

Delft University of Technology

A Unified Functional Safety EDA Framework for Accurate Diagnostic Coverage Estimation

Bhowmik, Abhiroop; Babukutty, Subin; Taouil, Mottaqiallah; Fieback, Moritz

DOI
10.1109/VLSI-SoC62099.2024.10767815
Publication date
2024
Document Version
Final published version
Published in
2024 IFIP/IEEE 32nd International Conference on Very Large Scale Integration, VLSI-SoC 2024

Citation (APA)
Bhowmik, A., Babukutty, S., Taouil, M., & Fieback, M. (2024). A Unified Functional Safety EDA Framework
for Accurate Diagnostic Coverage Estimation. In 2024 IFIP/IEEE 32nd International Conference on Very
Large Scale Integration, VLSI-SoC 2024 (IEEE/IFIP International Conference on VLSI and System-on-Chip,
VLSI-SoC). IEEE. https://doi.org/10.1109/VLSI-SoC62099.2024.10767815
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/VLSI-SoC62099.2024.10767815
https://doi.org/10.1109/VLSI-SoC62099.2024.10767815

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

A Unified Functional Safety EDA Framework for
Accurate Diagnostic Coverage Estimation

Abhiroop Bhowmik∗†, Subin Babukutty†, Mottaqiallah Taouil∗, Moritz Fieback∗
∗Delft University of Technology, Delft, The Netherlands, {a.bhowmik, m.taouil, m.c.r.fieback}@tudelft.nl

†NXP Semiconductors, Eindhoven, The Netherlands, {subin.babukutty 1}@nxp.com

Abstract—As electronics and software become more integrated
into automobiles, Functional Safety (FuSa) per ISO 26262
becomes important. It assesses the risk level of automotive
chips, reflected by the Automotive Safety Integrity Level (ASIL).
Fault injection simulation verifies the FuSa of a design by
injecting faults and classifying them based on whether safety
mechanisms detect them. Discrepancies in classification results
from FuSa EDA tools can lead to varying ASIL assignments
and misrepresent associated risk. Thus, we evaluate two FuSa
EDA tools, Cadence® XFS and Synopsys® VC Z01X, for RTL
designs. We find that the fault space covered by the tools is not
complete. Hence, we propose a novel verification methodology
combining both tools to achieve maximum fault space coverage.
We apply this approach to the AutoSoC benchmark suite and
achieve a more accurate Diagnostic Coverage (DC) of 97.79%,
over the baseline verification methodology of 98.36%, at the cost
of injecting 1.31 times more faults. Our work ensures that the
correct ASIL level is assigned through accurate DC estimation.

Keywords—Functional Safety, ISO 26262, Fault Injection Sim-
ulation, EDA, Verification methodology

I. INTRODUCTION

The automotive industry is experiencing a significant shift
towards advanced electronic and software integration due to
the increasing demand for self-driving and autonomous ve-
hicles [1]. As automotive systems become more complex, the
risk of malfunctions increases, necessitating robust safety mea-
sures. Functional Safety (FuSa), as defined by standards such
as ISO 26262 [2], addresses these concerns by incorporating
Safety Mechanisms (SM) to mitigate failures and hazards that
could be life-threatening. ISO 26262 requires exercising faults
on various design locations and analysis of safety mechanisms’
detection capabilities. The fault space in modern designs is
typically quite large and is associated with millions of design
components, making FuSa verification a complex and time-
consuming process [3]. Therefore, it becomes important to
develop verification methodologies capable of covering the
entire fault space while also achieving run-time efficiency.

Fault Injection (FI) simulation is the suggested ISO 26262
verification methodology for FuSa Verification and is widely
seen in different solutions [4–6]. Formal methods and ATPG
solutions are also seen in combination with FI simulation [5, 6]
to identify safe faults that are undetectable. Testbench-based
fault simulation [7, 8] involves utilizing existing functional
verification testbenches with additional modifications for man-
ual fault injection. However, this approach is not scalable to
larger, complex designs and requires higher manual effort.
Emulation-based techniques [9–11] can also be utilized for

fault analysis using dedicated emulators. However, they also
require additional hardware in the form of FPGAs to produce
accelerated results in comparison to simulation platforms.
Therefore, our work primarily focuses on simulation-based
platforms for fault injection.

Leading vendors such as Cadence, Synopsys, and Siemens
offer dedicated EDA tools for FI simulation. However, there
is a lack of research on why one tool should be favored
over another. It has been shown that there are inconsistencies
when identifying safe faults while using different technologies
like ATPG, formal and FI simulation [5, 6]. Hence, it is not
clear whether different FI simulation tools will generate the
same results. Further, as noted in [12], an important concern
regarding the accuracy of results arises in FuSa verification
at higher abstraction levels like RTL, contrasting with the
predominant focus of most verification solutions on gate-level
designs. Discovering bugs at the gate level would require
subsequent changes to the RTL, prompting a repetitive and
time-consuming process to achieve the desired coverage and
stability of the design.

Considering the lack of research, we compare two FuSa
EDA tools on RTL designs. We analyze the disparities in
results, their limitations, and propose a verification solution to
address the issues. The tools considered are: Xcelium™ Fault
Simulator (XFS) by Cadence® and VC Z01X by Synopsys®.
The main contributions of our work are:

• We compare the tools based on metrics such as cor-
rectness of results, fault space coverage, and simulation
run-time to evaluate their performance, capabilities, and
limitations.

• We propose a unified EDA framework combining the
strengths of the tools to develop a verification method-
ology that maximizes the possible fault space while
minimizing simulation time.

• We validate the proposed methodology on reference de-
signs and an industrial-grade automotive SoC.

The rest of the paper is organized as follows: Section II
discusses FI simulation along with FuSa concepts. Section III
presents an analysis of the strengths and weaknesses of the
FuSa EDA tools under consideration, highlighting the results
produced by the tools. Section IV describes the proposed FuSa
verification methodology. Section V discusses the results of the
proposed methodology on reference designs. Sections VI and
VII present discussion and conclusions.

979-8-3315-3967-2/24/$31.00 ©2024 IEEE

Industrial Contribution
20

24
 IF

IP
/I

EE
E

32
nd

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 V

er
y

La
rg

e
Sc

al
e

In
te

gr
at

io
n

(V
LS

I-S
oC

) |
 9

79
-8

-3
31

5-
39

67
-2

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

VL
SI

-S
O

C6
20

99
.2

02
4.

10
76

78
15

Authorized licensed use limited to: TU Delft Library. Downloaded on January 07,2025 at 10:53:29 UTC from IEEE Xplore. Restrictions apply.

TABLE I
TARGET VALUES FOR DC BASED ON ASIL LEVEL [2]

ASIL DC
B >90%
C >97%
D >99%

II. BACKGROUND

This section introduces key concepts related to FuSa ver-
ification as per ISO 26262 and outlines general verification
flows used with FI simulation tools.

A. ISO 26262 FuSa concepts

One of the first steps in the FuSa lifecycle involves per-
forming a Hazard Analysis and Risk Assessment (HARA) for
different automotive components. HARA is used to identify
and categorize hazards associated with components. Possible
hazards are categorized based on three parameters: severity of
a potential injury, exposure or how frequently an operational
situation arises, and controllability of whether a situation can
be managed to avoid injury. Based on these three parameters,
the Automotive Safety Integrity Level (ASIL) is defined for
each component. ASIL quantifies the risk associated with a
component and determines the level of risk reduction neces-
sary. ASIL is categorized into four levels: A, B, C, and D, with
D representing the highest ASIL, requiring the most significant
risk reduction measures.

Once ASILs are defined, safety goals are formulated fol-
lowed by the implementation of SMs. An SM is an additional
piece of logic designed to identify faulty behavior within the
circuit and subsequently detect or correct these faults. The
efficiency of these mechanisms is quantified by Diagnostic
Coverage (DC). DC denotes the percentage of faults detected
by SMs and is calculated based on fault simulation results.
Table I presents the target values for DC for different ASILs.

B. Fault Injection (FI) Simulation

As mentioned earlier, FI simulation is the suggested ISO
26262 methodology for FuSa verification. A typical FI simu-
lation flow consists of the following steps:

1) Fault targets (locations for fault injection) are defined
along with available fault model types (Stuck-At (SA),
transient faults)

2) A fault-free simulation is run to generate a reference
database. Users must also define functional and checker
strobes in the design. Functional strobes capture informa-
tion related to functional outputs that directly impact the
design output. Checker strobes are integral to SMs and
can be regarded as signals for fault detection or alarms.

3) Fault simulations are run by injecting faults from the
fault target list. Classification results are generated based
on differences in strobe values of good and faulty sim-
ulations. Classifications are made based on whether the
fault propagates to functional and/or checker strobes, as
illustrated in Table II.

TABLE II
FAULT CLASSIFICATIONS

Detected Functional Undetected Functional
Detected Checker Observed Diagnosed

(OD)
Not observed Diagnosed
(ND)

Undetected
Checker

Observed Not
Diagnosed (ON)

Not Observed Not Diag-
nosed (NN)

The DC can then be estimated by Equation 1. However,
EDA tools offer additional classifications beyond these fun-
damental ones, allowing for modifications to the equation
accordingly. For instance, there is also a class of Safe faults,
which do not affect functional and checker strobes, for exam-
ple, because they are unused or blocked by other signals, Not
Controllable (NC) faults, which are signals that do not toggle
during simulation) and Impossible x-state (IX) faults, which
are transient faults injected on signals at an unknown state.

Diagnostic Coverage (DC) =
OD+ND

OD+ND+ON
× 100% (1)

Our work determines differences in the classification results
of FI simulation EDA tools when applied to a design. To the
best of our knowledge, no previous studies have conducted a
comparative analysis on this aspect. If discrepancies in classi-
fications exist, they would result in varying DCs, consequently
leading to varying ASILs. This will, in turn, misrepresent the
associated risk of the component.

III. CAPABILITIES AND LIMITATIONS OF EXISTING FUSA
EDA TOOLS

This section discusses the results of applying the tool
flows from the two vendors on several reference designs.
We describe the experimental setup and comparison metrics.
We also analyze discrepancies in simulation results and their
causes.

A. Tool setup and reference designs

The tool flows are tested first on two simple RTL designs:
a full adder and 4-bit up counter. These examples serve
as simple cases to analyze FI simulation results and enable
manual inspection of classifications due to their small fault
space. However, since they lack SMs, we also examine a
FIFO design, provided by Synopsys® and illustrated in Figure
1. This design incorporates SMs like ECC for memories
and module duplication. The FIFO is implemented using a
dual port RAM, and encoded with ECC. A flags module is
utilized to determine the status of the FIFO. The Read/Write
Pointer modules are used to calculate the addresses for FIFO
read/write. These three modules are duplicated to provide
redundancy and generate errors in the event of faults.

We develop scripts to automate the tool flows, including
placeholders for fault injection targets, fault models, and
strobing options related to the different designs. Fault injection
targets refer to design points where we want to inject faults.
All locations are enabled for fault injection across the three
designs. Further, the fault models employed include SA and

979-8-3315-3967-2/24/$31.00 ©2024 IEEE

Industrial Contribution

Authorized licensed use limited to: TU Delft Library. Downloaded on January 07,2025 at 10:53:29 UTC from IEEE Xplore. Restrictions apply.

ECC
Encoder

Dual Port
RAM

ECC
Decoder

Flags

Flags SM

Write Pointer Read Pointer

Read Pointer SMWrite Pointer SM

DATA IN DATA OUT

ECC Error
Flag Error
Write Error
Read Error

FIFO

Fig. 1. FIFO with ECC and module duplication

transient faults. Regarding strobing points, in the adder design,
the sum and carry out signals are respectively designated as
functional and checker strobes. Similarly, for the counter, the
upper and lower 2 bits of the output work as functional and
checker strobes respectively. The selection of these strobing
points is arbitrary to verify fault classification results. How-
ever, in the case of the FIFO design, a more informed decision
is made by assigning the data out signal as a functional strobe,
and the error signals as checker strobes.

VC Z01X offers various options for instrumenting faults
across different location types, including PORT, PRIMITIVE,
FLOP, ARRAY, WIRE, and VARIABLE. XFS, on the other
hand, does not support all of these distinct options for fault
instrumentation. Consequently, the fault space of VC Z01X
is larger than that of XFS due to the possibility of a signal
instrumented as different location types. Therefore, for initial
comparisons, we make the same fault lists for both tools to
facilitate a fair comparison. Later, we extend the fault space
to include all possible options supported by the tools.

B. Comparison metrics
We consider the following metrics to compare the tools:

1) Correctness of results: The tool results must be consis-
tent and in line with expected fault classifications. There
are rules defined by tools regarding fault propagation
on different locations such as PORTS, FLOPS, WIRES
etc. Based on how faults propagate in a design, the tool
classification should match the expected result.

2) Fault space coverage: The tools should be able to cover
the entire SA and transient fault space to provide an
accurate estimation of DC.

3) Run-time: For large, complex designs, the fault space
increases drastically, requiring more FI simulation time.
We measure the fault simulation run-time for equal fault
lists.

The first priority when comparing results is to thoroughly
check their correctness. If the results are not correct, the tool
cannot be trusted. Further, the tools should be capable of cov-
ering the entire fault space without any coverage limitations.
This is important for obtaining an accurate DC metric. Finally,
run-time is important when there are thousands of faults to be
tested, as verification tests can take long simulation times. In
the next section, we compare the tools based on these metrics
and present the results.

TABLE III
CLASSIFICATION RESULTS FOR SA FAULTS ON ADDER, COUNTER AND

FIFO

Adder Counter FIFO

XFS VC
Z01X XFS VC

Z01X XFS VC
Z01X

ND 6 6 4 4 77 94
NN 0 0 0 0 98 1
OD 8 8 8 8 119 74
ON 2 2 8 8 84 112
Safe - - - - 44 88
NC - - - - - 53
Total 16 20 422

C. Analysis of classification results

1) Correctness of results: Table III illustrates the classi-
fication results of the two tools applied on the adder and
counter designs for SA faults. As seen from the table, the
fault classifications obtained from the tools are the same and
in line with the manual analysis done on the injected faults.
However, for SA faults instrumented on the ports of the FIFO
design, we observe multiple differences in fault classifications.

The first major difference lies in NN fault classification.
NN faults often require manual analysis to determine whether
they are actually safe or if they remain undetected due to
test limitations. The difference of 97 faults in this regard is
due to the classification of an additional 44 Safe and 53 NC
faults by VC Z01X. While both tools identify 44 common
Safe faults, VC further categorizes 97 additional faults, saving
users’ debugging time for NN fault classification.

The disparities in other fault classification categories (ON,
OD, and ND) arise primarily due to variations in how faults
in ports are modeled by the two tools. To better understand
this, let us consider the example of the FLAGS module, which
is duplicated as an SM to detect faults, as illustrated in
Figure 2. Any difference in the status signals arising from
the two modules is triggered as a FlagErr. According to fault
propagation rules of the two tools, faults injected at input ports
should propagate inwards towards lower hierarchies, whereas
output port faults should propagate outwards towards higher
hierarchies. However, when we inject a fault at an input port,
for example, FLAGS SM.Write, XFS propagates this fault
on the wire connecting the port. Thus, it affects the value
of FLAGS.Write as well. Technically, such behavior is not
incorrect, but the tool should be able to consider the effect of
both fault types. Otherwise, we would lose out on a particular
section of the fault space. The disparities in fault classifications
are essentially due to this difference in fault modelling.

The SA fault space is then further extended to include all
types of signals - intermediate nets, registers, variables, etc.
The total number of faults instrumented for XFS and VC
Z01X increased to 706 and 1408 respectively. This difference
is seen as a result of VC Z01X instrumenting signals as
multiple location types. For example, faults are injected at
FLAGS SM.Write as two types: PORT and WIRE. For the
latter, the classification is the same as the one obtained from
XFS, and is correct for the considered location type. XFS,

979-8-3315-3967-2/24/$31.00 ©2024 IEEE

Industrial Contribution

Authorized licensed use limited to: TU Delft Library. Downloaded on January 07,2025 at 10:53:29 UTC from IEEE Xplore. Restrictions apply.

FLAGS

FLAGS_SM

Reset
Clock
Read
Write

Reset
Clock
Read
Write

Empty
Half Full

Full

Empty
Half Full

Full

Reset
IClock

DoRead
DoWrite

Fault injected on input port here will also
propagate to FLAGS.Write for XFS

Fig. 2. Difference in fault modeling of input/output ports of tools

on the other hand, instruments a signal as a single type
only. The effect of a fault and its corresponding classification
can vary depending upon whether it is injected at the port
itself, or the wire connecting the port. This is not taken into
consideration by XFS. There are no further discrepancies in
fault classifications for the extended list.

The analysis is also extended to the transient space by
injecting faults on all locations within a range of timestamps.
There are no additional discrepancies seen in terms of fault
classifications. However, there are differences in how transient
faults are modeled by the two tools. Modifications are made
to fault injection commands to make similar fault lists. The
strobing mechanism also makes a difference in the final
result depending on whether the signals are strobed at every
timestamp or at clock edges. Such differences can also result
in different classifications for a given transient fault. Further,
the IX classification is observed for certain signals that remain
in an unknown state because the testbench fails to assign any
value after a certain timestamp. Upon further analysis, it is
seen that they can be reclassified as Detected. However, neither
tool offers a feature to manually update fault classifications,
presenting a limitation common to both.

2) Fault space coverage: The SA fault space for VC Z01X
is quite extensive and takes into account the effect of different
fault types. XFS does not instrument a signal as different types,
resulting in the omission of certain fault effects and thereby
not contributing to the final diagnostic coverage. However, VC
Z01X cannot inject transient faults on inputs and intermediate
wires, leaving a portion of the fault space uncovered. On the
other hand, XFS does not restrict transient fault placement on
inputs or nets.

3) Run-time: As shown in Figure 3, VC Z01X fares better
than XFS in terms of fault simulation run-time owing to
its concurrent engine support. Although XFS does provide
a concurrent flow, it exhibits limitations, including limited
compatibility with RTL designs, unsupported constructs, and
the incapability to handle VHDL and SystemVerilog designs.
Also, VC Z01X exhibits better scalability in terms of run-
time, particularly for larger and more complex designs, as it
can instrument thousands of faults in one shot.

Fig. 3. Run time comparisons of tools on Adder, Counter and FIFO

D. Comparison conclusions

Both tools do not cover the entirety of the fault space
required for FuSa verification. So, the first step in a verification
flow should be to address all faults required for FI simulation.
Second, if there is an overlap of fault space coverage between
the tools, the runtime of the tools needs to be taken into
consideration. Therefore, in the next section, we introduce a
novel methodology aimed at providing an extensive and robust
FuSa verification framework to address these issues.

IV. UNIFIED FUSA VERIFICATION FRAMEWORK

This section discusses the concept of the proposed verifica-
tion methodology along with its design and implementation.

A. Concept

One of the key objectives of our work is to offer a precise
evaluation of DC by covering all faults within the design space.
VC Z01X is extensive for SA faults, but this is not the case for
transient faults. On the other hand, XFS does not restrict fault
placement for transient space, but lacks options for location
types as compared to VC Z01X. Thus, the main aim of the
proposed verification methodology is to combine the strengths
of the tools to cover the entire fault space. If there is any
fault space overlap, VC Z01X is chosen owing to its faster
simulation capabilities. Further, both tools share a limitation
in their inability to update fault classifications of signals when
necessary. We take care of this aspect by introducing a feature
in the flow to update classifications with an external file.

B. Design and Implementation

Figure 4 provides an overview of the proposed verification
methodology. The different steps of the flow are outlined
below:

1) We develop automated VC Z01X scripts to concurrently
run stuck-at and transient fault campaigns in the first step.
All possible location types and fault targets are enabled
for SA faults. Further, all supported configurations for
transient faults are also enabled. Start and end cycles
for fault injection are specified based on design toggle
activity and strobe detection possibilities.

2) Signals not subjected to transient fault injection with VC
Z01X are identified from reports generated in the first
stage.

979-8-3315-3967-2/24/$31.00 ©2024 IEEE

Industrial Contribution

Authorized licensed use limited to: TU Delft Library. Downloaded on January 07,2025 at 10:53:29 UTC from IEEE Xplore. Restrictions apply.

START

SA faults for all location,
types with VC Z01X

Transient faults for all
location, types with VC Z01X

Extract Transient faults not
instrumented with VC Z01X

Automatic generation of fault
injection commands in TCL script

Fault simulation with generated
TCL script in XFS serial engine

Extract results from three reports to give merged results and
metrics

Update classifications to desired level and
update results and metrics

Generate final reports

END

External
classification
file as input

1

2

3

4

5

6

7

Fig. 4. Proposed verification methodology

3) Fault injection commands are automatically generated
using developed scripts in Tool Command Language
(TCL) format, considering parameters like clock period,
reset time, start cycle, end cycle, and hold time range.

4) Fault simulation is run with generated TCL script using
XFS serial engine.

5) The three reports generated are consolidated together to
provide individual results along with the merged results,
containing the updated DC in a final report.

6) A feature is introduced to manually update fault statuses.
An external classification file is used to specify signals
for status conversion along with source and destination
classifications. Fault classes are updated for specified
signals along with classification numbers for individual
reports and the final report.

7) Both original and modified merged reports are kept as
separate files to track differences before and after using
the update classification feature.

The proposed flow covers the maximum possible fault space
supported by the tools, improving the accuracy of the calcu-
lated DC. Additionally, using VC Z01X’s concurrent engine
ensures efficient simulations, minimizing runtime. There is
also the option of triggering multiple runs with the XFS serial
engine, which can help speed up the remainder of the fault
simulation, albeit at the cost of using multiple licenses. This
methodology is further validated in the next section.

V. VALIDATION

This section discusses the validation of the proposed
methodology on the discussed designs and an automotive SoC.

A. Experimental setup

The proposed methodology is validated on the three de-
signs previously discussed. Further, to evaluate the flow’s
effectiveness at a larger scale, we select the Automotive
SoC (AutoSoC) [13, 14], an open-source benchmark suite
designed for automotive SoC applications. AutoSoC consists
of configurable hardware IPs integrated into an SoC, offering
diverse SMs (Dual core lock step processor, bus parity, check-
point control, ECC on memories, Software Test Libraries) and
automotive software applications.

SMs are enabled in the design with the help of additional
defines (for example, +define+MEMECC for ECC on mem-
ories). The user can create a new configuration based on
a combination of SMs. Functional strobes, consistent across
all configurations, include signals for instruction and data
buses, as well as Special Purpose Register accesses to external
units like cache and Memory Management Unit. The checker
strobes vary depending on the SMs enabled. For instance,
if ECC is enabled, the ECC error detection from individual
modules is configured as checker strobes. Fault targets and
exclusions are user-dependent and adjustable to meet specific
module-level injection needs.

We identify potential areas of improvement based on an
initial analysis of results obtained from the baseline verifi-
cation flow (XFS) used in AutoSoC. Thus, we implement
ECC on all internal memories, along with the duplication of
fetch, control, and load-store unit module duplication with
temporal redundancy. This is the configuration on which the
proposed verification flow is validated. SA and transient faults
are enabled for fault simulation.

We introduce a new metric called “Total relative effort”,
which highlights the increase in the number of faults to be
injected as compared to the individual tools. This provides
an insight into the trade-offs required to get an accurate
estimation of DC.

B. Results

Table IV presents a comparison of the results of fault
simulation campaigns run with the individual tools and the
proposed verification flow. As seen from the results, the
proposed verification flow provides a more accurate DC esti-
mation between the bounds of individual tool coverages. Our
work provides a better representation of the fault space to be
actually considered for FuSa verification purposes using the
combination of two tools. Of course, we have to inject more
faults compared to individual tool flows, thereby signifying
more fault simulation effort. Nonetheless, for the largest de-
sign, AutoSoC, the overhead is 31% and 22% for XFS and VC
Z01X, respectively. This trade-off results in a more accurate
DC calculation which in turn leads to the correct assignment
of ASIL level. For example, the initial results obtained from
the proposed verification flow on the AutoSoC design results

979-8-3315-3967-2/24/$31.00 ©2024 IEEE

Industrial Contribution

Authorized licensed use limited to: TU Delft Library. Downloaded on January 07,2025 at 10:53:29 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
COMPARISON OF DC, NUMBER OF FAULTS AND TOTAL RELATIVE EFFORT

XFS VC
Z01X

Proposed
method-
ology

Total
rela-
tive
effort
(XFS)

Total
rela-
tive
effort
(VC
Z01X)

Adder DC 87.50% 82.14% 83.42%
Fault
count

32 44 62 1.94 1.4

Counter DC 60.00% 58.62% 59.70%
Fault
count

40 38 48 1.20 1.26

FIFO DC 68.96% 80.47% 70.36%
Fault
count

5797 5412 6982 1.20 1.29

AutoSoC DC 98.36% 96.12% 97.79%
Fault
count

676213 726097 885839 1.31 1.22

in a DC of 95.88% (ASIL B) as compared to the DC from
the baseline verification flow (98.36% specifying an ASIL C).
With the update classification feature of the flow, we are able
to elevate certain fault classifications, resulting in the final DC
of 97.79%. However, such varying classifications could have
dire implications on the ASIL, if the fault space is not correctly
evaluated. Our work addresses this concern by considering the
maximum possible fault space covered by the tools to provide
an accurate estimation of DC.

VI. DISCUSSION

We summarize the main takeaways from the results in the
following points:

1) Fault space coverage: In order to correctly determine
the ASIL of an automotive component, an accurate es-
timation of DC is important. We make sure that the FI
simulation space is completely covered by a combination
of the tools.

2) Simulation run-time: By basing our solution on VC
Z01X concurrent engine, we are able to minimize the
simulation overhead. Nonetheless, it is also possible to
base the framework on XFS.

3) Transient fault space complexity: The transient fault
space is quite extensive due to the possibility of multiple
injection and hold times during a simulation. Fault space
pruning needs to be considered to effectively choose
transient faults that will propagate to the strobing points,
thus preventing the simulation of safe faults.

4) Future work: Future methodologies could involve im-
plementing automated test generation for undetected
faults. This will reduce manual verification efforts further
and expedite fault simulation campaigns, particularly
at higher abstraction levels like RTL. Additionally, it
remains to be seen if other FuSa EDA tools, such as
Siemens’® Kaleidoscope™, can provide better results
based on the defined metrics.

VII. CONCLUSION

The increasing demand for safety-critical electronic com-
ponents in automobiles necessitates a thorough research of
FuSa EDA tools used for fault simulation purposes. In this
paper, we compare two FuSa EDA tools from Cadence®
and Synopsys® for FI simulation to identify discrepancies
in results and evaluate their effectiveness in covering the
fault space. Neither tool covers the fault space entirely, and
therefore, they do not contribute to an accurate DC estimation.
Therefore, we introduce a novel verification methodology that
combines the tools along with additional features and utilities.
This proposed flow is tested on an automotive SoC, achieving
a DC of 97.79%. Compared to the baseline verification flow,
which yields a DC of 98.36%, the methodology provides a
more comprehensive estimation by considering the maximum
possible fault space, with an increased fault simulation effort
of 1.31x. Our automated approach provides an end-to-end
verification framework to conduct FuSa verification and obtain
a highly accurate DC.

REFERENCES

[1] J. P. Trovao, “Trends in automotive electronics [automotive elec-
tronics],” IEEE Vehicular Technology Magazine, vol. 14, no. 4,
pp. 100–109, 2019.

[2] “ISO 26262 Road Vehicles - Functional Safety,” International Orga-
nization for Standardization, Dec. 2018.

[3] A. Cagri Bagbaba et al., “An automated formal-based approach for
reducing undetected faults in ISO 26262 hardware compliant designs,”
in 2021 IEEE International Test Conference (ITC), 2021, pp. 329–333.

[4] A. Nardi et al., “Functional safety methodologies for automo-
tive applications,” in 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2017, pp. 970–975.

[5] A. C. Bagbaba et al., “Combining fault analysis technologies for
iso26262 functional safety verification,” in 2019 IEEE 28th Asian
Test Symposium (ATS), 2019, pp. 129–1295.

[6] F. A. d. Silva et al., “Efficient methodology for ISO26262 functional
safety verification,” in 2019 IEEE 25th International Symposium on
On-Line Testing and Robust System Design (IOLTS), 2019, pp. 255–
256.

[7] K.-L. Lu et al., “FMEDA-based fault injection and data analysis in
compliance with ISO-26262,” in 2018 48th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks Workshops
(DSN-W), 2018, pp. 275–278.

[8] D. Alexandrescu et al., “EDA support for functional safety — how
static and dynamic failure analysis can improve productivity in the
assessment of functional safety,” in 2017 IEEE 23rd International
Symposium on On-Line Testing and Robust System Design (IOLTS),
2017, pp. 145–150.

[9] F. Ferlini et al., “Enabling ISO 26262 compliance with accelerated
diagnostic coverage assessment,” Electronics, vol. 9, no. 5, 2020.

[10] C. Lopez-Ongil et al., “Autonomous fault emulation: A new FPGA-
Based acceleration system for hardness evaluation,” IEEE Transac-
tions on Nuclear Science, vol. 54, no. 1, pp. 252–261, 2007.

[11] O. Ballan et al., “Verification of soft error detection mechanism
through fault injection on hardware emulation platform,” in 2010
International Conference on Dependable System and Networks Work-
shops (DSN-W), Jun, 2010.

[12] A. Sherer et al., “Ensuring functional safety compliance for ISO
26262,” in 2015 52nd ACM/EDAC/IEEE Design Automation Con-
ference (DAC), 2015, pp. 1–3.

[13] F. A. da Silva et al., “Special session: AutoSoC - a suite of open-
source automotive SoC benchmarks,” in 2020 IEEE 38th VLSI Test
Symposium (VTS), 2020, pp. 1–9.

[14] “Autosoc benchmark suite.” (2020), [Online]. Available: https://www.
autosoc.org/home. (accessed: Jan 13, 2023).

979-8-3315-3967-2/24/$31.00 ©2024 IEEE

Industrial Contribution

Authorized licensed use limited to: TU Delft Library. Downloaded on January 07,2025 at 10:53:29 UTC from IEEE Xplore. Restrictions apply.

