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1Patterns in this context are defined as the normal distributions (from -2 to +2 sigma) of T2F and TAS for a given flight and for a range covering the last 10NM of the 
final approach 
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Abstract — currently, at many airports, the runway throughput 

is the limiting factor for the overall capacity. Among the most 

important constraining parameters is the separation minima 

expressed in distance. On the top of these minima, the difference 

of the leader and follower aircraft speed profiles imposes to 

consider buffer to cope with compression effect.  Currently, Air 

Traffic Control Officers (ATCO’s) take these buffers on the basis 

of their training and experience. However, this experience will 

not be sufficient to safety deploy advanced concepts, like pair-

wise separations, that increase variability in the separations to be 

delivered and therefore in the compression buffer to be 

considered. Systematic analysis of years of radar tracks has 

allowed to better predict the buffers to apply by characterising 

the time to fly (T2F) given a separation distance and True 

Airspeed (TAS) profile as a function of meteorological 

parameters.  

This paper presents how Machine Learning (ML) techniques 

may be used for predicting the T2F and TAS profile on final 

approach. Different ML techniques will be assessed on their 

forecast performance, computational time and amount of data 

needed for delivering a reliable prediction. The techniques will be 

applied on 2 different major European airports traffic and will 

be benchmarked against Optimized Runway Delivery (ORD) 

study using a Model Based Approach (MBA) for deriving the 

T2F and TAS. As a result the most efficient ML techniques will 

be applied on two case studies for predicting the T2F and TAS. 

 

Keywords- T2F, TAS, ML, ensemble. 

I.  INTRODUCTION  

ML can be used to identify patterns
1
 and to observe ‘what-

if’ scenarios in past data. These patterns can be transferred 

into ‘what-if’ statements by analysing relations between the 

response variables (T2F and TAS) and the prediction variables 

highlighted in Table 1. This analysis is needed to predict 

forthcoming operational risks during real time operations like  

 

loss of separation [1]. Such a prediction would feed ‘what-if’ 

tools at the airport to alert ATCO about impending aircraft 

behaviours.   

Presently Distance Based Separation (DBS) or Time Based 

Separation (TBS) rules are applied during final approach. As a 

next step the ‘Dynamic pair-wise separation’ concept is 

proposed to allow controllers to sequence arriving and/or 

departing aircraft using Time-Based, Weather Dependent and 

Pair-wise wake turbulence separations. The efficient 

deployment of such concept needs a reliable prediction of the 

T2F and TAS, which is mainly influenced by the aircraft type 

and wind profile. With this respect, it is envisaged to 

progressively move from a MBA to a ML approach for coping 

with the variability of aircraft speed behaviours. In this paper, 

ML techniques will be assessed on their capabilities to 

produce fast and accurate predictions and their capabilities to 

test a large number of ‘what-if’ statements. 

This paper presents 10 feasible ML techniques; the amount 

of data needed, Principal Component Analysis (PCA) and 

feature analysis for predicting the T2F and TAS profile per 

wind-band on final approach based on 15 prediction variables. 

All relevant scenarios between combined data, ML techniques 

and problems will be assessed. As a result the most efficient 

ML techniques will be applied on two case studies for 

predicting the T2F and TAS. 

The structure of this paper is as follows; Firstly, the 

methodology and data sources such as; aircraft data, wind and 

speed profiles are described. Secondly, the ML context is 

outlined. Thirdly, the pre-processing steps are elaborated. 

Fourthly the results of the two case studies and the respective 

prediction error are outlined in subchapter VI. Finally 

conclusions and recommendations are drawn.  
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II. DATA, PREDICTION VARIABLES & MODELLING 

In order to predict T2F and TAS profiles on final approach, 

two complementary sources of information are used; aircraft 

performance data and weather data.  

 

II.A  Aircraft Performance & Weather data 

 

Aircraft Performance is extracted from Radar data and has 

been provided by the Air Navigation Service Providers 

(ANSPs) for four airports. For one other airport, ADS-B data 

has been used. For each airport, the radar data cover 2 months 

of operations in 2012 or 2013. The ADS-B data covers two 

weeks of data in 2013. In total, the data comprises about 

130,000 flights. For each radar point, the flight ID, aircraft 

type, actual time, lateral and longitudinal position coordinates, 

altitude and ground speed is recorded with a 4s refresh rate. 

The focus of the analysis is on approaching aircraft to single 

runways over the last 10NM. All variables can be found in 

Table 1.  

The headwind (HW) profile and visibility measurements 

were gathered from Airport 1 and Airport 2 for respectively a 

period of 2 months and 3 years.  The HW profile is defined by 

four measurements at heights of 10m, 500m, 1000m and 

3000m. The HW profile is analysed per 10 minutes.  Wind 

measurements are grouped into six different wind bands; 0-5kt 

TW (tailwind) and 0-5kt, 5-10kt, 10-15kt, 15-20kt and 20-25kt 

(headwind). The HW profile and visibility date and time have 

been included as input variables into Table 1. 

 

II.B Prediction variables  

Table 1 gives all the 15 input prediction variables per 

0.5NM segment. However, for some prediction variables the 

number is constant such as; recatEU, rwy and FAF or some 

are not considered such as gspass from 10NM till 0.5NM and 

AC from 19.5 till 10NM. The predictive response variables in 

our model are the T2F, y, and TAS, y’ and are outlined in 

Table 1 as number 16 and 17. 

Table 1. Prediction and response variables 

 

II.C Modelling of ML techniques 

 

The ML techniques will be addressed by modelling the 

predicted T2F and TAS values under different weather 

conditions. The T2F is a continuous variable that is computed 

depending on variables such as aircraft type, airport and 

parameters related to weather conditions. The approach is 

based on learning a model per airport and aircraft type - A320 

at Airport 1 and the B738 at Airport 2. The results for these 

two case studies will only be shown for the best 3 feasible ML 

techniques. Going one step further, we propose to approach 

the prediction as a multi-task learning problem. This approach 

can lead to a better model for the main task by exploiting the 

commonality among the tasks. In this research, this leads to 

the following consideration: instead of predicting T2F and 

TAS for each segment of 0.5NM from 0.5NM to 10NM 

individually, we propose to exploit multi-task learning by 

predicting the segments altogether. By solving the regression 

(III.A) problem jointly for all these segments, we expect to 

improve the performance of the regression compared to the 

case where the segments are considered independently. The 

rationale behind this is that although the distribution of the 

T2F values depend on the segment, the behaviour of the 

aircraft on all the segments is subjected to the same 

conditions. 

III. CONTEXT-MACHINE LEARNING 

This section describes the feasible ML category and 

techniques for predicting the T2F and TAS profile on final 

approach.  

III.A ML techniques classification [2] 

ML techniques can be classified into different categories 

following three main strands; unsupervised learning, 

supervised learning and reinforcement learning.  Supervised 

learning can be divided into two different subcategories which 

are classification and regression. In this study, there will be a 

primary focus on supervised regression learning since these 

are often computationally efficient for predicting the T2F and 

TAS (real numbers) whereas classification is often used for 

binary predictions such as go-arounds. For supervised 

regression learning, we propose two approaches that can be 

considered as baselines for this study [2] [13]. The first 

method is based on linear regression techniques and the 

second method on neural networks. These two methods can be 

divided into 10 sub techniques based on multi-task learning. 

Multi-task techniques are selected since we try to jointly fit 

the T2F and TAS for all segments from 0 till 19.5NM (0.5NM 

step). By definition, a multi-task learning approach learns a 

problem together with other related problems, all at the same 

time. Learning multiple related tasks simultaneously has been 

empirically [3, 4, 5, 6, 7, 8, 9, 10] as well as theoretically [3, 

11, 12] shown to often significantly improve performance 

relative to learning each segment independently. The 10 

feasible ML techniques are outlined in subsection III.B and 

III.C. 

Variable Description 

1.Flightnr Flight number 

2.Apt Airport 

3.actype Aircraft type 

4.dpass Distance from threshold (NM) 

5.hpass Height from threshold (m) 

6.gspass Ground Speed (kts) from 10 till 19.5NM 

7.rwy Runway (degrees) 

8.recatEU RECAT EU category 

9.METARhwind Headwind (kts) 

10.METARcwnd Crosswind (kts) 

11.METARvsby Visibility (m) 

12.ICAOcombi ICAO combination 

13.actypecombi Aircraft type combination 

14.ACin10NM Number of aircraft between 0 and 10NM 

15.FAF  Final approach fix 

16.T2F (response) Time to fly (s) 

17.TAS (response) True Airspeed (kts) 



 

2MSE is an estimate of how close to the predicted model mean of your sample mean is likely to be. 

 

III.B Regression techniques to be tested [2] 

 

       The regression techniques fitglm, stepwiseglm, ridge 

regression and Lasso are well-suited for this problem. A 

variant of these techniques, called Elastic net, which 

combines the penalties of both methods and which is also a 

good candidate to tackle this particular prediction problem 

[14]. The Mean Square Error (MSE
2
) serves as cost function 

for these algorithms. These techniques are applicable in the 

case of multi-task regression and are referred in the scientific 

literature as multitask regularized regression.  

III.C Neural networks technqiues to be tested [2] 

 

        Approaches based on neural networks are also good 

candidates for the problem. We recommend the Multi-Layer 

Perceptron (MLP) as a baseline to tackle our case. The loss 

function used to train the network will be the MSE. 

Neural networks are widely used in scenarios in multi-task 

learning, by making use of the fact that the underlying 

representation of the problem is inherently learnt during the 

training process. Depending on the amount of data at disposal, 

deeply connected neural network architectures will also be 

considered such as; Auto Encoder, Boltzmann and 

Recurrent Neural Networks.  

IV. PRE-PROCESSING  

This section describes the pre-processing steps to come up 

with a usable aircraft performance data set. This data set is 

needed to train a T2F and TAS prediction model.
 
Each pre-

processing step is detailed below:
 

 

A. Compute T2F and TAS for each sample; Before 

feasible ML techniques can be applied first the T2F 

and TAS profile are extracted for each segment of 

0.5NM, 5kts wind band and aircraft type. Remove the 

samples where the T2F and TAS of one segment is 

more than 2 standard deviation away from the 

segment mean. This forms a matrix Y where each 

row represents a flight and each column a segment.  

B. Feature selection; The RreliefF technique is applied 

before a model is learned.  

C. PCA: finding out which features are important for 

best describing the variance in a data set.  

D. Construct the datasets: based on different data 

sources and the Table 1 mentioned variables.  

Furthermore standardize feature matrix X. 

E. Stability of three different data parts: split the 

matrices X and Y in two subsets Xtrain; Ytrain; used 

to train the model and Xtest;Ytest used to evaluate the 

model accuracy. For those experiments the data is 

split into 70% of training data, 15% of test data and 

15% of validation data (standard hold-out). 

F. Accuracy of data and outliers: in the last pre-

processing step the accuracy is measured and the 

outliers are shown.  

 

IV.A Compute T2F and TAS profiles 

The T2F is computed by the difference in time from a 

certain distance till threshold. The TAS is calculated by 

subtracting HW or adding TW of the wind profile from/to the 

GS profile. This study works with TAS since this gives a 

better indication of the speed compensations applied per 

aircraft type. 20.000 flights where extracted from Airport 1 to 

cover seasonal variations and to have a minimum of 50 

measurements per aircraft type, wind-band and 0.5NM 

segment.  Figure 1 shows an example of the TAS, GS and HW 

profile of an A318 in 10-15kts headwind as a function of 

distance from the threshold. The T2F and TAS results for 50 

different aircraft types can be found in the report [15]. 

 
Figure 1. Example TAS, GS and HW profile versus distance to threshold. 

 

IV.B Assessibility of feature selection 

Before the model will be trained, first the most important 

(group) features will be selected using PCA and RreliefF 

modelling (feature selection). The objective of feature 

selection is three-fold: improving the prediction performance 

of the predictors, providing faster and more effective 

predictors, and providing a better understanding of 

the underlying process that generated the data [16]. RreliefF 

has commonly been viewed as a feature selection method that 

is applied in a prepossessing step before the model is learned 

[17]. The standard RreliefF regression modelling technique 

has been extensively discussed in many papers [18]. The 

technique has been applied on 500 low wind (0-5kt) A320 

flights for Airport 1 as showed in Figure 

2.

Figure 2. Normalized feature selection using RreliefF algorithm.



 

 

    Figure 2 shows from left to right the most important 

succeeding features for Airport 1. The ground speed at 10NM 

(GS-19) seems to have the most impact on the T2F, followed 

by the headwind (HW) and Aircraft type (AC). Similar feature 

relationships are obtained for Airport 2 and different aircraft in 

low wind. According to the ORD study [19], the top 3 most 

important theoretical features match with the predicted 

RreliefF features. Table 2 in section V.A compares the best 

(group) prediction features for different amount of flights for 

both PCA and RreliefF. 

IV.C Assessibility of PCA 

After applying RreliefF (feature selection), PCA will be 

applied. PCA is a procedure for identifying a smaller number 

of linearly uncorrelated variables called principal components. 

The goal of PCA is to show as much of the variability in the 

data as possible with the fewest number of principal 

components. The data have been divided into 15 different 

indicators of aircraft and weather behaviour at 2 different 

airports, which are showed in Table 1. 

      Figure 3 shows the top 10 feature selected variables, which 

are represented in a bi-plot by a vector, and the direction and 

length of the vector indicate how each variable contributes to 

the two principal components in the plot. In the new 

coordinate system, the first axis corresponds to the first 

principal component, which is the component that explains the 

greatest amount of the variance in the data, whereby it is 

obvious that component 2 explains the 2
nd

 greatest amount of 

variance in the data, etc. In this example, the first principal 

component, on the horizontal axis, has positive coefficients for 

GS, Visibility, HW, AC, RECAT CAT, ICAO comb and FAF 

variables. That is why the seven vectors are directed into the 

right half of the plot. The largest coefficients in the first 

principal component are the second, third, fourth and seventh 

elements, corresponding to the variables HW, GS, RECAT 

CAT and FAF. The second principal component, on the 

vertical axis, has positive coefficients for the 

variables Runway, Height, Cwnd, AC, RECAT CAT, ICAO 

comb, Visibility, HW and negative coefficients for the GS and 

FAF variable.  

Figure 3. A bi-plot in two dimensions, to find the relation among different 

variables. 

      Since figure 3 doesn’t explain enough of the variance in 

the data of the first two principal components, Table 2 and 3 

takes also into account component 3 and 4. 

IV.D Construct the datasets 

 

The first dataset includes the features flightnr, dpass, 

hpass, gspass, rwy, RECATEU, METARvsby, ICAOcombi, 

actypecombi, ACin10NM and FAF. Please note that we only 

consider the measurements from 19.5NM to 10NM. This 

forms the feature matrix X where each row is a flight and each 

column a feature. Another dataset is built from 10NM to 

0.5NM with the same features plus the headwind at each 

segment determined as the difference between ground and 

indicated air speed. When this is done the historical data will 

be divided into predictor variables and response variables. 

Finally, for each column X subtract the columns mean and 

divide by their standard deviation. 

IV.E Stability of three different data parts-cross validation 

 

To check the stability of different data parts, the data will 

be randomly divided into training, validation and testing 

subsets. It has been assumed that the default ratios in this 

study for training, testing and validation are 0.7, 0.15 and 

0.15, respectively. The model is adjusted accordingly when 

training it. The validation is used to measure network 

generalization, and to halt training when generalization stops 

improving. To prove that a randomly selected data set is 

stable, epoch and validation checks are performed. Epoch 

indicates the amount of a single pass through the entire 

training set, followed by testing of the verification set.        

Thereafter we check convergence on the validation and at the 

end of the learning process the model is evaluated on the test 

set. The test has no effect on the training and therefore 

provides an independent measure of network performance 

during and after training. Figure 4 shows a final approach 

trained speed model by selecting 5000 A320 flights. 

By training the model according to the above described 

method, a good representation of real life flights will be given 

and unstable data parts are neglected. 

 

Figure 4. MSE versus amount of epochs for 5000 A320 flights. 



 

 

IV.F Accuracy of data and ouliers 

 

The analyses and detection of abnormal flights and outliers 

of real flights will be done in the next paper. However, also 

outliers exist when building predictive models. With outliers 

we mean when a data point or flight is not consistent with the 

other data points. One way to show this inconsistency is by 

plotting the regression for training, validation, test and all. 

Figure 5 shows such an example where the regression R 

values measure the correlation between outputs and targets. 

An R value of 1 means a close relationship, 0 a random 

relationship. 

 
Figure 5. R values for test, training, validation and all for an A320 predictive 

TAS model 

 

       Analysing these graphs shows that there are indeed many 

outliers. It will be obvious that by neglecting them in the 

target set, a better R value will be obtained for the predicted 

model. Doing this for the above example results in an overall 

R value of 0.69 instead of 0.61 presented in Figure 5. 

V. RESULTS 

This chapter shows the results of the feasible ML 

techniques PCA and RreliefF for prediction of the T2F and 

TAS profile on final approach. The best technique will be 

assessed on the amount of neurons and minimum amount of 

flights needed to come up with an accurate prediction model. 

 

V.A  PCA groupings and RreliefF for A320 at Airport 1 

 

Using PCA dimension reduction and/or feature selection 

will automatically not result in a better prediction model. It 

could happen that by excluding variables, you exclude 

automatically variables that are correlated with each other. It 

has been tested if by applying PCA and feature selection 

before training a ML model result in; (1) less time to compute, 

(2) a lower Mean Squared Error (MSE) and (3) an increased 

accuracy (lower sigma). Based on Figure 4 and MBA 

experiences for different types and wind conditions, analysis 

are executed on the MSE by excluding expected correlations 

compared to including them. First Table 2 compares the 

important (group) prediction features for different amount of 

flights for both PCA and RreliefF.  

 

Table 2. PCA and RreliefF outcome for different amount of flights 
Number  of flights  PCA RreliefF 

50 9,6 (group 1) 

3,10,11,5,8,12 (group 2) 

7,15 (group 3) 

6,3,9,10,8, 12,11,15,7,5 

100 3,9,6 (group 1) 

10,12,8,11,5 (group 2) 
15,7 (group 3) 

9,6,3,12,10,8,11,15,5,7 

300 6 (group 1) 
9,3,8,11 (group2) 

12,10,5,7 (group 3) 

15 (group 4) 

6,9,3,10,8,11,12,5,7,15 

500 6 (group 1) 

9,3,8,11 (group2) 

12,10,5,7 (group 3) 
15 (group 4) 

6,9,3,10,8,11,12,5,7,15 

     

     First from this table it can be concluded that, based on 

PCA, 4 main groupings are correlated with each other. The 

numbers correspond to a certain prediction parameter and can 

be found in Table 1. After applying RreliefF we verified with 

PCA that above 400 flights, the prediction parameters 

influencing the response for the A320 flights at Airport 1 in 

low wind remain stable. At this stage the minimum amount of 

400 should be inserted for designing an accurate prediction 

model.  Table 3 shows for the MLP the TAS MSE and sigma 

results of the Table 2 mentioned groupings. These results are 

obtained by building a predictive model for 500 and 250 A320 

flights in low wind at Airport 1 and by in-and excluding group 

correlations from Table 2. The MSE and sigma results are 

averaged per 0.5NM segment. 

Table 3. MSE and sigma results for 4 different groups  

Group  MSE-500 Sigma-500 MSE-250 Sigma-250 

Group 1 49.1 6.5 57.7 7.7 

Group 1, 2 46.0 6.1 55.1 6.8 

Group 1, 2, 3 48.0 6.3 57.2 7.5 

Group 1, 2, 3, 4 48.3 6.3 59.5 7.4 

       

     Analysing the MSE using all decision parameters 

compared to the first three groups, first two groups and first 

group result in respectively; a 1% and 5% improvement and 

2% reduction for the TAS MSE (table 3). The same results are 

obtained for the T2F. 

      For this A320 flight case we conclude that after PCA we 

only apply the variables that are correlated with component 1 

and 2. This can be explained by the fact that the first two 

principal components for PCA cover around 90% of the 

correlation for the response variables. Furthermore the time 

for learning the model stays the same and the sigma values are 

lower (increased accuracy) for 500 flights compared to 250.  

V.B  Assess feasible ML techniques  

 

In this subsection the 10 feasible ML techniques will 

be assessed on their training time (speed), number of 

parameters and performance indicators. The most important 

performance parameter to be minimized by the predictions of 

the models is the Root MSE (RMSE). The RMSE will be 

calculated from 8.5NM to 0.5NM according to Equation 1; 

 

Equation 1 



 

 

Where  is the sum of the predicted T2F for 

each segment between 8.5NM and 0.5NM before runway. 

Table 4 shows the outcome for the 10 best feasible regression 

and neural network techniques. The technique with the highest 

grade receives 10 points whereby the lowest receives 1 point.  
 

Table 4. Assess feasible ML techniques on different performance indicators 

Technique  

Performance indicators  

Perform

ance 

(MSE) 

3p 

Computat

ional time 

2p 

Apply 

RreliefF and 

PCA 2p 

Implementa

tion clear 

decision 

process 2p  

Outcome 

Lasso 10 9 6 9 78 

MLP 5 7 10 8 65 

Elastic net 8 5 9 5 62 

Ridge 7 8 7 4 59 

Auto 

Enconder 
9 4 8 4 59 

Recurrent 

Neural 

Networks  

4 10 2 8 52 

Boltzmann 5 3 3 4 35 

Regularized 

regression 
2 2 2 2 18 

Stepwiseglm 2 2 2 2 18 

Fitglm 3 1 1 1 12 

 

From Table 4 we conclude that MLP and Lasso 

performs best. Both techniques will be combined to design a 

third feasible technique – ensemble. The third model refers as 

ensemble which is simply the average of the predictions of the 

Lasso and MLP. Combining these techniques result in a more 

robust and accurate ML model [21]. 

V.C  Relation number of hidden neurons versus MSE  

 

Figure 6 shows the MSE outcome versus the number of 

hidden Neurons for the best performed neural network 

technique. The MLP outcome has been analysed for 5000, 

10000 and 30000 flights in low wind [20] 

 
Figure 6. TAS MLP MSE vs number of Neurons 

 

It can be concluded by minimizing the validation MSE, the 

optimal amount of neurons lies between 20 and 23 for 

respectively 5000, 10000 and 30000 flights.  

V.D Ensemble performance for different number of flights  

 

The ML model is programmed in such a way that it is 

able to calculate the MSE for different types, wind conditions 

and for 2 different airports. Figure 7 shows for the ensemble 

ML technique and MBA the MSE and sigma performances as 

function of the total number of flights for low (0-5kts) and 

strong wind (20-25kts) conditions at Airport 1. 

 
Figure 7. Mean and sigma TAS vs amount of flights for low and strong wind 

at 1 NM from threshold. 

 

We conclude from Figure 7 that ensemble produces 

results comparable to MBA (differs between 1 and 2%) and 

that the standard deviation values are unaffected by sample 

size. Furthermore by analyzing the MSE, we need 60 flights to 

build a ML model with accurate results - for the other aircraft 

types stable MSE values are obtained after learning the model 

with a minimum of 70 flights. The ensemble model is also 

validated with an additional data set from Airport 2 and shows 

comparable results. 

Based on the results showed above, it can be 

concluded that no prediction should be made based on fewer 

than 60 flights per aircraft type and wind-band. Furthermore 

outliers like NaN and 0 values should be excluded from the 

sample data set for valid predictions. The dataset need to be 

carefully constructed and measured by analyzing the R value 

for a correct output of the model. 

VI. CASE STUDY RESULTS 

In this section we analyse two T2F case studies using 

the Lasso, MLP and Ensemble techniques. During the first 

case study Airport 1 and aircraft type B738 are analysed. 

Thereafter we analyse Airport 2 and aircraft type A320. The 

RMSE of the MBA is estimated using the mean of dataset 1 

and dataset 2 (IV.D). We compute the RMSE from 8.5NM to 

0.5NM according to equation 1 and accordingly, the RMSE 

from 4.5NM to 0.5NM which is given by equation 2: 

 

 Equation 2 

 

Where   is the sum of the predicted T2F for 

each segment between 4.5NM and 0.5NM before the runway. 



 

 

VI.A Airport 1and  B738 

 

For this airport and aircraft, the estimated errors of 

the MBA are 6.35 (RMSE 8.5-0.5NM) and 3.65 (RMSE 4.5-

0.5NM). Table 5 reports the errors of the different models. 

Clearly the headwind at each segment helps a lot diminishing 

the RMSE. Compared to the RMSE of the MBA, none of the 

model trained on dataset without headwind at each segment 

achieves the same performance. However, when we also take 

into account this feature our best model (Lasso) improves by 

19.7% over the MBA for the 8.5 to 0.5 NM T2F task and by 

19.5% for the 4.5 to 0.5NM task. Averaging the two models 

lead to a better performance without the headwind but with the 

headwind, if suffers the bad accuracy of the MLP. 
 

Table 5. Applying top 3 feasible techniques on first case study 

Model  Headwind Size RMSE 8.5-

0.5NM 

RMSE 4.5-

0.5NM 

Lasso 

Lasso 

Yes 

No 

(1321,331) 

(1388,347) 

5.0 

8.0 

2.9 

4.6 

MLP 

MLP 

Yes 

No 

(1321,331) 

(1388, 347) 

5.3 

8.0 

3.1 

4.7 

Ensemble 

Ensemble 

Yes 

No 

(1321,331) 

(1388, 347) 

5.1 

7.9 

3.0 

4.6 

 

The comparison is not exact but seems to be fair as 

we compute the RMSE on the same number of segments. Note 

also that the errors of our models are computed on unseen 

data. Finally, the bad accuracy of the MLP might be due to the 

lack of architecture optimization and/or the amount of data. 

VI.B Airport 2 and A320 

 

For this airport and aircraft, the estimated errors of 

the MBA is 4.82 (RMSE 8-0NM) and 3.65 (RMSE 4-0NM). 

The analysis is the same for this experiment: the headwind at 

each segment helps diminishing the RMSE. Compared to the 

RMSE of the MBA, none of the model trained on dataset 

without headwind at each segment achieves the same 

performance. When we also take into account the headwind, 

the MBA is still better than our best candidate by around 2.7% 

for the 8 to 0 NM T2F task and have the same performance for 

the 4 to 0 NM task (Table 6). However, the maximum error of 

our model is lower (on average, all headwind conditions) as it 

can be seen in Figure 8. 

 
Table 6. applying top 3 feasible techniques on second case study 

Model  Headwind Size RMSE 8.5-

0.5NM 

RMSE 4.5-

0.5NM 

Lasso 

Lasso 

Yes 

No 

(6753,1689) 

(7100,1776) 

4.8 

7.3 

3.8 

4.9 

MLP 

MLP 

Yes 

No 

(6753,1689) 

(7100,1776) 

4.9 

7.4 

3.8 

4.9 

Ensemble 

Ensemble 

Yes 

No 

(6753,1689) 

(7100,1776) 

4.8 

7.3 

3.8 

4.9 

VI.C Absolute error results 

 

The absolute T2F error for the MBA is computed 

versus the Ensemble method. The comparison is not exact but 

seems to be fair as we compute the RMSE on the same 

number of segments (Figure 8). The same has been done for 

the TAS. Note also that the errors of our models are computed 

on unseen data. 

 
Figure 8. Maximum absolute error per 0.5NM segment 

 

Furthermore the tool is able to calculate for the ML 

and MBA model for different flight cases (per aircraft type 

and Airport 1 and Airport 2), the MSE and standard deviation 

per aircraft type, wind-band and segment.  

VII. CONCLUSION  

This study assessed feasible ML techniques on their 

performances for predicting the TAS and T2F. It can be 

concluded that by using the results of PCA and RreliefF  

before learning result in a lower MSE, lower sigma and same 

time compared to the results obtained without using these 

techniques. 

Our experiments show that PCA and RreliefF can 

discover strong dependencies between attributes, while in 

domains without such dependencies it performs the same as 

the MSE. It is also robust and noise tolerant.  

Comparing the PCA and RreliefF MSE results using 

all the decision parameters compared to the first three groups, 

first two groups and first group result in respectively on 

average a 1% and 5% improvement and 2% reduction in MSE 

value for both T2F and TAS (Table 3).  

From our experimental results we can conclude that 

learning multitask regularized regression with RreliefF is 

promising especially in combination with PCA. RreliefF’s 

good performance and robustness indicate its appropriateness 

for feature selection. 

Ground speed and other information at 10NM 

together with headwind information seem to capture a lot of 

the variation of the T2F and TAS in the last 10NM. According 

to Figure 2, the ground speed at 10NM is the most important 

feature whereby the headwind vector scores number two. 

The multi task techniques Lasso and MLP turned out 

to be the best feasible and most accurate techniques for 

predicting the TAS and T2F from 8.5NM till 0.5NM and from 

4.5 till 0.5NM. Combining these techniques result in a more 

robust and accurate ML model which is simply the average of 

the predictions of the Lasso and MLP - advanced model 

averaging techniques can be used to enhance the accuracy.  

Stable MSE values are obtained when learning 

minimum 60 flights per aircraft type, wind band and distance 

from threshold. However when averaging the MSE per 0.5NM 

segment (10 till 0NM) we suggest a minimum of 400 flights 

per type and wind band.  

Furthermore outliers like NaN and 0 values will be 

excluded from the sample data set for analysing purposes. The 



 

 

dataset need to be carefully constructed and measured by 

analyzing the R value for a correct output of the model. 

The ML techniques are more accurate and more 

robust to changes and they improve in overall over the 

accuracy of the MBA. We have seen that the standard error 

decreases with larger sample sizes since the estimate of the 

population mean improves. 

It can be concluded that the optimal amount of 

neurons for MLP lies between 20 and 23 for respectively 

5000, 10000 and 30000 flights in low wind. For high wind 

values the amount stays the same. 

Table 5 and 6 shows that by learning a ML model 

with HW, the MSE is significantly lower than without HW for 

both RMSE from 8.5-0.5NM and from 4.5 till 0.5NM. 

Furthermore the 4.5 till 0.5NM segment has a lower RMSE 

compared to RMSE from 8.5 till 0.5NM. Finally, the 

maximum error of our ensemble model is lower compared to 

MBA. 

The results of this study are used as an input by 

SESAR and EUROCONTROL in the development of a new 

ATC tool to predict aircraft speed performance. The Leading 

Optimized Runway Delivery (LORD) tool supports ATCO’s 

to optimize the separation, the buffer and more efficiently and 

easily deal with the compression effect on the last part of the 

final approach. 

The data supporting the above conclusions was 

obtained from 2 different airports. To improve verification the 

results were compared with data from Airport 2 and show 

significant similarities. 

VIII. RECOMMENDATIONS 

At this stage the ML tool is able to apply feature 

selection techniques and ensemble methods for calculating the 

MSE, standard deviation and amount of measurements for 30 

aircraft types, wind-band and 2 different airports. For 

verification purposes more aircraft performance and weather 

data per airport should be considered where all airports count 

the same amount of flights during the same time period. 

Gathering more data and improving the modelization of the 

problem might pave the way to a model robust enough to be 

used in a tactical environment.  

Looking at the most important prediction variable – 

GS at 10NM – might give some operational issues. For 

predicting the T2F in real life an ATCO has to wait till the 

aircraft is at 10NM. The T2F for an ATCO is interesting to 

calculate the compression on final approach using for example 

the TBS concept. The dynamic TBS for the follower aircraft 

needs to be known before 10NM. Therefore it is suggested to 

predict the GS at 10NM of the previous aircraft (based on 

historical flight information of that time period). 

Learn new features such as sequential to visualize the 

main prediction variables that influence the T2F and TAS. 

Furthermore find a subspace that captures the variation of the 

data using PCA dimension reduction. 

Learn one task at a time in order to see if the multi-

task approach helps and validate that the multi-task approach 

lead to better results. Learn new ML techniques such as 

Support Vector Regression (SVR). 

In this study the prediction parameters are used from 

the radar and METAR sets. As a next step the Flight Data 

Recorder variables will be included for the prediction of the 

responses, causalities and risks.  

A more detailed analysis of the results is needed in 

order to emphasize the limits of the current approaches. 

Furthermore, an improved accuracy can be expected from fine 

tuning of the hyper parameters, network architecture 

optimization and multiple models averaging. 
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