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Abstract
There has been a lot of research focused on the next generation of the internet, the

so-called quantum networks. This analysis has been so far limited to mostly symmet-
rical architectures, but any near-term realisations of quantum networks using existing
fibre topologies will contain asymmetry. In this thesis, we investigate how midpoint
asymmetry affects quantum repeater protocols implemented with atomic ensembles.
We extend the existing simulation framework to allow for midpoint asymmetry. By
simulating asymmetry in elementary links, we show that the performance of an ele-
mentary link executing quantum key distribution decreases with an increasing degree
of asymmetry. This effect can be mitigated by individual optimisation of photon sources
at both ends of the elementary link. We present a way how to reduce the search space
of such optimisations by developing a heuristic. The contributions of this thesis provide
a crucial starting point for investigations of asymmetry in quantum repeater chains.

1 Introduction

The Internet has an unmistakable impact on our everyday lives. Quantum Internet, an
extension of the classical internet using principles of quantum mechanics, has the potential
to alter the world of technology. This potential of quantum technologies has been recognised
by numerous countries and big technological companies [1], [2]. There are many exciting
applications of Quantum Internet (such as Quantum Key Distribution [3] or Blind Quantum
Computing [4]) that rely on fundamentally quantum mechanical properties and would not
be attainable by classical communication alone.

In classical communication, when one wants to transfer information over a distance,
classical bits are sent through a link. These classical bits can be amplified as necessary to
counteract the effect of inherent losses in the channel. The amplification is implemented as
making and sending a copy of the classical bit. It is impossible to directly apply this to
quantum bits because quantum states cannot be copied due to the No Cloning Theorem [5,
p. 532].

Transfer of quantum information instead relies on sharing entangled states between
two places. Entanglement is a concept of quantum mechanics that is the foundation to
realising novel applications and is defined at the beginning of Section 2. Efficient sharing
of entanglement over large distances is one of the central challenges in the realisation of
quantum networks. Lossy channels still pose a problem: locally creating a pair of entangled
states and sending one of them to the destination is not a feasible approach because too
much information about the state would be lost during the transmission. That is why
quantum networks instead use protocols based on quantum repeaters [6]. These provide
a promising solution for long-distance entanglement generation.

Quantum repeater protocols generate entanglement over sufficiently short elementary
links which connect the end nodes through so-called repeater nodes as seen in Figure 1.1.
Repeater nodes then perform entanglement swapping (see Section 2) to extend the distance
over which entanglement is shared. Entanglement swapping is repeatedly carried out until
there is shared entanglement over the total distance of the repeater chain. In this project,
we are investigating solely elementary links.

The protocols we are considering are realised with atomic ensembles and linear op-
tics. The first protocol that suggested using atomic ensembles and linear optics is called
the DLCZ protocol after the authors Duan, Lukin, Cirac, and Zoller [8]. Since then, there
have been many suggested improvements to the original protocol and the approach of im-
plementing quantum repeaters with atomic ensembles appears to be promising [7]. More
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Figure 1.1: Principle of quantum repeaters [7]. Blue squares represent quantum memories
and orange arrows depict shared entanglement. (a) Entanglement is first generated indepen-
dently over elementary links, i.e. between neighbouring nodes. (b) Entanglement swapping
is performed between neighbouring links. Entanglement swap at nodes B and C results in an
entangled pair of states between A and D. (c) Entanglement is repeatedly swapped until there
is end-to-end entanglement between the end nodes (here A and Z).

information about quantum repeaters and implementations based on atomic ensembles can
be found in Section 2.

In the setup we are investigating, photons are used to generate entanglement over ele-
mentary links. At both ends of the elementary link, there is a node with a probabilistic
photon pair source. Each photon pair source emits a pair of entangled photons: one is
stored in the node’s memory and one is sent through a channel to a midpoint station. The
midpoint station detects incoming photons and performs a Bell-state measurement to
generate entanglement between the nodes. A schematic of this setup is shown in Figure 1.2.
The emission of photons is parameterised by the so-called mean photon pair number
which tells us how many photons are emitted on average (see Equation (2.2)).

Node Midpoint	Station Node

!! !"

Node Midpoint	Station Node

!# !$

(a) (b)

Figure 1.2: Elementary links between two nodes with (a) midpoint symmetry and (b) mid-
point asymmetry. In this simplified scheme, nodes have probabilistic photon sources (orange
circles) which emit photons and send them through fibres to the midpoint station. Bell-state
measurements are performed at the midpoint station to generate entanglement between the
nodes. The position of a midpoint station refers to how far it is placed from each side of the
elementary link. In the case of symmetric midpoint placement (a) where l1 = l2, there is an
equal amount of loss on both channels leading to the midpoint station. Midpoint asymmetry
(b) where l3 6= l4 leads to the non-trivial case of different losses on the two channels.

The specific scenarios we are investigating in this project are elementary links with mid-
point asymmetry. Midpoint asymmetry means that the midpoint station is not placed
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precisely in the middle of the elementary link (see Figure 1.2 (b)). The assumption of a
symmetrical quantum network is often undertaken to simplify the investigations (for in-
stance in [9]). However, using already existing fibre topologies to realise quantum networks
will necessarily result in midpoint asymmetry because nodes in the fibre topologies are not
equally spaced [10, Fig. 4.2]. An ongoing investigation that considers a case with midpoint
asymmetry has shown asymmetry can have a significant effect on the optimal parameters of
the hardware setup [11]. This indicates that a detailed analysis of the performance of asym-
metric links will bear significantly different results than previous research that considered
purely symmetrical networks. A detailed investigation of asymmetry is therefore necessary
and will be the main goal of this project.

We analyse how midpoint asymmetry affects optimal parameters of DLCZ-inspired sources,
specifically focusing on the value of mean photon pair number. Looking for the optimal value
of the mean photon pair number is a non-trivial task. Higher values of mean photon pair
number result in more photons being emitted, therefore increasing the entanglement gener-
ation rate. Because the emission is a probabilistic process, multiple photons are sometimes
emitted at the same time which causes errors. The likelihood of multi-photon emissions in-
creases with a higher mean photon pair number, in turn leading to higher errors. Therefore
there is an optimal mean photon pair number at which the entanglement generation rate is
high but at the same time the multi-photon emissions still do not cause significant errors;
this is the value that results in the highest secret key rate. This parameter describes the
rate at which secret key can be distributed (see Section 3.4 for its calculation) and it is the
figure of merit we consider in our optimisations.

Simulation of quantum networks can be used to find how the mean photon pair num-
ber affects the performance. This is currently being investigated for symmetric cases [12].
Midpoint asymmetry has not been considered in any analysis so far and because the multi-
photon emission errors are hard to treat analytically [13], there are no analytical results for
this scenario as of now. The main goal of this project is to improve upon previous work by
investigating the effects of midpoint asymmetry in detail.

We present three main contributions in this thesis:

• We extend the existing codebase for simulating quantum networks realised with atomic
ensembles and linear optics to support detailed physical modelling of midpoint
asymmetry. This provided framework is general enough to allow for the investigation
of asymmetry in repeater chains but such analysis is outside the scope of this project.

• We show that midpoint asymmetry has a significant effect on performance
of elementary links, specifically on the highest achievable value of secret key rate.

• We analyse how individual optimisation of mean photon pair number for
sources at both end nodes of an elementary link helps to mitigate the effects
of midpoint asymmetry and present a way to reduce the search space of such
optimisations.

The rest of this thesis is structured as follows: Section 2 offers background information
about the physics behind the protocols we consider. Section 3 describes the details of
simulating quantum networks, discusses how asymmetry is included in our simulations, and
motivates the choice of simulation parameters. Section 4 shows the results of simulations for
varying degrees of asymmetry. In Section 5, replicability of this investigation is discussed.
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Section 6 summarises the conclusions of this project and suggests concrete ideas for future
investigations.

2 Background Information

In this section, we illustrate what entanglement means and how is it used to realise quantum
networks. Furthermore, we motivate the choice of protocols that are being investigated in
this project. This section contains background information from a physics perspective but
understanding the details presented here is not a requirement for following the rest of the
paper.

Before we describe the protocols based on atomic ensembles, we need to explain what
entanglement is. Entanglement is a fundamental concept in quantum mechanics and allows
for many interesting applications. It is central to the distinction between classical and
quantum physics because it does not have an equivalent in classical mechanics. If two states
are entangled, the state of one particle cannot be described independently without the state
of the other particle. To illustrate this concept, we give an example of a special case of
entanglement – a maximally entangled Bell state of two qubits from systems A and B:

|ψ+〉 = 1√
2

(
|0〉A ⊗ |1〉B + |1〉A ⊗ |0〉B

)
(2.1)

Equation (2.1) represents a superposition of the probabilities that the state of system A
is 0 and the state of system B is 1 and vice versa. If Alice were to measure system A in
the {|0〉, |1〉} eigenbasis, the system would collapse to either |0〉A ⊗ |1〉B or |1〉A ⊗ |0〉B de-
pending on the outcome of Alice’s measurement (which would be 0 or 1 respectively). Any
measurement performed by Bob on system B would then be anti-correlated with Alice’s
measurement; it would always be a different measurement outcome than what Alice mea-
sured (1 or 0 respectively). Entanglement is a crucial property that allows for implementing
quantum networks using quantum repeater protocols.

The concept of quantum repeaters is an alternative to classical signal amplification.
Amplification of quantum information is impossible because of the No Cloning Theorem
[5, p. 532] and instead protocols based on quantum repeaters are used to realise quantum
networks [6]. A repeater chain can be seen in Figure 1.1 (a) where the dotted square
around two quantum memories depicts a repeater node. Repeater nodes are placed between
two end nodes to divide the total length between two end nodes into elementary links;
placing N repeater nodes means creating N + 1 elementary links. Elementary links are
used for entanglement generation at a smaller distance over which the losses on the fibre
are not significant yet. The generated entanglement is then repeatedly swapped between
neighbouring links by performing Bell-state measurements to obtain a shared entanglement
over the total distance.

The DLCZ protocol realises a quantum repeater scheme with atomic ensembles and linear
optics [8]. The DLCZ protocol makes use of spontaneous Raman emission: at each node,
there is an atomic ensemble that emits a photon and creates a spin-excitation entangled to
the emitted photon. The emitted photons are sent to a midpoint station where a Bell-state
measurement is performed. The Bell-state measurement projects the state of the two end
nodes onto a maximally entangled state (Bell state). Bell-state measurements using linear
optics can make projections on two out of the four Bell states, introducing an upper limit
of 50 % for the success probability of the measurements. The result of this measurement is
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classically sent back to the end nodes and in this way, entanglement is generated over the
elementary link.

When considering the DLCZ scheme, shared entanglement is based on a single excitation
in one of the end nodes. The Bell-state measurement at the midpoint station is performed
by a beam splitter and single-photon detectors. The measurement is done in a way that
destroys the which-way information, making the detection of a single photon in one of
the detectors a successful heralding event [7] which confirms that there is a delocalised
excitation in one of the atomic ensembles. The only measurements that can be performed
on a single-photon entanglement are in the Fock basis {|0〉, |1〉}; these are measurements of
the number of excitations. This constraint limits the number of possible uses. To be able
to measure in an arbitrary basis, we need to generate two-photon entanglement for which
two individual elementary links are required, each with a single delocalised excitation. More
information on how this is implemented and how it affects the post-selection can be found
in Section 3.1.

In the original DLCZ protocol, the atomic ensemble acts as both a source and a memory
at each node; we consider the probabilistic photon source and the memory to be one com-
ponent. We parameterise such a source by the so-called mean photon number. The DLCZ
setup can be also modelled by a separation of the source and the memory. In that case, the
source is a probabilistic photon pair source because one of the emitted photons is stored in
the memory and one is sent over a channel to the midpoint station. We can describe the
source by a parameter called mean photon pair number. Both the mean photon number
and the mean photon number can be expressed by the same equation

µ =

n∑
n · p(n), (2.2)

where µ is the mean photon (pair) number, n is the number of emitted photons (photon
pairs), and p(n) is the probability of emitting n photons (photon pairs). Whether n denotes
the number of photons or the number of photon pairs does not affect the underlying physics.
In the rest of the paper, we use the term mean photon pair number because we model the
DLCZ setup with a separation of the source and the memory. This has several advantages,
most importantly greater flexibility of wavelengths of emitted photons and an easier im-
provement of the protocol by an approach called multiplexing. Multiplexing utilises some
degree of freedom to create different modes in which photons can be sent. This can, for ex-
ample, be spectral (sending photons with different frequencies), temporal (sending photons
in different time windows), or spatial (sending photons in different locations).

Multiplexing increases the rate at which entanglement can be generated because there
are more possibilities for entanglement generation as photons can be sent in different modes
[14]. Protocols using probabilistic photon pair sources and multiplexing (such as [14]) are
promising candidates for realising repeater chains due to the improved entanglement genera-
tion rate and have been the focus of many experimental efforts [7]. It is therefore interesting
to see how these protocols would behave if they were used in realistic fibre topologies;
topologies that will undoubtedly be asymmetric [10, Fig. 4.2].

There are two possibilities of asymmetry due to the topology: (a) different lengths of
elementary links within a repeater chain due to asymmetric placement of repeater nodes
(repeater asymmetry) and (b) different lengths of channels going from the nodes to a mid-
point station due to asymmetic placement of midpoint stations (midpoint asymmetry). We
are considering only elementary links in this project, therefore we focus solely on the latter
case of midpoint asymmetry. We define midpoint asymmetry as
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A =
|l1 − l2|
l1 + l2

, (2.3)

where l1 is the channel length between the left node and the midpoint station and l2
is the channel length between the midpoint station and the right node [15]. We choose
this specific definition because it has several convenient properties: the value of asymmetry
is 0 when the midpoint placement is completely symmetric and the absolute value in the
definition abstracts away whether the midpoint station is placed closer towards the left or
right side of the elementary link. This reduces the number of possible midpoint station
placements we need to consider in order to investigate the effect of midpoint asymmetry. In
this project, we vary the midpoint station placement in the left half of an elementary link.
Another feature of the definition above is that it is easily extendable to repeater chains with
both midpoint and repeater asymmetry by defining two separate values of A for the two
types of asymmetry. This is outside the scope of this project but provides a possibility of
unified notation in future investigations.

3 Simulations

Analytical treatment of multi-photon emission errors is non-trivial [13] and employing sim-
ulations to investigate these scenarios has proven to be an effective approach [9], [12]. In
this section, we explain the setup of our simulations and how the investigated protocol is
modelled.

The simulator used in this project is the Network Simulator for Quantum Information
using Discrete events (NetSquid) [16]. For more detailed information about how the com-
ponents such as the sources, memories, and detectors are modelled in NetSquid, see [9]. To
allow for midpoint asymmetry, new additions to the codebase were implemented and these
are explained in detail in Section 3.3.

3.1 Protocol
The protocol we are investigating is the DLCZ protocol [8] but with an adjustment that
separates the source and the memory into individual components. The DLCZ protocol uses
single-photon detectors. The detectors herald success when they detect a single "click",
i.e. an arrival of one photon. A single click at the detector can also be caused by multiple
photons that cannot be distinguished.

The states are in presence-absence encoding as the only available information is whether
the photon is present (|1〉) or absent (|0〉). In our simulations, we define which states can
be sampled from the source component by defining a distribution for the sampling. In the
case of presence-absence encoding, the distribution is taken from [17, eq. (2.19)].

As briefly discussed in Section 2, the entanglement that can be shared between two
nodes running a single-click protocol is not useful for computations which is why we need
two parallel elementary links in a so-called dual chain. Such a setup can be seen in Figure 3.1
and it creates a more useful two-photon entanglement that allows for measurements in any
basis. In our case, the Bell-state measurements at the end nodes are performed in the
X and Z basis. Depending on the measurement basis, a different setup of the Bell-state
measurement is used. In the Z basis, the incoming states are directly measured. In the X
basis, the states are first interfered on a beam splitter.
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Figure 3.1: Scheme of (a) an elementary link and (b) a dual chain of elementary links. In the
dual chain, entanglement is first independently generated on the A1 − B1 and A2 − B2 links
using Bell-state measurements (orange triangles) with a beam splitter (BS) and single-photon
detectors. By reading out the states on both sides (denoted by dashed squares) of the setup
through a Bell-state measurement (grey circles), two-photon entanglement is generated.

When entanglement is established on both elementary links, post-selection is applied in
which the states on both sides of the dual chain are read out and two-photon entanglement
is generated. During the post-selection, some rounds must be discarded. This is because
sometimes both photons from the generated two-photon entanglement reside on the same
end of the dual chain (e.g. in A1 and A2 in Figure 3.1). We can determine this situation
occurred when both nodes on one end of the dual chain have the same measurement outcome
in the Z basis.

3.2 Runtime Optimisation
There are multiple ways how to run the simulations and these can be divided into two
categories: running the full simulations and using so-called magic to speed up the process.
The different components and individual protocols used in both cases are shown in Figure 3.2.
The general workflow of one round of the simulation is as follows: the source on each node
emits a state and sends it to the detector at the midpoint station, the midpoint station
performs a Bell-state measurement, and the results are classically communicated back to
the nodes.

In the case of a full simulation, the clock ticks at specified time intervals which causes
EmissionProtocol to trigger the source. The source randomly samples a state from the
full density matrix. The density matrix allows calculation of the probabilities and the
corresponding measurement outcomes for an entangled system. The sampled state is sent
to the midpoint station. This is a probabilistic process; a low value of mean photon pair
number reduces the multi-photon emission errors but results in a lot of samples that are
vacuum and do not result in a state. To speed up the runtime of the simulation, we use
magic.

Magic is a term used within the codebase and refers to the fact that we sample the
full end-to-end state of the elementary link after a successful Bell-state measurement and
"magically" put this state into the memory. In this way, we skip all unsuccessful rounds
(due to producing vacuum or due to an unsuccessful Bell-state measurement) and consider
only successful rounds.
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Figure 3.2: Simulation setup for (a) simulations without magic and (b) simulations with
magic. Components modelling hardware are depicted as blue squares and protocols are shown
as orange ovals. The striking difference between the two setups is the MagicDistributor which
handles state and label deliveries.

To be able to use magic, we first run the full simulation for every successful midpoint
detector outcome. For the presence-absence encoding, there are exactly two successful out-
comes corresponding to a click from either the left or the right side of the elementary link.
A sample file is created with the full end-to-end states which is then used in subsequent
simulations. MagicDistributor calculates the probability with which entanglement is suc-
cessfully generated and directly skips to the next successful round. MagicDistributor then
distributes states sampled from the sample file to memories on both nodes and delivers la-
bels with measurement outcomes the nodes would receive from the midpoint station. This
significantly speeds up the simulations because we only consider rounds where there is no
vacuum and the Bell-state measurement is successful.

3.3 Midpoint Asymmetry
Investigating midpoint asymmetry is the focus of this project. Accounting for such scenarios
in the simulations can provide valuable insight into the optimal setup of hardware for quan-
tum networks. Implementing midpoint asymmetry required adjustments to three compo-
nents in the simulation: HeraldedConnection, EmissionProtocol, and MagicDistributor.
HeraldedConnection holds a detector and channels between the nodes and the detector; to
allow for midpoint asymmetry, we simply have to allow for different channel lengths. The
necessary changes in the other two components are explained in this subsection.

EmissionProtocol is used when the full simulation is run. The protocol runs on each
node and is triggered by clock ticks. At each clock tick, the protocol triggers the source
at the node to emit a state. However, when the channels going to the midpoint station
have different lengths, the states take different time to travel to the midpoint station. A
Bell-state measurement at the midpoint station can only happen successfully if states arrive
at the same instant, hence the necessary change in EmissionProtocol includes allowing for
a delayed trigger of the source. In elementary links with midpoint asymmetry, only one of
the emission protocols needs to have a delay. The delay is calculated as |l1 − l2|/c where c
is the fixed speed of photons through the channel in km/s.

MagicDistributor handles state and label deliveries; state delivery replaces state being
put into the memory and label delivery replaces receiving the measurement outcome from
the midpoint station. Delays for both types of deliveries depend on the channel lengths.
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States need to be put onto memories such that they would arrive at the midpoint station in
the same instant and labels need to be delivered at the same time as well. In a completely
symmetric case, the delay for states is 0 and the delay for labels is a value of cycle time.
Cycle time (see Equation (3.1) where c is again the fixed speed of photons through the
channel in km/s) is the time it takes a state to travel to the midpoint station and a classical
message to travel back to the node. In the case of midpoint asymmetry, state and label
delays are different for the left and right channels, see the calculation in Equations (3.2) and
(3.3).

cycle_time_(l/r) =
channel_length_(l/r) ∗ 2

c
(3.1)

state_delay_(l/r) = max(cycle_time_l, cycle_time_r)− cycle_time_(l/r)
2

(3.2)

label_delay_(l/r) = max(cycle_time_l, cycle_time_r)− state_delay_(l/r) (3.3)

The biggest challenge of these implementations stems from the fact that NetSquid is a
discrete-event simulator and allows for the study of time-dependent noise [16]. The timing
in the simulations is crucial and allowing for midpoint asymmetry complicates the existing
simulation framework. Furthermore, this project also necessitated the creation of a simula-
tion script that allows for easy variability of degrees of asymmetry of elementary links and
the mean photon pair number for both sources. Development of the framework and the
simulation script are contributions that can be useful in future investigations.

3.4 Data Collection
The figure of merit we are considering when searching for the value of the optimal mean
photon pair number is called secret key rate (SKR). In our case, this describes the rate at
which a secret key can be distributed using the BB84 protocol [3] and takes into consideration
both the entanglement generation rate as well as the quality of the created state. To explain
how SKR is calculated, we first need to define two parameters we extract from the simulation
data: rate of success and quantum bit error rate (QBER).

Rate of success RSUCC is the rate at which entanglement is successfully generated be-
tween the end nodes. In the data collected from our simulations, the unit used for the rate
is not a unit of time but rather an attempt at entanglement generation. If we used time for
the rate of success, it would be possible to arbitrarily affect that by seting the time intervals
on which the clocks tick. Instead, one round of the simulation (i.e. one attempt at entan-
glement generation) reflects the probabilistic processes in our simulations. We express rate
of success as 1/attempts_per_success where attempts_per_success denotes the average
number of attempts required for successful entanglement generation.

QBER is calculated from the measurement outcomes; it is the fraction of wrong bits in
the total number of successful measurements. A low value of QBER means having a state
with higher quality. QBER is determined individually for the X and Z bases in which the
measurements are performed. The number of wrong bits is determined by comparing the
end node measurements to the expected outcomes. For Z basis, we always expect the results
to be anti-correlated. In the X basis, the expected outcome depends on the outcome of the
measurement at the midpoint station.
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Having defined rate of success RSUCC and QBER in both the X and Z basis, the
corresponding value of secret key rate is calculated as

SKR = RSUCC ×max(0, 1−H(QBERX)−H(QBERZ)), (3.4)

whereH(p) is the binary entropy function defined asH(p) = −p log2 p−(1−p) log2(1−p).
We run the simulations for varying values of mean photon pair number and determine

RSUCC and QBER for each of the data points. We fit a polynomial to these values and
sweep over a range of mean photon pair numbers, calculating the resulting value of the
secret key rate for each of them. The optimal mean photon pair number is then the value
that results in the highest value of SKR.

3.5 Choice of Parameters
The simulation framework models all of the components in the elementary link. There are
more input parameters than the parameters needed to be considered in this investigation:
some are describing components we do not directly focus on (e.g. the midpoint detectors) and
some offer variability in the kind of protocol the simulation is running (e.g. different encoding
or the number of modes for multiplexing). The parameters for individual components will
certainly affect the resulting values of the secret key rate, nonetheless, we expect the trend
of the optimal mean photon pair number to stay the same. For example, if we introduced
imperfect detectors into our simulations, the QBER would be higher and values of SKR
would drop. This source of noise would in that case be independent of the degree of midpoint
asymmetry. The choice of exact values of such parameters is to some extent arbitrary, so we
consider the simplest scenario with only two sources of noise. These are fibre attenuation
and errors resulting from multi-photon emission; the effect of both of these sources of noise
is dependent on the particular degree of asymmetry. All the other parameters are set to
perfect values and can be found in Appendix A.

4 Results

After having explained all relevant aspects of the simulations, we now present the results
of our analysis of the effects of midpoint asymmetry on elementary links. As explained in
Section 1, we expect the mean photon pair number to have an optimal value. This optimal
value is determined as the value that results in the highest secret key rate. The reasoning
behind this is that higher values of mean photon pair number lead to increased entanglement
generation rate which is in turn reflected in higher values of SKR. However, increasing the
mean photon pair number also causes multi-photon emission errors which have a negative
effect on the quality of the created state resulting in lower values of SKR.

The first simulation results we show in Figure 4.1 compare plots of SKR, QBER and
entanglement generation duration for two elementary links – one with midpoint symmetry
and one with midpoint asymmetry. The unit of entanglement generation duration is the
average number of attempts per successful entanglement generation (see Section 3.4). We
look in detail at these two sets of plots to verify that the mean photon pair number has an
optimum (as explained above) and to describe how we extract the highest achievable value
of SKR from the simulation data.

We observe in Figure 4.1 that varying the mean photon pair number leads to the ex-
pected behaviour of SKR for both degrees of asymmetry, where the SKR first increases with
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(b) A = 0.5

Figure 4.1: Results for elementary links with total length of 50 km for two different values of
asymmetry A = 0 (fully symmetric case) and A = 0.5. Simulations are in presence-absence
encoding. For each value of mean photon pair number, the simulation is run until there
are 10000 successful entanglement generation attempts. Values of QBER and entanglement
generation duration are fitted with polynomials and the fit for SKR is calculated according
to Equation (3.4). The shaded areas around the trendline for the values SKR represent the
confidence intervals. Lengths of channels between the nodes and the midpoint station can be
calculated from Equation (2.3): (a) both channels are 25 km long, (b) the left channel is 12.5
km and the right channel is 37.5 km long.

increasing mean photon pair number but then after a clear maximum decreases due to the
dominant effect of multi-photon emisssion errors. We see that the maximal obtained val-
ues of SKR are significantly lower for the elementary link with midpoint asymmetry. This
shows that midpoint asymmetry affects the achievable values of SKR. The QBER in the X
basis increases when the channels have different lengths, meaning the quality of the created
state decreases when asymmetry is introduced to the elementary link. QBER in the Z basis
is always 0 because we assume the detectors at the midpoint station are perfect; no click
is registered unless there is an incoming photon. Due to the post-selection of dual chain
elementary links where we only keep results with one excitation per node (see Section 3.1),
we never get a result that would produce a non-zero QBER in the Z basis.

The shaded areas represent the confidence intervals for values of SKR. The lower and
upper bound is obtained by calculating the value of SKR according to Equation 3.4 for
highest QBER and lowest rate, and lowest QBER and highest rate respectively. To obtain
the highest possible value of SKR, we find the maximum of the fit to SKR and use the
confidence interval as an error bar. Highest valued of SKR for varying degrees of asymmetry
can be seen in Figure 4.2.

The first trend that is immediately apparent as shown in Figure 4.2 is that the highest
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Figure 4.2: The maximum value of SKR obtained for varying degrees of midpoint asymmetry
for two different elementary links with total lengths of 25 km and 50 km. The simulations are in
presence-absence encoding and are run for 10000 successful entanglement generation attempts.
The left channel is always the shorter channel. Midpoint asymmetry results in lower values of
SKR. More losses are introduced on the longer elementary link, leading to consistently lower
values of SKR.

value of SKR decreases as the elementary links get more asymmetric. We show this result
for two different lengths of elementary links, suggesting this behaviour will be observable for
arbitrarily long elementary links. The reason why the values of SKR are consistently lower
for the longer elementary link is that more losses are introduced to the states travelling
through longer fibres. These losses are caused by the fibre attenuation.

All the plots that we used to extract the maximum values shown in Figure 4.2 can be
found in Appendix B. From these plots, we can see that the optimal value of the mean
photon pair number (the one corresponding to the highest value of SKR) has no observable
trend and is usually found to be around 0.8. We believe the reason for this is that the
optimal value diverges for both sources and when we assume both sources have the same
mean photon pair number, there is no resulting observable upwards or downwards trend.
This diverging behaviour can be indeed observed in Figure 4.3 as we will explain later.

Allowing for asymmetrical values of mean photon pair number for sources on both nodes
in the elementary link quadratically increases the search space. We consider the probability
of a photon arriving at the midpoint station as a means of reducing the size of the search
space. This probability can be calculated as

µ× τ(L) = µ× 10−αL/10, (4.1)

where µ is the mean photon pair number of the source, α is the fibre attenuation in
dB/km, and L is the length of the fibre between the node and the midpoint station. τ(L)
denotes the transmittance, i.e. the probability of transmitting a photon over a given
length. The probability of a photon arriving at the midpoint station can be calculated
separately for each side of the elementary link, we denote the two values as pl and pr for
the left and right side respectively.

The highest values of SKR are obtained when the elementary link is completely symmet-
ric. When we assume that the values of mean photon pair numbers are the same for both
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nodes, pl = pr for a symmetric elementary link. However, if we maintain the assumption
of symmetric mean photon pair numbers and introduce midpoint asymmetry, pl does not
equal pr anymore. This further motivates the investigation of asymmetric mean photon pair
numbers because it would allow for situations where pl = pr even if a link contains midpoint
asymmetry. Figure 4.3 shows resulting values of SKR for a setup with asymmetric mean
photon pair numbers. For each degree of asymmetry, we show a line where the probability
of photons arriving at the midpoint station is equal to see whether it crosses the area in the
graph where the highest values of SKR are observed.
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Figure 4.3: Obtained value of SKR for varying degrees of asymmetry when we allow the sources
to have different mean photon pair numbers. The red lines show combinations of mean photon
pair numbers that result in µl× τ(Ll) = µr × τ(Lr). Note that the scales of SKR are different
for each plot such that we can clearly see where the highest value of SKR can be observed. In
these simulations, the left channel is always the shorter one. It is clear that as the left channel
gets shorter, the optimal value of the left mean photon pair number decreases. There is a fairly
consistent agreement between the highest values of SKR and the areas where probabilities of
photons arriving at the midpoint station are the same.

Figure 4.3 clearly shows that the optimal values of mean photon pair number for both
sources diverge with asymmetric elementary links. The heuristic pl = pr approximately
follows the trend of diverging mean photon pair numbers. Note that there are no error

14



bars depicted in Figure 4.3 and the data shown are exact values from simulation data. For
higher degrees of asymmetry, the heuristic does not seem to precisely cross the area with the
highest values of SKR. Reducing the search space for the case of asymmetric mean photon
pair numbers is crucial for further investigation of midpoint asymmetry, therefore we keep
using the heuristic. We only consider combinations that satisfy µl × τ(Ll) = µr × τ(Lr)
(where l and r refer respectively to the left and right side of the elementary link) for a certain
degree of asymmetry. This reduces our search space and we are able to obtain simular plots
as in Figure 4.1. We therefore compare a setup where both sources must have the same
mean photon pair number with a setup where the mean photon pair number of both sources
can be individually optimised. This is depicted in Figure 4.4. All plots used to extract the
highest value of SKR for case of asymmetric mean photon pair numbers can be found in
Appendix C.
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Figure 4.4: The highest value of SKR obtained for varying degrees of midpoint asymmetry in
elementary links with symmetric and asymmetric values of mean photon pair numbers at both
sources. The simulations are in presence-absence encoding and are run until there are 10000
successes of entanglement generation. The left channel is always the shorter channel. Allowing
for asymmetric values of mean photon pair numbers results in higher values of SKR.

Figure 4.4 shows that individual optimisation of the two sources results in higher values of
SKR. The values of SKR for asymmetric mean photon pair numbers are consistently higher
starting from values A = 0.4. For lower degrees of asymmetry, the error bars for symmetric
and asymmetric mean photon pair numbers overlap. Specifically at A = 0.1, we see that
the maximum value of SKR is higher for the case of symmetric mean photon pair numbers.
We do not expect this to reflect any underlying behaviour. We observe a clearer distinction
between obtained values of SKR for higher degrees of midpoint asymmetry which suggests
that allowing for asymmetric mean photon pair numbers causes significant improvement
in obtained values of SKR only for more asymmetric elementary links. We conclude that
using the investigated heuristic µl × τ(Ll) = µr × τ(Lr) results in better performance of
highly asymmetrical elementary links even though we do not have enough data to conclude
if this heuristic results in the optimal values of mean photon pair numbers. This nevertheless
shows that the effect of midpoint asymmetry can be to some extent mitigated by parameters
optimised individually for each of the nodes in an elementary link.
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5 Responsible Research and Discussion

Doing research responsibly is an obligation that comes with the privilege of being a scientist.
In this context, it is crucial that this project can be replicated and the results can be verified.
To ensure replicability, two aspects of this project need to be considered: the code used to
run the simulations and the obtained data.

Firstly, the code for all the components in the simulation is available on a public repos-
itory as a snippet [18]. There are several dependencies of this project and all of them are
accessible to the public as well, including the software tool for modelling and simulating
quantum networks called NetSquid [16]. Secondly, the obtained data (both raw and pro-
cessed) is stored in a repository. This data will be available upon request to anyone who
wishes to replicate the results. This repository also contains the scripts for simulation,
processing and plotting along with instructions on how to run them.

The simulations have a lot of input parameters which can significantly affect the obtained
data. Parameters that were not varied during this project can be found in Appendix A. The
repository with all the data from this project also contains files with the used parameters. It
is also important to note that the simulations are probabilistic in nature but the behaviour
shown in this paper can be replicated with a sufficiently large number of runs.

Additionally, it is worthwhile to assess whether the obtained results agree with previous
work. As mentioned in Section 1, there has been no analysis focusing specifically on effects of
midpoint asymmetry in atomic ensemble based quantum repeater protocols. Nevertheless,
we confirm that the findings of this thesis agree with preliminary results from two projects
that use NetSquid simulations to study the performance of quantum networks. One of these
projects is focusing on atomic ensemble based repeater protocols [12] and demonstrates the
same behaviour of secret key rate in response to varying mean photon pair number as we did
in Figure 4.1 but for single repeater setups. The second project considers a single repeater
setup with repeater and midpoint asymmetry, albeit not for atomic ensemble based protocols
[11]; preliminary results from this research suggest that midpoint asymmetry has a negative
impact on the performance of quantum networks which we confirm with our findings.

6 Conclusions and Future Research

In this section, we present some concrete ideas for future investigations into the topic of
asymmetry in atomic ensemble based quantum repeater protocols. First, we briefly sum-
marise what we did in this thesis and which conclusions we reached.

In the previous sections, we investigated the effect of mipoint asymmetry on the perfor-
mance of elementary links implemented with the DLCZ setup. To do this, we extended an
existing simulation framework to allow for scenarios with midpoint asymmetry. Using these
simulations, we showed that midpoint asymmetry negatively affects the highest achievable
values of secret key rate in elementary links. We then improved upon these obtained values
of secret key rate by allowing for asymmetric mean photon pair numbers. Allowing both
sources in an elementary links to have different mean photon pair numbers significantly
increased the search space, so we devised a simple heuristic that can predict which combi-
nations of mean photon pair numbers might result in a better performance than symmetric
mean photon pair numbers. This heuristic did not fully capture the trends shown in our
simulation data but nonetheless resulted in higher obtained values of secret key rate than
in the case of symmetric mean photon pair numbers.
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In this project, we argued that there is no observable trend in the optimal mean photon
pair number when we assume both sources at the end nodes of an elementary link have the
same mean photon pair number. We clearly showed that this is not the case for asymmetric
mean photon pair numbers because we observed that the optimal values of the mean photon
pair number diverge. A convenient extension to the investigations of this thesis would be
to devise a way how to extract the optimal value of mean photon pair number and its
uncertainty, for both symmetric and asymmetric mean photon pair numbers. This would
allow us to plot the optimal values for varying degrees of asymmetry and investigate the
trends in more detail.

To find the highest value of secret key rate, we ran the simulations and fitted a polynomial
to the QBER and entanglement generation duration data extracted from the simulations.
We then calculated the corresponding value of secret key rate for varying degrees asymmetry
and performed a parameter scan to find the highest values of secret key rate. This is the most
straighforward way of finding the highest values of SKR but employing a more sophisticated
optimisation algorithm would lead to more robust results. This could also prove to be an
effective way of obtaining the optimal values of mean photon pair numbers with clearer
approaches of calculating their uncertainties.

We purposefully limit the sources of noise in our simulations to the multi-photon emission
erros and the fibre attenuation. To further investigate noise in the simulations, imperfect
detectors could be introduced which would result in non-zero values of QBER in the Z basis.
Considering more sources of noise such as imperfect detectors would bring us one step closer
towards realistic scenarios.

Another possible extension is to investigate repeater and midpoint asymmetry in repeater
chains. The definition of asymmetry used in this thesis supports both midpoint and repeater
asymmetry, allowing for a unified notation in repeater chains. Investigating asymmetry in
repeater chains is a step closer towards realistic scenarios and would surely lead to useful
results. We can also expect the results for repeater chains to be different than for elementary
links in terms of quality of the created state. While entanglement generation over elementary
links in a repeater chain is investigated by the simulations in this thesis, entanglement
swapping introduces more operations leading to a higher QBER.

The findings of this project show that the results for asymmetric scenarios are signifi-
cantly different than for symmetric ones. Asymmetry will undoubtedly play an important
role in quantum networks due to existing asymmetries in fibre topologies. That is why inves-
tigation of the effects of asymmetry, both midpoint and repeater, is beneficial for near-term
realisations of quantum networks. This thesis provides a solid stepping stone for future
research of asymmetry in quantum repeater chains.
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A Parameters

Name Value Description
num_repeaters 0 Number of repeaters in the chain.
multi_photon true Whether to include multi-photon emission in the

simulation.
num_attempts -1 Number of clicks after which the clock stops.
num_attempts_proto -1 Number of clicks after which the emission protocol

stops.
num_successes 1e5 Number of successes after which the simulation is

stopped.
collect_states false Whether to collect end-to-end states.
encoding presence_absence Type of encoding used.
clock 1e5 Time between ticks of the clock (in ns).
magic forced Whether to use magic to create elementary link

states.
multiple_link_successes false Whether to allow for multiple successful modes.
Sources
mean_photon_number varied Mean photon number of the source.
emission_probabilities None Probability distribution of multi-photon emissions.
source_frequency 1e5 Frequency of the photon source.
Memories
memory_time_dependence exponential Time dependence of memory.
spectral_modes 1 Number of spectral modes the source can produce.
temporal_modes 1 Number of temporal modes the source can produce.
spatial_modes 1 Number of spatial modes the source can produce.
max_memory_efficiency 1.0 Maximum efficiency of the memory if a photon would

be retrieved immediately.
memory_coherence_time .inf Coherence time of the memory.
Channels
length varied Total length of the elementary link.
asymmetry varied Value of midpoint asymmetry.
channel_length_l varied Length of the left channel (km).
channel_length_r varied Length of the right channel (km).
attenuation_l 0.2 Fiber attenuation of the left channel (dB/km).
attenuation_r 0.2 Fiber attenuation of the right channel (dB/km).
coupling_loss_l 0.0 Initial loss probability of the left channel.
coupling_loss_r 0.0 Initial loss probability of the right channel.
fibre_phase_stdv_l 0 Standard deviation of the gaussian distribution of

the phase for PhaseLossModel on the left channel.
fibre_phase_stdv_r 0 Standard deviation of the gaussian distribution of

the phase for PhaseLossModel on the right channel.
Midpoint Detectors
mid_det_efficiency 1.0 Detection efficiency.
mid_det_visibility 1.0 Photon indistinguishability at the midpoint BSM.
mid_det_num_resolving false Whether are midpoint detectors number-resolving.
mid_det_dark_count_prob 0.0 Dark count probability at each midpoint detector.
Swap Detectors
swap_det_num_resolving false Whether are swap detectors number-resolving.
swap_det_dark_count_prob 0.0 Dark count probability at each swap detector.
swap_det_efficiency 1.0 Detection efficiency.

Table 1: Table with all simulation parameters. Value of varied means the parameter is varied when
looking for the optimal mean photon number.
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B Plots with Symmetric Mean Photon Pair Numbers

Plots for elementary link with total length of 50 km can be found in Figure B.1 and B.2.
For the elementary link of 25 km, we only show the plots for SKR in Figure B.3.

0.2 0.4 0.6 0.8 1.0
Mean photon pair number

0.000

0.002

0.004

0.006

0.008

Se
cr

et
 k

ey
 ra

te
 [b

its
/a

tt.
]

0.2 0.4 0.6 0.8 1.0
Mean photon pair number

0.0

0.1

0.2

0.3

0.4

QB
ER

X basis
X basis (fit)

Z basis
Z basis (fit)

0.2 0.4 0.6 0.8 1.0
Mean photon pair number

102

Av
g.

 n
um

. o
f a

tt.
/s

uc
c.

(a) A = 0.1

0.2 0.4 0.6 0.8 1.0
Mean photon pair number

0.000

0.002

0.004

0.006

0.008

Se
cr

et
 k

ey
 ra

te
 [b

its
/a

tt.
]

0.2 0.4 0.6 0.8 1.0
Mean photon pair number

0.0

0.1

0.2

0.3

0.4

QB
ER

X basis
X basis (fit)

Z basis
Z basis (fit)

0.2 0.4 0.6 0.8 1.0
Mean photon pair number

102

Av
g.

 n
um

. o
f a

tt.
/s

uc
c.

(b) A = 0.2

0.2 0.4 0.6 0.8 1.0
Mean photon pair number

0.000

0.002

0.004

0.006

0.008

Se
cr

et
 k

ey
 ra

te
 [b

its
/a

tt.
]

0.2 0.4 0.6 0.8 1.0
Mean photon pair number

0.0

0.1

0.2

0.3

0.4

QB
ER

X basis
X basis (fit)

Z basis
Z basis (fit)

0.2 0.4 0.6 0.8 1.0
Mean photon pair number

102

Av
g.

 n
um

. o
f a

tt.
/s

uc
c.

(c) A = 0.3

0.2 0.4 0.6 0.8 1.0
Mean photon pair number

0.000

0.002

0.004

0.006

0.008

Se
cr

et
 k

ey
 ra

te
 [b

its
/a

tt.
]

0.2 0.4 0.6 0.8 1.0
Mean photon pair number

0.0

0.1

0.2

0.3

0.4

QB
ER

X basis
X basis (fit)

Z basis
Z basis (fit)

0.2 0.4 0.6 0.8 1.0
Mean photon pair number

102

Av
g.

 n
um

. o
f a

tt.
/s

uc
c.

(d) A = 0.4

Figure B.1: Results for elementary links of 50 km with presence-absence encoding for varying
degrees of asymmetry A. Sources have the same mean photon pair number. Simulation is
run until there are 10000 successful entanglement generation attempts. Cases of A = 0 and
A = 0.5 are shown in Figure 4.1.
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Figure B.2: Results for elementary links of 50 km with presence-absence encoding for varying
degrees of asymmetry A. Sources have the same mean photon pair number. Simulation is run
until there are 10000 successful entanglement generation attempts. The scales are same in all
sets of plots.
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Figure B.3: Results for elementary links of 25 km with presence-absence encoding for varying
degrees of asymmetry A. Sources have the same mean photon pair number. Simulation is run until
there are 10000 successful entanglement generation attempts. The scales are same in all sets of
plots.
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C Plots with Asymmetric Mean Photon Pair Numbers

Figure C.1 shows plots of SKR for elementary link with total length of 50 km for the case
where we allow the two sources to have asymmetric mean photon pair numbers.

0.5 1.0 1.5
Right mppn

0.000

0.002

0.004

0.006

0.008

Se
cr

et
 k

ey
 ra

te
 [b

its
/a

tt.
]

(a) A = 0

0.5 1.0 1.5
Right mppn

0.000

0.002

0.004

0.006

0.008

Se
cr

et
 k

ey
 ra

te
 [b

its
/a

tt.
]

(b) A = 0.1

0.5 1.0 1.5
Right mppn

0.000

0.002

0.004

0.006

0.008

Se
cr

et
 k

ey
 ra

te
 [b

its
/a

tt.
]

(c) A = 0.2

0.5 1.0 1.5
Right mppn

0.000

0.002

0.004

0.006

0.008

Se
cr

et
 k

ey
 ra

te
 [b

its
/a

tt.
]

(d) A = 0.3

0.5 1.0 1.5
Right mppn

0.000

0.002

0.004

0.006

0.008

Se
cr

et
 k

ey
 ra

te
 [b

its
/a

tt.
]

(e) A = 0.4

0.5 1.0 1.5
Right mppn

0.000

0.002

0.004

0.006

0.008

Se
cr

et
 k

ey
 ra

te
 [b

its
/a

tt.
]

(f) A = 0.5

0.5 1.0 1.5
Right mppn

0.000

0.002

0.004

0.006

0.008

Se
cr

et
 k

ey
 ra

te
 [b

its
/a

tt.
]

(g) A = 0.6

0.5 1.0 1.5
Right mppn

0.000

0.002

0.004

0.006

0.008

Se
cr

et
 k

ey
 ra

te
 [b

its
/a

tt.
]

(h) A = 0.7

0.5 1.0 1.5
Right mppn

0.000

0.002

0.004

0.006

0.008

Se
cr

et
 k

ey
 ra

te
 [b

its
/a

tt.
]

(i) A = 0.8

0.5 1.0 1.5
Right mppn

0.000

0.002

0.004

0.006

0.008

Se
cr

et
 k

ey
 ra

te
 [b

its
/a

tt.
]

(j) A = 0.9

Figure C.1: Results for elementary links of 50 km with asymmetric mean photon pair numbers
and presence-absence encoding for varying degrees of asymmetry A. The x-axis shows the value of
the right mppn while the left mppn can be calculated from the heuristic introduced in Section 4.
Simulation is run until there are 10000 successful entanglement generation attempts.
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