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The chemical industry is of paramount importance to the

world economy and this industrial sector represents a

substantial income source for developing countries.

However, the chemical plants producing inside an industrial

district pose a great threat to the surrounding atmospheric

environment and human health. Therefore, designing an

appropriate and available air quality monitoring network

(AQMN) is essential for assessing the effectiveness

of deployed pollution-controlling strategies and facilities.

As monitoring facilities located at inappropriate sites would

affect data validity, a two-stage data-driven approach

constituted of a spatio-temporal technique (i.e. Bayesian

maximum entropy) and a multi-objective optimization model

(i.e. maximum concentration detection capability and

maximum dosage detection capability) is proposed in this

paper. The approach aims at optimizing the design of an

AQMN formed by gas sensor modules. Owing to the lack of

long-term measurement data, our developed atmospheric

dispersion simulation system was employed to generate

simulated data for the above method. Finally, an illustrative

case study was implemented to illustrate the feasibility of the

proposed approach, and results imply that this work is able

to design an appropriate AQMN with acceptable accuracy

and efficiency.
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1. Introduction
Long-term violations of air quality standards with respect to industrial production emissions have posed

a great threat to the management of a chemical industrial cluster. Indeed, the by-products produced

during the chemical production processes are noxious, even sometimes highly toxic, and they are

often discharged to the nearby atmospheric environments without purification treatment. As a result,

the air quality in developing countries, where the control on industrial pollution is absent or very

low, is extremely poor [1], leading to substantial health problems for the residents [2] and to the

potential destruction of the ecosystem. Therefore, it is urgent for environmental authorities to come up

with effective atmospheric pollution-controlling measures that can ensure safe production, provide

intelligent decisions and maintain social stability [3].

Faced with this situation, governments in developing countries have introduced a series of measures

to abate atmospheric pollution [4,5]. These measures include promulgation of standards, norms and

emergency plans for environmental quality as well as air quality monitoring and control [6]. One of

the most substantial tasks is the creation of an air quality monitoring network (AQMN) for detecting

and monitoring the disposed atmospheric pollutants in the chemical cluster by environmental

protection authorities. Objectives and necessities of such monitoring networks are reported frequently

in the literature [7–11] and can be summarized as follows: (i) objectives related to air pollution

legislation, long-term plan of land use and the announcement of emergency situations; (ii) the

evaluation of exposure of the population and other potential receptors; (iii) the controlling of

emissions from significantly important sources (e.g. thermal power plant); and (iv) analysis of air

pollution data to determine emission trends in air pollution or for further research.

Moreover, the minimization of network cost to accomplish these objectives has been always

reinterpreted as a constraint on the available budget [6,12]. Previous methods in the literature lacked

in accomplishing the task of designing a network capable of fulfilling all of the objectives above. Most

of the reported methods applied to specific situations wherein one or two of the previous objectives

are considered [13].

Generally, existing methods of establishing an AQMN typically consider parameters related to

ambient concentrations of gaseous pollutants, such as atmospheric transport and dispersion, diffusion

source characteristics, secondary reactions, deposition characteristics and local topography [14]. The

objective of these network design methods is usually aimed at identifying the sites of maximum

contaminant concentration, maximum contaminant dosage and maximum population protection as

well as covering the maximum urban areas with the minimum number of monitoring stations [7,15–20].

Among the previous works on an AQMN design, Goldstein [21] designed an AQMN in the Greater

London area based on the concept of a spatial correlation analysis. A statistical measure of information

content was used to evaluate the availability of a particular AQMN in Canada [22]. Moreover,

interpolation techniques were taken in The Netherlands when assessing the errors in the spatial

analysis [23]. Afterwards, air quality simulation models and population exposure information were

applied to generate representative combined patterns; and then McElroy et al. applied the concepts of

‘sphere of influence’ (SOI) and ‘figure of merit’ (FOM) to determine the minimum numbers of

monitoring stations required in urban areas [24]. A methodology which involves the multiple-criteria

method, a spatial correlation technique in conjunction with a fuzzy analytic hierarchy process, was

also used to determine the optimum number of ambient air quality stations [12]. To sidestep the

problem of specifying a particular design objective or some conflicted objectives, Le & Zidek [25]

proposed an entropy-based Bayesian optimization method to maximize the uncertainty reduction

when selecting a number of stations. Later on, Ainslie et al. applied the method of Le and Zidek to

the spatial redesign of the AQMN with a two-decade-long dataset [26]. It could be drawn that most

of these methods focused on optimizing the number and layout of fixed monitoring stations for urban

areas and most of these methods required complete sequence datasets.

However, the ambient air quality monitoring problem in our work is totally different from the

domains of research mentioned above. In this paper, a data-driven method is introduced to design an

integrated AQMN wherein both high-accuracy air quality monitoring stations and gas sensor modules

are modelled for a chemical cluster. Owing to the lack of long-term measurements, our developed

atmospheric dispersion simulation system is used to generate a simulated historical dataset based on

the results of trends analysis. The dataset collected by gas sensor modules cannot guarantee

completeness and continuity when considering the actual situation. Thus, Bayesian maximum entropy

(BME) is introduced to generate the predicted concentration distribution of gaseous pollutants under

this condition of the dataset. Finally, a multi-objective optimization model (i.e. maximum

http://rsos.royalsocietypublishing.org/
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concentration detection capability (CDC) and maximum dosage detection capability (DDC)) aimed at

optimizing the monitoring network of gas sensor modules is built up on account of the predicted

concentration distribution over the study area. When latest measurements of gas sensor modules are

imported, the monitoring network would be redesigned accordingly after conducting the BME process

and multi-objective optimization process. In view of that, the number and the initial distribution of

gas sensor modules have influenced the prediction accuracy greatly [27–29], thus they are also

discussed in the results section. The proposed data-driven method, which involves two kinds of

inspection resources, is a supplement of existing monitoring approaches and greatly improves the

validity of monitoring data.

The remainder of this paper is organized as follows: §2 presents the main modelling process of the

proposed data-driven method. Afterwards, datasets and experimental set-ups are elaborated in §3.

Subsequently, results and discussions are conducted in §4. Finally, conclusions and future lines of

research are discussed in §5.
 .open
sci.5:180889
2. Methods
In this section, a data-driven approach based on the BME method is presented to acquire the spatio-

temporal concentration distribution of gaseous pollutants in a chemical cluster by importing long-term

monitoring data from multiple monitoring sites. With the spatiotemporal distribution of airborne

contaminants, the optimal layout of gas sensor modules can be determined based on different

optimization targets. Together with the fixed monitoring stations, an integrated monitoring network is

built up to conduct valid monitoring of gaseous pollutants in a chemical cluster.

Long-term real measurements of gas sensor modules are absent in this study, and thus it is

impossible to conduct BME analysis with real data. Fortunately, monitoring measurements collected

by fixed monitoring stations in conjunction with historical meteorological data can be applied to

estimate the parameters of the diffusion source term (i.e. location and release rate) of a particular

gaseous pollutant through source estimation methods. Interested readers are referred to our previous

research works [30–32], wherein more technical and theoretical details are introduced. Then, the

source term as well as historical meteorological data is imported to our developed atmospheric

dispersion simulation system as inputs. After simulation, the generated concentration distribution of a

particular pollutant serves as the simulated historical concentration distribution data. Moreover, the

concentration data extracted at locations of gas sensor modules are taken as the historical monitoring

measurements and would serve as inputs in BME analysis.

2.1. KD atmospheric dispersion simulation software
To simulate the atmospheric dispersion process of gaseous pollutants, the KD atmospheric dispersion

simulation system (KD-ADSS) is used to model airborne particle diffusion in the atmosphere.

Specifically, KD-ADSS is a Gaussian model-based simulation system developed by National

University of Defense Technology. The simulation tool has been validated by the commercial software

PHAST, the Indianapolis field study and a study of the Fukushima Dai-ichi nuclear accident.

Moreover, the system uses a series of puffs to approximate an airborne plume of gaseous pollutants.

It is essential to denote by gðt, z, u, tsÞ the dispersion function of a single puff with a unit release rate,

where ts means the time when the puff starts to disperse; u ¼ fl, q(t)} represents the release source

formed by source location l and release rate q(t); and t, z denote, respectively, the time and location

used to calculate the theoretical concentration.

KD-ADSS also supports wind field generation and meteorological data import via the inverse

distance weighted (IDW) method [33]. The temporal interval between each puff is d, so the expression

of function f ðt, z, uÞ can be written as follows:

f ðt, z, uÞ �
Xn�1

i¼0
qigðt, z, u, idÞ, ð2:1Þ

where qi denotes the mass of airborne contaminant of puff i; and n is the number of puffs, which satisfies

that the release duration equals n � d. Moreover, the following relation should be achieved.ððiþ1Þd

id
qðtÞ dt ¼ qi: ð2:2Þ

http://rsos.royalsocietypublishing.org/
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2.2. Bayesian maximum entropy
In air quality studies, the concentration distribution of a particular pollutant, such as sulfur dioxide

(hereafter, this particular pollutant serves as the research subject), is represented in the form of a

spatio-temporal random field (S/TRF) X(p), which assumes values at space/time points p ¼ ðs, tÞ,
where s is the location vector, while t denotes time [34]. Generally, environmental protection

authorities are more concerned with the estimation values of a particular pollutant at unmeasured

locations through analysing available datasets and physical knowledge. The estimation process leads

to a spatio-temporal map which presents the concentration distribution of a specific pollutant in space

and time. BME, a space–time data analysis method in a modern statistical framework introduced by

Christakos [34,35], provides an effective, efficient and accurate way for the estimation of concentration

distribution of gaseous pollutants. It is worth noting that BME has already been proved to perform

much better in a spatio-temporal analysis compared to the Kriging technique and interpolation

approaches, especially in a situation where the dataset cannot guarantee completeness and

continuity [36].

The publicly available SEKS-GUI software library [37] (i.e. a non-commercial Matlab-based software

package) is used in this paper to implement the space–time BME analysis. The software solves the

fundamental BME equations of spatio-temporal dependence analysis and mapping as follows [38] and

the following figure 1 shows the flowchart of how the BME analysis works in SEKS-GUI.

dxðg � �gÞemT g ¼ 0

dxjsem
T g � AfKðpÞ ¼ 0,

)
ð2:3Þ

where g is a vector of the ga-function (a ¼ 1, 2,. . .) and �g denotes the statistical expectation; m is a vector of

ma-coefficients that depends on the space–time coordinates and is related to g (i.e. the ma indicates the

relative significance of each ga-function in the composite solution sought); the js represents the site-

specific knowledge bases available; A is a normalization parameter; and fK is the attribute probability

density function (PDF) at each point. The parameters of g and js are inputs to the equation, whereas

the unknowns are the parameters of m and fK across space and time.

BME analysis has a wide range of applications because the fundamental equations make no restrictive

assumptions about the underlying probability distributions (i.e. non-Gaussian laws are automatically

incorporated) and the shape of the space–time predictor (i.e. nonlinear predictors are allowed).

Therefore, the BME framework is able to handle with a broader scope of knowledge bases (KB) types

and uncertain data [39].

General KB (G-KB) and site-specific KB (S-KB) are integrated in the fundamental BME equations.

Generally, the G-KB includes physical laws, theoretical models of space–time dependence (e.g.

covariance, semivariogram etc.), empirical relations and logic-based assertions that are concerned with

the pollution X(p). The S-KB usually consists of observed hard data and soft data (i.e. measurements

with a significant amount of uncertainty). In our study, the G-KB contains theoretical covariance

models, while the S-KB includes airborne pollutant data.

SEKS-GUI represents the prediction grid by the space–time vectors pk, in which case the fundamental

BME equations compute the complete prediction PDF fK at each pk. After determining the objective of

study and PDF fK, predictions of X(p) can be derived at each spatio-temporal node pk of the mapping

grid.

The software thus generates informative airborne pollutant maps that completely cover the spatial

and temporal continua within their respective extents and also enable the establishment of an

optimization model in the next subsection.
2.3. Integrated air quality monitoring network
In this subsection, two objectives are proposed to optimize the design of an AQMN of gas sensor

modules based on the results of BME analysis. In conjunction with the fixed monitoring stations, an

integrated AQMN with the ability of global and effective inspection in a chemical cluster is built up.
2.3.1. Maximum concentration detection capability

Maximum concentration detection capability (CDC) is defined as the most frequent polluted grids

captured by an optimal AQMN of gas sensor modules wherein the pollutant levels are remarkably

http://rsos.royalsocietypublishing.org/
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exceeding the threshold of the standard value or mean value. The model, based on this objective, is

established as follows:

Max oCDC ¼
XT

i¼1
di, ð2:4Þ

such that di ¼
X

j[Mi
yj 8i, ð2:5Þ

XJ

j¼1
yj � Q ð2:6Þ

and yj [ f0, 1g 8j, ð2:7Þ

where the notation of di is a variable, indicating the number of grids where the pollutant level exceeding

the threshold of the standard value is detected in the ith month; T is the total number of months in a year;

yj is a binary integer that indicates whether a gas sensor is placed in grid j; J denotes the total number of

grids in the study area; Mi is the set of grids in the ith month with a pollutant level greater than the

threshold of the standard value or mean value; and Q is the upper limit of the number of gas sensor

modules in an AQMN.

http://rsos.royalsocietypublishing.org/


Table 1. Cartesian coordinates of fixed monitoring stations and additional information. (no. denotes the English number of
monitoring stations used in the following figure; X, Y represents the UTM Cartesian coordinates of monitoring stations;
explanation denotes the English name of these monitoring stations; and code represents the serial number loaded in our
database).

no. X Y explanation code

A 21022.9 223.0 northwest station S02101

B 2796.9 2431.5 Secco station S02104

C 3575.3 3518.9 northeast station S02102

D 1620.6 1293.3 union road station S02103

E 4151.1 1292.3 Covestro station S02015
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2.3.2. Maximum dosage detection capability

Some areas may have a low incidence of high-level pollution but a large dosage due to long-term exposure

[40]. Therefore, using the previously mentioned objective of CDC alone when designing an AQMN may

be inadequate. The objective and the model for maximum DDC can be formulated as follows:

Max oDDC ¼
X

j[N
yj, ð2:8Þ

such that Cj ¼
XT

i¼1
Cij, ð2:9Þ

j [ N, if Cj �
PJ

j¼1 Cj

jJj , ð2:10Þ
XJ

j¼1
yj � Q ð2:11Þ

and yj [ f0, 1g 8j, ð2:12Þ

where the notation of Cij represents the pollutant level at grid j in the ith month. The first and second

constraints indicate that the notation of N is the set of grids with an accumulated dosage pollutant

level greater than the threshold of the mean value. The third and fourth constraints are the same as

those defined in the upper subsection.

Of these two single objective models described above, the CDC and DDC can be applied

independently or combined into a multi-objective model. In this paper, the combination of the two

objectives seems to have little impact on the final result in our experiments. Therefore, we use the

different single objective models to design an AQMN of gas sensor modules, respectively.
3. Datasets and experimental set-ups
In this section, datasets and experimental set-ups used in this research are elaborated in detail, consisting

of the real datasets collected from the Shanghai chemical cluster, simulated datasets generated by KD-

ADSS, set-up of the study area and set-up of the SEKS-GUI software library.
3.1. Actual datasets
The actual dataset was collected by the environmental protection authority in the Shanghai chemical

cluster, including up to 109 categories of airborne pollutants as well as meteorological data from

December 2015 to November 2016 at five fixed monitoring stations. These air quality monitoring

stations were constructed according to the regional project for air quality conservation, established by

empirical judgement and the governmental law [4]. After projecting the WGS84 geographical

coordinates into UTM Cartesian coordinates, the resulting locations of these monitoring stations are

listed in table 1 with some additional information.

High-accuracy reactors contained in these fixed monitoring stations are able to collect up to 118

categories of airborne pollutants (e.g. VOCs, NOx, SO2 etc.). The measurement interval of these

facilities lasts no longer than a few seconds, which can be considered as continuous collections.

Therefore, these data are suitable for trend analysis (e.g. hourly average, daily average, monthly

http://rsos.royalsocietypublishing.org/
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measured in mg m23; The X-axis is the time series of 1 day, while the Y-axis represents the main atmospheric contaminants
monitored by monitoring stations. The background colour of this figure is white, which means the concentration value of
atmospheric pollutants is zero; moreover, a darker area represents higher gas concentration.)

rsos.royalsocietypublishing.org
R.Soc.open

sci.5:180889
7

 on October 22, 2018http://rsos.royalsocietypublishing.org/Downloaded from 
average and annual average analysis), which can provide substantial information for the following

experiment set-ups. The total amount of the dataset is 20 430 248 entries, while the available data

contain 20 290 164 entries. The ineffective data were associated with the sites where temporary

failures, warm-up of devices or stations working on a non-systematic temporal basis existed.

3.2. Simulated datasets
To simulate dispersion scenarios of a particular gaseous pollutant (e.g. sulfur dioxide), the information of

the emission source u (i.e. the location of the emission source and the release rate of the emission source),

meteorological parameters (i.e. wind direction d and wind speed v) and the environmental parameters

(e.g. atmospheric stability and terrain type) must be considered.

Our previous works on source estimation methods [30–32] enable us to predict the locations of emission

sources and the release rates of emission sources at the same time. However, the prediction accuracy of the

release rate is rather low compared with that of location. Therefore, the release rates of the predicted

emission spots are assumed to vary from 0 to 5 g s21 according to the results of hourly averaged

concentration trend analysis and monthly averaged concentration trend analysis as shown in figures 2

and 3 based on actual datasets. It can be concluded from figure 2 that the discharging by chemical

plants clearly has temporal characteristics. The discharging amount of atmospheric pollutants in the time

unit of 12–24 h is far greater than that in the time unit of 0–12 h. Thus, the release rate during the

period of 12–24 h is set twice of that during the period of 0–12 h in simulation. Moreover, through

analysing the monthly averaged concentration data of SO2, it is concluded from figure 3 that the

discharging amount of SO2 from February to July is greater than that during the period from August to

January. Therefore, the value of the release rate in summer months is set larger than that in winter months.

Gaussian diffusion coefficients sy, sz, posing a substantial impact on dispersion of a particular air

contaminant, can be expressed as follows [41]:

syðDxÞ ¼ ayDxð1þ byDxÞ�cy

szðDxÞ ¼ azDxð1þ bzDxÞ�cz ,

�
ð3:1Þ

http://rsos.royalsocietypublishing.org/
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Table 2. Relationships between diffusion coefficients and atmospheric stability. (The terrain type of the study area in this
research is urban and the most frequent atmospheric stability is assumed to be D).

terrain type
class of atmospheric
stability ay by cy az bz cz

urban A and B 0.32 0.0004 20.5 0.24 0.001 20.5

urban C 0.22 0.0004 20.5 0.2 0 20.5

urban D 0.16 0.0004 20.5 0.14 0.0003 20.5

urban E and F 0.11 0.0004 20.5 0.08 0.0015 20.5

open country A 0.22 0.0001 20.5 0.2 0 20.5

open country B 0.16 0.0001 20.5 0.12 0 20.5

open country C 0.11 0.0001 20.5 0.08 0.0002 20.5

open country D 0.08 0.0001 20.5 0.06 0.0015 20.5

open country E 0.06 0.0001 20.5 0.03 0.0003 21

open country F 0.04 0.0001 20.5 0.16 0.0003 21
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where Dx denotes the downwind distance of the interest point; the parameters of ay, by, cy, az, bz, cz

depend on the environmental conditions (i.e. atmospheric stability and terrain type, as shown in

table 2). According to the terrain type (i.e. urban) and atmospheric stability (i.e. D) of the Shanghai

chemical cluster, the actual values of these parameters in the third row are selected.

Finally, all the input data including the emission sources, historical meteorological data,

environmental parameters and Gaussian diffusion coefficients are imported to conduct hourly

dispersions for a decade in KD-ADSS. Thus, a total of approximately 86 400 dispersion scenarios (i.e.

24(h) � 30(day) � 12(month) � 10(year)) are obtained. Further, the simulated historical dataset is used

to produce monthly averaged SO2 measurements at a total of 60 monitoring locations of gas sensor

modules. Finally, the first 9-year monthly averaged measurements at monitoring locations of gas

sensor modules as well as geospatial data would be imported to conduct the BME analysis and

generate the prediction measurements at unmeasured locations in the 10th year.

http://rsos.royalsocietypublishing.org/
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3.3. Experimental set-ups

3.3.1. Set-up of study area

Similar to previous research [31,42], a chemical cluster in Shanghai is selected as our study area in this

paper. Figure 4 shows a concise GIS map of a chemical cluster in Shanghai, China. Through

investigating the emissions of SO2 and referring to the main by-products information of chemical

plants, five possible SO2 emission sources are located in this area. On the map, the 19 small circles are

the complete set of discharge points for all contaminants, among which the five blue circles are the

SO2 discharge spots. After projecting the WGS84 geographical coordinates into UTM Cartesian

coordinates, the resulting locations of all the candidate sources are listed in table 3 with concrete

information. Moreover, the triangles indicate the fixed high-accuracy air quality monitoring stations;

and the area marked by the black quadrilateral box is the main working area of this district, while the

area beneath the working area is the sea. Meanwhile, an illustrative picture of the two inspection

resources is shown in figure 5. The gas sensor modules [43] (the sensor probes are produced by

Alphasense—The Sensor Technology Company) used in this research are provided by SINGOAN

Electronic Technology Co., Ltd, while the high-accuracy monitoring stations [44] are the product of

Beijing Safety Equipment Manufacturing Co., Ltd. These inspection resources (i.e. five monitoring

stations and a total number of 60 gas sensor modules) are operating to inspect 55 chemical plants. It

is worth noting that the high-accuracy monitoring stations as well as gas sensor modules are regularly

calibrated by technical staff or automatic calibration devices to ensure the valid collection of

monitoring data. In addition, it is also worth noting that the generated measurements of gas sensor

modules would be considered as hard data in this paper when used in the BME analysis. However,

in real circumstances, a certain proportion of the dataset collected by gas sensor modules should be

considered as soft data because of the incompleteness and discontinuity in data. The monitoring data

of the five fixed monitoring stations are used as inputs in source estimation methods when

determining the main emission sources of SO2. Through calculation and our investigation, the

chimney of the sulfuric acid recovery (SAR) system and the waste incinerator for acrylonitrile (AN)

were the major locations contributing to the emission of SO2. Then, the source term and historical

meteorological data are imported into KD-ADSS to generate simulated historical concentration data of

SO2 within the area of the Shanghai chemical cluster in §3.2.

The study area of the Shanghai chemical cluster can be further simplified as a 2000 � 3000 m

rectangle on account of experimental conditions. The illustration of this simplified study area is shown

in figure 6. Through importing monitoring measurements of the five fixed monitoring stations as well
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Table 3. Cartesian coordinates of SO2 emission points and additional information. (no. denotes the serial number of emission
spots; X, Y represents the UTM Cartesian coordinates of emission spots; explanation denotes the English name of these emission
spots; and main contaminants represents the by-products generated by different emission spots).

no. X Y height explanation main contaminants

1 2132.575 21317.63 50 waste incinerator for

acrylonitrile (AN)

SO2, NOx, VOCs, NH3

2 2302.901 21483.42 68 chimney of sulfuric acid

recovery (SAR) system

SO2, NOx, vitriol fog

3 267.1415 0.359916 27 furnace no. 1 PM2.5, PM10, SO2

4 861.3643 147.0462 27 furnace no. 2 PM2.5, PM10, SO2

5 1532.017 2142.542 30 hazardous waste incinerator CO, SO2, NOx, PM2.5, PM10,

HF, HCl, dioxin
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as historical meteorological data into the source estimation method, main release spots in the past year

were calculated. Specifically, the red circles represent the two most frequent release spots calculated by

the source estimation method (1 denotes the waste incinerator for AN and 2 denotes the chimney of the

SAR system). The approximate locations of these two release spots are at (400 m, 400 m) and (200 m,

300 m), respectively. Moreover, the rectangle of the study area is divided into 150 quadrate grids

wherein the grid size is 200 � 200 m. The initial layout of the gas sensor modules is designed as

shown in figure 6 according to the results of wind field analysis (the analysis result is exhibited in

figure 7). In addition, it is assumed that all of the gas sensor modules are positioned at the height of

20 m in the centre of each grid.

3.3.2. Set-up of SEKS-GUI software library

SEKS-GUI implements the BME methodology for spatio-temporal analysis. The workflow of how this

analysis works in SEKS-GUI is presented as follows.

Firstly, the hard data information with exact measurements (i.e. the generated monitoring

measurements at monitoring locations from the first 9-year simulated dataset), the soft data with

certain uncertainty (i.e. the soft data are absent in this study) and output GIS grid (i.e. information

about the study area) are imported into SEKS-GUI. Then, the data are detrended and brought from

raw input information into suitable processing form. For the detrending process, Gaussian kernel

smoothing is applied across the dataset. Moreover, a data transformation aimed at reshaping the

detrended dataset from the original space of values (original-space) into a space where their

distribution resembles a Gaussian one (transformation-space) is implemented. Subsequently, a

covariance analysis is conducted to investigate correlation patterns among the data in the next stage.

Finally, we have to select and initialize the type of BME prediction. Four different prediction types are

offered in the software library, namely, BME mode, BME moments, BME PDF as well as BME

confidence intervals and they are ranked with respect to the time and complexity required for the

computations, starting with the fastest and simplest one and ending with the most time-consuming

and complicated. In this study, the most time-consuming and complicated type (i.e. BME confidence
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intervals) is chosen to improve the prediction accuracy. Most importantly, confidence interval option is of

vital importance to the predicted results. Setting a higher confidence will bring users more accurate

predicted values, but may also lead to the failure of prediction on some grids because the predicted

results cannot pass the confidence testing. By contrast, setting a lower confidence will ease the

computation burden and provide predicted results at all grids, but may also lead to unacceptable

predicted values at low accuracy level. In this paper, 95 percentage of confidence level is selected. In

visualization, SEKS-GUI offers a bundle of mapping options to display the BME prediction results

once the BME output MAT-file is loaded. In this study, the mean of the prediction posterior PDF at

each output grid node is the main focus.

Moreover, apart from the visualization results, SEKS-GUI also offers the option to download the

available data during the calculation process for further research. In this study, the available data are

used to design the optimal AQMNs.
4. Results and discussion
4.1. Results of atmospheric contaminants dispersion simulation
To acquire the simulated mean concentration distribution of SO2 during the past 10 years, about 86 400

dispersion scenarios based on historical meteorological data were run through our developed KD-ADSS.

Figure 8 shows the simulated mean concentration distribution of SO2 in January, June, July and

December of 2016. To better exhibit the dispersion effect, the concentration data were logarithmically

processed and sophisticatedly interpolated. Moreover, the colour scale is not fixed in every colour bar

of figure 8 to make comparisons among the four sub-figures. In figure 8, a darker colour indicates

higher pollutant concentration. It can be concluded from the colour bar that black and red are darker

than yellow and white, revealing that the concentration of the former is greater than that of the latter.

Thus, it is concluded that the northwest part and the southeast part of the study area were seriously

affected by the gaseous pollutant SO2 due to the influence of prevailing monsoons in Shanghai. By

contrast, the northeast part of the study area is less polluted.

After obtaining the simulated dispersion data, concentration data at the monitoring spots of gas

sensor modules extracted from the dataset serve as hard data in the SEKS-GUI software library. The
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total amount of the simulated monitoring data used in SEKS-GUI is 6480 entries (i.e. 60(sites) �
12(month) � 9(year)).

4.2. Results of BME analysis
After the first 9-year simulated dataset of monthly averaged measurements of gas sensor modules as well

as geospatial information of prediction grids are loaded as inputs, the detrending stage, transformation

stage and covariance analysis stage were subsequently carried out. After that, BME prediction of

concentration distribution in the whole study area in the 10th year was conducted and visualization of

the results is shown in figure 9. The figure illustrates the mean concentration distribution trend in

every month of the last year—2016. It is worth noting that the concentration data used in this figure

is the predicted raw data without interpolation and logarithmic processing. As can be seen from the

figure, a darker colour indicates higher concentration of a gaseous pollutant. Obviously, it can be

summarized that the northwest part of the study area was severely affected during the summer

season because of the prevailing southeast monsoon, while the southeast part of the study area was

severely influenced during the winter season due to the prevailing northwest monsoon. Moreover, the

concrete concentration data and geospatial data of this figure are exported to the following research of

designing a valid AQMN.

4.3. Results of multi-objective optimization model

4.3.1. Results of an optimal AQMN

With respect to the first objective-maximum concentration detection capability, the essence of the

corresponding mixed integer linear program (MILP) is to detect the most frequent polluted grids
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wherein a high concentration value remarkably exceeding the standard value or the average value often

occurs. After importing the dataset acquired from the BME prediction results to the corresponding MILP,

the optimal design of an AQMN on account of maximum concentration detection capability is exhibited

in figure 10. Compared to the initial layout of gas sensor modules, the monitoring spots which are

initially positioned at the northeast part are removed in this figure. Moreover, most of the gas sensor

modules are located in the northwest and southeast direction of the release spots of SO2, while several

gas sensor modules are positioned in the same grids or near the grids wherein the release spots of

SO2 are located. In the Shanghai chemical industrial park, the prevailing monsoons are the summer

monsoon in the southeast direction and the winter monsoon in the northwest direction. The result

confirms that most concentration distribution of a specific gaseous pollutant is distributed in the

downward direction of the wind. Furthermore, the layout of this optimal AQMN may result from the

two release spots close to each other. A great variation in layout of this optimal AQMN would occur

if the two release spots are located apart from each other.

On account of the second objective-maximum DDC, the essence of the corresponding MILP is to

detect the grids wherein the accumulative dosage level is greater than the threshold of the standard

value or mean value. After importing the dataset acquired from the BME prediction results to the

corresponding MILP, the optimal design of an AQMN considering the target of maximum DDC is

shown in figure 11. Compared to the optimal AQMN of CDC, the structure of the optimal AQMN

detecting maximum dosage has barely changed. The most grids wherein long-term exposure occurs

are also located in the northwest and southeast part of the chemical cluster. Slight variations in layout

of the optimal AQMN appearing close to the release sources may result from the altitude intercept

between the release spots and the monitoring spots. It leads to a minor possibility of high

accumulative dosage values occurring at the grids which are close to the release spots.

Further, the results which reveal slight differences between the optimal AQMN of CDC and the

optimal AQMN of DDC indicate that it is not necessary to combine the two objectives into a multi-

objective model in this paper. However, this practice is only specific in this illustrative case study;

further analysis is required to find a compromise solution between the two objectives. For example, a

utility function can be derived, and then the compromise solution can be obtained by incorporating

the trade-off curve. In addition, the fuzzy analytic hierarchy process method (F-AHP) can also assist

the decision-making process of designing an AQMN [45]. However, such a decision analysis process

is beyond the scope of this work.

Moreover, there must be some concerns about the extreme circumstances that the dispersion of

gaseous pollutants may spread to the northeast part of the study area without being detected under

these two optimal AQMN. This is the case, but there are also three high-accuracy air quality
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monitoring stations fixed in this direction. Therefore, the integrated AQMN constituted of gas sensor

modules and high-accuracy fixed monitoring stations is valid and available.
4.3.2. Impact of initial layout of monitoring network on predicted accuracy

The influence of initial layout of the AQMN on prediction accuracy of BME-predicted monitoring data is

tested in this subsection. As shown in figure 12, the comparison between the generated simulation data

and the BME-predicted data is clearly demonstrated. Obviously, the BME-predicted data closely match

the generated simulation data, the mean square error (MSE) as well as the linear regression coefficient

(R2), which are 1.243 and 0.8935, respectively. The result confirms that the BME analysis can predict

the measurements of unmeasured spots accurately with the information of measured spots and

physical knowledge. Meanwhile, the result also indicates that the initial layout of the AQMN is

reasonable for further design.
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If the wind field analysis is not implemented, less information is acquired about the most frequent

grids in which high concentrations of gaseous pollutants would often occur. As can be seen in

figure 13, the initial layout of gas sensor modules is generated by Matlab randomly. Subsequently, the

first 9-year measurements of gas sensor modules at the corresponding locations were imported into

the SEKS-GUI library to generate BME prediction of monitoring data at unmeasured spots in the 10th

year. Moreover, the corresponding BME prediction data is also used to conduct linear regression with

the generated simulation data, the comparison between which is shown in figure 14. It can be

concluded that the BME prediction data is not well matched with the generated simulation data, the

MSE as well as linear regression coefficient (R2) of which are 8.7511 and 0.5074, respectively. By

contrast, the figures of MSE and R2 when initial layout of gas sensor modules is designed based on

wind trend analysis outperform those under this randomly distributed condition. In the meantime,

the corresponding optimal AQMN based on maximum concentration detection capability and

maximum DDC is shown in figure 15. Comparing with the optimal layout in figures 10 and 11, the

optimal layout of optimal AQMN under this random condition witnesses a contrary trend, wherein
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most of gas sensor modules are located in the northeast and southwest part of study area, leading to

inaccurate collection of measurements.

4.3.3. Impact of facility numbers of monitoring network on predicted accuracy

In this subsection, the impact of facility numbers of monitoring network on prediction accuracy of BME-

predicted monitoring data is investigated. If the environmental protection authority does not have a

sufficient budget on designing such a monitoring network consisting of 60 gas sensor modules, a

design plan of fewer facility numbers will be sensible. Based on results of wind trend analysis, a 30-

facility-number scenario and a 45-facility-number scenario shown in figure 16 are set up.

Subsequently, the first 9-year measurements of gas sensor modules at the corresponding locations (30

locations and 45 locations, respectively) were imported into the SEKS-GUI library to generate BME

prediction of monitoring data at unmeasured spots in the 10th year. Moreover, the corresponding

BME prediction data are also employed to conduct linear regression with the generated simulation

data, the comparison between which is shown in figure 17. The figures of MSE for the 30-facility-

number scenario and the 45-facility-number scenario are 3.0062 and 1.7703, respectively, while the

figures of R2 in these two scenarios are 0.6265 and 0.781. Another difference in these two scenarios is

that measurements of several spots are unpredictable in the 30-facility-number scenario because some

areas have scarce known measured data which cannot support the prediction of reliable results at

unmeasured locations. Considering the results in §4.3.2 (i.e. 1.243 for MSE and 0.8935 for R2 in 60-

facility-number scenario), when the facility number of a monitoring network rises, the observable

decline in MSE and the substantial increase in R2 reveal that the facility number of a monitoring

network is inextricably bound up with the prediction accuracy of BME-predicted measurements,

where the prediction accuracy increases as the facility number of a monitoring network rises.

4.4. Discussion
In this section, an illustrative case including 86 400 atmospheric dispersion scenarios of sulfur dioxide, a

BME analysis experiment and the AQMN design experiments was implemented to verify the

effectiveness and practicability of the proposed data-driven method for optimal design of an
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integrated AQMN. Through analysing the experimental results, several important findings and

drawbacks could be observed and summarized as follows.

The results in §4.1, §4.2 as well as wind trend analysis reveal that the study area—Shanghai chemical

cluster—is substantially influenced by the southeast monsoon and the northwest monsoon in different

seasons (i.e. the wind in this area has high intensity and low direction variability). Inspired by this

phenomenon, it is reasonable to select the most influenced locations where monitoring devices are

deployed to increase the spatio-temporal resolution of an AQMN. The solution is pragmatic in this

specific case, but probably not suitable for locations where the wind has low intensity and high

direction variability.

Another finding is that the proposed data-driven method is able to assist a decision-making process

for determining an appropriate AQMN, and assist the daily management work of environmental
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protection authorities based on results in §4.3.1. Concentration data of unmeasured spots would be

accurately predicted in the BME analysis results on account of long-term measurements at monitoring

sites and some physical knowledge if the initial layout of the monitoring network is well designed.

Learning from the results of §4.3.2, an astonishing finding is that the initial layout of gas sensor

modules substantially affects the validity of monitoring measurements and further affects the

prediction accuracy of the BME method. Moreover, it is worth noting that wind field analysis plays an

important role in the initial layout of the AQMN. It ensures that most of the gas sensor modules are

located in the downward direction of the prevailing wind in the study area. In addition, as time goes

on, more measurements at monitoring sites can be imported to predict the variation trend in

concentration distribution of gaseous pollutants, and the optimal design of an AQMN would change

correspondingly, which can reflect the timely spatial and temporal characteristics of gaseous

pollutants in the chemical cluster. Therefore, the data-driven method not only assists the

environmental protection authorities to better inspect the chemical production activities, but also

avoid the leakage of hazardous substances effectively.

Learning from the results of §4.3.3, the last finding is that the facility number of a monitoring network

remarkably influences the prediction accuracy of BME predictions. It is concluded that the prediction

accuracy improves as the facility number of a monitoring network increases. As a result of that, for

better prediction on unmeasured spots and overall inspection on a chemical cluster, it is better to

employ more inspection resources if the financial budget of the environmental protection authority is

permitted.

Yet, there are some limitations in our results. First, the measurements of gas sensor modules in this

study were generated from simulated scenarios. Thus, when incorporating various real-world

uncertainties and constraints, the prediction accuracy of the BME analysis may change slightly.

Moreover, the optimal design of an AQMN would be influenced correspondingly. Second, only one

particular gaseous pollutant (i.e. sulfur dioxide) is considered in this study to design an optimal

AQMN. Actually, the integrated impacts of multiple gaseous pollutants on designing an optimal

AQMN should be considered. In that case, the optimal AQMN is able to collect valid measurements

of a wide range of gaseous pollutants. Furthermore, it is verified that BME analysis outperforms

interpolation methods mainly due to the import of soft data. Soft datasets are measurements

associated with some known uncertainties, namely, faulty calibration, and long-term and short-term

drifts that these monitoring devices suffer from. However, the reliability of the uncertain gas sensor

module measurements is not discussed or testified in this research because of the utilization of

simulated measurements (i.e. hard data refer to measurements without deviations).
5. Conclusion
The aim of our research is to facilitate the decision-making process of designing an integrated AQMN to

inspect the chemical production processes and to assess the effectiveness of deployed pollution-

controlling strategies. Previous works lack in appropriate approaches to design an integrated AQMN

for a chemical industrial park. In addressing this situation, the proposed data-driven method moves

forward the state of the art of this domain with the following originalities: (i) the first originality is

the proposed data-driven method used, which aims to optimize the AQMN of gas sensor modules in

a chemical cluster with acceptable accuracy; (ii) the second originality is to incorporate BME analysis

with a multi-objective optimization method, forming a two-stage processing procedure. As the lack of

long-term historical monitoring data is a major problem, our developed atmospheric dispersion

simulation system was employed to generate simulated historical data based on the results of source

estimation and wind analysis. Then, an illustrative case is implemented to illustrate the feasibility of

the proposed approach.

Results show that the BME prediction of concentration distribution of a gaseous pollutant not only

reveals the spatio-temporal distribution regularity of gaseous pollutants, but also provides essential

data for designing an optimal AQMN. It is worth noting that when the initial layout of gas sensor

modules is well designed, the BME-predicted data can well match the real collected monitoring data.

Moreover, it is noteworthy that the prediction accuracy of BME methods has a tight connection with

the facility number of a monitoring network. Increasing the facility number can greatly improve the

prediction ability of the BME analysis method. Therefore, this work has been proved to have

the ability to facilitate a decision-making process for determining an appropriate AQMN and assist

the daily inspection work of environmental protection authorities.
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Future research can lead in several directions; for instance, one can consider the impacts of multiple

gaseous pollutants on designing the AQMN, or another direction for further study is the actual

measurements at monitoring sites of gas sensor modules instead of simulated data.
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