TUDelft

Procedural Generation of Several Instrument Music Pieces with Hierarchical
Wave Function Collapse

Raphael de Wolff!
Supervisor(s): Rafa Bidarra®

'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Raphael de Wolff
Final project course: CSE3000 Research Project
Thesis committee: Rafa Bidarra, Joana de Pinho Gongalves

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Procedural Generation of Several Instrument Music Pieces with
Hierarchical Wave Function Collapse

Raphael de Wolff
TU Delft
Delft, The Netherlands

ABSTRACT

Wave Function Collapse (WFC) can be described as a family of
algorithms, meant for content generation through constraint solv-
ing. One variant is Hierarchical WFC, where a hierarchical struc-
ture is given to the tileset used in WFC. This variant has seen use
in a mixed-initiative procedural music generation model, where
pieces of music simulating a single instrument playing chords and
a melody are generated. In this paper, we explore how this model
can be adapted to generate (coherent) pieces of music simulating
several instruments playing in parallel. To achieve this, three model
properties had to be defined: a new canvas structure, a set of con-
straints that instruments impose on each other, and the manner in
which cells of all canvasses are collapsed. A hierarchical structure
has been defined of a single section canvas, of which every cell
has an inheriting chord canvas, of which every cell has an inherit-
ing melody canvas for each instrument. The section cells impose
constraints on inheriting chord and melody cells, and the chord
cells impose constraints on inheriting melody cells. Besides this,
melody cells impose constraints on cells belonging to other melody
canvases (i.e. other instruments). With this canvas structure and
these sets of constraints, the cells could be collapsed, such that
coherent pieces of music simulating several instruments playing in
parallel were generated.

CCS CONCEPTS

« Applied computing — Sound and music computing.

KEYWORDS

wave function collapse, procedural music generation, procedural
classical music generation, constraint programming

ACM Reference Format:

Raphael de Wolff. 2024. Procedural Generation of Several Instrument Music
Pieces with Hierarchical Wave Function Collapse. In Proceedings of Re-
search Project (CSE3000). ACM, New York, NY, USA, 7 pages. https://doi.org/
XXXXXXXXXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CSE3000, June 23, 2024, Delft

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-X/YY/MM

https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Since it’s inception by M. Gumin in 2016, the Wave Function Col-
lapse (WFC) algorithm [3] has been used for many instances of
procedural content generation (PCG) [5]. This is most often in-
volving the procedural generation of images or textures for video
games. However, as proven by P. Varga and R. Bidarra, it is possible
to use WFC for procedural music generation (PMG) [10]. Varga
and Bidarra have developed a model for PMG using Hierarchical
WFC (HWFC), a variant on the standard WFC algorithm initially re-
searched in 2023 by Alaka and Bidarra [1]. This model is described
in an as of yet unpublished paper made accessible to us [11]. This
model procedurally generates a chord canvas and a melody canvas
using HWFC, with the values representing a series of chords and
notes played on a single instrument. If we look at man-made pieces
of music, most of them are played with several instruments instead
of with a single instrument, so now that it has been shown WFC can
be used for PMG with a single instrument, it is a logical next step to
check whether WFC can be used for PMG with several instruments.

We look at how HWFC can be used to procedurally generate
pieces of music with multiple instruments playing in parallel. It
should not just simulate several instruments playing random notes.
Instead, there should be some form of coherence between the instru-
ments, like in pieces of music composed fully by humans. We take
the model described by Varga and Bidarra as a base, and attempts
to extend this model. To do this, we study several subproblems: it
looks at which constraints exist that can be enacted on the relation
between several instruments’ melodies. It looks at different ways
to represent several instruments’ sections, chords and melodies
in a canvas structure, different ways of performing generation on
these canvas structures and it assesses the quality of these different
canvas structures and algorithm variations.

2 RELATED WORK

In this section we touch upon work done on WFC-based music
composition, other work done on generative tools for music com-
position, and finally work done on the WFC algorithm itself which
is relevant for our problem.

2.1 WFC-based music composition

As stated before, P. Varga and R. Bidarra have done, and are still
doing, substantial work in HWFC-based music composition. They
have proposed an HWFC-based model for composing music [10],
and have an improved version of the model ready, which has been
submitted for publication and made available to us [11]. It has
a hierarchical structure of a section canvas, one or more chord
canvases inheriting from the section cells, and melody canvases
inheriting from the chord cells, where the chord canvases inherit

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

CSE3000, June 23, 2024, Delft

from the section cells, and the melody canvases inherit from the
chord cells, as displayed in figure 1. Each canvas has its own set
of constraints, and if it has a parent layer it also inherits relevant
constraints from that layer.

Sections L mpna eesimesssss fpna e
ChordS mpes — -
Melody w “ee .:. 05 05 A , o

Figure 1: A diagram of an example composition using the
model proposed by Varga and Bidarra, taken from the paper
describing their model [11]. Only part of the structure has
been displayed here, due to space constraints.

2.2 Generative music composition tools

For other generative music composition tools, we specifically look
for those which generate several voices based on some user input.

Google’s Creative Lab, in collaboration with Magenta, Google
Brain’s research project on music and art generation, introduced
the Bach Doodle [4], a machine learning experiment that enables
users to create music in the style of Johann Sebastian Bach. This tool
leverages a machine learning model known as Coconet, which was
trained on over 300 of Bach’s chorale harmonizations. Users can
input a melody, and the system generates a polyphonic composition
in Bach’s style, introducing them to the concept of counterpoint
where multiple independent melody lines play together harmo-
niously.

Louie et al. [6] explored deep neural networks as a means to
taming outputs of a generator based on Coconet. They introduced
Al-steering tools, which, among other pieces of functionality, could:
restrict voices to a given range, make the piece more/less similar
to a given example piece, and adjust the piece semantically based
on various emotion-based sliders. In their user study, they found
that novices to composition found the generator more controllable,
comprehensible and trustworthy when steered by their tools.

2.3 WEC extensions

The original WFC algorithm by M. Gumin [3] inspired much re-
search into PCG with WFC. Most relevant to our paper is work
related to HWFC, as this is the variant we are basing our model on.

The integration of a hierarchical tileset into the WFC algorithm
has been shown to yield significant improvements in procedural
content generation. Alaka and Bidarra [1] introduced Hierarchi-
cal WFC (HWFC), an extension to WFC featuring meta-tiles, i.e.
intermediate elements (e.g. forest) which can stand for a group of
possible tiles with a specific meaning (e.g. bush. pine, oak, grass...).
Their work shows how the introduction of a hierarchy of tiles can
improve interactivity and control in the design process. Similarly,
Beukman et al. [2] reinforced this, proposing a different hierarchical
approach to enhance the diversity and control of level generation.

Raphael de Wolff

Of course the aforementioned Varga and Bidarra have made use of
HWEC for procedural music generation [10][11].

3 METHODS

In this section we explain how we have designed and tested several
HWEFC-based model alternatives and a set of constraints, such that
music pieces simulating several instruments playing in parallel can
be procedurally generated. We will first touch upon the design of
the models, then we will touch upon designing the constraints, and
finally we will touch upon the testing process.

3.1 Designing the model

For designing the model, we have taken the model proposed by
Varga and Bidarra discussed earlier as a baseline. Their model is
designed for composition of music pieces with a singular melody
played over a chord progression.

To avoid "reinventing the wheel", we have chosen to adjust their
model and build upon it. First however, we make some assumptions.
It is incredibly uncommon in music composition for different in-
struments to be playing different chord progressions. Furthermore,
while one instrument is in a certain section (e.g. the 'verse’ section),
another instrument cannot be in a different section. Thus, the col-
lapsed cells in the section canvas and chord canvases should hold
for each instrument. Therefore we can say the section and chord
layers stay the same for any models we design.

3.2 Designing the constraints

Varga and Bidarra [11] have created a set of constraints for each
hierarchical level [9]. We will reuse this set of constraints. This set
however is not sufficient for our problem, as there should be some
cohesion between the instruments in music generated with our
model. Therefore constraints should be added which cells belonging
to different instruments can impose on one another.

As each instrument shall use the same section and chord layers,
it is only the melody layer where cells will have some difference in
terms of which instrument they belong to. Melody cells belonging
to separate instruments should impose this new set of constraints
on one another. This new set of constraints we will refer to as
intermelody constraints.

The goal of intermelody constraints is to have the melody can-
vasses follow certain rules, such that the melodies sound good
together. We chose to look for rules in classical music composition,
and specifically four part composition. Four part composition is
the composing of music with four different melodic parts (also re-
ferred to as voices), and its ruleset is perfect for creating a set of
intermelody constraints. For the ruleset we use a lesson created by
Dave Smey in 2004 [8].

The lesson assumes four different parts which play notes of
different height relative to each other. The parts from low to high
are: bass, tenor, alto and soprano. Parts which are not the bass are
also referred to as the "upper voices". The lesson can be reduced to
the following set of rules and good practices:

e Proper spacing: Upper voices are not allowed to be more
than an octave apart.

e No parallel fifths: Any two parts that make a fifth, are not
allowed to immediately make another fifth.

Procedural Generation of Several Instrument Music Pieces with Hierarchical Wave Function Collapse

e No parallel eights: Any two parts that make an octave, are
not allowed to immediately make another octave. Playing
the same note in the same octave also counts as making an
octave here.

o No direct octaves/fifths: If the soprano and bass parts make
an octave or a fifth, the previous notes they played cannot
both be higher or lower than the notes they are currently
playing, unless the previous soprano note is just one step
higher or lower than the current note.

e No large leaps: A part should not transition to a note that
is a 7th or further than an octave away from its current note.

4 PROPOSED MODELS

This section outlines the proposed models. It first outlines two
proposed canvas structure, and argues why one is better than the
other. Then it explains several different ways of applying WFC to
the canvas structure.

4.1 Canvas structure

As discussed before, our canvas structure has the same section
and chord layers as Varga’s model. The difference comes in in the
melody layer. Each instrument plays a separate melody, and thus
should have some set of cells representing the notes they play.

One important choice influencing the design of this melody layer,
is in what way intermelody constraints are applied. We have chosen
that intermelody constraints are applied by melody cells belonging
to separate instruments based on the time the notes in the cells are
played. If two cells would be played at the same time, intermelody
constraints apply between these two cells.

One initial idea is for the total melody played by all instruments
to be represented on a 2-dimensional canvas, where one dimension
represents the order of notes, and the other by what instrument a
note is played. However, for the manner in which we wish to apply
intermelody constraints, this structure is unnecessarily awkward.

A second, better idea, is for each instrument to have their own
one dimensional melody canvas. This method is in terms of con-
straint applying the same as the first idea, except that the structure
is more clear. Furthermore, the better separation of instrument
canvasses also makes different ways of applying WFC (i.e. order
in which to collapse different instruments’ cells) much more clear.
The total structure is displayed in figure 2.

Section
constraints

|

Alpha | Bela Alpha

Sections
Chord [
constraints

herit constraints

Chords Melody : C G Am F
constrainis = -

nherit*
constraints,

Melodies \‘Es EREAE \" .'\ F5] 65 | D5 | Gs"\

Intermelody
constraints

Figure 2: The canvas structure proposed by us. Not all parts
of the structure are displayed due to space constraints.

CSE3000, June 23, 2024, Delft

4.2 Applying WFC

After defining the structure of our canvas, we still need to define
how we will apply WFC to it. The basis of the algorithm is clear:
First we create a section canvas and collapse all of its cells, based
on section constraints defined by the composer. Then, for each
section cell, we create a chord canvas inheriting from that cell,
and we collapse the cells of this canvas according to the inherited
constraints and the chord constraints defined by the composer.
Then, for each chord cell, we create a melody canvas inheriting
from that cell for each instrument.

Cells from such a melody canvas should be collapsed according
to inherited constraints and melody constraints defined by the
composer, but also according to intermelody constraints defined
by the composer. Intermelody constraints, as stated before, should
be imposed between melody canvasses. When a melody cell is
collapsed, it represents a note being played at some time. The cell
then looks for melody cells belonging to other instruments, which
represent the note or range of notes being played at that time by
that instrument. Based on the value to which the melody cell has
collapsed and our intermelody constraints, the set of possible values
these other cells can collapse to are updated.

It’s unclear in what order we want to collapse the cells of the
melody canvasses. We have designed 4 different ways of collapsing
these canvasses, outlined below.

Naive collapse. Choose a melody canvas to collapse, and col-
lapse all its cells. Repeat this process until each melody canvas is
fully collapsed.

Random collapse. Choose a melody canvas to collapse one cell
of. Collapse one cell of this melody canvas. Repeat this process until
each melody canvas is fully collapsed.

Random k-collapse. Choose a melody canvas to collapse k
cells of. Collapse k cells of this canvas. Repeat this process until
each melody canvas is fully collapsed.

Jam collapse. The concept this method is trying to replicate, is
that one instrument leads the melody and the rest follow this leader.
Thus also the name Jam collapse. The method goes as follows: First
choose a melody canvas to collapse, and collapse all its cells. Then,
apply either Random collapse or Random k-collapse on the rest of
the melody canvasses.

5 PROPOSED CONSTRAINTS

This section outlines constraints chosen for the proposed mod-
els. It first touches upon hierarchical section, chord and melody
constraints, borrowed from the model proposed by Varga. Then it
outlines the list of intermelody constraints designed by us.

5.1 Hierarchical constraints

As stated before, we reuse constraints designed by Varga and Bidarra,
which can be seen in the tool they have developed as proof of their
model’s functionality [9]. We have made an adjustment to the limits
of not-inherited constraints applied to the melody layer. Since we
have a separate melody canvasses for each instrument, and each
instrument has the same section and chord canvas, melody con-
straints not inherited from the section or chord canvasses should
be able to be different for each instrument. Thus in our proposed

CSE3000, June 23, 2024, Delft

model, melody canvasses belonging to separate instruments are
able to have different, non-inherited melody constraints.

It should be noted that the No large leaps rule identified in the
4-part composition ruleset earlier can be applied using the Melody
absolute step size constraint designed by Varga and Bidarra.

5.2 Intermelody constraints

As stated before, intermelody constraints are applied between
melody cells belonging to separate instruments, which represent
notes being played at the same time. If some instrument’s melody
cell is collapsed, the value of this cell is used in combination with
the intermelody constraints to update the set of values other instru-
ments’ relevant cells can collapse to. We have converted all rules
identified from the 4-part composition ruleset to intermelody con-
straints, except for the No large leaps rule, as this as stated before
can be represented better as a hierarchical constraint. A boolean-
esque description of each of these intermelody constraints is given
below.

e Proper spacing: Holds if one of the cells belongs to the first
(lowest) instrument, or if the cells have collapsed to notes
no further than an octave apart.

o No parallel fifths: Holds if the cells have collapsed to notes
that do not make a fifth, or if the next and previous cells of
both canvasses have not yet all collapsed, or have collapsed
to notes which do not make a fifth.

o No parallel eights: Holds if the cells have collapsed to notes
that do not make a octave or play the same note, or if the
next and previous cells of both canvasses have not yet all
collapsed, or have collapsed to notes which do nott make a
octave or play the same note.

e No direct octaves/fifths: Hold if the cells do not belong
to the first (lowest) and last (highest) instrument, or if the
cells have collapsed to notes which do not make a fifth or
an octave, or if the previous cells of both canvasses have not
yet all collapsed, or they have collapsed to values which are
not both higher or lower than the values the current cells
have collapsed to.

6 IMPLEMENTATION

Varga and Bidarra’s model, which we heavily build upon in our
model and constraint design, has been implemented in the applica-
tion ProceduraLiszt[9]. The repository has been made available to
us, and thus we built upon its source code to implement a proof of
concept of our proposed models and constraints. This implementa-
tion is also what we have used in the next section to evaluate our
designs.

7 EVALUATION

This section first touches on the procedure used to evaluate our
proposed models and constraints. Then it outlines the results of
this performing these tests.

7.1 Procedure

We test the set of constraints together with each model variant
on both efficiency and failure rate, and we attempt to assess some
qualitative features of each model variant.

Raphael de Wolff

The failure rate entails how often WFC generation of a piece of
music fails (i.e. a conflict is found), and the efficiency metric entails
how fast a successful generation is on average.

We test different combinations of model variant, amount of in-
struments (2, 3 and 4), and set of constraints. Each combination
shall have a BPM of 120, 1 section, 2 chords, a melody length of 4,
and a key of C Major. Furthermore, each chord canvas shall have
the Chord in key and Chord absolute step size: Everything but 0 con-
straints, and each melody canvas shall have the Melody in key and
Melody range: C5-B6 constraints. The different sets of constraints
added on top of these settings will be:

(1) Basic constraints.

(2) All 4-part composition related constraints (all intermelody
constraints, and the Melody absolute step size constraint with
as input the range [0, 12]).

(3) All 4-part composition related constraints, and different
melody constraints for each instrument, namely Descending
melody for instrument 1, Ascending melody for instrument 2,
Melody starts on root of chord for instrument 3, and Melody
ends on root of chord for instrument 4.

We also test the influence of the number of intermelody con-
straints used on the efficiency and failure rate. We use the same
basic parameters for the previous setup, and then we test each
model variant with 3 instruments and an increasing number of
intermelody constraints. We add the intermelody constraints in the
order they are listed in section 5.2, so we first use Proper spacing,
then we use Proper spacing and No parallel fifths and so on.

For both tests, we generate each combination 10000 times and
measure the portion of failures, and the speed of successful genera-
tions.

Besides efficiency and failure rate, we also test our models on
quality. We listen to some of the successful generations from the
first testing setup above, and we comment how they sound, and
other features the different model variants appear to have. As these
are our own interpretations which can not be represented in an
objective manner, these interpretations are not touched upon in
section 7.2, however they are discussed in section 8.

7.2 Results

The results of the first test in the evaluation procedure, applied to
our designed model variants and set of constraints, are displayed
in Table 1 below.

The average time it takes to generate a piece of music (Avg.
efficiency (ms)’) is quite low for all combinations, but does go up
with increased complexity.

Conflicts do not occur for the basic constraint set. They do start
occurring when 4-part composition related constraints are intro-
duced, and they occur over 98% of the time for the combination of
4-part composition related constraints and 4 instruments.

The results of the second test in our evalution procedure, which
takes a closer look on the influence of the amount of intermelody
constraints on the efficiency and failure rate for the different model
variants, are displayed in Table 2 below.

Procedural Generation of Several Instrument Music Pieces with Hierarchical Wave Function Collapse

CSE3000, June 23, 2024, Delft

Table 1: Efficiency and failure rates of different instrument amount, model variant and constraint combinations

Variant Constraint set No. instruments Avg. efficiency (ms) Failure %

Naive collapse Basic 2 1.490 0
3 2.170 0
4 2.683 0

All 4-part composition 2 1.835 60.1

3 2.708 94.7

4 3.478 99.8

All 4-part composition, some melody 2 2.029 51.5

3 2.820 96.7

4 N/A 100.0
Random collapse Basic 2 1.521 0
3 2.162 0
4 2.709 0

All 4-part composition 2 1.858 67.2

3 2.721 88.1

4 3.648 99.1

All 4-part composition, some melody 2 2.070 65.7

3 2.884 91.5

4 3.696 98.9
Random k-collapse (k=2) Basic 2 1.531 0
3 2.164 0
4 2.732 0

All 4-part composition 2 1.855 62.8

3 2.709 87.1

4 3.635 98.6

All 4-part composition, some melody 2 2.023 69.7

3 2.895 90.8

4 3.674 99.6
Jam collapse (k=2) Basic 2 1.534 0
3 2.172 0
4 2.708 0

All 4-part composition 2 1.845 71.3

3 2.694 90.7

4 3.600 99.7

All 4-part composition, some melody 2 2.078 54.8

3 2.891 91.3

4 3.700 99.9

The average time to generate a piece of music is again quite
low, but does go up with added complexity (i.e. more intermelody
constraints).

The failure rate generally goes up with added complexity. The
failure rate is highest for Naive collapse and Jam collapse, and lowest
for Random collapse and Random k-collapse.

8 DISCUSSION

In this section we discuss the results outlined in the previous section.
We make some notes on the raw speed of each model variant, on
the failure rates of each model variant and some qualitative features
of each model variant.

First, in terms of raw speed, all the models are quite fast. Compu-
tation time goes up with the amount of constraints and instruments,

but since the goal of this model is to generate just one piece of mu-
sic, and not thousands of pieces of music in one go, each model
variant is fast enough.

Second, the failure rates show some more interesting differences
between the models. The failure rates start going above 0 as 4-part
composition related constraints are introduced, and then they go
up steeply for more than 2 instruments. When the model fails to
find a solution, it means it made some decision in the past which
ended up making it impossible to find a valid value for some tile. As
we introduce more complicated constraints, or more instruments,
the set of valid solutions becomes smaller, and thus the chance of
finding a valid solution in one go becomes smaller. Thus it makes
sense that the failure rate goes up quite steeply.

CSE3000, June 23, 2024, Delft

Table 2: Efficiency and failure rates with 3 instruments, for
different model variants and a different amount of inter-
melody constraints

Variant No. intermel. con. Avg. eff. (ms) Failure %
Naive collapse 1 2.155 94.1
2 2.238 94.4
3 2.329 94.4
4 2.351 96.2
Random collapse 1 2.162 85.8
2 2.318 86.5
3 2.366 87.2
4 2.473 93.2
Random k-collapse 1 2.172 86.3
(k=2) 2 2.335 86.5
3 2.365 86.6
4 2.491 92.3
Jam collapse (k=2) 1 2.175 94.1
2 2.298 95.0
3 2.326 94.4
4 2.415 95.6

It should be noted that there is some variance in failure rates,
and it is highest for combinations which have 2 instruments and
include all 4-part composition related constraints. This is evident
from the Naive collapse and Jam collapse results in Table 1, where the
combinations with 2 instruments which include 4-part composition
constraints see their failure rates go down when some melody
constraints are introduced. Seeing the failure rate go down with
added complexity is unexpected, but can be explained by a high
variance.

The algorithm which handles higher complexity the worst ap-
pears to be Naive collapse, as its failure rate is 100% for the most
complicated combination of parameters. Random collapse appears
to narrowly be the best at handling high complexities, although
this could also be due to variance. Another explanation could be
that the most complicated set of parameters has constraints that
restrict certain tiles to single values (Melody starts/ends on root of
chord), and Random collapse has the highest chance of collapsing
these tiles first.

We have also listened to some of the successful generations of
the tests used to generate the results represented in Table 1. Music
pieces generated by each model variant do sound like attempts
at classical music, and there is definitely some coherence. Music
quality is subjective, but it does seem clear that the quality of these
pieces of music is still much lower than pieces of classical music
composed by professional composers, or pieces of classical music
composed by state of the art models such as the Bach Doodle [4].

The model variants which appear to generate the most coherent
music are the Random k-collapse and Jam collapse variants. The
Naive collapse variant appears to be biased towards generating
music playing notes in the higher end of the melody range. This
behaviour can be explained by Naive collapse collapsing the lowest

Raphael de Wolff

instrument’s melody canvas first, which would likely restrict the
other instrument’s melody ranges to the higher notes of the melody
range. The Random collapse variant appears to generate the most
random pieces of music.

9 CONCLUSION

We have designed a model which is able to generate pieces of
music simulating several instruments playing in parallel. Due to
having constraints restricting the model to 4-part composition rules,
the model can produce coherent music. All variants of the model
are sufficiently fast. For more complicated sets of constraints, the
Random collapse variant of the model has the lowest rate of failure,
however the Random k-collapse and Jam collapse variants of the
model appear to produce the most coherent pieces of music. Thus
it is unsure which model variant can be deemed the best.

The failure rate for complicated sets of constraints is still quite
high, and thus the model would heavily benefit from integrating
backtracking into the model.

10 RESPONSIBLE RESEARCH

This section will first touch upon ethical concerns considered during
this research, after which it will look at the reproducibility of our
work.

10.1 Ethical concerns

For ethical concerns regarding PMG using HWFC, we have looked
at the ethical considerations with regards to Al raised by Olaoye
and Potter [7].

Firstly, it is important that the model we have described is trans-
parent and explainable. We think our model qualifies, as the algo-
rithm can be easily followed by anyone, even with tools as simple
as a pen and a piece of paper.

The second metric is fairness and bias. As our model does not
deal with data related to persons, there can be no notion of discrim-
ination or inequality with relation to individuals, and thus we think
our model satisfies this metric.

The third metric is privacy and data usage. As the values used to
generate pieces of music are merely primitive musical notes, which
are not owned by anyone, our model does not use privately owned
data. Therefore our model satisfies this metric aswell.

The fourth metric is accountability and responsibility. This met-
ric could be applicable to our model, if a user were to use it to
compose a piece of music so similar to some existing song, that
the user suffers negative consequences related to copyright laws
or something similar. The chance that a piece of music is produced
that is nearly exactly similar to an existing song is incredibly low.
Furthermore, our model is mixed-initiative, so the human composer
still plays a large part in the composition process, and thus bears
part of the responsibility for not publishing copyrighted music.
Therefore, we deem that this is in fact not a concern, and that our
model satisfies the accountability and responsibility metric.

The fifth and final metric is robustness and safety. Our model
has a defined set of inputs, namely the amount of instruments, and
the set of constraints. Our model can handle this set of inputs, i.e. it
can generate a piece of music, or indicates it when it is not possible

Procedural Generation of Several Instrument Music Pieces with Hierarchical Wave Function Collapse CSE3000, June 23, 2024, Delft

to generate a piece of music. Therefore, our model satisfies this
metric aswell.

10.2 Reproducibility

We feel that we’ve thoroughly described our model, and thus anyone
with some experience in programming can create an experimental
setup similar to ours. The reproduction might not have a sophisti-
cated GUI that we had the opportunity to incorporate, as we were
extending an already existing webapp. It will however be able to
perform the same experiment that we have done. Therefore, we
feel our work is reproducable.

REFERENCES

[1] Shaad Alaka and Rafael Bidarra. 2023. Hierarchical Semantic Wave Function
Collapse. In Proceedings of the 18th International Conference on the Foundations of
Digital Games (Lisbon, Portugal) (FDG '23). Association for Computing Machinery,
New York, NY, USA, Article 68, 10 pages. https://doi.org/10.1145/3582437.3587209

[2] Michael Beukman, Branden Ingram, Ireton Liu, and Benjamin Rosman. 2023.
Hierarchical WaveFunction Collapse. Proceedings of the AAAI Conference on

Artificial Intelligence and Interactive Digital Entertainment 19, 1 (Oct. 2023), 23-33.
https://doi.org/10.1609/aiide.v19i1.27498

Maxim Gumin. 2016. Wave Function Collapse Algorithm. https://github.com/
mxgmn/WaveFunctionCollapse

Cheng-Zhi Anna Huang, Curtis Hawthorne, Adam Roberts, Monica Dinculescu,
James Wexler, Leon Hong, and Jacob Howecroft. 2019. The Bach Doodle: Approach-
able music composition with machine learning at scale. arXiv:1907.06637 [cs.SD]
Isaac Karth and Adam M. Smith. 2022. WaveFunctionCollapse: Content Genera-
tion via Constraint Solving and Machine Learning. IEEE Transactions on Games
14, 3 (2022), 364-376. https://doi.org/10.1109/TG.2021.3076368

Ryan Louie, Andy Coenen, Cheng Zhi Huang, Michael Terry, and Carrie J. Cai.
2020. Novice-Al Music Co-Creation via Al-Steering Tools for Deep Generative
Models. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems (, Honolulu, HI, USA,) (CHI "20). Association for Computing Machinery,
New York, NY, USA, 1-13. https://doi.org/10.1145/3313831.3376739

Favour Olaoye and Kaledio Potter. 2024. Ethical Considerations in Artificial
Intelligence. Machine Learning (03 2024).

Dave Smey. 2004. Important Rules for 4-Part Progressions. https://davesmey.
com/theory/partwritingrules.pdf

Patrik Pal Varga. 2023. ProceduraLiszt. https://bit.ly/proceduraliszt_app

Pal Patrik Varga and Rafael Bidarra. 2023. Procedural mixed-initiative music
composition with hierarchical Wave Function Collapse. (2023).

Patrik Pal Varga and Rafa Bidarra. 2024. Harmony in Hierarchy: Mixed-Initiatie
Music Composition Inspired by WFC.

https://doi.org/10.1145/3582437.3587209
https://doi.org/10.1609/aiide.v19i1.27498
https://github.com/mxgmn/WaveFunctionCollapse
https://github.com/mxgmn/WaveFunctionCollapse
https://arxiv.org/abs/1907.06637
https://doi.org/10.1109/TG.2021.3076368
https://doi.org/10.1145/3313831.3376739
https://davesmey.com/theory/partwritingrules.pdf
https://davesmey.com/theory/partwritingrules.pdf
https://bit.ly/proceduraliszt_app

	Abstract
	1 Introduction
	2 Related work
	2.1 WFC-based music composition
	2.2 Generative music composition tools
	2.3 WFC extensions

	3 Methods
	3.1 Designing the model
	3.2 Designing the constraints

	4 Proposed models
	4.1 Canvas structure
	4.2 Applying WFC

	5 Proposed constraints
	5.1 Hierarchical constraints
	5.2 Intermelody constraints

	6 Implementation
	7 Evaluation
	7.1 Procedure
	7.2 Results

	8 Discussion
	9 Conclusion
	10 Responsible research
	10.1 Ethical concerns
	10.2 Reproducibility

	References

