TU Delft

Evolution of CI Pipeline Complexity: Impact on Build Performance

Kwangjin Lee'

Supervisor(s): Sebastian Proksch!, Shujun Huang!
Examiner: Marco Zuniga Zamalloa®

'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 21, 2025

Name of the student: Kwangjin Lee
Final project course: CSE3000 Research Project
Thesis committee: Sebastian Proksch, Shujun Huang

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Continuous Integration (CI) has become a fun-
damental practice in modern software develop-
ment. Organizations increasingly adopt complex
pipeline configurations to automate their build, test,
and deployment processes. Well-optimized CI/CD
pipelines offer significant benefits in deployment
reliability, team productivity, and code quality. As
these pipelines become more complex, defined by
the number of jobs and steps in this paper, there is
limited empirical evidence on how this evolution af-
fects key performance metrics. This study addresses
this gap by investigating the relationship between
pipeline complexity and performance outcomes. By
analyzing data from over 194 open-source GitHub
repositories, we reveal that while increased complex-
ity generally correlates with longer build durations,
the impact on success rates is less direct. More im-
portantly, we found that strategic modifications to
pipeline configuration files (i.e., line changes) were
frequently associated with significant performance
improvements, including shorter build durations and
fix times. This research provides guidance for prac-
titioners. Rather than asking whether to increase or
decrease pipeline complexity, our findings show that
the focus should be on the method of change. We
recommend prioritizing small, iterative maintenance
activities, which consistently improve performance,
over large-scale tool migrations, which have unpre-
dictable outcomes. This approach enables teams to
evolve their pipelines while mitigating the risks as-
sociated with growing complexity.

1 Introduction

Continuous Integration (CI) has evolved from an emerging
practice to a standard approach in modern software develop-
ment, helping organizations to integrate code changes, run
automated tests, and detect integration issues early.

Organizations increasingly adopt complex pipeline con-
figurations for code quality, bug detection, deployment fre-
quency, automated build, and deployment processes, and well-
optimized CI pipelines experience significant benefits in de-
ployment reliability, team productivity, and code quality [15].

The landscape of CI/CD is growing increasingly complex.
This is evidenced not only by the growing number of different
tools and technologies, as highlighted by studies like Giao
et al. [4], but also by the internal complexity of individual
pipelines. For the purpose of this study, we define structural
pipeline complexity by the number of jobs and steps within
a single workflow. This trend of growing complexity, both at
the ecosystem and pipeline level, reflects organizations’ aim
to automate more aspects of their software delivery process to
achieve rapid and frequent delivery of changes.

The impact of this growing complexity on performance,
however, is not always straightforward. For instance, research
shows that adding a specific automation tool, such as an au-
tomated testing framework, can demonstrably decrease build

times [11]. Yet, the net effect of a pipeline’s overall structural
complexity, encompassing its total number of jobs and steps,
on key performance indicators, such as build duration, build
success rate, and fix time, remains underexplored.

This challenge is compounded in practice by the diverse
landscape of CI/CD tools and the complexities of their config-
uration. Developers must navigate difficult choices between
different platforms, each with its own syntax and capabili-
ties. The resulting pipeline configurations, often written in
lengthy YAML files, can become difficult to maintain and
optimize[5]. Consequently, many teams face a difficult trade-
off: adding more jobs and steps can improve test coverage and
code quality, but often at the cost of longer feedback cycles
and increased maintenance overhead[3]. The lack of clear,
empirical data on these trade-offs makes it difficult to make
informed decisions[14].

Therefore, to bridge this gap, our research quantitatively
investigates how pipeline complexity and its evolution impact
build performance. By performing a quantitative analysis over
time on historical data from 194 open-source projects, we aim
to provide empirical guidance. Specifically, we investigate
how different aspects of pipeline configuration, such as the
structural complexity (number of jobs and steps) and major
evolutionary events (tool migrations and line changes), cor-
relate with key performance indicators: build duration, build
success rate, and fix time.

The primary research questions that guide this study are the
following:

RQ1: How does CI pipeline complexity correlate with
build performance metrics in open-source projects? This
primary question aims to establish a foundational understand-
ing of the direct trade-offs associated with pipeline complexity.

RQ2: How do major pipeline evolutionary events im-
pact build performance? Pipelines are not static; they evolve
through significant events like tool migrations. As these
changes are common in practice [4], this question investi-
gates their direct consequences on performance, aiming to
understand the risks and benefits associated with such major
evolutionary steps.

RQ3: Which CI/CD activities have the most significant
positive impact on build performance? While RQ2 focuses
on large-scale changes, pipelines also evolve through small,
continuous maintenance activities. This question aims to iden-
tify which of these routine activities, such as modifications to
configuration files, provide the most significant performance
benefits. The goal is to uncover best practices for ongoing
pipeline optimization.

To answer these questions, we perform a quantitative analy-
sis on historical data from 194 open-source repositories. Our
methodology involves correlation analysis, comparative anal-
ysis of performance metrics before and after evolutionary
events, and grouping repositories by size (LOC) to provide a
detailed view. This study makes the following primary contri-
butions:

1. We provide empirical evidence showing that while in-
creased pipeline complexity primarily lengthens build
duration, it does not significantly impact reliability (i.e.,
success rates and fix times).

2. We demonstrate the contrasting effects of pipeline evo-
lution: large-scale tool migrations yield unpredictable
performance outcomes, whereas small, continuous main-
tenance activities are consistently linked to significant
improvements.

3. We provide a data-driven foundation for developers to
manage CI/CD pipelines more effectively, emphasizing
a strategy of continuous optimization over disruptive,
large-scale changes.

The remainder of this paper is organized as follows. Section
2 reviews related work on CI/CD evolution and performance.
Section 3 details our research methodology. Sections 4, 5,
and 6 present the detailed findings for each research question,
respectively. Finally, Section 7 discusses the implications and
limitations of our work, and Section 8 concludes the paper.

2 Related Work

This section reviews prior research relevant to our study, focus-
ing on three main areas: the evolution of CI/CD practices, their
performance impact, and the resulting research gap. By exam-
ining this landscape, we position our research and highlight
its unique contribution.

Evolution and Complexity of CI/CD Pipelines Several
studies have quantitatively mapped the landscape of CI/CD
adoption in open-source projects. For instance, Giao et al.
[4] conducted a large-scale analysis revealing a significant
increase in CI/CD usage, a dominance of tools like GitHub
Actions, and a clear trend of projects migrating between tech-
nologies. Similarly, Hilton et al. [9] explored the usage and
benefits of continuous integration. Focusing specifically on
GitHub Actions, Chen et al. [2] investigated its adoption and
common usage patterns, analyzing millions of workflows to
identify the most popular triggers and reusable actions. Their
work provides a detailed view of how developers construct
their workflows on this dominant platform. While these stud-
ies provide an excellent overview of which tools are used and
that pipelines evolve, they primarily focus on adoption trends
rather than the performance consequences of the internal struc-
tural changes that accompany this evolution.

Performance Impact of CI Other research has focused on
the impact of CI adoption on performance. Studies like Zhao
et al. [18] examined the broad effects of CI on development,
while Joshi [11] demonstrated that specific automations can
significantly decrease build times. Furthermore, Chen et al.
explored the impact of adopting GitHub Actions on developer
productivity, investigating metrics such as commit frequency
and the resolution efficiency of pull requests and issues [2].
These studies confirm that CI practices have a tangible impact.
However, by treating CI adoption as a binary choice (yes/no)
or focusing on a single, isolated change, this body of work
does not address the performance implications of a pipeline’s
overall structural complexity as it grows over time.

Research Gap The existing literature confirms that CI
pipelines are evolving and that CI practices impact perfor-
mance. However, a clear gap remains at the intersection of
these areas. There is limited research that quantitatively links
a pipeline’s overall structural complexity (e.g., its number

of jobs and steps) to a range of performance metrics over
time, as existing studies often focus on the general impact
of CI adoption rather than its internal structure [18]. Further-
more, how different modes of evolution, such as major tool
migrations versus small, continuous changes, distinctly affect
performance remains underexplored, even though recent work
has confirmed that such evolutionary events are common in
practice [4]. Our study addresses this gap by providing a quan-
titative analysis of the relationship between pipeline structure,
evolution, and performance.

3 Methodology

This section outlines the research methodology used to inves-
tigate the relationship between CI pipeline complexity and
performance. We begin by describing our data collection pro-
cess, which involved establishing a set of criteria to select a
representative sample of 194 open-source repositories from
GitHub. Next, we detail how the collected data was structured
for analysis, covering our methods for repository grouping,
data extraction, and branch classification. Finally, we explain
the quantitative analysis methods employed to address re-
search questions. We also formally define the key complexity
and performance metrics central to this research, which are
summarized in Table 1.

Repository Selection To ensure our dataset was both sub-
stantial and representative, we established four primary se-
lection criteria. First, to cover a wide range of development
practices, we included projects from diverse and popular pro-
gramming languages such as Java, Python, and JavaScript,
based on usage data from 2024 [6]. Second, to maintain a
consistent technical scope, our analysis focused exclusively
on projects utilizing GitHub Actions for their CI pipelines.
Third, to select for active and collaborative projects where CI
provides meaningful value, we required repositories to have at
least five contributors, a threshold supported by the findings
of Vasilescu et al. [17]. Finally, we set a minimum of 100
stars as a proxy for project maturity and relevance, a heuristic
informed by research on repository popularity by Borges et
al. [1]. The application of these criteria to repositories active
from February 20, 2025, to May 21, 2025, yielded our final
dataset of 194 projects.

Data Extraction Our data extraction process began with
gathering performance metrics. For each repository, we used
the GitHub API to retrieve all GitHub Actions workflow run
data, including metadata such as build status and timestamps.
This raw data allowed us to compute our primary performance
indicators. A formal definition for each metric, including build
duration, build success rate, and fix time, is provided in
Table 1.

To understand the pipeline’s structure and its evolu-
tion, we collected data from two additional sources. First,
we downloaded all YAML configuration files from the
.github/workflows/ directory to analyze structural com-
plexity, such as the number of jobs and steps. Second, to en-
able our event-based analyses, we cloned each repository and
parsed its full commit history using the git log command.
This process allowed us to identify all commits that modified
CI configuration files and extract key metadata—including

Category Metric / Term

Definition / Rationale

Jobs Independent execution units within a CI workflow.
Components Steps Individual commands or actions within a job.

Tools The specific CI/CD platforms analysed (e.g., GitHub Actions, Jenkins).

. Number of Jobs The total number of jobs defined in a workflow configuration.

Complexity

Number of Steps The total number of sequential steps across all jobs in a workflow.

Build Duration The time from a workflow’s trigger to its completion.

Measured as completed_at - started_at [8].

Performance

Build Success Rate

The percentage of successful runs out of all completed runs.

Indicates code
failures)) * 100.

stability

[16]. Calculated as (successes / (successes +

Fix Time

The time between a failed run and the next successful run in the same context.

Reflecting how quickly developers resolve issues [10]. The context is defined by the same
branch, pull-request number, and commit SHA [7].

Table 1: Definitions of Key Metrics and Terminologies

the commit SHA, author, and timestamp—which was crucial
for accurately detecting and timing the evolutionary events
studied in this research.

Branch Classification To account for differing development
workflows, we classified all pipeline runs based on their branch
type. Runs occurring on default branches, typically named
main or master as identified from repository metadata, were
aggregated and analyzed separately. All other non-default
branches, such as feature and development branches, were
grouped into a second category. This classification allowed
us to compare the pipeline characteristics and performance
between stable, primary branches and more active or experi-
mental branches.

LOC-based Grouping To control for project size as a po-
tential confounding variable, we segmented repositories based
on their total lines of code (LOC). This approach allows for a
more detailed analysis of the relationship between complexity
and performance across different project scales. While some
research [13] uses fixed LOC values (e.g., 5,000 and 150,000
LOC), we found this approach unsuitable for the skewed dis-
tribution of our dataset. Instead, we divided the repositories
into four quartile-based groups (Q1-Q4) based on the 25th,
50th, and 75th percentiles of their LOC distribution. This data-
driven method created a clear separation in project scale, with
the mean LOC for the four groups being approximately 17,600
(Q1), 67,800 (Q2), 223,700 (Q3), and 1,062,000 (Q4), respec-
tively. For each of these groups, we then calculated the key
performance metrics separately for default and non-default
branches.

Responsible Research In conducting this research, we ad-
hered to ethical guidelines for analyzing public data. All data
was collected from publicly accessible open-source reposito-
ries on GitHub, and no private or sensitive information was
used. We ensured that our analysis and reporting of results
were done in a way that respects the work of the open-source

contributors and avoids misrepresentation.

4 RQ1: How does CI/CD pipeline complexity
correlate with build performance metrics in
open-source projects?

To analyze our data, we employed specific statistical methods
chosen for their suitability to our research questions and data
characteristics. To assess the monotonic relationship between
pipeline complexity and performance metrics, we used the
Spearman Correlation Coefficient (r). This non-parametric test
was selected because our data does not necessarily follow a
linear relationship or normal distribution, making Spearman’s
rank-based correlation the appropriate choice. The associated
p-value was used to determine if the observed correlations
were statistically significant (p < 0.05). Furthermore, to com-
pare the average performance between two distinct groups,
specifically, repositories with "low’ versus "high’ pipeline com-
plexity, we conducted an independent samples T-test. This test
allowed us to evaluate whether the difference in means for
metrics like build duration between these two groups was
statistically significant.

Analysis and Findings To address RQ1, we performed a
repository-level analysis, aggregating CI/CD pipeline com-
plexity and build performance metrics for each repository. As
shown in Table 2, our findings indicate that pipeline com-
plexity is moderately positively correlated with build duration
(r = 0.37 and r = 0.40, p < 0.001), suggesting that more
complex pipelines tend to require longer build times. The cor-
relation with fix time and build success rate, however, was
found to be weak and not statistically significant. Notably,
the default branch generally demonstrates better performance
across all metrics compared to other branches, which suggests
that CI/CD optimizations are more heavily focused on the
main development line.

To further understand the impact of repository size, we also

Metric Pair N Default Mean + SD Other Mean + SD Spearman r p-value T-test p
number of jobs vs build duration 194 27.54 +219.53 117.18 + 1062.76 0.37 3.25 x 10714 0.8550
number of steps vs build duration 194 27.54 4 219.53 117.18 + 1062.76 0.40 1.15 x 10716"* 0.1191
number of jobs vs fix time 70 1070.07 £3204.50 2712.33 £ 8873.76 -0.26 0.0822 0.0919
number of steps vs fix time 70 1070.07 £3204.50 2712.33 £ 8873.76 -0.16 0.299 0.0907
number of jobs vs success rate 194 0.82+0.24 0.75+0.24 -0.10 0.0587 0.5687
number of steps vs success rate 194 0.82+0.24 0.75£0.24 -0.04 0.466 0.2819

Table 2: Correlation and group comparison of pipeline complexity and build performance metrics
Note: #** p < 0.001

LOC Group n Jobs (mean + SD) Steps (mean + SD) Duration (mean + SD) Fix Time (mean + SD) Success (mean + SD)

Q1 (smallest) 48 2.81 + 3.56 24.40 £ 40.64 2.11+£2.93 20.78 £ 239.48 0.92+0.18
Q2 48 2.08 £1.32 18.88 £14.53 78.42 £ 466.79 226.22 +478.22 0.93 £0.12
Q3 49 3.14 £ 3.02 32.48 £+ 42.50 35.48 £ 158.61 1902.01 £ 5147.68 0.85£0.23
Q4 (largest) 49 3.95 £8.32 36.13 £110.93 8.96 = 11.42 124.41 £+ 373.81 0.63 £0.32

Table 3: Build performance metrics by LOC quartile group (default branch)

divided the data by lines of code (LOC) quartile groups. As
detailed in Table 3, a clear trend emerged: smaller repositories
(Q1) have the shortest build durations and highest success rates,
while larger repositories (Q4) show longer build durations and
lower success rates. For instance, the smallest quartile (Q1)
showed an average success rate of 92%, whereas the largest
quartile (Q4) had a rate of 63%. This suggests that repository
size is an important factor influencing pipeline performance.

In summary, our analysis for RQ1 reveals two key insights.
First, while pipeline complexity is a clear driver of longer build
times, its impact on build reliability is surprisingly weak. This
suggests that complexity’s primary cost is computational rather
than a direct introduction of instability. Second, repository size
and branch type are significant contextual factors, with smaller
projects and default branches consistently exhibiting better
performance.

S RQ2: How do significant pipeline
evolutionary events, such as CI tool change,
impact performance metrics?

While RQ1 established a baseline correlation, a deeper under-
standing requires analyzing how pipelines change over time.
The evolution of a CI pipeline is not always gradual; it is of-
ten marked by significant evolutionary events. In this study,
we define these events as CI tool migrations: major, discrete
changes where a project switches its primary CI/CD service
(e.g., moving from Travis CI to GitHub Actions).

To investigate the impact of these migrations, we first
needed to detect them. We identified migration events by ana-
lyzing the full commit history of each repository, parsing the
git log to pinpoint commits where one type of CI configura-
tion file (e.g., . travis.yml) was removed and another (e.g.,
afile in . github/workflows/) was added. Once a migration
date was identified, we conducted a comparative analysis of
performance metrics, collecting data for a period of one month
before and one month after the event.

Analysis and Findings The results of our comparative anal-
ysis, summarized in Table 4, indicate that CI tool migrations

have complex and varied effects on build performance, with
no single metric showing universal improvement.

On average, projects experienced a 31.1% increase in build
duration post-migration, suggesting a potential learning curve
or initial setup overhead associated with new tools. In contrast,
the average build success rate generally improved by 18.71%,
indicating that migrations may coincide with an effort to im-
prove overall pipeline reliability. However, this trend was not
consistent across all projects. The average fix time showed
extremely high variance, making it difficult to draw a general
conclusion for this metric.

Overall, these findings highlight that CI tool migration is
not a guaranteed path to better performance. The outcomes are
highly dependent on the specific project context, underscoring
the importance of careful, project-specific evaluation before
undertaking such a significant change.

6 RQ3: Which CI/CD activities contribute
most significantly to pipeline complexity in
open-source projects?

To examine the impact of CI/CD activities, specifically, line

change events in pipeline configuration files, aligned with their

build performance, we conducted a comparative analysis of
key performance metrics before and after 1 month for such
events. For each repository, we collected build duration, build
success rate, and fix time data for the periods immediately
preceding and following average line change events, following
our methodology. For more detailed tables, visit the GitHub
repository [12].

Before (s) After (s) Change Rate
BuildDuration 0.68 0.32 -52.9%
FixTime 202.61 121.41 -40.1%
SuccessRate(%) 82.18 83.89 2.1%

Table 5: Average build performance metrics before and after line
change events.

Table 4: Performance metrics before and after CI tool migration events.

Repo & Date Before Migration After Migration Change (%)
repo date duration fix_time success_rate duration fix_time success_rate duration fix_time success_rate
AlexProg_rammerDE/SoulFire 2025-04-01 0.03 15.0 98.9 0.03 416.6 85.0 0.0 2677.33 -14.02
deepspeedai/DeepSpeed 2025-02-24 2.0 1.4 85.2 1.6 5.5 90.0 -20.0 292.86 5.63
hiero-ledger/hiero-sdk-java 2025-01-29 1.8 771.0 63.7 4.4 20.5 72.0 14444 -20.54 13.05
pandas-dev/pandas 2025-01-21 0.2 0.0 553 0.2 151.6 94.1 0.0 0.0 70.16
Mean Mean 1.01 196.85 75.78 1.56 148.05 85.28 31.11 996.91 18.71

Analysis and Findings Our analysis of ongoing mainte-
nance focused on identifying projects with significant line
changes in their CI/CD configuration files. Interestingly, out
of our entire dataset, we found 17 projects that met the cri-
teria for such a notable change event. This amount itself is
a noteworthy finding, suggesting that CI configurations in
many projects may remain relatively static after initial setup,
or that changes are typically minor and incremental rather than
substantial.

For this subset of projects, the performance impact of these
changes was both positive, as summarized in Table 5. We ob-
served a remarkable 52.9% average reduction in build duration
and a 40.1% reduction in fix time. This stands in contrast to the
unpredictable outcomes of the large-scale tool migrations ana-
lyzed in RQ2. The consistent, positive impact of these smaller,
targeted modifications suggests that continuous maintenance is
a highly effective and low-risk strategy for improving pipeline
performance. The modest 2.1% increase in success rate further
supports the conclusion that these changes enhance not only
efficiency but also reliability.

7 Discussion

This section interprets the findings from our quantitative analy-
sis, discusses their implications, and acknowledges the study’s
limitations and future research directions.

Interpretation of Key Findings Our quantitative analysis
yielded several key findings that provide a nuanced view of
CI/CD practices. The analysis for RQ1 demonstrated that
while increased pipeline complexity has a strong, statistically
significant correlation with longer build durations (e.g., r =
0.40 for steps), its link to reliability metrics like success rate
and fix time is weak. This finding suggests that the primary
cost of complexity is computational, rather than an inherent
introduction of instability, perhaps because added steps are
often accompanied by more robust validation practices.

Furthermore, our results highlight a stark contrast between
two modes of pipeline evolution. For RQ2, we found that ma-
jor tool migrations led to unpredictable outcomes, including
an average 31.1% increase in build duration despite an aver-
age improvement in success rate. In contrast, for RQ3, we
found that small, ongoing maintenance activities were linked
to dramatic improvements, such as an average build duration
reduction of 52.9%. This evidence strongly suggests that how
a pipeline evolves—through iterative refinement versus large-
scale migrations—is a more critical performance factor than
the tools themselves.

Implications of the Study For practitioners, our findings
offer clear, actionable guidance. The results strongly suggest
that substantial performance gains are more reliably achieved
through continuous, targeted optimization of existing pipelines
rather than through large-scale, disruptive tool migrations.
Teams should carefully evaluate whether the expected benefits
of a new tool outweigh the risk of disruption and longer build
times. The emphasis for efficient CI/CD should be on strategic,
ongoing maintenance.

For researchers, this study underscores the importance of
analyzing the internal structure and evolution of pipelines,
moving beyond binary metrics of CI adoption. Our findings
open new questions, particularly regarding the causal mech-
anisms that lead to varied outcomes in tool migrations and
the specific types of configuration changes that yield the most
significant benefits.

8 Threats to Validity

While our study provides valuable insights, it is important
to acknowledge its limitations, which we frame as threats to
validity.

External Validity The generalizability of our findings is
constrained by our data source. Our analysis is based on public,
open-source repositories using GitHub Actions. Therefore, the
observed patterns may not fully represent practices in private
industrial settings or on other CI/CD platforms such as GitLab
CI or Jenkins.

Internal Validity Our quantitative approach identifies
strong correlations but cannot establish causality. For instance,
while we observed that line changes in configuration files cor-
relate with performance improvements, we cannot definitively
conclude that these changes caused the improvements. Other
concurrent factors, such as library updates or infrastructure
changes, could have contributed to the observed effects.

Construct Validity Finally, we faced challenges in accu-
rately measuring our core constructs. Our build duration cal-
culation can be skewed by queuing times, meaning it may not
always reflect the true execution time. Similarly, the presence
of dedicated test branches with an inherently high failure rate
could artificially lower the average build success rate for some
repositories, potentially misrepresenting their overall stability.

9 Conclusion and Future Work

This research set out to understand the evolution of CI pipeline
complexity and its impact on build performance. We addressed
three primary questions: (1) how pipeline complexity corre-
lates with performance, (2) the impact of major evolutionary

events like tool migrations, and (3) the effect of smaller, ongo-
ing maintenance activities.

Our analysis provided several key conclusions. We demon-
strated that while structural complexity (i.e., the number of
jobs and steps) is a clear driver of longer build times, it has a
weak link to build reliability. The study’s main contribution
is the finding that the method of evolution is a more critical
performance factor than complexity itself. We found that large-
scale tool migrations have varied and unpredictable outcomes,
whereas continuous, iterative maintenance consistently yields
significant performance benefits. This provides empirical evi-
dence that effective pipeline management relies on a strategy
of ongoing optimization over disruptive changes.

Based on these findings and the limitations of our study,
several avenues for future research emerge. A natural next
step is to expand this analysis to different contexts, such as
private industry projects and other CI/CD platforms, to im-
prove generalizability. Incorporating qualitative methods, like
developer surveys, could provide deeper context on the ratio-
nale behind pipeline evolution. Furthermore, developing more
robust performance metrics, particularly for build duration,
would enhance the precision of future studies in this area.

References

[1] Hudson Borges, Andre Hora, and Marco Tulio Valente.
On the popularity of github applications: A preliminary
note. arXiv preprint arXiv:1507.00604, 2015.

[2] Tingting Chen, Yang Zhang, Shu Chen, Tao Wang, and
Yiwen Wu. Let’s supercharge the workflows: An empiri-
cal study of github actions. In 2021 IEEE 21st Interna-
tional Conference on Software Quality, Reliability and
Security Companion (QRS-C), pages 01-10, 2021.

[3] CircleCL How circleci uses an internal developer portal
built with backstage, 2023. Accessed: 2025-06-17.

[4] Hugo da Gido, André Flores, Rui Pereira, and Jicome
Cunha. Chronicles of ci/cd: A deep dive into its usage
over time, 2024.

[5] Omar Elazhary, Colin Werner, Ze Shi Li, Derek Lowlind,
Neil A. Ernst, and Margaret-Anne Storey. Uncovering
the benefits and challenges of continuous integration

practices. IEEE Transactions on Software Engineering,
48(7):2570-2583, July 2022.

[6] GitHub. The state of the octoverse 2024. In GitHub
News & Insights, 2024. Accessed: May 22, 2025.

[7] GitHub. Github glossary. In GitHub Documentation,
2025. Accessed: May 31, 2025.

[8] GitHub. Workflow runs - github docs. In GitHub REST
API Documentation, 2025. Accessed: May 31, 2025.

[9] Michael Hilton, Timothy Tunnell, Kai Huang, Darko
Marinov, and Danny Dig. Usage, costs, and benefits
of continuous integration in open-source projects. In
Proceedings of the 31st IEEE/ACM International Con-
ference on Automated Software Engineering, pages 426—
437. ACM, 2016.

[10] JetBrains. Measure ci/cd performance with devops met-
rics. Accessed: 2025-04-22.

[11] Nikhil Yogesh Joshi. Implementing automated testing
frameworks in ci/cd pipelines: Improving code quality
and reducing time to market. International Journal on
Recent and Innovation Trends in Computing and Com-
munication, 10(6):106-113, 2022.

[12] 1kdmc (Kwangjin Lee). Rp-python-ver. GitHub reposi-
tory, 2025. Accessed: 2025-06-13.

[13] Md A A Mamun, Christian Berger, and Jérgen Hansson.
Effects of measurements on correlations of software code
metrics. Empirical Software Engineering, 24(5):2764—
2818, 2019.

[14] Mojtaba Shahin, Muhammad Ali Babar, and Liming
Zhu. Continuous integration, delivery and deployment:
A systematic review on approaches, tools, challenges
and practices. IEEE Access, 5:3909-3943, 2017.

[15] Kartheek Medhavi Penagamuri Shriram. Engineering
efficiency through ci/cd pipeline optimization. 2025.

[16] Software.com. Test pass rate, n.d. Accessed: 2025-04-
25.

[17] Bogdan Vasilescu, Stef van Schuylenburg, Jules Wulms,
Alexander Serebrenik, and Mark G.J. van den Brand.
Continuous integration in a social-coding world: Empir-
ical evidence from github. In 20714 IEEE International
Conference on Software Maintenance and Evolution,
page 401-405. IEEE, September 2014.

[18] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou,
Vladimir Filkov, and Bogdan Vasilescu. The impact of
continuous integration on other software development
practices: A large-scale empirical study. In 2017 32nd
IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), pages 60-71. IEEE, October
2017.

	Introduction
	Related Work
	Methodology
	RQ1: How does CI/CD pipeline complexity correlate with build performance metrics in open-source projects?
	RQ2: How do significant pipeline evolutionary events, such as CI tool change, impact performance metrics?
	RQ3: Which CI/CD activities contribute most significantly to pipeline complexity in open-source projects?
	Discussion
	Threats to Validity
	Conclusion and Future Work

