Delft University of Technology
Software Engineering Research Group
Technical Report Series

Supporting Software Inspection with
Static Profiling

Cathal Boogerd and Leon Moonen

Report TUD-SERG-2009-022

%
TUDelft SE[p@

TUD-SERG-2009-022

Published, produced and distributed by:

Software Engineering Research Group

Department of Software Technology

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Mekelweg 4

2628 CD Delft

The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

(© copyright 2009, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.

SE Boogerd & Moonen — Supporting software inspection with static profiling

Supporting Software Inspection with
Static Profiling *

Cathal Boogerd Leon Moonen
Software Evolution Research Lab Simula Research Laboratory
Delft University of Technology Norway
The Netherlands Leon.Moonen@computer.org

c.j.boogerd@tudelft.nl

August 23, 2009

Abstract

Static software checking tools are useful as an additional automated
software inspection step that can easily be integrated in the development
cycle and assist in creating secure, reliable and high quality code. How-
ever, an often quoted disadvantage of these tools is that they generate
an inordinate number of warnings, including many false positives due to
the use of approximate analysis techniques. This information overload
effectively limits their usefulness.

In this paper we present ELAN, a technique that helps the user prior-
itize the information generated by a software inspection tool, based on a
demand-driven computation of the likelihood that execution reaches the
locations for which warnings are reported. This analysis is orthogonal
to other prioritization techniques known from literature, such as sever-
ity levels and statistical filtering to reduce false positives. We evaluate
the feasibility of our technique using a number of case studies and assess
the quality of our static estimates by comparing them to actual values
obtained by dynamic profiling.

1 Introduction

Software inspection [17] is widely recognized as an effective technique to assess
and improve software quality and reduce the number of defects [35, 23, 45,
33, 47]. Software inspection involves carefully examining the code, design, and
documentation of software and checking them for aspects that are known to
be potentially problematic based on past experience. One of the advantages of

* This work has been carried out in the Software Evolution Research Lab at Delft University
of Technology as part of the TRADER project under the responsibility of the Embedded Sys-
tems Institute. This project is partially supported by the Netherlands Ministry of Economic
Affairs under the BSIK03021 program.

TUD-SERG-2009-022 1

Boogerd & Moonen — Supporting software inspection with static profiling SE

software inspection is that the software can be analyzed even before it is tested.
Therefore, potential problems are identified and can be solved early, and the
cost of repairing a defect is generally acknowledged to be much lower when that
defect is found early in the development cycle [5, 25].

Until recently, software inspections have been a formal and predominantly
manual process which, although effective at improving software quality, proved
to be labor-intensive and costly. The strict requirements often backfired, re-
sulting in code inspections that were not performed well or sometimes even not
performed at all. Therefore, various researchers and companies have started to
address these issues and have developed techniques and tools that aim at sup-
porting the software inspection process. We can distinguish two approaches: (1)
tools that automate the inspection process, making it easier to follow the guide-
lines and record the results; and (2) tools that perform automatic code inspec-
tion, relieving the programmers of the manual inspection burden and supporting
continuous monitoring of the software quality.

In this paper, we deal with the second category: tools that perform auto-
matic code inspection, usually built around static analysis of the code. In its
simplest form, such automatic inspection consists of the warnings generated by a
compiler set to its pedantic mode. In addition, various dedicated static program
analysis tools are available that assist in defect detection and writing reliable
and secure code. A well-known example is the C analyzer LINT [27]; others are
discussed in the related work section. These tools form a complementary step in
the development cycle and have the ability to check for more sophisticated pro-
gram properties than can be examined using a normal compiler. Moreover, they
can often be customized, and as such benefit from specific domain knowledge.

However, such static analyses come with a price: in the case that the al-
gorithm cannot ascertain whether the source code at a given location obeys a
desired property or not, it will make the safest approximation and issue a warn-
ing, regardless of the correctness. This conservative behavior can lead to false
positives hidden within the results, incorrectly signaling a problem with the
code. Kremenek and Engler [31] observed that program analysis tools typically
have false positive rates ranging between 30-100%. The problem is magnified
by the large amount of warnings that these tools produce, resulting from more
scrutinous examination of the source code than can be achieved with a typi-
cal compiler. Solving all reported issues can be especially daunting if the tool
is introduced later in the development process or during maintenance, when a
significant code base already exists.

Such issues have also been identified at NXP (formerly Philips Semiconduc-
tors), our industrial partner in the TRADER project, where we investigate and
develop methods and tools for ensuring reliability of consumer electronics de-
vices. Originally, the functionality of these devices was mostly implemented in
hardware, but nowadays their features are made easily extensible and adaptable
by means of software. For example, a modern television contains several million
lines of C code and this amount is growing rapidly with new functionality, such
as electronic program guides, increased connectivity with other devices, audio
and video processing and enhancements, and support for various video encoding

2 TUD-SERG-2009-022

SE Boogerd & Moonen — Supporting software inspection with static profiling

formats. During the development process, this code is routinely inspected us-
ing QA-C, one of the leading commercial software inspection tools currently on
the market. Nevertheless, NXP reported that its developers have experienced
problems handling the information overload mentioned earlier.

To cope with the large number of warnings, users resort to all kinds of (man-
ual) filtering processes, often based on the perceived impact of the underlying
fault. Even worse, our experience indicates that the information overload often
results in complete rejection of the tool, especially in cases where the first defects
reported by the tool turn out to be false positives. Although previous research
has addressed the latter issue [31], and tools often report severity levels based
on the type of defect found, none of these approaches consider the location of
the defect in the source code. This information can be seen as an additional
indication of the possible impact of a fault, and thereby provides another means
of ranking or filtering the multitude of warning reports.

The goal of this paper is to help users of automated code inspection tools deal
with the aforementioned information overload. Instead of focusing on improving
a particular defect detection technique in order to reduce its false positives, we
strive for a generic prioritization approach that can be applied to the results of
any software inspection tool and assists the user in selecting the most relevant
warnings. To this end, we present a technique to compute a static profile for the
software under investigation, deriving an estimate for the execution likelihood
of reported defects based on their location within the program. The rationale
behind this approach is that the violating code needs to be executed in order to
trigger the undesired behavior. As such, execution likelihood can be considered
a contextual measure of severity, rather than the severity based on defect types
that is usually reported by inspection tools.

This paper extends our earlier work [6] with an improved presentation and
assessment of our approach, an industrial case study into its feasability, costs
and benefits and a detailed study into the accuracy of the static branch predic-
tion techniques. The remainder of this paper is organized as follows: in Section
2, we will give an overview of related work in static profiling and ranking soft-
ware inspection results. Section 3 describes how we use static profiling to rank
software inspection results, while the source code analysis that produces the
profile is discussed in Section 4. We present a number of case studies in Section
5, their results in 6, and evaluate our findings in Section 7. Finally, we conclude
by stating contributions and future work in section 8.

2 Related Work

2.1 Automatic Code Inspection

There are a number of tools that perform some sort of automatic code inspec-
tion. The most well-known is probably the C analyzer Lint [27] that checks for
type violations, portability problems and other anomalies such as flawed pointer
arithmetic, memory (de)allocation, null references, and array bounds errors.

TUD-SERG-2009-022 3

Boogerd & Moonen — Supporting software inspection with static profiling SE

LClint and splint extend the Lint approach with annotations added by the pro-
grammer to enable stronger analyses [15, 16]. Various tools specialize in check-
ing security vulnerabilities. The techniques used range from lightweight lexical
analysis [40, 46, 21] to advanced and computationally expensive type analy-
sis [26, 22], constraint checking [42] and model checking [11]. Some techniques
deliberately trade formal soundness for a reduction in complexity in order to
scale to the analysis of larger systems [14, 9, 20] whereas others focus on proving
some specific properties based on more formal verification techniques [2, 10, 12].

Several commercial offerings are available for conducting automated auto-
matic code inspection tasks. Examples include Qa-c,! K7,2 CodeSonar,®> and
Prevent.? The latter was built upon the MECA/Metal research conducted by
Engler et al. [49, 14]. Reasoning® provides a defect analysis service that identi-
fies the location of potential crash-causing and data-corrupting errors. Besides
providing a detailed description of defects found, they report on defect metrics
by measuring a system’s defect density and its relation to industry norms.

2.2 Ordering Inspection Results

The classic approach most automated code inspection tools use for prioritizing
and filtering results is to classify the results based on severity levels. Such levels
are (statically) associated with the type of defects detected; they are oblivious
of the actual code that is being analyzed and of the location or frequency of a
given defect. Therefore, the ordering and filtering that can be achieved using
this technique is rather crude. Our approach is based on the idea that this can
be refined by taking into account certain properties of the identified defect with
respect to the complete source code that was analyzed.

A technique that is more closely related to our approach, is the z-ranking
technique by Kremenek and Engler [31]. They share our goals of prioritizing and
filtering warnings based on their properties with respect to analyzed code but
do so based on the frequency of defects in the results. Their approach aims to
determine the probability that a given warning is a false positive. It is based on
the idea that, typically, the density of defects in source code is low. Thus, when
checking source code for a certain problem, there should be a large number of
locations where that check is not triggered, and relatively few locations where
it is triggered. Conversely, if a check results in many triggered locations and
few non-triggered ones, these locations are more likely to be false positives.
This notion is exploited by keeping track of success and failure frequencies, and
calculating a numeric score by means of a statistical analysis. The warning
reports can then be sorted accordingly.

Another possibility to deal with false positives is the history-based warning
prioritization approach by Kim and Ernst [29]. In this approach, the version
history and issue tracking system for a project are mined to determine which
warnings were actually removed during a bug-fix. By means of this distinction,

1 WWW.programmingresearch.com
2 yww.klocwork.com 3 www.grammatech.com
4 WWW.coverity.com 5 WWW.reasoning.com

4 TUD-SERG-2009-022

SE Boogerd & Moonen — Supporting software inspection with static profiling

a true positive rate for a class of warnings can be computed, which can in turn
be used to rank them when analyzing new revisions of the project. In earlier
work, Kim and Ernst suggested to extract the warning fix time from the version
repository [28]. In this case, types of warnings that are always fixed quickly can
be given priority over those that are rarely fixed.

2.3 Static Profiling

Static profiling is used in a number of compiler optimizations or worst-case exe-
cution time (WCET) analyses. By analyzing program structure, an estimation
is made as to which portions of the program will be most frequently visited
during execution. Since this heavily depends upon branching behavior, some
means of branch prediction is needed. This can range from simple and compu-
tationally cheap heuristics to more expensive data flow based analyses such as
constant propagation [30, 36, 3], symbolic range propagation [39, 4, 32], or even
symbolic evaluation [18]. Although there have been many studies on branch
prediction, there are only a few approaches that take this a step further and
actually compute a complete static profile [48, 43]. For branch prediction, these
use heuristics similar to the ones we employ. Contrary to our estimation of the
execution likelihood, the existing techniques compute execution frequencies, re-
quiring additional loop iteration prediction mechanisms, typically implemented
using expensive fix-point computations. Moreover, in contrast with these ap-
proaches, we perform analysis in a demand-driven manner: i.e., only for the
locations associated with the warning reports we are trying to rank.

2.4 Testability

Voas et al. [41] define software testability as “the probability that a piece of
software will fail on its next execution during testing if the software includes
a fault”. They present a technique, dubbed sensitivity analysis, that analyzes
execution traces obtained by instrumentation and calculates three probabilities
for every location in the program. Together they give an indication of the
likelihood that a possible fault in that location will be exposed during testing.
The first of these three, execution probability, is similar to our notion of execution
likelihood, the chance that a certain location is executed. The other two are
the infection probability, i.e. the probability that the fault will corrupt the data
state of the program, and the propagation probability, the likelihood that the
corrupted data will propagate to output and as such be observable.

Although the concepts involved are very similar to our own, the application
and analysis method differ greatly: a location that is unlikely to produce observ-
able changes if it would contain an error should be emphasized during testing,
whereas we would consider that location to be one of low priority in our list of
results. In addition, Voas approximates these probabilities based on dynamic in-
formation whereas we derive estimates purely statically. Finally, infection- and
propagation probability apply to locations that contain faulty code, whereas the

TUD-SERG-2009-022 5

Boogerd & Moonen — Supporting software inspection with static profiling SE

inspection results we are dealing with may also indicate security vulnerabilities
and coding standard violations that do not suit these two concepts.

3 Approach

This section describes how we apply static profiling to prioritize code inspection
results. Although typically, a static profile for a given program gives execution
frequencies for all program locations, we report the execution likelihood instead.
The reason for this is that scalability of the approach is an important criterion,
and the computation of frequencies, especially with regard to loops, requires
more sophisticated analysis. This being the case, henceforth we will refer to our
static profiling as Execution Likelihood ANalysis (ELAN), of which a detailed
description is given in the next section.

We employ static program analysis instead of dynamic analysis because we
want to be able to use our prioritization technique with automated software
inspection tools early in the development process, i.e. before testing and inte-
gration. In addition, performing a dynamic analysis is less feasible in our appli-
cation domain (embedded systems), both because it affects timing constraints
in the system (observer effect), and because a complete executable system is not
always available earlier during the development (e.g. due to hardware or test
data dependences).

3.1 Process overview

An overview of the approach is depicted in figure 1. The process consists of the
following steps (starting at the top-left node):

1. The source code is analyzed using some code inspection tool, which returns
a set of inspection results.

2. The inspection results are normalized to the generic format that is used by
our tools. The format is currently very simple and contains the location of
the warning in terms of file and line number, and the warning description.
We include such a normalization step to achieve independence of code
inspection tools.

3. We create a graph (SDG) representation of the source code that is in-
spected. Nodes in the graph represent program locations and edges model
control- and data flow.

4. For every warning generated by the inspection tool, the following steps
are taken:

(a) Based on the reported source location, the analyzer looks for the
corresponding basic block, and its start-vertex in the graph.

6 TUD-SERG-2009-022

SE Boogerd & Moonen — Supporting software inspection with static profiling

code ’ o
inspection normalization ’

inspection
sources
results
sDG execution normalized
creation SDG likelihood inspection
analysis results
annotated
inspection
results
ordered
external result inspection
order hints ordering P
results

Figure 1: ELAN prioritization approach

(b) It then proceeds to calculate the execution likelihood of this loca-
tion/vertex by analyzing the structure of the graph, and annotates
the warning with this likelihood.

5. The inspection results are ordered by execution likelihood, possibly incor-
porating external hints such as severity levels or z-ranking results.

3.2 Graph definition and traversal preliminaries

Central to our approach is the computation of the execution likelihood of a
certain location in the program. In other words, we need to find all possi-
ble execution paths of the program that include our location of interest. We
can then estimate the execution likelihood of the given location by traversing
the paths found and making predictions for the outcomes of all conditions (or
branches) found along the way. To enumerate the paths we use the program’s
System Dependence Graph (SDG) [24], which is a generalization of the Program
Dependence Graph (PDG).

In short, the PDG is a directed graph representing control- and data de-
pendences within a single routine of a program (i.e. intraprocedural), and the
SDG ties all the PDGs of a program together by modeling the interprocedural
control- and data dependences. A PDG holds vertices for, amongst others, as-
signment statements, control predicates and call sites. Conditions in the code
are represented by one or more control points in the PDG. In addition, there
is a special vertex called entry vertexr, modeling the start point of control for a
function. In the remainder, when we use the term location this refers to a vertex
in the PDG of a program. The edges between nodes represent the control- and
data dependences. Our approach currently does not consider information from

TUD-SERG-2009-022 7

Boogerd & Moonen — Supporting software inspection with static profiling SE

dataflow analysis, so we limit our discussion to control dependences. The most
relevant causes for these dependences are:

e there is a control dependence between a predicate vertex v and a second
vertex w if the condition at v determines whether execution reaches w;

e there is a control dependence between a function’s entry point and its
top-level statements and conditions;

e there is a control dependence between a call site and its corresponding
function entry point.

Clearly, we can find all possible acyclic execution paths by simply traversing
the SDG with respect to these control dependences. However, traversing the
complete SDG to find all paths to a single point is not very efficient. To better
guide this search, we base our traversals on program slicing.

The slice of a program P with respect to a certain location v and a variable
x is the set of statements in P that may influence the value of variable x at point
v. Although we are not actually interested in dataflow information, this slice
must necessarily include all execution paths to v, which is exactly what we are
looking for. By restricting ourselves to control flow information, we can rephrase
the definition as follows: the control-slice of v in P consists of all statements in
P that determine whether execution reaches v.

As mentioned before, the paths obtained this way are usually conditional,
and we need an additional mechanism to produce static likelihood estimates for
conditions. In the next section we elaborate on the graph traversal as well as
discuss various static branch predictors, from simple assumptions to type-based
heuristics.

4 Execution Likelihood Analysis

This section introduces the algorithm for calculating the execution likelihood
of a single program point, defined as the probability that the associated program
statement is executed at least once in an arbitrary program run. Given the SDG
of a project, computation entails traversing the graph in reverse postorder,
obtaining probabilities by predicting branch probabilities and combining all the
paths found from the main entry point to our point of interest. For simplicity,
we assume that the project contains a main function that serves as a starting
point of execution, although this is not a strict prerequisite, as we will see later
on.

4.1 Basic algorithm

To calculate the execution likelihood e, for a vertex v in a programs SDG P,
we perform the following steps:

1. Let B, be the control-slice with respect to v. The result is a subgraph of
P that consists of the vertices that influence whether control reaches v.

8 TUD-SERG-2009-022

SE Boogerd & Moonen — Supporting software inspection with static profiling

2. Starting from the main entry point vg, perform a depth-first search to v
within B,, enumerating all the paths (sequences of vertices) to v. This is
a recursive process; traversal ends at v, then the transition probabilities
are propagated back to vg, where the transition probability p,, . is the a
posteriori probability that execution reaches v via w. For any given vertex
w visited within the traversal, this is calculated in the following manner:

(a) If w is v, skip all steps, py, is 1.
(b) For every control-dependence successor s of w in B, determine ps ,,

(¢) Determine the probability that control is transferred from w to any
of its successors s. We do this by first grouping the probabilities p;
by the label of the edge needed to reach s from w. E.g., when w
represents the condition of an if statement, we group probabilities
of the true and false branches of w together. For every group we
determine the probability that at least one of the paths found is
taken, we denote this set S,.

(d) If w is not a control point, there will be just one element in S,,, and
its probability is pu,-

(e) If w is a multiway branch (switch), all its cases are thought to be
equally likely, and as such p,, , can be obtained by adding all prob-
abilities in S, and dividing them by the number of cases.

(f) If w represents the condition of an if statement, we consider this a
special case of a switch: each of its branches is thought equally likely,
SO Py, is obtained by adding both elements of S, and dividing them
by 2.

(g) If w is a loop, it is assumed that the loop will be executed at least
once. S, consists of one element representing the probability of the
loop body, and p,, ., is taken to be equal to this value.

3. When recursion returns at our starting point vy, we have calculated the

transition probability from vs to v, which is our desired execution likeli-
hood e,.

As stated earlier, the algorithm is written with the computation of execution
likelihood in a project with a single startpoint of execution (i.e. the main func-
tion) in mind. If we are dealing with a partially complete project, or we are
in any other way interested in the execution likelihood with a different starting
point, the approach can be easily modified to suit that purpose. Instead of using
program slicing, we use a related operation called program chopping [34]. The
chop of a program P with respect to a source element s and a target element
t gives us all elements of P that can transmit effects from s to . Notably, the
chop of P between its main entry point and any other point v is simply the slice
of P with respect to v. Notice that if we let B, be the chop with respect to v
and v, we can take any starting point vs; and end up with the desired conditional
execution likelihood.

TUD-SERG-2009-022 9

Boogerd & Moonen — Supporting software inspection with static profiling SE

While traversing the graph, transition probabilities for the paths taken are
cached. As such, when traversing towards v, for a given w € B,, we only need to
calculate p,, , once. Obviously, this approach can only work within one traversal,
i.e. when computing the execution likelihood of one point, because the prequel
to some subpath may differ between traversals. However, when computing the
likelihood for multiple locations within one program in a row, it is likely that at
least part of the traversal results can be reused. For any point v in a procedure
f, we can split the transition probabilities into one from wvs to the entry point
sy of f, and the transition probability from s; to v. Effectively, this means that
for any point in f we only compute p,, s, once.

Another important contributor to performance is that our algorithm is demand-
driven: it only computes execution likelihoods for locations of interest, instead
of computing results for every location in the program. Given that the number
of locations with issues reported by an inspection tool will typically be much
smaller than the total number of vertices in the graph, this is a sensible choice.
Together with our deliberately simple heuristics, it forms the basis for a scalable
approach.

4.2 Refined branch prediction heuristics

To gain more insight into the speed/accuracy trade-off, we extend the algorithm
with branch prediction heuristics introduced by Ball and Larus [1], applied in
the manner discussed by Wu and Larus [48]. The latter tested the heuris-
tics empirically and used the observed accuracy as a prediction for the branch
probability. For example, they observed that the value check heuristic predicts
“branch not taken” accurately 84% of the time. Therefore, when encounter-
ing a condition applicable to this heuristic, 16 and 84 are used for the “true”
and “false” branch probabilities, respectively. Whenever more than one heuris-
tic applies to a certain control point, the predictions are combined using the
Dempster-Shafer theory of evidence [37], a generalization of Bayesian theory
that that describes how several independent pieces of information regarding the
same event can be combined into a single outcome.

The heuristics replace the simple conventions used in steps (d) through (g)
discussed above. The behavior with regard to multiway branches has not been
changed, and in cases where none of the heuristics apply the same conventions
are used as before. A brief discussion of the application of the different heuristics
follows below, their associated branch prediction probabilities can be found in
table 1. The table lists the probability that a condition which satisfies the
heuristic will evaluate to true. The refined heuristics are:

Heuristic Probability | Heuristic Probability
Loop branch (LBB) 0.88 Pointer (PH) 0.40
Value check (OH) 0.16 Loop exit (LEH) 0.20
Return (RH) 0.28

Table 1: Heuristics and associated probabilities

10 TUD-SERG-2009-022

SE Boogerd & Moonen — Supporting software inspection with static profiling

Project Name | ncKLoC # nodes # non-global # CPoints

in SDG nodes in SDG in SDG
Uni2Ascii 3 10368 5022 138
Chktex 8 30422 10149 769
Link 17 88766 33647 3009
Antiword 24 119391 35371 2787
Lame 53 93812 39937 3673
TV 67 1926980 119010 10079

Table 2: Case study programs and their metrics.

Loop branch heuristic: This heuristic has been modified to apply to any loop
control point. The idea is that loop branches are very likely to be taken, similar
to what was used earlier. The value is used as multiplier for probability of the
body.

Pointer heuristic: Applies to a condition with a comparison of a pointer against
null, or a comparison of two pointers. The rationale behind this heuristic is that
pointers are unlikely to be null, and unlikely to be equal to another pointer.
Value check heuristic: This applies to a condition containing a comparison of
an integer for less than zero, less than or equal to zero. This heuristic is based
on the observation that integers usually contain positive numbers.

Loop exit heuristic: This heuristic has been modified to apply to any control
point within a loop that has a loop exit statement (i.e. break) as its direct
control predecessor. It says that loop exits in the form of break statements are
unlikely to be reached as they usually encode exceptional behavior.

Return heuristic: Applies to any condition having a return statement as its
direct successor. This heuristic works because typically, conditional returns
from functions are used to exit in case of unexpected behavior.

We should remark that the numbers in Table 1 are based on empirical re-
search on different programs [1] than used in our experiments. Deitrich et al. [13]
provide more insight into their effectiveness and applicability to other systems
(and discuss some refinements specific to compilers). We will see the influence
of the heuristic probabilities used in our case in the experiments discussed in
the next section.

5 Experimental setup

Over the course of the previous sections, various aspects of the approach have
been discussed that are worth investigating. In particular, these are the accuracy
of the branch prediction mechanism and the static profile, and the analysis time
of the profiler. We will investigate these as follows:

IV1 The heuristics mentioned in Section 4 are calibrated for a testbed other
than our own. We therefore repeat part of the experiment in [1], using dy-
namic profile data gathered from our testbed. This will give us prediction
values for the non-loop heuristics that are fitted to our testbed.

TUD-SERG-2009-022 11

Boogerd & Moonen — Supporting software inspection with static profiling SE

IV2 Including the calibrated heuristics obtained in IV1, we have three different
means of branch prediction: uniform (UP), heuristic (HP) and calibrated
heuristic (CHP). In this investigation we will compare the static profiles
computed using the different techniques with dynamic execution profiles
for the testbed.

IV3 Finally, we measure the analysis time involved in computing the static
profiles in IV2 and relate it to the size of the corresponding SDG.

The investigations have been performed using an implementation of ELAN as
a plugin for Codesurfer,® a program analysis tool that can construct dependence
graphs for C and C++ programs.

5.1 Selected cases

In our investigations we have used a small selection of programs which is shown
in Table 2. The table provides source code properties for the different cases,
respectively the size in lines of code (LoC, not counting comment or empty
lines), the size of the SDG in vertices, the size of the SDG without vertices for
global parameters, and the total number of control points in the program. The
apparent discrepancy between the size in LoC and the size of the SDG in vertices
can be largely attributed to the modeling of global variables in the SDG. Global
variables are added as parameter to every function, which adds a number of
vertices, linear in the amount of global variables, to each function’s PDG. For a
better intuition of the size of the program, global variables have been filtered out
in the “non-global” column, which shows a better correspondence with the size
in LoC. Note that vertices representing function parameters are not included in
the graph traversal as defined in Section 4, and therefore do not impact analysis
speed.

The programs were selected such that it would be easy to construct “typical
usage” input sets, and automatically perform a large number of test runs. For
every case, at least 100 different test runs were recorded, and profile data was
saved. In case of the TV control software, we extracted the dynamic information
using the embedded profiling software developed by our colleagues [50], with
which they collected profile information on a basic block level. However, this
level was not sufficiently detailed to extract exact branching information, and
therefore the TV software has not been included in IV1. This also means that the
calibrated heuristics resulting from IV1 have not been used on the TV software
in IV2, since it makes little sense to investigate the influence of calibration on
a case that has not been included in the calibration process.

5.2 Experimental process

In both IV1 and IV2 we need measurements from static as well as dynamic anal-
ysis. In IV1, we measure the average true/false ratio (dynamic) for conditions

6 www.grammatech.com

12 TUD-SERG-2009-022

SE Boogerd & Moonen — Supporting software inspection with static profiling

where heuristics apply (static). In IV2 we compare two rankings, one consisting
of program locations ranked by their execution likelihood estimate (static), and
one ranked by the measured likelihood (dynamic). The process of gathering this
information consists of the following steps:

1. Build the project using Codesurfer. This involves the normal build and
building the extra graph representations used by our technique.

2. Build the project using gcc’s profiling options, in order to obtain profiling
information after program execution.

3. Run the ELAN algorithm for every control-point vertex in the project.
This will give a good indication of analysis behavior distributed through-
out the program (since it approximates estimating every basic block).

4. Gather a small dataset representing typical usage for the project, and run
the program using this dataset as input. For all the program locations
specified in step 3, determine the percentage of runs in which it was visited
at least once. This last step uses gcov, which post-processes the profile
data gathered by gcc’s instrumentation. In addition, save the branch
direction percentages for use in IV1.

5. For IV2, we create two sets of program locations, the first sorted by static
estimates, the second by measured dynamic usage, and compare them us-
ing Wall’s unweighted matching method [44]. This will give us a matching
score for different sections of the two rankings.

To illustrate this matching score, consider the following example: suppose we
have obtained the two sorted lists of program locations, both having length N,
and we want to know the score for the topmost m locations. Let k& be the
size of the intersection of the two lists of m topmost locations. The matching
score then is k/m, where 1 denotes a perfect score, and the expected score for
a random sorting will be m/N. In our experiments, scores were calculated for
the topmost 1%, 2%, 5%, 10%, 20%, 40% and 80%.

For IV3 we record the analysis time involved in computing the profiles as
in IV2. The testbed used consists of programs of different size (cf. Table 2),
which helps to understand the scalability of the approach. Also, to understand
the effect of the caching mechanism introduced in section 4, we perform the
analysis for different subsets of the complete set of program points involved.
Specifically, we take subsets of differing sizes (e.g. 10%, 20% of the original
size) by sampling the original set uniformly, and measure the analysis running
time for these subsets. All measurements were performed on a laptop with
an Intel Pentium Mobile 1.6Ghz processor and 512Mb of memory, running MS
Windows XP Pro.

TUD-SERG-2009-022 13

Boogerd & Moonen — Supporting software inspection with static profiling SE

Project LEH OH PH RH

Antiword | 0.29 1 [038 15| 029 4 | 0.23 3
Chktex 0.60 1 | 0.44 4 na. 0 na. 0
Lame 028 11]03 19019 1 na. 0
Link 029 3|03 12 023 7034 1
Uni2ascii n.a. 0 | 0.00 5| 1.00 2 na. 0
total 031 2|03 13024 5 (029 1

Table 3: Case study programs and branch statistics

Segment Antiword Chktex Lame

UP HP CHP UP HP CHP UP HP CHP
1 0.44 0.44 0.44 | 0.67 0.67 0.67 | 0.49 0.49 0.51
2 0.47 0.45 0.43 | 0.42 0.42 0.42 | 0.29 0.37 0.37
5 0.57 0.58 0.53 | 0.34 0.28 0.31 | 0.29 0.31 0.39
10 0.52 0.51 0.50 | 0.36 0.28 0.31 | 0.31 0.34 0.39
20 0.43 0.45 0.46 | 0.52 0.54 0.54 | 0.32 0.34 0.38
40 0.48 0.46 0.47 | 0.39 0.39 0.39 | 0.46 0.46 0.46
80 0.77 0.78 0.78 | 0.78 0.78 0.78 | 0.84 0.84 0.84
Segment Link Uni2ascii TV

UP HP CHP UP HP CHP UP HP CHP
1 0.11 0.00 0.11 1.00 1.00 1.00 | 0.13 0.13 n.a.
2 0.33 0.32 0.33 | 1.00 1.00 1.00 | 0.11 0.10 n.a.
5 0.25 0.25 0.25 | 0.50 0.50 0.50 | 0.15 0.15 n.a.
10 0.59 0.53 0.52 | 0.25 0.25 0.25 | 0.17 0.17 n.a.
20 0.60 0.59 0.58 | 0.65 0.65 0.71 | 0.35 0.35 n.a.
40 0.65 0.66 0.65 | 0.53 0.53 0.65 | 0.63 0.64 n.a.
80 0.83 0.83 0.83 | 0.79 0.79 0.79 | 0.96 0.96 n.a.

Table 4: Matching scores for different segments of the rankings obtained using
uniform (UP), heuristic (HP) and calibrated heuristic prediction (CHP)

6 Results

6.1 IV1: Branch heuristic measurements

The results of the first investigation can be found in Table 3. For each project
and heuristic, two values are displayed: the first is the ratio of taken branches
out of all the branches where the heuristic was applicable; the second is the
percentage of branches in the program where the heuristic could be applied.
We can observe that only for the Return heuristic, the value used in [48] corre-
sponds to our measured total rate. Although the other values differ significantly
(up to 18 percent point), at least the rationale is confirmed. For example, in
the Pointer Heuristic we assume that a comparison between pointers is likely
to fail, and this is in line with the measured average taken ratio of 0.24. In
any event, the measured values are significantly different from those used by
uniform prediction (0.5); we will see in the next investigation (IV2) whether
such differences actually impact the accuracy of the profiler.

14 TUD-SERG-2009-022

SE

Boogerd & Moonen — Supporting software inspection with static profiling

Segment Antiword Chktex Lame

UP HP CHP | UP HP CHP UP HP CHP
1 0.72 0.72 0.76 | 1.00 1.00 1.00 | 0.66 0.66 0.83
2 0.69 0.67 0.65 | 1.00 1.00 1.00 | 0.33 0.41 0.41
5 0.63 0.67 0.68 | 0.78 0.78 0.78 | 0.29 0.31 0.39
10 0.59 0.64 0.64 | 0.67 0.66 0.69 | 0.31 0.34 0.40
20 0.44 0.46 0.47 | 0.53 0.54 0.55 | 0.31 0.32 0.35
40 0.35 0.34 0.33 | 0.40 041 0.41 | 0.23 0.23 0.23
80 0.25 0.24 0.24 | 044 0.44 045 | 0.22 0.22 0.22
Segment Link UniZ2ascii TV

UP HP CHP | UP HP CHP UP HP CHP
1 0.79 0.86 0.93 | 1.00 1.00 1.00 | 0.30 0.33 n.a.
2 0.84 0.86 0.87 | 1.00 1.00 1.00 | 0.23 0.23 n.a.
5 0.81 0.81 0.81 | 1.00 1.00 1.00 | 0.16 0.16 n.a.
10 0.81 0.81 0.81 | 1.00 1.00 1.00 | 0.14 0.14 n.a.
20 0.63 0.63 0.62 | 0.76 0.76 0.82 | 0.08 0.08 n.a.
40 0.47 0.46 0.46 | 0.53 0.53 0.65 | 0.06 0.06 n.a.
80 0.33 0.32 0.32 | 0.43 0.43 0.43 | 0.09 0.09 n.a.

Table 5: Average measured execution likelihood for different segments of the
rankings obtained using uniform (UP), heuristic (HP) and calibrated heuristic
prediction (CHP)

6.2 IV2: Relating static and dynamic profiles

Table 4 displays the matching scores (as explained in Section 5) for each project.
On each row, a different part of the ranking has been matched, where segment n
refers to the n% topmost locations in the ranking. The three values present for
each project denote the scores obtained using the different variants of branch
prediction; uniform, heuristic and calibrated heuristic, respectively. Since the
profiling results are used as prioritization, we are first and foremost interested in
the matching scores for the top-most segments. Typically, a randomized ranking
would produce scores of 0.01, 0.02 and 0.05 for these top segments, which is
easily outperformed by the ELAN technique. However, there is a problem in
using these scores for evaluating the accuracy of the ranking. Consider Link, for
example: in our test series, 11% of the locations involved were always executed,
which means that the four top-most segments in our table will consist entirely of
locations with measured value 1. There is no way to distinguish between these
locations, and as such, no way to compare rankings. Even if the estimates were
perfect, locations in our static segment 1 could be anywhere in segment 2, 3 or
4 of the dynamic ranking. This explains the strikingly low matching scores in
the upper segment for Link. In practice this will be less of a problem since these
values are used in conjunction with other priorities, e.g., the reported severity.
Still, it shows that to understand accuracy completely, we also need to look at
the distribution of the measured likelihood in the static ranking.

In Table 5, the average execution likelihood for all the locations in a certain
segment are shown; again, the values represent the results without heuristics,
with heuristics, and with calibrated heuristics, respectively. We took the ranking
based on our static likelihood estimate and calculated the average measured

TUD-SERG-2009-022

15

Boogerd & Moonen — Supporting software inspection with static profiling SE

100

%)

Points predicted correctly within given margin (%

60 - 1

40 | i

20 1

0 1 1 1 1
0 20 40 60 80 100

Error margin in percentage points (+/-)

Figure 2: ELAN overall accuracy

execution likelihood for each segment. The values shown in Table 5 cannot be
compared amongst programs, as they depend on the runtime behavior of the
individual program. For instance, consider the differences between values for
Antiword, which has 3.8% of its locations always executed, and Chktex, which
has 33.5% of its locations always executed. What does matter, however, is the
distribution within one program: we expect the locations ranked higher to have
a higher actual execution likelihood, and, with some exceptions, exactly this
relation can be observed here.

Finally, we illustrate overall accuracy by means of the relation between error
margins and accurate estimates, using a diagram similar to the ones in [32],
adapted to indicate profile accuracy instead of branch prediction accuracy. The
figure displays the number of locations for which the execution likelihood was
estimated correctly within the given error margin. For instance, point (5,65) in
the graph signifies that 65% of all the locations in the experiment was estimated
correctely within a 5 percent point error margin. Only one line has been plotted,
because the differences between the three different variants were too small to
be noticeable in this figure.

6.3 IV3: Analysis time measurements

The analysis time investigation consists of two parts. First is the relation be-
tween the size of the program and the profiler analysis time. Recall our al-
gorithm, which computes a slice, traverses the subgraph obtained, and derives
estimates for conditions. This indicates the importance of the size of the SDG,
rather than the number of KLoC. This relationship is illustrated in figure 3,
where the size of the SDG in vertices has been plotted against the analysis time

16 TUD-SERG-2009-022

SE Boogerd & Moonen — Supporting software inspection with static profiling

time , . . ,
(msec) avg analysis time/control point ~ +
650 - avg analysis time incl. heuristics/control point <

600 >lame —

550 - 1

500 - 1

400 | i
350 |- R

300 1

250 TV subsystem
200 X
+
150 B
100 B
50 X
e x 4
LoF
0 I I I I I I I I I
0 200k 400k 600k 800k ™ 1.2M 1.4M 1.6M 1.8M 2M

——= system size (#vertices in SDG)

Figure 3: ELAN analysis time for various case studies

per location involved in the investigation (i.e., IV2).

The second part aims at characterizing the time behavior for a single pro-
gram when a smaller or larger part of that program is analyzed. We illustrate
this by means of one of the programs, antiword, where we record analysis time
for different subsets of locations in that program. The resulting measurements
are displayed in figure 4. Here, the point (20,120) in the graph means that
the analysis of a random selection of 20% of all locations in antiword takes 120
seconds. Typically, we expect a relation like this to be linear, and the fact that
the slope of the curve is decreasing shows that the caching mechanism is indeed
doing its job.

7 Evaluation

7.1 1IV1-2: Profiler accuracy

When looking at the data of the accuracy experiments, perhaps most striking
are the differences between tables 4 and 5. Even though locations with a higher
execution likelihood in general seem to be ranked higher, the matching scores
resulting from the comparison with the ranking based on those measured values
simply do not measure up. To understand this, we need to look at the locations
that will end up high in the ranking: in our test set, the percentage of locations
that were always executed ranged from 4% to 34%. This typically means that,
even though we may propagate many of the important locations towards the
top of the list, we cannot distinguish between those in the topmost segments of
that list. This explains the seeming discrepancy between matching score and
average execution likelihood.

TUD-SERG-2009-022 17

Boogerd & Moonen — Supporting software inspection with static profiling SE

300

Experiment runtime for the given portion (sec.)

0 1 1 1 1
0 20 40 60 80 100

Ratio of total points in experiment (%)

Figure 4: ELAN caching behavior illustrated

Another observation is that both accuracy tables, and especially table 5,
show a drop in ranking accuracy for the NXP TV software. We believe this
can be partly explained by its intensive use of function pointers. Even though
we can statically predict pointer targets to some extent, we will usually end up
with a set of possible targets, each of which is thought to be equally likely. As
only one can be the true target, the algorithm will assign a higher likelihood to
the other points than should be the case (and would be, if it were a direct call).

We tried alleviating that problem by making another pass over the source
code, replacing the function pointers by direct function invocations. For this
particular case this is feasible solution because all the function pointers are
explicitly stored in a reference table. Although the transformation does not
result in an executable system, it is perfectly analyzable using the standard
techniques we employ in our approach.

However, this did not result in the increase in accuracy that we expected.
There is another factor in play here: only a very small part of the software is
exercised at all. This can be observed by looking at the difference between the
TV software and the other programs in the 80 percent segment in Table 5. The
part of the TV software under test is only the infrastructure of the complete
TV software, and has very little ‘real’ functionality of its own. The support role
of this subsystem is likely only fully exercised when run as part of a complete
TV software stack, which was not the case here. With many reachable parts of
the software not exercised, the measured accuracy suffers. This problem is less
pronounced in the other projects we studied.

The differences in accuracy between the three variants investigated are typ-
ically small, which could be due to the small number of branches that proved
to be compatible with the heuristics used. Also, it seems to indicate the rela-

18 TUD-SERG-2009-022

SE Boogerd & Moonen — Supporting software inspection with static profiling

tively large importance of the control structure itself, instead of the behavior
of individual branches. This would explain why, even when using rather simple
mechanics, the results diplayed in Table 2 and Figure 2 are promising. Notably,
almost two thirds of all the locations involved in the experiment were estimated
correctly with an error margin of 5 percent point. Moreover, although not dis-
played here, during our investigation we found that precision seems to be highest
for locations with likelihood close to 0 or 1. Considering our application, this
makes it relatively safe to ignore the former locations, while the latter constitute
an interesting starting point for manual inspection.

7.2 1IV3: Analysis time

There are a number of observations that we can make regarding analysis time
behavior: first of all, the approach seems to scale well to larger software sys-
tems, where the version that uses the refined branch prediction heuristics is
only slightly outperformed by the simpler one. It suggests that including more
sophisticated analyses can still result in a feasible solution.

Second, there is one program that does not conform to this observation: anal-
ysis time for Lame is significantly higher than for any of the others. Manual
inspection revealed that the Lame frontend has a function that parses command-
line arguments with a great number of short-circuited expressions. Such ex-
pressions lead to large, hightly-connected graphs, slowing down the traversal.
Because this occurs early on in the program, it affects many of the locations
we are testing. Specifically, it means that computation of 25% of the locations
involved requires traversal through this function, and 6.5% of the locations are
within this function itself. In a follow-up experiment, in which we excluded the
suspect function, we found that the analysis time for the rest of the program
was according to expectations (30 ms/location). This also illustrates the fact
that our analysis speed investigation is actually somewhat negatively biased,
since the uniform sampling results in a relatively large number of locations from
this computationally expensive function. However, this kind of biased distribu-
tion is unlikely when ordering actual inspection results. In addition, such large
short-circuited expressions are atypical for the type of software analysed in the
Trader project, leaving little reason for concern at this time.

We would like to stress that the reported timings are actually worst-case
approximations. Because in our experiments the complete program is covered,
adding more warning locations would not lead to more analysis time. The
analysis is only run once for every basic block, so with the addition of more
warnings only the source locations need to be determined. In this manner we
provide the benefits of a demand-driven approach while ensuring that sorting
large number of warnings remains feasible.

Finally, we remark that our approach is orthogonal to other prioritization
and filtering techniques discussed in the related work. Nevertheless, in combina-
tion with these approaches, ELAN can best be applied as final step because the
filtering of the earlier stages in combination with our demand driven approach
effectively reduces the amount of computations that will need to be done.

TUD-SERG-2009-022 19

Boogerd & Moonen — Supporting software inspection with static profiling SE

7.3 Threats to validity

Internal validity As our approach is based on the SDG, the level of detail
with which this graph is constructed directly affects its outcome, especially in
terms of accuracy. It should be noted, therefore, that the graphs can have
both missing dependences (false negatives) and dependences that are actually
impossible (false positives). For example, control- or data dependences that
occur when using setjmp/longjmp are not modeled. Another important issue is
the accuracy of dependences in the face of pointers (aliasing), think for example
of modeling control dependences when using function pointers. To improve
this accuracy, a flow insensitive and context insensitive points-to analysis [38]
has been employed in the implementation to derive safe information for every
pointer in the program.

External validity In our test set, we use mostly programs that are one-
dimensional in their tasks, i.e. perform one kind of operation on a rather re-
stricted form of input. This limits issues related to the creation of appropriate
test inputs, and allows us to focus on evaluating the approach itself. It does
mean, however, that we must devote some time to the question how to generalize
these results to other kind of programs.

The ELAN approach is based on information implicit in the control structure
of the program, and as for the heuristics, in the way humans tend to write pro-
grams. This information will always be present in any program. However, there
may be parts of the control structure that are highly dependent on interaction
or inputs. Fisher and Freudenberger observed that, in general, varying program
input tends to influence which parts of the system will be executed, rather than
influencing the behavior of individual branches [19]. Recall that we observed
similar behavior in our particular setup of the TV software, where large parts
are simply never executed at all. This suggests that, typically, there are a num-
ber of highly data-dependent branches early on in the program, while the rest
of the control structure is rather independent. For example, a command-line
tool may have a default operation and some other modi of operation that are
triggered by specifying certain command-line arguments. At some point in this
program, there will be a switch-like control structure that calls the different
operations depending on the command-line arguments specified. This control
structure is important as it has a major impact on the rest of the program,
and it is also the hardest to predict due to its external data dependence. How-
ever, this information (in terms of our example: which operation modi are most
likely to be executed) is exactly the type of information possessed by domain
experts such as the developers of the program. Therefore, the simple extension
of our approach with a means to specify these additional (input) probabilities
can further improve applicability to such situations.

20 TUD-SERG-2009-022

SE Boogerd & Moonen — Supporting software inspection with static profiling

8 Concluding Remarks

Prioritizing inspection results remains an important last step in the inspection
process, helping developers focus on important issues. To this end, many ap-
proaches have been proposed, but none so far used the location of the reported
issue. Therefore, we have presented a method for prioritization based on stat-
ically computing the likelihood that program execution reaches locations for
which issues are reported. In other words, we prioritize code inspection results
using static profiling. This profiler consists of a novel demand-driven algorithm
for computing execution likelihood based on the system dependence graph.

We have investigated the feasibility of the described approach by implement-
ing a prototype tool and applying it to several open source software systems as
well as software embedded in the NXP television platform. We show the rela-
tion between our static estimates and actual execution data found by dynamic
profiling and we report on the speed of our approach. This empirical valida-
tion shows that the approach is capable of correctly prioritizing 65 percent of
all program locations in the test set within a 5 percent point error margin. In
addition, the approach scales well to larger systems.

In concurrent work [8], we experiment with a number of ideas to further
improve our approach by incorporating more advanced program analysis tech-
niques, such as range propagation [32], that are basically aimed at enabling
better estimations of the outcomes of conditions. Also, they can be used to
compute execution frequencies, which will benefit the ranking by better dis-
tinguishing locations at the top of the ranking. However, since such analyses
typically come with additional computational costs, it is of great interest to
investigate if the improved accuracy actually warrants the expenses involved.

In another track [7] we describe how to use software history information
to relate inspection rules to actual bugs. In the near future, we intend to use
these techniques to select which rules to use in the inspection process ex-ante
rather than the ex-post prioritization of inspection output. Also, we want to
further expand the number of industrial and open source cases where we test
the feasibility of this approach.

References

[1] T. Ball and J. R. Larus. Branch prediction for free. ACM SIGPLAN
Notices, 28(6):300-313, 1993.

[2] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar. The
Blast Query Language for software verification. Lecture Notes in Computer
Science, 3148:2-18, 2004.

[3] D. Binkley. Interprocedural constant propagation using dependence graphs
and a data-flow model. Lecture Notes in Computer Science, 786:374—388,
1994.

TUD-SERG-2009-022 21

Boogerd & Moonen — Supporting software inspection with static profiling SE

[4] W. Blume and R. Eigenmann. Demand-driven, symbolic range propaga-
tion. Lecture Notes in Computer Science, 1033:141-160, 1995.

[5] B. W. Boehm. Software Engineering Economics. Prentice Hall PTR, 1981.

[6] C. Boogerd and L. Moonen. Prioritizing software inspection results using
static profiling. In Proceedings of the Sizth International Workshop on
Source Code Analysis and Manipulation (SCAM), pages 149-158. IEEE
Computer Society Press, 2006.

[7] C. Boogerd and L. Moonen. Assessing the value of coding standards: An
empirical study. In Proceedings of the 24th International Conference on
Software Maintenance (ICSM), pages 277-286. IEEE Computer Society
Press, 2008.

[8] C. Boogerd and L. Moonen. On the use of data flow analysis in static
profiling. In Proceedings of the Eighth International Working Conference
on Source Code Analysis and Manipulation (SCAM), pages 79-88. IEEE
Computer Society Press, 2008.

[9] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer for finding
dynamic programming errors. Software Pract. Exp., 30(7):775-802, 2000.

[10] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification
of software components in C. IEEFE Transactions on Software Engineering,
30(6):388-402, 2004.

[11] H. Chen and D. Wagner. Mops: an infrastructure for examining security
properties of software. In Proceedings of the Ninth ACM Conference on
Computer and Communications Security, pages 235-244. ACM Press, 2002.

[12] M. Das, S. Lerner, and M. Seigle. ESP: path-sensitive program verification
in polynomial time. In Proceedings of the 2002 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), pages 57—
68. ACM Press, 2002.

[13] B. L. Deitrich, B-C. Cheng, and W. W. Hwu. Improving static branch
prediction in a compiler. In Proceedings of the 18th Annual International
Conference on Parallel Architectures and Compilation Techniques (PACT),
pages 214-221. IEEE Computer Society Press, 1998.

[14] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules us-
ing system-specific, programmer-written compiler extensions. In 4th Sym-
posium on Operating Systems Design and Implementation (OSDI), pages
1-16. USENIX, 2000.

[15] D. Evans, J. Guttag, J. Horning, and Y. M. Tan. LCLint: A tool for
using specifications to check code. In 2nd ACM Press Symposium on the
Foundations of Software Engineering (FSE), pages 87-96, 1994.

22 TUD-SERG-2009-022

SE Boogerd & Moonen — Supporting software inspection with static profiling

[16] D. Evans and D. Larochelle. Improving security using extensible lightweight
static analysis. ITEEFE Software, 19(1):42-51, 2002.

[17] M. E. Fagan. Design and code inspections to reduce errors in program
development. IBM Systems Journal, 15(3):182-211, 1976.

[18] T. Fahringer and B. Scholz. A unified symbolic evaluation framework for

parallelizing compilers. IEEE Transactions on Parallel Distributed Systems,
11(11):1105-1125, 2000.

[19] J. A. Fisher and S. M. Freudenberger. Predicting conditional branch direc-
tions from previous runs of a program. In Proceedings of the Fifth Inter-

national Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 85-95. ACM Press, 1992.

[20] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata. Extended static checking for Java. In Proceedings of the 2002
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), pages 234-245. ACM Press, 2002.

[21] Fortify. Rats: Rough auditing tool for security. Available at: http://www.
fortify.com/, 2009.

[22] J. Foster. Type Qualifiers: Lightweight Specifications to Improve Software
Quality. PhD thesis, University of California, Berkeley, 2002.

[23] T. Gilb and D. Graham. Software Inspection. Addison-Wesley, 1993.

[24] S. Horwitz, T. W. Reps, and D. Binkley. Interprocedural slicing using
dependence graphs. ACM Transactions on Programming Languages and
Systems, 12(1):26-60, 1990.

[25] W. S. Humphrey. A Discipline for Software Engineering. Addison-Wesley,
1995.

[26] R. Johnson and D. Wagner. Finding user/kernel pointer bugs with type
inference. In 13th Usenix Security Symposium, pages 119-134. USENIX,
2004.

[27] S.C. Johnson. Lint, a C program checker. In Uniz Programmer’s Manual,
volume 2A, chapter 15, pages 292-303. Bell Laboratories, 1978.

[28] S. Kim and M. D. Ernst. Prioritizing warning categories by analyzing
software history. In Proceedings of the Fourth International Workshop on
Mining Software Repositories (MSR), pages 27-30. IEEE Computer Society
Press, 2007.

[29] S. Kim and M. D. Ernst. Which warnings should i fix first? In Proceedings
of the Sizth Joint Meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT International Symposium on Foundations of
Software Engineering (ESEC/FSE), pages 45-54. ACM Press, 2007.

TUD-SERG-2009-022 23

Boogerd & Moonen — Supporting software inspection with static profiling SE

[30] J. Knoop and O. Riithing. Constant propagation on the value graph: Sim-
ple constants and beyond. In 9th International Conference on Compiler
Construction (CC), volume 1781 of Lecture Notes in Computer Science,
pages 94-109. Springer, 2000.

[31] T. Kremenek and D. R. Engler. Z-ranking: Using statistical analysis to
counter the impact of static analysis approximations. In 10th International
Symposium on Static Analysis (SAS), volume 2694 of Lecture Notes in
Computer Science, pages 295-315. Springer, 2003.

[32] J. R. C. Patterson. Accurate static branch prediction by value range prop-
agation. In ACM Conference on Programming Language Design and Im-
plementation (PLDI), pages 67-78. ACM Press, 1995.

[33] A. A. Porter, H. Siy, A. Mockus, and L. G. Votta. Understanding the
sources of variation in software inspections. ACM Transactions on Software
Engineering Methodology, 7(1):41-79, 1998.

[34] T. Reps and G. Rosay. Precise interprocedural chopping. In 3rd ACM
Symposium on the Foundations of Software Engineering (FSE), pages 41—
52. ACM Press, 1995.

[35] G. W. Russell. Experience with inspection in ultralarge-scale developments.
IEEE Software, 8(1):25-31, 1991.

[36] S. Sagiv, T. W. Reps, and S. Horwitz. Precise interprocedural dataflow
analysis with applications to constant propagation. In 6th Interna-
tional Conference on Theory and Practice of Software Development (TAP-
SOFT), volume 915 of Lecture Notes in Ccomputer Science, pages 651-665.
Springer, 1995.

[37] G. Shafer. A Mathematical Theory of Evidence. Princeton University Press,
1976.

[38] M. Shapiro and S. Horwitz. Fast and accurate flow-insensitive points-to
analysis. In Proceedings of the 24th ACM Symposium on Principles of
Programming Languages (POPL), pages 1-14. ACM Press, 1997.

[39] C. Verbrugge, P. Co, and L. J. Hendren. Generalized constant propagation:
A study in C. In 6th International Conference on Compiler Construction
(CC), volume 1060 of Lecture Notes in Computer Science, pages 74-90.
Springer, 1996.

[40] J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw. ITS4: A static vul-
nerability scanner for C and C++ code. In 16th Ann. Computer Security
Applications Conference (ACSAC), pages 257-267. IEEE Computer Soci-
ety Press, 2000.

[41] J. M. Voas and K. W. Miller. Software testability: The new verification.
IEEFE Software, 12(3):17-28, 1995.

24 TUD-SERG-2009-022

SE

[42]

[43]

[48]

[49]

[50]

TUD-SERG-2009-022

Boogerd & Moonen — Supporting software inspection with static profiling

D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A first step to-
wards automated detection of buffer overrun vulnerabilities. In Network
and Distributed System Security Symposium (NDSS), pages 3-17. The In-
ternet Society, 2000.

T. A. Wagner, V. Maverick, S. L. Graham, and M. A. Harrison. Accu-
rate static estimators for program optimization. In ACM Conference on
Programming Language Design and Implementation (PLDI), pages 85-96.
ACM Press, 1994.

D. W. Wall. Predicting program behavior using real or estimated profiles.
In ACM Conference on Programming Language Design and Implementation
(PLDI), pages 59-70. ACM Press, 1991.

D. A. Wheeler, B. Brykczynski, and Jr. R. N. Meeson, editors. Software
Inspection : An Industry Best Practice. IEEE Computer Society Press,
1996.

D.A. Wheeler. Flawfinder. Available at: http://flawfinder.
sourceforge.net/, 2009.

C. Wohlin, A. Aurum, H. Petersson, F. Shull, and M. Ciolkowski. Software
inspection benchmarking - a qualitative and quantitative comparative op-
portunity. In 8th International Software Metrics Symposium (METRICS),
pages 118-130. IEEE Computer Society Press, 2002.

Y. Wu and J. R. Larus. Static branch frequency and program profile analy-
sis. In 27th Ann. International Symposium on Microarchitecture (MICRO),
pages 1-11. ACM/IEEE, 1994.

J. Yang, T. Kremenek, Y. Xie, and D. Engler. MECA: an extensible, ex-
pressive system and language for statically checking security properties. In
10th ACM Conference on Computer and Communications Security (CCS),
pages 321-334. ACM Press, 2003.

P. Zoeteweij, R. Abreu, R. Golsteijn, and A. J. C. van Gemund. Diagnosis
of embedded software using program spectra. In Proceedings of the 14th
Annual IEEE International Conference and Workshop on the Engineer-
ing of Computer Based Systems (ECBS), pages 213-220. IEEE Computer
Society Press, 2007.

25

Boogerd & Moonen — Supporting software inspection with static profiling S E

26 TUD-SERG-2009-022

TUD-SERG-2009-022 S Ec
ISSN 1872-5392

