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Summary

The need and interest for sustainable energy solutions is rising. A new branch in this field is
high altitude wind power (HAWP). One novel concept is the Laddermill under development at
the ASSET institute (TU Delft). The Laddermill uses kites to reel a tether from a drum which
drives a generator. One of the key factors for success is the ability to control kites automatically.
Currently successful test have been conducted with leading edge inflatable or arc-shaped kites.
Arc-shaped kites are extensively used and developed in the field of kite surfing. Due to their high
traction and control capabilities arc-shaped kites are the choice for the Laddermill prototypes.

A literature review is conducted to obtain an overview of the current status of technology re-
garding arc-shaped kite modelling and control. For automatic control of kites several advanced
control techniques exist like model predictive control and nonlinear dynamic inversion. Different
kite models exist with specific applications. An example is the complex Multi-Body Kite model
designed in Msc. Adams. It is concluded that fast models are required for online implementation.

A formal methodology is developed to reduce the Multi-Body Arc-shaped Kite model to a Rigid
Body Arc-shaped Kite model. In more general terms: any flying object modelled with multi-bodies
can be reduced to a set of rigid body states.

The numerous states of the Multi-Body model designed in Adams are reduced to a set of states
describing the motion as a rigid body. For every body, flexible and rigid, holds that the inertial
linear and rotational acceleration follow Newton’s second law: the sum of external forces is equal to
the time derivative of the linear momentum and the sum of external moments is equal to the time
derivative of the angular momentum. On this principle the state reduction is applied and verified
for the Multi-Body model. The acceleration, velocity and displacement components are obtained
on the basis of conservation of linear momentum. The inertia tensor and angular momentum are
derived with a particle based method. It is proven that the particle based method makes up a
very good approximation to derive the rotational quantities.

The Rigid Body model is developed to describe the dynamic motion of an arc-shaped kite. It
is attempted to reduce the aerodynamics and structural deformation of the Multi-Body Kite
model to a parametric aerodynamic model and a quasi-static structural model. To accomplish the
reduction of the the Multi-Body Kite model to a Rigid Body Kite model it is required that the
aerodynamics and the structural properties can be formulated by a set of rigid body states. The
rigid body states are defined by the state reduction process. Due to the tight interaction between
the flight condition and kite shape the aerodynamic model and structural model are variant with
the flight condition.

The aerodynamic model is formulated on the basis of Taylor expansions and written in dimension-
less form. This results in a linear decomposition of the dependency of each state. The effective
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vi Summary

contribution of each aerodynamic state is given by respective dimensionless aerodynamic deriva-
tives. The aerodynamic derivatives are obtained with the parameter identification technique.
Flight test simulations are performed to identify the aerodynamic model.

The structural model is constituted on a quasi-static basis by formulating functions describing
the initial conditions of the flight test simulations. Functions are formulated for the inertia tensor
properties, mean wing chord, wing span, projected surface area and the tether attachment points.

Test simulations are performed to validate the Rigid Body model with respect to the Multi-Body
model. The validation proves that the proposed methodology for model reduction is a qualitative
manner for model reduction of the Multi-Body Kite model and for multi-body model reduction
of flying objects in general. It results in kite models almost ten times faster than real-time,
whereas simulating the Multi-Body Kite model in Adams takes more than ten times real-time.
The development of an arc-shaped kite model which is appropriate for controller design has come
to a detailed level. Control techniques which require fast and accurate models like model predictive
control and nonlinear dynamic inversion can be designed on the basis of this modelling approach.
For future work it is recommended to investigate on advanced model identification techniques and
to perform a structural modal analysis.
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Nomenclature

Latin Symbols

ak identifiable parameter [-]

b wing span m

c damping constant N·s/m
c mean wing chord m

cm dimensionless airfoil moment coefficient about local Y -axis [-]

cx dimensionless airfoil force coefficient along local X-axis [-]

cz dimensionless airfoil force coefficient along local Z-axis [-]

dta control variable along kite tip from LE to TE m

e vector of residuals [-]

et tether unit vector [-]

gG gravitational acceleration constant, 9.80665m/s2 m/s2

k spring constant N/m

lt tether length m

m mass kg

mc mass control unit kg

p roll rate in body-fixed reference frame rad/s

q pitch rate in body-fixed reference frame rad/s

r yaw rate in body-fixed reference frame rad/s

rt radius of tether cross section m

rta position of the tether attachment point w.r.t. cg in body axes m

t time s

u velocity in Xb-direction m/s

v velocity in Yb-direction m/s

w velocity in Zb-direction m/s

xk observation variable [-]
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x Nomenclature

xtaL/R control variable or tether attachment point along Xb-axis m

y dependent variable [-]

ytaL/R control variable or tether attachment point along Yb-axis m

ztaL/R control variable or tether attachment point along Zb-axis m

A inertial acceleration m/s2

B inertial angular momentum N·m·s
CL lift coefficient [-]

Cl dimensionless moment coefficient about Xb-axis [-]

Cm dimensionless moment coefficient about Yb-axis [-]

Cn dimensionless moment coefficient about Zb-axis [-]

CX dimensionless force coefficient along Xb-axis [-]

Cxy
dimensionless aerodynamic or stability derivative of force or moment ‘x’ w.r.t. vari-
able ‘y’ [-]

CY dimensionless force coefficient along Yb-axis [-]

CZ dimensionless force coefficient along Zb-axis [-]

D resultant aerodynamic drag force N

Dc dimensionless time [-]

Et Tether elasticity modulus N/m2

F operational mode function

F tether force along Xb-axis N

Fa aerodynamic (air-path) reference frame

Fb body-fixed reference frame

FCD control force Centroid Dummy N

FE normal earth-fixed reference frame

Fext sum of external forces N

Fk kinematic (flight-path) reference frame

FO vehicle carried normal earth reference frame

Fr vehicle reference frame

Ft tether-fixed reference frame

G tether force along Yb-axis N

H tether force along Zb-axis N

I mass matrix of inertia kg·m2

Ix mass moments of inertia about respective ‘x’-axis kg·m2

Jxy mass products of inertia relative to ‘x’ and ‘y’ axes kg·m2

Kx non-dimensional radius of gyration about respective ‘x’-axis [-]

Kxy non-dimensional product of inertia relative to ‘x’ and ‘y’ axes [-]

L aerodynamic moment about Xb-axis N·m
L resultant aerodynamic lift force N

M Mach number [-]

M aerodynamic moment about Yb-axis N·m
Mbridle resultant bridle moment N·m
Mext sum of external moments N·m
N normal distributed

N aerodynamic moment about Zb-axis N·m

Modelling the Dynamics of an Arc-shaped Kite for Control Law Design



Nomenclature xi

O origin of reference frame

P mechanical power N·m/s

P tether moment about Xb-axis N·m
Q tether moment about Yb-axis N·m
R resultant aerodynamic force N

R tether moment about Zb-axis N·m
Re Reynolds Number [-]

S projected surface area m2

T reference frame transformation matrix

Tt resultant tether force N

U input vector [-]

Va aerodynamic velocity m/s

VC crosswind velocity m/s

Vk kinematic velocity m/s

VL tether reel out speed m/s

VW wind speed m/s

V∞ undisturbed wind velocity m/s

W weight N

Wx wind velocity in XE direction m/s

Wy wind velocity in YE direction m/s

Wz wind velocity in ZE direction m/s

X aerodynamic force along Xb-axis N

X observation matrix of observation variables [-]

X state vector [-]

Xx x-axis of respective ‘x’-reference frame

Y output vector [-]

Y vector with dependent variables y [-]

Y aerodynamic force along Yb-axis N

Yx y-axis of respective ‘x’-reference frame

Z aerodynamic force along Zb-axis N

Zx z-axis of respective ‘x’-reference frame

Greek Symbols

α aerodynamic angle of attack rad

α0 angle of attack at t = 0 s rad

α0 angle of attack at zero lift rad

β aerodynamic side slip angle rad

γa aerodynamic pitch angle rad

γk kinematic pitch angle rad

δ angle of control input rad

δ tether elongation m

ε error variable
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xii Nomenclature

ζ body deformation parameter

λ eigenvalue [-]

θ body pitch angle w.r.t. earth rad

θt tether zenith angle rad

κ body pitch angle w.r.t. tether rad

κa aeroelastic deflection angle rad

µc dimensionless mass [-]

µa aerodynamic roll angle rad

µk kinematic roll angle rad

ξ body yaw angle w.r.t. tether rad

ρ air density kg/m3

σak standard deviation of parameter ak

τ body roll angle w.r.t. tether rad

φ body roll angle w.r.t. earth rad

χa aerodynamic yaw angle rad

χk kinematic yaw angle rad

ψ body yaw angle w.r.t. earth rad

ψt tether azimuth angle rad

Ω angular velocity rad/s

Subscripts

Subscripts define normally the kind of the respective parameter, for example the
small letter a in Va defines that it is the aerodynamic velocity. Or it defines the
point or object it refers to, for example cg in BE

cg defines that it is the inertial
angular momentum about the center of gravity.

Superscripts

Superscripts define normally the kind of reference frame the parameter is expressed
in, for example b in ẋbt defines that it is the tether velocity component inX-direction,
ẋt, expressed in the body-fixed reference frame.

Abbreviations

µAV Micro Aerial Vehicle

2D Two Dimensional

3D Three Dimensional

ac Aerodynamic center

ADAMS Automatic Dynamic Analysis of Mechanical Systems

am Adams function measure
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Nomenclature xiii

ASSET Aerospace for Sustainable Engineering and Technology

as Adams state variable

CD Centroid Dummy

CFD Computational Fluid Dynamics

cg Center of Gravity

DOF Degree of freedom

DUT Delft University of Technology

EKF Extended Kalman filter

ER Evolutionary Robotics

FEM Finite Element Method

FSI Fluid Structure Interaction

GF Adams General Force

GPS Global Positioning System

GSE Adams General State Equation

GUI Graphical User Interface

GUM General Use Macros

GWEC Global Wind Energy Council

HAWP High Altitude Wind Power

HPV Human Powered Vehicle

KPT Kiteplane Toolbox

L/D Lift over drag ratio

LE Leading edge

LQR Linear Quadratic Regulator

LTA Light Transport Aircraft

LTI Linear Time Invariant

mac Mean Aerodynamic Chord

MPC Model Predictive Control

NMPC Nonlinear Model Predictive Control

pb Particle based

PID Proportional, Integral, Derivative

rp Arbitrary reference point

ta Tether attachment point

TE Trailing edge

TKC Toolkit Creator

UAV Unmanned Aerial Vehicle

UDE User Defined Entity

UKF Unscented Kalman filter

WWEA World Wind Energy Association
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Chapter 1

Introduction

Kites have been around for many years and their fun factor is well known. The application of
kites to use them as a serious traction or pulling device is coming more and more under attention.
With the invention of the aircraft in the beginning of the 20th century, the research on kites has
moved to the background. To date, many research groups and companies have gained interest in
kites again to use them for pulling ships to reduce the fuel consumption or to extract wind energy
from higher altitudes. The latter is called high altitude wind power HAWP. Terink, reference [30],
made a summary about the history of kites. O’Gairbhith, reference [27], gives an overview of kite
research groups and companies and the current status of technology.

The conventional wind energy market has been growing with an average rate of about 30% the last
10 years. All wind turbines installed by the end of 2008 worldwide are generating 260TWh per
year, equalling only 1,5% of the global electricity consumption. In the World Wind Energy report
of 2008 of the World Wind Energy Association (WWEA), USA has taking over the top of the list
from Germany with an installed capacity of 25.2TW, whereas The Netherlands are ranked 12th
with an installed power of 2225MW. It is predicted by the WWEA that the installed capacity will
be 152TW by the end of the year 2009. Based on accelerated development and further improved
policies, a global capacity of more than 1,500TW is possible by the year 2020. Reference [40].

Basically the whole wind energy market makes use of horizontal axis wind turbines for the ex-
traction of wind energy. They are positioned relatively close to the ground, but the potential to
extract wind energy from higher altitudes is much larger. This is due to the fact that the wind
velocity increases with altitude and the wind power increases with increasing wind speed to the
third power. One of the reasons the wind speed is lower close to the surface is due to the earth’s
boundary layer effect. Therefore the potential of extracting wind energy at higher altitudes is
obvious and is one of the reasons why research to extracting wind energy from higher altitudes is
exciting and interesting.

The Laddermill is a novel concept to extract wind energy from higher altitudes (reference [25]).
The basic system uses one kite to pull a tether form a drum which drives a generator producing
electricity. Currently successful tests have been performed with a 20 kW system at the TU Delft
at ASSET. This system is controlled manually to fly the kite crosswind. Crosswind enhances the
tether force on the same principle a wind turbine rotates the blades in crosswind direction. To
automate the control of the kite and to let the kite fly a well-predefined path an automatic control
system is required.

The first part of the thesis forms the literature review and is focused on the current status of
technology with respect to kite modelling and control law design. Chapter 2 describes the definition
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2 Introduction

of the kite system, kite models and modelling approaches, control law design techniques and
several general aspects with respect to the Laddermill and kites. In the last section the central
thesis question is formulated. Chapter 2 is succeeded by a description of a multi-body model
designed in the multi-body dynamics application Msc. Adams. An introduction to Adams, the
kite simulation toolbox as well as the multi-body arc-shaped kite model is given. The first part
concludes by formulating the modelling approach.

In the second part the modelling approach and results are discussed in detail. Chapter 5 defines
reference frames, transformation matrices and kinematic relations with respect to a rigid body, a
straight tether and the wind velocity and acceleration. Chapter 6 describes the system equations
and modelling aspects of the new kite model based on a rigid body with a straight tether. Linear
time invariant models of a kite system are derived in chapter 7. The verification of the Rigid
Body model is conducted in chapter 8. Chapter 9 describes the state reduction methodology to
reduce the numerous states of the Multi-Body model to a set of rigid body states. The rigid body
states comprise the inertia tensor, angular momentum, translation and orientation quantities,
aerodynamic forces and moments. In chapter 10 flight test simulations are performed to identify
the aerodynamic models as a function of aerodynamic variables constructed from the rigid body
states. The validation of the model reduction is shown in chapter 11. Chapter 12 presents the
conclusions and recommendations.
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Chapter 2

The Laddermill, Kites & Modelling

The literature review commences with a formal overview of the current status of technology with
respect to kite modelling and controller design. First the Laddermill concept is explained followed
by the definition of a kite system.

2-1 The Laddermill

One novel concept of extracting wind energy from higher altitudes is the Laddermill. The Lad-
dermill is an idea by prof. dr. W.J. Ockels [25]. In the 90’s initial calculations were done too
study the feasibility of power production and costs. Around 2005 real research started on the
Laddermill concept, followed by publishing the first academic papers in 2006 [16]. In 2007 the first
Laddermill prototype was successfully tested [14]. By the end of 2010 a successful demonstration
is to be expected with a power capacity of 20 kW.

Already in 1980 Loyd, reference [19], investigated the potential of kite power. He proved that
flying kites crosswind would be far more efficient than flying a kite up and down. Even more
he showed that extracting wind energy by kites have far more potential than using conventional
wind turbines. Furthermore a kite system does not need a tower with a hub and turbine blades,
and is supposed to use less and cheaper materials than conventional wind turbines. This fact
suggests that the Laddermill can be more cost effective than the wind energy extraction systems
in operation today.

The Laddermill, figure 2-1, extracts wind energy by flying kites pulling a tether from a drum.
While pulling the kites are in ascending phase and produce high lift. In descending the phase
the kites produce less lift in order to be ably to reel-in the tether. The difference in lift between
the ascending and descending phase will result in a net power production. After the kites have
descent to a certain altitude the cycle repeats again.

As explained by Loyd, section 2-5, flying a kite in crosswind motion will increase the efficiency
drastically. Other research found out that flying figure of eights would be realistic and efficient in
order to achieve crosswind motion (references [39] and [9]). Based on this the ability to control a
kite flying an optimal path is evident.
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6 The Laddermill, Kites & Modelling

Crosswind speed

Wind speed

Generator

Drum

Reel-out speed

Figure 2-1: Laddermill concept with kite flying figure of eight

2-2 Arc-shaped kites

All kind of kites exist for many different purposes. The most valuable kites for use with the
Laddermill are the kites which have a high pulling force and are relatively easy to control. The
kites that have these properties are found in the world of kite surfing. Some athletes are able
to perform jumps of over 25m above the water, which illustrates the potential of these kites as
a traction device. These modern kites are arc-shaped formed and supported by an inflatable
structure. Therefore also called leading edge inflatable or LEI Kite.

Figure 2-2 shows a leading edge supported 25m2 LEI Kite. A LEI Kite consists of three basic
elements: a leading edge (LE) tube, strut tubes and a canopy. The LE and strut tubes give
structural stiffness and additionally the LE tube defines the shape of the nose of the wing. The
canopy completes the wing and is responsible for the wing loading.

Leading edge tube

Canopy

Strut tube

Figure 2-2: Leading edge supported 25m2 LEI Kite
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2-3 Kite system modelling 7

2-3 Kite system modelling

In this thesis a kite system is defined by the following components (see figure 2-3):

• A lifting surface

• A tether with bridle lines

• A control mechanism

• A ground station

Ground station

Tether

Bridle lines

Control mechanism

Lifting surface

Figure 2-3: Definition of Kite System

In literature several theories and ideas are proposed and studied for modelling the different compo-
nents of a kite system. This thesis will not go into detail about the dynamics of the ground station,
but assumes that it can give a predefined force on the tether or reeling velocity. An overview of the
current status of technology for modelling the other components is given in subsequent sections.

As is already discussed an arc-shaped kite is used for testing the Laddermill concept, it must
be noted that it is not unlikely that other kite shapes are used in future prototypes. One of
the possibilities that has to be brought under attention is the ‘Kiteplane’. The ‘Kiteplane’ is a
conceptual name for an inflatable kite, which can ascend like a kite and descend like an airplane.
The flight dynamics of the ‘Kiteplane’-concept are thoroughly discussed in Reference [30].

2-3-1 Arc-shaped kite models

This section discusses the possibilities for modelling a lifting surface in the form of an arc-shaped
traction kite. They can be categorized by point mass models, rigid body models, and high fidelity
models. Point mass models only have mass and no inertia properties. Rigid body models have
inertia properties, but are in general invariable. High-fidelity models have multiple point masses
or bodies, which are connected by joints and strings.

Modelling the Dynamics of an Arc-shaped Kite for Control Law Design



8 The Laddermill, Kites & Modelling

Point mass model

The most simple way to model a kite is using a point mass with a lift and drag force acting at a
point mass placed at the center of gravity. The model neglects the attitude dynamics and flexible
modes completely. Therefore Williams states, reference [39], that this model is not appropriate
for high fidelity simulation and extremely limited for control law design. But it could be used for
preliminary analysis of flight trajectories and rough performance analysis of kite systems. The
motion control is modelled by manipulating the angle of attack and roll angle thereby changing
the orientation of the lift and drag vector.

L

D
Va

m

Tt

W

Figure 2-4: Point mass kite model, Ref. [39]

Figure 2-4 shows the concept of the point mass kite model with the aerodynamic velocity Va, lift L,
drag D, resulting tether force Tt and weight of the point mass W . The lift force is always defined
perpendicular to the aerodynamic velocity vector. The last degree of freedom of the lift vector is
defined by the roll angle of the kite. The roll angle of the kite is treated as a speudocontrol. The
roll angle is a speudocontrol because there is no actual control mechanism model.

It must be noted that Va is defined as the aerodynamic velocity of the kite, which is the velocity
of the kite with respect to the air. This is a usual convention when discussing dynamical systems
instead of the term apparent wind speed which is defined as the velocity of the air with respect to
the object as found in literature about aerodynamics. Both are equal in magnitude, but opposite
in direction.

Rigid body models

The next step in modelling a kite is using a rigid body model. Aircraft can be regarded to a great
extend as a rigid body and are therefore mostly modelled by rigid body models. Evidently, by
modelling a kite as a rigid body aircraft models can be used as a reference. As aircraft models
have been developed for a long time profit can be made from this knowledge.

Figure 2-5 shows illustrative the principle of a rigid body model, where compared to the point
mass model mass moments and products of inertia I and a resulting aerodynamic moment Ma

have been added. A rigid body has six degrees of freedom resulting in a set of six equations of
motion, three for translation and three for rotation.

A 9-DOF model by Houska Houska, reference [12], proposes essentially a mixture of a point
mass model and a rigid body model by taking only the tether inertia properties into account.
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Figure 2-5: Rigid body kite model

According to Houska this can be allowed, because the main contribution to the mass comes from
the tethers and partially from the control mechanism. So the equations of motion are derived on
the basis that the kite inertia is much smaller than the combined tether and equivalent inertia of
the kite as a point mass (mL2 effect).

The model uses effective aerodynamic coefficients, which can be obtained by integrating over the
aerodynamic properties of all kite pieces. These coefficients are actually aerodynamic derivatives
as are often used for aerodynamic aircraft models (reference [24] and [23]).

Additionally, deformations can be superimposed by introducing the bending of the arc shape as
an additional state. For example the typical jellyfish oscillations of an arc-shaped traction kite
can be introduced by a second order differential equation. The jellyfish motion is characterized
by the motion of the kite tips moving periodically towards and away from each other.

Altogether, the three DOFs of the body, the three DOFs of the tether model, the two DOFs from
the control mechanism and one DOF for the jellyfish motion results in a 9-DOF kite system model.

A 6-DOF model by Williams Williams, reference [39], describes an approach for a rigid body
model. Compared to Houska’s model the description only focuses on the body with incorporation
of the inertia properties resulting in six degrees of freedom.

The influence of arc-shape of the kite on the aerodynamics is included by using an aerodynamic
analysis with the aid of the Tornado vortex-lattice method, reference [21]. With this software a
fast initial guess can be made of the aerodynamic properties including aerodynamic derivatives of
any rigid body consisting of 2D-airfoil shapes. The resulting aerodynamic derivatives are used to
describe the aerodynamic forces and moment functions.

The limitations of the point mass and rigid body model become apparent by realizing that a surf
kite does not produce the directional changes entirely through a roll, pitch or yaw manoeuver but
instead the kite is also structurally deformed. The deformations induce additional changes to the
direction of forces and moments as well as changing inertia properties.

Modelling the Dynamics of an Arc-shaped Kite for Control Law Design



10 The Laddermill, Kites & Modelling

Aerodynamic models based on aerodynamic derivatives Both Houska and Williams use aero-
dynamic derivatives to describe the aerodynamic forces. Therefore a short introduction is given
here to specify the principle. The approach results in functions which can be evaluated very fast
for dynamic computations and is therefore widely used for modelling the dynamics of aircraft.
The model structure shown by equations (2-1) are frequently used in aircraft literature.

The derivation of the functions is for example explained in Reference [24]. The derivation starts
by defining the aerodynamic states which the aerodynamic forces and moments depend on. This
is based on experience. The aerodynamic forces and moments are dependent on the entire history
of the states. To decrease the complexity Taylor expansions are made. It appears, at least for
aircraft, that most higher order terms have a negligible effect. The complete expression is made
dimensionless by dividing by the dynamic pressure times geometric properties. This results in the
dimensionless aerodynamic derivatives as show in equations (2-1) given by Cxy

where ‘x’ is the
force or moment and ‘y’ the aerodynamic state. More details and an initial analysis for kites are
given in chapter 6.

Equations (2-1) apply to nonlinear aerodynamic models in which the aerodynamic force and mo-
ment derivatives are variant and dependent on the dimensionless aerodynamic states by themselves
(Reference [7]). The forces and moments are expressed in the body-fixed reference frame and are
given by the dimensionless variables CX , CY , CZ , Cl, Cm and Cn respectively. The nonlinear
equations for aircraft are usually given by equations (2-1) where it is assumed that the symmetric
states have no influence on the asymmetric forces and moments and vice versa:

CX = CX0
+ CXα

· α+ CXα̇
· α̇c
Va

+ CXq
· qc
Va

+ CXδ
· δc

CY = CY0
+ CYβ

· β + CY
β̇
· β̇b
Va

+ CYp
· pb
2Va

+ CYr
· rb

2Va
+ CYδ

· δc

CZ = CZ0
+ CZα

· α+ CZα̇
· α̇c
Va

+ CZq
· qc
Va

+ CZδ
· δc

Cl = Cl0 + Clβ · β + Cl
β̇
· β̇b
Va

+ Clp · pb
2Va

+ Clr ·
rb

2Va
+ Clδ · δc

Cm = Cm0
+ Cmα

· α+ Cmα̇
· α̇c
Va

+ Cmq
· qc
Va

+ Cmδ
· δc

Cn = Cn0
+ Cnβ

· β + Cn
β̇
· β̇b
Va

+ Cnp
· pb
2Va

+ Cnr
· rb

2Va
+ Cnδ

· δc

(2-1)

where the forces and moments are a function of the attitude variables angle of attack α, side slip
angle β, body rotational rates p, q and r and some control input parameter δc.

Usually the following is assumed for CX0
and CZ0

:

CX0
= −CD0

CZ0
= −CLα

· α0

where α0 is the angle of attack at zero lift and where CD0
is the drag at zero angle of attack from

the general drag formula:

CD = CD0
+

(CLα
α)

2

πAe
(2-2)

Because inflatable arc-shaped kites are flexible it is likely that these equations are not valid for
kites. It is possible that additional states or coupled terms need to be included.

High fidelity models

A way to incorporate structural deformation to a higher extend is to use high fidelity models.
Examples exist in the form of models based on multiple plates, lumped parameters with point
masses, multi-body and/or combined with fluid structure interaction.
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Multi-plate model The third model described in reference [39] by Williams is the multi-plate
flexible model. More details are given in reference [34].

The multi-plate model tries to model some of the fundamental behaviour of real kites, which rigid
body kite models neglect. This is the continuously deformation of a kite to control inputs. The
consequence of the deformation is that the angle of attack and sideslip angle are difficult to define
and the center of gravity is not fixed.

The multi-plate model proposes to incorporate the deformations of the kite’s structure in a crude
way. The kite is divided into a series of flat plates spherically joined at the leading edge as shown
in figure 2-6.

Figure 2-6: Multi-plate kite model, Ref. [39]

One degree of freedom of the spherical joints is removed in the form of a constraint such that
the yaw angle of each plate with respect to the other plates is constant. The shape of the kite
is approximated by allowing the pitch and roll angles of each plate to be different. Steering is
accomplished by movable attachment points on the side of the kite. The equations of motion are
based on the method of Lagrange.

According to Williams [34] a disadvantage of this mathematical model is that it can be difficult
to establish an equilibrium configuration. A correct balance has to be found for a certain flight
condition between the lift and drag forces, gravity, tether tension and aerodynamic moment.
Furthermore the equations of motion are highly nonlinear and complicated making it hard to find
analytic solutions in general. Numerical solution techniques are used and symmetry is enforced
to find equilibrium positions. However, still a various combinations of attachment point positions
were found to give different equilibrium positions. To solve this problem an initial condition of
the attachment point must be chosen.

On one hand, this kite model consists of multiple bodies and therefore is able to incorporate the
deformation effects, it is likely that, on the other hand, it is limited in its validity due to the fact
that it only consists of plates. And to be able to get a resemblance of kite behaviour the relations
for the moments acting at the joints have to be tuned on a trial and error basis.

Lumped parameter model Another option to simulate the kite’s flexible structure due to a
steering input is a lumped parameter model in the form of discretization of the kite into a series
of point masses connected by viscoelastic springs.
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This method used by Furey, reference [10] and [11], can also be called a particle based simulation.
The motivation for using this model is to provide a framework which allows explicit consideration
of variation in the kite configuration in terms of kite shape, bridle setup and physical properties
such as relative rigidity and mass of the kite components.

The model consists of repeated rows of equidistant particles in a semicircular arc as shown in
figure 2-7, which illustrates the default setup of two rows of 5 particles.

Figure 2-7: Lumped Parameter based kite model, Ref. [10]

The light grey constraints reinforce the arc shape of the kite to simulate the jellyfish type flapping
motion and so effectively performing the same role as the inflatable ribs that maintain the shape
of LEI kites. The zigzag lines indicate the positions at which the canopy is sliced for aerodynamic
calculations. The lift and drag coefficients of each slice are calculated depending on the local angle
of attack. The resulting aerodynamic forces are than distributed and act at particle positions.

Multi-body dynamics model Amulti-body dynamics model uses building blocks like rigid bodies,
joints and strings. Degrees of freedom can be constrained by joints. Nonlinear relations can be
imposed on the joints and strings to model the complex load-deflection interaction.

Breukels, reference [2], constructed a kite model using the multi-body dynamics simulation pro-
gram Msc. Adams. Additionally, a Kite Simulation Toolbox is developed to automatize the
construction of kites and also tethers. Basically, any kind of kite, inflatable structure or tether
can be constructed and simulated. For more details refer to chapter 3.

Fluid structure interaction To take into account the interaction between the air and structure
fluid structure interaction FSI can be added to a multi-body model. The kite’s surface is discretized
into a mesh to apply finite element method FEM together with computational fluid dynamics CFD.
In this way it is possible to simulate aeroelastic phenomena. The downside is that this method is
heavily computation intensive as it requires iterative procedures to solve the equations at every
time step. There has been no attempt yet to model a kite system using FSI.

2-3-2 Tether modelling

Performing accurate calculations on tethers is not straight forward. Taking full account for aero-
dynamic drag and dynamic behaviour requires complex nonlinear models. Most models discretize
the tether in smaller elements.
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Static models

Reference [41] describes a tether model where the change in tether tension along the tether is
approximated by dividing the tether in small segments.

Figure 2-8 shows a tether with external forces acting on the tether ends, where Tk is the resultant
kite force and T0 the reaction force on the bottom end. The top end and bottom end forces are
not equal, which is the result of a distributed aerodynamic drag force along the tether and a
distributed force due to the tether mass. These distributed forces are also the cause for tether sag.

OX

Z

Tk

T0

VW

φ0

φk

tether

s

Figure 2-8: Tether with external forces and sag, Ref. [41]

Figure 2-9 shows a tether segment n with the tension forces Tn and Tn−1. The drag D and weight
W forces for the segment are displayed along their tangential and perpendicular component.
The resultant change in tension force between Tn and Tn−1 is a result of the tangential and
perpendicular components ∆Fnp and ∆Fnt , which are on their turn a result of a ∆D and ∆W
acting on segment n.

Tn−1

Tn

∆Fp

∆Ft

VW

φn−1

φn

∆s

∆Wp

∆Wt ∆Dp

∆Dt

Figure 2-9: Free Body Diagram of a tether segment, Ref. [41]

The drag forces on tether segment n in perpendicular direction and tangential direction are defined
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by:

∆Dn
p = Cdp

1

2
ρV 2

p dt∆sn (2-3)

∆Dn
t = Cdt

1

2
ρV 2

t dt∆sn (2-4)

where Cdp and Cdt are the perpendicular and tangential drag coefficient of the tether respectively,
ρ the air density, Vp and Vt the apparent wind speed in perpendicular and tangential direction
respectively, dt the tether diameter and ∆sn the length of tether segment. The apparent wind
speed is a combination of the wind speed VW and the speed of tether segment relative to the
ground.

And for the weight components can be written:

∆Wn
p = mn · gG · sinφn (2-5)

∆Wn
t = mn · gG · cosφn (2-6)

where mn is the weight of the tether segment n, gG the gravitational acceleration constant and
φn the angle with the vertical of segment n. The equations have to be evaluated from the top end
to the bottom end of the tether to determine the complete shape and total drag force.

In reality the wind speed and air density are a function of altitude. In reference [41] a linear relation
is assumed for the wind speed as well as the air density. Figure 2-10 shows the average wind speed
in The Netherlands as a function of altitude, where can be seen that a linear approximation is
justifiable till 1 km altitude.
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Figure 2-10: Average wind speed in The Netherlands as a function of altitude, Ref. [15]

Dynamic models

The equations (2-3) to (2-6) for the tether forces are on a static basis. One way of modelling
the dynamic behaviour of a tether is using a spring-damper model. This can be accomplished by
using a second order differential equation for the displacement of the tether along the tangential
s-direction:

mns̈n + ctṡn + ktsn = Fn (2-7)
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where mn is the mass of the particular tether segment, ct a linear damping coefficient for the
velocity and kt an elastic coefficient for the displacement.

An overview of existing tether models with increasing complexity is given below.

Straight line When tether sag is assumed small a straight line model can be regarded valid.
One option is to constrain the kite to move on a sphere, another option is to model the tether
force by the spring-damper equation (2-7) where variable spring and damper coefficients could be
considered for a nonlinear behaviour.

Point masses with inelastic or elastic links In reference [36] the dynamic modelling of a tether
kite system is depicted and develops a tether model based on the lumped mass approach. The
tether is modeled by dividing it into a series of point masses connected by inelastic links. Figure
2-11 shows the concept of the flexible tether model with point masses and links. Reference [38]
depicts that treating the tether as inelastic makes it more difficult to handle cases in which one
or both end bodies are constrained by forces that are a function of the tether tension.

Therefore, elastic links can be used by using Hook’s law with linear strain function for each element
and the strain can vary along the tether length. Another advantage of elastic elements is that
the equations of motion are decoupled. This means that the computation of the state derivatives
for integration is very efficient. In such a case it is simpler to determine the tension forces using
Hook’s law.

But the major drawback with elastic links, according to Williams [38], particularly with high stiff-
ness, is that small integration steps must be used in order to capture the high frequency vibrations.
There is a large difference between the longitudinal modes and the tether string/pendulum modes.
This can make elastic models problematic for control law design and trajectory optimization.

There are three different approaches which can generate the same physical model, but with different
implications in terms of complexity and numerical cost. The first is to use Lagrange’s equations
or Kane’s equations. The second approach is to derive the equations directly via Newton’s second
law in Cartesian coordinates. Constraint equations are added to the system and the dynamic and
constraint equations have to be solved simultaneously.

Multi-body dynamics tether An application that utilizes the second approach, using Newton’s
second law directly, is the multi-body dynamics simulation program Msc. Adams. Breukels,
reference [1], developed a toolbox to easily create multi-body tethers.

The model consists of a chain of discrete elements. The elements have mass and are infinitely
stiff. The stiffness is justified within the scope of this model, because the strain for high-tension
fibers like Dyneema1 and Aramid is small. The elements are hinged together using hook joints
allowing the elements to hinge in every direction, but are prevented from twisting. The frequency
of twisting is much higher than bending, so leaving the twisting motion out results in faster
simulations. Furthermore, the flight dynamics of the kite are almost independent of the twisting
of the tether.

The damping of the tether can be split into two forms: aerodynamic damping and material-based
damping. The aerodynamic damping is caused by the aerodynamic drag of the tether and the
material-based damping is the dissipation of kinetic energy through heat caused by the tether
fibers rubbing against each other. In the model the material-based damping is introduced by
torsion dampers. The aerodynamic drag is given by equations (2-3) and (2-4) (for the 2D case).

1used for the Laddermill
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Figure 2-11: Flexible tether modelled as point masses and links, Ref. [36]

2-3-3 Control mechanism

To control the kite system which uses an arc-shape lifting surface two control mechanism are
being researched at ASSET. The first option uses two carts on a rail like a rack and pinion system
positioned at the tips of the kite to move the tether attachment points. The second system is a
pod positioned at the bridle point of the tether and controls the kite with steering lines and two
power lines for depower.

This thesis focuses on modelling the cart and rail control system. Figure 2-12 shows the 2009
version on the left and a schematic representation on the right. Figure 2-13 shows the control
mechanism in operation during one of the Laddermill tests with a Foil Kite.

Figure 2-12: Cart and rail control mechanism to move the tether attachment points

The control mechanism regulates the pitch angle effectively changing the angle of attack by moving
the tow points symmetrically. Moving the attachment points asymmetrically results in a dominant
yaw rotation together with a roll motion allowing the kite to make turns. The system is operated
by remote control.
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Figure 2-13: Control mechanism in operation during Laddermill test with a Foil Kite

The specifications of the 2009 version are depicted as follows. The maximum pulling force along
the rail is 80N. For the system shown in figure 2-12, the weight of rack bar is 0.6 kg and the pinion
carts weigh 0.99 kg each. The rail is curved to follow the changing angle of the line when the angle
of attack changes.

The control mechanism works physically in the same way as the control of a surf kite by four lines.
The four lines of a surf kite are connected to the four corners at the tips. When no steering is
applied the tension is on the two most forward lines. Than when steering is applied the tension
force in the two back lines will increase. This of course increases the magnitude of the tension
force, but also changes the effective point of action of the tension force. The point of action will
move backwards. The rack and pinion system is designed to accomplish the same effect. This is
illustrated schematically in figures 2-14 and 2-15.

Figure 2-14 shows the left tip of a kite with the power and steering lines. On the left picture no
steering is applied and the force on the power is larger than the force in the steering line. On the
right picture steering is applied and the force in the power line has decreased and the force in the
steering line has increased.

Figure 2-15 shows the left tip of a kite with the control mechanism. The left picture shows again
the situation when no steering is applied and the right when steering is applied. The position of
the pinion cart is shifted towards the trailing edge when steering is applied. The forces as they
would result with four lines is shown with dashed arrows.

No steering Steering

Power line Steering line

Figure 2-14: Principle of steering a kite with four lines
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No steering Steering

Bridle line

Figure 2-15: Principle of steering a kite with the control mechanism

2-4 Kite control

Now that the kite system with control mechanism is defined the question rises which control
techniques are available for the basis for control law design. Secondly, other aspects are discussed,
namely the influence of the model, the control variables, state and wind estimation for the control
system.

2-4-1 Classical or linear control

Classical control is based on linear control, which uses the difference between the reference value
and the desired value to set the value of the controlled parameter. This value is obtained by apply-
ing a proportional action (P), integral action (I), derivative action (D) or usually a combination
of the three. Using all three results in a PID-controller.

Examples of PID-control to control a point mass kite model to fly along a predefined trajectory
are found in references [15] and [39]. Furthermore Williams in reference [34] uses a linear controller
to keep the multi-plate kite model at zenith position. Full state feedback is assumed to control
the position and the orientation.

2-4-2 Advanced control algorithms

When dealing with complex nonlinear systems linear controllers will not suffice and some advanced
control algorithm needs to be applied. Three advanced control algorithms are discussed in this
section: model predictive control, nonlinear dynamic inversion and neural networks.

Model predictive control

Model predictive control MPC is a form of advanced control algorithm where the future trajectory
of the system is predicted for a certain time interval. The controller tries to minimize the difference
of a predicted trajectory to the reference trajectory by adapting the control inputs for some certain
time interval in the future.

Williams in [37] uses a nonlinear predictive control algorithm for a point mass kite model. The
nonlinear feedback controller stabilizes the kite motion from a set of noisy measurements of the
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system. Predefined trajectories are uploaded to a virtual flight computer and the tracking con-
troller implements a nonlinear predictive control algorithm for minimizing the deviation of the
kite trajectory from the reference.

Also Diehl, reference [6], suggests to use nonlinear model predictive control NMPC for controlling
kites. Another way to describe NMPC is as a feedback control based on real-time trajectory
optimization of nonlinear process models. The robustness and excellent real-time performance of
the method is demonstrated in a numerical experiment by controlling an unstable system: a kite
that flies loops.

Only recently Fagiano, reference [8], presented his Phd. thesis on controlling kites using NMPC.
For complex systems determining the optimal solution on-line requires a high computation effort.
Therefore Fagiano suggests to use off-line computed solutions. Still a trade-off needs to be done
between accuracy and computation speed.

Nonlinear dynamic inversion

Nonlinear dynamic inversion NDI compensates for the nonlinear dynamics via inverse model equa-
tions in the control laws. The model output equations need to be differentiated once to arrive
at an analytical relation with the control inputs that can be inverted. The desired dynamics can
be obtained using a linear outer loop controller. A major drawback of NDI is poor robustness
to uncertainties in the dynamic model. Although, Looye in reference [18] discusses techniques to
counteract this disadvantage.

Neural networks

Neural networks or evolutionary robotics ER is a control algorithm that basically learns itself how
to control a system. Neural networks do not require deep knowledge about the dynamical system.
This can be an advantage if very complex systems need to be controlled. On the other hand this
can be a disadvantage if some dynamic phenomena are to be investigated and analyzed.

The use of neural networks on kite systems are shown by the study of Furey [10], where he
uses the technique for controlling the lumped parameter kite model. It is demonstrated that the
application of ER techniques to kite control produces controllers that fly the kite in stable figure
eight trajectories. Evolved robust neuro-controllers maintain these trajectories during significant
deviations of wind speed. These results suggest that it is worth pursuing ER for kite control
systems.

2-4-3 Other aspects

Before a certain control topology is chosen it is vital to known which states are available for control
feedback and how accurate these can be measured.

Influence of the model

In reference [17] a synthesis for real-time robust flexible structure controllers is shown. It is stated
there that in general the main problem with controllers for large flexible structures is caused by
the modelling error. The modelling error is caused due to two reasons:

• Truncating the original infinite dimensional model, i.e. the real world

• The lack of accurate knowledge of the parameters
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The first is a problem for every model, as every model will neglect some dynamic phenomena
because they are insignificant and therefore negligible. The difficulty in this is how to determine
which influences are acceptable to neglect and which are not. This depends entirely on the purpose
of the model. One aspect can be the difference in the frequency of the eigenmodes. For example
high frequency vibrations in the tether are not interesting if the low frequent pendulum motion
of a kite is be investigated. Basically, the phenomena on which research can be done depends on
the ability to model the required influences that cause those phenomena.

The second depends on the ability to set up the required tests for determining the parameters. Pa-
rameters can be obtained from wind tunnel tests [32], but might also be obtained from high fidelity
models. High fidelity models incorporate more dynamic phenomena and therefore estimations can
be made for parameters to be incorporated in lower fidelity models.

Both modelling errors will have an effect on controller design. When testing in practice the
optimized controller based on the model has to be tuned in order to perform well.

Control variables

Almost any control system needs input data about the current state of the system to be able
influence the state of the next time step. The amount of state variables needed to control the
system is preferred to be small to minimize complexity of the control system, but the amount of
state variables that can be measured is preferred to be large such that the control system can
utilize them all. The latter is called the observability of the system.

In contrast controllability is the possibility of forcing the system into a particular state using an
appropriate control signal. If a particular uncontrollable state is involved with an unstable eigen-
mode the complete system is uncontrollable. So the stability of the system is another important
aspect.

State and wind estimation

Even when the required states can be measured or reconstructed from other measurements, the
results are prone to errors and biases. The general term for minimizing the errors is called filtering.
Another property of filtering is the ability to adapt the frequency of the measurements to the
frequency suited for the controller.

Kalman filtering [35] is a well-known method to estimate the states of the kind and the wind speed
from measurements. A normal Kalman filter is suited for linear systems in which the probabilistic
distributions for the variables are Gaussian. For most nonlinear systems the extended Kalman
filter EKF is suitable, but due to the complexity of the kite system the EKF is difficult to apply,
according to Williams [35], and suggests to use another nonlinear filtering called the unscented
Kalman filter (UKF).

2-5 Crosswind power

As explained in section 2-1 more power can be generated by the Laddermill by flying a kite in
crosswind direction. This is explained as follows. Flying a kite in crosswind means that the
apparent wind speed on the kite is increased. A higher apparent wind speed gives more lift and if
there is more lift there will be more tension in the tether, which will increase the power generated
because the power is given by the force times the reel-out speed of the tether:

P = Tt · VL (2-8)

where Tt is the tether tension force, VL the reel-out speed of the tether and P the power generated.
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2-5-1 Crosswind motion

The principle and advantage for power generation of crosswind motion is first explained by Loyd,
reference [19].

Figure 2-16 shows the forces and velocities on a weightless kite in crosswind motion. Equilibrium
of forces is obtained by the lift L, the drag D and the tether tension Tt. The velocities shown
are the wind speed VW , the speed of the line VL, the crosswind velocity of the kite VC and the
aerodynamic velocity of the kite with respect to the air Va.
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Figure 2-16: Forces and velocities on a kite in crosswind motion

From the figure a relation can be obtained for the apparent wind speed:

Va = (VW − VL)

(

L

D

)

K

(2-9)

where (L/D)K is the lift over drag ratio of the kite.

The lift force can be defined as:

L = CL · 1
2
ρV 2

a S

= CL · 1
2
ρ (VW − VL)

2

(

L

D

)2

K

S (2-10)

where CL is the lift coefficient, ρ the air density and S the projected surface area of the kite.

From this can be seen that the lift increases with the square of the lift over drag ratio. Further
Loyd states that the power produced can be given as:

P = CL
1

2
ρV 3

WS · F (2-11)

where F is a function describing the operational mode of the kite. In this case the kite is flying in
crosswind motion, which is the most useful operational mode for the Laddermill. Loyd assumes
that the inclination angle with the earth’s surface is zero and that the kite is in perfect crosswind
motion. The equation F for crosswind motion is given by:

Fcrosswind =

(

L

D

)2

K

(

VL
VW

)(

1− VL
VW

)2

(2-12)
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The maximum value of this relation is:

Fmax =
4

27

(

L

D

)2

K

(2-13)

which occurs at,
VL/VW = 1/3

Fmax is again dependent on the square of the lift over drag ratio of the kite. So Loyd concluded
that the (L/D)K is the parameter to maximize to extract the most wind energy in crosswind
motion.

For a more thorough analysis about static crosswind power models refer to [26] and [30].

2-5-2 Crosswind power production

The most important aspect of the Laddermill is its power output. The analysis of Loyd in the
previous section is only a static analysis of crosswind motion. For the complete Laddermill op-
eration optimal trajectories as well as cycle strategies have to be determined to optimize power
generation. Williams in reference [38] states that optimal power generation is most sensitive to
the cycle time, the tether length and the wind speed. The dependency of these parameters on the
power generation are given below for a kite of 50 kg, 25m2 and a tether length of 2000m.

The dependence on the cycle time is illustrated in figure 2-17.
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Figure 2-17: Average power production as a function of cycle time, Ref. [38]

It appears that the average power production increases approximately logarithmic to the cycle
time with an asymptote of approximately 80 kW.

The key parameter for power production is proper selection of the tether length. The reason for this
is the combined reduction in weight and drag. The power output increases almost exponentially
as the tether length decreases, but the power output does not decrease significantly if the tether
is made longer than its nominal value of 2000m.

Finally, the power output for power production is roughly proportional to the cube of the wind
speed. This already resulted from the static analysis on crosswind motion, see equation (2-11).
The effect of variations in wind speed in the wind model shows that the wind speed at the kite’s
altitude plays a very significant role in the amount of power that can be generated by the system.
From this can be concluded that it is vital to include wind variations if accurate power output has
to be determined.
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2-6 Other considerations

Several aspects of a kite system and the Laddermill operation have been assessed. This section con-
siders some other subjects of kite systems regarding the wind, inflatable structures, aerodynamic
deformations, aeroelasticity, the flight regime and model validation

2-6-1 The wind

The wind is of course a very important aspect of a Laddermill system. The purpose of the
Laddermill is to harvest wind energy and wind fluctuations will have a profound role in the
dynamic behaviour of such a system. The concept of the wind window, the wind profile and
robustness related to wind variations are discussed.

Wind window

The wind window of a kite system indicates the domain for the kite to fly in. The boundaries of
the wind window are given by the azimuth angle ranging from -90 deg to +90 deg and the zenith
angle ranging from 0deg to 90 deg. Figure 2-18 illustrates the wind window to show where the
most powerful regions are. More powerful is indicated by + or ++ and less powerful by -. The
cause of the higher potential in the middle is due to the fact that the kite flies in almost pure
crosswind motion.
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−
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−

−

−−

+

+

+

+

+

++

++ ++

+++

+90deg zenith

0 deg zenith

+90 deg azimuth-90 deg azimuth

Wind

Figure 2-18: The wind window of a kite system, Ref. [9]

This knowledge could be advantageous in the control procedure between the reeling out and reeling
in phase. In the reeling out phase as much power as possible should be extracted and by reeling
in as less power as possible should be used. By reeling out in the ++ area and reeling in on the
edge of window should maximize the power production of the Laddermill.

Another issue could be that the most powerful region would result in too high tension on system.
In this case the most powerful region should be avoided.

Wind profile

The wind profile is the relation between the average wind speed as a function of altitude. The
average wind speed in The Netherlands was already shown in figure 2-10.

The most important aspect of the wind profile is the ground effect. The ground effect is caused
by the boundary layer of the wind at the ground. Therefore the wind speed is normally lower at
lower altitudes than at higher altitudes. The wind direction at higher altitudes is not generally
defined as even wind speed reversals can occur between different altitudes.
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Wind variations

Unfortunately the wind speed is not constant but fluctuates continuously with short period of time
intervals. The behaviour of the wind is important as the wind speed greatly affects the power
produced by a kite system, reference [38].

It following suggests that in normal operation the wind variation has little effect on the apparent
wind speed and the angle of attack of the kite. This can seen as follows. It is known from section
2-5 that the most power is extracted by flying the kite in crosswind motion. In crosswind motion
the aerodynamic velocity Va of the kite is determined by the wind speed component VW and the
crosswind velocity component VC . If the wind speed variation is defined by ∆VW the following
can be stated:

|V A +∆V A| =
√

(VW +∆VW i)2 + (VC +∆VW j)2 (2-14)

α+∆α = arctan

(

VW +∆VW i

VC +∆VW j

)

(2-15)

In normal operation the wind speed variation is about 10-20% of the wind speed and the wind
speed itself is a couple times smaller than the crosswind velocity. Looking at equation (2-14) the
relative change in apparent wind speed is small with wind speed variations as well as the relative
change in angle of attack by investigating equation (2-15). This is an advantage for controller
design because less wind speed variation means that the system is more easy to control.

Wind modelling

Wind modelling is a difficult matter as it involves the understanding of stochastic processes as
wind speed variations are highly random. For testing a controller wind models are important in
order to find out the limitations of the controller. For example, for testing wind turbine controllers
wind speed variation tests with different profiles are performed in order to test the response and
robustness of the controller to these wind speed variations. These tests comprise gradual wind
speed increase, step wise wind speed increase and inclusion of gust and turbulence models.

2-6-2 Inflatable structures

Modern arc-shaped kites are constructed with inflatable structures, for example the LEI surf kite.
Several theories and models exist to simulate their bending behaviour. Two methods are depicted:
using finite elements and multiple bodies

Finite element

Reference [33] describes the theory behind inflatable beams. First two kinds of inflatable pro-
totypes are discussed: flat panels and tubes. Experiments show that their behaviour is a linear
combination of yarn and beam shapes. Also their deformation pattern depends mainly on the
inflation pressure and applied load. The usual theory of collapse analysis is then applied to the
computation of wrinkling loads.

Multi-body

Breukels in reference [2] uses a multi-body dynamics approach to simulate inflatable beams. Beams
are approximated by rigid elements, connected by spherical joints and 3-dimensional torque vec-
tors. The stiffness of the torque vector determines the bending behaviour of the beam. The
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stiffness possesses a nonlinear relationship with the deflection. It is dependent on internal pres-
sure and beam radius. By varying the stiffness of the torsion springs, the nonlinear behavior of a
complete inflatable structure can be simulated. Functions for the stiffness of the torsion springs
are obtained by matching to existing measured data. In this way a variety of complex structures
can be simulated.

Figure 2-19 shows the resulting bending moment with respect to the beam deflection. The figure
illustrates that there is a linear part followed by a curved part where wrinkling is present and
finally the beam collapses and is unable to give a sufficient bending moment.
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Figure 2-19: Load-deflection curve of inflatable beams, Ref. [2]

The wrinkled part poses a challenge on simulating the structure of inflatable beams. The wrinkled
state is characterized by nonlinearities and local effects which influence the behaviour of the entire
structure.

The advantage of a multi-body dynamics approach is that it is more suitable for dynamic simula-
tions compared to the finite element method. The finite element method will be time consuming,
where detailed knowledge about the places where wrinkles occur are necessary for mesh generation.

2-6-3 Aeroelasticity

Aeroelasticity is defined as the interaction between the aerodynamic forces and the structural forces
resulting in local dynamic behaviour of the structure. Aeroelasticity can have non-negligible effect
on the overall dynamic behaviour of a system. Flexible structures like kites are more prone to
aeroelastic phenomena.

Aeroelastic phenomena arise when structural deformations induce additional aerodynamic forces.
These additional aerodynamic forces may produce additional structural deformations which induce
still greater aerodynamic forces. One example is the jellyfish motion with arc-shaped kites. These
interactions have the potential for instability of the structure that will result in a catastrophic
failure. The onset of this phenomenon occurs when the change in aerodynamic loads comes close
to the natural eigenfrequency of the structure. Elastic deformation of wings due to flight loads
can have a profound influence on the performance, handling qualities, flight stability, structural
load distribution, and control effectiveness/reversal phenomena [28].
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2-6-4 Flight regime and airfoil L/D

Figure 2-20 shows an overview of the flight regimes of aerial vehicles with respect to Mach num-
ber M and Reynolds number Re. Kites are placed between the domains of the birds and the
hanggliders & ultralights, which is estimated for velocities between 5 and 20m/s and for mean
aerodynamic chord (mac) lengths between 0.5 and 3.0m using air conditions at sea-level.

kites

general aviation

large aircraft

hanggliders &

ultralights

HPVs

birds
insects &

µAVS

LTAs

UAVs

Re

M

104 105 106 107 108 109

10−3

10−2

10−1

100

Figure 2-20: Flight Regimes of different vehicles by Mach and Reynolds number, Ref. [29]

Additionally, figure 2-21 shows the relation between the maximum L/D and Reynolds number
of rough and smooth airfoils. For good performance the L/D ratio is preferred to be high. The
airfoil of a kite can be regarded more rough than smooth due to the material and flexibility of
the foil. From the figure can be concluded that a kite does not suffer from the L/D drop in the
‘Low Re Transitional Range’, because this does not apply to rough airfoils and the Re number of
kites is just above this region. Another remark can be made with respect to the absolute values
of the L/D. Figure 2-21 shows that the L/D of airfoils are quite high with respect to the L/D
of a complete vehicle. Because regular aircraft have a L/D of approximately 10 to 15 and the
(L/D)max of arc-shaped kites range from 5 to 8 for very efficient ones.

2-7 Conclusions

An overview of different aspects related to the Laddermill project, arc-shaped kite modelling and
kite control is given in this chapter. The breakdown in figure 2-22 shows the various aspects that
are involved in arc-shaped kite system design and arc-shaped kite modelling. The literature review
forms the basis for the central thesis question and thesis goal.

Arc-shaped traction kites are the only type of kites which have been used extensively for testing
the Laddermill concept. Several approaches for modelling an arc-shaped kite are explored. The
most extensive model available is a multi-body kite model designed with the simulation software
Msc. Adams. The model uses a variety of bodies, strings and joints and the structural bending
and internal moment relations as well as the aerodynamics are based on measurements, empirical
data and CFD calculations. The downside of the model is that it is quite computation intensive
and seems therefore not very applicable for controller design. Furthermore the model is not
quite transparent as it is hard to find relations between the model parameters and the resulting
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Figure 2-21: (L/D)max versus Reynolds number for airfoils, Ref. [13]
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Figure 2-22: Breakdown of arc-shaped kite system

dynamics. Rigid body models are more transparent and faster to solve. In these models the
aerodynamic model is based on aerodynamic derivatives and variables. But in general kites are
not rigid and no aerodynamic models are available. The dynamics will change due to structural
deformations.

Different control techniques are discussed like PID, MPC, NDI and neural networks. The first
three require knowledge about the system equations for tuning the controller to obtain the required
dynamics. Neural networks do not require accurate models and treat the model more like a black
box. Detailed physical phenomena are harder to analyze. Referring to the references of Williams
and Furey it is likely that PID is not sufficient to control a kite system. MPC and NDI are the
favourable options.

For higher efficiency of the system a kite can be flown in crosswind motion. A kite can be
flown loops or figures of eight to achieve crosswind motion. But this is not trivial. For complete
Laddermill cycles the most important parameters determining the efficiency of power generation
are the cycle time, the tether length and off course the wind speed. When control laws are designed
the efficiency can be increased with trajectory optimization. This is a mathematical challenge due
to changing wind conditions and kite dynamics. Trajectory optimization requires a fast model for
dynamic calculations.

Modelling tethers can be a challenge, because of the complex dynamic behaviour. Especially longer
tethers, due to tether drag and sag and delayed responses. Several approaches are presented to
model a tether using discrete elements: point masses connected by links and multi-bodies. It is
often assumed that short tethers behave as a straight line which requires only a simple spring-
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damper model.

The thesis central question is formed on the following conclusions. For real-time automatic control,
on-line implementation and flight-path optimization a fast model is required. A physics based
model is preferred for more detailed analysis. The multi-body kite model designed in Adams is
the most advanced model, but is not fast enough for control design. In contras, rigid body models
of aircraft have proven to be fast, accurate and useful for control law design. The aerodynamic
model structures are often formed by Taylor series to obtain parameter based functions. A similar
approach is imaginable for kites (reference [12] and [39]). The central question of this thesis is
stated as:

‘Is it possible to simulate the overall dynamic behaviour of a flexible arc-shaped kite model with a
rigid body model?’

The reference for the rigid body model will be the flexible multi-body arc-shaped kite model
designed in the application Msc. Adams. Therefore chapter 3 is devoted to give an introduction
to Adams and the multi-body kite model.
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Chapter 3

ADAMS and Multi-Body Kite Model
Overview

Msc. Adams [22] is a multi-body dynamics simulation application. Many dynamical systems can
be modelled in Adams from simple cranes and conveyor belts to full systems like cars, aircraft
and wind turbines with most detailed complexity from a dynamical viewpoint. Even other from
FEM analysis and CFD calculations can be coupled to the software. Adams seems a useful tool
for modelling kite systems and kite designs.

To decrease the model design time system parts can be generated and assembled at once, instead
of connecting the basic Adams elements over and over again. This can also be applied to kite
system design because the basic system parts are tethers, inflatable tubes and foils. Therefore a
kite design toolbox is developed to automatize the generation of these basic system parts. Even
complete kite designs can be created including Arc-shaped LEI Kites and the Kiteplane concept,
see figure 3-1.

3-1 A short introduction to ADAMS

ADAMS is a multi-body dynamics simulation application where models are created from building
elements instead of programming the model equations yourself.

The basic elements of a model are:

(a) Wireframe (b) Rendered

Figure 3-1: ADAMS Kiteplane model
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• Markers

• Parts (rigid bodies)

• Joints & constraints

• Forces

Markers define a location as well as a local 3D reference. Markers can be created unlimited
without decrease in simulation speed. Markers are always connected to parts or ground to define
their location and orientation.

Parts have mass and geometry properties. The mass and the geometry can be configured dependent
or independent. It is possible to specify a part without a geometry, but it is not possible to have
a part with no mass or inertia properties. Many common shapes like links, cubes, cylinders and
spheres can be created. It is advised to create models on a parametric basis such that the location
and orientation of a part is specified with respect to another part.

Joints connect the parts together and specify the degrees of freedom that are allowed. Many
predefined joints can be selected like revolute joints, hooke joints, fixed joints, translational joints
and spherical joints. If one of these joints are not satisfying user-defined constraints can be specified
as well.

To complete a model some external forces (including gravity) need to be created in order to
start motion. Forces are categorized by applied forces, translational and torsional spring-dampers,
contact forces and special forces like tire forces and gravity.

Additionally, variables can be introduced. Variables come in two basic forms: design variables and
state variables. Design variables can be used to parameterize for example the physical, geometric
or visualization properties of a part or other object. A design variable can be set to four different
types: real, integer, string or object. Adams state variables (as) are always given by real values.
State variables define the state of a specific variable. The input is set by a function dependent of
time or another variable. State variables can be used to give an input to the system or to monitor
the output (or state). State variables are required when using the AdamsControls plugin. The
function expression can include the result of Adams function measures and function commands
to compute for example distances, angles and forces.

Adams function measures (am) are used to measure or monitor the result of a simulation after or
during the simulation. The function defining the function measures can be specified by predefined
function commands. The same as for the state variables. Many function commands exist from
displacements, velocities and accelerations to measuring forces or computing math functions.

Beginners start building their models in the GUI Adams/View. In Adams/View the basic el-
ements as mentioned above can be easily created and changes are immediately visible. When
simulating models Adams/Solver is called solving the model equations which are automatically
generated from the created model. The Adams/PostProcessor is convenient to thoroughly an-
alyze the simulation results. Another extension to Adams which is frequently used for control
applications is Adams/Controls.

Advanced users find out that creating models in the Adams/View environment is not always
satisfactory. Therefore models can also be created with a command script or so called ‘macro’
file. The markers, parts, joints and forces can be created from a specific Adams script language.
Additionally, the Adams/View interface can be modified with user-defined buttons and menus to
call the user-created macro files. On this basis the Kite Simulation Toolbox is created.

3-2 The Kite Simulation Toolbox

With the Kite Simulation Toolbox tubes, cables, chords, foils and complete assemblies can be
created. The Kite Simulation Toolbox started as the Kiteplane Toolkit (KPT) as part of the
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Toolkit Creator (TKC). Later other models like the LEI Surf Kite have been added. Figure 3-2
gives an overview of the Kiteplane Toolkit and Toolkit Creator Shared Macros file and folder
structure and hierarchy.
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Figure 3-2: Overview of the KPT and TKC Shared file and folder structure

Assembly files can create User Defined Entities (UDE) and can call sub-component macro files
(SubComp) as well as utility files (Util) to create a model. The default data specified in the UDEs
can be overwritten by the assembly data to specify the model dimension or other properties. The
assembly file is not restricted to call macro files within its root folder. The General Use Macros
(GUM) and Shared utilities ( Util) are accessible via the Toolkit Creator Shared folder. The
dependency of the macro files is more strict than shown in figure 3-2, because most UDEs do not
work properly without the sub-component macros and utility macros. Additionally, macro files
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(a) Wireframe (b) Rendered

Figure 3-3: ADAMS LEI Surf Kite model

can be called via shortcut or fill-in menus. Generally the input data can be specified or altered.

The macro files shown under the GUM folder are modified or created for this thesis. Detailed
explanation about the applied equations is given in chapter 9. Many more macro files are available
in GUM as well as in other folders. The overview shown in figure 3-2 applies to this thesis.

The Surf Kite assembly file creates the LEI Surf Kite model as shown in figure 3-3. The assembly
file is loaded with the ‘Assembly Loader Dialog’. In this menu options are given to specify the
aerodynamic model, the tether model, the number of tube segments for structural discretization,
geometry parameters and initial conditions.

For discretization of the model two basic parameters are given in the assembly loader: ‘LE Seg-
ments’ and ‘Side Segments’. The aerodynamic and structural model are related by the fact that
the parameter ‘LE Segments’ determines the aerodynamic and structural discretization of the wing
in span-wise direction. The parameter ‘Side Segments’ determines the discretization of the chord
tubes also know as struts. Figure 3-4 shows that one LE Segment has one airfoil for aerodynamic
calculations. In chord-wise direction the wing is always divided in five segments making the airfoil
consisting of five rigid bodies and five pairs of Foil Cross Wires. Additionally, the structural ele-
ments of the foil are shown. The interaction with the other elements of the model is established
with the Foil Wires and the TE Wires. The Foil Outline has only graphical purposes.

LE Segment

Side Segment

Airfoil Foil Wire Foil Outline

Graphic

TE Wire

Figure 3-4: Elements of a chord segment of the ADAMS Surf Kite

3-3 Aerodynamic model

For the aerodynamic model three options are given in the assembly loader for specifying the ‘Wing
Type’ via a drop down menu: ‘Rigid’, ‘Discrete’ and ‘None’. Rigid creates foils with one resultant
force for each chord segment, Discrete creates foils with five forces at each chord segment and
None creates no foils at all.
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Aerodynamic forces and moments on a 2D airfoil can be represented by the frequently used cl,
cd and cm coefficients. The airfoil segment of a real LEI Kite is given in figure 3-5a. The model
of the airfoil segment as used in Adams is given in figure 3-5b, from reference [3]. The changing
shape of the airfoil during flight due to the flexibility of the foil has significant influence on the
aerodynamic coefficients. Therefore the influence of the shape of the airfoil on the aerodynamic
forces is taken into account by the camber line in the model. Other parameters that influence the
2D aerodynamic coefficients are angle of attack and the airfoil thickness. The airfoil thickness in
the model is given by the tube thickness and the chord length. For different values of the angle
of attack, airfoil thickness and for the shape of the camber line CFD calculations are performed
to derive the corresponding cl, cd and cm values. The resulting relations are fitted to polynomials
to incorporate the aerodynamic coefficients cl, cd and cm for each airfoil. The resulting values for
the coefficients in the polynomials are available in Adams.

LE Segment

Tube
Foil

(a) Real

Camber line TE

(b) Model

Figure 3-5: Airfoil segment, Ref. [3]

In Adams the airfoil segment model in figure 3-5b is split into five rigid elements as shown in figure
3-6. The aerodynamic coefficients apply to the quarter chord point and are determined from the
local angle of attack, airfoil thickness and camber of each airfoil at every time step. The quarter
chord point is frequently used as an approximation for the aerodynamic center (ac). Additionally,
a 3D correction to each cl value is applied depending on the position of the airfoil in span-wise
direction. Using the angle of attack the cl and cd values are transformed to cz and cx which are
perpendicular and parallel along the chord respectively. The coefficient cm is incorporated by
fractioning the cz value over the five nodes. The contribution of cx to cm is neglected. So there
are five resulting forces acting on the airfoil nodes, i.e action points. The relative value of each
force is determined by a weighing function (wn + un · a) for n = 1 to n = 5. The sum of all wn
equals 1 and the sum of all un equals 0 such that the sum of all cz,n is cz. The values of all wn and
un are known by assuming a general shape for the pressure distribution. Since the total moment
is known, the value for a can be determined by setting up the moment equilibrium equation. The
cz,n value for each node is now known and the cx coefficient is also divided in 5 fractions using
the same weighing terms. The actual force that is applied in Adams at the nodes is given by
multiplying each cz,n and cx,n by 1

2ρV
2
a S.

The aerodynamic model can be summarized into the following statement:

cx,j , cz,j , cm,j → f(αj , ζj) for j = 1 . . . n (3-1)

where n is the number of airfoils and ζj a deformation vector containing the camber and airfoil
thickness.

The previous applies to the ‘Discrete’ aerodynamic model. It is also possible to choose for a
‘Rigid’ aerodynamic model. In this case there is only one resulting force on each airfoil acting
at the quarter chord point. So the aerodynamic moment of the airfoil is not incorporated. The
‘Rigid’ model is used if simulation speed is preferred above accuracy.

Reference [5] describes the simulation of a full flexible sail wing with an inflated tubular spar.
For the Surf Kite the wing is curved like an arc and therefore 3D effects are taken into account
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cz,n = cz (wn + un · a)

cm · c =

5∑

n=1

cz(wn + un · a)(0.25c− xn)

x
c

Node Rigid element

Figure 3-6: Airfoil model ‘Discrete’, Ref. [3]

in a different manner, but other aspects that apply for the straight sail wing also apply for an
arc-shaped wing.

Figure 3-7 shows an example of the arc-shaped LEI Surf Kite in simulation with the resulting
aerodynamic forces in blue.

Figure 3-7: ADAMS Surf Kite model in simulation

3-4 Structural model

The structural model consists of a LE tube discretized in a number of LE segments, strut or chord
tubes discretized in a number of side segments and foil modelled by TE wires and cross wires
(figure 3-4).

The interaction between the LE segments and side segments is given by load-deflection relations
applied on the joints. The typical load-deflection curve for inflatable beams was already shown
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(a) Jellyfishing (b) Asymmetric twist

Figure 3-8: Structural modes

in figure 2-19. The load-deflection curves can be adjusted for internal pressure and radius of the
cross-section. The models for the TE and cross wires consist of spring-damper systems. The
damping in the system is adjustable to obtain a ‘kite like’ behaviour.

The resulting structure is able to simulate some characteristic modes of an arc-shaped kite like
jellyfish motion and asymmetric twist. See figure 3-8. These modes are the consequence of a
tightly interaction between the aerodynamic forces, tether forces and structural deformation. The
jellyfish motion typically occurs in symmetric flight. The asymmetric twist is merely a result of
steering input.
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Chapter 4

Thesis Goal & Approach

In the literature review a broad overview is given of the current status of kite research. Based on
the literature review the central thesis question was formed. In the extension of the thesis question
the thesis goal is formed. In the following the thesis goal is used to specify the requirements and
approach.

4-1 Goal

The goal of this thesis is stated as follows:

‘To establish a model of an arc-shaped traction kite which is appropriate for controller design’

4-2 Requirements

Controlling kites is accomplished by a complex interaction between control inputs, tether forces,
structure deformation and aerodynamic forces. To have more insight on which control techniques
are required to control a kite is of vital importance. Advanced control techniques are available
which might be appropriate. The most feasible ones are: Model Predictive Control (MPC) and
Nonlinear Dynamic Inversion (NDI). MPC and NDI require models which can simulate the dy-
namic behaviour of the system accurately. This dynamic behaviour comprises the overall motion
of the kite which can be described by a limited set of states. MPC and NDI require information
of the system dynamics to be available online. If the simulation solutions are generated online the
model simulation time must be faster than real-time. Another possibility is to obtain the solution
space off-line, but also in this case a fast model is advantageous.

The model is more useful if it is appropriate to simulate other kites. This requires that the model
is designed on a parametric basis, where the structure and aerodynamics are modelled by a limited
set of parameters which completely describe the kite characteristics.

The requirements of the arc-shaped kite model are itemized as follows:

• Able to simulate the dynamic behaviour described by a limited set of states

• Suitable to gain more knowledge about the system dynamics
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• Appropriate for real-time simulation and online implementation

• Applicable to simulate different kites

• The aerodynamics and structural properties are modelled on a parametric basis

4-3 Approach

Chapter 3 describes the capability to model an arc-shaped kite with the multi-body dynamics
simulation tool Msc. Adams. The main purpose of the Adams Multi-Body model is to be used
as a design tool. Models can be made with many degrees of freedom such that many dynamical
phenomena can be studied. This results in simulations which are relatively time consuming. This
also implies that it is hard to create tangible conclusions about the dominant influences on the
dynamics of the system. Therefore it can be stated that an arc-shaped kite modelled in Adams

does not fulfill the requirements.

Therefore a new kite model is proposed, where the equations of motion will be based on an rigid
body.

For this Rigid Body kite model the aerodynamics are based on an approach as is custom for aircraft.
These methods make use of so called aerodynamic derivatives. The aerodynamic derivatives
represent the change of force or moment to a specific aerodynamic variable. The aerodynamic
derivatives are obtained with a fitting procedure called parameter identification using flight test
techniques. Due to limited capabilities for measurements on real kites the Adams Multi-Body
Kite model is used as a reference.

Because of the flexible structure the inertia tensor, mean wing chord, wing span and projected
surface area vary as well. The variation of the inertia tensor components, mean wing chord, wing
span and projected surface area is taken into account on a quasi static basis. The inertia tensor
and structural properties adapt to the respective flight condition.

For the Rigid Body model and the Multi-Body model the tether is simulated by a spring-damper
model. This has two reasons. There are no differences between both models with respect to the
tether and the dynamic influence on the system is predictable.

Modelling the aerodynamic forces and structural properties on a parametric basis assumes that
the aerodynamic functions are only dependent on external aerodynamic states and not on internal
structural (dynamic) states. These aerodynamic states are a function of rigid body states. This
requires that the aerodynamics and structural properties can be written as a function of rigid
body states. To reduce the numerous states of the Multi-Body Kite model to a set of rigid body
states a formal methodology is required.

The verification of the Rigid Body kite model is based on known dynamics of a rigid body aircraft.
For validation of the reduction of the Multi-Body Kite model to a Rigid Body Kite model test
simulations are performed.
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Chapter 5

Definitions, Reference Frames and
Wind Kinematics

Before the actual modelling part can start a basis is required with respect to definitions for reference
frames, angles as well as the kinematic relations for a straight tether and wind kinematics. The first
section defines the reference frames needed for modelling a kite system. Secondly the derivation
of the transformation matrices and vectors for the orientation and angular velocity is given. The
chapter concludes with discussing the tether and wind kinematic relations.

5-1 Reference frames

A reference frame defines the position and/or orientation of a point, body, force or moment in
space. The reference frames, which are relevant when modeling kite systems are the normal earth-
fixed reference frame FE , the body-fixed reference frame Fb, the aerodynamic reference frame Fa,
the kinematic reference frame Fk, the tether-fixed reference frame Ft and the vehicle reference
frame Fr. More information can be found in reference [24]. Except for the tether-fixed reference
frame which is defined for this thesis. The term ‘vehicle’ is sometimes used and is representative
for kite.

Normal earth-fixed reference frame FE

The normal earth-fixed reference frame (OXEYEZE) is a right-handed orthogonal axis-system,
where the origin is fixed to the earth. The XEYE plane is tangent to the earths surface and the
XE-axis is directed to the north. When the earth is considered a sphere, the ZE-axis points to
the center of the earth.

In aircraft literature another reference frame is defined which is similar to the normal earth-fixed
reference frame: the vehicle carried normal earth reference frame FO. The origin is at the same
position, but the ZO-axis points in the direction of the local gravity vector as seen by the vehicle
center of gravity cg. When deriving the equations of motion for aircraft usually the assumption
is made that the earth is flat and non-rotating. For kite systems the same assumption is made.
With this assumption the Normal earth-fixed reference frame and the vehicle carried normal earth
reference frame coincide.
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Body-fixed reference frame Fb

The body-fixed reference frame (cgXbYbZb) is a right-handed orthogonal axis-system with the
origin at the vehicle’s reference point. Usually the center of mass of the vehicle is the vehicle’s
reference point. The reference frame is fixed to the vehicle even in perturbed motion. The direction
of the axis can be chosen arbitrarily. In general the Xb-axis is in the symmetry plane of the vehicle
and points forward. The actual direction is still arbitrary and can be chosen situation dependent,
which influences the definition of the angle of attack. The Zb-axis is also situated in the symmetry
plane and points downward. The Yb-axis is directed to the right, perpendicular to the symmetry
plane.

Often in flight dynamics literature the stability is investigated for specific flight conditions. The
Xb-axis will than be defined in the direction of the aerodynamic velocity (see aerodynamic reference
frame) projected on the symmetry plane of the vehicle. The body-fixed reference frames defined
in this way are called stability reference frames.

Aerodynamic (air-path) reference frame Fa

The aerodynamic or air-path reference frame is coupled to the aerodynamic velocity vector V a.
The aerodynamic velocity is defined as the velocity of the vehicle’s reference point relative to the
undisturbed air. It is a right-handed orthogonal reference frame where the origin is the same as for
the Body-fixed reference frame, the Xa-axis is in the direction of the aerodynamic velocity vector
and the Za-axis is in the plane of symmetry. The aerodynamic velocity vector in the aerodynamic
reference frame is:

V a
a =





uaa
vaa
waa



 =





Va
0
0



 (5-1)

In the body-fixed reference frame the aerodynamic velocity vector is:

V b
a =





uba
vba
wba



 =





ua
va
wa



 (5-2)

The equations of motion derived in chapter 6 are written in the body-fixed reference frame. There-
for the convention is made that after this section the quantities u, v and w are always written in
the body-fixed reference frame.

Kinematic (flight-path) reference frame Fk

The kinematic reference frame is coupled to the kinematic velocity V k, which is the velocity of the
vehicle relative to the normal earth-fixed reference frame. GPS-systems measure the kinematic
velocity. It is the position of the center of mass Ocg relative to the normal earth-fixed reference
frame FE :

V k,cg = V k,E =
dOE

cg

dt
(5-3)

The origin is the same as for body-fixed reference frame. The Xk-axis is in the direction of the
kinematic velocity V k, the Zk-axis is in the symmetry plane of the vehicle and the Yk-axis is
perpendicular to the XkZk-plane to complete the right-orthogonal axis system. The angles to
describe the orientation of the kinematic reference frame with respect to the body-fixed reference
frame are the kinematic angle of attack αk and the kinematic side slip angle βk. The kinematic
velocity expressed in the kinematic reference frame is denoted as:

V k
k =





ukk
0
0



 (5-4)
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Tether-fixed reference frame Ft

To describe the orientation of the tether with respect to the earth and the vehicle a tether-fixed
reference frame Ft can be defined. This is a right handed reference where the Zt-axis is directed
perpendicular along the tether and the Xt-axis lies in the XOZO-plane of the Vehicle Carried
Normal earth reference frame. See figure 5-1. The angles ψt and θt describe the orientation
of tether with respect to the earth-fixed reference frame. The angles ξ, κ and τ describe the
orientation of the kite with respect to the tether.

Note that when a tether with sag is considered the orientation of the tether-fixed reference depends
on the position on the tether.

Figure 5-1 gives an abstract visualization of the kite system with the position of the earth-fixed
reference frame, the body-fixed reference frame and the tether-fixed reference frame.

Ob
Xb

Yb

Zb

Ot

Xt

Yt

Zt
OE

XE

YE

ZE

Figure 5-1: Laddermill with definition of FE , Fb and Ft

Vehicle reference frame Fr

The vehicle frame of reference (OrXrYrZr) for kites is a right-handed orthogonal axis system with
the origin at a fixed position to the vehicle. Here the origin is chosen at the most downward
position central between the two tips, see figure 5-2. This reference frame is convenient when
defining the geometry of a vehicle.

For a kite the direction of the Xr-axis will be parallel to the plane of symmetry and points to
the rear of the vehicle. The Yr-axis is directed parallel to the symmetry plane and points to the
right. And the Zr-axis is defined perpendicular to the XrYr-plane and points upwards. The actual
position of the origin and the orientation of the Xr and Zr-axes is user defined, but one option
is to choose the origin at the most forward low central position and the Zr-axis parallel to the
leading edge. Figure 5-2 shows the vehicle reference frame for an arbitrary kite.
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Or

Xr

Yr

Zr

Or

Yr

Zr

Or Xr

Zr

Figure 5-2: Vehicle reference frame with front and side view

5-2 Transformation between reference frames and angular ve-

locity vectors

To transform a vector from one reference to another transformation matrices are defined. The
specification of the attitude parameters is based on the Euler angles representation. Most trans-
formations are based on the {3-2-1} rotation sequence as is common for modelling aircraft. This
means that the first rotation is about the Z-axis, the second about the Y -axis and the third about
the X-axis. The rotations and angle declarations are specified for every defined transformation.

Secondly angular velocity vectors are obtained, which define the relative rotational speed between
two reference frames. The angular velocity vector is a function of the Euler angles and the time
derivative of the Euler angles between two reference frames.

5-2-1 Transformation from FE to Fb and derivation of Ωb
bE

In the aerospace industry the rotation sequence ψ → θ → φ is most commonly used for the rotation
from FE to Fb, where

• ψ is the yaw angle, rotation about the ZE-axis

• θ is the pitch angle, rotation about the YE′-axis

• φ is the roll angle, rotation about the Xb-axis (=XE′′ -axis)

where the YE′-axis and XE′′-axis are the axes of the intermediate reference frame FE′ and FE′′

respectively. The complete rotation defines the following reference frames:

FE → FE′ → FE′′ → Fb

Note that FE has been assumed equal to FO, so the rotation matrix for the rotation from FE to
Fb is the same as for FO to Fb.
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The transformation matrix for the rotation from FE to Fb is given by,

TbE = TbE′′TE′′E′TE′E (5-5)

=





1 0 0
0 cosφ sinφ
0 − sinφ cosφ









cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ









cosψ sinψ 0
− sinψ cosψ 0

0 0 1





=















cos θ cosψ cos θ sinψ − sin θ
(

sinφ sin θ cosψ
− cosφ sinψ

) (

sinφ sin θ sinψ
+cosφ cosψ

)

sinφ cos θ

(

cosφ sin θ cosψ
+sinφ sinψ

) (

cosφ sin θ sinψ
− sinφ cosψ

)

cosφ cos θ















(5-6)

The angular velocity of the body-fixed reference frame Fb with respect to the normal earth-fixed
reference frame FE expressed in Fb is obtained using the rotational speed of the previous defined
angles. This results in:

Ωb
bE = TbE′ΩE′

E′E + TbE′′ΩE′′

E′′E′ +Ωb
bE′′

=





φ̇− ψ̇ sin θ

θ̇ cosφ+ ψ̇ sinφ cos θ

−θ̇ sinφ+ ψ̇ cosφ cos θ





=





1 0 − sin θ
0 cosφ sinφ cos θ
0 − sinφ cosφ cos θ









φ̇

θ̇

ψ̇





=





p
q
r



 (5-7)

where p, q and r are the body rotational rates in the body-fixed reference frame.

5-2-2 Transformation from FE to Fa and derivation of Ωa
aE

The transformation from the normal earth-fixed reference frame FE to the aerodynamic reference
frame Fa consist of three sequential rotations:

• rotation χa, aerodynamic yaw angle, about the ZE-axis

• rotation γa, aerodynamic pitch angle, about the YE′-axis

• rotation µa, aerodynamic roll angle, about the Xa-axis (=XE′′-axis)

The reference frames obtained during the transformation are defined by:

FE → FE′ → FE′′ → Fa

The transformation matrix for the rotation from FE to Fa is given by,

TaE =





1 0 0
0 cosµa sinµa
0 − sinµa cosµa









cos γa 0 − sin γa
0 1 0

sin γa 0 cos γa









cosχa sinχa 0
− sinχa cosχa 0

0 0 1





=















cos γa cosχa cos γa sinχa − sin γa
(

sinµa sin γa cosχa
− cosµa sinχa

) (

sinµa sin γa sinχa
+cosµa cosχa

)

sinµa cos γa

(

cosµa sin γa cosχa
+sinµa sinχa

) (

cosµa sin γa sinχa
− sinµa cosχa

)

cosµa cos γa















(5-8)
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The angular velocity of the aerodynamic reference frame Fa with respect to the normal earth-fixed
reference frame FE expressed in Fa is obtained using the rotational speed of the previous defined
angles. This results in:

Ωa
aE = TaE′ΩE′

E′E + TaE′′ΩE′′

E′′E′ +Ωa
aE′′

=





µ̇a − χ̇a sin γa
γ̇a cosµa + χ̇a sinµa cos γa
−γ̇a sinµa + χ̇a cosµa cos γa



 (5-9)

5-2-3 Transformation from FE to Fk and derivation of Ωk
kE

The transformation from the normal earth-fixed reference frame FE
1 to the kinematic reference

frame Fk consist of three sequential rotations:

• rotation χk, kinematic yaw angle, about the ZE-axis

• rotation γk, kinematic pitch angle, about the YE′-axis

• rotation µk, kinematic roll angle, about the Xk-axis (=XE′′-axis)

The derivation of transformation matrix TkE and angluar velocity vector Ωk
kE are analogue to

derivation of TaE and Ωa
aE and can be obtained by replacing the subscripts a by k.

TkE =





1 0 0
0 cosµk sinµk
0 − sinµk cosµk









cos γk 0 − sin γk
0 1 0

sin γk 0 cos γk









cosχk sinχk 0
− sinχk cosχk 0

0 0 1





=















cos γk cosχk cos γk sinχk − sin γk
(

sinµk sin γk cosχk
− cosµk sinχk

) (

sinµk sin γk sinχk
+cosµk cosχk

)

sinµk cos γk
(

cosµk sin γk cosχk
+sinµk sinχk

) (

cosµk sin γk sinχk
− sinµk cosχk

)

cosµk cos γk















(5-10)

Ωk
kE = TkE′ΩE′

E′E + TkE′′ΩE′′

E′′E′ +Ωk
kE′′

=





µ̇k − χ̇k sin γk
γ̇k cosµk + χ̇k sinµk cos γk
−γ̇k sinµk + χ̇k cosµk cos γk



 (5-11)

5-2-4 Transformation from Fb to Fa and derivation of Ωa
ab

The transformation from the body-fixed reference frame to the aerodynamic reference frame con-
sists of two sequential rotations:

• rotation −αa aerodynamic angle of attack about Yb-axis

• rotation βa aerodynamic side slip angle about Za-axis

Modelling the Dynamics of an Arc-shaped Kite for Control Law Design



5-2 Transformation between reference frames and angular velocity vectors 47

These angles are expressed in aerodynamic velocity components by equations (5-12) and (5-13).

αa = arctan

(

wa
ua

)

(5-12)

βa = arcsin

(

va
Va

)

(5-13)

with

Va =
√

u2a + v2a + w2
a (5-14)

where ua, va and wa are written in body-fixed reference frame.

The rotation defines the following reference frames:

Fb → Fb′ → Fa

The transformation matrix for the rotation from Fb to Fa is given by,

Tab =





cosβa sinβa 0
− sinβa cosβa 0

0 0 1









cosαa 0 sinαa
0 1 0

− sinαa 0 cosαa





=





cosβa cosαa sinβa cosβa sinαa
− sinβa cosαa cosβa − sinβa sinαa

− sinαa 0 cosαa



 (5-15)

And the angular velocity vector of the aerodynamic reference frame Fa with respect to the body-
fixed reference frame Fb expressed in Fa using the rotational speed of the same rotations is given
by:

Ωa
ab = Tab′Ω

b′

b′b +Ωa
ab′

=





−α̇a sinβa
−α̇a cosβa

β̇a



 (5-16)

The derivatives of the aerodynamic angles, αa and βa, are obtained by the relations given in
equations (5-17) and (5-18) (Reference [23]).

α̇a =
uẇ − wu̇

u2 + w2
(5-17)

β̇a =
(u2 + w2)v̇ − v(uu̇+ wẇ)

(u2 + v2 + w2)
√
u2 + v2

(5-18)

where all velocities and accelerations are aerodynamic quantities, the subscript ‘a’ is omitted for
convenience.

5-2-5 Transformation from Fb to Fk and derivation of Ωk
kb

The transformation from the body-fixed reference frame to the aerodynamic reference frame consist
of two rotations:

• rotation −αk kinematic angle of attack about Yb-axis

• rotation βk kinematic sideslip angle about Zk-axis
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The rotation defines the following reference frames:

Fb → Fb′ → Fk

The transformation matrix for the rotation from Fb to Fk is given by,

Tkb =





cosβk sinβk 0
− sinβk cosβk 0

0 0 1









cosαk 0 sinαk
0 1 0

− sinαk 0 cosαk





=





cosβk cosαk sinβk cosβk sinαk
− sinβk cosαk cosβk − sinβk sinαk

− sinαk 0 cosαk



 (5-19)

The derivation of the angular velocity vector of Ωk
kb is analogue to the derivation of Ωa

ab:

Ωk
kb = Tkb′Ω

b′

b′b +Ωk
kb′

=





−α̇k sinβk
−α̇k cosβk

β̇k



 (5-20)

5-2-6 Transformation from FE to Ft and derivation of Ωt
tE

The transformation from earth-fixed reference frame FE to the tether-fixed reference frame Ft is
done by two sequential rotations:

• rotation ψt, tether yaw angle, about ZE-axis

• rotation θt, tether pitch angle, about Yt-axis

See figure 5-3 for the rotations and 5-4 for the complete picture.

ψt

ψt O

Yt

XE
X′

E

YE

1st Rotation

θt

θt

tether

O

Xt

Zt

X′

E

ZE

2nd Rotation

Figure 5-3: 1st rotation and 2nd rotation of the transformation from FE to Ft

The rotation defines the following reference frames:

FE → FE′ → Ft

One can see from figure 5-3 that the first rotation, the tether yaw angle ψt, defines the so called
azimuth angle. The direction of the axis for the second rotation, Yt, is now defined and the second
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rotation gives the zenith angle. This way of defining the angles is convenient, because in every
situation the value of the tether angles can be directly observed, i.e. a direct measure of the
orientation of the tether with respect to the earth-fixed reference frame gives the azimuth and
zenith angle. This in contrast to where one would first do a rotation about the YE-axis and then
about the Zt-axis.

The transformation matrix for the rotation from FE to Ft is given by:

TtE =





cos θt 0 − sin θt
0 1 0

sin θt 0 cos θt









cosψt sinψt 0
− sinψt cosψt 0

0 0 1





=





cos θt cosψt cos θt sinψt − sin θt
− sinψt cosψt 0

sin θt cosψt sin θt sinψt cos θt



 (5-21)

And the angular velocity vector of the tether reference frame Ft with respect to the earth-fixed
reference frame FE expressed in Ft using the rotational speed of the same rotations is given by:

Ωt
tE = TtE′ΩE′

E′E +Ωt
tE′

=





−ψ̇t sin θt
θ̇t

ψ̇t cos θt



 (5-22)

5-2-7 Transformation from Ft to Fb and derivation of Ωt
tb

The transformation from tether-fixed reference frame Ft to the body-fixed reference frame Fb is
done by three sequential rotations:

• rotation ξ, body yaw angle w.r.t. the tether, about Zt-axis

• rotation κ, body pitch angle w.r.t. the tether, about Yt′ -axis

• rotation τ , body roll angle w.r.t. the tether, about Xb-axis

The rotation defines the following reference frames:

Ft → Ft′ → Ft′′ → Fb

The transformation matrix for the rotation from Ft to Fb is given by:

Tbt =





1 0 0
0 cos τ sin τ
0 − sin τ cos τ









cosκ 0 − sinκ
0 1 0

sinκ 0 cosκ









cos ξ sin ξ 0
− sin ξ cos ξ 0

0 0 1





=















cosκ cos ξ cosκ sin ξ − sinκ
(

sin τ sinκ cos ξ
− cos τ sin ξ

) (

sin τ sinκ sin ξ
+cos τ cos ξ

)

sin τ cosκ

(

cos τ sinκ cos ξ
+sin τ sin ξ

) (

cos τ sinκ sin ξ
− sin τ cos ξ

)

cos τ cosκ















(5-23)

The angular velocity vector of the body-fixed reference frame Fb with respect to the tether-fixed
reference frame Ft expressed in Ft using the rotational speed of the same rotations is given by:

Ωb
bt = Tbt′Ω

t′

t′t + Tbt′′Ω
t′′

t′′t′ +Ωb
bt′′

=





τ̇ − ξ̇ sinκ

κ̇ cos τ + ξ̇ sin τ cosκ

−κ̇ sin τ + ξ̇ cos τ cosκ



 (5-24)
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Now the angular velocity of the body-fixed reference frame with respect to the earth-fixed reference
frame can also be written as:

Ωb
bE = Ωb

bt + TbtΩ
t
tE (5-25)

and the transformation matrix from FE to Fb can also be written as:

TbE = TbtTtE (5-26)

The inverse of the transformations given in this section can be obtained by taking the inverse of
the transformation matrices. Since all transformation matrices are orthogonal, i.e. orthonormal
row and column vectors, the inverse of the transformation matrices is equal to their transpose, i.e.
T
−1 = T

⊤.

5-3 The tether position and velocity in spherical coordinates

To define the position of the tether it is convenient to define a spherical coordinate system. The
transformation from FE to Ft is given by the two angles ψt and θt. To define the position of the
top end of the tether an additional coordinate is needed. This coordinate is the absolute length
of the tether denoted lt. This defines the spherical coordinates as, see also figure 5-4:

〈lt, θt, ψt〉

θt,θ̇t

ψt,ψ̇t

lt

l̇t

Ot

Xt

Yt

Zt

OE

XE

YE

ZE

ẋt

ẏt

żt

Figure 5-4: Tether position and velocity in spherical coordinates
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It must be noted that due to the chosen rotation order of the angles ψt and θt that the Xt-axis
always crosses the negative ZE-axis. Furthermore it must be noted that the position of the tether
can only be captured by these three coordinates if the tether is assumed to be a straight line.

The previously defined coordinates can be determined by the relations given in equation (5-27),
which are obtained by investigating figure 5-4:

lt =

√

(

xEt
)2

+
(

yEt
)2

+
(

zEt
)2

θt = arctan

(

xEt
zEt cosψt

)

for − 1

2
π < θt <

1

2
π

ψt = arctan

(

yEt
xEt

)

for − 1

2
π < ψt <

1

2
π

(5-27)

where the coordinates 〈xEt , yEt , zEt 〉 determine the position of the end point of the tether in the
earth-fixed reference frame.

There are several limitations to the formulae in (5-27). The angles θt and ψt cannot become
exactly +π or −π for singularity reasons. The second limitation is when the YE-axis is crossed ψt
changes from +π to −π or vice versa. For the Rigid Body Kite model, chapter 6, this is overcome
by integrating the time derivative of 〈lt, θt, ψt〉. l̇t, θ̇t and ψ̇t are derived as follows.

If the kite is assumed to be a rigid body the velocity of the end point of the tether expressed
in the tether-fixed reference frame 〈ẋtt, ẏtt , żtt〉 is determined from the kinematic velocity of the
kite and the rotational speed of the kite. From the theory of the planar motion of rigid bodies
in reference [31] as a first approximation for a body with one tether attachment point equation
(5-28) is derived:





ẋbt
ẏbt
żbt



 =





ubk
vbk
wbk



+Ωb
bE × rta (5-28)

where rta is the average position of the two tether attachment points relative to the center of
gravity of the kite in body-fixed axes. An explanation of rta with respect to rtaL and rtaR is
given in section 6-3-3.

If the velocity of the end point of the tether in earth axes is known, than the velocity of the end
point of the tether can be transformed in tether-fixed axes by equation (5-29):





ẋtt
ẏtt
żtt



 = Ttb





ẋbt
ẏbt
żbt



 (5-29)

The time derivative of 〈lt, θt, ψt〉 is than given by equation (5-30), see figure 5-4:

l̇t = −żtt

θ̇t = − ẋ
t
t

lt

ψ̇t = − ẏtt
lt sin θt

(5-30)

5-4 Wind kinematics

Since a kite flies under the influence of the wind, wind relations are required which describe the
influence of the wind on the aerodynamic velocity and acceleration. The resulting equations are
called the wind kinematics.
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The aerodynamic velocity V a i.e. the actual wind velocity experienced by the kite, is given by
the kinematic velocity of the kite V k and the wind speed V W . See figure 5-5.

V a

V k
V W

Figure 5-5: Wind velocity relation

The wind velocity vector is defined as the velocity of an undisturbed air particle W in the center
of gravity cg expressed in the vehicle carried normal earth reference or the normal earth-fixed
reference frame FE for a flat and non-rotating earth:

V W = V W,cg =
dWE

cg

dt
=





Wx

Wy

Wz





The kinematic velocity is the velocity of the kite relative to the earth, which determines the actual
displacements in x, y and z-direction. The aerodynamic velocity can be split up in the kinematic
velocity and the wind velocity expressed in the earth-fixed reference frame by:

V a = V k − V w

TEb





ua
va
wa



 = TEb





uk
vk
wk



−





Wx

Wy

Wz



 (5-31)

The equations of motion will be written in the body-fixed reference frame. The aerodynamic
velocity in the body-fixed reference frame is given by:





ua
va
wa



 =





uk
vk
wk



− TbE





Wx

Wy

Wz



 (5-32)

where the wind velocity in body-fixed reference frame is equivalent to:

V b
W = TbEV

E
W

To derive the aerodynamic acceleration the time derivative of the wind velocity in body axes
needs to be known. Use is made of the theory of the transformation of the derivative of a vector,
reference [7]:

dV b
W

dt
=

d

dt

(

TbEV
E
W

)

V̇
b

W = TbE
dV E

W

dt
+
dTbE
dt

V E
W

V̇
b

W = TbE · V̇ E

W + TbE

(

ΩE
Eb × V E

W

)

V̇
b

W = TbE · V̇ E

W −Ωb
bE × TbEV

E
W (5-33)
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Equation (5-32) can now be differentiated with respect to time to obtain the expression for the
aerodynamic acceleration vector in terms of the kinematic velocity vector, the wind acceleration
vector and the wind velocity vector:

dV b
a

dt
=
dV b

k

dt
− d

dt

(

TbEV
E
W

)

V̇
b

a = V̇
b

k − TbE · V̇ E

W +Ωb
bE × TbEV

E
W (5-34)
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Chapter 6

Rigid Body Kite Model

This chapter derives the equations of motion for the Rigid Body Kite model. The equations
describe a rigid body model attached to a straight line tether with two bridle lines. The tether
attachment points control the kite like the cart and rail control system as discussed in chapter 2.
The steps are partially analogue to the theory of flight dynamics for aircraft. Reference material
for aircraft flight dynamics theory is found in [7], [23] and [24].

6-1 Derivation of the equations of motion

The derivation of the equations of motion is based on a single rigid body approach using Newton’s
second law. An arc-shaped LEI Surf Kite is a flexible body and is steered by deformation of the
structure (reference [4]). The model is required to describe the dynamic motion as a function of
rigid body states.

Newton’s second law

The general force and moment equations expressed in the earth-fixed reference are according to
Newton’s second law:

mAE,cg = F ext (6-1)

dBE
cg

dt
= Mext,cg (6-2)

where AE,cg and
dBE

cg

dt are the inertial translational acceleration and the derivative of the inertial
angular momentum respectively and F ext andM ext,cg are the applied external forces and moments
respectively.

The center of gravity (cg) is chosen as the reference point for the body in equations (6-1) and
(6-2). Note that these equations hold for any body, flexible and rigid.

In flight dynamics the equations of motion are commonly expressed in the body-fixed reference
frame. This is especially convenient when modelling the aerodynamic forces and moments of the
body.
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Translational and angular acceleration

The inertial translational acceleration in the body-fixed reference frame can be expressed as:

Ab
E,cg =

dV b
E,cg

dt
+Ωb

bE × V b
E,cg

=





u̇k
v̇k
ẇk



+





p
q
r



×





uk
vk
wk



 (6-3)

=





u̇k + qwk − rvk
v̇k + ruk − pwk
ẇk + pvk − quk



 (6-4)

The time derivative of the inertial angular momentum in the body-fixed reference frame can be
written as:

(

dBE
cg

dt

)b

=
dBb

cg

dt
+Ωb

bE ×Bb
cg

= I
b
cg

dΩb
bE

dt
+
dIbcg
dt

Ωb
bE +Ωb

bE ×
(

I
b
cgΩ

b
bE

)

(6-5)

where Ωb
bE and I

b
cg are the rotational velocity and the inertia tensor respectively given by:

Ωb
bE =





p
q
r



 (6-6)

I
b
cg =





Ixx −Jxy −Jxz
−Jyx Iyy −Jyz
−Jzx −Jzy Izz



 (6-7)

For a rigid body model the time derivative of the inertia tensor is zero.

6-2 External forces and moments

The translational and angular acceleration are driven by external forces and moments. Firstly the
forces and moments are defined expressed in the body-fixed reference frame. Secondly a general
state dependency analysis is performed for the forces and moments. The analysis is used to justify
the modelling assumptions.

6-2-1 Definition of external forces and moments

There are three types of external forces acting on a kite:

1. Aerodynamic forces

2. Tether forces

3. Gravity
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L

D

R

V a

V W
V k

W

T t

W ’

R’

cg

Figure 6-1: Forces acting on a kite

The aerodynamic forces and gravity are distributed forces by nature. These distributed forces can
be replaced by point forces acting on particular points on the body simplifying the equations of
motion. The tether forces are already point forces acting on the so called tether attachment points
(ta). The resultant aerodynamic force R, the resultant tether force T and gravity (weight) W are
shown in figure 6-1.

The direction of the lift vector L is defined perpendicular to the direction of the aerodynamic
velocity V a and the direction of the drag vector D is defined tangential and opposite to the
direction of the aerodynamic velocity. The aerodynamic velocity is the resultant of the wind
component V w and the kinematic velocity V k (see equation (5-32)). The tether force T the
aerodynamic force R and the weight W are in equilibrium when the kite is not accelerating.

The aerodynamic force vector in the body-fixed reference frame is given by:

Rb = F b
aero =





X
Y
Z



 (6-8)

The tether force vector in the body-fixed reference frame is defined as:

T b
t = F b

tether =





F
G
H



 (6-9)
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The gravity vector in the body-fixed reference frame is given by:

W b
G = m · TbEgEG

= m · gG





− sin θ
sinφ cos θ
cosφ cos θ



 (6-10)

The external forces generate external moments about the center of gravity. The aerodynamic
moment vector in the body-fixed reference frame is defined as:

M
b
aero,cg =





L
M
N



 (6-11)

The tether moment vector in the body-fixed reference frame is defined as:

M
b
tether,cg =





P
Q
R



 = rta × F b
tether (6-12)

where rta is the position of the tether attachment point relative to the center of gravity in the
body fixed reference frame.

6-2-2 External forces and moments state dependency analysis

All forces and moments are dependent on the entire time history of the body states. The question
is which states influence which forces and moments and to what extend contributes the time
history. With the state dependency analysis an attempt is made to find an initial guess on which
states the aerodynamic forces and moments and tether forces and moments depend on.

In general for rigid body aircraft models the aerodynamic forces and moments are assumed to
be dependent on the components of the aerodynamic motion variables and control deflections.
Because the body is rigid there is no influence of body deformation states. Off course, the shape
of the body influences the aerodynamics. Therefore for flexible kites the structural deformation
is possibly non-negligible. The state vector ζ is defined which includes all possible deformation
parameters, like mean aerodynamic chord c, wing span b, projected surface area S and others. For
example an aeroelastic deflection angle κa.

The tether forces and moments acting on the body are a reaction of the aerodynamic forces and
gravity dependent on the shape of the tether and the position of the tether attachment points.
All these forces influence the body shape. And the body shape influences the aerodynamic forces
and moments and thereby the tether forces. Resulting in a recursive loop.

The state dependency of the aerodynamic forces and moments can be stated as follows:

X,Y, Z, L,M,N, F,G,H, P,Q,R →
f
(

W b
G, ua(.), va(.), wa(.), p(.), q(.), r(.), rtaL(.), rtaR(.), ζ(.), lt(.), et,E(.), et,b(.), VW (.)

) (6-13)

where (.) denotes that the function contains information about the entire time history of the kite
system. ua(.), va(.), wa(.), p(.), q(.) and r(.) are defined in chapter 5. rtaL and rtaR are the
positions of the pinion on the left and right tip respectively with respect to the center of gravity.
lt(.) is the length of the tether and et,E(.) and et,b(.) are the unit vectors of the tether at the origin
of the earth-fixed reference frame and at the two top ends point of the tether respectively denoting
the direction of the tether at the bottom end and the average direction of the two top ends of the
tether. It is assumed that these three tether states determine the complete shape of the tether.
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cg

VW

Xb

Yb

Zb

et,b

et,E

lt

rta,R

rta,L

OEXE

YE

ZE

Figure 6-2: Definition of tether and control parameters

Figure 6-2 shows the definition of the tether and control parameters lt(.), et,E(.), et,b(.), rtaL(.)
and rtaR(.). The wind velocity VW (.) is not only acting at the reference point of the body but
along the entire tether length lt.

The first assumption that is applied is that there is no coupling between the aerodynamic forces and
moments and the tether forces and moments. In other words, the aerodynamic forces and moments
are independent of the tether forces. This can be seen as follows. The aerodynamic variables cause
a resultant aerodynamic force and moment. The aerodynamic force causes a resultant tether force.
For flexible bodies the tether force will change the body shape. The change in body shape will
have an influence on the aerodynamic forces and moments. With this assumption the influence
of the time derivatives of the resultant tether force on the body shape is neglected. Taking this
effect into account results in an algebraic loop, which should be solved by an iteration process
every time step. Iterative processes are unwanted, because they slow down the simulation speed
of the model. Instead the static solutions of this iterative process are taken into account by the
aerodynamic derivatives. The aerodynamic derivatives are explained in section 6-3-2.

Secondly, for most flight conditions the aerodynamic and tether forces are at least several times
larger than the weight of the body making the influence of the weight on the body shape practically
insignificant.

For the function expression in equation (6-13) can now be written:

X,Y, Z, L,M,N → f
(

ua(.), va(.), wa(.), p(.), q(.), r(.), rtaL(.), rtaR(.), ζ(.)
)

(6-14)

F,G,H, P,Q,R → f
(

rtaL(.), rtaR(.), lt(.), et,E(.), et,b(.), VW (.)
)

(6-15)

To unravel the time history dependent state variables Taylor expansions are made. This results
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in functions given by a summation of different contributions. For example for ua(.) this becomes:

ua(.) = ua(t) +

∞
∑

i=1

1

i!

diua
dti

∆ti (6-16)

For aircraft, practice has shown that the influence of most time derivatives is limited and can be
neglected, i.e. the summation in equation (6-16). But there are a few exceptions, see reference [24],
like α̇ and β̇. These parameters are damping terms and are very likely to influence the dynamics
of kites as well. Furthermore, as the arc-shaped kite is deformable it is also likely that higher
order terms play a significant role. Additionally, cross terms can be important as well. Cross
terms define the coupling between two or more states.

Since there is no reference for modelling the aerodynamics of kites, the analysis for the aerodynamic
forces stops here. An attempt to find an aerodynamic model for an arc-shaped kite is given in
chapter 10. The aerodynamic velocity components are usually written in the spherical coordinates
Va, α and β as given by equations (5-12), (5-13), (5-17) and (5-18) for the first derivative with
respect to time.

An example of the time dependency of the aerodynamic states can be given when an arc-shaped
kite is flying with a changing side slip angle. The tip of the kite which is turned into the wind is
slightly more upwind than the other kite tip. The upwind kite tip will change the wind stream
around the kite and the wind on the downstream tip some time ∆t later. The pressure distribution
on the downstream will change and therefore also the resultant aerodynamic forces and moments.

For the tether it is assumed that it can be represented by a straight line, that is there is no cable
sag. This assumption results in the fact that the tether is relatively short. For short tethers, as a
first approximation, it is reasonable to assume that the wind speed has no influence on the tether
forces. For the states influencing the tether force this means that ebt,E(.) = ebt,b(.) and that Vw(.)
are neglected. Furthermore the resultant tether moment is a function of the tether force and the
position of the tether attachment points rtaL(.) and rtaR(.), where the tether force is independent
of the tether attachment points.

The tether unit vector et expressed in the body-fixed reference frame is defined by three angles τ ,
κ and ξ as defined by the transformation from Ft to Fb. The transformation of the tether force in
the tether-fixed reference frame to the body-fixed reference frame is given by:

T b = TbtT
t





F
G
H



 = Tbt





0
0
Tt









F
G
H



 = Tt





− sinκ
sin τ cosκ
cos τ cosκ





(6-17)

Note that there is no influence of the angle ξ on the tether forces. As κ and τ are transformation
angles, they do not influence the resultant tether Tt directly.

For the control positions, see section 6-3-3, it is assumed that the carts are constrained to move
in Xb direction. This implies that the states for the control positions can be given by xtaL(.) and
xtaR(.). As the controls move the center of gravity shifts relative to the body due to the weight of
the carts. This results in the fact that the reference point of the aerodynamic forces and moments
changes with respect to the body (read: aerodynamic body). So it can be concluded that not only
the deformation induced results in a change in aerodynamic forces and moments but also the shift
of the center of gravity.
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This results in the following states for the aerodynamic and tether forces and moments:

X,Y, Z, L,M,N → f
(

Va(.), α(.), β(.), p(.), q(.), r(.), xtaL(.), xtaR(.), ζ(.)
)

(6-18)

F,G,H, P,Q,R → f
(

lt(.), τ, κ, rtaL, rtaR
)

(6-19)

With the following assumptions:

• The tether is a straight line ebt,E(.) = ebt,b(.)

• The wind speed VW (.) has no influence on the tether forces

• States influencing aerodynamic forces and moments have no direct influence on the resultant
tether force Tt and the tether force has no influence on the aerodynamic forces and moments

• The control positions are constrained to move in Xb direction

The kite system model with the given assumptions and the definition of the reference frames is
illustrated in figure 6-3.

θt

cg

rta,L

rta,R

VW

Xt

Yt

Zt

O
XE

YE

ZE

Xb

Yb

Zb

Figure 6-3: Kite system model and definition of reference frames
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6-3 Complete set of equations

6-3-1 Equations of motion and kinematic relations

The equations of motion in the body-fixed reference frame are:

m





u̇k + qwk − rvk
v̇k + ruk − pwk
ẇk + pvk − quk



 = mgG





− sin θ
sinφ cos θ
cosφ cos θ



+





X
Y
Z



+





F
G
H



 (6-20)

I
b
cg

dΩb
bE

dt
+Ωb

bE ×
(

I
b
cgΩ

b
bE

)

=





L
M
N



+





P
Q
R



 (6-21)

The kinematic relations for the rotational rates of the body can be obtained from equations (5-7)
and (6-6):





φ̇

θ̇

ψ̇



 =





1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ









p
q
r



 (6-22)

Furthermore additional kinematic relations due to the tether are given by equations (5-28), (5-29)
and (5-30):





ẋtt
ẏtt
żtt



 = Ttb









uk
vk
wk



+Ωb
bE × rbta



 (6-23)





l̇t
θ̇t
ψ̇t



 =





0 0 −1
− 1
lt

0 0

0 − 1
lt sin θt

0









ẋtt
ẏtt
żtt



 (6-24)

The aerodynamic forces and moments are dependent on the aerodynamic velocity and acceleration.
So the set completes by adding the wind relations describing the aerodynamic velocity (5-32) and
aerodynamic acceleration (5-34):





ua
va
wa



 =





uk
vk
wk



− TbE





Wx

Wy

Wz



 (6-25)





u̇a
v̇a
ẇa



 =





u̇k
v̇k
ẇk



− TbE ·





Ẇx

Ẇy

Ẇz



+





p
q
r



× TbE





Wx

Wy

Wz



 (6-26)

6-3-2 Nonlinear aerodynamic model

The aerodynamic forces and moments in the body-fixed reference frame are given by X, Y , Z, L,
M and N .

The aerodynamic forces and moments are a function of specific aerodynamic states as given by
(6-14). As discussed in the previous section the forces and moments depend on the entire time
history of the states. The question is which states and which derivatives of these states should be
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taken into account to model a kite significantly accurate. For now, the only reference there is is
the analysis of previous section and the resulting relation given by equation (6-18):

X,Y, Z, L,M,N → f
(

Va(.), α(.), β(.), p(.), q(.), r(.), xtaL(.), xtaR(.), ζ(.)
)

The following step is to write the forces and moments in dimensionless form by dividing by 1
2ρV

2
a S

for the forces, by 1
2ρV

2
a Sc for the symmetric moments and by 1

2ρV
2
a Sb for the asymmetric moments.

In this way the forces and moments become independent of the dynamic pressure 1
2ρV

2
a and the

geometric properties S, c and b. This results in the dimensionless coefficients CX , CY , CZ , Cl,
Cm and Cn. Note that S, c and b are variable due to the flexible structure of an arc-shaped LEI
Kite.

The procedure continues by applying Taylor expansions on the dimensionless functions. This
results in an infinite amount of summation terms. The effect of most higher order terms are
negligible. The remaining states are written in dimensionless form as well. This results in functions
with nonlinear summation terms dependent on dimensionless states and aerodynamic coefficients
Cxy

.

The aerodynamic coefficients themselves are dependent on the reference condition for the Taylor
expansion. With aircraft flight test techniques the aerodynamic coefficient are identified by a fitting
procedure for the measured aerodynamic forces and moments. Reference [23] can be consulted
for this parameter identification technique using a linear regression method. With this method
the flight tests always start from a stationary statically stable condition. The resulting linear
aerodynamic functions are than only valid for some specific domain around the initial condition.
To increase the validity domain of the aerodynamic model more flight tests are performed at
other initial conditions. All resulted aerodynamic functions can be ‘tied together’ to form the
aerodynamic model. In this way the parameters in the model become a function of some set of
static variables. Additionally this technique can be applied to obtain nonlinear functions as well.
With nonlinear functions the validity range of the function is increased.

Equation (2-1) shows an example of an aerodynamic model structure for aircraft. In these equa-
tions there is no coupling between the symmetric and asymmetric forces and moments, which
means that that the symmetric states have no influence on the asymmetric forces and moments
and vice versa. These assumptions are applicable to most aircraft models. A methodology for the
derivation of aerodynamic models for kites is given in chapter 10 where the Adams multi-body
model is used as a reference.

6-3-3 Definition of control positions

The position of the tether attachment points or the control units expressed in the body-fixed
reference frame are given by:

rtaL =





xtaL
ytaL
ztaL



 rtaR =





xtaR
ytaR
ztaR



 (6-27)

Figure 6-4 shows the definition of the control positions in an illustrative way.

Based on this definition it is possible to define an ‘average’ or central position. This is convenient
when the controls are moved symmetrically and only one control variable has to be defined:

rta =







xtaL+xtaR

2
ytaL+ytaR

2
ztaL+ztaR

2






(6-28)
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rta,L

rta,R

Xb

Yb

Zb

rta,Lrta,R rta

Yb

Zb

Figure 6-4: Definition of the control parameters

Furthermore this central control position rta defines the position of the action point of the main
tether. See the right picture of figure 6-4.

For simplicity it is assumed that xtaL and xtaR are the only varying parameters. This holds when
the displacement of the control positions in Yb or Zb direction is relatively small and the Xb-axis
is parallel to the rail.

Figure 6-5 shows the definition of the control position relative to the leading edge of the tip
dta. dta is expressed in the local coordinate system Fr. dtaL and dtaR for left and right position
respectively are the actual control inputs for a real kite and for the Adams model.

cg

Xr

Zr

Xb

Zb

dta xta

Figure 6-5: Definition of control parameter dta

In Adams it is possible to measure rtaL and rtaR. Because the control carts have weight the
center of gravity position shifts when applying a control input. Therefore a relation is required
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between xta and dta for the Rigid Body model. The derived relation between xtaL and dtaL and
between xtaR and dtaR is given in chapter 9.

6-3-4 Tether model

The tether forces and moments are a function of the states given by (6-19):

F,G,H, P,Q,R → f
(

lt(.), τ, κ, rtaL, rtaR
)

Main tether

The main tether force is modelled as a spring-damper and this is represented by equation (6-29):

Tt

(

δlt(t), l̇t(t)
)

= kt · δlt(t) + ct · l̇t(t) (6-29)

where kt and ct are the spring and damper constants of the respective tether and are invariant.

The initial tether length at ‘t = 0 s’ is given by the formula in (6-30):

lt0 = lt,δlt=0 + δlt0 (6-30)

where lt,δlt=0 is the unstretched tether length and δlt0 the initial tether elongation.

The tether forces and moments in the body-fixed reference frame are determined by equations
(6-17) and (6-12) respectively. In (6-12) rbta is the position of the tether attachment point or
control input. How this is modelled for the two independent control points rtaL and rtaR is given
below in the section about the bridle lines.

Bridle lines

This section gives a method to model the change in forces in the bridle lines. The bridle lines
constrain the kite in a mix of roll (p) and yaw (r) motion depending on the body pitch angle with
respect to the tether κ. See figures 6-6, 6-7 and 6-8.

For simplicity of implementation the bridle lines are not explicitly modelled by two spring-dampers
for example, but rather by a moment caused by the main tether force in Yb-direction: G. The
tether force in body components is shown in figure 6-7.

When the tether has a tether force T and the tether is in the symmetric plane of the kite, that
is τ and ξ are zero, the vertical components of the forces in the bridle lines are equal to 1

2T .

Furthermore the tether force in Yb-direction G is zero, so 1
2T is equal to 1

2

√
F 2 +H2.

Two assumptions are made for modelling the forces in the bridle lines:

1. The forces act in the YtZt-plane or parallel to this plane

2. The bridle angle ϑ is invariant

From the first assumption follows that the angle between the bridle line and the main line in the
XtZt-plane stays small. From the second assumption follows that the elastic elongation of the
bridle lines stays small.

The absolute value of the tether forces in the bridle lines are given by the parameters TL and TR
for the left and right bridle line respectively. The vertical components in the YtZt-plane are given
by the parameters T vL and T vR. The horizontal components in the YtZt-plane are given by the
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TL

TR

Tt

Xt

Yt

Zt

Yt

Zt

ThR ThL

T vR T vL

ϑ lbr

Tt = T vL + T vR

Figure 6-6: Bridle line forces, G = 0

Tt

F

G

H

√
F 2 +H2

τ
−κ

Figure 6-7: Tether force Tt in body components F , G and H

parameters ThL and ThR. See figure 6-6. Furthermore the bridle angle is specified by ϑ as shown in
figure 6-6. The absolute value of the forces in the bridle lines can be written as:

TL =
√

T v2L + Th2L

TR =
√

T v2R + Th2R

(6-31)

Now when the tether force component G has a nonzero value the forces in the bridle lines will not
be equal anymore. A moment acting in the XtZt-plane will result to counteract this asymmetric
condition.

This moment, given by Mbridle, is simply equal to:

Mbridle = −G · lbr cosϑ (6-32)

where lbr is the length of one of the bridle lines. See figure 6-8.
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Tt

Yt

Yt

Zt

Zt

ThR ThL

T vR

T vL

ϑ lbr

G

√
F 2 +H2

Figure 6-8: Bridle line forces, G 6= 0

As this moment is actually caused by a difference in the bridle line forces, this moment is transferred
by the bridle line forces TL and TR to the body. Only the change in the vertical components of
the bridle lines will transfer this moment, as the horizontal components do not act about the arm
lbr, because they act about 〈xtaL, ztaL〉 and 〈xtaR, ztaR〉. The change in the vertical components
will cause a moment given by:

Mbridle = (∆T vR −∆T vL) · lbr sinϑ

Because it is assumed that ϑ is constant, it means that ∆T vR is equal to −∆T vL. From this follows
that:

∆T vL = −∆T vR =
1

2

cosϑ

sinϑ
·G =

G

2 tanϑ

Now the vertical components of the bridle forces are given by equations (6-33):

T vL =
1

2
TG=0 +∆T vL

=
1

2

(

√

F 2 +H2 +
G

tanϑ

)

T vR =
1

2
TG=0 +∆T vR

=
1

2

(

√

F 2 +H2 − G

tanϑ

)

(6-33)

The horizontal components of the bridle ThL and ThR follow from force equilibrium and the fact
that ϑ is constant:

ThL = ThL,G=0 +
1

2
G

=
1

2
TG=0 tanϑ+

1

2
G

ThR = ThR,G=0 −
1

2
G

=
1

2
TG=0 tanϑ− 1

2
G

(6-34)

If the bridle line forces are given in components of the body-fixed reference frame 〈FL, GL, HL〉
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and 〈FR, GR, HR〉 than the bridle line moments MtL and MtR are obtained by equations (6-35):

MtL =





PL
QL
RL



 = rtaL ×





FL
GL
HL





MtR =





PR
QR
RR



 = rtaR ×





FR
GR
HR





(6-35)

where rtaL and rtaR are the left and right position vectors of the tether attachment point with
respect to the center of gravity in the body-fixed reference frame. They are given by equations
(6-36):

rtaL =





xtaL
−lbr sinϑ
ztaL





rtaR =





xtaR
lbr sinϑ
ztaR





(6-36)

where it is assumed that ytaL is equal to −ytaR by the fact that ϑ is invariable.

The total tether moment Mt is obtained by adding the moments of the bridle lines Mt,L and
Mt,R, so:

Mt =





P
Q
R



 =





PL
QL
RL



+





PR
QR
RR



 (6-37)

Writing the bridle forces TL and TR in body components is done by:




FL
GL
HL



 = ebL · TL




FR
GR
HR



 = ebR · TR

(6-38)

where ebL and ebR are the unit vectors of the left and right bridle line respectively.

The direction of the bridle lines are determined by the angles κ and ϑ and their unit vectors are
computed by:

ebL =





− sinκ cosϑ
sinϑ

cosκ cosϑ





ebR =





− sinκ cosϑ
− sinϑ

cosκ cosϑ





(6-39)

where κ is a rotation about Yt′ -axis and is given by (see figure 6-7):

κ = arctan

(

− F√
G2 +H2

)

for − 1

2
π < κ <

1

2
π (6-40)

The body roll angle with respect to the tether τ can be obtained by:

τ = arctan

(

G

H

)

for − 1

2
π < κ <

1

2
π (6-41)

τ is a rotation about Xb-axis. Since the tether force Tt is directed in the Zt-axis, the body yaw
angle with respect to the tether ξ has no influence on the body components of the tether force.
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6-4 Simulink Implementation

To simulate the Rigid Body Kite system equations the model is created in the software application
Simulink.

Model structure

For each set of equations a ‘subsystem’ block is constructed. The equations of motion and kine-
matic relations define each a set of equations and can be viewed in their respective ‘subsystem’
block. These subsystem blocks are by themselves part of other subsystem blocks. And the latter
are again part of other blocks. Eventually leading to a ‘top level’ block. Basically, in this way,
various model ‘levels’ are created.

The top level is a block with an input vector U and output vector Y . This is illustrated in figure
6-9. The input vector consists of the wind input and the controls input. The wind input can be
given in terms of the wind velocity V W in the earth-fixed reference frame. The control inputs
consists of the time derivative of the position of the two control units ḋLta and ḋRta.

U Y

Kite Model

Figure 6-9: ‘Top level’ block

The second level consists of the output block, see figure 6-10. The output block has as input the
state vector from a feedback signal, the wind input and the controls input. The output is given
by the state vector, the time derivative of the state vector and additional aerodynamic variables:
Va, α and β.

U

V W

ḋtaL,ḋtaR

X

Ẋ
Y

Va,α,β

outputs

Figure 6-10: ‘Output’ block

The following underlying level contains a subsystem with all system equations and an integrator
to obtain the state vector from the time derivative of the state vector, see figure 6-11. The initial
condition of the state vector at ‘t = 0 s’ is denoted X0. Ẋ is also fed back to the system equations
block. Furthermore there is a function to limit the tether azimuth angle ψt. When the top end
of the tether crosses the positive XE-axis 2π will be added or subtracted to limit ψt between −π
and +π. See section 5-3 and figure 5-4 for more details.

The state vector X is formed by the following 15 states:

X = 〈uk, vk, wk, x, y, z, p, q, r, φ, θ, ψ, lt, θt, ψt,xtaL,xtaR〉
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V W

ḋtaL,ḋtaR

X

X

Ẋ

Ẋ

Va,α,β

system equations

1
s limψt

Figure 6-11: ‘System equations’ block

which defines Ẋ as:

Ẋ = 〈u̇k, v̇k, ẇk, ẋ, ẏ, ż, ṗ, q̇, ṙ, φ̇, θ̇, ψ̇, l̇t, θ̇t, ψ̇t, ẋtaL, ẋtaR〉

And the output vector Y is given by the following variables:

Y = 〈Ẋ,X, Va, α, β〉

If the system equations block is opened the following blocks are found:

• kinematic relations

• wind relations

• equations of motion

At this level and in the ‘lower’ levels each signal represents a vector of three components. For
example, the signal ‘sphere’ consists of the three spherical tether coordinates 〈lt, θt, ψt〉.

Review and final remarks

In this chapter the Rigid Body model equations are derived to describe the dynamics of an arc-
shaped kite system.

The equations of motion are based on Newton’s second law expressed in Cartesian and spherical
coordinates. The system equations are expressed in the body fixed reference frame with its origin
at the center of gravity of the kite. An analysis is given for the state dependency of the aerodynamic
forces and moments as well as for the tether forces and moments. The functions describing the
aerodynamic forces and moments are still undefined. A first estimate for these functions will be
done in chapter 10 based on a arc-shaped LEI Kite simulated by a Multi-Body model in Adams.
Functions for the inertia tensor properties are derived in chapter 10 as well on a quasi static basis.

An overview of the applied assumptions for the Rigid Body model is given below:

• The variation of the inertia tensor can be taken into account on a quasi static basis

• The aerodynamic forces and moments can be represented by Taylor series

• The tether is a straight line and is modelled by a spring-damper system with invariant
coefficients

• The wind speed has no influence on the tether forces

• The roll constraint due to the bridle is modelled by a counteracting moment as a function
of the main tether force Tt
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• States influencing aerodynamic forces and moments have no direct influence on the resultant
tether force Tt and vice versa

• The control positions are constrained to move in Xb direction given by xtaL and xtaR

The verification of the model is performed by simulating an aircraft model of the Cessna ‘Citation’
and by simulating the aircraft attached to a tether in chapter 8.

To conclude the model is illustrated in figure 6-12.

θt

cg

rta,L

rta,R

VW

Xt

Yt

Zt

O
XE

YE

ZE

Xb

Yb

Zb

Figure 6-12: Rigid Body Kite system model
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Chapter 7

Linearized Kite Model Equations

The nonlinear Rigid Body model equations derived in chapter 6 are linearized in this chapter. Use
is made of the linearization method for aircraft flight dynamics as broadly described in reference
[24]. The system is linearized around a stationary statically stable condition. This results in two
linear time invariant (LTI) models: one for the symmetric motions and one for the asymmetric
motions. The linear models are compared with the Rigid Body model and used to investigate the
effect of linearization of the Rigid Body model in chapter 8.

In general linearization can be used to investigate the dynamics of a system at a particular initial
condition or around a particular initial condition where the linearization still suffice. Influences
of sufficiently small disturbances can be analyzed as well. The influences of the states and control
inputs will be captured in so called stability and control derivatives respectively. They describe
the change of a force or moment as function of a small change of a particular state or control
input.

One has to keep in mind that linearization is only valid within a certain region around the chosen
flight condition. The main goal of linearization is to find the stability in this particularly flight
condition. But it might be that a system is highly nonlinear, that the linearization is only valid in a
very small domain and that already a small disturbance will push the system out of the confidence
region. See figure 7-1 for the definition of the confidence region. In this case linearization becomes
practically useless. Although the usefulness of linearization on a kite system is still unanswered,
using the theory of linearization might give more insight and understanding of the dynamics and
stability of the system.

In practice linearization is usually performed around equilibrium positions. If the system is in a
stable and equilibrium condition the system will remain close to this condition. But if the system
is unstable or not in equilibrium the system will deviate quickly from the chosen condition and
out of the region of confidence. Therefore it is necessary to perform linearization from a statically
stable initial condition.

In this chapter, first the equations of motion will be linearized about an arbitrary flight condition.
Secondly the result of the first part will be used to obtain a linearized system or so called LTI (linear
time invariant) state-space model about a motionless steady straight symmetric flight condition
for the symmetric (longitudinal) and asymmetric (lateral) motions.

First, an additional assumption is made to the equations of motion with respect to the mass
moments and products of inertia. The body is assumed to be invariable and symmetric and the
body-fixed reference frame is chosen such that Jxy and Jyz are zero. Invariable means that the
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time derivative of the inertia tensor is zero and that the inertia tensor is constant. This results in
the fact that the derivative of the inertial angular momentum in the body-fixed reference frame
can be written as:

(

dBE
cg

dt

)b

=

(

BE
cg

dt

)b

+Ωb
bE ×Bb

cg

= I
b
cg

dΩb
bE

dt
+Ωb

bE ×
(

I
b
cgΩ

b
bE

)

=





Ixxṗ+ (Izz − Iyy) qr − Jxz (pq + ṙ)
Iyy q̇ + (Ixx − Izz) pr + Jxz

(

p2 − r2
)

Izz ṙ + (Iyy − Ixx) pq + Jxz (qr − ṗ)



 (7-1)

where Ωb
bE and I

b
rp are the rotational velocity and the mass moment of inertia respectively given

by:

Ωb
bE =





p
q
r



 (7-2)

I
b
rp =





Ixx 0 −Jxz
0 Iyy 0

−Jxz 0 Izz



 (7-3)

Now, the equations of motion (6-20) and (6-21) can be written in the following set of equations:

Fx = −W sin θ +X + F = m(u̇k + qwk − rvk)
Fy = W cos θ sinφ+ Y +G = m(v̇k + ruk − pwk)
Fz = W cos θ cosφ+ Z +H = m(ẇk + pvk − quk)

Mx = L+ P = Ixxṗ+ (Izz − Iyy) qr − Jxz (pq + ṙ)
My = M +Q = Iyy q̇ + (Ixx − Izz) pr + Jxz

(

p2 − r2
)

Mz = N +R = Izz ṙ + (Iyy − Ixx) pq + Jxz (qr − ṗ)

(7-4)

where W = mgG has been used.

The kinematic relations accompanying this set of equations are equations (6-22), (6-23), (6-24)
and the wind relations (6-25) and (6-26) completes the set.

7-1 Linearization about arbitrary flight condition

In general linearization can be performed on any function, which is differentiable. The method
is to apply a Taylor expansion about the state vector X and only take the initial condition (first
term) and the first derivative (second term) into account. For a two dimensional state X = (x, u)
the Taylor expansion about state (x0, u0) of a real function can be written as:

y = f(x0, u0) + [fx(x0, u0)∆x+ fu(x0, u0)∆u]

+
1

2!

[

fxx(x0, u0)∆x
2 + 2fxu(x0, u0)∆x∆u+ fuu(x0, u0)∆u

2
]

+ · · ·

(7-5)

where fx denotes the first derivative of f with respect to x and fu the first derivative with respect
to u. When applying linearization all terms with higher derivatives than 1 will be ignored. For a
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general n-dimensional state X the linearized function about point X0 becomes:

Y = f(X0) +

n
∑

i=1

fxi
(X0)∆xi (7-6)

Figure 7-1 gives a graphical representation of the concept of linearization for the function y = f(x)
about x0. The confidence region defines the domain the linearized representation of y = f(x) about
x0 is within the allowed error margin.

y

x

y0

x0

∂y
∂x

Confidence region

Figure 7-1: Linearization of y = f(x) about x0

7-1-1 Linearization of acceleration terms

The linearization of the acceleration terms of the equations of motion (7-4) can be written in terms
of the initial condition and the first derivative by:

Fx = Fx(X0) + Fx(∆X)

Fy = Fy(X0) + Fy(∆X)

Fz = Fz(X0) + Fz(∆X)

Mx = Mx(X0) +Mx(∆X)

My = My(X0) +My(∆X)

Mz = Mz(X0) +Mz(∆X)

(7-7)

with

Fx(X0) = m(u̇k,0 + q0wk,0 − r0vk,0)

Fy(X0) = m(v̇k,0 + r0uk,0 − p0wk,0)

Fz(X0) = m(ẇk,0 + p0vk,0 − q0uk,0)

Mx(X0) = Ixṗ0 + (Iz − Iy) q0r0 − Jxz (ṙ0 + p0q0)

My(X0) = Iy q̇0 + (Ix − Iz) p0r0 + Jxz
(

p20 + r20
)

Mz(X0) = Iz ṙ0 + (Iy − Ix) p0q0 − Jxz (ṗ0 − q0r0)

(7-8)
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and

Fx(∆X) = m(∆u̇k − r0∆vk + q0∆wk + wk,0∆q − vk,0∆r)

Fy(∆X) = m(∆v̇k + r0∆uk − p0∆wk − wk,0∆p+ uk,0∆r)

Fz(∆X) = m(∆ẇk − q0∆uk + p0∆vk + vk,0∆p− uk,0∆q)

Mx(∆X) = Ix∆ṗ− Jxz∆ṙ − Jxzq0∆p+ [(Iz − Iy) r0 − Jxzp0] ∆q + (Iz − Iy) q0∆r

My(∆X) = Iy∆q̇ + [(Ix − Iz) r0 + Jxzp0] ∆p+ [(Ix − Iz) p0 − Jxzr0] ∆r

Mz(∆X) = Iz∆ṙ − Jxz∆ṗ+ (Iy − Ix) q0∆p+ [(Iy − Ix) p0 − Jxzr0] ∆q + Jxzq0∆r

(7-9)

Note that the right hand side of the equations of motion are dependent on the kinematic velocities,
but that the aerodynamic forces and moments are dependent on the aerodynamic velocities. The
linearization of forces and moments is derived in the following section.

7-1-2 Linearization of forces and moments

The forces and moments are a function of the following states:

Fx = f
(

θ, ua, u̇a, wa, ẇa, q, r
L
ta, r

R
ta, lt, l̇t, κ,

)

Fy = f
(

φ, θ, va, v̇a, p, r, r
L
ta, r

R
ta, lt, l̇t, τ, κ

)

Fz = f
(

φ, θ, ua, u̇a, wa, ẇa, q, r
L
ta, r

R
ta, lt, l̇t, τ, κ

)

Mx = f
(

va, v̇a, p, r, r
L
ta, r

R
ta, lt, l̇t, τ, κ

)

My = f
(

ua, u̇a, wa, ẇa, q, r
L
ta, r

R
ta, lt, l̇t, τ, κ

)

Mz = f
(

va, v̇a, p, r, r
L
ta, r

R
ta, lt, l̇t, τ, κ

)

(7-10)

where φ and θ come from the gravity terms.

The control quantities rLta and rRta consist both of three components xta, yta and zta as explained
in section 6-3-3. The only variable components are xLta and xRta. Linearization of the control
quantities will result in a dependency only of ∆xLta and ∆xRta.

Linearizing the forces and moments to the defined states leads to:

Fx = Fx(X0) + Fx(∆X)

Fy = Fy(X0) + Fy(∆X)

Fz = Fz(X0) + Fz(∆X)

Mx =Mx(X0) +Mx(∆X)

My =My(X0) +My(∆X)

Mz =Mz(X0) +Mz(∆X)

(7-11)

with

Fx(X0) = −W sin θ0 +X0 + F0

Fy(X0) =W cos θ0 sinφ0 + Y0 +G0

Fz(X0) =W cos θ0 cosφ0 + Z0 +H0

Mx(X0) = L0 + P0

My(X0) =M0 +Q0

Mz(X0) = N0 +R0

(7-12)
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and

Fx(∆X) =−W cos θ0 ·∆θ
+Xu ·∆ua +Xw ·∆wa +Xẇ ·∆ẇa +Xq ·∆q
+ FδL ·∆xLta + FδR ·∆xRta + Fl ·∆lt
+ Fl̇ ·∆l̇t + Fκ ·∆κ

Fy(∆X) =−W sin θ0 sinφ0 ·∆θ +W cos θ0 cosφ0 ·∆φ
+ Yv ·∆va + Yv̇ ·∆v̇a + Yp ·∆p+ Yr ·∆r
+GδL ·∆xLta +GδR ·∆xRta +Gl ·∆lt +Gl̇ ·∆l̇t
+Gκ ·∆κ+Gτ ·∆τ

Fz(∆X) =−W sin θ0 cosφ0 ·∆θ −W cos θ0 sinφ0 ·∆φ
+ Zu ·∆ua + Zw ·∆wa + Zẇ ·∆ẇa + Zq ·∆q
+HδL ·∆xLta +HδR ·∆xRta +Hl ·∆lt +Hl̇ ·∆l̇t
+Hκ ·∆κ+Hτ ·∆τ

Mx(∆X) = Lv ·∆va + Lv̇ ·∆v̇a + Lp ·∆p+ Lr ·∆r
+ PδL ·∆xLta + PδR ·∆xRta + Pl ·∆lt + Pl̇ ·∆l̇t
+ Pκ ·∆κ+ Pτ ·∆τ

My(∆X) = Mu ·∆ua +Mw ·∆wa +Mẇ ·∆ẇa +Mq ·∆q
+QδL ·∆xLta +QδR ·∆xRta +Ql ·∆lt +Ql̇ ·∆l̇t
+Qκ ·∆κ+Qτ ·∆τ

Mz(∆X) = Nv ·∆va +Nv̇ ·∆v̇a +Np ·∆p+Nr ·∆r
+RδL ·∆xLta +RδR ·∆xRta +Rl ·∆lt +Rl̇ ·∆l̇t
+Rκ ·∆κ+Rτ ·∆τ

(7-13)

Linear aerodynamic models

In linear aerodynamic models the dimensionless coefficients Cxy
are called stability derivatives,

are constant and derived from a specific flight condition. A linear aerodynamic is derived by
linearizing equations (2-1).

Linearization is usually performed at a stable and steady condition, i.e. forces and moments are
in equilibrium. This results in the fact that CX0

, CZ0
and Cm0

have a different meaning in linear
models than in nonlinear models. This also holds for the asymmetric variants CY0

, Cl0 and Cn0
.

In linear models the subscript ‘0’ denotes the value of the forces and moments at t = 0 s, whereas
in nonlinear models the subscript ‘0’ denotes the value of the forces and moments when all the
states are zero. The linear variants of CX0

and CZ0
is given by their nonlinear variants at trim

condition:

ClinX0
= CX0

+ CXα
· αtr + CXδ

· δc
ClinZ0

= CZ0
+ CZα

· αtr + CZδ
· δc

(7-14)

In linear models one should take the variation of airspeed into account. This results in the stability
derivatives CXu

, CZu
and Cmu

. According to reference [24] CXu
is defined as:

CXu
=

1
1
2ρV0S

∂X

∂V
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There is also:

X = CX · 1
2
ρV 2

a S

differentiating with respect to V gives:

∂X

∂V
= CXρV0S +

∂CX
∂V

1

2
ρV 2

0 S

so, by consequence,

CXu
= 2CX +

∂CX
∂V

V0 (7-15)

where CX is CX at the initial condition for linearization, so equation (7-15) can be written as:

CXu
= 2ClinX0

+
∂CX
∂V

V0 (7-16)

Note that there is a distinction between Va and V0. Va is the general aerodynamic velocity and is
variable, whereas V0 is the initial aerodynamic velocity at t = 0 s and is constant. This distinction
comes from the linearization process. In linear models V0 is used and the change in velocity comes
from the stability derivatives with respect to u.

In equation (7-16) ∂CX

∂V has to be derived still. This is the derivative of the first of equations (2-1).

The derivation of CZu
and Cmu

is analogue to CXu
, so:

CZu
= 2ClinZ0

+
∂CZ
∂V

V0 (7-17)

Cmu
= 2Clinm0

+
∂Cm
∂V

V0 (7-18)

The partial derivatives of velocity in 7-16, 7-17 and 7-18 have several contributions as found in
reference [24], like variation in Mach number, Reynolds number, thrust coefficient and aeroelastic
deformation. For kites aeroelastic deformation is the only contribution with has influence.

The previous results in the forces and moments equations for linear models given in (7-19):

∆CX = CXu
· û+ CXα

· α+ CXα̇
· α̇c
V0

+ CXq
· qc
V0

+ CXδ
· δc

∆CY = CYβ
· β + CY

β̇
· β̇ + CYp

· pb
2V0

+ CYr
· rb
2V0

+ CYδ
· δc

∆CZ = CZu
· û+ CZα

· α+ CZα̇
· α̇c
V0

+ CZq
· qc
V0

+ CZδ
· δc

∆Cl = Clβ · β + Cl
β̇
· β̇ + Clp · pb

2V0
+ Clr ·

rb

2V0
+ Clδ · δc

∆Cm = Cmu
· û+ Cmα

· α+ Cmα̇
· α̇c
V0

+ Cmq
· qc
V0

+ Cmδ
· δc

∆Cn = Cnβ
· β + Cn

β̇
· β̇ + Cnp

· pb
2V0

+ Cnr
· rb
2V0

+ Cnδ
· δc

(7-19)

where the ∆ is written to make clear that the functions describe a deviation on the initial condition.

Again the obtained dimensionless forces and moments are multiplied with 1
2ρV

2
0 S and 1

2ρV
2
0 Sc

or 1
2ρV

2
0 Sb respectively to get the dimensional forces and moments, where V0 is the aerodynamic

trim velocity and is constant.
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7-1-3 Linearization of kinematic relations

The linearization of the kinematic relations relating to the body (6-22) can be found in reference
[24] and is repeated here:

φ̇ = φ̇(X0) + φ̇(∆X)

θ̇ = θ̇(X0) + θ̇(∆X)

ψ̇ = ψ̇(X0) + ψ̇(∆X)

(7-20)

with

φ̇(X0) = p0 + q0 sinφ0 tan θ0 + r0 cosφ0 tan θ0

θ̇(X0) = q0 cosφ0 − r0 sinφ0

ψ̇(X0) = q0
sinφ0
cos θ0

+ r0
cosφ0
cos θ0

(7-21)

and

φ̇(∆X) = ∆p+ sinφ0 tan θ0∆q + q0 cosφ0 tan θ0∆φ+ q0
sinφ0
cos2 θ0

∆θ

+ cosφ0 tan θ0∆r − r0 sinφ0 tan θ0∆φ+ r0
cosφ0
cos2 θ0

∆θ

θ̇(∆X) = cosφ0∆q − q0 sinφ0∆φ− sinφ0∆r − r0 cosφ0∆φ

ψ̇(∆X) =
sinφ0
cos θ0

∆q + q0
cosφ0
cos θ0

∆φ+ q0
sinφ0
cos θ0

tan θ0∆θ

+
cosφ0
cos θ0

∆r − r0
sinφ0
cos θ0

∆φ+ r0
cosφ0
cos θ0

tan θ0∆θ

(7-22)

The linearization of the first of the kinematic relations relating to the the tether, equation (6-23),
is quite extensive. It is in this case more convenient to perform the linearization together with the
application of the initial condition. This is done in subsequent sections.

The linearization of the second of the kinematic relations relating to the tether, equation (6-24),
is given by equation (7-23):

l̇t = l̇t(X0 +∆X) =− żtt0 −∆żtt

θ̇t = θ̇t(X0 +∆X) =− ẋtt0
lt0

− 1

lt0
∆ẋtt +

ẋtt0
l2t0

∆lt

ψ̇t = ψ̇t(X0 +∆X) =− ẏtt0
lt0 sin θt0

− 1

lt0 sin θt0
∆ẏtt

+
ẏtt0

l2t0 sin θt0
∆lt +

ẏtt0 cos θt0

lt0 sin
2 θt0

∆θt

(7-23)

Finally the linearization of wind relations, equations (6-25) and (6-26) needs to be done. The
linearization of these relations is also quite extensive. Also these relations are linearized together
with applying the initial condition.

7-2 Linearized equations of motion no initial velocity

The linearized equations of motions derived in the previous section can form a basis to study
the dynamic stability of kites. In this section the equations of motion will be derived for the
steady symmetric case, where the kite has no initial kinematic velocity. In the following first the
symmetric equations of motion will be derived followed by the asymmetric equations of motion.
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Initial condition

The flight condition to be linearized is a steady straight symmetric flight condition where the
initial kinematic velocity of the kite is zero. The initial condition is given by following parameters
in the body-fixed reference frame except for the wind velocity components:

ua 6= 0 uk = 0 u̇k = 0 Wx 6= 0 p = 0 ṗ = 0

va = 0 vk = 0 v̇k = 0 Wy = 0 q = 0 q̇ = 0

wa = 0 wk = 0 ẇk = 0 Wz = 0 r = 0 ṙ = 0

φ = 0 φ̇ = 0 δlt 6= 0 l̇t = 0 τ = 0 τ̇ = 0

θ 6= 0 θ̇ = 0 θt 6= 0 θ̇t = 0 κ 6= 0 κ̇ = 0

ψ = 0 ψ̇ = 0 ψt = 0 φ̇t = 0 ξ = 0 ξ̇ = 0

X 6= 0 F 6= 0 L = 0 p = 0

Y = 0 G = 0 M 6= 0 Q 6= 0

Z 6= 0 H 6= 0 N = 0 R = 0

The initial state of linearization is in equilibrium which means that the terms with X0 cancel in
the equations of the previous section. These equations are used to determine the values of the
non-zero initial parameters.

7-2-1 Matrix notation of symmetric equations of motion

In this section the linearized symmetric or longitudinal equations of motion are obtained. Figure
7-2 shows a graphical representation of this system with the definition of the angles κ, θt and θ.

θ

θt

cg

xta

VW

Xt

Zt

O
XE

ZE

Xb

Zb

kt,ct

−κ

X′

b

X′

b

Figure 7-2: Symmetric state-space kite system
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Accelerations

The linearized acceleration terms or right hand side of the equations of motion (7-9) are given by:

Fx(∆X) =m ·∆u̇k
Fz(∆X) =m ·∆ẇk

My(∆X) = Iy ·∆q̇
(7-24)

Forces and moments

The forces and moments for the symmetric case are a function of:

W → f
(

θ
)

X,Z,M → f
(

ua, wa, ẇa, q
)

F,H,Q→ f
(

xta, lt, l̇t, κ, κ̇
)

where the left and right pinion positions have been replaced by one parameter xta, because they
move synchronously for the symmetric case.

The linearized symmetric forces and moment of equation (7-13) become:

Fx(∆X) =−W cos θ0 ·∆θ +Xu ·∆ua +Xw ·∆wa +Xẇ ·∆ẇa +Xq ·∆q
+ Fδ ·∆δ + Fl ·∆lt + Fl̇ ·∆l̇t + Fκ ·∆κ+ Fκ̇ ·∆κ̇

Fz(∆X) =−W sin θ0 ·∆θ + Zu ·∆ua + Zw ·∆wa + Zẇ ·∆ẇa + Zq ·∆q
+Hδ ·∆δ +Hl ·∆lt +Hl̇ ·∆l̇t +Hκ ·∆κ+Hκ̇ ·∆κ̇

My(∆X) = Mu ·∆ua +Mw ·∆wa +Mẇ ·∆ẇa +Mq ·∆q
+Qδ ·∆δ +Ql ·∆lt +Ql̇ ·∆l̇t +Qκ ·∆κ+Qκ̇ ·∆κ̇

(7-25)

The derivatives of the tether forces and moment are derived from the tether model.

Tether forces and moments

Expressions for the tether forces and moments with respect to a change in κ, lt, l̇t and δ can be
derived. The tether is modelled as a spring-damper given by the values kt and ct for the spring
and damping constant respectively. The tether force is given by, see equation 6-29:

Tt = kt · δlt + ct · l̇t
where δlt is the elastic elongation at t = 0 s.

Writing this in the body axes by the transformation Tbt gives:

F = −kt sinκ · δlt − ct sinκ · l̇t
H = kt cosκ · δlt + ct cosκ · l̇t

(7-26)

These forces give the tether moment by:

Q = F · zta −H · xta (7-27)

Linearizing the previous expressions, (7-26) and (7-27), gives:

F (X0) = −kt sinκ0 · δlt0 − ct sinκ0 · l̇t0
H(X0) = kt cosκ0 · δlt0 + ct cosκ0 · l̇t0
Q(X0) = F0 · zta −H0 · xta0

(7-28)
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and

F (∆X) =−H0 ·∆κ− kt sinκ0 ·∆lt − ct sinκ0 ·∆l̇t
H(∆X) = F0 ·∆κ+ kt cosκ0 ·∆lt + ct cosκ0 ·∆l̇t
Q(∆X) = ztaFκ ·∆κ− ztakt sinκ0 ·∆lt

− ztact sinκ0 ·∆l̇t − xta0Hκ ·∆κ
− xta0kt cosκ0 ·∆lt − xta0ct cosκ0 ·∆l̇t
−H0 ·∆xta

(7-29)

where Fκ = −H0 and Hκ = F0.

Kinematic relations

Equation (7-22) of the kinematic relations with the initial conditions is:

θ̇(∆X) = ∆q (7-30)

The linearization of the first of the kinematic relations of the tether, equation (6-23), is done by
first writing equation (6-23) as a function of the symmetric parameters.





ẋtt
ẏtt
żtt



 = Ttb









ubk
vbk
wbk



+Ωb
bE × rbta





= Ttb









ẋbk
0
żbk



+





q · zta
0

−q · xta









= T
⊤

bt





ubt
0
wbt





=





cosκ · ẋbt + sinκ · żbt
0

− sinκ · ẋbt + cosκ · żbt





This gives:

ẋtt = cosκ (uk + q · zta) + sinκ (wk − q · xta)
żtt = − sinκ (uk + q · zta) + cosκ (wk − q · xta)

Linearizing this equation gives for X0 and ∆X:

ẋtt(X0) = cosκ0 (uk0 + q0 · zta) + sinκ0 (wk0 − q0 · xta0)
żtt(X0) =− sinκ0 (uk0 + q0 · zta) + cosκ0 (wk0 − q0 · xta0)

(7-31)

ẋtt(∆X) = cosκ0 ·∆uk + zta cosκ0 ·∆q
+ sinκ0 ·∆wk − xta0 sinκ0 ·∆q

żtt(∆X) =− sinκ0 ·∆uk − zta sinκ0 ·∆q
+ cosκ0 ·∆wk − xta0 cosκ0 ·∆q

(7-32)

where the initial condition has been applied and zta is assumed constant as defined in section 6-3-3
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The linearization of the second of the kinematic relations relating to the tether, equation (7-23),
for the symmetric case is given by:

l̇t(∆X) = −∆żtt

θ̇t(∆X) = − 1

lt0
∆ẋtt

(7-33)

From the kinematic relation (5-24) one can obtain a relation between the rotational velocities of
the body and the tether, which is used to remove the state κ and to be replaced by θ and θt.
Linearization for the symmetric case with the initial conditions gives:

q(∆X) = ∆κ̇+∆θ̇t (7-34)

Wind kinematics

The wind kinematic relations (6-25) can be written as:

V a = V k − V W




ua
va
wa



 =





uk
vk
wk



− TbE





Wx

0
0





(7-35)

Evaluating the previous with the initial conditions gives :

uba = ubk −Wx cos θ

wba = wbk −Wx sin θ
(7-36)

Applying linearization on equation (7-36) results in:

ua(X0) = uk,0 −Wx0 cos θ0

wa(X0) = wk,0 −Wx0 sin θ0
(7-37)

and

ua(∆X) = ∆uk − cos θ0 ·∆Wx +Wx0 sin θ0 ·∆θ
wa(∆X) = ∆wk − sin θ0 ·∆Wx −Wx0 cos θ0 ·∆θ

(7-38)

Furthermore for the linearization of the wind acceleration, equation (6-26), holds:

u̇ba(X0) = u̇k,0 + q0 sin θ0Wx,0

ẇba(X0) = ẇk,0 − q0 cos θ0Wx,0

(7-39)

and

u̇ba(∆X) = ∆u̇k +Wx0 sin θ0∆q

ẇba(∆X) = ∆ẇk −Wx0 cos θ0∆q
(7-40)
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Linearized symmetric equations

Taking the previously obtained equations as a function of ∆X together and dropping the ∆’s the
following set of equations is obtained:

−W cos θ0 · θ +Xu · ua +Xu̇ · u̇a +Xw · wa +Xẇ · ẇa +Xq · q
+Fδ · δ + Fl · lt + Fl̇ · l̇t + Fκ · κ = m · u̇k

−W sin θ0 · θ + Zu · ua + Zu̇ · u̇a + Zw · wa + Zẇ · ẇa + Zq · q
+Hδ · δ +Hl · lt +Hl̇ · l̇t +Hκ · κ = m · ẇk

Mu · ua +Mu̇ · u̇a +Mw · wa +Mẇ · ẇa +Mq · q
+Qδ · δ +Ql · lt +Ql̇ · l̇t +Qκ · κ = Iy · q̇

θ̇ = q

cosκ0 · uk + zta cosκ0 · q + sinκ0 · wk − xta0 sinκ0 · q = −lt0 · θ̇t
− sinκ0 · uk − zta sinκ0 · q + cosκ0 · wk − xta0 cosκ0 · q = −l̇t

κ̇+ θ̇t = q

uk − cos θ0 ·Wx +Wx0 sin θ0 · θ = ua

wk − sin θ0 ·Wx −Wx0 cos θ0 · θ = wa

u̇k +Wx0 sin θ0 · q = u̇a

ẇk −Wx0 cos θ0 · q = ẇa

(7-41)

These 10 equations can be reduced to 6 equations. The equations for ua and wa can be used to
replace the aerodynamic velocities in the force and moment equations. The same holds for ẇa.

Furthermore a relation between κ, θ and θt is obtained by integrating equation 7.

q = κ̇+ θ̇c

d

dt
· θ = d

dt
· κ+

d

dt
· θc

θ = κ+ θc

κ = θ − θc (7-42)

where the integration constant is omitted, because it is represented in the initial state of equilibrium
X0.
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Reducing the equations in (7-41) and collecting terms the following set of equations is obtained:

Xu · uk +Xu̇ · u̇k +Xw · wk +Xẇ · ẇk
+(−W cos θ0 +XuWx0 sin θ0 −XwWx0 cos θ0 + Fκ) · θ

+(Xq +Xu̇Wx0 sin θ0 −XẇWx0 cos θ0) · q + Fl · lt + Fl̇ · l̇t
−Fκ · θt + (−Xw sin θ0 −Xu cos θ0) ·Wx + Fδ · xta = m · u̇k

Zu · uk + Zu̇ · u̇k + Zw · wk + Zẇ · ẇk
+(−W sin θ0 + ZuWx0 sin θ0 − ZwWx0 cos θ0 +Hκ) · θ

+(Zq + Zu̇Wx0 sin θ0 − ZẇWx0 cos θ0) · q +Hl · lt +Hl̇ · l̇t
−Hκ · θt + (−Zw sin θ0 − Zu cos θ0) ·Wx +Hδ · xta = m · ẇk

Mu · uk +Mu̇ · u̇k +Mw · wk +Mẇ · ẇk
+(MuWx0 sin θ0 −MwWx0 cos θ0 +Qκ) · θ

+(Mq +Mu̇Wx0 sin θ0 −MẇWx0 cos θ0) · q +Ql · lt +Ql̇ · l̇t
−Qκ · θt + (−Mw sin θ0 −Mu cos θ0) ·Wx +Qδ · xta = Iy · q̇

q = θ̇

cosκ0 · uk + sinκ0 · wk + (zta cosκ0 − xta0 sinκ0) · q = −lt0 · θ̇t

− sinκ0 · uk + cosκ0 · wk − (zta sinκ0 + xta0 cosκ0) · q = −l̇t

(7-43)

For aircraft the equations of motion are made dimensionless because the aerodynamic forces and
moments are expressed in non-dimensional coefficients. In this way the flying characteristics
of different type of aircraft can be compared. Since kites also generate aerodynamic forces and
moments and to be able to compare the flying characteristics of different type of kites the equations
of motion for kites are made dimensionless as well.

The equations can be made dimensionless according to the divisors given in table 7-1 for the
symmetric and asymmetric equations of motion.

Symmetric Asymmetric

motions motions

Length [l] c b
Velocity [lt−1] V0 V0
Mass [m] ρSc ρSb

Table 7-1: Divisors for the dimensionless linearized equations of motion

In table 7-1 ρ is the air density, S the projected surface area, c the mean aerodynamic chord and
b the wing span.

In the symmetric equations (7-43) the force equations will be divided by 1
2ρV

2
0 S and the moment

equation by 1
2ρV

2
0 Sc. In this process the states as well as the derivatives become dimensionless.

For example for the velocity component u becomes u/V0 = û. More details can be found in
reference [24].
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The result is:

(CXu
+ CXu̇

Dc) · ûk + (CXw
+ CXẇ

Dc) · ŵk
+(CZ0

+ CH0
+ CXu

ŵz0 − CXw
ŵx0

+ CFκ
) · θ

+(CXq
+ CXu̇

ŵz0 − CXẇ
ŵx0

) · qcVa
+ CFl

· ltc + CF
l̇
· l̇tVa

− CFκ
· θt

+(−CXw
sin θ0 − CXu

cos θ0) ·Wx + CFδ
· xta = 2µcDc · ûk

(CZu
+ CZu̇

Dc) · ûk + (CZw
+ CZẇ

Dc) · ŵk
+(−CX0

− CF0
+ CZu

ŵz0 − CZw
ŵx0

+ CHκ
) · θ

+(CZq
+ CZu̇

ŵz0 − CZẇ
ŵx0

) · qcVa
+ CHl

· ltc + CH
l̇
· l̇tVa

− CHκ
· θt

+(−CZw
sin θ0 − CZu

cos θ0) ·Wx + CHδ
· xta = 2µcDc · ŵk

qc
Va

= Dc · θ

(Cmu
+ Cmu̇

Dc) · ŵk + (Cmw
+ Cmẇ

Dc) · ŵk
+(Cmu

ŵz0 − Cmw
ŵx0

+ CQκ
) · θ

+(Cmq
+ Cmu̇

ŵz0 − Cmẇ
ŵx0

) · qcVa
+ CQl

· ltc + CQ
l̇
· l̇tVa

− CQκ
· θt

+(−Cmw
sin θ0 − Cmu

cos θ0) ·Wx + CQδ
· xta = 2µcK

2
YDc · qcVa

cosκ0 · ûk + sinκ0 · ŵk + zta cosκ0−xta0 sinκ0

c · qcVa
= − lt0

c Dc · θt

− sinκ0 · ûk + cosκ0 · ŵk − zta sinκ0+xta0 cosκ0

c · qcVa
= −Dc · ltc

(7-44)

with:

ûk =
uk
V0

CZ0
+ CH0

= −W cos θ0
1
2ρV

2
0 S

ŵk =
wk
V0

−CX0
− CF0

= −W sin θ0
1
2ρV

2
0 S

µc =
m

ρSc
ŵx0

=
Wx0 cos θ0

V0

µcK
2
Y =

Iy

ρSc3
ŵz0 =

Wx0 sin θ0
V0

Dc =
c

V0

d

dt
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and

CFκ
= −CH0

CFl
= −ktc sinκ01

2ρV
2
0 S

CHκ
= CF0

CHl
=
ktc cosκ0
1
2ρV

2
0 S

CQκ
=
zta
c
CFκ

− xta0
c
CHκ

CQl
= −ztakt sinκ0 + xta0kt cosκ0

1
2ρV

2
0 S

CF
l̇
= −ct sinκ01

2ρV0S
CFδ

= 0

CH
l̇
=
ct cosκ0
1
2ρV0S

CHδ
= 0

CQ
l̇
= −ztact sinκ0 + xta0ct cosκ0

1
2ρV0Sc

CQδ
= −CH0

where the terms with the weight W come from the force equilibrium.

The dimensionless aerodynamic force and moment derivatives have to be known for the specific
kite to be studied. They can be obtained from experimental data, other models or flight tests.

The next step is to write the equations in matrix notation depending on the dimensionless states
ûk, ŵk, θ,

qc
V0
, θt and

lt
c with Wx

V0
and xta

c as inputs:



















CXu
+ (CXu̇

− 2µc)Dc CXw
+ CXẇ

Dc cxθ cxq −CFκ
CFl

+ CF
l̇
Dc

CZu
+ CZu̇

Dc CZw
+ (CZẇ

− 2µc)Dc czθ czq −CZκ
CHl

+ CH
l̇
Dc

0 0 −Dc 1 0 0
Cmu + Cmu̇

Dc Cmw + Cmẇ
Dc cmθ

cmq − 2µcK2
YDc −CQκ

CQl
+ CQ

l̇
Dc

cosκ0 sinκ0 0 zta cosκ0−xta0 sinκ0
c

lt0
c
Dc 0

− sinκ0 cosκ0 0 − zta sinκ0+xta0 cosκ0
c

0 Dc



































ûk
ŵk
θ
qc
Va

θt
lt
c

















=















cxW −CFδ

czW −CHδ

0 0
cmW

−CQδ

0 0
0 0















[

Wx
V0
xta
c

]

(7-45)

with:

cxθ
= CZ0

+ CH0
+ CXu

ŵz0 − CXw
ŵx0

+ CFκ

czθ =− CX0
− CF0

+ CZu
ŵz0 − CZw

ŵx0
+ CHκ

cmθ
= Cmu

ŵz0 − Cmw
ŵx0

+ CQκ

cxq
= CXq

+ CXu̇
ŵz0 − CXẇ

ŵx0

czq = CZq
+ CZu̇

ŵz0 − CZẇ
ŵx0

cmq
= Cmq

+ Cmu̇
ŵz0 − Cmẇ

ŵx0

cxW
= CXw

sin θ0 + CXu
cos θ0

czW = CZw
sin θ0 + CZu

cos θ0

cmW
= Cmw

sin θ0 + Cmu
cos θ0

7-2-2 Matrix notation of asymmetric equations of motion

The derivation of the asymmetric LTI model for the given initial condition is given in this section.
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States

Linearizing the right hand side of the equations of motion (7-9) for the asymmetric case with the
initial condition gives:

Fy(∆X) = m ·∆v̇k
Mx(∆X) = Ix ·∆ṗ− Jxz ·∆ṙ
Mz(∆X) = Iz ·∆ṙ − Jxz ·∆ṗ

(7-46)

Forces and moments

The forces and moments for the asymmetric case are a function of:

W → f
(

φ
)

Y, L,N → f
(

va, v̇a, p, r
)

G,P,R→ f
(

xLta, x
R
ta, τ

)

where xLta and xRta are the displacements of the left and right tether attachment points.

The linearized asymmetric forces and moments of equations (7-13) become:

Fy(∆X) = W cos θ0 ·∆φ
+ Yv ·∆va + Yv̇ ·∆v̇a + Yp ·∆p+ Yr ·∆r
+GδL ·∆xLta +GδR ·∆xRta +Gτ ·∆τ

Mx(∆X) = Lv ·∆va + Lv̇ ·∆v̇a + Lp ·∆p+ Lr ·∆r
+ PδL ·∆xLta + PδR ·∆xRta + Pτ ·∆τ

Mz(∆X) = Nv ·∆va +Nv̇ ·∆v̇a +Np ·∆p+Nr ·∆r
+RδL ·∆xLta +RδR ·∆xRta +Rτ ·∆τ

(7-47)

Tether forces and moments

Expressions for derivatives of the tether forces and moments can be found by linearizing the
equations for the bridle lines given in section 6-3-4.

From equation (6-17) can be obtained by applying the initial conditions τ0 = 0 and κ0 6= 0:

∆F = − sinκ0 ·∆Tt − Tt0 cosκ0 ·∆κ
∆G = Tt0 cosκ0 ·∆τ
∆H = cosκ0 ·∆Tt − Tt0 sinκ0 ·∆κ

(7-48)

Since Tt and κ are symmetric quantities ∆Tt and ∆κ are zero for the asymmetric motions, so only
∆G is not zero.

Linearizing equations (6-38) the derivative of the bridle force components in body-fixed reference
is obtained:

FL(∆X) = − sinκ0 cosϑ ·∆TL FR(∆X) = − sinκ0 cosϑ ·∆TR
GL(∆X) = sinϑ ·∆TL GR(∆X) = − sinϑ ·∆TR
HL(∆X) = cosκ0 cosϑ ·∆TL HR(∆X) = cosκ0 cosϑ ·∆TR

(7-49)

Modelling the Dynamics of an Arc-shaped Kite for Control Law Design



7-2 Linearized equations of motion no initial velocity 89

Linearizing the equations for TL and TR gives:

TL(∆X) =
T vbr0

√

T v2br0 + Th2br0

·∆T vL +
Thbr0

√

T v2br0 + Th2br0

·∆ThL

TR(∆X) =
T vbr0

√

T v2br0 + Th2br0

·∆T vR +
Thbr0

√

T v2br0 + Th2br0

·∆ThR
(7-50)

where br stands for the left and right bridle line and where is used that T vL0 = T vR0 = T vbr0 and
ThL0 = ThR0 = Thbr0 for the initial condition where G is zero.

Linearizing the vertical and horizontal components of TL and TR gives:

T vL(∆X) = 1
2 tanϑ ·∆G T vR(∆X) = − 1

2 tanϑ ·∆G
ThL(∆X) = 1

2 ·∆G ThR(∆X) = − 1
2 ·∆G

(7-51)

Linearizing equations (6-35) for the asymmetric left and right bridle moments PL, PR, RL and
RR results in:

PL(∆X) = yLta ·∆HL − zLta ·∆GL
PR(∆X) = yRta ·∆HR − zRta ·∆GR
RL(∆X) = xLta0 ·∆GL +GL0 ·∆xLta − yLta ·∆FL
RR(∆X) = xRta0 ·∆GR +GR0 ·∆xRta − yRta ·∆FR

(7-52)

Finally the resulting moments on the body P and R are than given by:

P (∆X) = ∆PL +∆PR

R(∆X) = ∆RL +∆RR
(7-53)

Finally condensing the previously obtained equations will give the first derivatives of G, P and R
as a function of τ , xLta and xRta:

Gτ = Tt0 cosκ0

Pτ = −
zta sinϑ cosκ0

√

Tt0
2
(

1 + tan2 ϑ
)

tanϑ
+
yLta cosϑ cos

2 κ0

√

Tt0
2
(

1 + tan2 ϑ
)

tanϑ

Rτ =
yLta cosϑ sinκ0 cosκ0

√

Tt0
2
(

1 + tan2 ϑ
)

tanϑ
+
xta0 sinϑ cosκ0

√

Tt0
2
(

1 + tan2 ϑ
)

tanϑ
RδL = Tbr0 sinϑ

RδR = −Tbr0 sinϑ

(7-54)

where the fact is used that yLta = −yRta and zLta = zRta = zta. Note that GδL , GδR , PδL and PδR are
zero.

Kinematic relations

Equation (7-22) of the kinematic relations with the initial conditions is:

φ̇(∆X) = ∆p+ tan θ0 ·∆r

ψ̇(∆X) =
1

cos θ0
·∆r

(7-55)
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The kinematic relations relating to the tether, equations (6-23) and (7-23), for the asymmetric
motion are linearized as follows.

Equation (6-23) is written as a function of only the asymmetric degree of freedom, ẏtt :





ẋtt
ẏtt
żtt



 = Ttb









ubk
vbk
wbk



+Ωb
bE × rbta





= Ttb









0
vk
0



+





0
r · xta− p · zta

0









= T
⊤

bt





0
ẏbt
0





=





0
cos τ · ẏbt

0





This gives:
ẏtt = cos τ · (vk + r · xta − p · zta)

Linearizing this equation gives for X0 and ∆X:

ẏtt(X0) = −p0 · zta + r0 · xta0 (7-56)

where xta0 is the initial cart position and zta is invariant.

ẏtt(∆X) = ∆vk − zta ·∆p+ xta0 ·∆r (7-57)

The linearization of the second of the kinematic relations relating to the tether, equation (7-23),
for the asymmetric variable results in:

ψ̇t(∆X) = − 1

lt0 sin θt0
∆ẏtt (7-58)

Taking equations (7-57) and (7-58) together results in:

∆ψ̇t = − 1

lt0 sin θt0
·∆vk +

zta

lt0 sin θt0
·∆p− xta0

lt0 sin θt0
·∆r (7-59)

Another equation can be obtained from the kinematic relation (5-24) for a relation between the
rotational velocities of the body and the tether, which is used to remove the state τ and to be
replaced by θ and θt. The asymmetric body rotations p and r are given by:

p = τ̇ − ξ̇ · sinκ− ψ̇t · (sin θt cosκ cos ξ + cos θt sinκ)

r =− κ̇ · sin τ + ξ̇ · cos τ cosκ− ψ̇t · sin θt (cos τ sinκ cos ξ + sin τ sin ξ)

+ ψ̇t cos θt cos τ cosκ

(7-60)

Linearizing these equations with the initial condition gives for ∆X:

p(∆X) = ∆τ̇ − sinκ0 ·∆ξ̇ − (sin θt0 cosκ0 + cos θt0 sinκ0) ·∆ψ̇t
r(∆X) = cosκ0 ·∆ξ̇ − (sin θt0 sinκ0 − cos θt0 cosκ0) ·∆ψ̇t

(7-61)
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Wind kinematics

The wind kinematics equation (6-25) can be written as:

V b
a = V b

k − V b
w





ua
va
wa



 =





uk
vk
wk



− TbE





Wx

Wy

0





(7-62)

Evaluating the previous for va results in:

va = vk − (sinφ sin θ cosψ − cosφ sinψ) ·Wx

− (sinφ sin θ sinψ + cosφ cosψ) ·Wy

(7-63)

Linearization of (7-63) with the initial conditions gives:

va(X0) = 0 (7-64)

and
va(∆X) = ∆vk −∆Wy −Wx0 sin θ0 ·∆φ+Wx0 ·∆ψ (7-65)

For the wind acceleration, equation (6-26), with the initial conditions holds:

v̇a(∆X) =Wx0 cos θ0 ·∆r −Wx0 sin θ0 ·∆p (7-66)

Linearized asymmetric equations

Taking the previously obtained equations as a function of ∆X together and dropping the ∆’s the
following set of equations is obtained:

W cos θ0 · φ+ Yv · va + Yv̇ · v̇a + Yp · p+ Yr · r
+Gτ · τ = m · v̇k

Lv · va + Lv̇ · v̇a + Lp · p+ Lr · r
+Pτ · τ = Ix · ṗ− Jxz · ṙ

Nv · va +Nv̇ · v̇a +Np · p+Nr · r
+RδL · xLta +RδR · xRta +Rτ · τ = Iz · ṙ − Jxz · ṗ

p+ tan θ0 · r = φ̇

1
cos θ0

· r = ψ̇

−vk + zta · p− xta0 · r = lt0 sin θt0 · ψ̇t
τ − sinκ0 · ξ̇ − (sin θt0 cosκ0 + cos θt0 sinκ0) · ψ̇t = p

cosκ0 · ξ̇ − (sin θt0 sinκ0 − cos θt0 cosκ0) · ψ̇t = r

vk −Wy −Wx0 sin θ0 · φ+Wx0 · ψ = va

v̇k −Wx0 sin θ0 · p+Wx0 cos θ0 · r = v̇a

(7-67)

These 10 relations can be reduced to a set of 6 equations, depending on the states vk, φ, p, ψ, r
and ψt.

A relation can be found for τ depending on φ, ψ and ψt by taking equations 4,5,7 and 8 of (7-67)
together:

τ̇ = φ̇+ (− sin θ0 + tanκ0 cos θ0) · ψ̇ +
sin θt0
cosκ0

· ψ̇t
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and equation (7-68) can be integrated to obtain:

τ = φ+ tψ · ψ + tψt
· ψt (7-68)

with

tψ = − sin θ0 + tanκ0 cos θ0

tψt
=

sin θt0
cosκ0

Reducing the 10 equations to 6 and collecting terms the following set of equations is obtained:

Yv · vk + Yv̇ · v̇k + (W cos θ0 −Wx sin θ0Yv +Gτ ) · φ
+(−Yv̇Wx sin θ0 + Yp) · p+ (YvWx +Gτ tψ) · ψ
+(Yv̇Wx cos θ0 + Yr) · r +Gτ tψt

· ψt − Yv ·Wy = m · v̇k

p+ tan θ0 · r = φ̇

Lv · vk + Lv̇ · v̇k + (−Wx sin θ0Lv + Pτ ) · φ
+(−Lv̇Wx sin θ0 + Lp) · p+ (LvWx + Pτ tψ) · ψ
+(Lv̇Wx cos θ0 + Lr) · r + Pτ tψt

· ψt − Lv ·Wy = Ix · ṗ− Jxz · ṙ
1

cos θ0
· r = ψ̇

Nv · vk +Nv̇ · v̇k + (−Wx sin θ0Nv + Pτ ) · φ
+(−Nv̇Wx sin θ0 +Np) · p+ (NvWx +Rτ tψ) · ψ
+(Nv̇Wx cos θ0 +Nr) · r +Rτ tψt

· ψt −Nv ·Wy

+RδL · xLta +RδR · xRta = Iz · ṙ − Jxz · ṗ

−vk + zta · p− xta0 · r = lt0 sin θt0 · ψ̇t

(7-69)

As for the symmetric equations of motion the asymmetric equations are made dimensionless as
well. The divisors are given in table 7-1. The forces are divided by 1

2ρV
2
0 S and the moments by

1
2ρV

2
0 Sb. The dimensionless quantities of p and r are pb

2V0
and rb

2V0
respectively. There is no specific

reason for this way, but more a custom in flight dynamics.
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The dimensionless equations of motion can be written as:

(CYv
+ CYv̇

Db) · v̂k + (−CZ0
− CH0

− CYv
ŵz0 + CGτ

) · φ
+(−2CYv̇

ŵz0 + CYp
) · pb

2V0
+ (CYv

Wx

V0
+ CGτ

tψ) · ψ
+(2CYv̇

ŵx0
+ CYr

) · rb
2V0

+ CGτ
tψt

· ψt − CYv
· Wy

V0
= 2µbDb · v̂k

2 pb
2V0

+ 2 tan θ0 · rb
2V0

= Db · φ

(Clv + Clv̇Db) · v̂k + (−Clv ŵz0 + CPτ
) · φ

+(−2Clv̇ ŵz0 + Clp) · pb
2V0

+ (Clv
Wx

V0
+ CPτ

tψ) · ψ
+(2Clv̇ ŵx0

+ Clr ) · rb
2V0

+ CPτ
tψt

· ψt − Clv · Wy

V0
= 4µbK

2
XDb · pb

2V0
− 4µbKXZDb · rb

2V0

2
cos θ0

· rb
2V0

= Db · ψ

(Cnv
+ Cnv̇

Db) · v̂k + (−Cnv
ŵz0 + CPτ

) · φ
+(−2Cnv̇

ŵz0 + Cnp
) · pb

2V0
+ (Cnv

Wx

V0
+ CRτ

tψ) · ψ
+(2Cnv̇

ŵx0
+ Cnr

) · rb
2V0

+ CRτ
tψt

· ψt − Cnv
· Wy

V0

+CRδL
· x

L
ta

b + CRδR
· x

R
ta

b = 4µbK
2
ZDb · rb

2V0
− 4µbKXZDb · pb

2V0

− vk
V0

+ 2 ztab · pb
2V0

− 2xta0

b · rb
2V0

= lt0 sin θt0
b Db · ψt

(7-70)
where W cos θ0 has been replaced by −Z0 −H0 as was done in the symmetric equations.

The next step is to write the equations in matrix notation depending on the dimensionless states

v̂k, φ,
pb
2V0

, ψ, rb
2V0

and ψt with
Wy

V0
,
xL
ta

b and
xR
ta

b as inputs:




















CYv
+ (CYv̇

− 2µb)Db cyφ cyp CYv

Wx
V0

+ CGτ
tψ cyr CGτ

tψt

0 −Db 2 0 2 tan θ0 0

Clv + Clv̇Db clφ clp − 4µbK
2
XDb Clv

Wx
V0

+ CPτ
tψ clr + 4µbKXZDb CPτ

tψt

0 0 0 −Db
2

cos θ0
0

Cnv + Cnv̇
Db cnφ

cnp + 4µbKXZDb Cnv
Wx
V0

+ CRτ
tψ cnr − 4µbK

2
ZDb CRτ

tψt

1 0 −2 zta
b

0 2xta0
b

lt0 sin θt0
b

Db





































v̂k
φ
pb
2V0

ψ
rb
2V0

ψt

















=

















CYv
0 0

0 0 0
Clv 0 0
0 0 0

Cnv −CRδL
−CRδR

0 0 0

























Wy

V0

xLta
b
xRta
b









(7-71)

where

cyφ = −CZ0
− CH0

− CYv
ŵz0 + CGτ

clφ = −Clv ŵz0 + CPτ

cnφ
= −Cnv

ŵz0 + CRτ

cyp = −2 · CYv̇
ŵz0 + CYp

clp = −2 · Clv̇ ŵz0 + Clp

cnp
= −2 · Cnv̇

ŵz0 + Cnp

cyr = 2 · CYv̇
ŵx0

+ CYr

clr = 2 · Clv̇ ŵx0
+ Clr

cnr
= 2 · Cnv̇

ŵx0
+ Cnr

The equations of motion can also be given in state-space form given by equation (7-72).
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7-2-3 Equations of motion in state space form

To simulate the models in Matlab the matrix notation is written in the standard state space
form given by equation (7-72):

ẋ = Ax+ Bu

y = Cx+ Du
(7-72)

where A is the state-matrix, B the input-matrix, C the output matrix and D the direct matrix.
Furthermore x is the state vector, y the output vector and u the input vector.

The state space form is obtained by rearranging equation (7-45). First, all terms without the
differential operator Dc are put to the right hand side and the differential operator Dc is replaced
by c

Va

d
dt . This results in a equation of the form:

P
dx

dt
= Pẋ = Qx+ Ru

The state space form is than obtained by:

ẋ = P−1Qx+ P−1Ru = Ax+ Bu

Note that the resultant output variables are dimensionless. Each variable must be multiplied by
its respective dimensional multiplier.

Review & remarks

The linearization process at the specified flight condition shows that the symmetric and asymmetric
equations of motion result in two decoupled LTI models. This holds with the assumption that the
aerodynamic states are decoupled.

The theory in this chapter could be of valuable use for stability analysis and controller design
purposes. The LTI models can be used for stability analysis on a parametric basis. By computing
the characteristic equation of the state-matrix A the eigenvalues of the system can be derived.
Routh and Hurwitz derived criteria which the coefficients of an algebraic equation have to satisfy
for all real eigenvalues and the real parts of the complex eigenvalues to be negative (reference [24]).
With this method the influence of the stability derivatives on the stability of the system can be
analyzed.

Simulations of the LTI models are performed in chapter 8.

Modelling the Dynamics of an Arc-shaped Kite for Control Law Design



Chapter 8

Verification of Rigid Body Kite
model

The verification of the Rigid Body model is done by simulating the Cessna Ce500 ‘Citation’ aircraft
as well as a light version of this aircraft attached to a tether. The latter system is called ‘Citation-
Kite’. As reference for the aircraft simulations a linear aircraft model is used as given in reference
[24]. For the Citation-Kite a comparison is made between the linear kite models as derived in
chapter 7 and the nonlinear Rigid Body Kite model as described in chapter 6. Additionally, the
simulation results are shown in appendix E.

8-1 Aircraft simulation

The aircraft verification is performed by simulating the Cessna Ce500 ‘Citation’ aircraft. In
reference [24] linear time invariant (LTI) models are derived for the symmetric and asymmetric
motions of an aircraft at a steady, straight, symmetric flight condition. These models are used
to simulate the Cessna Citation aircraft. Here, the same aircraft is simulated with similar LTI
models. Additionally, the models are adapted to have the wind speed as input on the system
as well. The LTI models have the same dynamics if the initial wind speed and initial kinematic
velocities are set right. Therefore the LTI models serve as a reference for the nonlinear model
Rigid Body.

The LTI model simulations are used to verify the Rigid Body Kite model of chapter 6. The
nonlinear kite model is adapted such that it simulates an aircraft instead of a kite by eliminating
the tether forces. The aerodynamic force and moment functions are derived from the linear
stability and control derivatives given in reference [24]. The Rigid Body model is linearized to
compare the model with the LTI models and to investigate the effect of linearization on the
nonlinear model. The models used for the simulations are itemized below:

• LTI model in parametric state-space form

• Nonlinear model: Rigid Body Kite model modified to simulate an aircraft

• Linearized model: automatic linearized version of the nonlinear model

The equilibrium equations for the nonlinear model will determine the values for the initial condi-
tion. To be able to make a comparison between the models, the chosen flight condition should be
the same for all models.
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8-1-1 LTI model in state-space representation

The LTI models in reference [24] are adapted to have the wind speed as input to the system as well.
Actually, the symmetric and asymmetric LTI model are given by equations (7-45) and (7-71) with
the tether degrees of freedom removed. The aircraft is trimmed at a steady straight symmetric
flight condition as described in the part about the nonlinear model.

The linear aerodynamic functions are derived from the nonlinear aerodynamic model given in
equation (2-1). Tables 8-1 and 8-2 give the resulted stability and control derivatives. Note that the
coefficients in nonlinear aerodynamic models are called aerodynamic derivatives and in nonlinear
models stability and control derivatives. The linear model is represented in matrix form as given
by equations (8-1) and (8-3) for the longitudinal and lateral motions.

To simulate the LTI models, the matrix notation of the models are written in state-space form as
described in chapter 7. Representing the equations of motion in state-space form is also convenient
for determining the eigenvalues of the state matrix A. The eigenvalues λ of the system can be
determined with the Matlab routine eig.m (for the state matrix A).

Longitudinal equations of motion

The equations of motion for the symmetric motions are given by equation (8-1), which is obtained
from equation (7-45) by removing the tether degrees of freedom, θt and lt. Additionally, terms have
been added to the linearized accelerations in equation (7-24) due to a nonzero initial kinematic
velocity effect given by m · wk0 ·∆q and −m · uk0 ·∆q. These nonzero initial kinematic velocities
result from the force equilibrium, that is the initial condition.
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+ (CXu̇

− 2µc)Dc CXw
+ CXẇ

Dc cxθ
cxq
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0 0 −Dc 1
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+ Cmu̇
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+ Cmẇ
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













ûk
ŵk
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−Cmδe









[

δe
]

(8-1)

where

cxθ
= CZ0

+ Cxu
ŵz0 − CXw

ŵx0

czθ = −CX0
+ CZu

ŵz0 − CZw
ŵx0

cmθ
= Cmu

ŵz0 − Cmw
ŵx0

cxq
= CXq

+ CXu̇
ŵz0 − CXẇ

ŵx0

czq = CZq
+ CZu̇

ŵz0 − CZẇ
ŵx0

cmq
= Cmq

+ Cmu̇
ŵz0 − Cmẇ

ŵx0
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and

ûk =
uk
V0

CZ0
= −W cos θ0

1
2ρV

2
0 S

ŵk =
wk
V0

CX0
=
W sin θ0
1
2ρV

2
0 S

µc =
m

ρSc
ŵx0

=
Wx0 cos θ0

V0

µcK
2
Y =

IY

ρSc3
ŵz0 =

Wx0 sin θ0
V0

Dc =
c

V0

d

dt

In section 8-1-3 the results to a step elevator deflection are shown. The responses of the states Va
and α are shown, instead of uk and wk, which is conventional in aircraft simulations. Va and α
are obtained by equations (8-2):

Va =
√

u2a + w2
a

α = arctan

(

wa
ua

)

(8-2)

where ua and wa are given by adding equations (7-37) and (7-38).

The symmetric stability and control derivatives together with the trim condition and mass prop-
erties are given in table 8-1.

V0 = 59.9m/s m = 4547.8 kg µc = 102.7
S = 24.2m2 K2

Y = 0.980 c = 2.022m

CX0
= 0.0821 CZ0

= −1.1330 Cm0
= 0.0

CXu
= 0.0825 CZu

= −1.3605 Cmu
= 0.0755

CXu̇
= 0.0 CZu̇

= 0.2509 Cmu̇
= 0.6493

CXw
= 0.4653 CZw

= −5.1600 Cmw
= −0.4300

CXẇ
= 0.0 CZẇ

= −1.4078 Cmẇ
= −3.6426

CXq
= 0.0 CZq

= −3.8600 Cmq
= −7.0400

CXδe
= 0.0 CZδe

= −0.6238 Cmδe
= −1.5530

Table 8-1: Symmetric stability and control derivatives, Cessna Ce500 ‘Citation’

These values are determined by linearizing the nonlinear aerodynamic model functions in equation
(2-1). The linear model can be found in chapter 7.

The air density ρ is determined from the formula for µc, which gives:

ρ = 0.9050 kg/m
3

With these values the eigenvalues for the symmetric motions are:

λ1,2 = −0.0078± 0.1971 i
λ3,4 = −1.1388± 1.1258 i

λ1,2 corresponds to a low frequent slow damping periodic motion, i.e. the ‘phugoid’ eigenmotion,
and λ3,4 corresponds to a high frequent fast damping periodic motion, i.e. the ‘short period’
eigenmotion.
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Lateral equations of motion

The equations of motion for the asymmetric motions in matrix notation is given by equation (8-3),
which is obtained from (7-71) by removing the tether angle degree of freedom ψt. Additionally,
terms have been added to the linearized accelerations in equation (7-24) due to a nonzero initial
kinematic velocity effect given by −m · wk0 ·∆p.
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
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(8-3)

where

cyp = −CYv̇
ŵz0 + CYp

+ 4µbŵk0

clp = −Clv̇ ŵz0 + Clp

cnp
= −Cnv̇

ŵz0 + Cnp

cyr = 2CYv̇
ŵx0 + CYr

clr = 2Clv̇ ŵx0 + Clr

cnr
= 2Cnv̇

ŵx0 + Cnr

and

v̂k =
vk
V0

ŵE0 =
Wx0

V0

µb =
m

ρSb
µbK

2
X =

IX
ρSb3

µbK
2
Z =

IZ
ρSb3

µbKXZ =
JXZ
ρSb3

Db =
b

V0

d

dt

Equation (8-3) is written in state-space form by equation (7-72). The resulting A matrix has a
rank of 4, which means that there are two linear dependent rows or columns. This means that
there will be at least one eigenvalue which is zero.

The asymmetric stability and control derivatives together with the trim condition and mass prop-
erties are given in table 8-2.
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b = 13.36m K2
X = 0.012 KXZ = 0.002

µb = 15.5 K2
Z = 0.037

CY0
= 0.0 Cl0 = 0.0 Cn0

= 0.0
CYv

= −0.9896 Clv = −0.0772 Cnv
= 0.1638

CYv̇
= 0.0 Clv̇ = 0.0 Cnv̇

= 0.0
CYp

= −0.0870 Clp = −0.3444 Cnp
= −0.0108

CYr
= 0.4300 Clr = 0.2800 Cnr

= −0.1930
CYδa

= 0.0 Clδa = −0.2349 Cnδa
= 0.0286

CYδr
= 0.3037 Clδr = 0.0286 Cnδr

= −0.1261

Table 8-2: Asymmetric stability and control derivatives, Cessna Ce500 ‘Citation’

With these values the eigenvalues for the asymmetric motions are:

λ1 = −1.9452
λ2 = 0.0939
λ3,4 = −0.3387± 1.7990 i
λ5 = 0.0

λ1 and λ2 correspond both to an aperiodic mode. λ1 is negative and relatively large, so this gives
a rapid converging and stable behaviour. λ2 is positive and relatively small, so this gives a slow
diverging and unstable behaviour, known as the ‘spiral motion’. The periodic mode is given by
λ3,4 and is generally called the ‘Dutch roll’ motion.

8-1-2 Nonlinear and linearized model

The nonlinear aircraft model covers the full equations of motion and kinematic relations as derived
in chapter 6, but with the tether forces and moments set to zero.

For the nonlinear model the aerodynamic force and moment equations are given by equations
(2-1), where δe, elevator input, is used as the symmetric input and δa, aileron input, and δr,
rudder input, as the asymmetric inputs. The aerodynamic derivatives in the formulae are given
in table 8-3. The dimensionless functions are multiplied with 1

2ρV
2
a S and 1

2ρV
2
a Sc for the forces

and symmetric moments respectively and with 1
2ρV

2
a Sb for the asymmetric moments to obtain

their dimensional value. So the forces and moments are dependent on the aerodynamic velocity
squared.

As explained in chapter 7, for linear models the change in velocity is captured by the stability
derivatives with respect to the aerodynamic velocity component ua. These terms are the partial
derivatives with respect to ua of the nonlinear aerodynamic functions and therefore there is no
aerodynamic coefficent with respect to u in the nonlinear model.

V0 = 59.9m/s m = 4547.8 kg µc = 102.7
S = 24.2m2 K2

Y = 0.980 c = 2.022m

CX0
= 0.0821 CZ0

= −1.1330 Cm0
= 0.0

CXα
= 0.4653 CZα

= −5.1600 Cmα
= −0.4300

CXα̇
= 0.0 CZα̇

= −1.4300 Cmα̇
= −3.7000

CXq
= 0.0 CZq

= −3.8600 Cmq
= −7.0400

CXδe
= 0.0 CZδe

= −0.6238 Cmδe
= −1.5530

Table 8-3: Symmetric aerodynamic derivatives, Cessna Ce500 ‘Citation’
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b = 13.36m K2
X = 0.012 KXZ = 0.002

µb = 15.5 K2
Z = 0.037

CY0
= 0.0 Cl0 = 0.0 Cn0

= 0.0
CYβ

= −0.9896 Clβ = −0.0772 Cnβ
= 0.1638

CY
β̇

= 0.0 Cl
β̇

= 0.0 Cn
β̇

= 0.0

CYp
= −0.0870 Clp = −0.3444 Cnp

= −0.0108
CYr

= 0.4300 Clr = 0.2800 Cnr
= −0.1930

CYδa
= 0.0 Clδa = −0.2349 Cnδa

= 0.0286
CYδr

= 0.3037 Clδr = 0.0286 Cnδr
= −0.1261

Table 8-4: Asymmetric aerodynamic derivatives, Cessna Ce500 ‘Citation’

The initial condition for the nonlinear model is given by equilibrium of forces for the steady straight
symmetric flight condition. This results in a specific trim condition tr for the static variables α
and δe. To specify the nonlinear variants of CX0

, CZ0
and Cm0

the subscript nl is added.

So an equilibrium between the symmetric and asymmetric aerodynamic forces and moments has
to be determined for the given flight condition. Since the flight condition is steady straight and
symmetric the asymmetric forces and moments are zero at t = 0 s. For the symmetric case the
equations given in (8-4) have to be satisfied, where the aerodynamic contributions are obtained
from equations (2-1):

∑

CX = 0 = −W sin θ0
qS

+ CX0,nl
+ CXα

· αtr + CXδe
· δe,tr

∑

CZ = 0 =
W cos θ0
qS

+ CZ0,nl
+ CZα

· αtr + CZδe
· δe,tr

∑

Cm = 0 = Cm0,nl
+ Cmα

· αtr + Cmδe
· δe,tr

(8-4)

with q = 1
2ρV

2
0 and where tr stands for trimmed value. The contributions of α̇ and q can be

omitted, because of the steady flight condition.

The values of CX0,nl
, CZ0,nl

and Cm0,nl
are given by:

CX0,nl
= 0.0

CZ0,nl
= −CZα

· α0

Cm0,nl
= 0.07

with
α0 = −0.0436 rad

where α0 is α at zero lift. CX0,nl
for the given flight condition can be estimated to be zero.

There are three unknowns, θ0, α
tr and δtre for the three equations in (8-4) to determine the trim

condition. The solution for the trim condition is found by solving the three equations for the three
unknowns:

θ0 = 0.0723 rad
αtr = 0.1764 rad
δe,tr = −0.0038 rad

Since there is a difference between αtr and θ0 the aircraft has an initial flight path angle γ0 given
by:

γ0 = θ0 − αtr (8-5)

The flight path angle of approximately −6.0 deg results in a descending flight. This has influence
on the results given in section 8-1-3. In body-fixed reference the aerodynamic velocity is chosen
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to be V0. In earth reference this results in a slightly smaller wind velocity and the aircraft will
have an initial kinematic velocity downwards.

The wind velocities in earth reference are:

Wx0 = −59.553m/s
Wy0 = 0.0m/s
Wz0 = 0.0m/s

and the initial kinematic velocities in body-fixed reference are:

uk0 = −0.4494m/s
vk0 = 0.0m/s
wk0 = 6.2045m/s

Linearized model

The linearized model is obtained by linearizing the nonlinear model by performing the Matlab

routine linmod.m at the specified flight condition. The use of the linear model is to verify the
nonlinear model and to investigate the effect of linearization of the nonlinear model.

The eigenvalues given by Matlab at the specified flight condition are:

λ1 = −1.9448
λ2,3 = −0.3386± 1.7988 i
λ4 = 0.0937
λ5,6 = −1.1619± 1.1111 i
λ7,8 = −0.0077± 0.1966 i
λ9 = 0.0246
λ10 = 0.0002

Comparing the eigenvalues with the eigenvalues of the state-space model it can be concluded that
they make a very good match. The eigenvalues λ1, λ2,3 and λ4 correspond to the asymmetric
motions and that λ5,6 and λ7,8 correspond to the symmetric motions. λ9 is small but slightly
unstable and is not present in the state-space models. λ10 is approximately zero and corresponds
to λ5 of the lateral state-space model.

8-1-3 Simulation results

The results of the symmetric simulations for the three models ‘state-space’, ‘linearized’ and ‘non-
linear’ are obtained by performing a step elevator deflection ∆δe of −0.005 rad. The results for
the asymmetric motions are obtained by performing two simulations: one with a pulse rudder
deflection ∆δr of 0.025 rad during 1 s and one with a pulse aileron deflection ∆δa of 0.025 rad
during 1 s. These inputs are chosen to compare with the aircraft simulations in reference [24]. The
response curves are given in appendix E.

Also for the asymmetric simulations the change in aerodynamic velocity Va is given to show that
the velocity is not constant for the nonlinear simulation. This results in a discrepancy of the
responses due to an aileron deflection between the nonlinear model and the linear models.

8-2 Citation-Kite simulation

The Cessna Ce500 ‘Citation’ aircraft of previous section is attached to a 250m long tether resulting
in the system called ‘Citation-Kite’. An analysis is performed to verify the nonlinear model of
chapter 6 and the LTI models of chapter 7.
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8-2-1 Simulation setup

The analysis is performed by comparing three different models analogue to the aircraft simulations
of the Cessna ‘Citation’:

• LTI model in parametric state-space form

• Nonlinear model: Rigid Body model with aircraft aerodynamic model

• Linearized model: automatic linearized version of the nonlinear model

The state-space model for the symmetric equations of motion is given by equation (7-45) and
for the asymmetric equations of motion by (7-71). The structure and operation of the nonlinear
model is explained in detail in chapter 6. Again, the linearized model is obtained by linearizing
the nonlinear model with the Matlab routine linmod.m.

Initial condition

The initial condition is given by the initial condition as defined in chapter 7 with the parametric
values given in the previous section. The geometric properties and aerodynamic derivatives of the
aircraft are given in table 8-3 and 8-4. For equilibrium of forces and moments an initial tether
force will result.

There are three possibilities to have an initial tether force:

1. Increase the wind speed Wx to obtain more lift force

2. Change the geometric properties c, b or S to increase the lift force

3. Decrease the weight of the vehicle

The aerodynamic derivatives are made dimensionless among others by the variables Va, c, b and
S. This results in the fact that the aerodynamic derivatives are independent of these variables.
In this case the derivatives are constant and obtained from a certain flight condition. In full
nonlinear models the derivatives will vary dependent on certain (static) variables. To keep the
flight condition for which the derivatives are obtained the third option is chosen. By decreasing
the weight the aerodynamic derivatives are still valid, because the weight of the vehicle has no
influence on the validity of the aerodynamic model.

A lift over weight value is specified to decrease the weight and to create a significant tether force:

L

W
= 25.0

The initial condition is determined from equilibrium of forces and moments with the L
W value to

compute the weight. From the tether force the initial tether elongation δlt0 is computed to obtain
the initial tether length at ‘t = 0 [s]’, lt0, by equations 6-29 and 6-30. The tether is specified by
the following parameters:

lt,δlt=0 = 250m
dt = 2.0 · 10−2 m
rt = 1

2 · dtm
Et = 9.8 · 1010 N/m2

ct = 2.08 · 102 Ns/m
where dt is the tether diameter, rt the tether radius and Et the elasticity modulus. The spring
constant kt is than given by Et · πr2t /lt,δlt=0:

kt = 1.232 · 105 N/m
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Eigenvalues linear models

The symmetric aerodynamic derivatives for the nonlinear model are given in table 8-3. The
symmetric stability and control derivatives of the state-space model for the symmetric motions
are given in table 8-1. The mass of the Citation-Kite and the dimensionless mass are given by
mkite and µc,kite respectively. They are a factor L

W smaller compared to the mass values for the
Citation aircraft of section 8-1. The inertia value K2

Y is the same as it only dependents on the
aircraft shape, because it is dimensionless with respect to size and mass. With these stability
derivatives the eigenvalues of the symmetric state-space model are:

λ1,2 = −0.2360± 1.0640 i
λ3,4 = −5.8351± 2.3751 · 101 i
λ5 = −1.0412
λ6 = −3.6810 · 101

λ1,2 corresponds to a low frequent slow damping periodic motion and is called the ‘pendulum’
motion. It is inherently coupled to the phugoid motion of the aircraft. λ3,4 corresponds to a high
frequent fast damping periodic motion and is inherently coupled to the short period motion of the
aircraft. It is called short period motion here as well. λ5 and λ6 correspond both to an aperiodic
stable mode. λ5 is relatively small and gives a slow converging behaviour. λ6 is relatively very
large and gives a very fast converging motion.

The asymmetric stability derivatives of the state-space model for the asymmetric motions are
given in table 8-2. With these stability derivatives the eigenvalues of the asymmetric state-space
model are:

λ1,2 = −6.8900± 6.4944 i
λ3,4 = −2.4722 · 101 ± 3.7138 · 101 i
λ5 = −0.1865
λ6 = 0.1694

λ1,2 corresponds to a medium frequent medium damped periodic motion. λ3,4 corresponds to a
very high frequent very fast damping periodic motion. λ3,4 will probably not be noticeable in the
simulation results. λ5 corresponds to a slow damped aperiodic stable mode and λ6 corresponds
to an undamped aperiodic unstable mode.

The eigenvalues of the linearized model are:

λ1,2 = −0.2359± 1.0639 i
λ3,4 = −5.8233± 2.3752 · 101 i
λ5 = −1.0406
λ6 = −3.6777 · 101
λ7,8 = −6.8942± 6.4561 i
λ9,10 = −2.4712 · 101 ± 3.5510 · 101 i
λ11 = −0.1873
λ12 = 0.1690

which is a very good match with the eigenvalues of the state-space models

8-2-2 Simulation results

The symmetric response curves given in the following figures are obtained for a wind step input
of ∆Wx = -10m/s and for a control step input of ∆xta = 0.05m. The first plot is the path of
the kite in the XEZE-plane from the nonlinear simulation. The second and third figures shows
the kinematic velocity component uk illustrating the pendulum and short period modes. The
asymmetric response curves given in the following figures are obtained for a wind step input
in lateral direction of ∆Wy = 15m/s and for a control step input of ∆xLta = 0.05m and ∆xRta =
−0.05m simultaneously. The first plot is the path of the kite in theXEYE-plane from the nonlinear
simulation. The second figure shows the response curve of the side slip angle β.
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Symmetric motions, wind step input
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Figure 8-1: Path in XEZE-plane to a wind step input of ∆Wx = −10m/s of the ‘Citation-Kite’,
nonlinear simulation
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Figure 8-2: uk-response curve to a wind step input of ∆Wx = −10m/s of the ‘Citation-Kite’,
pendulum motion
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Figure 8-3: uk-response curve to a wind step input of ∆Wx = −10m/s of the ‘Citation-Kite’, short
period motion
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Symmetric motions, control step input
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Figure 8-4: Path in XEZE-plane to a control step input of ∆xta = 0.05m of the ‘Citation-Kite’,
nonlinear simulation
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Figure 8-5: uk-response curve to a control step input of ∆xta = 0.05m of the ‘Citation-Kite’,
pendulum motion
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Figure 8-6: uk-response curve to a control step input of ∆xta = 0.05m of the ‘Citation-Kite’, short
period motion
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Asymmetric motions, lateral wind step input
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Figure 8-7: Path in XEYE-plane to a wind step input of ∆Wy = 15m/s of the ‘Citation-Kite’,
nonlinear simulation
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Figure 8-8: β-response curve to a wind step input of ∆Wy = 15m/s of the ‘Citation-Kite’

Asymmetric motions, asymmetric control step input
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Figure 8-9: Path in XEYE-plane to a control step input of ∆xLta = 0.05m and ∆xRta = −0.05m
simultaneously of the ‘Citation-Kite’, nonlinear simulation
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Figure 8-10: β-response curve to a control step input of ∆xLta = 0.05m and ∆xRta = −0.05m
simultaneously of the ‘Citation-Kite’

8-3 Conclusions

Comparing the eigenvalues of the aircraft simulation and the Citation-Kite simulation shows that
there is a good match between the state-space models and the linearized models and, by conse-
quence, the nonlinear model. The simulation graphs support this too. Additionally, the aircraft
responses are very similar to the responses shown in reference [24].

Furthermore, the eigenmotions of the original aircraft are reflected in the eigenmotions of the
Citation-Kite, which is an expected result. Note that the frequency of the responses are higher,
which is a result of the L/W factor.

Looking closer to the responses of the Citation-Kite it can be seen that the linear models are not
that accurate for the symmetric responses due to a control input compared to the responses of the
other inputs. A clarification can be that the tether moments as a result of the shift of the control
positions have a large nonlinear influence on the dynamics of the system. Although, it must be
noted that the amplitude of the input has influence on the validity domain of the linear models.

Actually, the asymmetric motions can be very accurate simulated with the very fast linear models,
which could be of use for control law design.

But the most important conclusion here is that the verification of the Rigid Body model is suc-
cessful, which paves the way to simulate an arc-shaped kite.
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Chapter 9

Multi-Body Kite Model

In chapter 3 an introduction to Msc. Adams as well as an introduction to the kite toolbox
is given. This chapter continues by presenting the detailed Multi-Body model of an existing
arc-shaped kite as well as describing the methodology to reduce the numerous states of the Multi-
Body system to a limited set of rigid body states. These rigid body states comprises the angular
momentum, the inertia tensor properties, the translational and rotational quantities and control
translation. The sum of the aerodynamic forces and moments are derived as well. Furthermore,
the components of the lumped parameters are expressed in the body-fixed reference frame. This
defines the information required for the aerodynamic and structural model identification in chapter
10.

9-1 Model description

North Rhino Kite specifications

The arc-shaped LEI Kite chosen for the simulations is the ‘North Rhino’ Kite. In reference [4] the
North Rhino Kite is used for testing and validation of the Multi-Body Surf Kite model. This kite
has a wetted surface area of 16m2 and is shown in flight in figure 9-1.

The structural discretization and geometric parameters of this kite as they are entered into the
‘Assembly Loader’ (see chapter 3) to model the kite in Adams are specified in table 9-1.
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Figure 9-1: ‘North Rhino’ arc-shaped LEI Kite in flight

LE Segments 10
Side Segments 5
Position Strut 1 4 segments
Position Strut 2 8 segments
Angle Chord 1 36.5 deg
Angle Chord 2 72.0 deg
Height 3.20m
Span 5.80m
Ang Tip 90.0 deg
Length Chord 0 1.93m
Length Chord 1 1.67m
Length Chord 2 1.08m
Length Tip 0.65m
LE Radius Mid 100mm
LE Radius Tip 40mm

Table 9-1: Geometric properties

The resulting model is shown in figure 9-2. Additional information of the multi-body system is
given in appendix A.

Initial condition

The initial condition can be changed by specifying four parameters: tether zenith angle, body
pitch angle and the initial position for the controls. Table 9-2 shows the values as specified in the
Assembly Loader. The initial condition is defined as the state of the kite at t = 0 s in Adams. At
this condition the kite is not in equilibrium, because all forces in the model are zero. When the
simulation starts, the state of the kite will converge to the equilibrium condition initiated from
the condition as specified in the table. The period from the initial condition to the equilibrium
condition is defined as the stabilization phase.
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(a) Wireframe (b) Rendered

Figure 9-2: ADAMS ‘North Rhino’ Kite model

Zenith Angle, θt,0 20.0 deg
Pitch Angle, θ0 3.5 deg
Initial DtaL 0.275m
Initial DtaR 0.275m

Table 9-2: Initial condition

Control mechanism

The control mechanism is based on the cart and rail principle as explained in chapter 2.

The cart, modelled as a spherical body, is connected to a pivot arm which is driven by a torque
motor such that the cart is forced to move on a curved path. But the cart is constraint to move
along the rail bar or kite tip as well. The motor is positioned at a fixed distance lpivot above the
kite tip and relative to the kite tip such that the pivot arm is not a part but a position constraint.
The torque of the motor is modelled by a rotational spring-damper system to control the position
of the cart given by an angle δcL and δcR for the left and right cart respectively. The actual input
is given by the position along the kite tip dtaL and dtaR respectively with the origin 0.05m along
the kite tip measured from the center of the leading edge tube. The initial position of the control
carts is specified by the variables DtaL and DtaR respectively with the origin at the center of the
kite tip.

Figure 9-3 shows schematically the model of the control system. Table A-5 shows the values of the
cart mass and rail mass (kite tip) and table 9-3 gives an overview of the other control mechanism
properties.

Pivot arm, lpivot 3.0m
Motor stiffness 1.0·103 N·m/deg
Motor damping 1.0·102 N·m·s/deg
Motor torque limit 1.0·103 N·m

Table 9-3: Control mechanism properties

The values for the motor stiffness and damping in table 9-3 are verified from simulations. If the
stiffness value is chosen too small (for example 1.0·102 N·m/deg) the motor is not able to hold
the position of the cart for inputs between the center of the kite tip and the trailing edge. If the
damping value is chosen too small (for example 2.0·101 N·s·m/deg) the damping on the control
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Torque motor

lpivot

δcL

Cart

Rail bar / Kite tipDtaL

dtaL

Figure 9-3: Control system model

position is low and this is reflected in the total acceleration of the center of gravity in the form of
slowly damped oscillations.

Mass and inertia

A flexible kite has changing inertia properties under influence of changing aerodynamic conditions
and control input. The change in inertia due to the controls is not only caused by the deformation
introduced by the change of the tether attachment point but also by the fact that the controls
have weight.

In Adams/View the mass and inertia properties of a model can be determined with the function
Aggregate Mass. . . . This function is accessed by the drop down menu ‘Tools’. Unfortunately this
is only accessible in Adams/View and therefore not applicable during run-time simulations.

Another option is to evaluate this function every time step by using an user-defined subroutine.
This can be accomplished by creating an executable and linking the executable to Adams/Solver.
Executables can be created with the Fortran programming language. The downside of this option
is that all mass elements in the model have to be linked to the subroutine and that the data is
only accessible after the simulation. This means that the inertia properties can not be assigned
to an Adams state variable or function measure.

For completion the mass and inertia properties at the initial condition (t = 0 s) obtained with the
function Aggregate Mass. . . (exact value) are given in appendix A, see table A-5.

To evaluate the variation of the inertia properties during a simulation an estimate is made based
on a mass particle approach. This particle based method (pb) is described in section 9-2. The
results for the inertia properties at the initial condition are also given in table A-5. Additionally
the error made with the particle method is shown as well. It can be concluded that the error gets
larger as the absolute value of the inertia property gets smaller.

Tether model

For comparison the tether model in the multi-body model and rigid body model are based on a
spring-damper model.
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The tether properties that can be specified in the Assembly Loader are given in table 9-4. The
meaning of the parameters ‘Bridle Point’ and ‘Cable Point’ is illustrated in figure 9-4. The dynamic
properties are given by the spring constant kt and damping constant ct.

Bridle Point 12.0m
Cable Point 40.0m
kt 7.697·103 N/m
ct 2.080·102 N·s/m

Table 9-4: Tether properties

‘North Rhino’ Kite

Bridle Point

Cable Point

Spring-damper bridle lines

Spring-damper main tether

Figure 9-4: ADAMS tether model

To connect the bridle lines with the main tether a dummy part is required. The main tether and
the bridle lines are modelled by so called direct single forces. The forces act between two points
and are given by a specified function. In this case a spring-damper. In Adams forces can not be
directly connected to another force, this has to be accomplished by adding a part. Actually, this
is a consequence of Newton’s second law, F = m · a. As the force is specified to act between two
points, Adams needs two bodies or parts with mass on both action points of the force. Note that
ground is treated as a part as well.

Bridle dummy stabilization A bridle dummy part, in the form of a small sphere, is introduced
to establish the connection between the bridle lines and the main tether. It is preferred for the
dummy part to have negligible mass and inertia properties. Because the question is to analyze
the dynamics of the kite and, as Adams is used as a reference for Rigid Body, the differences with
respect to the tether model must as small as possible. This is also the reason why there is no
aerodynamic drag acting on the tether.
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Unfortunately, small values for the mass introduces an unwanted dynamic phenomenon. The
tether-fixed reference frame is formed by the tether attachment points and the connection point of
the main tether with the ground, that is the Cable Point. These three points define the YtZt-plane
of the tether-fixed reference frame. In this plane the motion of the dummy part is driven by the
bridle lines and the main tether and is stable. But the motion of the dummy part perpendicular to
this plane is not stable. If, for some reason, the bridle dummy displacement lags the displacement
of the YtZt-plane a resultant force acts on the dummy part in the direction perpendicular to the
YtZt-plane. This force causes a motion towards the YtZt-plane, but overshoots and the dummy
part is in front of the YtZt-plane. And, again, there is a resultant force towards the YtZt-plane
and the situation repeats itself. This motion is underdamped for too small masses.

At first it is tried to increase the mass of the dummy part. This has a positive result. Although,
after changing other parameters with respect to the structural damping of the kite the phenomenon
returned. At some point the mass of the dummy part had reached 2% of the total system mass.
To be sure that the mass of the dummy part has a negligible effect on the dynamics of the system,
the mass is not increased any further. Additionally, it is not sure if the problem would return in
some cases or other phenomena would occur.

Another solution has been found. The solution is adding damping to the unstable motion. But
the damping force should always act perpendicular to the YtZt-plane. Therefore the tether-fixed
reference frame needs to be defined. This is done by using the two tether attachment points and
the connection with the ground. All vector quantities given below are expressed in the earth-fixed
reference frame. The mass of the dummy part is set to 1.0 · 10−3 kg and the mass moment of
inertia to 1.0 · 10−4 kg·m2.

The direction of the Xt, Yt and Zt axes is given by the unit vectors et,x, et,y and et,z, see figure
9-5. The direction of et,y is given by the two tether attachment points, because the Yt axis is
defined parallel to the line through these two points. The distance between the tether attachment
points is defined as lc. Then, for et,y can be written:

et,y =





lc,x
lc,y
lc,z





1

|lc|
(9-1)

The average distance between the tether attachment points is defined by the pointm. The distance
between m and the Cable Point defines lm. The corresponding unit vector is given by:

et,z =





lm,x
lm,y
lm,z





1

|lm| (9-2)

Now, the unit vector for the Xt axis is:

et,x = et,y × et,z (9-3)

The damping force applied at the bridle dummy is given by the difference in rotational speed
of the tether about the Yt-axis between point m, ωt,m, and the bridle point, point b, ωt,b. The
rotational speed of the tether at point m is:

ωt,m =
et,x · l̇t,m

|lm| (9-4)

and the rotational speed of the tether at point b is:

ωt,b =
et,x · l̇t,b

|lb|
(9-5)
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lb
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c m

Bridle dummy

Cable Point

Figure 9-5: Bridle dummy, definition of tether-fixed reference frame

where l̇t,m and l̇t,b are the velocities of point m and b respectively.

Then, for the resultant damping force on the bridle dummy can be written by:

Fdummy = cdummy · (ωt,m − ωt,b) (9-6)

where cdummy is 1.0·103 N·s/rad.
In Adams the force is applied perpendicular to the YtZt-plane and expressed in the earth-fixed
reference frame. Therefore the resultant bridle force is transformed to act in the direction of the
unit vector et,x:

F dummy = Fdummy · et,x (9-7)

The effectiveness on the stabilization of the bridle dummy is illustrated in figure 9-6. The force
in the main tether as well as the acceleration of the center of mass of the kite are shown for 2 s
after the initial condition. It is clear that the dummy force effectively damps the oscillations. The
resultant force required is shown in figure 9-7 for 10 s after the initial condition. The highest value
of the absolute dummy force is smaller than 1% of the force in the main tether and converges to
zero quickly.

Performing simulations

Before one is able to fly kites in real life at some level of skill a learning process has to be initiated.
The same can be said for the Multi-Body Kite model in Adams. This is not only because it is a
kite, this is also because it is a complex model consisting of many parts and parameters. From
the experience gained by performing simulations many issues have been resolved.
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Figure 9-6: Effect of bridle dummy stabilization
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Figure 9-7: Resultant damping force on bridle dummy

When the simulation starts the kite has to find its equilibrium first. At the initial condition there
are no forces applied to the model. For every wind speed there exists a kite shape based on the
equilibrium between the aerodynamic forces and moments, tether forces and internal structural
forces and moments. The time to reach the equilibrium is defined as the stabilization time.

At the moment the kite has reach its equilibrium point, the kite starts to slide to the side. This is
caused by a critically damped lateral eigenmotion. The perturbation which initiates the motion
is the integration error of the simulation solver. This error increases very fast as time passes.
A planar joint is introduced and can be switched on when this motion is unwanted and only
symmetric responses are to be simulated.

The simulation and solver settings used for all simulations of the Multi-Body Kite model are given
in table 9-5. The value for the integrator error is based on the simulation time. The simulation
time for the shown value is approximately 420 to 480 s for 30 s of simulation. Reducing the error
increases the simulation time multi-fold.
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Time step size 0.01 s
Dynamic integrator GStiff, I3
Integrator error 1.0·10−3

Table 9-5: Simulation and solver settings

Structural stiffness and damping

The structural stiffness and damping properties have a great effect on the dynamic behaviour of
the kite. The stiffness properties are based on real tubes and can not be changed (except for the
foils), but the damping properties are not. Therefore the damping properties are altered such that
the dynamic behaviour introduces less simulation issues and still behaves like a flexible arc-shaped
kite.

The most benefit has been found with respect to:

• reduced stabilization time: from 30 to 15 s

• more direct response to control inputs

• faster damping of the ‘jellyfish’ motion

The values for the stiffness and damping are given in table 9-6. The units for the stiffness and
damping properties are given by N and s respectively.

Tubes, Bending stiffness Nonlinear function
Tubes, Bending damping 5.0·10−1 s
Tubes, Torsional stiffness Nonlinear function
Tubes, Torsional damping 2.0·10−1 s
Foil wires, stiffness 1.0·103 N
Foil wires, damping 1.0·10−2 s
TE wires, stiffness 1.0·103 N
TE wires, damping 1.0·10−2 s

Table 9-6: Model verification

9-2 GUM files

Figure 3-2 in chapter 3 shows the TKC structure as is applicable to this thesis. In the GUM folder
additional macro files have been programmed such that new User Defined Entities (UDEs) can
be created in the Surf Kite Assembly file. The UDEs create Adams function measures (am) for
implementing ‘virtual sensors’ for center of gravity position, inertia properties, angular momentum,
sum of aerodynamic forces and moments expressed in the TKC global reference frame.

The TKC global reference frame is the fixed global inertial reference frame for every model created
with TKC. For the GUM files the TKC global reference frame is regarded as the inertial earth-fixed
reference frame FE . Figure 9-8 shows the location of the TKC global reference frame marker. The
location does not coincide with the convention of the earth-fixed reference as defined in chapter 5.
This does not give any problem regarding the implementation of the Adams function measures
created by the GUM files as long as all functions are applied with respect to the TKC global
reference frame marker. The orientation is equal to the earth-fixed reference frame. Only when
discussing the absolute position of the kite with respect to the global origin a correction has to be
applied.
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TKC global reference frame marker

Figure 9-8: TKC global reference frame

Adams can only perform scalar computations and therefore all equations are evaluated in scalar
form by the macro files. For convenience all equations in this section are given in vector or matrix
form. Calculation of displacement, velocity, acceleration or force components of an element is
done by specific function commands. The string lengths of the elements (for example parts or
forces) have to be entered in the function commands. The string lengths are relatively long
approximately 10 to 15 characters. The resulting summation terms of the macro equations are
computed by Adams function measures (am) containing the function commands. Due to a limit
string size of 1023 characters of these function measures the string size of the function measures is
usually too short for all summation terms and the function measures have to be partitioned. The
partitions are already shown in tables A-2, A-3 and A-4. For the Sum of General Moments macro
the partitioning is automated, because manual partitioning resulted in more than 20 UDEs.

To keep the amount of partial function measures as small as possible the equations evaluated
by the GUM files are all computed with respect to the TKC global origin and expressed in the
TKC global reference frame. In this way the reference frame does not have to be specified in the
function commands and the function commands are automatically evaluated with respect to the
TKC global origin and expressed in the TKC global reference frame.

9-2-1 Fluid Speed macro

The Fluid Speed macro file defines the wind input for the Multi-Body model. The Fluid Speed
macro file is located in the GUM folder of the Toolkit Creator Shared Macros, see figure 3-2.

The original macro file creates an arrow pointing in XE direction as well as a ‘fluid particle’. The
fluid particle is a rigid body in the form of a sphere who’s motion is given by a time dependent
displacement function in XE , YE and ZE direction. During a simulation the velocity of the particle
is measured and the result is used by the aerodynamic model.

The Fluid Speed macro file is adapted such that the wind input is directly given by a function
defining the velocity in XE , YE and ZE direction. This is accomplished by removing the fluid
particle and the displacement functions and by introducing three Adams state variables (as)
defining the wind velocity in XE , YE and ZE direction. In this way the unnecessary motion of the
fluid particle is removed and the wind speed can be given by a constant value or as a function of
time. Additionally, the wind input can now be specified externally in case of co-simulating Adams

with Simulink.
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9-2-2 Centroid Dummy for Center of Gravity macro

The Centroid Center of Gravity macro Centroid CoG.mac cre creates measures for the center of
gravity displacement, velocity and acceleration of selected parts in a model. Additionally a ‘Cen-
troid Dummy’ (CD) is created. The Centroid Dummy is a visualization body to track the center
of gravity position. The Centroid Dummy is a sphere with three axes attached to visualize the
orientation, see figure 9-9.

X-axis

Y -axis

Z-axis

Figure 9-9: Centroid Dummy

The position of the center of mass for a particle system is determined by the average of the particle
positions and weighted by their masses (Reference [31]). The system can be defined by n particles
each with a mass mj for j = 1, 2, . . . , n. The displacement vector of each particle rj is given with
respect to a fixed set of global axes. In Adams the fixed global reference frame is called the TKC
global reference frame. The center of mass of the system of particles is given by equation (9-8):

rcg =
1

m

n
∑

j=1

mjrj (9-8)

in which

m =

n
∑

j=1

mj

is the total mass of the system.

Taking successive time derivatives of equation 9-8, by realizing that the each mj is invariable, the
velocity of the center of mass results to be given by equation 9-9:

ṙcg =
1

m

n
∑

j=1

mj ṙj (9-9)

where the summation terms are the linear momenta of each particle.

In Adams all degrees of freedom of all bodies are required to be driven by forces. These forces can
be introduced either by constraining certain degrees of freedom by joints or by applying a force or
moments. The six degrees of freedom of the Centroid Dummy are controlled by a PD-controller.
The orientation controller for the three rotational DOFs is explained in section 9-3. The function
for the position PD-controller is based on a ‘spring-damper’ with gains given as a stiffness-constant
kCD and a damping-constant cCD resulting in the control force FCD. The function minimizes
both the displacement and velocity error and is given by equation (9-10):

FCD = −kCD · εCD − cCD · ε̇CD (9-10)

with

εCD = rCD − rcg

ε̇CD = ṙCD − ṙcg
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where rCD and ṙCD are the displacement and velocity of the Centroid Dummy respectively and
εCD and ε̇CD are the displacement error and the velocity error of the Centroid Dummy respec-
tively.

The values for kCD and cCD are chosen based on verification of the simulations. During the
simulation the kite is steered sideways such that it gains speed and is drifted away from the initial
condition. By inspection the displacement and velocity errors are analyzed and are required not
to cross a value of 10−6. Based on these simulations the values for kCD and cCD are given in table
9-7:

kCD 1.0 · 108 N/m
cCD 1.0 · 105 N·s/m

Table 9-7: Gains for Centroid Dummy position PD-controller

The Center of Gravity macro creates measures for the center of mass inertial acceleration as well.
Again taking successive time derivatives of equation (9-9) for the acceleration vector is written:

r̈cg =
1

m

n
∑

j=1

mj r̈j (9-11)

Reference [31] states that the internal forces for a system of particles cancel out and that the
inertial acceleration of the center of gravity r̈cg is equal to the sum of the external forces:

n
∑

j=1

F ext
j = m · r̈cg (9-12)

where F ext
j is the resultant external force of particle j.

Note that equation (9-12) states the same as equation (6-1).

A particle is defined as a point mass and has therefore no rotational inertia properties. A rigid
body is defined as a non-flexible homogeneous body. The mass and inertia properties of a rigid
body can be given in terms of the concentrated mass positioned at the center of mass of the body
and the mass moment and products of inertia about the center of mass. As the inertia properties
of a body are unrelated to equations (9-8), (9-9), (9-11) and (9-12) these equations are also valid
for a system of rigid bodies.

9-2-3 Inertia macro

Table A-5 shows the mass moments and products of inertia for the North Rhino Multi-Body Kite
model derived with the Adams function Aggregate Mass. . . . As this function is only accessible in
Adams/View for static conditions it cannot be used during dynamic simulations.

Because the Multi-Body Kite model is flexible the inertia properties change during dynamic sim-
ulations. The variation of the values for mass moments and products of inertia for different flight
conditions have non-negligible effects on the dynamics of the system. Therefore the variation of
the inertia properties under influence of the flight condition must be known. It would be advanta-
geous to know the variation of the inertia properties dynamically or, in other words, as a function
of time. The Inertia macro Inertia.mac cre creates measures for the inertia properties as a function
of time.

The mass moments and products of inertia are usually given in the mass matrix of inertia or
inertia tensor. The inertia tensor with respect to the origin of the fixed global reference frame and
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expressed in the fixed global reference frame is given by:

I
E
OE

=





Ixx −Jxy −Jxz
−Jyx Iyy −Jyz
−Jzx −Jzy Izz



 (9-13)

The function Aggregate Mass. . . calculates the sum of the inertia properties of all rigid bodies with
respect to a specified reference frame or marker. In Adams the inertia tensor of every rigid body
is specified about its local body reference frame. To obtain the inertia tensor about the earth-fixed
reference frame the inertia tensor has to be transformed. For the inertia tensor of some rigid body
j with the TKC global frame as the reference marker can be written:

I
E
cgj ,j = TEb,jI

bj
cgj ,j

T
⊤

Eb,j (9-14)

where TEb,j is the transformation matrix for the transformation from the local body-fixed reference
frame Fb,j to the earth-fixed reference frame and cgj the center of gravity of body j.

In the following step the inertia tensor I
E
cgj ,j

is translated with the Parallel Axis Theorem (Ref-

erence [31]). The Parallel Axis Theorem is used to compute the inertia properties about another
reference point:

Ixx,j = Ixxcgj
,j +mj

(

d2y + d2z
)

j
Ixy,j = Ixycgj ,j +mj(dxdy)j

Iyy,j = Iyycgj ,j +mj

(

d2x + d2z
)

j
Ixz,j = Ixzcgj ,j +mj(dxdz)j

Izz,j = Izzcgj ,j +mj

(

d2x + d2y
)

j
Iyz,j = Iyzcgj ,j +mj(dydz)j

(9-15)

where mj is the mass of body j, dx, dy and dz the directed distances from the new axes to the
centroidal axes and entering the results in equation (9-13) gives the inertia tensor IEOE ,j

.

Summing over all the bodies gives the total inertia tensor with respect to the specified marker:

I
E
OE

=

n
∑

j=1

I
E
OE ,j (9-16)

Equation (9-16) gives the exact inertia tensor and evaluated at every time step the dynamic vari-
ation is known as well. Unfortunately the function Aggregate Mass. . . is hard to be implemented
for every time step as described in section 9-1. Additionally, Adams can only perform scalar com-
putations and no vector operations. The implementation of equation 9-14 for every body in scalar
form is a tedious job and requires the orientation as well as the inertia properties for every body
at every time step. This results in a dramatic size for the amount of characters in the function
measures and is almost practically impossible for Adams to handle.

Due to these programming issues in Adams for the computation of the inertia tensor the contribu-
tion of the first terms of the Parallel Axis Theorem, i.e. the inertia properties of each body about
the local cgj , is neglected. The resulting values for the mass moment and products of inertia will
be an approximation of equation (9-16). The relative error will get smaller if the reference point
is chosen further away from the bodies, because the second terms in (9-15) will become larger.
For analyzing the variation of the inertia properties the inertia tensor needs to be known about
the center of mass of all bodies as determined in section 9-2-2. So the reference point cannot be
chosen arbitrary.

This method can also be described as the particle based (pb) method. This can be seen by
inspecting equation (9-15) and realizing that a particle has no local inertia properties. To conclude
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the moments and products of inertia determined with the Inertia macro are given by:

Ixx,pb =

n
∑

j=1

mj

(

d2y + d2z
)

j
Ixy,pb =

n
∑

j=1

mj(dxdy)j

Iyy,pb =

n
∑

j=1

mj

(

d2x + d2z
)

j
Ixz,pb =

n
∑

j=1

mj(dxdz)j

Izz,pb =
n
∑

j=1

mj

(

d2x + d2y
)

j
Iyz,pb =

n
∑

j=1

mj(dydz)j

(9-17)

where dx,j , dy,j and dz,j are the directed distances from the cg of body j to the origin of the
earth-fixed reference frame and, by consequence, equation (9-13) gives the inertia tensor IEOE ,pb

.

9-2-4 Angular Momentum macro

The Angular Momentum macro Ang Momentum.mac cre computes the angular momentum of a
model as well as the time derivative of the angular momentum about the TKC global origin based
on a particle approach.

Exact solution

First the exact solutions are given for the angular momentum of a multi-body system about the
cg and the fixed global origin OE . As explained in Reference [31] the total angular momentum of
a rigid body with rotational speed Ω about a fixed point on the body P with respect to the fixed
global origin OE is the angular momentum about the center of mass cg plus the moment of the
linear momentum of cg about P :

BP =

∫

V

r × (Ω× r) dm+ rPcg ×mṙP (9-18)

where V is the volume of the body, r the position vector of cg to a mass element dm and rPcg the
position vector of point P to the cg.

If point P is fixed in space, then ṙP is zero, and if point P is chosen as the center of mass, then
rPcg is zero. In either case equation 9-18 reduces to:

BP =

∫

V

r × (Ω× r) dm (9-19)

Expanding the integrand and evaluating the integrand will eventually result in:

BP = IPΩ (9-20)

where IP is the inertia tensor of the body with respect to point P .

Now, if a multi-body system is considered, using equation 9-18 and figure 9-10, for the angular
momentum of a body j (for j = 1 to j = n) about the moving center of mass C of the multi-body
system can be written:

BC,j =

∫

Vj

r × (Ωj × r) dm+ rcgjC ×mj ṙcgj (9-21)

where r is the is the position vector of the local cgj to a mass element dm, Ωj the rotational speed
of body j with respect to the earth-fixed reference frame, rcgjC the position vector of cgj to point
C and ṙcgj the velocity of the cg of the body j. See figure 9-10.
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Figure 9-10: Angular momentum multi-body system

Equation (9-21) can be evaluated to:

BC,j = IcgjΩj + rcgjC ×mj ṙcgj (9-22)

where Icgj is the inertia tensor of body j with respect to the center of gravity of body j cgj .

Summing over all bodies gives:

BC =

n
∑

j=1

IcgjΩj +

n
∑

j=1

rcgjC ×mj ṙcgj (9-23)

Evaluating the second term in the latter expression, using rcgjC = rcgj − rC , gives:

n
∑

j=1

rcgjC ×mj ṙC =
n
∑

j=1

rcgj ×mj ṙcgj −
n
∑

j=1

rC ×mj ṙcgj (9-24)

Using that the sum of linear momentum of all bodies is the linear momentum of C of the multi-
body system, so:

n
∑

j=1

rcgjC ×mj ṙC =
n
∑

j=1

rcgj ×mj ṙcgj − rC ×mṙC (9-25)

Finally, implementing equation (9-25) in (9-23), one obtains:

BC =

n
∑

j=1

IcgjΩj +

n
∑

j=1

rcgj ×mj ṙcgj − rC ×mṙC (9-26)

and is the angular momentum about the cg of a multi-body system expressed as the sum of the
angular momenta of each body about their local cgj plus the sum of the moments of the linear
momentum of each body about the cg of the multi-body system minus the moment of the linear
momentum of the cg of the multi-body system about OE .

The latter term in equation (9-26) also arises when applying the Translation Theorem for Angular
Momentum (Reference [31]), which states that the angular momentum about some moving point is
equal to the angular momentum about the center of mass plus the moment of the linear momentum
of the center of mass about the moving point.

Evaluating equation (9-20) for body j directly about the fixed global origin and summing over all
bodies results in:

BOE
=

n
∑

j=1

IOE ,jΩj (9-27)
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Particle approximation

As is explained in the section about the Inertia macro the computation of the inertia tensor is hard
to be implemented in Adams. Therefore another approach is required for the angular momentum.
Again, an approximation is proposed based on the particle method. According to Reference [31]
the angular momentum about point P of a system of particles is:

BP =
n
∑

j=1

rPj ×mj ṙj (9-28)

In the Angular Momentum macro the angular momentum is computed about the fixed global
origin using the center of mass of each body:

BOE ,pb =
n
∑

j=1

rcgj ×mj ṙcgj (9-29)

which is exactly the second summation term in equation (9-26).

For the time derivative of the angular momentum only the derivative for the particle based method
is given. Taking the time derivative of equation (9-29) gives:

dBOE ,pb

dt
=

n
∑

j=1

ṙcgj ×mj ṙcgj +

n
∑

j=1

rcgj ×mj r̈cgj (9-30)

and, by consequence,

ḂOE ,pb =

n
∑

j=1

rcgj ×mj r̈cgj (9-31)

which is the equation evaluated by the Angular Momentum macro.

9-2-5 Sum of General Forces macro

The Sum of General Forces macro Sum GForce.mac cre is created to compute the sum of all
aerodynamic forces of the Multi-Body Kite model. The aerodynamic forces inAdams are modelled
by so called ‘general force’ functions. The sum of all general forces can be expressed as:

FGF =

n
∑

j=1

FGF,j (9-32)

The evaluation in the macro file is done with function command GForce. In the GForce function
the force name and the force component need to be specified.

9-2-6 Sum of General Moments macro

The Sum of General Moments macro Sum Mom GF.mac cre computes the resulting moment of
the general forces of the Multi-Body model in Adams. The Sum of General Moments macro is
used to compute the sum of aerodynamic moments resulting from the aerodynamic forces. The
expression evaluated by the macro file is:

MGF =

n
∑

j=1

rGF,j × FGF,j (9-33)
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9-3 Transformation of measures to body-fixed reference

To use the computed quantity components by the Adams function measures generated by the
GUM files for aerodynamic parameter identification in chapter 10 the computed components need
to be translated and transformed to the center of gravity and the body-fixed reference frame
respectively.

As only the translation of the center of mass is computed the rotation is still undetermined. The
orientation will be expressed in the body Euler angles 〈φ, θ, ψ〉 using the angular velocity vector.

9-3-1 Angular velocity and body Euler angles

Before the angular velocity is computed the inertia tensor and the angular momentum are first
translated to the center of gravity cg of the multi-body system using the Parallel Axis Theo-
rem on equation (9-17) and the Translation Theorem for Angular Momentum on equation (9-29)
respectively:

Ixx,cg = Ixx,pb −m
(

d2y + d2z
)

cg
Ixy,cg = Ixy,pb −m(dxdy)cg

Iyy,cg = Iyy,pb −m
(

d2x + d2z
)

cg
Ixz,cg = Ixz,pb −m(dxdz)cg

Izz,cg = Izz,pb −m
(

d2x + d2y
)

cg
Iyz,cg = Iyz,pb −m(dydz)cg

(9-34)

which can be written to the inertia tensor IEcg, and,

Bcg = BOE ,pb − rcg ×mṙcg (9-35)

Now, using equation (9-20) with P = cg the total angular velocity of the multi-body system in
earth-fixed reference is:

ΩE
bE =

(

I
E
cg

)−1
BE
cg (9-36)

If the orientation is known at t = tn the rotational velocity, the inertia tensor and the angular
momentum expressed in the body-fixed reference frame is evaluated using the transformation
matrix TbE :

Ωb
bE = TbEΩ

E
bE (9-37)

I
b
cg = TbEI

E
cgT

⊤

bE (9-38)

Bb
cg = TbEB

E
cg (9-39)

Because of possible numerical inaccuracies it is not preferred to compute the time derivative of the
angular velocity by numerical differentiation. Since the time derivative of the angular momentum
is available the time derivative of the angular velocity is determined as follows. First the time
derivative of the angular momentum about the global origin OE is translated to the center of mass
cg:

Ḃcg = ḂOE ,pb − rcg ×mr̈cg (9-40)

and using the time derivative of the angular momentum for a rigid body (from Reference [31]) the
total angular acceleration of the multi-body system is:

Ω̇
E

bE =
(

I
E
cg

)−1
(

Ḃcg −ΩE
bE ×

(

I
E
cgΩ

E
bE

))

(9-41)

The angular acceleration is transformed to the body-fixed reference frame with TbE .
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The time derivative of the Euler angles 〈φ̇, θ̇, ψ̇〉 is obtained by using equation (6-22):





φ̇

θ̇

ψ̇



 =





1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ



Ωb
bE

Integrating the time derivatives of the Euler angles over time the Euler angles at every t = tn are
determined:

φ(tn) =

∫ tn

t0

φ̇ · dt+ φ0

θ(tn) =

∫ tn

t0

θ̇ · dt+ θ0

ψ(tn) =

∫ tn

t0

ψ̇ · dt+ ψ0

(9-42)

where φ0, θ0 and ψ0 are defined by the initial orientation of the Multi-Body model. φ0 and ψ0

are zero and θ0 has been given in table 9-2.

With equations (9-42) the total orientation of the multi-body system at every time step has been
determined. Both the inertia properties and the angular momentum vector are obtained based
on the particle method. They both neglect the local body rotational inertia properties. As they
are both used to determine the lumped rotational speed the error for the rotational speed is
exactly the sum of the local rotational speeds of the bodies with respect to the rotational speed
of the multi-body system. Because each body is connected on multiple locations this error can be
assumed small.

Because both the inertia tensor and the angular momentum are computed by neglecting the
contribution of the foil parts in the Multi-Body model, the center of mass position, velocity and
acceleration, used in the Parallel Axis Theorem and the Translation Theorem, have be to computed
again also without the foil parts. Otherwise the inertia tensor and the angular momentum about
the cg would not be consistent.

The implementation of the matrix and vector computations given by equations (9-36) to (9-39)
and (9-41) to (9-42) is done by a so called Adams General State Equation (GSE). The GSE is
introduced in the model with the Adams/Controls plugin. With Adams/Controls a Simulink

model can be attached to the model in the form of an executable dll-file. In this way the ability
of Matlab is used to perform the matrix and vector operations. In order to be accepted by
Adams/Controls all values of the Adams function measures computed by the listed equations are
transferred to Adams state variables.

Furthermore, in the Simulink model, the output of the Euler angles φ and ψ are bounded to -π
and +π. The angle θ is not bounded, because it is assumed not to pass -0.5π and +0.5π during
simulations. If it does, it is very likely that the kite has crossed theXEYE-plane. As the orientation
of the body-fixed reference frame is defined, all quantities measured in the earth-fixed reference
frame can be computed in the body-fixed reference frame. For example the control positions are
transformed to the body-fixed reference frame with the GSE.

Centroid Dummy orientation control

It would be worthwhile if the Centroid Dummy would follow the orientation of the body-fixed
reference frame during simulations. It is then possible to create Adams function measures directly
expressed in the body-fixed reference frame. And, additionally, the structural deformation can be
analyzed with respect to the Centroid Dummy. This is incorporated by applied moments about
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the axes of the Centroid Dummy, which, like the position control, is modelled by a torsional
spring-damper system to create a PD-controller.

The torsional spring-damper applies a moment expressed in the earth-fixed reference frame. For
the reference of the rotational speed ΩE

bE is used as computed in equation (9-36). The rotational
speed ΩE

CD of the Centroid Dummy can be easily measured in Adams. The difference between
both can be directly used to compute the contribution to the control moment. The Euler angles
of the Centroid Dummy can be easily measured as well. But, by definition, the Euler angles define
the orientation by a 321-rotation sequence. Therefore the error between the computed Euler angles
and the measured Euler angles must be transformed to earth-fixed reference. The proportional
(P) contribution to the control moment is given by:

M
E
CD,P = kCD,ori ·



TEE′′





εφ
0
0



+ TEE′





0
εθ
0



+





0
0
εψ







 (9-43)

where,

εφ = φCD − φ(tn)

εθ = θCD − θ(tn)

εψ = ψCD − ψ(tn)

and expanding equation (9-43) gives:

M
E
CD,P = kCD,ori ·



εφ





cos θ cosψ
cos θ sinψ
− sin θ



+ εθ





− sinψ
cosψ
0



+ εψ





0
0
1







 (9-44)

The derivative (D) contribution is simply:

M
E
CD,D = cCD,ori · εEΩ (9-45)

with,
εEΩ = ΩE

CD −ΩE
bE

And the total control moment is given by:

M
E
CD = M

E
CD,P +M

E
CD,D (9-46)

Again, the values for the gains are verified by simulations not to pass an error value of 10−6. See
table 9-8.

kCD,ori 1.0 · 108 N·m/rad
cCD,ori 1.0 · 105 N·m·s/rad

Table 9-8: Gains for Centroid Dummy orientation PD-controller

9-3-2 Aerodynamic forces and moments

The created measures by the Sum of General Forces macro for the aerodynamic forces applied at
the TKC global origin do not change when they are applied at the cg of the multi-body system. The
aerodynamic moment measures are applied at the TKC global origin and have to be transferred
to the cg, which is given by:

M
E
aero,cg = MGF − rcg × FGF (9-47)
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9-4 Verification of created measures

The verification of the implementation of the macro files is performed with respect to a simulation
test of the Surf Kite model and with respect to a double pendulum model. The double pendulum
is used verify the implementation of the rotational quantities based on the particle method. The
simulation test is used to verify the implementation of the translation as well as the rotational
quantities.

The simulation test is performed with a wind speed of 12m/s. The stabilization time is set to
15 s, such that the accelerations are damped out to a great extend and the kite is at a stationary
condition. One second after the stabilization time the input on the controls is introduced with
a so called 131 input on the left cart, see figure 9-11. The stabilization time has been truncated
from the responses and the new t0 has been set to 0 s.
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Figure 9-11: Surf Kite simulation test, inputs

The displacement and orientation of the Centroid Dummy is shown in figure 9-12.
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Figure 9-12: Surf Kite simulation test, translation and orientation of CD

The effectiveness of the PD-controllers for the translation and orientation of the Centroid Dummy
is verified by illustrating the errors for the displacement, velocity, orientation and angular velocity,
see figures 9-13 and 9-14.

Both figures clearly show that the maximum allowable error of 10−6 is met and that the Centroid
Dummy effectively follows the reference signals for the translation and orientation.
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Figure 9-13: Surf Kite simulation test, translation error Centroid Dummy
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Figure 9-14: Surf Kite simulation test, rotation error Centroid Dummy

Still, it remains to verify if the reference signals, that is the actual displacement, velocity, orien-
tation and angular velocity are implemented correctly. Although there is no direct check, since
there was no data before the implementation of the macro files, there is another way to verify
the correctness of the reference signals and with that the correctness of the implementation of the
equations by the macro files.

9-4-1 Translation

The translation of the center of gravity is defined by the displacement, velocity and acceleration
measures for the center of gravity.

Acceleration and aerodynamic forces The verification of the translation of the center of gravity
of the multi-body system is done by comparing the measurements for the acceleration and the
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resultant external forces. According to equation (9-12) the sum of the external forces must equal
the acceleration of the center of gravity times the mass. As acceleration is obtained by the
time derivatives of the displacement and velocity and the resulted equations are comparable (see
equations (9-8), (9-9) and (9-11)) the comparison between the acceleration and external forces is
also a verification for the velocity and displacement.

The verification is performed by transforming the quantities to the body-fixed reference frame.
And, secondly, by rewriting equation (9-12) and equation (6-21) to:

X =
∑

F bx,aero = m ·Abx − (−mgG sin θ + F )

Y =
∑

F by,aero = m ·Aby − (mgG sinφ cos θ +G)

Z =
∑

F bz,aero = m ·Abz − (mgG cosφ cos θ +H)

(9-48)

where
A = r̈cg

The result is given in figure 9-15. The graphs show an excellent match. The graphs for the sum of
aerodynamic forces are completely covered by the graphs representing the right side of equation
(9-48).

9-4-2 Rotation

The rotation of the body-fixed reference frame is defined by the orientation, angular velocity and
angular acceleration measures for the body-fixed reference frame.

The angular velocity is determined with the measures for the inertia tensor and the angular
momentum (equation (9-36)) and, subsequently, the orientation of the body-fixed reference frame.
The measures for the inertia tensor and the angular momentum are based on the particle method.
For verification of this method, first, the method is implemented in another model, a double
pendulum, and secondly, the Multi-Body Kite model simulation test is continued.

Double pendulum model

The double pendulum consists of three spherical bodies of equal mass m connected by massless
links of equal length l. The connection with the ground is established by a spherical joint and
at the second mass element m2 there is a revolute joint. The spherical joint has three rotational
degrees of freedom and the revolute joint has one rotational degree of freedom. The three spherical
bodies have an inertia of mr2 about each exis, where r is the radius of the sphere. Due to the
equal masses m and equal length of the links l there is a symmetry plane parallel to the rotation
axis of the revolute joint. See figure 9-16.

Furthermore the Centroid Dummy is shown with the Zb and Yb axes. The Xb-axis is directed
downwards and parallel to the symmetry plane and lies, by definition of the center of gravity,
in the symmetry plane. The Zb-axis is directed parallel to the first two links and the Yb-axis
tangential to the first two links. A displacement vector r is defined which represents the distance
between cg and m1.

In figure 9-17 a snapshot of the model is shown at the initial condition in Adams/View. The center
of mass position is again given by the Centroid Dummy and defines the body-fixed reference frame.
The initial pitch angle θ0 is +80 deg with respect to the earth-fixed reference. The ZE-axis is
positive upwards and gravity is negative with respect to the ZE-axis.

The motion is initiated under the influence of gravity. Since there is no damping, friction or drag in
the model the pendulum will stay in motion forever. The double pendulum is a classical example
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Figure 9-15: Surf Kite simulation test, verification of aerodynamic forces

of a system having chaotic dynamics. The chaotic behaviour is clearly visable from figure 9-18.
Figure 9-18 shows the orientation of the body-fixed reference frame by the Euler angles φ, θ and
ψ for a simulation time of 10 s.

For the particle based method to work the following should hold. From figure 9-16 can be seen that
the Centroid Dummy must move along the dashed line of the symmetry plane for the verification
of the center of gravity displacement. And, secondly, the distances between the Centroid Dummy
and m1 and between Centroid Dummy and m3 expressed in the body-fixed reference frame must
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Figure 9-16: Double pendulum model
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Figure 9-17: Double pendulum model, initial condition

be equal for the verification of the orientation. For both to hold it can be said that:

rbx = xbm1
= xbm3

= 0

rby = ybm1
= −zbm3

rbz = zbm1
= −ybm3

From figure 9-19 becomes clear that this is true. The values for rbx are within the integrator error
setting of 10−3.

Furthermore, the variation of the body Euler angles spans almost the full range of the Euler angles,
which makes the particle method valid for this range of Euler angles.

Additionally, it can be said that the mass moment of inertia of the spherical bodies have no
influence on the orientation of the body-fixed reference frame. Due to the plane of symmetry, the
rotation of m1 with respect to the Centroid Dummy is equal but opposite to the rotation of m3.
Therefore the influence of the bodies on the angular momentum cancel.

The results of the simulation of the double pendulum verify two statements:

1. The implementation of the particle based method is done correctly

2. The particle based method works for a multi-body system as long as there is a symmetry
plane, because then the influence of individual bodies left and right from the symmetry plane
on the angular momentum cancel out

Note that the Kite model loses its symmetry when the kite deforms and under influence of control
inputs, because the masses of the control parts are included in the inertia tensor and angular
momentum computation. The influence of these two effects is investigated with a simulation test.
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Figure 9-18: Double pendulum simulation, body Euler angles

Kite model

The verification of the Kite model continues with the simulation test given at the beginning of this
section. Any irregularity with respect to the translation or rotation of the Centroid Dummy and
the body-fixed reference frame, if there is any, is expected to be revealed, because the translational
and rotational perturbations are relatively large.

InAdams the ‘camera view’ can be fixed to a specific part. Now, if the view is fixed at the Centroid
Dummy the orientation and deformation of the kite with respect to the Centroid Dummy can be
recorded during the simulation. Four snapshots are shown in figures 9-20 and 9-21: at the initial
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Figure 9-19: Double pendulum simulation, mass positions

condition, for an extreme value of dtaL and at approximately t = 23 s. The view on the left side
of the figure gives an overall view in the earth-fixed reference frame. The view on the right side
shows the kite fixed to the Centroid Dummy and in the body-fixed reference frame.

Figure 9-20a shows the snapshot of the kite at the initial condition. This snapshot is used as the
reference, because there is no control input and no asymmetric deformation.

Figures 9-20b and 9-21a illustrate the kite when the left control is translated to 0.00m and to
0.20m along the rail respectively. It can be clearly seen in figure 9-20b that the right tip has
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(a) t = 0.0 s, φ = 0.0 deg, θ = 9.9 deg, ψ = 0.0 deg

(b) t = 5.0 s, dtaL = 0.00m, φ = −20.8 deg, θ = 7.4 deg, ψ = −10.8 deg

Figure 9-20: Surf Kite simulation test, t = 0.0 s and t = 5.0 s
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(a) t = 7.6 s, dtaL = 0.20m, φ = −5.2 deg, θ = 13.2 deg, ψ = 16.7 deg

(b) t = 23.4 s, φ = −58.1 deg, θ = −3.5 deg, ψ = −13.7 deg

Figure 9-21: Surf Kite simulation test, t = 7.6 s and t = 23.4 s
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turned inwards and in figure 9-21a the left tip has turned inwards. Right is defined Yb positive
and left Yb negative. The other tips are approximately unchanged with respect to the Centroid
Dummy. This is an useful result, because the deformation of the tip with respect to the rest of
the kite due to a control input becomes clear. Furthermore, the deformation of the tip results in
an aerodynamic side force Y . First positive and then negative. Figures 9-20b and 9-21a confirm
this by comparing the blue arrows on the left and right side of the kite. And, more clearly visible,
the second graph in figure 9-15 proves this as well.

Figure 9-21b shows the kite at a roll angle of approximately −58 deg after 23 s. At this point
the roll angle is increasing and the kite experiences some aerodynamic velocity from the negative
Yb-direction, resulting in a negative side slip angle β. When comparing figures 9-20a and 9-21b it
can be noticed that the shape of the kite is a little bit skewed in figure 9-21b. This is a result of
the side slip angle causing an increase of the aerodynamic forces on the right side and a decrease
on the left side. These force differences give a resultant positive Y force as can be seen in figure
9-15.

Time derivative angular momentum and aerodynamic moments The verification of the time
derivative of the angular momentum of the multi-body system is done by comparing the measure-
ments with the resultant external moments. According to equation (6-2) the sum of the external
moments must equal the time derivative of the angular momentum. This comparison gives also
an indication of the error of the measurements for the angular momentum itself.

The verification is performed by transforming the quantities to the body-fixed reference frame.
And, secondly, by subtracting the tether moments from the time derivative of the angular mo-
mentum:

L =
∑

Mb
x,aero = Ḃbx − P

M =
∑

Mb
y,aero = Ḃby −Q

N =
∑

Mb
z,aero = Ḃbz −R

(9-49)

The result is given in figure 9-22. At first the graphs show a very good match. But looking more
closely it can be seen that the extreme values of the sum of the aerodynamic moments are slightly
higher in absolute sense. This difference can be clarified by the inaccuracy of the particle based
method. On the other hand, the difference is quite small and therefore it can be said that the
particle based method is a very good approximation.
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Figure 9-22: Surf Kite simulation test, verification of aerodynamic moments
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Review and final remarks

In this chapter a formal description is given for reducing the states of the Multi-Body Kite model to
a set of rigid body states. Furthermore simulations are performed of a double pendulum model and
the surf kite model for verification of the methodology and implementation in Adams. The states
describing the rigid body motion are used for the aerodynamic model identification in chapter 10.

To conclude the following remarks are itemized:

• To ease the control input function description, the computation of vector and matrix opera-
tions and the output data handling the Multi-Body Kite model is implemented in Simulink

in the form of co-simulation with Adams using Adams/Controls

• All functions and equations given in this chapter which are required to obtain the lumped
parameters of the Multi-Body Kite model are programmed or automatically generated in a
Surf Kite Assembly macro-file

• The verification of the implementation of the macro files and the method for obtaining the
lumped parameters proves that the implementation and the method is excellent for the
translational and very accurate for the rotational quantities of the rigid body states

• The state reduction methodology defines a very good basis for the aerodynamic model iden-
tification for the implementation in the Rigid Body model
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Chapter 10

Aerodynamic & Structural Model
Identification

Chapter 9 describes the methodology for obtaining the rigid body states of a Multi-Body Kite
system. Chapter 6 gives the derivation of the equations of motion of the Rigid Body Kite model.
This chapter describes the model identification technique to derive functions for the aerodynamic
model and structural model on parametric basis. Flight test simulations are performed of the
Multi-Body Kite model described in chapter 9. Use is made of flight test techniques for aircraft
from reference [23].

10-1 Theory of parameter identification

For the Rigid Body model the functions of the aerodynamic model are based on Taylor series. This
is a proven method to describe the aerodynamic model of an aircraft. The aerodynamic model of
the Rigid Body model is also given by Taylor series (see equation (7-5)). These functions can be
restricted to the following form (reference [23]):

y(ti) =
r
∑

k=1

ak · xk(ti) + ε(ti) for i = 1 . . . n (10-1)

where y(ti) is the aerodynamic force or moment coefficient at ti, ak the identifiable parameters and
xk(ti) the state and control variables. ε(ti) denotes modelling errors which describes everything
not included. The modelling errors are not taken into account any further.

The variables xk(ti) are independent and are called the observation variables. The observation
variables are constructed by relations given in chapters 5 and 6 from the output variables of
the Adams model. y(ti) is the dependent variable. The variable y(ti) results by dividing the
measured aerodynamic forces and moments by the corresponding dimensional divisors representing
the dynamic pressure. Both variables are assumed to be measured exactly from the Adams model.
That is the measures are not subject to any bias or error.

The steps taken in the model identification process can be enumerated as:

1. Construct the kite state and control variables xk(ti) from the Adams model output
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2. Define on the knowledge at hand the aerodynamic model which describes the dependent
variable y(ti)

3. Identify and estimate the model parameters ak for t = t1 . . . tn

4. Check the accuracy of the identified parameters

5. Repeat steps 2, 3 and 4 until no improvement can be obtained

Least squares estimate

The identification of the aerodynamic derivatives is done by a least squares estimate. Matlab

has a function lscov.m to apply the least squares estimate. This function computes additional to
the identified parameters the standard errors of the parameters: σak , the mean squared error ε2

and an estimated covariance matrix S. Additionally the correlation matrix of the responses of the
observation variables is computed. In short the least squares estimate computes the parameters
ak as described below (reference [23]).

Equation (10-1) can be written in more compact form by:

Y = X · a (10-2)

where X is the observation matrix given by:

X =

















x1,1 x2,1 . . . xr,1
x1,2 x2,2 . . . xr,2
. . .
. . .
. . .

x1,n x2,n . . . xr,n

















a a vector with the identifiable parameters:

a = 〈a1, a2, . . . , ar〉
and Y a vector with the dependent variables y(ti).

For a particular estimate of a, â, the vector of residuals is defined as:

e = Y − X · â (10-3)

The least squares estimate minimizes the squares of the residuals for t = t1 . . . tn. A minimum
is found by setting the derivative with respect to â to zero, which leads to the so called normal
equations :

â =
(

X⊤X
)−1

X⊤Y (10-4)

For a good estimate of a the following conditions must hold:

• The time period as well as the discretization frequency of t = t1 . . . tn must comply to a
certain minimum

• The disturbance or input signal must have a certain power spectral density such that the
most dominant frequency modes are excited

• There must be enough variation in the responses of the observation variables xk(ti)

• The dependency between the observation variables must be small

The first and second item make sure that amount of ‘information’ in X is high. This means that the
potential for a good estimate of â is high. The third item makes sure that the influence of xk(ti)
on y(ti) is high enough and ak can be fitted accurately. The fourth item comprises the influence
of an observation variable on the parameter of another observation variable. The fourth item can
be counteracted by defining cross terms of the Taylor expansion as an observation variable.
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Input signals

The input signals, that is the disturbance on the system, influences the excitation of the specific
modes that can be identified. One can think of all kind of inputs: step, doublet, 3211, frequency
sweep and optimal inputs. The performance of the input signals can be represented by its power
spectral density. Optimal inputs are optimized for a specific model and have a high power at
the frequencies of interest. The most feasible input at hand is the 3211-input, because its power
is distributed over a broad range of frequencies. The 3211-input signal is shown in figure 10-1.
Reference [20] can be consulted for a comparison between the power spectral densities of different
input signals.

t [s]

am
p
li
tu
d
e

0 2 4 6 8 10 12 14 16

Figure 10-1: 3211-input signal

Initial condition

The initial condition for the test simulation for the identification of the aerodynamic parameters
plays has an important role. Not only will the values of the parameters or perhaps even the
aerodynamic function differ from condition to condition, also the potential for an accurate fit of
the aerodynamic function differs. A good starting point is to identify the aerodynamic functions
around stationary dynamically stable conditions.

10-2 Aerodynamic model

The complete identification of the aerodynamic model of the Adams Kite model is potentially a
tedious job and requires more advanced techniques than described here. Due to the complexity of
the deformation, specific structural states need to be defined to take the effect of the structural
modes into account. These states are not (yet) implemented in the Rigid Body Kite model. That
is, there is no dynamic function to describe these states. From the final result of the model
identification follows if this is a potential problem. The influence of the structural deformation on
the responses is often a superposition on the ‘rigid body’ responses (reference [18]). The higher the
effect of the structural modes on the aerodynamic forces and moments, the more the probability
of an accurate fit degrades.

The dimensionless forces and moments are given by:

CX(ti) =
X(ti)

1
2
ρVa(ti)2S(ti)

Cl(ti) =
L(ti)

1
2
ρVa(ti)2S(ti)b(ti)

CY (ti) =
Y (ti)

1
2
ρVa(ti)2S(ti)

Cm(ti) =
M(ti)

1
2
ρVa(ti)2S(ti)c(ti)

CZ(ti) =
Z(ti)

1
2
ρVa(ti)2S(ti)

Cn(ti) =
N(ti)

1
2
ρVa(ti)2S(ti)b(ti)

(10-5)

where the explicit time dependency of the variables Va, c, b and S is shown. In this way the
dimensionless forces and moments are independent of the dynamic pressure and additionally any
linear dependency on the variables c, b and S is removed.
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Model structure

The first step is to set up the a priori model as an initial guess for the model structure. In this
case, this is based on the knowledge about the aerodynamic model in Adams. Chapter 3 showed
that the aerodynamic forces and moment acting on each airfoil can be written as:

cx,j , cz,j , cm,j → f(αj , ζj) for j = 1 . . . n (10-6)

where n is the number of airfoils and ζj a deformation vector containing the camber and airfoil
thickness.

From equation (10-6) becomes clear that the resulting forces and moment on each airfoil j are
only dependent on the static parameters αj and ζj . This means that the local aerodynamic forces
(distributed over the airfoil) at each time step are independent of the time derivative of these
parameters and with that the time history.

This will not hold for the complete kite, as the lumped forces and moments CX , CY , CZ , Cl, Cm
and Cn are dependent on all airfoils combined. And, therefore, on the complete shape of the kite.
Not only on the static shape at each time step, but also on the shapes in the past due to the
structural interference. Because the structural interference is unknown (yet), the a priori model
is defined to be dependent of the local static variables.

Translating the local static variables to the overall body variables gives that the local angle of
attack results in a dependency on the body rates p, q and r and the side slip angle β. And, of
course, the control variables along the X-axis of the body-fixed reference frame xtaL and xtaR
have a definite influence.

For the a priori model an additional assumption is made. The longitudinal and lateral forces
and moments can be decoupled, that is the observation variables xk describing the symmetric
aerodynamic forces and moment have no influence on the asymmetric force and moments and vice
versa. The a priori model is then given as:

CX , CZ , Cm → f

(

α,
qc

Va
,
xta
c

)

CY , Cl, Cn → f

(

β,
pb

2Va
,
rb

2Va
,
xtaL
b
,
xtaR
b

) (10-7)

where the states are made dimensionless by the time dependent variables Va, c and b.

The second step is to define the set of so called candidate variables, which will be added to the
model consequently one after the other. The full set of candidate variables is given by the time
derivatives, higher order terms, cross terms of the variables given in equation (10-7) as well as
deformation states represented by the vector ζ(.). The deformation states for the complete body
still have to be determined except for c, b and S. Note that (.) defines the complete Taylor series
backwards in time. The deformation states are restricted here to c(.), b(.) and S(.).

It is not necessarily that once a variable is added to the model it cannot be removed from the
model. Because it is possible that a variable improves the fit, but can worsen the fit once other
variables are added (reference [23]).

Note that in Adams almost any state variable of the multi-body kite model can be measured.
This includes the lumped translational and rotational variables as well as any deformation state.
For the aerodynamic model of Rigid Body only those state variables can be taken into account
which are available from the Rigid Body model equations.

Initial conditions domain

The domain of the initial conditions defines greatly the validity domain of the obtained model.
In Adams the initial condition is set by defining the parameters Wx,0, dtaL,0 and dtaR,0. For the
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aerodynamic model these variables transform to Va,0, xtaL,0 and xtaR,0. The boundaries for Va,0
are given by the minimum velocity to keep the kite in the air and the maximum velocity for which
no buckling of the tubes exists. The boundaries of the control positions are given by the most
forward position along the rail and the most backward position for which still a statically stable
condition is found. The domain is discretized to specific number of initial conditions. For each
initial condition a flight test simulation is performed to obtain the corresponding aerodynamic
functions.

A stationary dynamically stable condition is achieved by specifying a constant wind speed Wx

and a symmetric initial condition for the control positions dtaL and dtaR. After the stabilization
phase of 15 s the kite is assumed to be at a stable zenith position, that is the acceleration terms are
damped to practically zero. At first this might not seem a condition which is often encountered for
a kite in motion or even flying a figure of eight and therefore does not give much information for the
full flight domain. But this is not entirely true, because the aerodynamic forces and moments are
a reaction on the aerodynamic velocity (local velocities for the body rates) and attitude conditions
and not on the kinematic conditions. In other words the kite does not ‘known’ whether the wind
velocity or the velocity with respect to ground is the cause for the resulting aerodynamic velocity.
Although, for the static conditions the question rises if dynamically or at least statically stable
conditions can be found for the full domain of the angle of attack α and side slip angle β.

Furthermore, the minimum and maximum values of the observation variables define the validity
region of the aerodynamic function. If a test simulation is performed from a statically stable con-
dition and the fitting of the aerodynamic function is successful then the aerodynamic parameters
are only a function of the initial condition and are valid for the region span by the observation vari-
ables. Now, if the aerodynamic functions are identified for multiple initial conditions the domain
of the aerodynamic model is increased.

Finally, an additional assumption is made: the aerodynamic model structure is the same for all
initial conditions. This is done to restrict the time consuming process of improving the fit to the
very detail for every flight test simulation.

Control input

An additional complexity is given by the fact that the controls have mass. A change of the control
positions causes a relative large shift of the center of gravity with respect to the body. This induces
additional nonlinearities and restricts the amplitude of the control input to relative small values
for the flight test simulations.

An example of the input curve, which is representative for most flight test simulations, is shown
in figure 10-2. Figure 10-2a shows again the 3211-input curve. The curve has a slope towards
the extreme values of the amplitude to avoid discontinuity in the signal as Adams can potentially
crash. After the 3211-input, the dta is kept at the initial condition for 5 s to increase the information
in the observation matrix X.

Figure 10-2b illustrates the response curve of the cart position with respect to the center of gravity.
Based on this curve a formula is found to convert the control input dta to xta. The relation is
given in equation (10-8):

xtaL = xtaL,0 −
2 ·mc

m−mc
· (dtaL − dtaL,0)− 0.1 · ẋtaL

xtaR = xtaR,0 −
2 ·mc

m−mc
· (dtaR − dtaR,0)− 0.1 · ẋtaR

(10-8)

where m is the mass of the complete system, mc is the mass of one control unit and the value 0.1
has been found to improve the fit. The equations are also valid for the symmetric input dta to
describe xta.
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Figure 10-2: 3211-input with Wx,0 = −8m/s and dta,0 = 0.20m

Significance criterion

The probability of the accuracy of the fitted parameters can be explored to the very detail (see
for example reference [23]). The analysis gives information on the significance of a parameter and
how to improve the fit.

Here, the analysis is restricted to the standard deviation of the identified parameter σak . It is
assumed that the parameters ak are independent and normally distributed, so:

ak ∼ N
(

âk, σ
2
ak

)

for all k (10-9)

The probability for a good fit is defined when the following criterion is met:

|ak|
2σak

> 5.0 (10-10)

which defines that the value of the fitted parameter is between 0.8ak and 1.2ak with a probability
of approximately 0.95.

Now, an iterative process can be started where subsequently observation variables are removed
and added to the model structures based on the significance criterion until no improvement is
found.

Symmetric forces and moment

For the longitudinal forces and moment the following model structure is found:

CX = CX0
+ CXα

· α+ CXxta
· xta − xdta=0

c

CZ = CZ0
+ CZα

· α+ CZq
· qc
Va

+ CZxta
· xta − xdta=0

c

Cm = Cm0
+ Cmα

· α+ Cmq
· qc
Va

+ Cmxta
· xta − xdta=0

c

(10-11)
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where all aerodynamic derivatives are dependent on the static variables by Va and xta and xdta=0

is xta at dta = 0.

It is found that more variables have a significant influence on the aerodynamic forces and moment.
These states include α̇, q̇, ẋta and S. The values of the parameters corresponding to α̇ and q̇
appeared to be positive for most part of the initial conditions domain. This does not constitute
to a physical meaning. The contributions of these time derivatives should govern damping in the
model and must therefore be negative. On this basis the model structure is kept limited to the
dependence shown in equation (10-11).

The flight test simulations are performed for all possible 48 combinations of the initial conditions
given in table 10-1. All simulations are fed with the 3211-input signal with an amplitude of 0.03m
on dta. This amplitude value is based on a compromise such that there is a little overlap between
the amplitude of the initial conditions, but not too high to reduce the shift of the center of gravity.
A higher amplitude increases the amount of information in the variable responses, but is less
linear. A lower amplitude decreases the information, but is more linear.

min max step #

Wx [m/s] -22 -8 2 8
dta [m] -0.05 0.20 0.05 6

Table 10-1: Initial conditions for the symmetric simulations

The relation between α0, Va and xta is illustrated in figure 10-3. α0 is in this case α at t = 0 s.
The 48 data points are linearly interpolated such that the trend is more clear. Note that xta
decreases towards the trailing edge. The first thing that is noticed is that the range of α0 is rather
low. But the most important conclusion that can be deduced is that the control of α with control
displacement is rather poor. For lower velocities the angle of attack can be increased a little to
approximately 11 deg, but for higher velocities the angle of attack even decreases with control
input.

xta

V
a

α0 [deg]

0.060.080.10.120.140.16
8

10

12

14

16

18

20

22

9.6

9.8

10

10.2

10.4

10.6

10.8

11

Figure 10-3: α0 as a function of Va and xta

In the following three simulations results are analyzed for the fitting of the forces and moment
curves X, Z and M . Two extreme conditions will be analyzed with an initial wind velocity of
−8m/s and −22m/s respectively and an initial control position of dta = 0.20m. And thirdly one
more central in the initial conditions domain of Wx,0 = −14m/s and dta = 0.05m. The first one
is shown in figure 10-4, the latter two in appendix B in figures B-1 and B-2.
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To analyze the resulted values for ak in more detail, σak and |ak| /(2σak) for the fitted force curve
M are given in table 10-2. The parameters which did not satisfy the criterion are highlighted in
light gray.

Cm0
Cmα

Cmq
Cmxta

ak 0.126 -0.733 -0.058 0.107
|ak| /(2σak) 53.7 49.6 4.89 9.76

Table 10-2: Fitted parameters and significance criterion forM atWx,0 = −8m/s and dta,0 = 0.20m

The fact that the significance of the value for Cmq
is low can have several causes. A cause can be

that the dependency of qc
Va

on Cm is indeed low. Another cause can be that the responses have
data collinearity. Data collinearity means that there is a high correlation between the responses of
the observation variables. Collinearity problems are more a data problem rather than a statistical
problem (reference [23]). Collinearity can be decreased or removed by choosing different input
signals. The computed correlation matrix reveals that the correlation coefficient of α and xta

c is
−0.862, which is high. This is a plausible cause for the decreased significance of Cmq

.

The fitted andAdamsmeasured force and moment curves in figures 10-4 and B-1 have a reasonable
to good match, especially for the curves of Z and M . The fitted and Adams measured force and
moment curves in figure B-2 do not have a bad match, but is worse than the other two. Figure
B-2a suggests that some other phenomenon plays a role as the control conversion formula is not
quite valid. The cause are the internal forces, which have exceeded the structural limits as will be
shown in section 10-3.

Furthermore the figures show that there is one dominant slow damped periodic mode. It is clearly
visible that the frequency of this mode increases with Wx,0 and the damping decreases with Wx,0.
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Figure 10-4: Simulated and fitted symmetric forces and moment curves at Wx,0 = −8m/s and
dta,0 = 0.20m
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Asymmetric force and moments

The determination of the lateral force and moment functions have additional complexity compared
to the longitudinal case. The initial condition is at least dependent on three variables instead of
two, namely Va,0, xtaL,0 and xtaR,0. When assuming that the initial condition for the asymmetric
derivatives is only dependent of these three variables means that β0 is given implicitly, just like the
relation between the initial condition and α0 for the symmetric case. Due to the three dimensional
dependency of the asymmetric aerodynamic derivatives the amount of flight test simulations to
determine them is increased. Referring to the symmetric case would imply that the amount of
simulations increases six times. Another problem is that no statically stable initial conditions can
be found for asymmetric positions of the controls. A solution is to find Taylor series which are
valid for a larger domain.

The identification of the complete asymmetric model requires more research, therefore the deter-
mination of the parameters for the asymmetric model is restricted to symmetric initial conditions.
This possibly constitutes a decrease of the validity of the model for more extreme asymmetric
control positions. The model structure found for the asymmetric aerodynamic force and moments
is given in equation (10-12). The initial conditions for which the parameters are determined are
shown in table 10-3.

CY = CYβ
· β + CY

β̇
· β̇ + CYr

· rb

2Va
+ CYxtaL

· xtaL − xdtaL=0

b
+ CYxtaR

· xtaR − xdtaR=0

b

Cl = Clβ · β + Clr ·
rb

2Va
+ ClxtaL

· xtaL − xdtaL=0

b
+ ClxtaR

· xtaR − xdtaR=0

b

Cn = Cnβ
· β + Cnr

· rb

2Va
+ CnxtaL

· xtaL − xdtaL=0

b
+ CnxtaR

· xtaR − xdtaR=0

b
(10-12)

where again all aerodynamic derivatives are dependent on the static variables Va and xta. The
derivatives with respect to the left and right control position have the same absolute values but
are opposite in sign.

Also for the asymmetric force and moments is found that other variables play a role in the con-
stitution of the model structure. Probably, this includes time derivatives and higher order terms
of the variables shown in equation (10-12). Due to collinearity of the responses of the observation
variables the significance of the estimated parameters is decreased and their contribution could
not be taken into account.

min max step #

Wx [m/s] -18 -8 2 6
dta [m] 0.00 0.25 0.05 6

Table 10-3: Initial conditions for the asymmetric simulations

The input of the asymmetric simulations is altered compared to the 3211-input for the symmetric
simulations. The input signal is applied only to the left control dtaL. Furthermore the first
block of 3 time units of the 3211-input possibly causes the kite to move away from the initial
condition in such a way that the kite crosses the XEYE-plane even before the input signal has
finished. Therefore a 1321-input is chosen such that the kite stays closer to the initial condition.
Additionally a time factor of 0.5 is applied to the complete input signal. The amplitude of the
input is set to 0.05m. See figure 10-5.

Again the results of three flight test simulations are analyzed. The initial conditions of the three
simulations are two extreme conditions atWx,0 = −8m/s andWx,0 = −18m/s with dta,0 = 0.25m
and one at Wx,0 = −14m/s and dta,0 = 0.05m, see figures B-3, 10-6 and B-4. The fit of the
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Figure 10-5: 1321-input signal on dtaL

asymmetric force and moment curves is reasonably accurate, but less than for the symmetric case.
Especially the fit for the yaw moment N follows the Adams measurement closely. Note that the
control conversion relation is less accurate as well.

The simulation shown in figure B-3 reveals that a critically damped oscillation is excited just after
the control input has returned to the initial condition. Adding additional variables improves the
fit, but did not add any significance. This means that either additional candidate variables need
to be found or the input signal should altered or both.

For initial conditions at and above Wx,0 = −10m/s the critically damped oscillation is almost
or completely gone as can be seen in figure 10-6. The curves suggest that the found model
structure is quite accurate, but also indicate that improvement is possible for the moment L. The
derivatives which did not fulfill the significance criterion for this flight test simulation is ClxtaL

with a |ak| /(2σak) of 2.89.

Clβ Clr ClxtaL
ClxtaR

ak -0.0120 -0.0201 0.0094 -0.0101
|ak| /(2σak) 20.7 44.0 2.89 3.09

Table 10-4: Fitted parameters and significance criterion for L at Wx,0 = −14m/s and dta,0 =
0.05m

The third example, figure B-4, illustrates that when the kite moves away from the initial condition
the fit does not completely follow the Adams measured force and moments as can be seen from the
steep curve at the end of the flight test simulation. Although it is found that the time derivative
of the yaw rate ṙ improves the fit of N drastically.
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Figure 10-6: Simulated and fitted asymmetric force and moments curves at Wx,0 = −14m/s and
dta,0 = 0.05m
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The values of the symmetric and asymmetric aerodynamic derivatives as well as the statistical
significance as a function of the initial conditions given by Va,0 and xta,0 are shown in appendix
C.

10-3 Inertia tensor & structural properties

As the aerodynamic derivatives vary as a function of the initial condition the variation of the
moments and products of inertia, mean aerodynamic chord, projected surface area and wing span
are also a function of the initial condition. Actually the variation of these properties are dynamic
like the variation of the aerodynamic forces and moments. The analysis here is restricted to find
a relation of the inertia tensor and structural properties as a function of the initial condition. In
this way it is possible to incorporate the inertia tensor and the structural properties on a quasi
static basis.

Inertia tensor

As the test simulations are performed for only symmetric initial conditions the moments and
products of inertia can only be determined as a function of the symmetric initial variables Va,0
and xta,0.

In the same sense as the aerodynamic forces and moments are made dimensionless in flight dy-
namics theory the moments and products of inertia can be made dimensionless. The relations are
given in equations (10-13):

µcK
2
X =

Ixx,0

ρS0b30
µcKXY =

Jxy,0

ρS0b30

µcK
2
Y =

Iyy,0

ρS0c30
µcKY Z =

Jyz,0

ρS0b30

µcK
2
Z =

Izz,0
ρS0b30

µcKZX =
Jzx,0

ρS0b30

(10-13)

where µc is the dimensionless mass:

µc =
m

ρS0c0

The measured moments and products of inertia in Adams are particle based as discussed in section
9-2-3. From the translation theorem can be deduced that the error made by the particle based
method is the sum of the moments and products of inertia of each body about its own center of
mass. Table A-5 gives an indication of the order of magnitude of the error. The error is variable
and dependents on the orientation of each individual body. Since all bodies are connected and
the error is rather small a constant correction factor is proposed. In Adams the actual inertia
tensor can be measured with the Aggregate Mass. . . function and compared to the particle based
measurement. The difference at Wx,0 = −12m/s is:

Isl =





0.625 0 −0.685
0 0.715 0

−0.685 0 0.622



 (10-14)

which is added to the particle based values to obtain the estimate for the inertia tensor.

It appears that the moments and products of inertia can be described by a quadratic relation as
a function of xta,0 where the parameters are a function of only Va,0:

K = K0.15(Va,0) +Kxta,0
(Va,0) ·

xta,0 − 0.15

c
+Kx2

ta
(Va,0) ·

(xta,0 − 0.15)2

c2
(10-15)

where xta = 0.15 is equal to dta = 0.0.
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In this way functions are derived for the moments and products of inertia on a quasi static basis
described by dimensionless parameters. The model can be included in the Rigid Body Kite model
using a lookup table.

Structural properties

The mean aerodynamic chord, wing span and projected surface area can be described by a
quadratic relation as well. Opposite to the function for the inertia tensor the function is not
made dimensionless, because there is no divisor for c and b. The equations are:

c0 = c0.15(Va,0) + cxta,0
(Va,0) ·

xta,0 − 0.15

c
+ cx2

ta
(Va,0) ·

(xta,0 − 0.15)2

c2

b0 = b0.15(Va,0) + bxta,0
(Va,0) ·

xta,0 − 0.15

c
+ bx2

ta
(Va,0) ·

(xta,0 − 0.15)2

c2

S0 = c0 · b0

(10-16)

The image plots for the dimensional values of the moments and product of inertia the structural
properties c0, b0 and S0 are shown in appendix D. The values of Jxy and Jyz are zero due to
the symmetric initial conditions. The tether attachment points in Yb and Zb direction can also be
given as a function of Va,0 and xta,0. The corresponding image plots are also given in appendix
D, where the position in Yb-direction is given as 2 · ytaR,0.
For higher velocities it is expected that the wing span will decrease due to a higher tension in
the tether. And consequently causes Ixx to decrease as well and Iyy to increase. As can be seen
from the figures this holds only for control positions close to the leading edge. When the controls
are displaced more towards the trailing edge the wing span, Ixx and Iyy become approximately
invariable with the aerodynamic velocity. A rearward displacement of the controls causes the
trailing edge of the rails to bend inwards due to the weight of the controls. This results in an
increased local angle of attack, which increases the sideways force and causes the wing span to
increase. The image plot of the mean aerodynamic chord, figure D-2a, shows a sudden decrease
at the top right corner. This is explained by the fact that the chord tubes have buckled. This
potentially clarifies the less accurate fit at Wx,0 = −22m/s in figure B-2. The increased angle of
attack at the tips and the buckled tubes is shown in figure 10-7.

αlocal
Buckled

Figure 10-7: Bottom view of ADAMS Kite model at Va,0 = 22m/s and xta,0 = 0.06m

Review and remarks

Parameter identification techniques are used to find a model based on Taylor series for the aero-
dynamic forces and moments expressed in the body-fixed reference frame. It is shown that this
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results in functions depending on aerodynamic and structural variables and respective aerody-
namic derivatives. The aerodynamic variables are constructed from the rigid body states of the
reduced Multi-Body model. The aerodynamic derivatives are a function of the static variables Va
and xta. The initial angle of attack at t = 0 s is implicitly given by these two variables.

The following assumptions are made regarding the aerodynamic model:

• The symmetric and asymmetric aerodynamic forces and moments are decoupled

• The variables in the model functions have an independent contribution to the forces and
moments

• The model structures for the symmetric and asymmetric forces and moments are valid for
all symmetric conditions of Va and xta within the specified domain

• The structural deformation variables are only given by c, b and S

All effects which are not taken into account contribute to modelling errors. The aerodynamic
model structure found is given in equations (10-11) and (10-12). Several resulting fits are dis-
cussed and show reasonable to good results. It is found that other variables have a contribution
on the aerodynamic forces and moments, like time derivatives, quadratic terms and structural
deformation. Due to data collinearity meaning high correlation coefficients these contributions are
not taken into account. It is shown that data collinearity can give a low statistical significance of
the estimated parameters. It is proven that time derivative and higher order contributions are a
result of the flexible structure. Every state which is not in the a priori model is a result of the
flexible structure.

The amplitude of the input signal of the flight test simulations defines the excitation of the
observation variables and the validity domain of the model. Especially for the static variables α
and β. Figure 10-3 shows that the range of α achieved by the control system is low.

To conclude it is recommended to perform more detailed research on the identification of the
aerodynamic models. This comprises redesign of the input signals, increase the set of candidate
variables and an extension of the validity domain.
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Chapter 11

Validation Rigid Body Kite Model

The identified aerodynamic model of chapter 10 is implemented in the Rigid Body Kite model. A
validation simulation is performed by comparing the responses with the responses of the Multi-
Body Kite model.

The symmetric aerodynamic forces and moment are identified with a 3211-input curve. To demon-
strate the effectiveness of the identification, the Multi-Body model and Rigid Body model are
simulated subject to another input curve. The resulted input curve on xta is shown in figure 11-1.
The initial condition is Wx,0 = −12m/s and dta,0 = 0.0m.

Figures 11-2 to 11-6 show the response curves of the kinematic velocities uk and wk, the pitch
angle θ, the pitch rate q and tether zenith angle θt. The position and orientation response curves
illustrate a good comparison. It is clear that the damping of the rigid body model is less. The
pitch angle θ damps out more slowly in the Rigid Body response curve. The pitch rate q response
curve shows this even more clearly.

The eigenvalues of the symmetric periodic eigenmotions corresponding to the Rigid Body model
at the initial condition Wx,0 = −12m/s and dta,0 = 0.0m are:

λ1,2 = −0.320± 8.880 i
λ3,4 = −0.395± 0.871 i

where the λ1,2 corresponds to the short period oscillating motion of 1.41Hz and λ3,4 to the low
frequent pendulum motion of 0.152Hz. The short period eigenmotion is visible in the response
curve of the pitch rate q and the pendulum motion in the other response curves.

Choosing another initial condition at Wx,0 = −12m/s and dta,0 = 0.20m where the cart position
is moved more towards the trailing edge results in the following eigenvalues for the symmetric
oscillating modes:

λ1,2 = 0.101± 8.179 i
λ3,4 = −0.431± 0.962 i

from which becomes clear that the short period motion has become unstable. For other wind
velocity conditions the same phenomenon is verified.

So, the less damped short period oscillating motion of the Rigid Body model compared to the
Multi-Body model becomes unstable for control positions more towards the trailing edge. This
analysis shows that a damping contribution has been lost in the aerodynamic model identification
process. When the cart is moved towards the trailing edge the kite tips bend inwards. This
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deformation can be a cause for the decreased effectiveness of the model identification. It can
be concluded that the application of the symmetric aerodynamic model identified in chapter 10
is limited. Also for the asymmetric motions unstable solutions are found. One cause is data
collinearity representing high correlation coefficients of the responses of the observation variables.
It is concluded that the identification of the aerodynamic models requires more research.

This should constitute a structural modal analysis, specification of deformation states to increase
the set of candidate variables for the aerodynamic model identification and an advanced model
identification technique. The latter comprises redesigned inputs and advanced estimation tech-
niques, like weighted least squares or maximum likelihood estimation.

The simulation time of the shown simulation does prove that the reduction process is possible.
The simulation time for simulating the approximately 27 s takes with the Adams model more than
300 s whereas the Rigid Body needs less than 3 s. The rigid body simulation is almost ten times
faster than real-time, whereas the Adams model is ten times slower than real-time.
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Figure 11-1: Multi-Body and Rigid Body, xta input curve at Wx,0 = −12m/s and dta,0 = 0.0m
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Figure 11-2: Multi-Body and Rigid Body, uk response curve at Wx,0 = −12m/s and dta,0 = 0.0m
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Figure 11-3: Multi-Body and Rigid Body, wk response curve at Wx,0 = −12m/s and dta,0 = 0.0m
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Figure 11-4: Multi-Body and Rigid Body, pitch angle response curve at Wx,0 = −12m/s and
dta,0 = 0.0m
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Figure 11-5: Multi-Body and Rigid Body, pitch rate response curve at Wx,0 = −12m/s and
dta,0 = 0.0m
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Figure 11-6: Multi-Body and Rigid Body, tether zenith angle response curve at Wx,0 = −12m/s
and dta,0 = 0.0m
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Chapter 12

Conclusions & Recommendations

A formal methodology is developed to reduce the complex Multi-Body arc-shaped kite model to a
rigid body arc-shaped kite model. In more general terms: the methodology presented here allows
for any flying object modelled with multi-bodies to be reduced to a set of states describing the
motion as a rigid body.

The multi-body reduction process developed is shown in figure 12-1, where U comprises the wind
and controller input along the kite tip, Y mb the output of the multi-body system, Xred the reduced
state vector, Xval the state vector of the validation model and ε the error between the reduced
model and the Multi-Body model. The error is fed back to the input to optimize the input and
the model identification. Xred consists of translation and rotational quantities, the inertia tensor,
the sum of aerodynamic forces and moments, the tether forces and the control input defined in
the body-fixed reference frame.

Multi-Body

Validation
Validation Reduced

model

modelmodel

model

State

reduction

Aero + Struct.

identification

U
Y mb

Xred

Xval

ε

ε ≈ 0

Figure 12-1: Multi-Body model reduction process
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Conclusions

The particular Rigid Body model developed describes the dynamic motion of the Multi-Body
model formulated by rigid body states. The Rigid Body model and the Multi-Body model are
both attached to a spring-damper tether model such that only model reduction is required for the
aerodynamics and the structure.

The complete set of equations to describe the dynamics of the Rigid Body Kite model is established
and formulated with Newton’s second law in Cartesian and spherical coordinates. The model
describes a kite attached to a straight line tether with two bridle lines. The model is verified
by referring to a rigid body aircraft model. The aircraft dynamics are known from a linear time
invariant reference model from reference [24]. For completion of the verification LTI models are
derived for an aircraft flying in wind conditions and for the Rigid Body model on the same basis
as in reference [24]. Because the LTI models are on a parametric basis, they can be used to
investigate the influence of specific parameters on the stability of the system.

The numerous states of the Multi-Body model designed in Adams are reduced to a set of states
describing the motion as a single body. For every body, flexible and rigid, holds that the inertial
linear and rotational acceleration follow Newton’s second law: the sum of external forces is equal
to the time derivative of the linear momentum and the sum of external moments is equal to the
time derivative of the angular momentum. On this principle the state reduction is applied and
verified for the Multi-Body model. The acceleration, velocity and displacement components of
the center of mass are obtained by a mass weighted approach on the basis of conservation of
linear momentum. To establish the rotational states the inertia tensor and angular momentum
are required as a function of time. Because of programming issues in Adams the implementation
of the measurement for the inertia tensor and angular momentum is applied with a particle based
method. It is shown that the particle based method neglects the contribution of the sum of the
local mass moments of inertia and angular momentum about the center of gravity of each body.
It is proven that the particle based method makes up a very good approximation for the angular
momentum and the time derivative of the angular momentum of the Multi-Body Arc-shaped
Kite model. With the measurements of the inertia tensor, the angular momentum and the time
derivative of the angular momentum the body rotational rates and accelerations are computed.
By integrating the rotational rates through time the orientation of the body-fixed reference frame
is tracked.

Specific Adams macro files are programmed which automate the generation of the function mea-
sures for the measurements of the displacement quantities, inertia tensor components, angular
momentum and the time derivative of the angular momentum. A Simulink model is coupled to
the Adams model to ease the matrix and vector operations for computation of the body angular
acceleration, angular rate and orientation during run-time simulations. A visualization dummy is
added to the model which tracks the position and orientation of the body-fixed reference frame.
Now, any structural deformation aspect can be analyzed with respect to this centroid dummy.

To accomplish the reduction of the Multi-Body Kite model to a Rigid Body Kite model it is
required that the aerodynamic and the structural model can be written by functions dependent
on rigid body states. The rigid body states are defined by the state reduction process. Due to the
tight interaction between the flight condition and kite shape the aerodynamic model and structural
model vary with flight condition.

The aerodynamic model is formulated on the basis of Taylor expansions and written in dimen-
sionless form making it independent of the dynamic pressure, mean wing chord, wing span and
projected surface area. Taylor series results in a linear decomposition of the dependency of each
state. The effective contribution of each aerodynamic state is given by respective dimensionless
aerodynamic derivatives. Flight test simulations are performed for a predefined flight domain to
find the model structure and to fit or estimate the values of the aerodynamic derivatives. The
aerodynamic derivatives are then dependent of the flight condition, which is given by Va and xta.
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Roughly Va accounts for the static body shape and xta for the shift of the center of gravity due
to the weight of the control carts. The initial angle of attack α of each flight test simulation is
implicitly given by these two variables. It is shown that the angle of attack control has a range of
approximately 2 deg. The angle of attack control with cart position is very limited. For the sym-
metric as well as the asymmetric model the flight test simulations are performed from a stationary
initial condition. It is found that the aerodynamic forces and moments depend on angle of attack,
side slip angle, body rates and control positions, but also on respective time derivatives and higher
order terms. Because the aerodynamic model for each airfoil in the Multi-Body model does not
depend on time related parameters, but only on static states, the time derivative contributions in
the aerodynamic model for the Rigid Body model are a result of the flexible structure.

The structural model is constituted on a quasi-static basis by formulating functions describing the
initial conditions of the flight test simulations. Therefore the structural model is also dependent
on the variables Va and xta. Functions are formulated for the inertia tensor components, mean
wing chord, wing span, projected surface area and the tether attachment points.

Test simulations are performed to validate the Rigid Body model with respect to the Multi-
Body model where both models are subject to the same input. Comparisons are made for initial
conditions which represent a dynamically stable condition. The main difference is shown with the
damping of the short period eigenmotion. The damping of this eigenmotion is less for the Rigid
Body model. It appears that dynamically unstable situations result for initial conditions where
the control positions are moved towards the trailing edge. This is clarified by the positive real part
of the eigenvalue of the short period motion for these conditions. In the model reduction process
some damping term has been lost, which results in the fact that the reduced model is unstable for
some flight conditions.

Accurate fits of the aerodynamic forces and moments response curves are found for a large part
of the investigated domain. Implementation of the found aerodynamic model resulted in the
unstable situations for some part of the flight domain. It is found from further investigation on
the aerodynamic model identification process that the observation variables have data collinearity
meaning high correlation coefficients. This degrades the statistical significance of the estimated
derivatives and makes the independent contribution of the variables problematic to identify. The
model identification technique fails to identify the aerodynamic model for a broader domain.

The validation proves that the proposed methodology for model reduction is a qualitative manner
for model reduction of the Multi-Body Kite model and for multi-body model reduction of flying
objects in general. It results in kite models almost ten times faster than real-time, whereas
simulating the Multi-Body Kite model in Adams takes more than ten times real-time.

To answer the question ‘Is it possible to simulate the overall dynamic behaviour of a flexible arc-
shaped kite model with a rigid body model? ’ it can be said that this is possible. The model
reduction is proven for some part of the investigated flight domain. Advanced model identification
techniques which can identify the aerodynamic model with higher statistical significance increase
the validity domain.

A detailed Rigid Body arc-shaped kite model which is appropriate for controller design is devel-
oped. The system equations of the Rigid Body model are qualitatively formulated and verified.
This modelling approach results in fast models. Advanced control techniques can be designed on
the basis of this modelling approach.

Modelling the Dynamics of an Arc-shaped Kite for Control Law Design



164 Conclusions & Recommendations

Recommendations & future work

For future work multiple recommendations can be formulated.

Regarding the Adams Multi-Body model it is found that the simulation time is long. It is
worthwhile to investigate in more efficient methods or applications to simulate complex multi-
body models. The presented multi-body reduction process is appropriate for other multi-body
applications.

For the aerodynamic and structural model identification the following recommendations can be
itemized:

• Perform research into more advanced model identification techniques

• Perform a modal analysis to identify the dominant structural modes of an arc-shaped kite

• Identify the aerodynamic and structural models

Referring to the aerodynamic model a similar approach can be depicted for the structural model,
where the dynamics are also described by parametric functions based on Taylor series or Fourier
series. As the body-fixed reference frame of the Multi-Body Arc-shaped Kite model is defined it
is now possible to perform an analysis of the deformation modes superimposed on the rigid body
states. The governing structural states on the rigid body motion can be added to the aerodynamic
models. With this approach a high interaction is established between the aerodynamic and struc-
tural model written as a set of parametric formulations. This will resolve the unstable solutions
found in this thesis.

For faster simulations and better integration techniques the Rigid Body model should be designed
in an other software application than Simulink. Simulink is advantageous for bookkeeping,
but lacks in simulation speed and the use of custom integration methods. It is found that the
aerodynamics of the Multi-Body Kite model have dependency on the rigid body acceleration states.
Algebraic loops are found when these states are included in the aerodynamic models. Additionally
the values of these respective parameters are positive. The algebraic loops and positive parameters
resulted in unstable solutions. This can mean that unstable models are identified due to the
positive parameters or that the numerical integration method in Simulink is limited to solve
algebraic loops or both. For on-line application of the Rigid Body model these issues need to be
resolved.

The kite is the main focus in this thesis. For the tether it is assumed that it can be represented
by a straight line spring-damper model. This holds for short tethers. Further research is required
to model tethers and to investigate the influence of the tether on the dynamics of the system.
Specifically, this comprises tether drag and the limits of the straight line assumption.
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Appendix A

Additional Information Multi-Body
Kite Model

Additional information is depicted of the Multi-Body Kite model with respect to the parts and
joints, UDE function partitions and mass and inertia tensor properties.

Model overview

Adams has a function to verify the model on the number of parts, constraints and degrees of
freedom. The result is shown in table A-1.

Degrees of Freedom 375
Moving parts 211
Revolute joints 22
Spherical joints 66
Translational joints 20
Hooke joints 120
Redundant constraints 0

Table A-1: Model verification

UDE function partitions

Table A-2 gives an overview of the parts with respect to their number and total weight. Addi-
tionally the subdivision of the Center of Gravity UDEs is shown. This subdivision is a result of
the character limit of the Adams function measures created with the macro files. The filter string
defines the parts selected for the creation of the UDE. More details are given in section 9-2.
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Part Filter string UDE name Number Total
CoG of parts Weight [kg]

LE Tubes Tube* LE 20 1.2485

Side Tubes Chord* CH 25 0.5297

Foils FoilC0C1 YNeg* 01L 32 2.23·10−2

FoilC0C1 YPos* 01R 32 2.23·10−2

FoilC1C2 YNeg* 12L 32 1.73·10−2

FoilC1C2 YPos* 12R 32 1.73·10−2

FoilC2tip YNeg* 2tL 16 5.42·10−3

FoilC2tip YPos* 2tR 16 5.42·10−3

Cart, rail, kite top Kite* CO 5 3.61

Total T 210 5.3062

Table A-2: Part overview and Center of Gravity UDE partition overview

Table A-3 gives an overview of the subdivision of the Angular Momentum and Inertia UDEs. For
the angular momentum and inertia measures the contribution of the foil parts is ignored. This
can be justified by the fact that the weight of the foil parts is very small.

Part Filter string UDE name Number
AngM , I of parts

LE Tubes Tube YNeg* LEL 10
Tube YPos* LER 10

Side Tubes Chord0* CH0 5
Chord1* CH1 10
Chord2* CH2 10

Cart, rail, kite top Kite* CO 5

Total T 50

Table A-3: Angular Momentum and Inertia UDE partition overview

Table A-4 gives an overview of the subdivision of the General Force UDEs for the aerodynamic
force measures.

Force Filter string UDE name Number
SumGF of forces

GForce *C0C1 YNeg Fae* 01L 20
*C0C1 YPos Fae* 01R 20
*C1C2 YNeg Fae* 12L 20
*C1C2 YPos Fae* 12R 20
*C2tip YNeg Fae* 2tL 10
*C2tip YPos Fae* 2tL 10

Total T 100

Table A-4: Aerodynamic forces overview and General Forces UDE partition overview

Mass and inertia tensor

The mass and inertia tensor properties at the initial condition (t = 0 s) are shown in table A-5.
Inertia tensor properties obtained with Aggregate Mass. . . function as well as with the particle
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based method are shown. The values are expressed in the body-fixed reference frame.

m, total mass 5.3062 kg dtaL,0 0.05m
mc, cart mass 0.990 kg dtaR,0 0.05m
mr, rail mass 0.724 kg

Inertia property Exact [kg·m2] pb [kg·m2] Error [%]

Ixx 30.88 30.25 2.0
Iyy 10.07 9.36 7.1
Izz 22.34 21.72 2.8
Ixy 0.0 0.0 0.0
Iyz 0.0 0.0 0.0
Izx 0.383 0.314 17.2

Table A-5: Mass and initial inertia properties, body-fixed reference
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Appendix B

Examples of flight test simulations

Examples are shown of four flight test simulations, which are used for the aerodynamic parameter
identification. The fitted forces and moments curves are corresponds to the the aerodynamic
models in equations (10-11) and (10-12). The figures are analyzed and discussed in chapter 10.
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Figure B-1: Simulated and fitted symmetric forces and moment curves at Wx,0 = −14m/s and
dta,0 = 0.05m
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Figure B-2: Simulated and fitted symmetric forces and moment curves at Wx,0 = −22m/s and
dta,0 = 0.20m

Modelling the Dynamics of an Arc-shaped Kite for Control Law Design



176 Examples of flight test simulations

t [s]

x
ta
L
[m

]

Adams

Control conversion

16 18 20 22 24 26

0.01

0.02

0.03

0.04

0.05

0.06

(a) Left input along Xb-axis

t [s]

Y
[N

]

Adams

Nonlinear fit

16 18 20 22 24 26
-10

-5

0

5

10

(b) Force curve along Yb-axis

t [s]

L
[N

m
]

Adams

Nonlinear fit

16 18 20 22 24 26
-4

-2

0

2

4

(c) Moment curve about Xb-axis

t [s]

N
[N

m
]

Adams

Nonlinear fit

16 18 20 22 24 26
-20

-10

0

10

20

(d) Moment curve about Zb-axis

Figure B-3: Simulated and fitted asymmetric force and moments curves at Wx,0 = −8m/s and
dta,0 = 0.25m
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Figure B-4: Simulated and fitted asymmetric force and moments curves at Wx,0 = −18m/s and
dta,0 = 0.25m
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Appendix C

Aerodynamic derivatives

The dimensionless aerodynamic derivatives derived with the flight test simulations of chapter
10 are shown in subsequent figures on the left with the significance criterion on the right. The
derivatives of the symmetric forces and moment are obtained from 48 flight test simulations and
the asymmeric force and moments from 36 flight test simulations as given by tables 10-1 and 10-3.

The derivatives are shown with contour plots obtained with linear interpolation. The values of
the significance criterion are illustrated with image plots and are not interpolated. The colors of
the image plots represent the same value for every plot. All values of the significance criterion
higher than 30 are truncated and represented by the color for 30, which defines that the value of
the fitted parameter is approximately between 0.97ak and 1.03ak with a probability of 0.95.

Modelling the Dynamics of an Arc-shaped Kite for Control Law Design



180 Aerodynamic derivatives

C-1 Derivatives of the symmetric forces and moment
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Figure C-1: Initial values of CX , CZ and Cm as a function of Va,0 and xta,0
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Figure C-2: Derivatives with respect to α as a function of Va,0 and xta,0
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Figure C-3: Derivatives with respect to qc

Va
as a function of Va,0 and xta,0
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Figure C-4: Derivatives with respect to xta
c

as a function of Va,0 and xta,0
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C-2 Derivatives of the asymmetric force and moments
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Figure C-5: Derivatives with respect to β as a function of Va,0 and xta,0
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Figure C-6: Derivatives with respect to rb
2Va

as a function of Va,0 and xta,0
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Figure C-7: Derivatives with respect to xtaL

b
as a function of Va,0 and xta,0
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Figure C-8: Derivatives with respect to β̇b
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as a function of Va,0 and xta,0
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Appendix D

Moments and product of inertia and
structural properties

The image plots for the dimensional values of the moments and product of inertia the structural
properties c0, b0 and S0 and the control positions or tether attachment points along Yb and Zb-axis
are given as a function of Va and xta. The values of Jxy and Jyz are zero due to the symmetric
initial conditions. And 2yta is equal to 2ytaR.
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Moments and product of inertia
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Figure D-1: Moments and product of inertia as a function of Va and xta
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Structural properties
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Figure D-2: Structural properties as a function of Va and xta
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Control positions
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Figure D-3: Control positions as a function of Va and xta
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Appendix E

Response curves aircraft and
Citation-Kite simulations

This appendix shows the response curves of the aircraft and Citation-Kite simulations for the
verification of the Rigid Body Kite model as described in chapter 8.

E-1 Aircraft

Symmetric motions, phugoid responses
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Figure E-1: Va-response curve for a step elevator deflection (∆δe = −0.005 rad) for Cessna Ce500
‘Citation’, phugoid

Modelling the Dynamics of an Arc-shaped Kite for Control Law Design



194 Response curves aircraft and Citation-Kite simulations

t [s]

α
[r
ad

]

State-space

Linearized

Nonlinear

0 50 100 150
0.17

0.175

0.18

0.185

0.19

0.195

0.2

0.205

Figure E-2: α-response curve for a step elevator deflection (∆δe = −0.005 rad) for Cessna Ce500
‘Citation’, phugoid
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Figure E-3: θ-response curve for a step elevator deflection (∆δe = −0.005 rad) for Cessna Ce500
‘Citation’, phugoid
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Figure E-4: q-response curve for a step elevator deflection (∆δe = −0.005 rad) for Cessna Ce500
‘Citation’, phugoid
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Symmetric motions, short period responses
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Figure E-5: Va-response curve for a step elevator deflection (∆δe = −0.005 rad) for Cessna Ce500
‘Citation’, short period
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Figure E-6: α-response curve for a step elevator deflection (∆δe = −0.005 rad) for Cessna Ce500
‘Citation’, short period
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Figure E-7: θ-response curve for a step elevator deflection (∆δe = −0.005 rad) for Cessna Ce500
‘Citation’, short period

Modelling the Dynamics of an Arc-shaped Kite for Control Law Design



196 Response curves aircraft and Citation-Kite simulations

t [s]

q
[r
ad

/s
]

State-space

Linearized

Nonlinear

0 2 4 6 8 10
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Figure E-8: q-response curve for a step elevator deflection (∆δe = −0.005 rad) for Cessna Ce500
‘Citation’, short period

Asymmetric motions, rudder deflection
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Figure E-9: Va-response curve for a pulse rudder deflection (∆δr = 0.025 rad during 1 s) for Cessna
Ce500 ‘Citation’

t [s]

β
[r
ad

]

State-space

Linearized

Nonlinear

0 5 10 15
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

Figure E-10: β-response curve for a pulse rudder deflection (∆δr = 0.025 rad during 1 s) for Cessna
Ce500 ‘Citation’
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Figure E-11: φ-response curve for a pulse rudder deflection (∆δr = 0.025 rad during 1 s) for Cessna
Ce500 ‘Citation’

t [s]

p
[r
ad

/s
]

State-space

Linearized

Nonlinear

0 5 10 15
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Figure E-12: p-response curve for a pulse rudder deflection (∆δr = 0.025 rad during 1 s) for Cessna
Ce500 ‘Citation’
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Figure E-13: r-response curve for a pulse rudder deflection (∆δr = 0.025 rad during 1 s) for Cessna
Ce500 ‘Citation’
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Figure E-14: ψ-response curve for a pulse rudder deflection (∆δr = 0.025 rad during 1 s) for Cessna
Ce500 ‘Citation’

Asymmetric motions, aileron deflection
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Figure E-15: Va-response curve for a pulse aileron deflection (∆δa = 0.025 rad during 1 s) for
Cessna Ce500 ‘Citation’
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Figure E-16: β-response curve for a pulse aileron deflection (∆δa = 0.025 rad during 1 s) for Cessna
Ce500 ‘Citation’
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Figure E-17: φ-response curve for a pulse aileron deflection (∆δa = 0.025 rad during 1 s) for Cessna
Ce500 ‘Citation’
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Figure E-18: p-response curve for a pulse aileron deflection (∆δa = 0.025 rad during 1 s) for Cessna
Ce500 ‘Citation’
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Figure E-19: r-response curve for a pulse aileron deflection (∆δa = 0.025 rad during 1 s) for Cessna
Ce500 ‘Citation’
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Figure E-20: ψ-response curve for a pulse aileron deflection (∆δa = 0.025 rad during 1 s) for Cessna
Ce500 ‘Citation’

E-2 Citation-Kite

The symmetric response curves give a comparison between the state-space, linearized and nonlinear
model and are given for the six states in the state-space model: uk, wk, θ, q, θt and lt. The
pendulum motion as well as the short period motion are shown.

The asymmetric response curves give a comparison between the state-space, linearized and non-
linear model and are given for the six states in the state-space model and additionally β in the
order: β, vk, p, r, φ, ψ and ψt.

E-2-1 Symmetric motions, wind step input

Pendulum responses
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Figure E-21: uk-response curve to a wind step input of ∆Wx = −10m/s of the ‘Citation-Kite’,
pendulum motion
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Figure E-22: wk-response curve to a wind step input of ∆Wx = −10m/s of the ‘Citation-Kite’,
pendulum motion
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Figure E-23: θ-response curve to a wind step input of ∆Wx = −10m/s of the ‘Citation-Kite’,
pendulum motion
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Figure E-24: q-response curve to a wind step input of ∆Wx = −10m/s of the ‘Citation-Kite’,
pendulum motion
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Figure E-25: θt-response curve to a wind step input of ∆Wx = −10m/s of the ‘Citation-Kite’,
pendulum motion
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Figure E-26: lt-response curve to a wind step input of ∆Wx = −10m/s of the ‘Citation-Kite’,
pendulum motion

Short period responses
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Figure E-27: uk-response curve to a wind step input of ∆Wx = −10m/s of the ‘Citation-Kite’,
short period motion
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Figure E-28: wk-response curve to a wind step input of ∆Wx = −10m/s of the ‘Citation-Kite’,
short period motion
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Figure E-29: θ-response curve to a wind step input of ∆Wx = −10m/s of the ‘Citation-Kite’, short
period motion
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Figure E-30: q-response curve to a wind step input of ∆Wx = −10m/s of the ‘Citation-Kite’, short
period motion
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Figure E-31: θt-response curve to a wind step input of ∆Wx = −10m/s of the ‘Citation-Kite’,
short period motion
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Figure E-32: lt-response curve to a wind step input of ∆Wx = −10m/s of the ‘Citation-Kite’,
short period motion

E-2-2 Symmetric motions, control step input

Pendulum responses
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Figure E-33: uk-response curve to a control step input of ∆xta = 0.05m of the ‘Citation-Kite’,
pendulum motion
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Figure E-34: wk-response curve to a control step input of ∆xta = 0.05m of the ‘Citation-Kite’,
pendulum motion
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Figure E-35: θ-response curve to a control step input of ∆xta = 0.05m of the ‘Citation-Kite’,
pendulum motion
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Figure E-36: q-response curve to a control step input of ∆xta = 0.05m of the ‘Citation-Kite’,
pendulum motion
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Figure E-37: θt-response curve to a control step input of ∆xta = 0.05m of the ‘Citation-Kite’,
pendulum motion
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Figure E-38: lt-response curve to a control step input of ∆xta = 0.05m of the ‘Citation-Kite’,
pendulum motion
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Figure E-39: uk-response curve to a control step input of ∆xta = 0.05m of the ‘Citation-Kite’,
short period motion
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Figure E-40: wk-response curve to a control step input of ∆xta = 0.05m of the ‘Citation-Kite’,
short period motion
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Figure E-41: θ-response curve to a control step input of ∆xta = 0.05m of the ‘Citation-Kite’, short
period motion

t [s]

q
[r
ad

/s
]

State-space

Linearized

Nonlinear

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

Figure E-42: q-response curve to a control step input of ∆xta = 0.05m of the ‘Citation-Kite’, short
period motion
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Figure E-43: θt-response curve to a control step input of ∆xta = 0.05m of the ‘Citation-Kite’,
short period motion
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Figure E-44: lt-response curve to a control step input of ∆xta = 0.05m of the ‘Citation-Kite’, short
period motion

E-2-3 Asymmetric motions, lateral wind step input
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Figure E-45: Path in XEYE-plane to a wind step input of ∆Wy = 15m/s of the ‘Citation-Kite’,
nonlinear simulation
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Figure E-46: β-response curve to a wind step input of ∆Wy = 15m/s of the ‘Citation-Kite’
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Figure E-47: vk-response curve to a wind step input of ∆Wy = 15m/s of the ‘Citation-Kite’
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Figure E-48: p-response curve to a wind step input of ∆Wy = 15m/s of the ‘Citation-Kite’
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Figure E-49: r-response curve to a wind step input of ∆Wy = 15m/s of the ‘Citation-Kite’
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Figure E-50: φ-response curve to a wind step input of ∆Wy = 15m/s of the ‘Citation-Kite’
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Figure E-51: ψ-response curve to a wind step input of ∆Wy = 15m/s of the ‘Citation-Kite’
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Figure E-52: ψt-response curve to a wind step input of ∆Wy = 15m/s of the ‘Citation-Kite’

E-2-4 Asymmetric motions, asymmetric control step input
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Figure E-53: Path in XEYE-plane to a control step input of ∆xLta = 0.05m and ∆xRta = −0.05m
simultaneously of the ‘Citation-Kite’, nonlinear simulation
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Figure E-54: β-response curve to a control step input of ∆xLta = 0.05m and ∆xRta = −0.05m
simultaneously of the ‘Citation-Kite’
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Figure E-55: vk-response curve to a control step input of ∆xLta = 0.05m and ∆xRta = −0.05m
simultaneously of the ‘Citation-Kite’
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Figure E-56: p-response curve to a control step input of ∆xLta = 0.05m and ∆xRta = −0.05m
simultaneously of the ‘Citation-Kite’
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Figure E-57: r-response curve to a control step input of ∆xLta = 0.05m and ∆xRta = −0.05m
simultaneously of the ‘Citation-Kite’
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Figure E-58: φ-response curve to a control step input of ∆xLta = 0.05m and ∆xRta = −0.05m
simultaneously of the ‘Citation-Kite’
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Figure E-59: ψ-response curve to a control step input of ∆xLta = 0.05m and ∆xRta = −0.05m
simultaneously of the ‘Citation-Kite’
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Figure E-60: ψt-response curve to a control step input of ∆xLta = 0.05m and ∆xRta = −0.05m
simultaneously of the ‘Citation-Kite’
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