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Abstract

Motivation: Single-cell multi-omics assays simultaneously measure different molecular features from the same cell.
A key question is how to benefit from the complementary data available and perform cross-modal clustering of
cells.

Results: We propose Single-Cell Multi-omics Clustering (scMoC), an approach to identify cell clusters from data with
comeasurements of scRNA-seq and scATAC-seq from the same cell. We overcome the high sparsity of the scATAC-
seq data by using an imputation strategy that exploits the less-sparse scRNA-seq data available from the same cell.
Subsequently, scMoC identifies clusters of cells by merging clusterings derived from both data domains individual-
ly. We tested scMoC on datasets generated using different protocols with variable data sparsity levels. We show
that scMoC (i) is able to generate informative scATAC-seq data due to its RNA-guided imputation strategy and (ii)
results in integrated clusters based on both RNA and ATAC information that are biologically meaningful either from
the RNA or from the ATAC perspective.

Availability and implementation: The data used in this manuscript is publicly available, and we refer to the original
manuscript for their description and availability. For convience sci-CAR data is available at NCBI GEO under the ac-
cession number of GSE117089. SNARE-seq data is available at NCBI GEO under the accession number of
GSE126074. The 10X multiome data is available at the following link https://www.10xgenomics.com/resources/data-
sets/pbmc-from-a-healthy-donor-no-cell-sorting-3-k-1-standard-2-0-0.

Contact: m.j.t.reinders@tudelft.nl

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Recent developments in single-cell technologies have enabled
measuring different molecular features with increasing through-
put. However, due to the destructive nature of most protocols,
these molecular features can be measured from the same biologic-
al sample but from different cells. Recent advances have made it
possible to profile more than one ‘omic’ data from the same cell,
introducing single-cell multimodal omics (Zhu et al., 2020). Such
technology enables simultaneous measurement of gene expression
through single-cell transcriptome sequencing (scRNA-seq) and
chromatin accessibility through single-cell transposase-accessible
chromatin sequencing (scATAC-seq; Cao et al., 2018; Chen et al.,
2019b). It is anticipated that single-cell multimodal omics is a
promising technology that will improve our ability to dissect the
complex gene regulatory networks, cell lineages and trajectories
(Schier, 2020).

Several methods are proposed to integrate different omics
data from unpaired datasets, i.e. measured from different cells
but from the same biological sample. For example, Seurat V3
(Stuart et al., 2019) and LIGER (Welch et al., 2019) map the
common feature space into an aligned latent domain using
dimensionality reduction. Nevertheless, single-cell multimodal
omics brings up a different computational challenge by offering
paired data points for the same cell (Ma et al., 2020; Stuart and
Satija, 2019; Zhu et al., 2020).

One of the main challenges lies in the data sparsity, which is the
percentage of the observed zeros in the data. For example, the data
density (percentage of nonzeros in the data) in unimodal scRNA-seq
datasets usually ranges from 10% to 45% and from 1% to 10% in
unimodal scATAC-seq datasets (Chen et al., 2019a). However, in
multimodal omics measurements, these densities are considerably
lower (1–10% for the scRNA-seq data and 0.2–6% for scATAC-seq)
due to the prematurity of the protocols (Stuart and Satija, 2019).
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Although there is a higher chance to observe a zero measurement from
genes with low expression levels (Ntranos et al., 2019), higher data
sparsity can deteriorate cluster separation and, thus, make it hard to
capture a clear structure in the cellular composition (Baek and Lee,
2020; Luecken et al., 2020).

The cluster agreement between data from different modalities
represents another challenge. Although those measurements of dif-
ferent modalities are taken from the same cells, they reflect different
functionalities within a cell. Hence, when approached individually,
these measurements will not result in the same grouping of cells,
complicating the decision on a correct grouping as well as the estab-
lishment of cell types. So, this calls for algorithms that can exploit
the complementary view on the same cell (Stuart and Satija, 2019).

To tackle these challenges, we propose Single-Cell Multi-omics
Clustering (scMoC). scMoC is designed to cluster paired multi-
modal datasets that measure both single-cell transcriptomics
sequencing (scRNA-seq) and single-cell transposase accessibility
chromatin sequencing (scATAC-seq). The most important ingredi-
ent of scMoC is that it imputes the sparse scATAC-seq data using an
RNA-guided imputation process. A k-nn-based imputation imputes
ATAC peak counts for a specific cell from a set of similar cells, by
the average of the peak counts found in the set of similar cells. This
imputation scheme relies on the set of similar cells, which are hard
to find when data sparsity is high as that impacts the resemblance of
peak profiles. By recognizing that we have measured RNA counts
from the same cells and that the RNA data sparsity is much lower,
we propose to calculate cell similarities not in the ATAC domain,
but in the RNA domain. We show that the resulting RNA-guided
imputed ATAC data are better structured and provide informative
and complementary data in comparison to the analysis based on the
RNA data only.

2 Methods

2.1 Single-Cell Multi-omics Clustering
A general overview of scMoC is shown in Figure 1. Briefly, to over-
come the data sparsity in the scATAC-seq data, we impute the
scATAC-seq data. Here, we use the fact that the data are paired and
guide the scATAC-seq imputation by choosing similar cells based on
the RNA measurements of the cell. Next, we cluster the scRNA-seq
and the imputed scATAC-seq independently and merge the resulting
clusters. In the following sections, we describe the details of the
method. A more precise workflow can be found in Supplementary
Figure 1.

2.1.1 Preprocessing of the data

scRNA-seq data are preprocessed following the Seurat 3.0 pipeline
(Stuart et al., 2019). For the scRNA-seq data, first, a quality control
(QC) step is performed to remove noisy and almost empty cells.
These thresholds are database dependent (Section 2.2 and
Supplementary Table S1). scRNA-seq counts are normalized by
dividing each count by the total count for each cell and then scaling
up using a factor of 1e4, followed by a log xþ 1ð Þ transformation.
The top 6000 highly variable genes are selected, using the variance
stabilizing transform (vst) algorithm. Subsequently, the data are cen-
tered around zero and scaled by dividing each expression by the
standard deviation. Next, we projected the data on the top 20 prin-
cipal components for further processing. The choice of the parame-
ters is based on our empirical experience with the data or on the
commonly used practices and default parameters.

For the scATAC-seq data, we followed common pipeline steps
(Baek and Lee, 2020). First, we removed almost empty and noisy
cells (Dataset and Supplementary Table S1). Peak counts are nor-
malized by dividing each count by the total count for each cell and
then scaling up using a factor of 1e4. This is followed by an imput-
ation step (next section). After imputation, the scATAC-seq data are
renormalized and log xþ 1ð Þ transformed and then scaled. The
Latent Semantic Indexing (LSI) is used to reduce the dimensionality
of the scATAC-seq data as applied in previous studies (Cusanovich
et al., 2018; Chen et al., 2018). Also, we have experimented the ef-
fect of using LSI versus using PCA (Supplementary Fig. S2).
However, the difference is not major, it is in favor of LSI usage. So,
the top 20 LSI vectors are used for further processing.

2.1.2 Imputation of the scATAC-seq data

To deal with the sparsity of the scATAC-seq data, we resort to an
imputation strategy. Here, we exploit the fact that for the same cell
we have RNA and ATAC measurements. Hence, we propose to
guide the imputation of the scATAC-seq data using the scRNA-seq
data because cell-cell similarities can be calculated more robustly on
the scRNA-seq data as it suffers less from data sparsity. For this
RNA-guided imputation, a set of similar cells is chosen for each cell.
Hereto, we choose the top-k (k¼50 throughout this work) closest
cells based on the Euclidean distance between cells in the PCA pro-
jected space of the RNA measurements. scATAC-seq peak values
are then imputed by taking the average peak value across the k-near-
est neighboring cells.

For reference, we also considered a self-imputation in which the
k-nearest neighboring cells are selected on the basis of the scATAC-
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Fig. 1. Schematic overview of scMoC. scMoC clusters multimodal single-cell data based on scRNA-seq and scATAC-seq measurements from the same cell. It encompasses an

RNA-guided imputation strategy to leverage the higher data sparsity of the scRNA-seq data (with respect to the scATAC-seq data). scMoC builds on the idea that cell–cell sim-

ilarities can be better estimated from the RNA profiles and then used to define a neighborhood to impute from it the ATAC data, since these are comeasured from the same

cell. After the imputation, the two modalities are clustered individually and then combined into one clustering in which RNA-based clusters are being split if there is enough

evidence from the ATAC data
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seq data only, using the Euclidean distance of the unimputed
scATAC-seq data projected in the LSI space as a measurement of the
distance between cells. The imputation method afterwards remains
the same as mentioned in the RNA-guided imputation.

2.1.3 Unimodal clustering

Both, the scRNA-seq and (imputed) scATAC-seq data are clustered
separately using the Louvain algorithm (Blondel et al., 2008), imple-
mented in Seurat with the default graph resolution of 0.8. To build
the neighborhood graph, we used the k-nearest neighbor algorithm
(with k¼50) based on the Euclidean distance.

2.1.4 Combining RNA and ATAC clustering

To combine the scRNA-seq and (imputed) scATAC-seq based clus-
ters, we (again) use a strategy that trusts the scRNA-seq rich data
more than the scATAC-seq data. Hence, we choose only to split
RNA-based clusters when there is enough evidence from the
scATAC-seq data (and not the other way around). To do so, we con-
struct a contingency table representing the percentage of agreement
between both clustering. When an RNA cluster overlaps with more
than one ATAC cluster, scMoC splits the RNA cluster accordingly,
i.e. if the overlapping percentage of the ATAC cluster is >10% and
<90% of the RNA cluster, we accept that split. After splitting, the
nonassigned cells from the original RNA cluster are assigned to the
closest cluster based on the average distance to the cells within a
cluster using Euclidean distance in the RNA space only.

For reference, we also experimented to do the imputation with
an RNA cluster guided imputation; i.e. limiting the neighborhood
search to the cells in the matching RNA cluster. This method shows
a deteriorated performance, especially the Uniform Manifold
Approximation and Projection for dimension reduction (UMAP)
plots show a scattered and line-like structure. Results are shown in
Supplementary Figure S3.

2.2 Datasets
Three different datasets were used to test scMoC (summarized in
Table 1): mouse kidney data, measured using the sci-CAR protocol
(Cao et al. 2018); adult mouse cerebral cortex data, measured using
the SNARE-seq protocol (Chen et al. 2019b); and human peripheral
blood mononuclear cells (PBMC) data from 10X genomics
Multiome. These datasets were chosen because they range in their
data density; about 6-fold for the scRNA-seq data and more than
20-fold for the ATAC data. For the QC step, each dataset is filtered
differently based on the QC metric visualization tools provided in
Seurat package (Stuart et al. 2019). Supplementary Table S1 lists the
limits used in this step. Supplementary Table S2 indicates the num-
bers and percentages of cells passed the QC step for each dataset,
confirming that the QC steps did not result in a significant reduction
in the number of cells in both modalities.

2.3 Downstream analysis
The list of well-known marker genes for cell types is taken from
http://bio-bigdata.hrbmu.edu.cn/CellMarker/. Mean expression of
each marker is inspected for each cluster.

Differentially expressed (DE) genes for each cluster with respect
to all other clusters are done using the Wilcoxon rank-sum test with
Bonferroni for multiple test correction. To do so, we used

FindAllMarkers function from Seurat V3 with default parameters
except for the minimum percentage (min.pct) which is set to 0.25
and tested only positive markers (set only.pos to True). The list of
the DE genes is then intersected with the list of the well-known
marker genes to get the common genes between the two lists to iden-
tify the cell clusters.

For each cluster, an enrichment test for the known motifs is done
using FindMotif function from Signac package (Stuart et al., 2020)
using the default setup and parameters.

3 Results

3.1 scMoC reveals new cell clusters from the data
3.1.1 RNA-guided imputation improves ATAC data quality

We tested scMoC on the sci-CAR dataset. Figure 2A shows the
UMAP for the scRNA-seq part of the data only as well as the identi-
fied RNA-based clusters (Section 2), which shows that the clusters
of cells are clearly separable. This is not the case for the scATAC-seq
part of the data (Fig. 2B), also resulting in low cluster agreement

Table 1. Description of the datasets used in this study

sci-CAR SNARE-seq 10X genomics

Tissue Mouse kidney Mouse brain PBMC

No. of cells 11 296 10 309 3003

No. of genes (RNA) 49 584 33 160 21 547

No. of peaks (ATAC) 252 741 244 544 75 540

RNA data density 1.05% 2.87% 7.06%

ATAC data density 0.28% 1.01% 6.49%
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Fig. 2. scMoC shows different cluster in the scRNA-seq data based on the imputed
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indicating RNA-based clusters. (B) scATAC-seq data, colors indicating ATAC-

based clusters. (C) RNA-guided imputed scATAC-seq data, colors indicating clus-

ters within the imputed data. (D) Self-imputed scATAC-seq data, colors indicating
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scMoC clusters. (F) scRNA-seq data using the scMoC clusters. Clusters in both E

and F are named and colored identically according to scMoC clusters
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between the two clusterings (Supplementary Fig. S4). Probably that
is driven by the high sparsity in the scATAC-seq data (99.7% zeros,
see Table 1), largely influencing distances between cells in the
ATAC data. This can be resolved by imputing the ATAC data.
Hereto, we applied our proposed RNA-guided imputation (Section
2), which decreased the data sparsity to 89%. The resulting imputed
ATAC data indeed shows well-separated clusters (Fig. 2C), in add-
ition to better agreement with RNA-based clusters (Supplementary
Fig. S5). For comparison, we imputed the ATAC data with the self-
imputed scheme (using only the ATAC data, Section 2), which
slightly reduced the data sparsity (95.9%) but did not result in sep-
arable clusters (Fig. 2D), as well as a low cluster agreement with the
RNA-based clusters (Supplementary Fig. S6).

3.1.2 ATAC-based clusters refine RNA-based cluster

Next, we combined the RNA-guided imputed ATAC-based clusters
with the RNA-based clusters using scMoC (Section 2). Figure 2E
and F shows the resulting scMoC clusters overlaid on the UMAPs of
the RNA-guided imputed scATAC-seq data and scRNA-seq, re-
spectively. This shows that the original RNA-based clusters are split
based on the scATAC-seq data. For example, the red circles in
Figure 2F indicate splits of the RNA-based clustering due to the
available ATAC data of these same cells.

3.1.3 ATAC refined clusters provide complementary information

To ensure that scMoC clusters cannot be achieved just by refining
the clustering resolution, we compared the scMoC clusters to more
fine-grained clusterings of, both, the scRNA-seq and the imputed
scATAC-seq data. Supplementary Figure S7 shows how different
clusterings are related. For example, scMoC cluster 22 (scMoC_22)
overlaps with scRNA-seq cluster 27 (RNA_27) as well as the
scATAC-seq based cluster 33 (ATAC_33), indicating an agreement
of the grouping of cells when looking only at RNA or ATAC-based
information. Alternatively, scMoC cluster 8 (scMoC_8) overlaps
with scRNA-seq cluster 6 (RNA_6) and combines two scATAC-seq-
based clusters (ATAC_16, ATAC_28). This nicely shows that the
ATAC data provide additional information to split the RNA cluster.
Interestingly more complex combinations do occur. For example,
scMoC cluster 0 (scMoC_0) combines two scRNA-seq clusters
(RNA_2 and RNA_7) and (parts of) four scATAC-seq-based clus-
ters (ATAC_2, ATAC_3 ATAC_15 and ATAC_18). This complex
combination is further supported by the contingency table be-
tween the scRNA-seq and RNA-guided imputed scATAC-seq clus-
ters as there is no one-to-one agreement between these clusters
(Supplementary Fig. S8). To ensure that these clusters are not gen-
erated due to differences in the quality of assays, we overlayed the
QC matrices on the UMAP for both scRNA-seq and scATAC-seq
data in Supplementary Figure S9. The UMAPs show a homoge-
neous distribution for the cell qualities suggesting that clusters are
not related to the variability in cell qualities.

3.2 Biological interpretation for scMoC clusters
3.2.1 Genes differentiating scMoC clusters overlap with cell-type

marker genes

Figure 3 depicts a dot plot indicating the expression of marker
genes in each of the clusters (Section 2). For example, Cndp2,
Cyp2e1, Keg1, Slc13a3, Ugt2b38 are DE in cluster 1 and are
marker genes for Proximal tubule cells. Cluster 11 represents
Distal convoluted tubule cells as its DE genes overlap with the
marker genes: Abca13, Calb1, Sgms2, Slc12a3, Slc16a7, Trpm6,
Trpm7, Tsc22d2 and Wnk1. While cluster 15 is expressing
Collecting duct intercalated cell marker genes (e.g. Atp6v0d2,
Atp6v1c2, Car12, Insrr, Ralgapa2, Rcan2, Slc26a4, Slc4a9, Syn2,
Tmem117). The full list of marker genes and clusters can be
found in Supplementary Figure S10.

3.2.2 ATAC induced splits do show differences in marker genes

The dot plot shows that some clusters have almost the same list of
marker genes. For example, clusters 15 and 20. These two clusters

originate from one RNA-based cluster but are split based on the
scATAC-seq data. Interestingly, we do observe that there are differ-
ences in the level of the expressions of the demonstrated marker
genes between the two scMoC clusters (Fig. 3, color intensity of
dots). However, these differences were not sufficient to split in two
clusters based on the RNA data only. But, incorporating the
imputed ATAC data allows the differentiation between these two
subpopulations.

3.2.3 DE genes for ATAC induced splits

To study induced cluster splits more thoroughly, we calculated the
differential expression between split clusters. Figure 4 shows the vol-
cano plot of such a split resulting in scMoC clusters 3 and 4&9,
which originally were one RNA-only cluster (cluster 0, in Fig. 2A).
These clusters are categorized as Proximal tubule cell as derived
from the associated marker genes (Fig. 3). But Figure 4 shows that
the three scMoC clusters have a different distribution for the identi-
fied marker genes. Supplementary Figure S11 shows similar observa-
tions for other cluster splits. Supplementary Figure S12 shows the
distribution of the top DE genes on scMoC cluster.

3.2.4 ATAC peaks mark ATAC induced splits

To check the effect of scMoC clusters on the ATAC data, and to
find whether the scMoC clusters preserve cluster differences, we cal-
culated the differential accessible peaks for scMoC clusters 3 versus
scMoC clusters 4 and 9. Figure 4B shows the difference in the acces-
sibility of the peaks between these two clusters. We selected the top
upegulated and downregulated peaks between these clusters and
showed the difference in the distribution between these clusters cells
(Fig. 4C), which does confirm the differences between the clusters
based on the scATAC-seq data. Supplementary Figure S13 shows
the distribution of the top differentially accessible peaks on scMoC
clusters.

3.2.5 scMoC clusters capture known motifs

To assess the biological validity for scMoC clusters, we performed
an enrichment test for the clusters to search for the known motifs
(Section 2). Table 2 shows the top five motifs found when compar-
ing scMoC cluster 3 versus scMoC clusters 4&9. Four of the five
motifs link to transcription factors related to long-term complica-
tions of kidney or kidney development. The MAZ transcription
factor is expressed in all tissue except kidney (Bossone et al., 1992)
and may cause amyloid depositions in the kidney. Together con-
firming the role of these differential ATAC peaks to be related to
differences in kidney cell types. A list of the top 20 Motifs is in
Supplementary Figure S14.

3.3 Applying scMoC to different protocols
3.3.1 scMoC generalizes to other protocols suffering from data

sparsity

To test how well scMoC generalizes to a multimodal protocol suf-
fering from data sparsity, we applied it to SNARE-seq data that has
a data sparsity of �99%. The RNA-guided imputation decreased
the data sparsity to 77.6% (Fig. 5B and D). Combining the imputed
ATAC-only clustering with the RNA-only (Fig. 5A) clustering led to
new clusters (Fig. 5C and E) which were not observed either in the
RNA-only or the unimputed ATAC-only analysis.

3.3.2 Applying scMoC to data with matching sparsity levels

Next, we applied scMoC to 10X genomics multiome data for which
the scATAC-seq data have about the same sparsity as the scRNA-
seq data (both �93%). Figure 5F and G display the scRNA-seq and
scATAC-seq data, respectively, showing that the scATAC-seq data
(without imputation) has a similar clustering structure as that of the
scRNA-seq data (Supplementary Fig. S15). When imputing the
ATAC data using scMoC (Fig. 5H), the distribution of the cells is
clearly affected.
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3.3.3 Defining the benefiting limits of RNA-guided imputation in

scMoC

To find the sparsity limits at which the RNA-guided imputation can
help, we simulated the data sparsity by downsampling the 10X

genomics Multiome data. We downsampled from 5% of the actual

data and increased gradually to 100% using the scuttle R package

(McCarthy et al., 2017). To test how well the RNA-guided imput-

ation can help in retaining the data structure, we clustered both
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downsampled (RNA-guided imputed and unimputed) data at
each downsampling percentage using Louvain algorithm (Blondel
et al. 2008). We assessed the quality of the resulting clusters by

comparing the silhouette score of the RNA-guided imputed and
unimputed downsampled versions of the data (Fig. 6A). Our
results show that applying scMoC with imputation to the down-
sampled data consistently results in a higher silhouette score over
the whole range of data densities. Also, it can be noticed that the
downsampling only moderately and gradually affects the cluster-
ing. Note that the silhouette score of the unimputed data is much
lower across the whole range, which might be caused by the local
smoothing introduced by the imputation as well as that we find
less clusters in the imputed setting, both positively affecting the
silhouette score.

To further assess the RNA-guided imputation of scMoC, we
compared the clusters found in the imputed and unimputed down-
sampled ATAC data with the clusters found when using only the
RNA data (Fig. 6B). These results show that the RNA-guided imput-
ation helps increasing the cluster agreement between the two differ-
ent modalities.

To measure the cluster agreement between imputed and unim-
puted ATAC data, we calculated the adjusted R and index (ARI)
between the unimputed ATAC data without downsampling, as
common ground, and the RNA-guided imputed and unimputed
downsampled ATAC data. Supplementary Figure S16A shows
that as the data density increases the RNA-guided imputation
generated clusters become more alike the unimputed ATAC
which explains the difference in the Silhouette score.
Furthermore, we quantified the preservation of the local neigh-
borhood of cells. Hereto, we calculated the Jaccard index be-
tween the 50 nearest cells in the data without downsampling with
the neighborhood of that cell after downsampling (with and with-
out RNA-guided imputation). From Supplementary Figure S16B,
we can observe that the neighborhood is preserved better using
the RNA-guided imputation when the data density becomes lower
than 3%. Hence, the data sparsity affects more the local neigh-
borhood than the clustering and the RNA-guided imputation can
recuperate the loss of information when the data density becomes
below 2–3% in ATAC compared to 7% in RNA data. Although
this seems low, the sci-CAR and SNARE-seq data densities are
even much lower by which they are 0.28% and 1.01%, respect-
ively (see Table 1).

To further assess the ability of the RNA-guided imputation to re-
cover the ATAC signal in the downsampled data, we used the RNA-
guided imputed ATAC data without downsampling as the common
ground and calculated the ARI to both downsampled (RNA-guided
and unimputed) data. Supplementary Figure S17 shows that the im-
putation can recover most of the signal compared to the RNA-
guided imputed ATAC data and it performs better than the unim-
puted version. Also, it shows that the imputation method is consist-
ent on the different ranges of data sparsity.
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Table 2. List of the top 5 motifs found in enrichment test for scMoC

cluster 3 versus scMoC clusters 4&9

ID Motif UNIPROT Disease links/function (UNIPROT/

GeneCards)

MA0153.2
HNF1B 

P27889 Diabetes and renal disease with

small/single/horseshoe kidney,

diabetes mellitus with long-term

complications effecting kidney,

prostate cancer.a

MA0039.4
KLF4 

Q60793 Kidney development, pancreatic

MA0046.2
HNF1A 

P22361 Pancreatic islet cells, liver, diabetes

mellitus with long-term compli-

cations of kidneys

MA0733.1
EGR4 

Q9WUF2 Mitogenesis and differentiation

MA1522.1
MAZ 

P56671 Expressed in kidney, diabetes mel-

litus 2 with long-term effects on

kidney, amyloidosis depositing

in kidney

aThe function mentioned is derived from the similar motif in Homo-

sapiens.
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3.3.4 scMoC sensitivity and accuracy

To check the sensitivity of scMoC to the selection of the neighbor-
hood window size (k), we calculated the silhouette score across dif-
ferent settings ranging from 10 to 100 neighbors when applying on
the 10X-genomics dataset. Supplementary Figure S18 shows that
the Silhouette has a consistent performance for the RNA-guided im-
putation strategy across all tested values of neighborhood sizes, with
a small gain at around the 50 neighbors.

To assess the accuracy of the imputation scheme, we compared
the imputed downsampled version of the 10X-genomics data to the
unimputed original data. Supplementary Figure S19 shows the root
mean square error (RMSE) for different downsamplings. The RMSE
values are consistent over the range of downsampling percentages,
except when downsampling to 5% or 10% of the data.

4 Discussion

We have shown the ability of scMoC to cocluster data from
scRNA-seq and scATAC-seq measured from the same cell.
scMoC’s imputation strategy made it possible to exploit the
sparse scATAC-seq data. scMoC’s joint clustering scheme of
both data domains revealed biologically meaningful clusters that
are supported by the expression of known cell-type-specific
markers and splits induced by the ATAC data are related to
motifs for which transcription factors are related to the tissue of
consideration. An important contribution of scMoC is its imput-
ation strategy: it uses the less data-sparse modality (here, the
scRNA-seq data) to impute the data-sparse modality (here, the
scATAC-seq data). This leverages the fact that both modalities
are measured at the same cell and thus that the other data modal-
ity can be used to find similar cells. We stress that scMoC is built
upon the assumption that the local neighborhood of a cell as
derived from the less-sparse omic data is a better approximation
of the cell neighborhood than the neighborhood determined from
the sparser data. In other words, that cells in different omics
domains have a similar local neighborhood. This is, however,
also a limitation as different modalities are representing different
types of information and as such might result in different neigh-
borhoods, e.g. two subpopulations of cells might only differ in
the transcriptional profiles but not in their accessibility profiles.
Our experiments, however, show that the assumption of equal
neighborhoods is valuable.

We have shown that the usage of scMoC is beneficial when used
on different data densities However, missing the ground truth made
it hard to quantify the actual gain of using the imputation. The
scMoC imputation strategy can be extended to other multi-omics
protocols that suffer from sparsity. According to the philosophy of
our imputation strategy, one can search for the neighborhood in
less-sparse data and then impute the sparse data based on the
scMoC assumption of preserving the local neighborhood of the cell
in different modalities. Another limitation is the usage of the KNN
search algorithm that is scaling quadrable with the data, however,
an extension to scMoC is to use more efficient KNN search algo-
rithms (e.g. based on kd-trees).

With our work, we have highlighted that single-cell multimodal
measurements are a valuable tool to resolve heterogeneity at the
single-cell level, even if the data sparsity of one of the modalities is
high.
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