predefined: 

• number of aggregation cycles; 
• number of objects (the number of objects decreases during the process); 
• number of classes (increases); 
• mean object area (increases). 

In step mode the user evaluates each aggregation step before continuing. The evaluation 
is twofold. The user can decide to accept the last step and subsequently decide whether a 
next step is required or that the result resembles the desired end result. Or the user rejects 
the last step after which the system will revert to the situation that existed before the last 
step, exclude the current class combination and proceed with the next combination in 
line. 

The last - or rather the first - manner in which the aggregation process can be influenced 
is by excluding a class from the aggregation process, in order to maintain the class as is. 
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FIGURE 27. THE USER CONTEXT OF THE TWO ABSTRACTION PROCESS MODES 

4.9 Summary 
In a geometric area partition objects cannot simply be eliminated; aggregation is required. 
Aggregation requires compatibility measures for the objects. Aggregation of thematically 
similar objects is only applicable within a limited spatial range. Larger steps are only 
possible by combining dissimilar objects. Aggregation of dissimilar objects can be based 
on the class adjacency index (CAI). The class adjacency index is a global measure for the 
spatial adjacency of thematic classes; this index can be used to identify combinations of 
classes of which mutually adjacent members may be aggregated. A higher class 
adjacency index makes aggregation of the members more legitimate. The method based 
on the class adjacency index allows user-intervention at several points in the process but 
can also be automated completely.



 

Chapter 5: Datasets 

5.1 Introduction 
As shown in the previous chapters, the structure of the base data is very important for 
operations like generalisation. But it is not only the data model used which determines 
the possibilities for generalisation. The quality of the actual data is very important as 
well. This is why great care should be taken while determining the requirements that the 
datasets should meet.  

A dataset is stored using a certain data model, but the data model should not be 
considered an integral part of the dataset. Datasets can be converted from one data model 
to another, without adding or losing information. The choice of a data model is 
determined by the operations one wants to apply to the dataset. A topologically structured 
data model is best suited for finding neighbouring objects whereas for retrieving objects 
within a user-defined rectangle, topology does not offer any advantages. An Arc/Info 
polygon coverage, for example, contains topological relationships between the objects, 
whereas an ArcView polygon shape file model does not contain any topology. But it is 
possible to convert an Arc/Info polygon coverage to an ArcView shape file. When 
converting it back the topology will be recalculated, resulting in an Arc/Info coverage 
that is identical to the initial one.  

Dataset requirements for applying the aggregation method described in this study: 

• The initial dataset needs to form a complete geometric and thematic partition, i.e. a 
single-valued vector map. 

• The classification of the thematic partition should be sufficiently detailed. 
Strategically chosen ordinal class attribute values can play an important role in the 
abstraction process, in particular within network-forming classes. Database 
enrichment operations may be required to attain these classifications. The 
classification may either be derived automatically based on topological (e.g. blind 
alley) or geometric (e.g. narrow road) properties or can be assigned manually (e.g. 
road closed for motorised vehicles). 

• The geometric primitives should be delimited accurately and be small enough, 
especially in network-forming classes, to leave sufficient flexibility in composing 
the desired generalised network topology. Figure 28 shows a situation where the 
choice of geometric primitives is arbitrary. A better solution is given in Figure 29. 
The transverse delineation of network segments needs to be consistent. This is most 
easily done by defining a separate primitive of the type ‘junction’ at every point 
where three or more segments connect. 

• Area objects should not be described by their boundaries alone, but by faces. 

• The dataset should be topologically correct. Object boundaries should be fully 
closed. 
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FIGURE 28. ARBITRARILY DELINEATED ROAD SEGMENTS CAUSE ELIMINATION PROBLEMS 

 

     

FIGURE 29. TREATING JUNCTIONS AS SEPARATE SEGMENTS ENABLES ELIMINATION OF ANY OF THE SEGMENTS 

 

5.2 Datasets 
Two topographic datasets are used in this study. The first one is the large-scale base map 
(Grootschalige Basiskaart or GBKN) in a prototype object form created by the Dutch 
Cadastre and Public Registers Agency (Kadaster). The second one is the TOP10vector by 
the Dutch Topographic Survey (TDN). Both datasets contain topographic information 
such as roads, waterways and buildings. The datasets are explained further in the 
following paragraphs. The Dutch town of Zevenaar and its immediate surroundings are 
used as a test area because of the availability of a prototype object-GBKN dataset for the 
area. The region is considered to offer a representative example of both types of datasets. 

5.2.1 GBKN 
Work on the GBKN started in 1975 with an initial government grant and was further 
financed and developed by an alliance of organisations: utilities, municipalities and land 
registry. Maintenance and distribution are in the hands of regional partnerships. The 
Dutch Cadastre and Public Registers Agency produces the dataset for a number of the 
regional partnerships. The Landelijk Samenwerkingverband GBKN (LSV-GBKN) is 
responsible for the co-ordination at a national level. The last unmapped area in the 
GBKN was completed in 2001 and GBKN data are now available for any location in the 
Netherlands. 

The average spatial precision of GBKN data is 28 cm in built-up and 56 cm in rural areas. 
The level of detail is comparable with 1:500 to 1:2000 scale maps. The dataset is 
intended primarily for management and design purposes. The GBKN is generally 
considered a suitable geometric basis for additional information of the own organisation. 
The digital information was originally intended for drawing maps. As a result, the 
original GBKN only uses lines (roadside, building perimeter) and points to represent 
terrain features. Road boundaries are labelled ‘roadside’; the thematic information is 
attached to the boundary of the features as the dataset does not contain polygons. 
Although a human person can determine visually on which side of the line the road is 
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situated, computers cannot deal with such incomplete information. Moreover, the data in 
the original GBKN are not topologically structured. Roadsides show gaps at entrances to 
buildings (Figure 30) and the transverse delineation of road segments is arbitrary. 
Overall, no objects are distinguished; the dataset only contains geometric primitives.  

In the coming years the GBKN datasets will slowly move towards an object-based 
structure. The building layer will be converted first. The object-GBKN introduced in the 
next section is a test dataset developed for evaluation purposes. 

 
 

 

FIGURE 30 . EXAMPLES OF GAPS AT ENTRANCES AS THEY APPEAR IN THE GBKN DATASET 

 

5.2.2 Object-GBKN 
In this study a dataset called the object-GBKN is used. This dataset was created as a 
prototype by the Dutch Cadastre and Public Registers Agency (Kadaster). The thematic 
structure of this dataset is based on NEN3610 (NNI 1995, NNI 2001), an object-based 
standard. This, and the name object-GBKN, suggest that an object-based approach was 
used, but this is not really the case. As we can see in Figure 31, the division into road 
segments still seems rather arbitrary. This can cause problems during a generalisation 
process, as is shown in Figure 28 and Figure 29. There is no distinction between 
connections and junctions as defined in NEN3610.  

Rather than object-GBKN, the dataset should preferably be called area-GBKN, since the 
main difference with the original GBKN is that it contains not just the boundaries of the 
terrain features, but also the features themselves, as areas.  

One difficulty with network-like structures is the transverse delineation of objects. If the 
network segments are represented by lines, this is generally taken care of automatically, 
because nodes are or can be inserted at intersection points. But when dealing with area 
objects we should have clear rules for handling intersections to avoid problems like the 
one shown in Figure 28, and peculiarities like the examples shown in Figure 31, where 
the road elements in the centre of the picture have an atypical shape. Currently, there are 
no such rules, whereas the rules for longitudinal delineation are generally very detailed.  



42 Chapter 5 

 

      

FIGURE 31. OBJECT-GBKN ROAD SEGMENTS APPEAR TO HAVE BEEN DELINEATED RATHER ARBITRARILY 

 

The object-GBKN is an experimental dataset. It is topologically sound and consists of 
four layers: 

• Division objects 
• Furnishing objects 
• Providing elements (area) 
• Providing elements (linear). 

The linear elements are discarded since the application works on area objects only. The 
other three layers are described below.  

The division objects in the object-GBKN constitute a single-valued vector map (Figure 
32). Five feature classes are distinguished: road, railway, water, terrain and crossing. 
Roads, railways and water break up the spatial extent of the dataset. The remaining areas 
between the infrastructural objects are classified as ‘terrain’. The use of the object type 
‘crossing’ is not in accordance with NEN3610. ‘Crossing’ is used where two distinct 
types of division objects cross or two of the same type cross at different levels. NEN3610 
does not identify an object type ‘crossing’, but it distinguishes between connections and 
junctions by means of an attribute. The crossings in the object-GBKN use the same code 
as the junctions in NEN3610. It seems that this was interpreted wrongly, because unlike 
the object-GBKN’s crossings, junctions also appear where two objects of the same type 
connect or cross at the same level. This is not dealt with in the object-GBKN. As a result, 
transverse delineation of infrastructural objects becomes arbitrary. This applies to all 
types of infrastructure: roads, railways and waterways. Furnishing objects exist within 
the division objects. They belong to the classes ‘building’ and ‘construction work’ 
(bridge, tunnel, dam etc.). Main buildings and outbuildings or annexes are discerned. 
Figure 33 shows a map with the furnishing objects added to the layer of the division 
objects. Of the furnishing objects only the buildings are used. Providing elements (area) 
are objects that create a more detailed partitioning of the objects mentioned before 
(Figure 34). This results - at least in the case of road objects, which are furnished 100% - 
in component and composite objects. All objects in the object-GBKN have a unique 
object identifier. 
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FIGURE 32. GBKN DIVISION OBJECTS 

 
 

 

FIGURE 33. THE FURNISHING OBJECTS ADDED TO THE MAP IN FIGURE 32 

 
 

 

FIGURE 34. PROVIDING ELEMENTS ADDED TO THE MAP IN FIGURE 33 
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5.2.3 TOP10vector 
TOP10vector is a dataset of the Dutch Topographic Survey (TDN) originally used to 
create 1:10,000 topographic maps for the military. Some of the classifications are still 
based on military requirements. The entire nation is mapped with a spatial precision of 
around 2 metres. TOP10vector is maintained and distributed by TDN. Recently TDN and 
the Dutch Cadastre and Public Registers Agency signed an agreement bringing the TDN 
under the responsibility of the Cadastre and Public Registers Agency. This more or less 
puts the GBKN and TOP10vector in the same hands, which will stimulate efforts to 
create both datasets on the basis of a single survey. 

TOP10vector data consist of four layers. The first is a geometric partition of area features 
including water, roads, parcels, but not buildings, which are in a separate layer. 
Furthermore, there is a layer of point symbols (church symbols, individual trees etc.) and 
a layer containing linear objects (narrow waters, hedges etc.). The first layer contains 
objects that are based on land cover such as forests (deciduous, coniferous, mixed), 
grassland, arable land and water, but also infrastructural objects with functional 
classifications (motorway, street, bicycle path). The objects in this layer are therefore 
rather ambiguous, as function and appearance are mixed up. Moreover, hydrology cannot 
be used effectively as an infrastructure as it is separated into two layers; narrow water 
features are represented as lines, broad waters as areas. Roads are delineated in a less 
arbitrary way than in the object-GBKN; at crossings and connections the main road is 
generally uninterrupted. Although this may be true for the major roads, in residential 
quarters street delineation is rather arbitrary. The classification is also insufficiently 
discriminating in these areas. 

The Dutch topographic survey, producer of TOP10vector, has been commissioned to 
develop the Dutch national 10,000 topographic dataset (TOP10NL, see section 5.4.2). 
TOP10vector will be developed towards an object-based model to serve as a basis for this 
new dataset. 

5.3 Database enrichment 
Classifications can either be assigned to the dataset by hand during construction, or 
automated database enrichment (Mackaness et al. 1997) processes can be used to create 
customised classifications whenever needed. Only certain types of classification can be 
derived automatically based on geometric or topological properties, a functional 
classification of road segments, for example. These derived classifications are not ‘the 
real thing’, however; errors can occur and sometimes additional information such as ‘one 
way traffic’ is needed. In other words, automated database enrichment is not the answer 
to everything. 

In chapter 4, we discerned three metaclasses: ‘islands’, ‘network-forming’ objects and 
normal area objects. The first two types in particular offer opportunities for database 
enrichment. 

Classes with many objects forming ‘islands’ within other objects can be used in a 
database enrichment process to classify areas based on the density of objects in the class, 
e.g. delineating built-up areas based on proximity of buildings (Figure 35) so that 
buildings in urban and rural areas can be distinguished and treated differently in the 
generalisation process.  
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FIGURE 35. PROXIMITY OF BUILDINGS DENSITY FOR DELINEATION OF BUILT-UP AREAS 

 

Network-forming classes allow elements to be classified based on their topological 
positions; i.e. based on their importance within the network structure. A subdivision into 
directed (e.g. stream networks) and non-directed (e.g. most road networks) networks is a 
valid basis for distinct classification algorithms. Several approaches have been presented 
for deriving classifications for roads (Peng 1995, Richardson and Thomson 1996), as well 
as for hydrological networks (Martinez Casasnovas 1994, Richardson 1993, Figure 36). 
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FIGURE 36. A CLASSIFIED HYDROLOGICAL NETWORK AND THE CORRESPONDING WATERSHEDS AT DIFFERENT 
LEVELS OF ABSTRACTION (HORTON CLASSIFICATION) 

 

Besides thematic, e.g. creating subclasses and superclasses, data base enrichment can also 
be purely geometric. For example, during geometric database enrichment of a 
transportation network consisting of area objects, segments are added to subdivide 
existing objects (Figure 37). 

 
 

 

FIGURE 37. GEOMETRIC DATABASE ENRICHMENT 
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As generally the thematic database enrichment operations already exist and prove to 
work, it is assumed for this study that the attributes on which selection within a network 
structure is based, already exist. If not, they are added manually. In other words, the 
classification of the data is supposed to be detailed enough to serve as the basis for the 
generalisation procedure. The same applies to the spatial description, although operations 
for automated geometric database enrichment are rarer.  

5.4 Recent developments 

5.4.1 NGII 
A debate has been going on for some time in the Netherlands about whether a number of 
‘base datasets’ fall under the responsibility of the central government and whether this 
information should be made publicly available at little or no cost. In 1995 the Ravi 
described the Dutch National Geo-Information Infrastructure (Ravi 1995). The NGII 
comprises the aspects policy, datasets, technology, standards and knowledge to achieve 
maximum social and economic effect. Such a NGII depends highly on the availability of 
nationwide, standardised, mutually linkable base datasets. By the year 2002 availability 
of the base datasets was gradually considered a responsibility of the central government, 
although the actual realisation can be in the hands of local governments or private 
companies (Tweede Kamer 2000). Datasets regarded to be under this regime include: a 
topographic dataset (TOP10NL, level of detail comparable to 1:10,000 maps), a building 
and address registration and possibly the large-scale base map (GBKN, 1:1000). The 
address forms the link between the spatial information and non-spatial person and 
company registrations. The presence of no less than two topographic datasets in this 
selection seems rather odd. Object information is preferably maintained and made 
available by the actual owner; water boards keep hydrographical information up-to-date, 
municipalities maintain the address and building information etc. This is in contradiction 
with the idea of a single organisation collecting and maintaining information for a 
topographic map like the TOP10NL, since a topographic map is basically a compilation 
of information that is already maintained by other organisations.  

5.4.2 TOP10NL 
The thematic structure of the TOP10NL has been defined (Ravi 1998, Ravi 2002) but the 
dataset has not yet been realised. The Dutch topographic survey (TDN) recently acquired 
the assignment to produce the dataset. A development path has been defined to adapt the 
topographic survey’s own TOP10vector to the specifications of this new dataset. TDN 
proposed a 5-year migration path to move from the current TOP10vector to the 
TOP10NL specifications. 

5.4.3 NEN3610 
The specifications of the TOP10NL are based on NEN3610 (NNI 1995, NNI 2001). 
NEN3610 was developed for the transfer of spatial information between different target 
groups4, although the model is also used more and more to structure the internal 
information needs of organisations. NEN3610 is not a technical exchange format; it 

                                                 
4 A group of similar organisations and/or institutions 



Datasets 47 

 

describes the contents of the information exchanged. In others words: what is transferred, 
not how it is transferred. The model mainly comprises a classification, little is said about 
the spatial representation of the objects. It defines the object types that can be used and 
the associated attributes and attribute domains. As it is intended for exchanging 
information between sectors it is a generic model. It is up to specific sectors to define 
additional attributes and/or attributes values as needed for transfers within each sector. 

The most important categorising attributes in NEN3610 are: 
• type (connection/junction, main building/outbuilding); 
• function. 

For network-forming feature classes like roads and waterways, NEN3610 distinguishes 
connections and junctions. This means that a junction is required at every point where 
segments leave in three or more directions. That way it is possible to connect any 
combination of segments to create a route, and to eliminate any segment for 
generalisation purposes. But the lack of guidance in NEN3610 regarding the spatial 
organisation of the data makes that much is left to the interpretation of the topographer, 
leading to problems as shown in Figure 31.  

NEN3610 does not provide a classification of network-forming features based on 
topological positions within the network structure. In the case of roads the functional 
groups are categories like ‘pedestrians’, ‘slow motorised traffic’, ‘fast traffic’ etc.; there 
is no classification based on importance such as main, secondary and tertiary roads. The 
function attribute in NEN3610 is rather ambiguous anyhow. The values show a mixture 
of function and manifestation/topography. On the one hand we see clearly functional 
values like ‘museum’, ‘wholesale trade’ and ‘school’ whereas there are also values like 
‘forest’ and ‘water’. 

A third important attribute in NEN3610 is the object identifier. Identifiers need to be 
unique within a dataset, and preferably be used across datasets. Object identifiers offer an 
important mechanism for integrating data from different sources. The address, for 
instance, is the link between people and buildings. If the address uses an identification 
such as the postal code and house number, the link can be made easier and more securely 
than when using the complete address consisting of municipality, town, street and 
number. This is due to the fact that the chance of any of these elements being spelled 
incorrectly or just differently in two related administrations is considerable. Take, for 
example, the two Dutch names for the city of the Hague: Den Haag and ‘s-Gravenhage. 
The drawback of using meaningless identifiers is that implicit verification by people 
accessing the information is impossible. Identifiers are used to relate objects, for 
identification by a system, not for humans to access the object. People use other 
characteristics of the object for identification. The identifier is strictly not a characteristic 
of the object. 

If NEN3610 is implemented correctly, the spatial description offers sufficient detail for 
generalisation purposes. The thematic classes are not very suitable, however, mainly 
because of a lack of ordinal attributes. 
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5.4.4 Development of the existing datasets  
At the same time the organisations behind the existent topographic datasets (TDN and 
LSV-GBKN) are busy restructuring their products. Anticipating decisions concerning the 
NGII they are already making their products more compliant with the ideas behind it.  

Issues are whether the large-scale base dataset (GBKN) should be line- or area-based, and 
object-structured or not. However, some municipalities already work with an object-
structured GBKN. Object-structuring is also one the prime issues for a new TOP10NL 
dataset. The proposed TOP10NL is based on a model with component and composite 
objects. It differentiates between entire roads and road segments, an important issue in 
the light of generalisation (see Figure 28, Figure 29). Further issues under consideration 
for TOP10NL are a shift from map sheets to a contiguous database and meta-information 
at object level. 

The results of these discussions are very important as they will determine the structure of 
the Dutch topographic data for the next ten or fifteen years, a period in which we will 
undoubtedly see an increase in the interoperable use of geo-information. Which makes it 
even more important to ensure that the existing data become linkable, both thematically 
and spatially. In this respect, object identification and standardisation of spatial models 
will become even more important issues.  

5.5 Pre-processing the data 

5.5.1 TOP10vector 
From the four TOP10vector layers only the two area layers (areas and buildings) are 
used, because the generalisation application works on area data only, and combined into a 
single layer (Figure 38).  

In order to reduce the number of possible class combinations, the TOP10vector 
classification hierarchies were employed to generalise the classification somewhat. 
‘Built-up area’ was incorporated into the class ‘building’. ‘Passage’ and ‘promenade’ 
were combined into ‘pedestrians’. Deciduous, coniferous and mixed forest were 
generalised to ‘forest’. Arable land and grassland were combined. A few classes with a 
very small extension (‘cemetery’, ‘sand’) were incorporated into the class ‘other land 
use’. For the roads an included classification of 6 distinct types was used. This resulted in 
the 14 distinct classes in Table 2 instead of the original 27. 

5.5.2 GBKN 
As for the object-GBKN, a single-valued vector map was created from the division 
objects in combination with the buildings from the furnishing objects layer (see Figure 
33). The providing elements were not used. Although at first sight the geometry of this 
layer appears useful for generalisation purposes, the attributes do not offer much extra 
value. It does not provide additional transverse delineations, nor does it differentiate 
clearly between roadway and pavement or shoulder (Figure 40, Figure 41). The objects in 
the resulting dataset belong to 5 classes: ‘Road’, ‘Building’, ‘Water’, ‘Railway’ and 
‘Terrain’ (Table 3). 
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Figure 38. TOP10vector area layer and 

buildings combined (s.v.v.m.) 

 

 

 
Figure 39. Division objects 

 
 

 

FIGURE 40. TYPE OF PAVING (ATTRIBUTE 2) IS NOT 
SUFFICIENT TO DISTINGUISH ROADWAYS 

 

 

FIGURE 41. NEITHER IS ATTRIBUTE 1 (ROAD, 
SHOULDER) 

 

TABLE 2. THE CLASSES IN THE  
TOP10VECTOR DATASET 

Class 
Building 
Greenhouse 
Motorway 
Main Road 
Secondary Road 
Unpaved Road 
Pedestrians 
Street 
Bicycle Track 
Parking Space 
Forest 
Grass/Arable 
Other land use 
Water  

TABLE 3. THE CLASSES IN THE GBKN DATASET 

Class 
Road 
Building 
Water 
Railway 
Terrain  
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5.6 Summary 
The aggregation method described in the previous chapter is based on a data model with 
stored topology. The datasets should therefore be topologically correct. They must also 
consist of a single geometric area partition. The object-GBKN does not meet all further 
requirements, especially regarding the transverse delineation of road segments. The 
classification is also rather limited. The classification structure of the TOP10vector 
dataset is better suited, containing a functional classification of roads, for example. The 
TOP10vector is currently in the process of being restructured. This is a moment at which 
the requirements regarding automated generalisation should be taken into account, so that 
the future datasets permit automated generalisation procedures to be performed on them. 
The successor of the TOP10vector dataset, TOP10NL, is based on NEN 3610, an 
exchange standard for geographic information. Although NEN 3610 shows geometric 
features that are valuable for generalisation and aggregation purposes, such as consistent 
transverse delineation of network elements, the thematic classification of objects is not 
always very consistent nor is it detailed enough. 

 



 

Chapter 6: Implementation 

6.1 Implementing the topological model 

6.1.1 Software 
The implementation of the topological model described in section 3.6.2 is realised using 
Arc/Info to pre-process the data. Arc/Info employs a number of relational tables to store 
the information of an area partition - polygon coverage in Arc/Info terminology. Two of 
these tables are relevant for this application. One contains the faces (called polygons in 
Arc/Info) and related information, the other one the border segments (arcs in Arc/Info).  

Besides the identifier and the length of the border segment, as well as its begin and end 
node, the segment table (Table 4) contains the identifiers of the faces on both sides of the 
segment. These references play a very important role in the implementation. The 
references are labelled lobject# (since every face represents an object) for the face on the 
left side of the segment, and robject#, for the one on the right. What is left and right in 
reality is not important, however; it is only important that the neighbour relationships of 
the faces are recorded. All face, segment and node identifiers are automatically assigned 
consecutive numbers and therefore bear no relation to any identifications used for the 
real-world features the dataset describes. 

The data model allows objects to consist of more than one geometric primitive, but in the 
initial dataset objects do not comprise more than one primitive, i.e. every face is an 
object. Composite objects comprise more faces, but in this research they can, by 
definition, not overlap. 

The object table (Table 5) contains information about the faces such as the identifier 
(object#), the area and perimeter and, very importantly, the feature class. The identifier is 
the number that appears under lobject# and robject# of the segment table. The 
combination of segment and object table is effectively an implementation of the 
adjacency graph as described in chapter 4. 

 

TABLE 4. SEGMENT TABLE (# EQUALS NO.) 

segment# fnode# tnode# lobject# robject# length 
1 14 26 3 24 8,974 

 

TABLE 5. OBJECT TABLE (# EQUALS NO.) 

object# area perimeter class
3 234,564 122,355 5

 
 

Both the segment table and the object table are transferred from Arc/Info to an Oracle 
database where all generalisation operations are carried out. This results in new segment 
and object tables for every abstraction level. The generalisation procedure is described in 
section 0. In the Oracle database, the tables are queried using SQL. SQL was chosen to 
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keep the implementation as software-independent as possible. SQL offers no spatial 
operators, which means that the required spatial relationships need to be part of the data 
model. Once the objects of the new abstraction level have been created, Arc/Info is used 
to merge the geometry. ArcView is used to visualise the results.  

6.1.2 Searching for neighbours in a topological data model 
Searching for neighbours in a topological model like the formal data structure (FDS) 
requires the querying of the segment table that contains the relationships between the 
objects on the left side and the right side of the segment. In this way, we can find all 
objects connected to object C (Figure 42) by querying the segment table that contains 
references to the objects left and right of the segment. Because of the directionality of the 
segments we have to perform two queries:  

1. select all segments that have a left reference to C (in this case 2) and return the 
right reference (here A), and; 

2. select all segments that have a right reference to C (4, 5 and 6) and return the left 
reference (none, D and none respectively).  

In Figure 42 we can see that only objects with a shared segment are considered 
neighbours, and not objects that only share a node, like B and C or A and D. Including 
objects that share a node in the neighbourhood would require additional queries (from 
object to segment, to node, to segment, to object respectively). 

 

 1 

5 

A 

C 

B 

D

segment left ref. right ref. 
1 A E 
2 C A 
3 D E 
4 E C 
5 D C 
6 E C 
7 B E 

4 
E 

7 

3

6 

2 

 

FIGURE 42. A TOPOLOGICALLY STRUCTURED AREA DESCRIPTION 

 

The segment table only contains the identifiers of the neighbouring objects, but the 
properties of the objects are in the object table. To find neighbours with certain 
characteristics in common we therefore have to perform a cross-table query. For example, 
if we want to search for segments where the class of the object to their left is identical to 
the class of the object to their right, a cross-table query involving the segment table and 
the object table (twice!) has to be performed (Figure 43). We see that segment 3 fits the 
requirement. While current GIS’s, such as ArcView, usually require separate queries for 
spatial and thematic properties, the use of SQL and a topological model allows 
topological relationships and thematic properties to be queried simultaneously. 



Implementation 53 

 

 
segment_table 

segment# lobject# robject#
1 2 3
2 1 2
3 5 8
4 7 4

object_table 

object# class 
1 forest 
2 grass 
3 built-up 
4 built-up 
5 grass 
6 grass 
7 forest 
8 grass 

object_table

object# class 
1 forest 
2 grass 
3 built-up 
4 built-up 
5 grass 
6 grass 
7 forest 
8 grass 

select segment#  
from segment_table,  
object_table left,  
object_table right 
where segment_table.lobject# = left.object# 
and segment_table.robject# = right.object# 
and left.class = right.class; 

 

FIGURE 43. NEIGHBOUR RELATIONSHIPS BETWEEN OBJECTS SHARING A CERTAIN CHARACTERISTIC 

 

The number of queries or the complexity of the queries required to find neighbours could 
be reduced by creating an array containing references to both the left- and the right-hand 
object. With SQL’s ‘IN’ predicate it is then possible to find connected segments and 
neighbouring objects, respectively, in a more straightforward manner. Unfortunately, the 
version of Oracle used did not support the use of arrays. Although an array could be 
simulated by creating a string like ‘21,38’, this was not done because of the additional 
programming required. 

For the last couple of years there has been an interest in developing an enhanced version 
of the SQL data manipulation language that would allow the querying of spatial 
relationships. Although the implementation described in this study uses SQL to query 
topological relationships, it uses standard SQL without any real spatial functionality. 
Topological pre-processing of the data was done using Arc/Info, after which the Arc/Info 
tables containing the topological relationships were transferred to an Oracle database. 
The abstraction process was performed using SQL queries embedded in the PL/SQL 
programming language. 

In spite of being the most widely-spread data manipulation language, SQL is rather user-
unfriendly (Frank and Mark 1991). SQL queries quickly become very complicated, 
especially when several interrelated tables are involved, with the risk of ending up with 
the wrong answer unawares. SQL is therefore most suited as a programming 
environment; it is too complicated for end users to use as an interface. 

6.2 Procedural and set-oriented data manipulation 
SQL is a set-oriented data manipulation language. Some queries cannot be solved with 
set-at-a-time, or set-oriented, data manipulation alone, but require procedural or record-
at-a-time data manipulation (Elmasri and Navathe 1989). In situations where repetitive 
queries have to be made, especially when the number of repetitions is not known 
beforehand, normal set-oriented queries do not suffice. SQL is highly suitable for 
selecting all forest objects in an entire dataset that are next to grassland, but not too 
suitable for finding all forest plots belonging to a contiguous forested area starting from 
one of the plots. The reason for this is that repetition is not a part of the SQL features. In 
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order to overcome this problem, Oracle offers a procedural programming language, 
called PL/SQL, with its database management system. PL/SQL is an Oracle product and 
not a part of the official SQL89 specification. PL/SQL is a programming language that, 
like other traditional programming languages, enables procedural solutions like: 

• control statements such as IF … THEN … ELSE, EXIT and GOTO; 
• repetition statements such as FOR loops and WHILE loops; 
• assignment statements such as X := Y + Z and; 
• cursors, that enable query selections to be processed row by row. 

SQL statements can be embedded in the PL/SQL program.  

SQL3, released in 1999 as the successor of SQL89, offers additional functionality within 
the official SQL specification. SQL3 incorporates procedural functionality similar to  
PL/SQL. Although the SQL3 standard does not yet offer spatial data types and operators, 
it allows the creation of user-defined, complex data types as well as user-defined 
functions and methods. This enables third parties to develop spatial information systems 
based on the SQL language. Since SQL is already widely spread in the non-spatial 
domain, SQL will most likely become a strong contender in the spatial domain when 
third party software companies develop systems employing the possibilities of user-
defined data types and functions in SQL3. SQL3 was not used for the implementation in 
this study. 

An exception to the rule that repetitive queries are not possible in a set-oriented data 
manipulation language is the hierarchical query. Oracle offers this feature in their version 
of the SQL language, SQL+. The hierarchical query is also part of the SQL3 
specification. The hierarchical query offers unrestricted repetition in a table containing 
relationships of the parent-child type (Table 6). This means that the data should not 
contain any loops like in Table 7 where a destination value (in this case 2) is used earlier 
as a source value. In the implementation the hierarchical query is used to retrieve the 
consecutive component classes of a composite class. It can also be used to query the 
relationship between component and composite objects. 

 

TABLE 6. EXAMPLE OF A QUERY TO SELECT THE NODES DOWNSTREAM OF NODE 2 
Table tree  Query result 

SOURCE DESTINATION  DESTINATION 

 2  1            1 
 3  1            3 
 1  7            15 
 8  7            7 
 9  2   
 10  3   

 
SELECT  destination  FROM tree 
CONNECT BY source = PRIOR destination 
START WITH source =  2 ; 
 

 2  3   

 

                                                 
5 Node 1 appears twice in the result because it is found twice, once through its link with node 3 and again 
through its link with node 2. 
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TABLE 7. TABLE WITH LOOP 

SOURCE DESTINATION   
 2  1  
 7  2  
 1  7  
 8  7  
 9  2  
 10  3  
 2  3  

The loop in this table 
reads: 2  1  7  2 

 

6.3 Procedure for functional aggregation 
For the implementation we presuppose that every face in the original input data is an 
object, and that objects are always contiguous. The functional aggregation procedure we 
applied consists of two parts: 

• Determining class adjacency indices for every class combination (section 6.3.1); 
• Aggregating objects, i.e. the actual abstraction process (section 0). 

6.3.1 Determining the class adjacency indices (global) 
In order to determine how classes are spatially related we introduced the class adjacency 
index. In the implementation the class adjacency index is determined using the segments 
separating the objects.  

Step 1: By joining the segment table and the object table using the numeric identifiers of 
the objects, a table (Table 8) is created containing two rows for every border segment; 
one row contains its length and the class of the object to its left, and the other row its 
length and the class of the object to its right. By grouping the information in the table we 
just created by class, we get a table (Table 9) containing the total length of borders for 
each class. 

 

TABLE 8. CLASSES OF THE OBJECTS ON BOTH SIDES OF EVERY SEGMENT AND THE LENGTH OF THIS SEGMENT 

class length 
segment1.classleft segment1.length
segment1.classright segment1.length
segment2.classleft segment2.length
segment2.classright segment2.length
segment3.classleft segment3.length

 
TABLE 9. TOTAL BORDER LENGTH PER CLASS 

class classlength 
class1 class1.length
class2 class2.length

 
 
Step 2: Based on the segment and object tables we create a table (Table 10) that contains 
the length of the segment and the classes of the objects on the left and the right. This 
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table contains two rows for every border segment; in the first row the class of the left 
object appears in the first column (class a), in the second row that of the one to the right. 
The length values in Table 10 are summed by grouping the values for each different 
combination of classes to create Table 11. Combining the information from Table 11 and 
Table 9, we can determine the class adjacency index (section 4.5.1) for every 
combination of classes (Table 12). 

 

TABLE 10. LEFT AND RIGHT CLASS AND SEGMENT LENGTH FOR EACH SEGMENT IN THE DATASET 

class a class b length
class1 class2 12.52
class1 class2 4.54
class2 class1 2.56
class2 class8 23.37
class9 class1 34.50

 

TABLE 11. THE INFORMATION OF TABLE 10 GROUPED BY COMBINATIONS OF CLASSES 

class a class b sumlength
class1 class2 312.56
class1 class3 634.50
class2 class1 312.56
class2 class3 123.30
class3 class1 634.51

 

TABLE 12. THE CLASS ADJACENCY INDEX FOR EVERY COMBINATION OF CLASSES 

class a class b class adjacency index 
class1 class2 sumlength (class1-class2) / class1.length 
class1 class3 sumlength (class1-class3) / class1.length 
class2 class1 sumlength (class1-class2) / class2.length 

 

 

From an efficiency point of view, it is important that only class combinations that appear 
in a significant number of cases are reclassified. Each class contains a percentage of the 
total number of objects in the dataset. This percentage is taken into account along with 
the class adjacency index to select a class combination for reclassification (Table 13). 
The combination with the highest ratio is used for reclassification and aggregation of 
adjoining member objects. The aggregation process is performed repeatedly with other 
combinations of classes to produce subsequently higher levels of abstraction. 
Combinations that have been used once are not used again. Moreover, combinations 
where class ‘b’ is a network-forming class are excluded from the process since these 
could lead to unwanted shortcuts that disturb network topology (see section 4.3). 
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TABLE 13. THE SIGNIFICANCE RATIO 

class a class b significance ratio 
class1 class2 class adjacency index (class1-class2) * (no. of obj. in 

class1 / total no. of obj.) 
class1 class3 class adjacency index (class1-class3) * (no. of obj. in 

class1 / total no. of obj.) 
class2 class1 class adjacency index (class1-class2) * (no. of obj. in 

class2 / total no. of obj.) 
 

6.3.2 Object aggregation (local)  
Once the class combination with the highest ratio has been identified, the actual object 
aggregation process is straightforward. Once more the segment and object tables are 
employed to find objects of class ‘a’ that have a neighbour of class ‘b’. ‘A’ and ‘b’ are 
the two classes identified by the highest ratio. Both the selected objects of class ‘a’ and 
the neighbours of class ‘b’ are selected to be aggregated. 

It is possible to evaluate the selected object combinations with an object aggregation 
factor (section 4.6). For the results presented here, the object aggregation factor threshold 
value was set to the lowest possible value, i.e. all objects were aggregated. The object 
aggregation factor was utilised for the second step in the aggregation process. This step 
involves objects that are adjacent to a composite object incorporating the class of the 
object. If they pass the evaluation they are incorporated into the composite (Figure 44, 
Figure 45). The threshold value was determined empirically and proved not very critical. 

 
 

     

FIGURE 44. OBJECT ADJACENT TO A COMPOSITE OBJECT THAT INCORPORATES THE CLASS OF THE OBJECT 

 
 

 

  

 

     

FIGURE 45. OBJECT ADJACENT TO AN OBJECT THAT INCORPORATES THE CLASS, DATING BACK TO A PREVIOUS 
AGGREGATION CYCLE 
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6.4 Storing the results 
The results of each aggregation step can be retained in the form of full GIS datasets. The 
objects of the subsequent aggregation levels are connected through part-of relationships 
(Table 14), effectively building a multi-scale dataset that allows navigation through the 
levels of abstraction. This also makes it possible to store the aggregation results solely in 
the form of Table 14, containing the links between component and composite objects, 
and to create the complete datasets of the different abstraction levels only when needed. 

Besides the object-to-composite relationships, Table 14 also contains the classes of the 
objects and the cycles in which the objects are created. The objects in the original dataset 
can be recognised by the value 0 (zero) for the cycle. Object 822 illustrates that 
composite objects can be part of other, higher-level composites. 

 

TABLE 14. TABLE CONTAINING THE OBJECT-TO-COMPOSITE RELATIONSHIPS  
(PART-OF RELATIONSHIPS) AND OBJECT-TO-CLASS RELATIONSHIPS 

object class part-of cycle
25 12 824 0
34 1 822 0

140 14 823 0
234 3 822 0
333 6 823 0
623 1 822 0

    

822 27 824 1
    

823 28 2
824 36 2

 

6.5 Summary 
The implementation depends on the availability of a data model with stored topology. 
These appear to become scarcer amongst recently developed GIS data models. An 
advantage of this approach is that, after pre-processing the data in dedicated GIS software 
to determine neighbour relationships, the entire procedure can be performed quickly 
using regular database software. 

The process is characterised by a cyclic approach. During each aggregation cycle two 
classes are related through the class adjacency index (CAI) and their adjacent objects 
aggregated when the threshold value for the objects aggregation factor (OAF) is met. The 
component and composite objects are interconnected between the successive cycles, 
enabling navigation through the levels of abstraction. This way a multi-scale dataset is 
created in the process. The implementation was tested on the two datasets described in 
Chapter 5. The results of this exercise will be presented in the following chapter.



 

Chapter 7: Results and discussion 
 
Evaluating the results of an aggregation process like this is difficult as there is no existing 
material for comparison. Two complementary methods will be applied, visual 
(qualitative) and numerical (quantitative) evaluation. Although the method described in 
this study is not meant for traditional mapping, visual evaluation can still be useful 
because of the human ability to assess the results quickly and quite thoroughly by means 
of visual inspection. 

7.1 Qualitative assessment of the results 

7.1.1 TOP10vector, auto mode 
Figure 46 to Figure 49 show the results of generalisation on a TOP10vector dataset, using 
the application described in chapter 6, in the form of a map. The order in which classes 
are combined (see Table 15) is determined automatically based on the class adjacency 
indices and the number of objects involved, as explained in section 4.5 (theory) and 6.3.1 
(implementation). The object aggregation factor threshold value was set to the lowest 
possible value so that adjacent objects belonging to the combination in progress were all 
really aggregated.  

The higher levels of abstraction become clear. The north-west corner is more open with 
mainly arable land and grassland, whereas the north-east corner is more densely occupied 
with buildings and forest features, although buildings surrounded by grass and arable 
land are concentrated largely south of the town. The structure of the town also gets 
clearer at higher levels of abstraction, the town quarters showing clearly in Figure 48. 

The road classification is hierarchical, but this hierarchy is only used implicitly. There is 
no dedicated mechanism to ensure that least important road classes are aggregated first, 
but as the lower-level classes are more numerous they will aggregate first. This simple 
mechanism works reasonably well, as the results show, but there is no guarantee that the 
network structure is not broken up. 

7.1.2 GBKN, auto mode 
Figure 50 to Figure 53 show the results of generalisation on a GBKN dataset. The system 
parameters used were identical to those applied for the TOP10vector dataset. The GBKN 
data have far fewer distinct classes than the TOP10vector dataset (see Table 17); the 
number of iterations needed to achieve a large decrease in the number of objects is 
therefore smaller than in the case of TOP10vector. 

An interesting phenomenon can be observed during the generalisation of the GBKN 
dataset. The town of Zevenaar that appears to be lost in the first aggregation cycle (Figure 
51), when buildings and terrain objects are aggregated, reappears after the second cycle. 
This is due to the fact that terrain in built-up area is usually delimited by roads whereas 
the terrain objects outside of the town are generally bounded by water. 
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7.1.3 TOP10vector, step mode 
The method allows user interaction at several points in the aggregation process (see 
section 4.8). To illustrate this, the TOP10vector dataset was aggregated once more, but 
this time with a few user interventions in the otherwise fully automated process. The road 
classes 3, 4, 5 and 6 (‘motorway’, ‘main road’, ‘secondary road’ and ‘unpaved road’) 
were excluded from the aggregation process. Then the aggregation process was started. 
The first combination, ‘building’ and ‘other land use’, was accepted by the user but the 
results of the second aggregation cycle, that involved the classes 1 and 12 (‘building’ and 
‘grass/arable’), was rejected. From cycle III onwards, the system’s decisions were 
accepted again. Results of this exercise can be found in Figure 54, Figure 55 and Figure 
56. Compare these results with Figure 47, Figure 48 and Figure 49, respectively, which 
represent the results of the fully automated process after the corresponding number of 
aggregation cycles. In Figure 55 and Figure 56 it can be observed that, due to the 
exclusion of most road classes from the aggregation process, the areas enclosed by roads 
are aggregated further than in the fully automated mode. This is not the case in the top 
left-hand corner where a number of ‘grass/arable’ objects remain unaggregated. This is 
caused by the fact that only objects of different classes are aggregated, not objects of the 
same class (unless initiated by another aggregation process, see section 0). The objects in 
these areas are only enclosed by roads and have no other option than to be aggregated 
with objects of the same class and therefore remain unchanged. 
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FIGURE 46. ORIGINAL TOP10VECTOR DATASET 



62 Chapter 7 

 

 

FIGURE 47. TOP10VECTOR AFTER AGGREGATION CYCLE IV IN AUTO MODE 
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FIGURE 48. TOP10VECTOR AFTER AGGREGATION CYCLE VII IN AUTO MODE 
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FIGURE 49. TOP10VECTOR AFTER AGGREGATION CYCLE IX IN AUTO MODE 
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LEGEND FOR FIGURE 46 TO FIGURE 49 

 1. building 

2. greenhouse 

3. motorway 

4. main road 

5. secondary road 

6. unpaved road 

7. pedestrians 

8. street 

12. grass/arable 

9. bicycle track 

10. parking space 

11. forest 

13. other land use 

14. water 

15. building & other land use 

16. building & grass/arable 

21. building, unpaved road, forest & grass/arable 

17. building, street & other land use 

18. forest & grass/arable 

19. building, street, grass/arable & other land use 

20. building, unpaved road & grass/arable 

22. building, street, forest, grass/arable & other land use

23. secondary road & grass/arable 

 

LEGEND FOR FIGURE 50 TO FIGURE 53 
 20. road 

40. building 

60. water 

70. railway 

80. terrain 

84. water & terrain 

81. building & terrain 

82. building, water & terrain 

83. road, building & terrain 

85. road, building, water & terrain  

  

FIGURE 50. ORIGINAL GBKN DATASET FIGURE 51. GBKN DATASET AFTER AGGREGATION 
CYCLE I IN AUTO MODE 
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FIGURE 52. GBKN DATASET AFTER AGGREGATION 

CYCLE II IN AUTO MODE 
FIGURE 53. GBKN DATASET AFTER AGGREGATION 

CYCLE V IN AUTO MODE 

 

 

LEGEND FOR FIGURE 54 TO FIGURE 56 (FOLLOWING PAGES) 
 1. building 

2. greenhouse 

3. motorway 

4. main road 

5. secondary road 

6. unpaved road 

7. pedestrians 

8. street 

12. grass/arable 

9. bicycle track 

10. parking space 

11. forest 

13. other land use 

14. water 

15. building & other land use 

16. building, street & other land use 

21. building, forest, grass/arable & other land use 

17. forest & grass/arable 

18. building, forest & grass/arable 

19. building, street, grass/arable & other land use 

20. building, grass/arable & other land use 

22. building, street, forest, grass/arable & other land use 

23. building, street, forest, grass/arable & other land use 
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FIGURE 54. TOP10VECTOR AFTER AGGREGATION CYCLE IV IN STEP MODE 
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FIGURE 55. TOP10VECTOR AFTER AGGREGATION CYCLE VII IN STEP MODE 
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FIGURE 56. TOP10VECTOR AFTER AGGREGATION CYCLE IX IN STEP MODE 
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7.1.4 Anomalies due to data inconsistencies 
Occasionally, the quality of the base data leads to unexpected aggregation results. An 
example emerges during the aggregation of TOP10vector objects belonging to the 
composite class consisting of objects of the classes ‘building’ and ‘other land use’ with 
objects of the class ‘street’. As a rule in the TOP10vector dataset, the higher-level road is 
left uninterrupted at crossings. In this case this rule was violated, the result being an 
unintentionally interrupted main road after aggregation (Figure 57). 

 

   

 

    

FIGURE 57. WRONGLY DELINEATED ROAD FEATURE CAUSING AGGREGATION PROBLEMS (TOP10VECTOR) 

 

7.1.5 Using manually generalised maps as a reference 
Comparing to existing, manually generalised products is a common method for 
evaluating the results of automated map generalisation systems. We do not compare the 
results with manually generalised maps because this study deals with model 
generalisation. The procedure does not aim to produce a dataset instantly suited for 
drawing maps. Consequently, there are no manually generalised maps produced 
following a comparable procedure (João 1998). Furthermore, often the results of manual 
generalisation themselves are not up to standard (João 1998) 

7.2 Quantitative assessment of the results 

7.2.1 Auto mode 
Table 15 and Table 17 show the results of the mechanical aggregation processes for the 
TOP10vector dataset and the GBKN data regarding the reduction of the number of 
objects. Table 15 shows the quantitative data for the aggregation process that was 
described qualitatively in section 7.1.1. Table 17 is the quantitative representation of the 
results in section 7.1.2. The values represent the number of objects in a certain class (on 
the left) after every aggregation cycle (at the top). The last 4 rows provide some global 
measures for each aggregation cycle such as the total number of objects, reduction factor, 
mean object area and the time needed to complete the cycle. Numbers that remain 
unchanged compared to the previous cycle are shown in grey, so are classes that remain 
unchanged during the whole procedure. Classes involved in the class combination of a 
certain cycle - two component classes and one composite class - are shown in bold and 
other classes that are affected in regular black type. 
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The stopping criteria were 10 aggregation cycles in the case of TOP10vector and a 
maximum of 70 objects for the GBKN data. 

In Table 15 we can see that the original classes ‘building’ and ‘street’ disappear almost 
completely from the TOP10vector dataset, whilst the classes ‘forest’, ‘grass/arable’ and 
‘other land use’ are significantly reduced in number. In the case of the GBKN (Table 17) 
nearly all of the original objects have been aggregated after the fifth aggregation cycle, 
leaving less than one percent of the original number of objects. The rapid diminution of 
the reduction factor for the GBKN data is mainly due to the limited number of classes in 
the original dataset. It can also be observed that the classes 86 and 88 created in 
aggregation cycles VI and VIII are basically identical to 85 and 83, respectively; they 
contain the same original classes. They could therefore just as well be combined. 

 

TABLE 15. NUMBER OF OBJECTS PER CLASS AFTER EACH  
AGGREGATION CYCLE (TOP10VECTOR, AUTO MODE) 

aggregation cycle orig I II III IV V VI VII VIII IX X 
class / class combination  1 & 13 1 & 12 8 & 15 11 & 12 12 & 17 6 & 16 11 & 20 11 & 19 5 & 12 15 & 21

1 building 3918 544 13 5 5 5 5 3 3 3 3
2 greenhouse 28 28 28 28 28 28 28 28 28 28 28
3 motorway 18 18 18 18 18 18 18 18 18 18 18
4 main road 28 28 28 28 28 28 28 28 28 28 28
5 secondary road 192 192 192 192 192 192 192 192 192 104 104
6 unpaved road 236 236 236 236 236 236 102 94 94 94 82
7 pedestrians 4 4 4 4 4 4 4 4 4 4 4
8 street 406 406 406 5 5 4 4 4 4 4 4
9 bicycle track 111 111 111 111 111 111 111 111 111 111 111

10 parking space 34 34 34 34 34 34 34 34 34 34 34
11 forest 550 550 550 550 179 179 179 105 37 37 35
12 grass/arable 1371 1371 962 962 579 336 304 298 295 62 57
13 other land use 1096 258 258 161 161 149 149 149 147 147 125
14 water 67 67 67 67 67 67 67 67 67 67 67
15 1 & 13  552 552 165 165 161 161 161 161 161 89
16 1 & 12   120 120 120 120 62 61 61 61 61
17 8 & 15    34 34 6 6 6 6 6 6
18 11 & 12     152 152 152 152 152 152 152
19 12 & 17      28 28 28 14 14 14
20 6 & 16       42 14 14 14 14
21 11 & 20        28 28 28 5
22 11 & 19         14 14 14
23 5 & 12          19 19
24 15 & 21           21
total number of objects 8060 4400 3580 2721 2119 1859 1677 1586 1513 1211 1096

reduction factor (%) 100 55 44 34 26 23 21 20 19 15 14
mean area (m2) 3172 5810 7062 9203 12071 13111 14477 16130 17742 21129 23348

processing time (sec.)  105 53 52 38 30 29 27 26 28 22
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TABLE 16. COMPOSITION OF THE COMPOSITE CLASSES IN TABLE 15 

composite class class composition 
15 building & other land use 
16 building & grass/arable 
17 building, street & other land use 
18 forest & grass/arable 
19 building, street, grass/arable & other land use 
20 building, unpaved road & grass/arable 
21 building, unpaved road, forest & grass/arable 
22 building, street, forest, grass/arable & other land use 
23 secondary road & grass/arable 
24 building, unpaved road, forest, grass/arable & other land use 

 
TABLE 17. NUMBER OF OBJECTS PER CLASS AFTER EACH AGGREGATION CYCLE (GBKN, AUTO MODE) 

aggregation cycle orig I II III IV V VI VII VIII 
class / class combination  40 & 80 60 & 81 81 & 20 60 & 80 20 & 82 84 & 85 40 & 70 40 & 83 
20 Road 521 521 521 109 109 7 3 3 2 
40 Building 9037 49 45 28 28 24 24 21 20 
60 Water 740 740 165 165 20 12 12 12 12 
70 Railway 8 8 8 8 8 8 8 6 6 
80 Terrain 1281 416 386 112 29 5 5 5 4 
81 40 & 80  507 460 0 0 0 0 0 0 
82 60 & 81  43 43 43 9 9 9 9 
83 81 & 20  1 1 1 1 1 0 
84 60 & 80  31 31 8 8 8 
85 20 & 82  4 2 2 2 
86 84 & 85  2 2 2 
87 40 & 70   2 2 
88 40 & 83    1 
total number of objects 11587 2241 1628 466 269 101 74 71 68 

reduction factor (%) 100 19 14 4.0 2.3 0.9 0.6 0.6 0.6 
mean area (m2) 2003 10361 14265 49912 86600 232089 317930 346401 357059 

processing time (sec.)  191 17 20 5 4 2 2 2 
 

TABLE 18. COMPOSITION OF THE COMPOSITE CLASSES IN TABLE 17 

composite class class composition 
81 building & terrain 
82 building, water & terrain 
83 road, building & terrain 
84 water & terrain 
85 road, building, water & terrain
86 road, building, water & terrain
87 building & railway 
88 road, building & terrain 

 

7.2.2 Step mode 
The quantitative results of the process described qualitatively in section 7.1.3 are given in 
Table 19. Due to the exclusion of the classes 3 to 6 these remain unchanged. This 
contrasts with the results of the fully automated aggregation of the TOP10vector dataset 
(Table 15), where classes 5 and 6, secondary and unpaved road, are involved in the 
aggregation process and the number of objects in these classes therefore decreases. We 
also see that cycle II involves a class combination different from the mechanical 
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approach of section 7.2.1. The combination originally suggested by the system - 1 & 12, 
‘building’ and ‘grass/arable’ - was rejected by the user leaving the current combination (8 
& 15) as the second choice. These adjustments lead to quite different combinations in the 
subsequent aggregation cycles as can be seen when we compare the class compositions in 
Table 20 with the compositions of the fully automated process in Table 16. 

 
TABLE 19. NUMBER OF OBJECTS PER CLASS AFTER EACH AGGREGATION CYCLE (TOP10VECTOR, STEP MODE) 

aggregation cycle orig I II III IV V VI VII VIII IX X 
class / class combination  1 & 13 8 & 15 11 & 12 1 & 17 12 & 16 12 & 15 15 & 18 11 & 19 17 & 22 1 & 20

1 building 3918 544 536 536 233 217 97 84 81 80 59
2 greenhouse 28 28 28 28 28 28 28 28 28 28 28
3 motorway 18 18 18 18 18 18 18 18 18 18 18
4 main road 28 28 28 28 28 28 28 28 28 28 28
5 secondary road 192 192 192 192 192 192 192 192 192 192 192
6 unpaved road 236 236 236 236 236 236 236 236 236 236 236
7 pedestrians 4 4 4 4 4 4 4 4 4 4 4
8 street 406 406 6 6 6 3 3 3 3 3 3
9 bicycle track 111 111 111 111 111 111 111 111 111 111 111

10 parking space 34 34 34 34 34 34 34 34 34 34 34
11 forest 550 550 550 97 96 96 96 95 31 31 31
12 grass/arable 1371 1371 1371 782 756 491 271 264 263 261 254
13 other land use 1096 258 161 161 161 148 135 106 105 101 101
14 water 67 67 67 67 67 67 67 67 67 67 67
15 1 & 13  552 165 165 165 161 77 6 6 6 6
16 8 & 15   35 35 35 5 5 5 5 4 4
17 11 & 12   163 106 106 106 104 104 56 56
18 1 & 17   57 57 57 29 29 29 29
19 12 & 16   29 29 29 16 16 16
20 12 & 15   56 56 56 56 49
21 15 & 18   27 27 27 27
22 11 & 19   13 1 1
23 17 & 22    11 11
24 1 & 20     7
total number of objects 8060 4400 3543 2664 2334 2032 1651 1527 1458 1401 1373

reduction factor (%) 100 55 44 33 29 25 20 19 18 17 17
mean area (m2) 3172 5811 7216 9597 10954 12582 15485 16743 17535 18249 18621

processing time (sec.)  117 71 57 37 59 40 24 40 42 25
 

TABLE 20. COMPOSITION OF THE COMPOSITE CLASSES IN TABLE 19 

composite class class composition 
15 building & other land use 
16 building, street & other land use 
17 forest & grass/arable 
18 building, forest & grass/arable 
19 building, street, grass/arable & other land use 
20 building, grass/arable & other land use  
21 building, forest, grass/arable & other land use 
22 building, street, forest, grass/arable & other land use 
23 building, street, forest, grass/arable & other land use 
24 building, grass/arable & other land use  
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7.2.3 Generalisation effects, global 
Generalisation effects are often expressed in terms of reduction factors and generalisation 
error measures. Reduction factors and indices (Richardson 1993, Bregt and Bulens 1996) 
are used to express a simple decrease in the number of objects, either per class or for the 
entire dataset. Other measures, like the attribute change index and error index (Bregt and 
Bulens 1996), assume a shift in thematic values. The area of a class before generalisation 
is compared to the area after generalisation. These measures are based on the assumption 
that the classes before and after generalisation are identical. However, the aggregation 
method described in this study introduces entirely new classes, so it is not possible to 
compare the situations before and after generalisation by means of these traditional 
measures. Using this method, generalisation errors in the form of incorrect classifications 
are not an issue. The new dataset is less detailed but correct. Only if the original 
categories are maintained after generalisation are misclassifications unavoidable. 
Misclassifications are the result of holding on to the same categories before and after 
generalisation.  

But what effect measures can be used then? It is possible to define a global reduction 
factor (Richardson 1993), comparing the total number of objects in the generalised 
dataset to that of the original (Figure 58, Figure 59). The differences in the reduction 
factors of the two datasets can be explained - apart from the fact that the GBKN data 
contain far fewer classes - by the great number of ‘outbuildings’, often small garden 
sheds, present in the GBKN data. These annexes are aggregated into the built-up areas, 
accounting for a significant decrease during the first aggregation cycle. 
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FIGURE 58. GLOBAL REDUCTION FACTORS FOR EACH AGGREGATION CYCLE (TOP10VECTOR, AUTO MODE) 
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FIGURE 59. GLOBAL REDUCTION FACTORS FOR EACH AGGREGATION CYCLE (GBKN, AUTO MODE) 
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7.2.4 Other effect measures 
Geometric measures such as minimal dimensions, for instance, objects that are too small 
or too close, are all related to the graphic representation. The ‘too’ in too small and too 
close is defined by the minimal resolution of the output medium, which is a map. These 
measures are therefore not evaluated. Violation of the network topology (roads, 
waterways) is prevented by never considering newly created composite objects part of 
any network structure. Existing connections can in these cases be eliminated just as in 
structural generalisation, but shortcuts cannot be created unintentionally. The procedure 
was tested on a 64-bit, 800-Mhz Digital Alpha DS10 with an internal memory of 1 Gb. 
Processing time varied from 105 to 22 seconds for the TOP10vector data and between 
191 and 2 seconds for the GBKN dataset, both depending on the initial number of objects 
and the number of objects reclassified (see Table 15, Table 17). The time shown is for the 
aggregation process alone, the Arc/Info ‘dissolve’ operation to merge the geometry was 
not taken into account. 

7.3 Discussion 
The process described is completely automated, so it is not required that the class 
intensions be known. However, the operator can be given the possibility to reject certain 
class combinations and proceed with the next combination, which opens up the 
possibility of more application-specific aggregations. 

Whereas the spatial structure of the dataset becomes more abstract, the thematic structure 
(the legend) gets more intricate, even though rarely all members of a class can be 
aggregated. In some cases the remnant of a class only consists of a handful of objects. In 
such cases it might be appropriate to eliminate those objects. Because of the small 
number of objects involved this would only cause few generalisation errors and may 
therefore be outweighed by the advantage of having a simplified legend.  

The TOP10vector dataset contained 14 distinct classes, the GBKN dataset contained 5. 
The approach proved to work in both situations, although the larger number of classes of 
the TOP10vector data resulted in a more gradual decrease in the number of objects. An 
even larger number of classes was not tested, but this may be expected to give rise to an 
unmanageable number of composite classes. 

The results are reproducible, providing the exact same dataset is used. Different spatial 
selections on the same type of dataset could lead to different results for a particular local 
scene, as the generalisation of a smaller selection of the TOP10vector dataset shows 
(Figure 60, Figure 61). This is due to the fact that in a different selection a certain class 
combination may appear more or less often, leading to different class adjacency indices 
and subsequently different class combinations (Table 21). 
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LEGEND FOR FIGURE 60 AND FIGURE 61 
 1. building 

2. greenhouse 

3. motorway 

4. main road 

5. secondary road 

6. unpaved road 

7. pedestrians 

8. street 

12. grass/arable 

9. bicycle track 

10. parking space 

11. forest 

13. other land use 

14. water 

15. building & other land use 

16. building, street & other land use 

21. secondary road & grass/arable 

17. forest & grass/arable 

18. building, street, grass/arable & other land use 

19. building, forest & grass/arable 

20. building, street, forest, grass/arable & other land use 

22. building, secondary road, grass/arable & other land use

23. building, street, forest, grass/arable & other land use 

 

  
FIGURE 60. SMALLER TOP10VECTOR SELECTION  

AFTER AGGREGATION CYCLE IV (COMPARE TO 
FIGURE 47) 

FIGURE 61. SMALLER TOP10VECTOR SELECTION  
AFTER AGGREGATION CYCLE IX (COMPARE TO 

FIGURE 49) 

 
TABLE 21. IDENTIFIED CLASS COMBINATIONS USING A SMALLER SELECTION (FIGURE 60 AND FIGURE 61), 

COMPARE WITH TABLE 15 AND TABLE 16 

aggregation cycle composite class class combination class composition 
I 15 1 & 13 building & other land use 

II 16 8 & 15 building, street & other land use 
III 17 11 & 12 forest & grass/arable 
IV 18 12 & 16 building, street, grass/arable & other land use 
V 19 1 & 17 building, forest & grass/arable 

VI 20 11 & 18 building, street, forest, grass/arable & other land use 
VII 21 5 & 12 secondary road & grass/arable 

VIII 22 15 & 21 building, secondary road, grass/arable& other land use 
IX 23 17 & 20 building, street, forest, grass/arable & other land use 
X 24 10 & 23 building, street, parking space, forest, grass/arable & 

other land use 
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A network topology can be broken up accidentally in two ways:  

1. at class level: a more important class is selected for aggregation before the lower-
level parts are selected; 

2. at object level: certain objects in a class are aggregated while ‘upstream’ elements 
of the same class stay intact.  

The first situation can be prevented by forcing network classes to be aggregated in 
hierarchical order. The second one is more complicated because certain segments cannot 
be aggregated for lack of suitable neighbours. 

More and more, generalisation will become a tool for unlocking the underlying, more 
detailed data. This means that the generalised information has to aid in determining 
where to look into the data in more detail. For that reason the different levels of 
abstraction will have to be linked together, to enable switching from one level to another. 
The process as described here connects composite and component objects to achieve this. 

In section 1.2, generalisation was referred to as a type of context transformation. Context 
transformations occur when we convert datasets to adapt them to other types of use. 
Context transformations are characterised by changes in any of the three components of 
context information: class, class intension and geometric description. The aggregation 
process described in this study affects the class part of contexts. 

The current procedure can be enhanced in a number of ways: 

1. A procedure for the structural generalisation of networks can ensure that the 
network topology of the roads is not corrupted. 
Structural generalisation requires the roads to be converted from area objects to a 
topological graph of nodes and segments to be able to determine the topological 
structure of the network, but such skeletonisation methods are currently part of 
mainstream GIS applications (Lee 1999, ESRI 2000, Lee 2001). By maintaining 
the object identifiers of the original area objects during the conversion, a 
classification created using the topological graph can be transferred back to the 
area objects in the single-valued vector map to allow for the structurally least 
important elements to be aggregated first. The object of this procedure is to 
prevent that instances of less important subclasses such as blind alleys outlive 
objects that belong to a higher-level road subclass in the aggregation process, 
causing road objects to remain that are no longer connected to the rest of the 
network. 
Several approaches for the classification of the elements of non-directed 
topological graphs can be found in literature. Peng described a method for urban 
road networks based on the form and size of the enclosed areas (Peng 1995). 
Other approaches use shortest-path spanning trees (Richardson and Thomson 
1996) or the continuity of the elements (Thomson and Richardson 1999). The 
results of these automated classifications are encouraging. 

2. By using class-driven generalisation - aggregation of objects of the same class or 
superclass - in addition to the current method it is possible to prevent situations as 
described in section 7.1.3, where some objects (‘grass/arable’) remain 
unaggregated for lack of suitable aggregation partners from a different class. 

3. Geometric generalisation (Molenaar 1998) can be used to eliminate remnants of 
old classes. One has to be bear in mind, however, that geometric generalisation on 
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categorical data introduces generalisation errors, since the face of the eliminated 
object is merged with a neighbouring object of a different class. 
Following aggregation, some classes have been almost completely included in 
composite classes, and only some instances of these classes have ‘survived’. 
These instances can often not be aggregated any further because they all have 
neighbours of different classes, which would require a new composite class for 
every single object. Then another approach is needed and geometric 
generalisation comes into the picture again, also because only a few objects are 
involved and generalisation errors would therefore be kept to a minimum. 

4. In this study, aggregation is only possible for connected objects. Peng and Liu, 
among others, described methods for the amalgamation of unconnected 
neighbours, based on extended adjacency relationships (Peng 1995, Liu 2002). 
The data models used were the extended formal data structure (EFDS) and the 
integrated and extended formal data structure (IEFDS), respectively. Both models 
are extensions of the formal data structure (FDS) used in this research. 
Amalgamation of area objects is currently possible with commercial GIS software 
(ESRI 2000). 
It is likely that this enhancement will also introduce generalisation errors since 
with the aggregation of unconnected objects, the areas in between - which are part 
of other objects in a single-valued vector map - are included in the composite.  

5. The implementation currently works at a predetermined taxonomy level. 
Adjacency could be evaluated at several levels of a classification hierarchy, to 
determine at which level co-occurrence relationships occur. This level could 
subsequently be used for aggregation.  
For instance, the class adjacency index between roads and lots could be 
investigated, but also more specifically the class adjacency index between streets - 
‘street’ being a subclass of ‘road’ - and lots. Since roads also occur in rural areas 
and streets are limited to urban surroundings, the relationship between streets and 
lots is presumably stronger than the one between roads and lots.  

If the generalised dataset needs to be visualised, additional cartographic generalisation 
may be inevitable. Small and narrow objects may need to be exaggerated or eliminated. 
This is to be done after the conceptual generalisation has been performed and it would 
preferably not affect the underlying data. 



 

Chapter 8: Conclusions and recommendations 

8.1 Conclusions 

8.1.1 Objective 
The objective of this study was to develop a framework and a working prototype for the 
generalisation of object- and vector-based categorical maps - such as large-scale 
topographic data - based on inter-object relationships, thereby striving for a system that 
is to a large extent automated and can be operated by non-expert users. 
Aggregation based on the class adjacency index is a generalisation method that appears 
suitable for regular geographic database generalisation as well as exploratory purposes, as 
described by the private - high interaction - exploration of unknown corner of 
MacEachren's map use cube (MacEachren and Kraak 1997). The method is quick, fully 
automated, and all thematic information is retained. The exact spatial positions are lost 
but these can be recovered by descending down the aggregation tree. Although here the 
process is based on the class attribute, the method can be employed on any nominal 
attribute attached to the objects. 

The current implementation is meant to demonstrate the method based on the class 
adjacency index. It is not intended as a complete application for conceptual 
generalisation. This is especially noticeable in the way network-forming object classes 
have been handled. Extensions, however, have been suggested in the discussion section. 

Compared to international map generalisation research this study is different because it 
does not involve any cartographic operations and it is based on the aggregation of 
dissimilar objects to create new, composite objects. The aggregation of objects that are 
not directly related through taxonomy relationships was examined earlier in national 
generalisation research (e.g. van Oosterom 1995, Bregt and Bulens 1996), but these 
approaches relied on manually assigned compatibility measures to identify aggregation 
options. 

Using the method described here, spatial detail decreases while the classification 
becomes more intricate. This could result in complicated legends when used for 
traditional mapping. The method can be used for mapping purposes but additional 
cartographic generalisation is then required to remove insignificant remnants of the 
original classes and to remove or exaggerate remaining objects that are too small or 
narrow to be displayed at the target scale. 

8.1.2 Research questions 
Research Question 1: What are the consequences if we concentrate completely on 
conceptual, that is non-cartographical aspects of the generalisation process? What are 
the relevant operations in that case and how do we assess the result? 
If we concentrate on non-cartographic issues the number of operations is reduced 
significantly, enabling us to concentrate on one of the most important conceptual data 
reduction processes: aggregation. It was shown that in an area partitioning elimination 
and aggregation are closely related but aggregation is generally to be preferred; 
elimination should only occur if aggregation is not possible and the object under 
evaluation is small or unimportant. 
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Creating composite objects by aggregation and merging the geometry of the components 
are considered two separate actions. During the abstraction process we only work with 
object referencing, the original topology is retained. This helps to ensure topological 
consistency during the operations. 

Assessment of the results of conceptual generalisation is still problematic. The existing 
material is not suited for comparison and the existing generalisation assessment measures 
are oriented towards graphic generalisation, comprising measures for displacement, etc. 

Research Question 2: How are the objects in a categorical map interrelated 
thematically and spatially and how can we use these relationships for the definition of 
generalisation rules? 
Categorical data require a holistic approach, i.e. the spatial relationships between the 
classes are important. Many aggregation approaches are based on thematic similarity 
between the classes. These similarity measures are normally based on expert knowledge. 
Similarity is commonly expressed in a classification hierarchy but classification 
hierarchies are not a very suitable basis for abstraction. Since the objects remain the same 
- just the ‘label’ changes and only occasionally can adjacent objects belonging to the 
same superclass be merged - this only works within a limited spatial range.  

The aggregation process in this study is based on spatial measures and is automated 
completely. No manually assigned compatibility measures for the classes are required. 
The class intension needs not even be known, as the process is entirely based on topology 
and geometry. Minimal requirements are basic classes like building, waterway, road etc., 
but more detailed classifications like main road, motorway and brook, river and canal are 
to be preferred. Network structures, in particular, require more elaborate classifications to 
enable elimination/aggregation of less important segments. If these classifications cannot 
be created automatically, by database enrichment operations, they have to be included in 
the initial dataset. Although existing classification hierarchies may not entirely suit the 
purpose of the generalisation, it is always better than nothing. It is important to include 
not only the most detailed classifications but the superclasses as well. However trivial 
these may seem, the superclasses can serve as a basis for database enrichment operations.  

What topologic relationships can be queried depends on the data model used by the 
application to perform the queries. Topology does not need to be included in the input 
data, it is a property of the data model used to process the data. Topology can be stored as 
a part of the data model or derived when needed. A data model with stored topology like 
the FDS allows topological relationships to be queried in a set-at-a-time manner, like the 
neighbour relationships between the members of two classes in this research. In other 
words, an entire dataset can be queried in a statistical manner. Topological correctness or 
consistency, on the other hand, is a property of the data. A data model like the formal 
data structure (FDS) can enforce topological consistency. 

In order to prevent the generalisation rules from being too application- and dataset-
specific, these should not address specific classes but categories of classes such as 
networks. 

Research Question 3: What parameters can be defined for the user to control the 
outcome of the generalisation process? 
The system can be operated completely automatically or interactively. In auto mode the 
user starts with setting a stopping criterion, after which the system repeatedly aggregates 
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class combinations until the criterion is met. In step mode the user evaluates each 
aggregation step before continuing. This enables the user to adjust the result for a certain 
purpose. The following steering parameters are available: 

1. In both modes: excluding classes from the aggregation process. Some classes can 
be protected so that the aggregation process does not affect these classes. 

2. In auto mode: setting the stopping criterion. This stopping criterion can be: 
a. the maximum number of objects in the resulting dataset, 
b. the maximum number of classes in the resulting dataset, 
c. the maximum number of aggregation cycles to be performed. 

3. In step mode: accepting or rejecting an aggregation step. If an aggregation step is 
rejected, the current class combination is excluded and the system reverts to the 
result of the previous step and picks the next combination. 

Research Question 4: How can we minimise errors, such as shifts in thematic values 
and topological inconsistencies? 
Creating new, composite classes (of dissimilar component classes) is an unusual 
approach in map generalisation literature, but unlike most other approaches it does not 
lead to generalisation errors. The new data are more abstract, but correct. Generalisation 
errors only occur if the described method is complemented by other generalisation 
operations such as geometric generalisation and amalgamation. 

8.1.3 Additional conclusions 
Because of its ability to facilitate large abstraction steps and the absence of generalisation 
errors, aggregation can be seen as the central operation in a generalisation process. 

The implementation in a (relational) database management system (DBMS) ensures that 
all information needed during the course of the entire generalisation process is accessible 
at any moment and that you can store all additional information needed. The database 
allows storage of topological and thematic information about the object and retrieval of 
this information at any given moment. The integration of all information in one database 
allows spatial and thematic properties to be queried simultaneously, as opposed to most 
current GIS’s that require separate queries for spatial and thematic data. The use of a 
common relational DBMS also prevents the method from being too dependent on the 
possibilities of the current GIS software packages. 

Object-orientated programming is not required to create a system capable of automated 
generalisation nor is an object-oriented DBMS needed. The data model should 
nevertheless show objects, features in reality that form identifiable objects in the 
database. This is called the object-based approach. Objects are uniquely identified by an 
object identifier. Objects can be defined at different levels of abstraction; not only can 
objects be part of composite objects, but objects can also be composed of several 
geometric primitives. Composite and component objects (including geometric primitives) 
are related through their object identifiers, this means that effectively a dataset with 
multiple representations is created. 

It is very important that the rules for data acquisition are clear, both regarding the 
classification of objects and the spatial delineation of the objects. A good example is the 
delineation of road segments to prevent problems as shown in section 5.2.2. It is 
generally preferable to define geometric primitives at a low level of spatial abstraction. 
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This is particularly important in network structures: network segments and junctions 
should be individually identifiable. The geometry of an object is assembled from one or 
more of these geometric primitives. This offers the most flexibility in constructing other 
objects that are different from the ones that were defined initially. It allows the 
identification of road segments as well as roads. It is easier to combine spatial objects 
than to break them apart, since it is necessary to add geometry to split up objects. In 
NEN3610, the spatial description is detailed enough, providing the model is correctly 
implemented. The thematic structure of NEN3610, however, is not very suited for 
generalisation purposes, mainly because of a lack of functional classifications of network 
elements. 

8.2 Future research 
The real issue of conceptual generalisation is reclassification; what are the higher-level 
objects we are looking for? Detection of functional inter-class relationships is therefore 
one of the important topics for future research. Detecting spatial co-occurrence of classes 
based on neighbour relationships of the member objects is one way of identifying 
functional relationships but other methods should be investigated. Future research should 
therefore concentrate on: 

• Other methods for detecting relationships between classes. 
• Other methods for detecting spatial co-occurrence of classes. 

The current method can also be refined further, especially regarding the local object 
aggregation factor as well as the fine-tuning of this parameter. The object aggregation 
factor can be enhanced by using additional measures such as object orientation so that 
parallel objects such as roadways and the accompanying pavements are even more likely 
to be aggregated, for instance. Also, in the discussion section a number of possible 
extensions of the current method were presented. These are: 

1. Integration of structural generalisation of network data to ensure the topological 
consistency of the network. 

2. Integration of the class-driven approach and the current method. 

3. Addition of geometric generalisation operations (elimination) to remove remnants 
of old classes. 

4. The use of extended adjacency relationships to enable the aggregation of non-
connected neighbours (amalgamation). 

5. Evaluation of spatial relationships at different levels of a taxonomy, to determine at 
which level significant relationships occur. 

The method described here cannot be evaluated using conventional generalisation effect 
measures. New generalisation effect parameters are needed for conceptual generalisation. 

Since the possibilities for generalisation depend on the spatial and thematic structure of 
the input data, database enrichment operations continue to be an important field of 
research, e.g. into the classification of undirectional networks such as roads.  
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List of symbols 
 
sr ..............................................................segment r 

nc .............................................................node c 

BEGIN[sr , nc ] = 1 ....................................node c is the begin node of segment r 

END[sr , nd ] = 1 .......................................node d is the end node of segment r 

NODE[sr , nc ] = 1.....................................node c is a node of segment r 

fg .............................................................. face g 

ok ..............................................................area object k 
LEFT[sr , fg ] = 1.......................................segment r has face g on its left side 

RIGHT[sr , fh ] = 1.....................................segment r has face h on its right side 

BOUNDARY[sr , fg ] =1 ..............................segment r is part of the boundary of face g 

PART22 [fg , ok ] = 1 ................................... face g is a part of area object k 

LEFT[sr , ok ] = 1 ......................................segment r has area object k on its left side 

RIGHT[sr , om ] = 1 ...................................segment r has area object m on its right side 

BOUNDARY[sr , ok ] = 1 ............................segment r is part of the boundary of area object 
k 

ADJACENT[ok , om | sr ] = 1 .......................area objects k and m are adjacent at segment r  

MEMBER[ok , Cp] = 1 ................................object k is a member of class p 
Length(sr ) ................................................ the length of segment r 
Area(ok )................................................... the area of object k 
Perimeter(ok ) .......................................... the perimeter of object k 
Card(St ) ................................................... the cardinality of set t , i.e. the number of 

objects in set t 
OM ........................................................ the set of all area objects in map M 

Card(OM ) ................................................. the number of objects in map M 

Ext(Cp ) .................................................... the extension of class p, i.e. the collection of 
members of class p 

CAI (Ca | Cb) ............................................ the class adjacency index for the combination of 
class a and class b 

SR (Ca | Cb) .............................................. the significance ratio for the combination of 
class a and class b 

OAF (od) ................................................... the object aggregation factor for object d 

 





 

Abstract 
 
Since the late 1960’s automated methods for map generalisation have been studied, but 
thus far no comprehensive system has been achieved. This is due to the general 
complexity of the matter, part of which is caused by the inability to separate the 
conceptual and the graphic issues. These aspects of map generalisation are considered 
separate issues ever since the advent of GIS but in practice it has been difficult to 
disconnect the conceptual issues from the impediments of graphic representation, either 
in the form of a paper map or on a computer screen. Current research into automated map 
generalisation generally appears to be in a cul-de-sac for this reason.  

This study therefore aims to concentrate on strictly non-graphic operations and large 
generalisation steps, i.e. big scale changes. Whereas most existing methods work towards 
a clear end result, this approach does not. Instead, it is entirely based on the input data. 
Minimizing generalisation errors is a priority and assessment of the generalisation results 
is also an issue to consider. The goal is to develop a system for the generalisation of 
object- and vector-based categorical maps, such as large-scale topographic data, that is to 
a large extent automated and can be operated by non-expert users. In the past, several 
generalisation procedures have been developed for individual objects and dichotomous 
maps, but the number of procedures for categorical maps is still limited and the methods 
that do exist rely on similarity and importance factors that are hard to determine. 

Large-scale categorical data mostly form an area partition, i.e. the whole spatial extent of 
the dataset is covered by objects and the objects do not overlap. This implies that objects 
cannot simply be removed - since this would cause ‘holes’ - but have to be combined or 
aggregated. 

Objects can be aggregated based on taxonomy or partonomy relationships. Taxonomy 
relationships are based on similarity between the objects or classes. Aggregation based on 
taxonomy relationships has been described extensively in map generalisation literature, 
but only works within a limited spatial range. Since this study is aimed at large-scale 
changes it is based on the much less described partonomy relationships. Inter-object and 
inter-class relationships are used to determine functionally related classes in order to 
aggregate the object instances of the class. It is assumed that spatial correlations indicate 
functional relationships. The class adjacency index is used as a measure of spatial 
correlation between classes. Combinations of classes with a high class adjacency index 
are likely candidates for the creation of composite classes. Adjacent objects of these 
classes can subsequently be aggregated and reclassified to create composite objects. 

The class adjacency index is determined based on adjacency measures of the member 
objects. The input dataset must therefore form a topologically correct, object-based area 
partition. The implementation is based on a stored adjacency graph and uses regular 
relational database management software. The data model is object-based and supports 
the concept of composite objects. In the process a multiple representations dataset is 
produced by connecting the composite objects created in every aggregation cycle to the 
constituent parts in the previous level.  

The process can be fully automated but it is also possible to allow user interaction at 
several points in the process without compromising the approach. Since it is entirely 
based on characteristics of the input dataset, the method is also suited for exploratory 



92  

 

purposes. To a certain degree, the meaning of the classes is not even relevant, although in 
interactive mode the user naturally has to be aware of the classes. 

The method was applied to two Dutch topographic datasets: TOP10vector and GBKN. 
The results show that this is a very promising method for conceptual generalisation. The 
concept of composite classes makes that generalisation errors are not an issue. Therefore, 
it cannot be evaluated using conventional generalisation effect measures. The output of 
the aggregation process is not readily suitable for mapping purposes, and additional 
cartographic generalisation is in that case required. The current implementation is not 
intended as a complete solution for conceptual generalisation. But since it is set in an 
environment of other conceptual generalisation operations, such as structural 
generalisation and extended adjacency graphs, it can be extended to create such a 
comprehensive system. 



 

Samenvatting 
 
Sinds het einde van de zestiger jaren wordt onderzoek gedaan naar geautomatiseerde 
methoden voor kaartgeneralisatie. Tot dusverre zijn geen alomvattende systemen 
gerealiseerd. Dit omdat het een zeer ingewikkeld onderwerp betreft, deels veroorzaakt 
doordat de conceptuele en de cartografische aspecten niet goed (kunnen) worden 
gescheiden. Deze beide aspecten worden als afzonderlijke onderwerpen gezien sinds de 
opkomst van de geografische informatiesystemen, maar in de praktijk blijkt het erg 
moeilijk de conceptuele zaken te scheiden van de beperkingen die een grafische 
weergave in de vorm van een kaart met zich meebrengen. Hierbij maakt het niet uit of het 
een papieren kaart betreft of een afbeelding op een beeldscherm. Het onderzoek naar 
geautomatiseerde kaartgeneralisatie lijkt hierdoor grotendeels op een dood spoor te zijn 
beland.  

Dit onderzoek richt zich daarom strikt op niet-cartografische operaties en daarnaast op 
grote stappen in het generalisatieproces, i.e. grote schaalovergangen. Waar de meeste 
bestaande methoden naar een bekend eindresultaat toewerken, is dat in dit onderzoek niet 
het geval. In plaats daarvan is het volledig gebaseerd op de uitgangsgegevens. Het 
minimaliseren van generalisatiefouten is een prioriteit en ook wordt er aandacht besteed 
aan verschillende manieren om de resultaten te beoordelen. Doel is te komen tot een 
systeem voor generalisatie van object- en vectorgebaseerde, geclassificeerde 
gegevenssets - zoals grootschalige topografische data - dat voor een zo groot mogelijk 
deel is geautomatiseerd en kan worden toegepast door niet-ingewijde gebruikers. In het 
verleden zijn diverse generalisatiemethoden ontwikkeld voor individuele objecten en 
zogenaamde aan- en afwezigheidskaarten, maar methoden voor geclassificeerde kaarten 
zijn schaars en de methoden die er zijn, zijn gebaseerd op moeilijk vast te stellen factoren 
die overeenkomst en importantie weergeven.  

Geclassificeerde grootschalige gegevens zijn meestal opgebouwd uit een aaneengesloten 
bedekking van vlakken. Dat wil zeggen dat de hele ruimte is bedekt met objecten die 
elkaar niet overlappen. Dit betekent echter dat objecten niet simpelweg kunnen worden 
verwijderd - omdat er dan gaten in de beschrijving ontstaan - maar moeten worden 
samengevoegd met aangrenzende objecten. 

Objecten kunnen worden samengevoegd op basis van taxonomische relaties 
(classificatierelaties) of op zogenaamde ‘deel-van’-relaties. Taxonomische relaties zijn 
gebaseerd op overeenkomsten tussen de objecten of de klassen. Samenvoeging 
(aggregatie) op basis van deze relaties komt veel voor in de literatuur over 
kaartgeneralisatie, maar werkt slechts binnen een beperkt ruimtelijk bereik. Omdat dit 
onderzoek zich richt op grote aggregatiestappen is het in plaats daarvan gebaseerd op de 
veel minder beschreven ‘deel-van’-relaties. Relaties tussen objecten onderling, objecten 
en klassen, en klassen onderling worden gebruikt om functioneel gerelateerde klassen te 
vinden. Hierbij wordt verondersteld dat ruimtelijke correlatie wijst op functionele 
relaties. Als maat voor de ruimtelijke correlatie tussen klassen wordt de class adjacency 
index gebruikt. Combinaties van klassen met een hoge waarde voor de class adjacency 
index zijn het meest geschikt om samengestelde klassen te vormen. Aangrenzende 
objecten van deze klassen kunnen vervolgens worden samengevoegd en 
geherclassificeerd tot samengestelde objecten. 
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De class adjacency index wordt bepaald op basis van buurrelaties tussen de objecten in 
de klassen. De uitgangsgegevens dienen daarom te bestaan uit een topologisch correcte, 
aaneengesloten bedekking van objecten. De implementatie is gebaseerd op een 
opgeslagen topologische graaf van buurrelaties en maakt gebruik van gangbare 
relationele database management software. Het datamodel is objectgebaseerd en 
ondersteunt het gebruik van samengestelde objecten. Tijdens het proces wordt een 
meerschalige dataset gecreëerd doordat de samengestelde objecten uit elke 
aggregatiecyclus worden gekoppeld aan de objecten uit de voorgaande cyclus waaruit ze 
zijn samengesteld.  

Het proces kan volledig worden geautomatiseerd, maar het is ook mogelijk om de 
gebruiker het proces op diverse punten te laten beïnvloeden zonder inbreuk te doen op de 
aanpak. Omdat de methode volledig is gebaseerd op kenmerken van de uitgangsgegevens 
is zij ook geschikt voor het verkennen van een dataset. De betekenis van de klassen is tot 
op zekere hoogte niet van belang. Hoewel de gebruiker in de interactieve modus 
natuurlijk wel op de hoogte moet zijn van de betekenis.  

De methode is toegepast op twee topografische datasets: TOP10vector en GBKN. De 
resultaten tonen aan dat dit een veelbelovende methode voor conceptuele generalisatie is. 
Door het concept van samengestelde klassen is er geen sprake van generalisatiefouten. 
Evaluatie met de gebruikelijke generalisatie-effectmaten is daardoor niet mogelijk. De 
output van het aggregatieproces is niet zonder meer te gebruiken voor het maken van 
kaarten. In dat geval is aanvullende cartografische generalisatie noodzakelijk. De huidige 
implementatie beoogt ook niet een volledige oplossing voor conceptuele generalisatie te 
zijn, maar omdat zij is ingebed in een omgeving met andere conceptuele generalisatie-
operaties kan zij worden uitgebreid om een dergelijk volledig systeem te creëren. 
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