
Delft University of Technology

BAP
EE3L11

Thesis Pre-Processing ECG- & Respiratory
Signals for Detection of Stress

Authors:
Enes Kinaci (4370759)

Talha Kuruoglu (4718569)

June 19, 2020

Abstract

The main purpose of this thesis is the removal of different kinds of artifacts from incoming signals and the
identification of relevant information which can be utilized for further analysis. This thesis proposes two designs
which are used for the pre-processing of the electrocardiogram (ECG) signal and the respiratory signal. The
ECG signal system design consists of an artifact removal system, a three-step quality check at the initial stage
and after pre-processing the raw signal. The respiratory signal system consists of a two-step quality check, a
artifact removal part and a part which calculates the respiratory rate from the respiratory signal.

Preface

This report was written in the context of the Bachelor Graduation Project to obtain the Electrical Engineering
Bachelor at Delft University of Technology. We would like to thank dr. Carolina Varon Perez for her continuous
help and support throughout the project. We also want to express our sincere gratitude to both dr. Ioan Lager
and dr. Carolina Varon Perez for giving us the opportunity to continue the project amid the Covid-19 situation.
We would also like to thank dr. Francesco Fioranelli for taking the time to be on the jury for our final assessment.

We would also like to thank our other group members, Yavuzhan, Geert Jan, Isar and Bob, whom have worked
very hard together with us. Without their contributions, this would not have been possible. We had daily
meetings with the group, which was divided into three subgroups, and biweekly meetings with Carolina. Their
insight has extremely contributed to our progress throughout this project.

- Enes Kinaci
- Talha Kuruoglu

1

Contents

1 Introduction 4
1.1 Problem Definition . 4
1.2 State of the Art Analysis . 4
1.3 Document Structure . 5

2 Program of Requirements 6
2.1 Functional Requirements . 6
2.2 Non-Functional Requirements . 6

3 Data Sets 7
3.1 Stress Dataset . 7
3.2 Drivers Dataset . 7
3.3 CinC2017 Dataset . 8

4 ECG System Design 9
4.1 Finite State Machine . 9
4.2 Signal Quality Indicator of the ECG Signal . 12

4.2.1 Spectral Distribution Ratio of the ECG . 12
4.2.2 Weight based on the Autocorrelation function . 13
4.2.3 The Heart Rate . 13

4.3 Artifact Removal . 15
4.3.1 ECG Artifacts . 15
4.3.2 Filtering . 16

5 Respiratory signal system design 21
5.1 Finite State Machine of the Respiratory System . 21
5.2 Artifact Removal . 23

5.2.1 Artifacts Affecting The Respiratory Signal . 23
5.2.2 Filtering . 23

5.3 Respiratory Rate Calculation . 23
5.4 Signal Quality Indicator of The Respiratory Signal . 24

5.4.1 Downsampling . 24
5.4.2 Spectral Distribution Ratio of Respiration Signal . 25
5.4.3 Breath Check . 25

6 Results & Discussion 26
6.1 Results . 26
6.2 Discussion . 29

7 Conclusion 32

Appendices 35

A Power Spectral Density 36

2

B Matlab Code 38
B.1 ECG system design code . 38

B.1.1 MainECG.m . 38
B.1.2 FINALECG.m . 39
B.1.3 NaNorNot.m . 43
B.1.4 Power.m . 43
B.1.5 Rpeak.m . 44
B.1.6 RRpeak.m . 45
B.1.7 RRPeakCalc.m . 58
B.1.8 calc-pos-opt.m . 59
B.1.9 ectopic-detection.m . 61
B.1.10 ectopic-detection-correction.m . 63
B.1.11 env-secant.m . 65
B.1.12 SQI-ACF.m . 66
B.1.13 ACF-Artefact.m . 66
B.1.14 acrr.m . 69
B.1.15 filterECG.m . 73
B.1.16 ECGFILTER.m . 74

B.2 respiratory system design code . 75
B.2.1 mainrespiratory.m . 75
B.2.2 Respiratory.m . 76
B.2.3 NaNorNotResp.m . 77
B.2.4 Filterresp.m . 77
B.2.5 Powerresp.m . 78
B.2.6 RespiratoryRate.m . 79

3

Chapter 1

Introduction

As the demand increases to monitor stress throughout the day, more research is conducted to find a way to
continuously detect stress. To monitor stress throughout the day of ambulatory patients, a telehealth system
which makes use of wearables is designed. This non-obstructive device will be able to record, process and detect
stress from the ECG and respiratory signals. The detection of stress goes automatically based on machine
learning. After processing all the data, the information should be accessible remotely for the patient in an
environment where the privacy of each patient is safeguarded.

1.1 Problem Definition
The project is divided into three parts, where two students worked on each part. The first part is the pre-
processing part of incoming raw data from the wearable. On this data, a quality assessment should be done
and, if necessary, the signal must be filtered from noises and artifacts. The second part is the stress detection
part with machine learning, where stress will be detected by extracting certain features from the processed ECG
and respiratory signal, which is done in the first part [1].

The third part is the overall system design, where the signal processing system and stress detection system are
integrated into a graphical user interface (GUI), where relevant information for the user can be displayed, such
as the heart rate and, more significantly, whether the user is stressed [2].

This thesis focuses on the first part of the project. The problem definition of the pre-processing is mainly
divided into two subjects: filtering of the raw data and a quality assessment of the data. This thesis presents
how the signal will be processed while entering, how the quality assessment of the signal is done, and how this
signal is being filtered. The processed signal shall be used for further calculations and determinations by the
stress detection group. The system design group will use the information from the pre-processing for visual
display to the user.

1.2 State of the Art Analysis
Many research is done on processing ECG signals, analyzing the Heart Rate Variability (HRV) and the effect
of stress on it [3][4][5]. By looking at sympathetic and parasympathetic activities of the body, stress can be
determined. To quantify these activities, spectral analysis is conducted on HRV. Therefore, it is of the utmost
importance that the ECG signal that is analysed for the determination of HRV. Techniques are developed to
detect and remove artifacts from the ECG signal to obtain a reliable signal [6],[7]. A quality assessment is done
on the filtered signal, to maintain the accuracy of the overall system to detect stress. Throughout the years,
many methods are developed to assess and indicate the signal quality. Some methods are described in [8],[9],[10]
and [11]. While there is much knowledge about processing ECG signals, there is still no consensus on how to
interpret the respiratory signals

4

1.3 Document Structure
This works is divided into two parts. First the system design for the ECG signal is briefly described; explaining
the Finite State Machine (FSM) developed for this system (section 4.1), followed by a brief explanation about
the Signal Quality Indicator (SQI) system (section 4.2) and the filtering system of the ECG signals in section
4.3. After this, the system developed for the Respiration signals is described, including the FSM for Respiratory
system (section 5.1), the filtering system (section 5.2), the system for the calculation of the respiratory rate
(section 5.3) and the SQI system (section 5.4). After this, the obtained results are discussed in chapter 6.

5

Chapter 2

Program of Requirements

This section discusses the requirements which need to be met for the pre-processing part. The main purpose
of pre-processing is the removal of different kinds of artifacts from the entering signals and the identification of
relevant information which can be used for further analysis. The data at the output, after pre-processing, has
a Signal Quality Index (SQI) assigned to it after a quality check is performed on the incoming signal. The SQI
indicates whether the incoming signal has a good or bad quality.

2.1 Functional Requirements
The following are the requirements that guided the execution of this work:

• Artifacts in the ECG and the respiratory signal must be removed.

• This system must be able to recognize the quality of the signal, either good or bad.

• The ECG and the respiratory signal both need to be labeled with a quality indicator.

2.2 Non-Functional Requirements
The following requirements elaborate the qualities or attributes which the pre-processing design must have.

• The overall system has to be suitable for real-time measurement.

• The respiratory rate needs to be obtained from the respiratory signal.

• The R-peaks of the ECG signal should be detected and sent as an output.

• The calculation of the heartbeat should be sent as an output.

• The system should work with all kinds of ECG and respiratory signal measurements which could have
different sampling frequencies.

• The ECG system should accurately detect the R-peaks of the ECG signal.

• The Respiratory rate should cover the band of 0.1 Hz to 0.5 Hz.

• The delays induced in the respiratory and ECG due to filtering should be removed.

6

Chapter 3

Data Sets

Different datasets are used for the design of both the ECG system and the respiratory signal system. The
sections below will briefly introduce the datasets used for the system design.

3.1 Stress Dataset
The first data set used in the design is the stress data set used in paper [3]. This dataset was collected at the
University of Zaragoza and the Autonomous University of Barcelona. The ECG signal was sampled at 1 kHz
and the respiration at 250 Hz. The volunteers underwent a stress session, in which emotional stress was induced
by means of a modified Trier Social Stress Test. The test comprises the following phases:

• Baseline (BL): For about 10 minutes the subject listens to a relaxing audio

• Story Telling (ST): The subject listens to 3 stories and is asked to remember as many details as possible

• Memory Task (MT): The subject needs to tell all details that he/she remembers from the stories of ST
in front of a camera.

• Stress Anticipation (SA): The subject needs to wait 10 minutes for the results of the evaluation of the
MT phase.

• Video Exposition (VE): The video recorded during MT phase is shown to the subject and another video
in which the stories are told entirely correct by an actor is shown as well.

• Arithmetic Task (AT): The subject is asked to count down aloud from 1022 in steps of 13. Whenever the
subject is making a mistake, he/she needs to start again from 1022. To induce stress on the subject, a 5
minute constraint is induced.

Of the 46 volunteers, 11 are excluded from the study because some of the phases were corrupted by technical
artifacts.

3.2 Drivers Dataset
The second data set is obtained from [12]. The dataset is called Stress Recognition in Automobile Drivers. It
is recorded from 16 healthy volunteers while driving a car in Boston, Massachusetts USA. The duration of the
measurements ranged between 53 minutes and 92 minutes.In the first and last 15 minutes of the measurement
period, the subjects were asked to close their eyes and relax in the car in idle.These periods are regarded as
non-stressful period. Afterwards they drove through quiet and busy streets for about 25 to 60 minutes, which
is considered to be stressful. The only differing measurement is the ECG 16, which does not have the last 15
minutes of relaxation.

The sampling frequency of the ECG signal is equal to 496 Hz. While the respiratory is sampled at 31 Hz.

7

3.3 CinC2017 Dataset
The third and last data used in this dataset where taken from the PhysioNet/Computing in Cardiology Challenge
of 2017 [13]. The ECG signals in this data-set are filtered and pre labeled with a signal quality indicator in
which label 1 corresponds to a clean signal and 0 to contaminated signal.The ECG data consists only of the
normal rhythm and noisy class data, which consists in total of 5334 recordings which are sampled at 300 Hz.This
data will be mainly be used to evaluate the performance of the proposed quality indicator system.

8

Chapter 4

ECG System Design

This chapter will discuss the steps taken to design the ECG system. First the finite state machine of the system
will be discussed. Afterwards the quality checks will be explained and finally the filtering of the ECG will be
discussed.

4.1 Finite State Machine
The implementation of the overall ECG system design is shown in a finite state machine, which can be seen in
Figure 4.2. In this system the following sub-parts are implemented: a function which detects the NaNs in the
incoming data, the three-step quality check ,and the filters. The system changes states depending on the signal
quality indicator (SQI). If the signal has a bad quality, which is determined by the NaN check or the three-step
quality check, then the SQI will be 0 and otherwise it will be 1.

The NaN check is done on an incoming segmented ECG signal. If there is a NaN or if there are NaNs present
in the segmented ECG signal, then the ECG system algorithm gives an error. To prevent this, it is checked
whether there are NaNs or a NaN in the ECG signal before sending the signal to the quality check and the
filtering part. If there are NaNs in the system, then the signal with NaNs are send with a SQI value of 0 labeled
on it. The other outputs seen in Figure 4.2 get a value of zero.

The three-step quality indicator is implemented after the NaN check and the ECG signal is sent to the indicator
when the SQI of the NaN check is equal to 1. The three-step quality indicator after NaN and filtering is identical
and consists of the following steps:

• Quantification of the relative power of the ECG within the band of interest

• Weight computation based on the autocorrelation function (ACF)

• Heart rate evaluation

The filters are used if one of the three quality checks at the beginning of the system gives a SQI of zero. This
indicates that the signal has too much artifacts to be identified as a good qualified signal, so the signal needs
processing. Further details about the filters will be given in section 4.3. After the filtering, the ECG is checked
again by the quality indicators and depending on the SQI value from these checks, the signal is put out with
SQI 1 or 0.

The ECG will be filtered with a bandpass filter of 0.5Hz to 40 Hz after the quality checks or possibly after
filtering. The ECG signal which is from 0.5 Hz to 150 Hz will have its components removed after 40 Hz. This
means that the ECG will be sent with a band of 0.5 Hz and 40 Hz. The reason for this is that the band of 0.5
Hz to 40 Hz produces a more stable signal with less baseline noise and fewer high-frequency artifacts[14] ,also
the system design subgroup is not performing R-peak detection which needs frequency information of at least
150 Hz.The ECG signal can thus be restricted to 40 Hz for the output.The ECG which spans from 0.5 Hz to
150 Hz is needed within the ECG system, to perform R-peak detection.The R-peak of an ECG can be seen in
Figure 4.1. The frequencies of 40 Hz to 150 Hz contain high-frequency components which are needed for the
R-peak detection.

9

Each ECG segment sent as output is characterized by:

• A filtered version

• The average heart rate

• SQI

• The position of the R-peaks in the signal

• Time differences between the R-peaks

Figure 4.1: The ECG signal with its P wave, QRS complex and T-wave.

10

Figure 4.2: The finite state machine of the ECG system. Not every signal is shown between transitions to
maintain simplicity of the diagram

11

4.2 Signal Quality Indicator of the ECG Signal
The Signal Quality indicator (SQI) section will discuss the quality assessment of the incoming signals. The
output of the signal quality indicator is a single bit, which is used by the stress detection part when making a
decision whether the a specific part of the signal will be used in further calculations or not.

The quality assessment is executed based on a three step decision making. At each step, the SQI is checked
in a different way, using concepts such as power spectral density distribution, autocorrelation function and the
heart rate.

4.2.1 Spectral Distribution Ratio of the ECG
The first step in the quality check procedure is looking at the power spectral distribution ratio. The ratio of
the power between the spectrum 0.5 Hz and 150 Hz is compared to the whole power spectrum of segmented
signal. A threshold is assigned to the ratio of the usable power. If the ratio is above this threshold, then the
segment is labeled as a reliable segment in terms of power which can be used in further calculations. Otherwise,
the segment is labeled as not reliable and will passed to the filter to remove excessive noise. The threshold is
chosen by taking the mean of the average distribution ratio of the whole signal. Then, this value is fine tuned
by comparing the results of the SQI’s with the annotations from CinC2017 dataset. The threshold value is
described in chapter 6. In appendix A, an example of two PSD’s are given for more illustration.

Before, a cutoff of 100 Hz was considered adequate by the American Heart Association (AHA) to maintain
the accuracy for diagnostics during visual inspection[15]. But higher-frequency components could also contain
information from the QRS-complex, in particular the R-peak[14]. So following the recommendation of AHA [15],
a range between the cutoff frequencies 0.5 Hz and 150 Hz is used for diagnostic purposes. For only monitoring
purposes of the ECG, a bandwith between 0.5 Hz and 40 Hz can be taken, since it reduces a lot of noises but
also removes high-frequency components. So, for visualizations of the ECG by the system design group [2], a
processed signal between the bandwidths 0.5 Hz and 40 Hz will be sufficient.

Welch’s method is used to calculate the power spectral density (PSD) of the segment. For the computation PSD
of an entire waveform, the Fast Fourier Transform could be used (FFT). To enhance the statistical properties of
the result, Welch’s method is used instead of FFT [16][17]. The advantage of Welch’s method is that smoother
spectral components can be obtained and more accurate estimation of the PSD can be done [18].

The waveform is first divided into L number of sections.

xi(n) = x(n+ iD) (4.1)

where n = 0, 1, ...,M − 1 and iD is the starting point for the ith sequence between i = 0, 1, ..., L − 1. D is
the length of each segment

Then the periodogram of each is segment is calculated by first windowing each segment and then using the
FFT. This is given in the following equation:

P̃ (i)
xx (f) =

1

MU

∣∣∣∣∣
M−1∑
n=0

xi(n)w(n)e
−j2πfn

∣∣∣∣∣
2

(4.2)

where U is the normalization factor for the power in the window function w(n).

U =
1

M

M−1∑
n=0

w2(n) (4.3)

The result from eq.[4.2]is called the modified periodogram[16]. The Welch’s method is finalized by computing
the average of these modified periodograms:

PWxx (f) =
1

L

L−1∑
i=0

P̃ (i)
xx (f) (4.4)

where L is the number of segments.
This function is implemented in Matlab by executing the code pwelch(x) in Matlab. By default, the function

uses Hamming window, and the overlapping between segments is 50 %, which is used in this work.

12

4.2.2 Weight based on the Autocorrelation function
The second step in the quality check procedure is based on finding the repeating patterns using the autocorre-
lation function (ACF). In a method of Varon et al. (2012) [19] an algorithm is proposed to identify the artifacts
in the ECG signal[19]. In general, this algorithm first divides the input ECG signal into segments of length
L. Next, the ACF of each segment is calculated. Then the graph theory is used to identify the contaminated
segments. By implementing the graph theory, a degree is characterized to each segment. These degrees are
used as weights which indicates how clean the ECG section is [19]. These weights are used in our project as a
parameter for reliability of the signal.

The matlab code for this algorithm was provided by one of the authors of [19]. In this work, relevant parts of
this algorithm were taken out and modified for this work. The main modification to the algorithm is described
follows:
The ECG signal used for the pre-process is already segmented into parts of N segments (suppose for now
that this segment is called Ai where i = 1, . . . , N is the number of the segment). When the ACF algorithm
is conducted on segment Ai, segment Ai is further divided into J number of segments with length P (for
explanation purposes, call this segment Bj), where P < N . The result is that j amount of weight are assigned
inside Ai, while only one weight is used for further calculations of segment Ai. To resolve this, the average of j
weights are taken and assigned to the segment Ai. So the following holds:

dAi
=

∑j
a=1 dBa

j
(4.5)

where d is the weight assigned to the segment. If the weight is above a certain threshold, the segment is
labeled as acceptable signal. Otherwise, the segment is sent to the filtering part in the FSM (see fig. 4.2)

For determining the threshold of the weights, same method is used that was used for the determination of the
threshold for ratio of power distribution.

4.2.3 The Heart Rate
The second step in the quality check procedure is based on the heart rate (HR). According to several studies,
as well as the consensus of experts, the normal resting heart rates for adults lie between 60 and 90 beats per
minute (bpm) [20][21], while the AHA defines the normal HR as between 60 and 100 bpm [22]. Due to the
presence of noise, some noises with a large amplitude can be mistakenly seen as a heart beat when detecting
the R-peak. This will lead to a higher HR. Based on the HR, an assessment is conducted on the reliability
of the segment of the signal. If the heartrate is outside the accepted range of HR, the segment is labeled as
unacceptable.

The HR can be computed from the RR-interval. This is the distance in time between two consecutive R-peaks
from the QRS-complex [23]. Since the HR is measured in beat per minute (bpm), the formula for calculating
the average becomes

HR(bpm) =
60

RRavg
(4.6)

where RRavg is the average distance between a set of RR-intervals in seconds. Note that other features from
the QRS complex could be used for the calculation of HR. The R-peak is chosen for further determinations
because of the widely use in studies since it is well defined and easy to locate [9]. For the detection and correction
of the R-peak, an open-source Matlab based algorithm is used, called R-Deco [24].

In this method, the adaptive thresholding procedure of the Pan-Tompkins algorithm is implemented, which
is used for the automated detection of the R-peaks that is part of the QRS-complex [25]. Before using the
algorithm, the ECG envelopes are computed to get enhanced QRS-complexes and flatten the rest of the ECG
[24][26]. The flattened ECG is defined as Fecg = Uecg − Lecg, where Uecg is the upper- and Lecg is the lower
ECG envelopes. By subtracting the lower envelopes from the upper envelopes, baseline is eliminated and only
a positive signal Fecg remains for the detection of the R-peak. This procedure is shown in figure 4.3.

13

Figure 4.3: The flattened ECG (Fecg) is given in the graph below. Fecg is obtained by subtracting the lower
envelope from the upper envelope of the signal. This figure was obtained from [24]

DOI:https://peerj.com/articles/cs-226/#fig-2

After determining the QRS-complex positions from the flattened ECG, the exact R-peak location is determined
by using the original ECG signal. This is needed because the R-peak might be shifted in the flattened ECG
signal towards the notch of the S-wave[24]. In figure 4.1, the notch of the S-wave is shown.

14

https://peerj.com/articles/cs-226/##fig-2

4.3 Artifact Removal
This section will discuss the removal of artifacts in the ECG signal.In subsection 4.3.1, the different kinds of
artifacts present in the ECG are discussed together with the detection method of those artifacts by use of the
power spectral density of the ECG signal and the plot of the ECG signal. After detection of the artifacts,
removal methods are determined in section 4.3.2 and design choices are discussed.

4.3.1 ECG Artifacts
This subsection will discuss the different kinds of artifacts in the incoming ECG signal. Figure 4.4 shows a raw
ECG signal ,at the upper figure, which is not processed and the power spectral density (PSD) ,at the lower
figure, of the same ECG signal. Both images are used to detect the artifacts in the ECG signal.

0 1 2 3 4 5 6 7 8 9 10

Time(s)

-2

-1

0

1

M
a
g

n
it

u
d

e

10
4

0 50 100 150 200 250 300 350 400 450 500

Hz

-10

0

10

20

d
B

W
/H

z

Figure 4.4: An unfiltered 10 second ECG segment and its corresponding PSD.

The most common ECG artifacts are: The powerline interference which, depending on the measurement location,
is 50 Hz or 60 Hz and its harmonics. Secondly, the baseline wander is a low frequency noise component in the
ECG signal which is mainly caused by respiration, body movement and electrode-skin impedance [27]. This
phenomenon happens below 0.5 Hz [28]. Thirdly Electromyographic (EMG) noise is generated from electrical
activity of the muscle [6] and tends to be non-stationary and has a frequency that overlaps the original ECG
signal from 1 Hz up to 120 Hz . Finally the electrode motion artifacts are mentioned, which are mainly caused
by skin stretching which alters the impedance of someones skin around the electrode. This artifact mainly
occurs in the range from 1 to 10 Hz [27].

The PSD shown in Figure 4.4 has peaks at 50 Hz, 150 Hz and 350 Hz. These are the powerline interference
frequencies. The multiples of 50 Hz, 100 Hz and 150 Hz must be removed which is done by means of notch
filters, because those three frequencies are in the band of interest of the ECG signal. Details about the notch
filters used for the removal of the powerline interference are given in subsection 4.3.2.

From Figure 4.4 it can be seen that the base of the ECG signal of the signal moves upwards and downwards
[27]. This is a indication of baseline-wander. It could also be interpreted as electrode motion artifact because
a similar effect on the signal happens when these artifacts are present however, the spectral content does not
overlap that of the PQRST wave [27], so the artifact cause for this signal is baseline wander.

The band of interest of the ECG, as mentioned earlier in Chapter 4.1,is from 0.5 Hz to 40 Hz or 150 Hz. Figure
4.4 shows however frequency components higher than the upper limit of the frequency band of interest. In the
design of the ECG system of the report, these frequencies are filtered out and treated as frequency components
which probably contain mostly noise than usable information.

A different kind of noise, present in some of the signals, can be seen in Figure 4.5.This noise component causes
oscillation in the ECG signal which can be seen in Figure 4.5. By investigating the PSD of the signal, it is
concluded that this noise is a single component in 120 Hz. The noise is not however a powerline noise, since this

15

data has a powerline frequency of 50 Hz and its harmonics. It could also not be baseline, because the frequency
of the noise is too high. EMG noise is non-stationary and has a range of frequency components, so that is not
the noise which is present at 120 Hz. This noise however can be removed in the same manner as the powerline
interference noise. Further details will be given in subsection 4.3.2.

2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2

Time(s)

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

M
a
g

n
it

u
d

e

10
4

Figure 4.5: The effect of the 120 Hz noise component on the ECG signal of channel X measurements from
patient 20 to patient 33.

4.3.2 Filtering
This section will discuss the filters used to remove the artifacts described in subsection 4.3.1. The design choices
of the different kind of filters together will be discussed in detail in this subsection.

IIR vs FIR filters.

The filters which are used for artifact removal in the ECG and respiratory signal design are digital filters. There
are two classes of digital filters, the Finite Impulse Response (FIR) filters and the Infinite Impulse Response
(IIR) filters.

The mathematical difference between the IIR filter and the FIR filter is that the IIR filter is a recursive function
which has its filter output as input. The mathematical representation of FIR filter is y[n] =

∑N
k=0 a(k)x(n− k)

IIR filter representation is y[n] =
∑N
k=0 a(k)x(n− k) +

∑p
j=0 b(j)y(n− j) [29].

The IIR filter has an advantage that at a similar roll off as the FIR filter, a lower IIR filter order is sufficient
enough to have the same effect as a FIR filter which has a much higher filter order [29]. A lower order filter
means that the complexity of that filter is lower because less calculations are needed to be done , so the filter
will be faster than a filter which has a higher order. However the IIR filter has a nonlinear phase ,which causes
phase distortions , and stability issues[29]. The FIR however is always stable, but needs higher order filters to
have the same performance as a IIR filter in frequency response. The group delay at FIR filters is equal at
every frequency due to linear phase of these filters[29] .

Delays in filters is due to the fact that the number of time data at the input must be proportional to the number
of terms (so for example N). This is needed for the filter to work. So increasing the filter order, will cause that
the delays is increased [29].

The IIR filter is used for real-time applications[29]. This is why it is used for both the ECG and respiratory
signals. The IIR is more useful because a faster filter with a lower order causes less delays in the signal after
filtering, which is an advantage for a real time application.

Removal of Powerline Interference

The powerline interference consists of one frequency component and its harmonics. In the band of 0.5 Hz to
150 Hz there are three frequency components which need to be removed to eliminate the powerline interference,

16

which are 50 Hz, 100 Hz and 150 Hz. To this end, a filter is needed to filter out a specific frequency while
maintaining the other frequency component.This can be done by means of notch filter.

The notch filters implemented in the design are made by using the matlab function iirnotch. This function is
a second-order IIR notch filter which needs as input: the normalized notch frequency that needs to be removed
and the -3dB bandwidth. The output from this function is the denominator and the numerator of the transfer
function of the designed notch filter, which is shown by the function:
H(z) = K·(z2−2z·cos(θ)+1)

(z2−2r·z·cos(θ)+r2)

The r in this function is the required magnitude of the poles, which is calculated from the following function: r
≈ 1− (

BW -3dB
fs)·π.In this function the -3dB bandwidth is divided by the sampling frequency. θ is the angle of

the pole location which is given by: θ = f0
fs

·360◦ in which f0 stands for the notch frequency.K is the unit-gain
scale factor which is given by: K = (1− 2r · cos(θ) + r2)× 1

2−2cos(θ) .

According to [30], good values for the required magnitude for the poles are between 0.9 and 1. So the bandwidth
needs to be chosen accordingly. Also the consideration has to be made that this bandwidth needs to be as narrow
as possible to avoid distortion of other frequencies which are not intended to be altered. In the design of the
notch filter, a -3dB bandwidth of 1 Hz is chosen. This is chosen because it satisfies the requirement of a
good magnitude of poles and also for smaller bandwidths, the notch filter reduces the power at the powerline
interference frequencies less effectively. This is because a second order filter has a slope of -40dB per decade.
The reduction of the unwanted components is reduced by narrowing the bandwidth. Choosing a bigger value
reduces the frequency which is intended to be removed however the unintended distortion on other frequency
components is larger. Keeping this in mind and by using the matlab function freqz, which visualizes the bode
plot of the notch filter, the -3dB bandwidth is chosen. Figure 4.6 shows the bode plot for a notch filter with
-3dB bandwidth of 1Hz and a notch frequency of 50 Hz.

The noise present in 120 Hz is also removed with a notch filter. The design of the notch filter is identical with
the notch filters which are used for the powerline interference. However the -3dB bandwidth of this notch filter
is chosen to be 2 Hz, this can be done because 4 Hz bandwidth is also in line with the required magnitude for
the poles. The different bandwidth is chosen because the noise component at 120 Hz is not removed entirely
with a -3dB bandwidth of 1 Hz.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-60

-40

-20

0

20

40

P
h

a
s
e

 (
d

e
g

re
e

s
)

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Normalized Frequency (rad/sample)

-10

-8

-6

-4

-2

0

M
a

g
n

it
u

d
e

 (
d

B
)

Figure 4.6: The bode plot of a second order IIR notch filter, with a notch frequency of 50 Hz(50/(Fs/2) = 0.1
π rad/samples where Fs = 1000 Hz) and a -3dB bandwidth of 1 Hz

The denominator and numerator values obtained from the iirnotch function are put in the matlab function
filtfilt. This function uses the information of the denominator and numerator together with the ECG signal,

17

which is used as input, to make the filter which is needed. The filtfilt function is a zero-phase digital filter
which filters the input signal in both the forward and reverse directions. This causes that there is zero phase
distortion, removal of delay effect[29] and a filter function with the squared magnitude of the original filter and
double the order filter which is specified by the denominator and numerator values of the function iirnotch.
However zero phase filtering causes that the data at end of the time trace is eliminated [29].

Removal of Baseline-wander

Baseline-wander is an artifact which is linked to respiration and affects the ECG signal.As described in section
4.3.1, this effect is due to frequency components below 0.5 Hz. Keeping this in mind, the information of the
ECG signal lower than 0.5 Hz must be removed to eliminate baseline wander and the frequencies above 0.5 Hz
must be preserved to prevent unwanted loss of information. This can be done with a high-pass filter.High-pass
filters remove frequencies lower than the cutoff frequency, which is in this design 0.5Hz, while maintaining the
higher frequency components. As mentioned in the filter design section , the filters in this design are IIR filters.
IIR filters have different implementation methods like the Butterworth, Chebyshev, inverse Chebyshev, Cauer
and Bessel[29]. The chosen method in the ECG signal design of this paper is the Butterworth filter. The
Butterworth filter is preferred in literature for the analysis of ECG,see for instance [28],[31], [19] and [32].

The choice of the Butterworth filter can be justified by the fact that the Butterworth filter does not have a ripple
in the passband and stopband. This is desired because, no alterations on the signal is wanted in the passband
region of the filter. The same can be said about the stopband region, where all frequencies are desired to be
totally removed without any ripple behaviour[28]. In [32] removes baseline wander by using a forward/backward
fourth order Butterworth high-pass filter with a cutoff frequency of 0.5 Hz. The reason to use this method is
described in [32],where that this method is one of the most accurate and easiest method to implement.

For this design a high-pass Butterworth filter of order 4 is used with a cutoff frequency of 0.5 Hz, which is the
same as in [32]. The computational cost is lowered by choosing a lower order than 5 and also according to [32],
as stated earlier, the filter used with filter order 4 is one of the most accurate and easiest methods to implement.
To implement this, the matlab function butter is used with as input: the filter order, the normalized cutoff
frequency and the type of filter. The outputs of this function are the transfer function coefficients b and a
returned as a row vector of length n+1 where n is the order of the filter. The transfer function expressed in
terms of a and b is: H(z) = b(1)+b(2)z−1+....b(n−1)z−n

a(1)+a(2)z−1+...+a(n+1)z−n

The implementation of the high-pass Butterworth filter ,however ,distorts the ST-segment of the ECG signal.
The ST-segment can be seen in Figure 4.1. The distortion of the ST-segment is shown in Figure 4.7.This
phenomenon is due to the fact that high-pass filters suffer from phase shift, which causes that the first 5 to
10 harmonics of the signal are affected. So when a high pass filter is implemented with a cut-off frequency of
0.5 Hz , up till 5 Hz can be affected[33]. However when the signal gets passed trough a zero-phase filter, by
using the filtfilt matlab function, the phase distortion is nullified and the ST-segment distortion is restored. A
second issue solved is the delay induced due to the filtering, by implementing a zero-phase filter.

18

0 1 2 3 4 5 6 7 8 9 10

Time(s)

-1.5

-1

-0.5

0

0.5

1

1.5

M
a
g

n
it

u
d

e

10
4

Figure 4.7: A ten second segment of a ECG signal with distorted ST-segment after high-pass filtering with a
cut-off frequency of 0.5 Hz.

Removal of High Frequency Components

This section will discuss the removal of the high frequency components. The meaning of high frequency com-
ponents in this design, are frequencies higher than the maximum frequency of the band of interest for the ECG
signal. In the case of this design, the maximum frequency taken for the analysis of the ECG signal is 150
Hz. This is the minimum frequency needed for the analysis of high frequency components of the ECG signal
according to [14], [15]. An upper cutoff frequency of 150 Hz is at least needed to measure routine durations and
amplitudes accurately and this cutoff is also needed for diagnostic purposes. The ANSI/AAMI also recommends
a high-frequency cutoff of at least 150Hz for ECG signal [15]. Due to these statements, the high frequency cutoff
for the low-pass filter is chosen to be 150 Hz while the ECG signal is not sent as output.This signal is rather
used to make computations, for example the R-peak calculation, in the ECG system,which is also explained in
section 4.1.

The frequencies higher than 150 Hz need to be removed, while frequencies lower than 150 Hz need to be
preserved. This is done with a Butterworth low-pass filter. This filter is designed in the same manner as the
high-pass filter which is used to remove the baseline wander from the signal. However, a new order needs to be
defined for the low-pass filter. This is done with the Matlab function freqz , where the phase behaviour of the
ECG signal is analyzed, and the PSD . The order is determined by looking at different filter orders and their
phase response. The filter order is increased until the phase response has a distorted segment in the band of
interest to find the highest order filter which could be used.This is investigated because, such distortions also
affect the amplitude response thus also the ECG signal if the order is chosen to be too high. Also the highest
possible order means also the steepest slope after the cut-off frequency, which is wanted because the frequencies
above the cut-off frequencies are unwanted. However the computational cost of the total design needs to be
considered in the filter order aswell, because a higher order filter means that the filtering will take longer. For a
filter order,50 ,the phase response gets distorted, which also distorts the amplitude response. So 49 could be the
order chosen for the filter as the maximum filter order without distorting the ECG signal.However due to the
possible high computational cost of such a filter, it is investigated by looking at the PSD if a lower filter order
can be chosen which gives a sufficient result. After filter order 14, the change in the PSD at higher frequencies
than 150 Hz is not significantly better so a filter order of 14 is chosen for the low-pass filter.This order removes
the unwanted frequencies well enough while also working faster than a filter order of 49. The bode plot of the
14 order low-pass Butterworth filter can be seen in Figure 4.8.

19

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency (rad/sample)

-1000

-800

-600

-400

-200

0

P
h
a
s
e
 (

d
e
g
re

e
s
)

0.1 0.2 0.3 0.4 0.5 0.6

Normalized Frequency (rad/sample)

-6

-4

-2

0

2

4

M
a
g
n
it
u
d
e
 (

d
B

)

Figure 4.8: The bode plot of the Butterworth lowpass filter with a cut-off of 150 Hz (150/(Fs/2) = 0.3 π
rad/samples where Fs = 1000 Hz.)

As discussed in chapter 2, a second frequency band for ECG signal is used for the ECG when it is sent as
output. This band is from 0.5 Hz to 40 Hz. This band is used to enhance visualization of the ECG signal at
the GUI described in [2]. According to [14], most of the information of the ECG signal is contained within
40 Hz, except for the QRS complex which has many frequency components above 100 Hz. This is especially
the case for R-peak frequency components. The source also states that information between 0.5 Hz and 40
Hz is used for monitoring purposes. The reason for this is that the band of 0.5 Hz to 40 Hz produces a more
stable signal with less baseline noise and fewer high-frequency artifacts[14]. According to [15], the band until
40 Hz will invalidate any amplitude measurements used for diagnostic classification, however the subgroup in
paper [2] does not perform any diagnostic classification directly from the ECG signal. Thus the output of the
prep-rocessing step will be the ECG signal with a band until 40 Hz. This will be done, by keeping in mind ,that
the ECG is not altered badly visually and that the ECG is less noisier than a ECG signal with a band of 0.5 to
150 Hz.

The order of the low-pass Butterworth filter for a cut-off frequency of 40 Hz is chosen by taking the same
considerations and steps as the low-pass filter which has 150 Hz. The order of this filter is chosen to be 14.
The bode plot of this filter can be seen in Figure 4.9. For both low-pass filters, the filters are made with the
Matlab functions butter and the filtfilt, which where explained in the Removal of baseline-wander and Removal
of Powerline interference subsection respectively.

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

Normalized Frequency (rad/sample)

-1000

-800

-600

-400

-200

P
h
a
s
e
 (

d
e
g
re

e
s
)

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

Normalized Frequency (rad/sample)

-2

0

2

M
a
g
n
it
u
d
e
 (

d
B

)

Figure 4.9: The bode plot of the Butterworth low-pass filter with a cut-off of 150 Hz (40/(Fs/2) = 0.08 π
rad/samples where Fs = 1000 Hz.)

20

Chapter 5

Respiratory signal system design

This chapter will discuss the respiratory signal system design.The finite state machine will be discussed at the
first section. Afterwards a detailed description of the components in the respiratory signal system will be given.
The components that are discussed are the artifact removal part, the respiratory rate calculation, and the signal
quality checks performed in the overall system.

There is in literature, however, no consensus of a clean respiratory signal. The respiratory signal can vary from
very clean and periodic signal to a very complex signal. This results in a challenging task when the respiratory
signal is analysed. The aim of this project is limited to a power quality check and the time interval check in
which a breath is taken.

5.1 Finite State Machine of the Respiratory System
The implementation of the overall Respiratory system design is shown in a finite state machine, which can be
seen in Figure 5.1. The system consists of the following components: A function which detects whether the
respiratory signal has NaNs or not, the power quality check which is identical to the ECG system counterpart,
a function which calculates the respiratory rate, and finally ,a quality check which controls if there is a breath
taken within 10 seconds. The system labels the respiratory signal with a SQI by looking at:

• depending on the power quality check

• the breath check.

The NaN check at the beginning of the respiratory signal system has the same reasoning as the NaN check in
the ECG system which is described in 4.1. The check is done to prevent errors in the code and also data with
NaNs is unusable. So the signal gets separated and it gets labeled with SQI = 0 if it has NaNs in it.

Afterwards the signal gets passed to a bandpass filter with a band of 0.1 Hz to 0.5 Hz. This differs from the
ECG system design, because respiratory has only artifacts outside the band of interest. More detail about the
filters used and the choice of the band of interest will be given in section 5.2.1.

The signals gets downsampled to 2 Hz. This is because the relevant frequencies are below 1 Hz, so all the other
frequency components are irrelevant for further analysis.

After downsampling, the signal is passed to the power check. This is identical to the ECG signal power check.
Again as described at section 4.1,the power percentage in the band of interest of the respiratory signal is checked
and if it is below the threshold in the quality check, then the signal is labeled with a SQI = 0 and it will be
sent as output. If this condition is not satisfied, the signal will be passed to the system with an SQI = 1 label
and there the respiratory rate will be calculated.

Afterwards, the second test will be conducted. The duration of the breaths in the signal will be checked. If this
duration is longer than 10 seconds then the SQI will be zero, otherwise it will be 1. After the quality check, the
signal will be sent out together with its respiratory rate and SQI to the system design subgroup [2].

21

Figure 5.1: The Finite State Machine of the Respiratory system

22

5.2 Artifact Removal
The Artifact Removal section will discuss the removal of artifacts in the respiratory signal. Section 5.2.1 will
emphasize on the artifacts in the respiratory signal, while section 5.2.2 will discuss what kind of filters are used
to remove the artifacts discussed in section 5.2.1.

5.2.1 Artifacts Affecting The Respiratory Signal
The detection of artifacts in the respiratory signal is done with the idea that frequencies above and below the
frequency band of interest of the respiratory signal are too low or too high for breathing. The band of interest
according to [34] is between 0.1 Hz and 0.5 Hz which is 6 breaths in a minute and 30 breaths in a minute. Also
the knowledge that the baseline wander noise of ECG signal is 0.5 Hz or lower and that this noise is linked with
respiration also confirms the upper band limit of 0.5 Hz.

5.2.2 Filtering
The filters used in the design of the respiratory signal are the IIR Butterworth low-pass and IIR Butterworth
high-pass filter. The reason is simply because the band of interest needs to be preserved while other frequencies
of the respiratory signal need to be removed and these frequencies outside the band are considered as the only
noise sources in the respiratory signal, which is also stated at subsection 5.2.1. The design choices of both filters
underwent the exact same steps which were taken at the high-pass and low-pass filters in the ECG design, which
are used to remove the high frequency components and the baseline wander. A more detailed description can
be seen in section 4.3.2.The only difference between the filters of both designs are that the respiratory signal
filter orders differ from the ECG signal filters.

The orders of the low-pass filter and high-pass filter are determined with the matlab function freqz, which is
also described in section 4.3.2 to determine the filter orders used in the ECG design. By looking at the phase
of the bode-plot of the filters and by investigating with different orders of filters to determine the filter order
which could be taken before distorting the respiratory signal , the order of 6 is chosen for the low-pass filter
and order 4 for the high-pass filter in the respiratory signal design.

5.3 Respiratory Rate Calculation
The respiratory signal consists of the inhale peaks, exhale troughs, inhale onsets, exhale onsets, inhale pauses
and exhale pauses [35]. Only the inhale peaks and exhale throughs are used or the calculation of the respiratory
rate. The inhale peaks and exhale throughs can be seen in Figure 5.2.

23

Figure 5.2: Respiratory signal with its components, figure is obtained from [35]

The consideration that a breath is taken after an inhale peak and exhale throughs is used in the calculation
of the respiratory rate. The reason to not assume that a breath is taken when a new inhale peak is detected
without a exhale throughs, is because at the end of the time interval it could be that a new inhale peak gets
detected without the exhale throughs, which is not a breath taken but only indicates that the subject has
inhaled.

The matlab function findpeaks is used to find the inhale peaks in a given time-interval. The inputs of this func-
tion are : the respiratory signal, the sampling frequency, ’MinpeakDistance’ and threshold which eliminates
’peaks’ within curtain time interval. The last input is used to eliminate possible breaths taken within 2 seconds.
The reason for this is that the maximum respiratory rate is 0.5 Hz, which corresponds with a breath duration
of 2 seconds per breath. So faster breathing results in a respiratory rate which is higher than 0.5 Hz and are
thus excluded from the inhale peaks detected. Findpeaks is also used for the detection of the exhale throughs.
This is possible by reversing the respiratory signal and thus creating the illusion that the exhale throughs are
peaks. Both the inhale peaks and the exhale throughs are stored in vectors and the amount of components in
both vectors are compared. From both the vectors, the vector which contains the least components is taken as
the amount of breaths taken in the time interval. The reason is, as explained earlier, that a breath needs both
the inhale peak and exhale throughs to be seen as a breath, so they are needed in pairs, which means that both
vectors should have the same amount of components. After this the amount of breaths in the time-interval is
obtained,which corresponds to the respiratory rate.

5.4 Signal Quality Indicator of The Respiratory Signal

5.4.1 Downsampling
After the filtering of the respiratory signal, which is discusses in subsection 5.2.2, the signal is downsampled to
2 Hz. This is because the frequencies of interest are between 0.1 and 0.5 Hz. For example the data from section
3.1 has a respiratory signal which is sampled at 250 Hz and having information until 125 Hz is just too much
and unnecessary frequency components.

The matlab function resample is used. The following inputs must be given as input to the function to use it
properly: Respiratory signal, p and q. P and q are used in the ratio of pq which is multiplied with the original
sample rate. The matlab function resample applies a FIR Anti-aliasing Low-pass Filter and also compensates the
delay introduced by the filter. An anti-aliasing filter is used to prevent the effect of aliasing. This phenomenon
is present when the sampling frequency does not satisfy the sampling theorem. The sampling theory states
that the sampling frequency should be at least twice the signal frequency. This sampling frequency is called

24

the Nyquist frequency and it can be seen in equation 5.1. If the sampling theorem is not satisfied then new
frequency components will be created [36]. This is why it is recommended to have a low-pass filter before
sampling which removes higher frequency components then the Nyquist frequency.

F signal <
FNyquist

2
(5.1)

5.4.2 Spectral Distribution Ratio of Respiration Signal
The idea of looking at spectral distribution ratio of the respiratory signal is identical to the idea of the spectral
distribution ratio check of the ECG. The same code is implemented, only the frequency range of interest is
different. More information about the method is described in section 4.2.1. Like given in 5.2.1, the range of
interest is between 0.1 Hz and 0.5 Hz.

5.4.3 Breath Check
The breath checking is a signal quality assessment which is based on the breath rate, where the way of thinking
is again similar like the HR checker. The SQI for the breathing is given as acceptable if the duration of a breath
is within the determined range of duration. This range of duration is taken between 2 seconds and 10 seconds,
which is the same as a range between a frequency range of 0.1 Hz and 0.5 Hz.

The breathing duration is determined by looking at the peaks of the signal. If the peak-to-peak distance is
within 2 seconds, the algorithm decides that this is not possible and annotate to the signal a bad quality. This
conditioning is set because of physical reasons. If the peak-to-peak distance is within 2 seconds, the conclusion
can be made that the signal is contaminated with excessive noise. This can be during speaking or other physical
activities. With the same reasoning, if the duration of peak-to-peak distance is longer than 10 second, the signal
will again be labeled with a bad quality.

25

Chapter 6

Results & Discussion

6.1 Results
The incoming ECG signal, gets filtered depending on the result of the three quality checks at the start of the
ECG system. If the ECG signal gets filtered, the signal has a bandwidth which spans from 0.5 Hz to 150 Hz
which gets passed through the quality checks again, and depending on the result, the ECG sent to the output
gets labeled with an SQI which is equal to 1 or 0. The result of filtering can be seen in Figure 6.1.

0 10 20 30 40 50 60 70 80

Time(s)

-2

-1

0

1

2

3

M
a

g
n

it
u

d
e

10
4

0 50 100 150 200 250 300 350 400 450 500

Hz

-10

0

10

20

d
B

W
/H

z

Figure 6.1: The blue images are the raw incoming ECG signal with its PSD. The orange images are the
filtered ECG signal with the band of 0.5Hz and 150 Hz.

The ECG signal gets resricted to the band which spans from 0.5 Hz to 40 Hz, this is done with a bandpass
filter. This happens after the passage of the ECG signal through the filtering and quality check. The reasoning
of this narrowing of the band of interest can be reviewed in section 4.3. The result of this filter can be seen in
Figure 6.2 .

26

0 10 20 30 40 50 60 70 80

Time(s)

-2

-1

0

1

2

3
M

a
g

n
it

u
d

e
10

4

0 50 100 150 200 250 300 350 400 450 500

Hz

-10

0

10

20

d
B

W
/H

z

Figure 6.2: The blue images are the raw incoming ECG signal with its PSD. The orange images are the
filtered ECG signal with the band of 0.5Hz and 40 Hz.

The accuracy of the signal quality indicators used in the ECG system design are mainly inspected with the
CinC2017 dataset described in section 3.3 , where the ECG signals are already labeled with a quality indicator.
These quality indicators are used as reference to determine how accurate the labels are which are obtained from
the ECG system.This system uses signal quality checks that use optimal thresholds of 99.997 for the power check
and 0.91 for the auto-correlation quality check together with a 40 bpm to 180 bpm range for the heartrate check.
70.0975% of the ECG signals from the CinC2017 dataset are labeled in the same manner as the labels obtained
by the ECG system. So both the given labels and the ECG system agree with a percentage of 70.0975% on
the labeling of all the ECG signals given by the dataset. However there is 29.9025% disagreement between the
given labels from the third dataset and the ECG system. The disagreements could be in two different manners.
Firstly, the labels of the third dataset label the ECG data as bad but the ECG system sees it as good. The
percentage of this is 17.5666%. Secondly, the third dataset labels the ECG data as good but the ECG system
sees it as bad. The percentage of this situation is 12.3359%.

The driver dataset is analysed by checking at different outputs and then compared with each other. The first
and last 15 minutes of the recordings,of this dataset are in relaxing mode. In between, the patient is driving a
car. A duration of 15 minutes corresponds to (rounded-off) 12 segments of each 80 seconds. So the first and
last 12 segments can be seen as relaxation mode.

To analyze the segments, the following parameters are being implemented as the output of the process:

• initial overall SQI of the segment (combining all the initial sub-SQI’s. The sub-SQI’s are the SQI based
on NaN detection, on power, on ACF and on the heart rate)

• final overall SQI of the segment after processing the segment

• the average heart rate and the initial spectral distribution ratio before and after processing the segment.

Segment number 9 10 11 12 13 14 15 16 17 18 19
initial fraction [%] 99.9935 99.9884 99.9883 99.9832 99.7603 99.9079 99.955 99.9577 99.9666 99.8943 99.9755
processed fraction [%] 99.9998 99.9993 99.9994 99.9994 99.9817 99.9971 99.9976 99.9990 99.9988 99.9978 99.9991
heart rate [bpm] 72.1674 70.5935 67.9074 68.7425 78.5557 86.0864 79.0363 78.4353 79.6530 76.3562 77.2658
initial SQI 0 0 0 0 0 0 0 0 0 0 0
final SQI 1 1 1 1 0 1 1 1 1 1 1

Table 6.1: ’ecg7’ of the driver dataset is runned, and the results from segments 9 till 17 are shown in the table

27

Patient ecg7 from the driver dataset is processed and examined with the threshold values for the three-step
quality check which were obtained by using the CinC2017 dataset. In table 6.1, a part of the results are given.
When looking at the first 12 segments, it can be seen that there are no bad labeled segments after processing the
signal, which means all the sub SQI’s are labeled as 1. Also, it can be observed that the average HR is almost
stable with a mean of 73.5924 ± 3.6422 bpm. On the other hand when looking at results of the segments while
driving (after the first 15 minutes), there is an increase in the average heart rate and is less stable, resulting in
a mean of 76.700 ± 4.3479 bpm. Increased activity of the patient can be the reason of an increased HR, and
experiencing stress and pressure during the driving could be the reason for more instability and more fluctuating
heart rate. With this said, the amount of unaccepted segments due to bad labeling is increased while driving.
The percentage of bad labeled segments while driving is 28.57% compared to whole range of segments while
driving. Multiple reasons can lead to this bad quality of segments, such as electrode contact noise, motion
artifacts and muscle contractions[8]. Looking at segment number 13 in table 6.1, it can be observed that the
final SQI is still labeled with zero, even after filtering it. The plot of segment 13 is given in figure 6.3.

0 1 2 3 4 5 6 7 8

Samples 104

-5

-4

-3

-2

-1

0

1

2

3

a
rb

it
ra

ry
 u

n
it
 [
a
.u

.]

plot of noisy segment 13, patient "ecg7"

iECG

fECG

Figure 6.3: The noisy segment 13 of patient ’ecg7’ the driver dataset. Even after filtering, the right part of the
segment seems noisy

Segment 13 is the moment where the patient starts with driving. Based on this, it can be said that artifacts
due to body motion affects the quality of this segment.

The SQI labeling of the ECG signals of all patients of the Stress dataset is also analysed. The percentage of bad
labeled ECG signals of every patient is 13.1370 % and the good quality signals according to the ECG system
are equal to 86.863%.

The respiratory signal is filtered by using a band-pass filter which spans from 0.1 Hz to 0.5 Hz. Figure 6.4 shows
one of the respiratory signal segments from the Stress dataset before filtering with its corresponding PSD and
Figure 6.5 shows the result after the band-pass filtering of the same respiratory signal with its corresponding
PSD.

28

0 10 20 30 40 50 60 70 80

Time(s)

-2000

-1500

-1000

-500

0

M
a

g
n

it
u

d
e

0 0.5 1 1.5 2

Hz

-10

0

10

20

d
B

W
/H

z

Figure 6.4: An unfiltered respiratory signal segment from the Stress dataset with its corresponding PSD.

0 10 20 30 40 50 60 70 80

Time(s)

-500

0

500

M
a

g
n

it
u

d
e

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Hz

-10

-5

0

5

10

d
B

W
/H

z

Figure 6.5: A filtered respiratory signal segment from the Stress dataset with its corresponding PSD.

The respiratory signal SQI is analysed with the Stress dataset. In this it is looked at the amount of bad signals
per phase.The respiratory signal is segmented in lengths of 80 seconds when this is done. For the baseline phase
,80 from the 277 respiratory segments give a bad signal which corresponds with 28.88%. The Story telling
phase gives 56% bad signals. The memory task phase has 7 bad segments out of 34, which corresponds with
20.59%. The stress anticipation phase has 68 bad segments out of 267 which gives a percentage of 24.72%. The
video exposition phase has 29 bad segments out of the 66 which corresponds to a percentage of 43.94%. The
Arithmetic task phase had 23 bad segments out of 121 which corresponds to a percentage of 19%.

6.2 Discussion
Figure 6.1 shows the result of the filtering which is performed on the ECG signal segment. Here it can be
seen from the PSD that the frequencies of 50 Hz,100 Hz and 150 Hz are removed from the ECG signal. This
indicates that the notch filters, which are used to remove the powerline interference,are performing as intended.
Secondly the good performance of the notch filter, which removes the 120 Hz, can be seen from Figure 6.1,
here it can be observed that the oscillations, which are created by the 120 Hz noise component, are clearly
removed from the ECG signal. The highpass filter, which is made for the removal of the baseline wander, is
also working as intended. Figure 6.1, shows that the baseline wander is removed from the original ECG signal.
The lowpass filter performance can be seen from Figures 6.1 and 6.2, by looking at the PSDs of both figures.
In these PSDs it can be observed that frequency components higher than 150Hz/40Hz are suppressed in the
PSD. This indicates the good performance of the lowpass filter. However noise components such as EMG noise
which have frequency that overlap the original ECG could not be removed, because bad processing of these

29

1 2 3 4 5 6 7 8 9 10 11 12
RR-interval of segment 71 695 233 872 595 599 606 608 613 611 610 611 612

Table 6.2: The results of segment number 71 from the CinC2017 dataset with their respective differences between
R-peak values at the first part. Each column corresponds to the segmentation of the signal segment 71

noises could result in distortion of the ECG signal, and thus are not tackled within the ECG design. The filters
designed however work as intended.

When looking at the ECG dataset from CinC2017, the results of ’Labeled as Good while Bad’ (LGwB) segments
show that 17.5666% is accepted as a good signal while the segments are annotated as bad in the dataset from
CinC2017. This is an unwanted result due to the fact that bad signals will be used while further analysis is
done, which can result in an inaccurate indication of the patients vital signs. The analysis on the ’Labeled as
Bad While Good’ (LBwG) 12.3359 % percentage of the data is thrown away by labeling it as a bad signal.
This situation is inefficient, because good quality data is thrown away, but can be acceptable because further
analysis of the ECG is not disturbed by these ECG signals.

A possible reason that the percentage of LGwB is such high is the strict annotating of the experts. When
analyzing the LBwG segments, it is observed that some of the segments looked very noisy and annotated bad
by the experts. In figure 6.6(b) the graph of LGwB signal-segment 71 is shown. Here, the observation is
that only the first part of the signal-segment 71 is contaminated and the R-peaks can not be detected, while
the other part looks like a clean signal. From this, the conclusion is that the experts annotated the whole
signal-segment with a bad label because the R-peaks in the first part can not be detected because of noise.
The same conclusion can be taken when looking at figure 6.6.(a). The automatic algorithm proposed in this
project, detects all possible R-peaks and takes the average of the RR-intervals to compute the average heart
rate. Looking at column 2 of the signal-segment 71, a very short RR-interval of 233 can be observed. This is
physically not possible, which means that the R peak detection goes wrong at that moment.

0 5 10 15 20 25 30

Time(s)

-4

-2

0

2

4

M
a
g

n
it

u
d

e

0 5 10 15 20 25 30

Time(s)

-1

-0.5

0

0.5

1

M
a
g

n
it

u
d

e

Figure 6.6: The segmented ECG signals from the CinC2017 dataset. The upper figure (a) belongs to segment
23, while the lower figure (b) is from segment 71

The accuracy of the R-peak detection can be improved by conditioning the distance between R-peaks. If the
RR-interval is below a value that is physically not possible, the related R-peak that is detected will not be
accepted. And if the computed RR-interval is below the set value, the algorithm should expect that this value
will hold on for a couple of periods. In this way, the algorithm will be able to distinguish an alarming situation
and a wrong R-peak detection.

Many algorithms obtained excellent accuracy when comparing the results of the automated algorithms with
export annotations, but none reached perfection. So it is highly likely that some annotations are incorrect
labeled[24].

30

The results of the respiratory signal filtering by use of a bandpass filter can be seen by comparing the Figures
6.4 and 6.5. The only thing that can be concluded from those figure is that the bandpass filter is working as
intended. This can be seen by comparing the PSDs from both figures. However, it can not be concluded that
respiratory signal at figure 6.5 is of good quality. This is because there is not a general consensus on what a
good quality respiratory signal is. This makes it harder to analyse the signal quality indicator which is labeled
on the respiratory signal. However some small analyses can still be made by analysing the Driver dataset. It
is known that the respiratory has possibly a lower quality when the subject is speaking. Knowing this, it is
expected that the respiratory signal is labeled with an SQI zero more often at speaking phases, because talking
disturbs the respiration of a subject. However this is not the case. The phases which correspond with the
subject talking are : ST, AT. AT phase has the lowest percentage, however story telling has the highest. So
the accuracy of the quality indicators of the respiratory system is up to debate. The only quality indicator
which could be determined more scientifically is the power check. However as stated earlier, a consensus of a
good quality respiratory signal is not yet achieved in literature, so improving this power check is hard without
knowing what a good respiratory signal is.

The computation time for one patient is also recorded. The computation of patient ’ecg7’ from driver dataset
takes in total 18.9021 seconds for a recording of 88.667 minutes long. The computation time for segment has a
mean of 0.2844 seconds with a deviation of 0.0615 seconds. Since the system design group computes only the
Stress dataset, the computation time for the stress dataset is also observed. For a recording of 33.2 minutes,
there was a total delay of 8.2618 seconds, with a mean of 0.0379 seconds and a standard deviation of 0.0128 for
the segment computation. Note that is algorithm is runned on a ’Intel core i5-8300H CPU, 2.30GHz’ processor.

31

Chapter 7

Conclusion

This thesis proposes two systems which can be used for the pre-processing of ECG signals and respiratory signals
which can be used for further computations to detect stress. These signals are obtained from three different
recordings in which the subjects were asked to perform different tasks. The ECG system consists of two main
part, which are the filtering and the signal quality part.

The signal quality part consists of a three-step quality check, which is performed at the beginning and after
pre-processing of the signal. The signal quality part is based on the following parts: the quantification of the
relative power of the ECG within the band of interest, weight computation based on the ACF and a heart
rate evaluation. The respiratory signal system out of three main parts. These parts are the filter part and the
signal quality part.The signal quality part consists out of two checks. The first one is the quantification of the
relative power of the respiratory signal within the band of interest, this is similar to the ECG power check. The
second part is the breath check, which checks whether a breath is taken faster than 2 seconds or slower than 10
seconds.The respiratory rate calculation part is the third part of the respiratory signal part and calculates the
respiratory rate per respiratory signal segment.

When comparing the results of the algorithm with the the labels from dataset CinC2017, there was a coherence
of 70.0975% between the quality labels from the dataset and the ECG system. However 29.9025 % of the of
ECG segments did not have a coherence. From this percentage, 17.5666% are data which are labeled as a bad
quality ECG segment by the dataset while the ECG system passes it as a good quality signal. The remaining
12.3359% is labeled as good by the dataset, while these segments are labeled as a bad quality segment by the
ECG system. 29.9025% is a high amount of segments which are incorrectly labeled by the ECG system. The
data with the 17.5666% truly apposes as a problem, because further analysis is done with this data. Thus it
can be concluded that the ECG system is working but not as accurate as intended.

The respiratory signal results were not as expected. This is concluded by analysing the Stress dataset, which
is one of the three datasets that are used in this thesis. This dataset consist of different phases, in which
two phases consist of subjects whom talking. The expectation is that these phases contain more bad quality
signals than the phases in which the subject is quiet because talking effects the respiration of a subject. The
expectation is true for ST phase which has the highest percentage of bad signals while the AT has the lowest.
However a overall consensus of a good quality respiratory signal is not yet achieved in literature, so analysing
a signal with a bad quality indicator is a hard task, because it is not well known whether this signal is truly
good or bad. This makes much needed improvements on the respiratory signal system hard.

An important contribution of this work is the giving the ability to locate the segments which contaminated by
using ACF and graph theory. Furthermore, the algorithm proposed in this project is easy to implement and
suitable for on-line environment since it is able to compute in real-time. Moreover, the average computation
time is 0.0379± 0.0128 seconds, which is fast enough for a real-time recording every 10 seconds.
The system can be improved by computing only ECG and deriving the Respiratory rate from it. This will be
an advantage because the limitation of the number of sensors on a wearable system.

32

Bibliography

[1] Bob Morssink Isar Meijer. “Stress Detection System Using ECG and Respiratory Signals.” In: (2020).

[2] Yavuzhan Mercimek Geert Jan Meppelink. “Thesis System Design of a Telehealth System”. In: (2020).

[3] Carolina Varon et al. “Unconstrained Estimation of HRV Indices After Removing Respiratory Influences
From Heart Rate”. In: IEEE Journal of Biomedical and Health Informatics 23.6 (2019), pp. 2386–2397.

[4] Alberto Hernando et al. “Inclusion of Respiratory Frequency Information in Heart Rate Variability Analy-
sis for Stress Assessment”. In: IEEE Journal of Biomedical and Health Informatics 20.4 (2016), pp. 1016–
1025.

[5] Daniel Mcduff, Sarah Gontarek, and Rosalind Picard. “Remote measurement of cognitive stress via heart
rate variability”. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (2014). doi: 10.1109/embc.2014.6944243.

[6] Aswathy Velayudhan and Soniya Peter. “Noise analysis and different denoising techniques of ECG signal-a
survey”. In: IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) (2016), eISSN–
2278.

[7] Mohamed Abdelazez, Sreeraman Rajan, and Adrian D. C. Chan. “Detection of Noise Type in Electrocar-
diogram”. In: 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA)
(2018). doi: 10.1109/memea.2018.8438664.

[8] Gary M. Friesen et al. “A comparison of the noise sensitivity of nine QRS detection algorithms”. In: IEEE
Transactions on Biomedical Engineering 37.1 (1990), pp. 85–98. doi: 10.1109/10.43620.

[9] Gari D. Clifford, Francisco Azuaje, and Patrick McSharry. Advanced methods and tools for ECG data
analysis. Artech House, 2006.

[10] Udit Satija, Barathram Ramkumar, and M. Sabarimalai Manikandan. “Automated ECG Noise Detection
and Classification System for Unsupervised Healthcare Monitoring”. In: IEEE Journal of Biomedical and
Health Informatics 22.3 (2018), pp. 722–732. doi: 10.1109/jbhi.2017.2686436.

[11] G D Clifford et al. “Signal quality indices and data fusion for determining clinical acceptability of elec-
trocardiograms”. In: Physiological Measurement 33.9 (2012), pp. 1419–1433. doi: 10.1088/0967-3334/
33/9/1419.

[12] J. A. Healey and R. W. Picard. “Detecting stress during real-world driving tasks using physiological
sensors”. In: IEEE Transactions on Intelligent Transportation Systems 6.2 (2005), pp. 156–166.

[13] G. D. Clifford et al. “AF classification from a short single lead ECG recording: The PhysioNet/computing
in cardiology challenge 2017”. In: 2017 Computing in Cardiology (CinC). 2017, pp. 1–4.

[14] David L Reich. Monitoring in anesthesia and perioperative care. Cambridge University Press, 2011.

[15] Paul Kligfield et al. “Recommendations for the standardization and interpretation of the electrocardio-
gram: part I: the electrocardiogram and its technology a scientific statement from the American Heart
Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the Amer-
ican College of Cardiology Foundation; and the Heart Rhythm Society endorsed by the International
Society for Computerized Electrocardiology”. In: Journal of the American College of Cardiology 49.10
(2007), pp. 1109–1127.

[16] John G. Proakis and Dimitris G. Manolakis. Digital signal processing: Principles, Algorithms and Appli-
cations. Prentice-Hall, 2007.

[17] Abdulhamit Subasi. Practical guide for biomedical signals analysis using machine learning techniques: a
MATLAB based approach. Academic Press, 2019.

33

https://doi.org/10.1109/embc.2014.6944243
https://doi.org/10.1109/memea.2018.8438664
https://doi.org/10.1109/10.43620
https://doi.org/10.1109/jbhi.2017.2686436
https://doi.org/10.1088/0967-3334/33/9/1419
https://doi.org/10.1088/0967-3334/33/9/1419

[18] M. Malik et al. “Heart rate variability: Standards of measurement, physiological interpretation, and clin-
ical use”. In: European Heart Journal 17.3 (Jan. 1996), pp. 354–381. doi: 10.1093/oxfordjournals.
eurheartj.a014868.

[19] Carolina Varon et al. “Robust artefact detection in long-term ECG recordings based on autocorrelation
function similarity and percentile analysis”. In: 2012 Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society. IEEE. 2012, pp. 3151–3154.

[20] Robert Avram et al. “Real-world heart rate norms in the Health eHeart study”. In: npj Digital Medicine
2.1 (2019). doi: 10.1038/s41746-019-0134-9.

[21] Jay W. Mason et al. “Electrocardiographic reference ranges derived from 79,743 ambulatory subjects”. In:
Journal of Electrocardiology 40.3 (2007). doi: 10.1016/j.jelectrocard.2006.09.003.

[22] J J Bailey et al. “Recommendations for standardization and specifications in automated electrocardiog-
raphy: bandwidth and digital signal processing. A report for health professionals by an ad hoc writing
group of the Committee on Electrocardiography and Cardiac Electrophysiology of the Council on Clinical
Cardiology, American Heart Association.” In: Circulation 81.2 (1990), pp. 730–739. doi: 10.1161/01.
cir.81.2.730.

[23] Ary L. Goldberger, Zachary D. Goldberger, and Alexei Shvilkin. “How to Make Basic ECGMeasurements”.
In: Goldbergers Clinical Electrocardiography (2018), pp. 11–20. doi: 10.1016/b978- 0- 323- 40169-
2.00003-2.

[24] Jonathan Moeyersons et al. “R-DECO: an open-source Matlab based graphical user interface for the
detection and correction of R-peaks”. In: PeerJ Computer Science 5 (2019). doi: 10.7717/peerj-cs.226.

[25] Jiapu Pan and Willis J. Tompkins. “A Real-Time QRS Detection Algorithm”. In: IEEE Transactions on
Biomedical Engineering BME-32.3 (1985), pp. 230–236. doi: 10.1109/tbme.1985.325532.

[26] C. Varon et al. “A Novel Algorithm for the Automatic Detection of Sleep Apnea From Single-Lead ECG”.
In: IEEE Transactions on Biomedical Engineering 62.9 (2015), pp. 2269–2278.

[27] Rahul Kher. “Signal Processing Techniques for Removing Noise from ECG Signals”. In: Biomedical Engi-
neering and Research 1.1 (2017).

[28] Manpreet Kaur and Birmohan Singh. “Comparison of different approaches for removal of baseline wander
from ECG signal”. In: Proceedings of the International Conference & Workshop on Emerging Trends in
Technology. 2011, pp. 1290–1294.

[29] Mindie Mosiman Jessica Fertier and Tim Mila. Introduction to Filters: FIR versus IIR. 2020. url: https:
//community.sw.siemens.com/s/article/introduction-to-filters-fir-versus-iir.

[30] Li Tan and Jean Jiang. Digital Signal Processsing(Second Edition). 2013, pp. 354–355.

[31] Jonathan Moeyersons et al. “Artefact detection and quality assessment of ambulatory ECG signals”. In:
Computer methods and programs in biomedicine 182 (2019), p. 105050.

[32] Carolina Varon et al. “A Comparative Study of ECG-derived Respiration in Ambulatory Monitoring using
the Single-lead ECG”. In: Scientific Reports 10.1 (2020), pp. 1–14.

[33] Christopher Watford. Understanding ECG Filtering. 2014. url: http://ems12lead.com/2014/03/10/
understanding-ecg-filtering/#gref.

[34] Laura Mason. Signal processing methods for non-invasive respiration monitoring. University of Oxford
Oxford, 2002.

[35] Torben Noto et al. “Automated analysis of breathing waveforms using BreathMetrics: a respiratory signal
processing toolbox”. In: Chemical senses 43.8 (2018), pp. 583–597.

[36] M. Sami Fadali and Antonio Visioli. “Chapter 12 - Practical Issues”. In: Digital Control Engineering
(Second Edition). Ed. by M. Sami Fadali and Antonio Visioli. Second Edition. Boston: Academic Press,
2013, pp. 491–531. isbn: 978-0-12-394391-0. doi: https://doi.org/10.1016/B978-0-12-394391-
0.00012-5. url: http://www.sciencedirect.com/science/article/pii/B9780123943910000125.

34

https://doi.org/10.1093/oxfordjournals.eurheartj.a014868
https://doi.org/10.1093/oxfordjournals.eurheartj.a014868
https://doi.org/10.1038/s41746-019-0134-9
https://doi.org/10.1016/j.jelectrocard.2006.09.003
https://doi.org/10.1161/01.cir.81.2.730
https://doi.org/10.1161/01.cir.81.2.730
https://doi.org/10.1016/b978-0-323-40169-2.00003-2
https://doi.org/10.1016/b978-0-323-40169-2.00003-2
https://doi.org/10.7717/peerj-cs.226
https://doi.org/10.1109/tbme.1985.325532
https://community.sw.siemens.com/s/article/introduction-to-filters-fir-versus-iir
https://community.sw.siemens.com/s/article/introduction-to-filters-fir-versus-iir
http://ems12lead.com/2014/03/10/understanding-ecg-filtering/#gref
http://ems12lead.com/2014/03/10/understanding-ecg-filtering/#gref
https://doi.org/https://doi.org/10.1016/B978-0-12-394391-0.00012-5
https://doi.org/https://doi.org/10.1016/B978-0-12-394391-0.00012-5
http://www.sciencedirect.com/science/article/pii/B9780123943910000125

Appendices

35

Appendix A

Power Spectral Density

Here are two graphs shown. These are the PSD’s of raw data. figure A.1 shows incoming clean segment and
figure A.2 shows a noisy segment. There is a visible difference in the fluctuations in the range of interest.

0 50 100 150 200 250 300 350 400 450 500

Hz

-10

-5

0

5

10

15

20

d
B

W
/H

z

Figure A.1: The PSD of a clean raw segment. Range of interest is between the red dashed lines

36

0 50 100 150 200 250 300 350 400 450 500

Hz

-5

0

5

10

15

20

25
d

B
W

/H
z

Figure A.2: The PSD of a noisy raw segment. Range of interest is between the red dashed lines

37

Appendix B

Matlab Code

B.1 ECG system design code
The codes listed in this section are the scrips which are used to make the ECG system. The MainECG.m is
used to run the FINALECG.m code which uses the other files given in this section to perform the computations
which are described in chapter 4.

B.1.1 MainECG.m

1 %%
2 % Author (s) : Enes Kinaci
3 % Talha Kuruoglu
4 %
5 % The main o f the ECG system . This code execute s FINALECG.m by supply ing
6 % the code with i t s inputs . The ECG s i g n a l s are doubles which are put in in
7 % the manner o f nx1 , in which n i s the l ength o f n .
8 %%
9

10 c l e a r a l l ;
11 load (’ Pat i ent_s ignaa l . mat ’)
12

13 %% In s e r t pa t i en t number , window o f segment and measurement channel
14 t o t a l = t i c ;
15 Fs = 1000 ; % Sample ra t e
16 t = 80 ; % Time durat ion o f the ECG segment
17 Nsegment = t ∗Fs ; % Length/Window Segment
18 Measurement = 1 ; % Channel 1 = X, 2 = Y , 3 = Z .
19 pat i entdata = Pat ientdatabase ; % I n i t i a t e s the datase t
20 patientnumber = 23 ; % Pat ient number
21

22

23 parameters = {300 , 100 , 1 , 1 , 0} ; %enve lope s i z e = 300ms , po s tp ro c e s s i ng = true ,
e c t op i c beats removal = true , i nve r t ed s i g n a l = f a l s e

24

25

26 %% Segmentation o f the s i g n a l
27 l e n g t h s i g n a l = length (pat i entdata {1 , patientnumber }) ; %Lengte van de t o t a l e

s i g n aa l
28 number_segments = f l o o r (l e n g t h s i g n a l /Nsegment) ; % i z a l gebru ik t worden in de

for−loop
29

30 % Function o f everyth ing
31 % Stor ing / showing one segment
32 proce s s ed_s igna l = c e l l (6 , 1) ;

38

33 segment_delay = ze ro s (1 , number_segments) ;
34

35 f o r i = 0 : (number_segments − 1)
36 [iECG, fECGapp , SQI ,R_peak , averageHeartRate , RR_int] = FINALECG(pat ientdata ,

patientnumber , Nsegment , Fs , Measurement , i , parameters) ;
37 proce s s ed_s igna l {1 , (i +1)} = iECG; %Ass igns the i n i t i a l s i g n a l va lue s to

segment
38 proce s s ed_s igna l {2 , (i +1)} = fECGapp ; % Fina l s i g n a l va lue s to segment which

f i l t e r h igher f r e q than 40Hz
39 proce s s ed_s igna l {3 , (i +1)} = SQI ; %Ass igns s i g n a l qua l i t y to segment
40 proce s s ed_s igna l {4 , (i +1)} = R_peak ; %Ass igns Rpeak r e s u l t s to segment
41 proce s s ed_s igna l {5 , (i +1)} = averageHeartRate ; %Ass igns Rpeak r e s u l t s to

segment
42 proce s s ed_s igna l {6 , (i +1)} = RR_int ; %Ass igns Rpeak r e s u l t s to segment
43 end

B.1.2 FINALECG.m

1 % FINAL CODE FOR ECG, with f i l t e r s and SQI .
2 %%
3

4 % Output :
5 % SQI = Signa l qua l i t y i nd i c a t o r o f the ECG.
6 % R_peak = Vector which has the R−peaks o f the ECG s i g n a l which i s put in
7 % the code
8 % averageHeartRate = The average heart ra t e which i s determined by us ing
9 % the ECG s i g n a l

10 % RR_int = Vector which has the RR−i n t e r v a l s o f the R_peak vec to r
11 % iECG = The segmented ECG s i g n a l be f o r e pre−pro c e s s i ng
12 % fECGpp = The segmented ECG a f t e r pre−pro c e s s i ng
13 %
14 % Author (s) : Enes Kinaci
15 % Talha Kuruoglu
16 %
17 % The FINALECG s c r i p t uses the s c r i p t s o f Rpeak .m, SQI_ACF.m , Power .m
18 % NaNorNot .m and ECGFILTER.m . The NaNorNot func t i on i s used to de t e c t p o s s i b l e

NaNs in the ECG be fo r e making computations .
19 % Afterward the ECG i s segmented and sent to the three−s tep qua l i t y check .
20 % The f i r s t three s c r i p s are which are mentioned are used f o r the
21 % three−s tep qua l i t y check . Depending on the SQI , the segmented ECG i s sent
22 % to the f i l t e r s which are implemented in ECGFILTER.m. Afterwards the s i g n a l
23 % i s again put in to the three−s tep qua l i t y check and depending on the
24 % re su l t , the SQI = 0 or SQI = 1 . This i s sent as output toge the r with the
25 % other outputs .
26 %
27 %
28

29 %%
30

31 f unc t i on [iECG, fECGapp , SQI ,R_peak , averageHeartRate , RR_int , f rac , averagewe ights
] = FINALECG(pat ientdata , patientnumber , Nsegment , Fs , Measurement , i , parameters ,
t)

32 f u l l p a t i e n t = pat i entdata {1 , patientnumber } ; %s e l e c t i n g s i g n a l pa t i en t
33 segmentpat ient = f u l l p a t i e n t ((1+(i ∗Nsegment)) : ((1+ i) ∗Nsegment) , Measurement) ; %

318149:328148 − Dit z i j n samples d i e NaN bevatten
34 iECG = detrend (segmentpat ient) ; %Taking away the mean .
35

36 Fnotch = 50 ; %Powerl ine Notch f requency
37 Fnotch2 = 100 ; %Powerl ine Notch f requency

39

38 Fnotch3 = 150 ; %Powerl ine Notch f requency
39 Order1 = 4 ; %Order Butterworth f o r b a s e l i n e f i l t e r
40 f c u t = 0 . 5 ;
41 Order2 = 14 ; %Order low−pass f i l t e r o f f r e qu en c i e s above 150Hz
42 f cu t2 = 150 ;
43 f cu t3 = 40 ;
44 Order3 = 14 ; %Order low−pass f i l t e r o f f r e qu en c i e s above 40Hz
45

46 %−−−−−−−−−−−−−−−− begin ACF code −−−−−−−−−−−−
47 % The func t i on ACF_Artefact can f i l t e r the s i g n a l be f o r e
48 % For ECG s i g n a l s i t i s recommended to use a bandpass f i l t e r with c u t o f f
49 % f r e qu en c i e s at 1Hz and 40Hz
50 f i l t r o . type = ’HL ’ ;
51 f i l t r o . hf = 40 ;
52 f i l t r o . l f = 0 . 5 ;
53

54 segm = 1 ; % length o f the segments to be analyzed (in seconds)
55 l a g s = [] ; % Lags used in the ACF (de f au l t 250ms)
56 %manual = 1 ; % 1 in case you want to apply a th re sho ld in the weights
57 % −−−−−−−−−−−−−−− e ind ACF code −−−−−−−−−−−−−−
58 %% SQI and f i l t e r i n g .
59

60 Nanindicator = 0 ;
61 SQI1 = NaNorNot (iECG, Nsegment) ; %%%% NaN det e c t o r
62 i f SQI1 == 1 % I f NaN not detec ted .
63 [SQI2] = Power (Fs , iECG, Nsegment) ; % F i r s t Power check .
64 i f SQI2 == 0 %I f power not good .
65 f i l teredECG = ECGFILTER(Fs , iECG, Fnotch , Fnotch2 , Fnotch3 , Order1 , f cut ,

Order2 , f cu t2) ; % FILTER NA EERSTE POWER SQI = 0 ;
66 [SQI2_1] = Power (Fs , f i lteredECG , Nsegment) ; %I f power good f o r f i l t e r e d

s i g n a l .
67 i f SQI2_1 == 1 %I f power a f t e r f i l t e r i n g good .
68 [SQI2_2 , averagewe ights] = SQI_ACF(Fs , f i lteredECG , segm , f i l t r o , l a g s) ;

%ACF with f i l t e r e d data .
69 i f SQI2_2 == 1 %I f ACF r e s u l t i s good .
70 [SQI2_3 ,R_peak , averageHeartRate , RR_int] = Rpeak (Fs , f i lteredECG ,

parameters) ;
71 i f SQI2_3 == 1 %I f Heartbeat r e s u l t i s good .
72 SQI = 1 ;
73 [b , a] = butte r (Order3 , f cu t3 /(Fs /2) , ’ low ’) ;
74 fECG = f i l t f i l t (b , a , f i l teredECG) ;
75 [b2 , a2] = butte r (Order3 , f cu t3 /(Fs /2) , ’ low ’) ;
76 fECGapp = f i l t f i l t (b2 , a2 , fECG) ;
77 e l s e %I f Heartbeat r e s u l t i s bad .
78 SQI = 0 ;
79 [b , a] = butte r (Order3 , f cu t3 /(Fs /2) , ’ low ’) ;
80 fECG = f i l t f i l t (b , a , f i l teredECG) ;
81 [b2 , a2] = butte r (Order3 , f cu t3 /(Fs /2) , ’ low ’) ;
82 fECGapp = f i l t f i l t (b2 , a2 , fECG) ;
83 end
84 e l s e
85 SQI = 0 ;
86 [SQI2_3 ,R_peak , averageHeartRate , RR_int] = Rpeak (Fs , f i lteredECG ,

parameters) ;
87 [b , a] = butte r (Order3 , f cu t3 /(Fs /2) , ’ low ’) ;
88 fECG = f i l t f i l t (b , a , f i l teredECG) ;
89 [b2 , a2] = butte r (Order3 , f cu t3 /(Fs /2) , ’ low ’) ;
90 fECGapp = f i l t f i l t (b2 , a2 , fECG) ;

40

91 end
92 e l s e %I f power a f t e r f i l t e r i n g not good .
93 SQI = 0 ;
94 [SQI2_3 ,R_peak , averageHeartRate , RR_int] = Rpeak (Fs , f i lteredECG ,

parameters) ;
95 [b , a] = butte r (Order3 , f cu t3 /(Fs /2) , ’ low ’) ;
96 fECG = f i l t f i l t (b , a , f i l teredECG) ;
97 [b2 , a2] = butte r (Order3 , f cu t3 /(Fs /2) , ’ low ’) ;
98 fECGapp = f i l t f i l t (b2 , a2 , fECG) ;
99 end

100 e l s e %I f power o r i g i n a l s i g n a l i s good .
101 [SQI2_5 , averagewe ights] = SQI_ACF(Fs , iECG, segm , f i l t r o , l a g s) ; %ACF with

o r i g i n a l data .
102 i f SQI2_5 == 1 %ACF with o r i g i n a l data i s good .
103 [SQI2_6 ,R_peak , averageHeartRate , RR_int] = Rpeak (Fs , iECG, parameters)

; %Rpeak with o r i g i n a l s i g n a l
104 i f SQI2_6 == 1 %Rpeak with o r i g i n a l s i g n a l i s good
105 fECG = iECG;
106 SQI = 1 ;
107 [b , a] = butte r (Order3 , f cu t3 /(Fs /2) , ’ low ’) ;
108 fECG = f i l t f i l t (b , a , iECG) ;
109 [b2 , a2] = butte r (Order3 , f cu t3 /(Fs /2) , ’ low ’) ;
110 fECGapp = f i l t f i l t (b2 , a2 , fECG) ;
111 e l s e %Rpeak with o r i g i n a l s i g n a l i s bad
112 f i l teredECG = ECGFILTER(Fs , iECG, Fnotch , Fnotch2 , Fnotch3 , Order1 ,

f cut , Order2 , f cu t2) ; % FILTER iECG na Rpeak de t e c t i on ;
113 [SQI2_7] = Power (Fs , f i lteredECG , Nsegment) ;
114 i f SQI2_7 == 1
115 [SQI2_8 , averagewe ights] = SQI_ACF(Fs , f i lteredECG , segm , f i l t r o

, l a g s) ;
116 i f SQI2_8 == 1
117 [SQI2_9 ,R_peak , averageHeartRate , RR_int] = Rpeak (Fs ,

f i lteredECG , parameters) ;
118 i f SQI2_9 == 1
119 SQI = 1 ;
120 [b , a] = butte r (Order3 , f cu t3 /(Fs /2) , ’ low ’) ;
121 fECG = f i l t f i l t (b , a , f i l teredECG) ;
122 [b2 , a2] = butte r (Order3 , f cu t3 /(Fs /2) , ’ low ’) ;
123 fECGapp = f i l t f i l t (b2 , a2 , fECG) ;
124 e l s e
125 SQI = 0 ;
126 [b , a] = butte r (Order3 , f cu t3 /(Fs /2) , ’ low ’) ;
127 fECG = f i l t f i l t (b , a , f i l teredECG) ;
128 [b2 , a2] = butte r (Order3 , f cu t3 /(Fs /2) , ’ low ’) ;
129 fECGapp = f i l t f i l t (b2 , a2 , fECG) ;
130 end
131 e l s e
132 [SQI2_3 ,R_peak , averageHeartRate , RR_int] = Rpeak (Fs ,

f i lteredECG , parameters) ;
133 SQI = 0 ;
134 [b , a] = butte r (Order3 , f cu t3 /(Fs /2) , ’ low ’) ;
135 fECG = f i l t f i l t (b , a , f i l teredECG) ;
136 [b2 , a2] = butte r (Order3 , f cu t3 /(Fs /2) , ’ low ’) ;
137 fECGapp = f i l t f i l t (b2 , a2 , fECG) ;
138 end
139 e l s e
140 SQI = 0 ;
141 [SQI2_3 ,R_peak , averageHeartRate , RR_int] = Rpeak (Fs ,

41

f i l teredECG , parameters) ;
142 [b , a] = butte r (Order3 , f cu t3 /(Fs /2) , ’ low ’) ;
143 fECG = f i l t f i l t (b , a , f i l teredECG) ;
144 [b2 , a2] = butte r (Order3 , f cu t3 /(Fs /2) , ’ low ’) ;
145 fECGapp = f i l t f i l t (b2 , a2 , fECG) ;
146 end
147 end
148 e l s e %ACF with o r i g i n a l data i s bad .
149 f i l teredECG = ECGFILTER(Fs , iECG, Fnotch , Fnotch2 , Fnotch3 , Order1 , f cut ,

Order2 , f cu t2) ; % FILTER iECG na ACF de t e c t i on ;
150 [SQI2_10] = Power (Fs , f i lteredECG , Nsegment) ;
151 i f SQI2_10 == 1
152 [SQI2_11 , averagewe ights] = SQI_ACF(Fs , f i lteredECG , segm , f i l t r o ,

l a g s) ;
153 i f SQI2_11 == 1
154 [SQI2_12 ,R_peak , averageHeartRate , RR_int] = Rpeak (Fs ,

f i lteredECG , parameters , t) ;
155 i f SQI2_12 == 1
156 SQI = 1 ;
157 [b , a] = butte r (Order3 , f cu t3 /(Fs /2) , ’ low ’) ;
158 fECG = f i l t f i l t (b , a , f i l teredECG) ;
159 [b2 , a2] = butte r (Order3 , f cu t3 /(Fs /2) , ’ low ’) ;
160 fECGapp = f i l t f i l t (b2 , a2 , fECG) ;
161 e l s e
162 SQI = 0 ;
163 [b , a] = butte r (Order3 , f cu t3 /(Fs /2) , ’ low ’) ;
164 fECG = f i l t f i l t (b , a , f i l teredECG) ;
165 [b2 , a2] = butte r (Order3 , f cu t3 /(Fs /2) , ’ low ’) ;
166 fECGapp = f i l t f i l t (b2 , a2 , fECG) ;
167 end
168 e l s e
169 SQI = 0 ;
170 [b , a] = butte r (Order3 , f cu t3 /(Fs /2) , ’ low ’) ;
171 [SQI2_3 ,R_peak , averageHeartRate , RR_int] = Rpeak (Fs ,

f i lteredECG , parameters , t) ;
172 fECG = f i l t f i l t (b , a , f i l teredECG) ;
173 [b2 , a2] = butte r (Order3 , f cu t3 /(Fs /2) , ’ low ’) ;
174 fECGapp = f i l t f i l t (b2 , a2 , fECG) ;
175 end
176 e l s e
177 SQI = 0 ;
178 [b , a] = butte r (Order3 , f cu t3 /(Fs /2) , ’ low ’) ;
179 [SQI2_3 ,R_peak , averageHeartRate , RR_int] = Rpeak (Fs , f i lteredECG ,

parameters , t) ;
180 fECG = f i l t f i l t (b , a , f i l teredECG) ;
181 [b2 , a2] = butte r (Order3 , f cu t3 /(Fs /2) , ’ low ’) ;
182 fECGapp = f i l t f i l t (b2 , a2 , fECG) ;
183 end
184 end
185 end
186

187 e l s e %%%% I f NaN detec ted .
188 Nanindicator = 1 ;
189 SQI = 0 ;
190 R_peak = 0 ;
191 averageHeartRate =0;
192 averagewe ights = 0 ;
193 RR_int = 0 ;

42

194 f r a c = f r a c ;
195 fECG = segmentpat ient ;
196 fECGapp = fECG;
197 end
198

199 end

B.1.3 NaNorNot.m

1 %%
2

3 % Output :
4 % SQI_NaN − s i g n a l qua l i t y i nd i c a t o r which i s an i nd i c a t i o n o f the p o s s i b l e

presence o f a NaN/NaNs .
5

6

7 % Author (s) : Enes Kinaci
8 % Talha Kuruoglu
9

10 %This a lgor i tm checks whether the incoming ECG s i g n a l has a NaN or NaNs i n s i d e
o f i t .

11 %Depending on the presence o f a NaN or NaNs , a SQI i s sent as output .
12 %SQI = 1 , means that a NaN i s detected , whi l e SQI = 0 , means that no NaNs are

detec ted .
13 %%
14

15 % NaN det e c t o r
16 f unc t i on SQI_NaN = NaNorNot (iECG, Nsegment)
17 i =1;
18 SQI_NaN =1;
19 whi le (i <= Nsegment && SQI_NaN == 1)
20 Index = isnan (iECG(i : 1)) ;
21 i f Index == 1 ;
22 SQI_NaN = 0 ;
23 i = i +1;
24 e l s e
25 SQI_NaN =1;
26 i = i +1;
27 end
28

29 end

B.1.4 Power.m

1 % Power indicator
2 %%
3

4 % Output :
5 % SQI_power = S igna l qua l i t y i nd i c a t o r a f t e r the power qua l i t y check
6 %
7 %
8 % Author (s) : Enes Kinaci
9 % Talha Kuruoglu

10 %
11 % This a lgor i thm i s the conta in s the power qua l i t y check in which the percentage

o f the power in the band o f i n t e r e s t o f the
12 % ECG i s compared with i t s whole spectrum . Depending on t h i s percentage , a

SQI_power = 0 or SQI_power = 1 i s send as output .
13

43

14

15 %%
16

17 f unc t i on [SQI_power] = Power (Fs , iECG, Nsegment)
18

19 %% input
20 windowlength = Nsegment ; %Length o f the window
21 over lap = Nsegment ∗ 0 . 5 ; %number o f over lap samples
22 ndft = Fs ; %number o f DFT po in t s
23 %% Plo t t i ng the PSD us ing Welch Method
24

25 [pxx1 , f] = pwelch (iECG, windowlength , over lap , ndft , Fs) ; % the power components
with t h e i r f r e qu en c i e s are c a l c u l a t ed

26

27 %% Calcu la t ing the t o t a l power
28

29 P0 = trapz (pxx1) ; %Whole spectrum power
30 pxx1ECG = pxx1 (1 : 1 50) ; % Ca l cu la t ing area o f the ECG i n t e r e s t band
31 PECG = trapz (pxx1ECG) ;%Ca l cu l a t ing area o f the whole power spectrum
32 f r a c = ((PECG)/P0) ∗100 ; % determining the percentage o f power in the ECG

i n t e r e s t band compared to the whole spectrum .
33

34 i f (f r a c > 99 .997)
35 SQI_power = 1 ;
36 e l s e
37 SQI_power = 0 ;
38 end
39

40 end

B.1.5 Rpeak.m

1 % Rpeak de t e c t i on SQI
2

3 % Output :
4 % SQI = Signa l qua l i t y i nd i c a t o r which i s obta ined from the heartbeat check .
5 % R_peak = Vector which has the R−peaks o f the ECG s i g n a l which i s put in
6 % the code
7 % averageHeartRate = The average heart ra t e which i s determined by us ing
8 % the ECG s i g n a l
9 % RR_int = Vector which has the RR−i n t e r v a l s o f the R_peak vec to r

10 %
11 %
12 % Author (s) : Enes Kinaci
13 % Talha Kuruoglu
14 %
15 % This a lgor i thm de t e c t s the R−peaks and the corre spond ing RR−i n t e r v a l s o f the

incoming ECG by us ing the func t i on RRpeak .
16 % Afterwards a mean o f the RR−i n t e r v a l s i s taken to c a l c u l a t e the

averageHeartRate . A check i s performed a f t e rwards to determine i f the
averageHeart rate

17 % i s in the range o f 40 or 180 bpm. I f i t i s then the SQI = 0 a f t e rwards
18 % i t s not the SQI = 1 .
19 %%
20 f unc t i on [SQI ,R_peak , averageHeartRate , RR_int] = Rpeak (Fs ,ECG, parameters)
21 [R_peak , RR_int] = RRpeak(parameters ,ECG, Fs) ; % Ca l cu la t i on o f the R−peaks and

RR−i n t e r v a l s .
22 avgRR= mean(RR_int{1 ,1}) ; % average RR−i n t e r v a l
23

44

24

25 averageHeartRate = 60/(avgRR/1000) ; % averageHeartRate i s c a l c u l a t ed in beats
per minute (bpm) .

26

27

28 i f ((averageHeartRate < 40) | | (averageHeartRate > 180))
29 SQI = 0 ;
30 e l s e
31 SQI = 1 ;
32

33 end

B.1.6 RRpeak.m

1 f unc t i on [R_peak , RR_int] = RRpeak(parameters , s i gna l , f s)
2 % Output :
3 % R_peak − Locat ion o f the R−peaks in samples
4 % RR_int − I n t e r v a l s between the R−peaks in ms
5 % check − Check i f the method was run c o r r e c t l y
6 %
7 % Author (s) : Jonathan Moeyersons (Jonathan . Moeyersons@esat . kuleuven . be)
8 % Sabine Van Hu f f e l (Sabine . Vanhuffe l@esat . kuleuven . be)
9 % Caro l ina Varon (Caro l ina . Varon@esat . kuleuven . be)

10 %
11 % Vers ion History :
12 % − 06/05/2019 JM I n i t i a l v e r s i on
13 %
14 % Copyright (c) 2019 , Jonathan Moeyersons , KULeuven−ESAT−STADIUS
15 %
16 % This so f tware i s made av a i l a b l e f o r non commercial r e s ea r ch purposes only
17 % under the GNU General Publ ic L i cense . However , notwithstanding any
18 % prov i s i on o f the GNU General Publ ic License , t h i s so f tware may not be
19 % used f o r commercial purposes without e x p l i c i t wr i t t en permis s ion a f t e r
20 % contac t ing jonathan . moeyersons@esat . kuleuven . be
21 %
22 % This program i s f r e e so f tware : you can r e d i s t r i b u t e i t and/ or modify
23 % i t under the terms o f the GNU General Publ ic L i cense as publ i shed by
24 % the Free Software Foundation , e i t h e r v e r s i on 3 o f the License , or
25 % (at your opt ion) any l a t e r v e r s i on .
26 %
27 % This program i s d i s t r i b u t e d in the hope that i t w i l l be u se fu l ,
28 % but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
29 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
30 % GNU General Publ ic L i cense f o r more d e t a i l s .
31 %
32 % You should have r e c e i v ed a copy o f the GNU General Publ ic L i cense
33 % along with t h i s program . I f not , s e e <https : //www. gnu . org / l i c e n s e s />.
34

35

36 % Paramaters i s a c e l l conta in ing :
37 % { enve lope s i z e [ms] , heart ra t e [bpm] , po s tp ro c e s s i ng [bool] , e c t op i c beat
38 % removal [bool] , i nve r t ed s i g n a l [bool] }
39

40

41 % Get the s i z e o f the s i g n a l
42 [o r i g ina l_s igna l_ length , nr_ch] = s i z e (s i g n a l) ;
43

44 % Pre−a l l o c a t e the R−peak and RR−i n t e r v a l v a r i ab l e
45 R_peak = c e l l (1 , nr_ch) ;

45

46 RR_int = c e l l (1 , nr_ch) ;
47

48

49 env = round (f s ∗parameters {1}/1000) ;
50 avgHR = parameters {2} ;
51 postproc = parameters {3} ;
52 ec t = parameters {4} ;
53 i nve r t ed = parameters {5} ;
54

55 % Check i f the s i g n a l i s inverted , i f so , take ac t i on
56 i f i nve r t ed
57 s i g n a l = −s i g n a l ;
58 end
59

60 % Set the segment s i z e to one minute and compute the amount o f minutes in
61 % the s i g n a l
62 segm_length = 60∗ f s ;
63 nr_segm_original = f l o o r (o r i g ina l_s i gna l_ l eng th /segm_length) ;
64

65 % Add ze ro s i f the s i g n a l does not conta in a round number o f minutes
66 i f nr_segm_original ~= 0
67 s i g n a l = [s i g n a l ; z e r o s (segm_length−(o r i g ina l_s igna l_ length−nr_segm_original

∗ segm_length) , nr_ch)] ;
68

69 % Get the new length and amount o f segments
70 [new_signal_length , ~] = s i z e (s i g n a l) ;
71 nr_segm_new = f l o o r (new_signal_length/segm_length) ;
72 e l s e
73 % Get the new length and amount o f segments
74 [new_signal_length , ~] = s i z e (s i g n a l) ;
75 nr_segm_new = 1 ;
76 end
77

78 % Pre−a l l o c a t e the R−peaks per channel
79 R_peak_ch = c e l l (nr_segm_new) ;
80

81 % Loop over the channe l s
82 f o r i i = 1 : nr_ch
83 %% Segmentize the s i g n a l s
84 avg = mean(s i g n a l (: , i i)) ;
85 s = std (s i g n a l (: , i i)) ;
86 i f nr_segm_new > 1
87 segmented_ecg = (double (reshape (double (s i g n a l (: , i i)) , segm_length ,

nr_segm_new))) ;
88 % segmented_ecg = segmented_ecg−(repmat (avg , s i z e (segmented_ecg , 1) ,

s i z e (segmented_ecg , 2))) ;
89 % segmented_ecg = segmented_ecg . / (repmat (s , s i z e (segmented_ecg , 1) ,

s i z e (segmented_ecg , 2))) ;
90 e l s e
91 segmented_ecg = (s i g n a l (: , i i)−avg) / s ;
92 end
93

94 % Go through each segment
95 f o r i i i = 1 : nr_segm_new
96 %% Make the segments f i v e seconds l onge r on each s i d e
97 i f nr_segm_new > 1
98 i f i i i == 1
99 % End the segment f i v e seconds l a t e r

46

100 segm = [segmented_ecg (: , 1) ; segmented_ecg (1 : f s ∗5 ,2)] ;
101 e l s e i f i i i==nr_segm_new
102 % Star t the segment f i v e seconds e a r l i e r
103 segm = [segmented_ecg (end−(f s ∗5)+1:end , i i i −1) ; segmented_ecg (1 :

end−(new_signal_length−o r i g i na l_s i gna l_ l eng th) , i i i)] ;
104 e l s e
105 % Star t the segement f i v e seconds e a r l i e r and end f i v e seconds

l a t e r
106 segm = [segmented_ecg (end−(f s ∗5)+1:end , i i i −1) ; segmented_ecg (: ,

i i i) ; segmented_ecg (1 : f s ∗5 , i i i +1)] ;
107 end
108 e l s e
109 % Take the whole segment
110 segm = segmented_ecg ;
111 end
112

113 %% Envelope the s i g n a l
114 % Get the time
115 time = (1 : l ength (segm)) / f s ;
116

117 % Upper enve lope
118 up_env = env_secant (time , segm , env , ’ top ’) ;
119

120 % Lower enve lope
121 low_env = env_secant (time , segm , env , ’ bottom ’) ;
122

123 % Enveloped segment
124 env_segm = up_env−low_env ;
125

126 %% Detect peaks in the enveloped segment
127 % Get the f requency r a t i o with 250 Hz
128 f r eq_ra t i o = f s /250 ;
129

130 % Get the enve lope r a t i o
131 env_ratio = env /(0 .15∗ f s) ;
132

133 % Peaks are detec ted by check ing whether the d e r i v a t i v e i s p o s i t i v e and
134 % i f the peaks l a s t long enough (s tep s i z e) . The sma l l e r the s tep
135 % s i z e , the more sure that a l l R−peaks are detected , but a l s o the
136 % more non−R−peaks are detec ted . To avoid l o c a l minima , a s tep
137 % (~=1) i s used . The o r i g i n a l s tep s i z e i s 20 samples = 80ms
138 % fo r an enve lope s i z e o f 150ms and a sampling f requency o f
139 % 250 Hz .
140

141 al l_peaks = calc_pos_opt (env_segm , f l o o r (20∗ f r eq_ra t i o ∗ env_ratio) ,1) ;
142

143 % f i g u r e ; p l o t (env_segm) ; hold on ; s c a t t e r (al l_peaks , env_segm(
al l_peaks)) ;

144

145 % Only cont inue i f enough peaks have been detec ted
146 i f l ength (a l l_peaks) > time (end) /2
147 % Adaptive th r e sho ld ing
148 [R_peak_segm , RR_int_segm , ~] = adapt ive_thresho ld ing (al l_peaks ,

env_segm , f s , avgHR , time) ;
149

150 % f i g u r e ; p l o t (env_segm) ; hold on ; s c a t t e r (R_peak_segm , env_segm(
R_peak_segm)) ;

151

47

152 i f postproc && length (RR_int_segm) > 5
153 % Post−proce s s the RR−i n t e r v a l s
154 [R_peak_segm] = post_process ing (al l_peaks , R_peak_segm ,

RR_int_segm , env_segm , f s) ;
155 end
156 e l s e
157 % Set the R and RR va r i a b l e s empty
158 R_peak_segm = [] ;
159 end
160

161 % Remove ex c e s s i v e R−peaks on both s i d e s
162 i f l ength (R_peak_segm) > time (end) /2
163 i f nr_segm_new > 1
164 i f i i i == 1
165 % Remove the l a s t f i v e seconds
166 R_peak_segm = R_peak_segm(R_peak_segm<=segm_length) ;
167 e l s e i f i i i == nr_segm_new
168 % Remove the f i r s t f i v e seconds
169 R_peak_segm = R_peak_segm(R_peak_segm>f s ∗5)−(f s ∗5) ;
170 e l s e
171 % Remove the f i r s t and l a s t f i v e seconds
172 R_peak_segm = R_peak_segm(R_peak_segm>f s ∗5)− f s ∗5 ;
173 R_peak_segm = R_peak_segm(R_peak_segm<=segm_length) ;
174 end
175 end
176 R_peak_segm = reshape (R_peak_segm , 1 , l ength (R_peak_segm)) ;
177 e l s e
178 R_peak_segm = [] ;
179 end
180

181 % Store the R−peaks o f t h i s channel in a c e l l
182 R_peak_ch{ i i i } = unique (R_peak_segm) ;
183 end
184

185 %% Merge segments
186 R_peak_temp = [] ;
187

188 % Loop over the segments
189 f o r i i i = 1 : nr_segm_new
190 R_peak_temp = [R_peak_temp ,R_peak_ch{ i i i }+segm_length ∗(i i i −1)] ; %#ok
191 end
192

193 %% R−peak c o r r e c t i o n in the ECG s i g n a l
194 % Def ine window width (o r i g i n a l l y t h i s was equal to the enve lope s i z e)
195 window = round (0 .065∗ f s) ;
196

197 R_peak_temp = peaks_in_ecg (s i g n a l (: , i i) ,R_peak_temp , window) ;
198

199 % Take only the unique R−peaks
200 R_peak_temp = unique (R_peak_temp) ;
201

202 % Get the RR−i n t e r v a l s in ms
203 RR_int_temp = 1000∗(d i f f (R_peak_temp) / f s) ;
204

205 i f ~isempty (R_peak_temp)
206 %% Correct the R−peaks f o r e c t op i c s
207 i f e c t
208 [R_peak_temp ,~ ,~] = ec top i c_detec t i on_cor r e c t i on (f s , RR_int_temp ,

48

R_peak_temp) ;
209 end
210 end
211

212 %% Store the R−peaks and RR−i n t e r v a l s
213 i f ~isempty (R_peak_temp)
214 R_peak{ i i } = round (unique (R_peak_temp)) ;
215 RR_int{ i i } = 1000∗(d i f f (R_peak{ i i }) / f s) ;
216 e l s e
217 R_peak{ i i } = [] ;
218 RR_int{ i i } = [] ;
219 end
220 end
221

222 end
223

224

225

226

227 %%%%%% Functions
228 f unc t i on [R_peak_segm , RR_int_segm , RR_avg] = adapt ive_thresho ld ing (peaks , s i gna l

, f s , avgHR , time)
229

230 % Get the standard dev i a t i on o f the enveloped s i g n a l
231 STD = std (s i g n a l) ;
232

233 % Set the average RR−i n t e r v a l
234 RR_avg = ze ro s (1 , l ength (peaks)−2) ;
235 RR_avg(1) = 60000/avgHR ;
236

237 % % Set the average s i g n a l and no i s e peak
238 % peak_avg = 0.7∗ trimmean (s i g n a l (peaks) ,20) ;
239 % noise_avg = peak_avg /2 ;
240

241 peak_avg = 0 . 7∗ (median (s i g n a l (peaks))+mean(s i g n a l (peaks))) /2 ;
242 noise_avg = 0 .3∗ (median (s i g n a l (peaks))+mean(s i g n a l (peaks))) /2 ;
243

244 % Set th r e sho ld s
245 peak_threshold = noise_avg + 0 .25∗ (peak_avg−noise_avg) ;
246 no i se_thresho ld = peak_threshold /2 ;
247

248 % Pre−a l l o c a t e
249 R_peak_segm = ze ro s (1 , l ength (peaks)) ;
250 RR_int_segm = ze ro s (1 , l ength (peaks)−1) ;
251

252 % Se l e c t the f i r s t R−peak
253 count = 1 ;
254 whi le R_peak_segm(1) == 0
255 i f s i g n a l (peaks (count)) > no i se_thresho ld
256 R_peak_segm(1) = peaks (count) ;
257 e l s e
258 count = count + 1 ;
259 end
260 end
261

262 % Star t the peak counter
263 peak_counter = 1 ;
264

49

265 % Loop over a l l peaks , s t a r t i n g from the second
266 f o r idx = count + 1 : l ength (peaks)
267

268 % Se l e c t the peak
269 peak = s i g n a l (peaks (idx)) ;
270

271 % Def ine the lower l im i t o f the RR−i n t e r v a l
272 RR_lower_limit = 0.65∗RR_avg(idx−1) ;
273 i f RR_lower_limit < 200
274 RR_lower_limit = 200 ; % Lower l im i t f o r RRI i s 200 ms −−> Inc lude s

every cond i t i on
275 end
276

277 % Def ine the upper l im i t o f the RR−i n t e r v a l
278 RR_upper_limit = 1.35∗RR_avg(idx−1) ;
279 i f RR_upper_limit > 1600
280 RR_upper_limit = 1600 ; % Upper l im i t f o r RRI i s 1600 ms
281 end
282

283 % Determine whether the peak i s a s i g n a l or a no i s e peak
284 i f peak >= peak_threshold % Peak i s an R−peak
285

286 % Make the peak amplitude sma l l e r i f i t i s too high
287 % NOTE: This was p r ev i ou s l y done be f o r e the peak
288 % search , but t h i s might cause the l o c a t i o n o f the
289 % peak to dev ia t e from the ac tua l l o c a t i o n .
290 i f peak > 4∗STD
291 peak = 4∗STD;
292 end
293

294 % Adjust the peak average
295 peak_avg = 0.125∗ peak + 0.875∗ peak_avg ;
296

297 % Add s i g n a l peak
298 peak_counter = peak_counter + 1 ;
299 R_peak_segm(peak_counter) = peaks (idx) ;
300

301 % Adjust RR i n t e r v a l
302 RR_int_segm(peak_counter−1) = 1000∗(R_peak_segm(peak_counter)−

R_peak_segm(peak_counter−1)) / f s ; % In ms
303

304 e l s e i f peak <= noi se_thresho ld % Peak i s a no i s e peak
305 % Adjust the no i s e average
306 noise_avg = 0.125∗ peak + 0.875∗ noise_avg ;
307

308 e l s e % searchback procedure
309 i f peak_counter > 1
310

311 % Check i f the candidate RR−i n t e r v a l i s with in
312 % the boundar ies o f the lower and upper
313 % RR−l im i t s with the prev ious R−peak
314 i f time (peaks (idx)) >= RR_lower_limit/1000+time (R_peak_segm(

peak_counter)) . . .
315 && time (peaks (idx)) <= RR_upper_limit/1000+time (

R_peak_segm(peak_counter))
316

317 % Check i f we are at the end , i f the next peak i s a
318 % s i g n a l peak , i f i t i s a s i g n a l peak , check the time

50

319 % in t e r v a l
320 i f idx == length (peaks) | | s i g n a l (peaks (idx+1)) <

peak_threshold | | (s i g n a l (peaks (idx+1)) >= peak_threshold
&& time (peaks (idx+1))−time (peaks (idx)) > 0 . 2)

321 % Adjust the peak average
322 peak_avg = 0.25∗ peak + 0.75∗ peak_avg ;
323

324 % Add R−peak
325 peak_counter = peak_counter + 1 ;
326 R_peak_segm(peak_counter) = peaks (idx) ;
327

328 % Adjust RR i n t e r v a l
329 RR_int_segm(peak_counter−1) = 1000∗(R_peak_segm(

peak_counter)−R_peak_segm(peak_counter−1)) / f s ; % In
ms

330

331 e l s e % Peak i s a no i s e peak
332 % Adjust the no i s e average
333 noise_avg = 0.125∗ peak+0.875∗ noise_avg ;
334 end
335

336 e l s e % Peak i s a no i s e peak
337 % Adjust the no i s e average
338 noise_avg = 0.125∗ peak+0.875∗ noise_avg ;
339 end
340 e l s e % Peak i s a no i s e peak
341 % Adjust the no i s e average
342 noise_avg = 0.125∗ peak+0.875∗ noise_avg ;
343 end
344 end
345

346 % Adjust the RR−average
347 i f peak_counter > 9
348 RR_avg(idx) = mean(RR_int_segm(peak_counter−8:peak_counter−1)) ;
349 e l s e i f peak_counter > 1
350 RR_avg(idx) = 0.5∗RR_avg(idx−1)+0.5∗median (RR_int_segm (1 :

peak_counter−1)) ;
351 end
352

353 % Adjust th r e sho ld s
354 peak_threshold = noise_avg + 0 .25∗ (peak_avg−noise_avg) ;
355 no i se_thresho ld = peak_threshold /2 ;
356 end
357

358 % Get the ac tua l R−peaks
359 R_peak_segm = R_peak_segm (1 : peak_counter) ;
360

361 % Get the ac tua l RR−i n t e r v a l s , in ms
362 RR_int_segm = RR_int_segm (1 : peak_counter−1) ;
363

364 % f i g u r e ;
365 % plo t (s i g n a l)
366 % hold on ;
367 % sc a t t e r (R_peak_segm , s i g n a l (R_peak_segm))
368 end
369

370 f unc t i on R_peak_segm = post_process ing (al l_peaks , R_peak_segm , RR_int_segm ,
s i gna l , f s)

51

371 % To check whether RRI i s c o r r e c t . This w i l l be done by comparing
372 % the RR−i n t e r v a l with the mean o f the 3 past RR−i n t e r v a l s . A past
373 % RR−i n t e r v a l should not be a ’ problem ’ i n t e r v a l .
374

375 % Set ba s i c v a r i a b l e s
376 a = 0 . 3 ; % 30% d i f f e r e n c e
377 d = 0 . 5 ; % 50% d i f f e r e n c e
378 max_k = 6 ; % Maximum ammount o f prev ious RR−i n t e r v a l s
379

380 % Get the amount o f RR−i n t e r v a l s
381 l en = length (RR_int_segm) ;
382

383 % Pre−a l l o c a t e
384 large_prob = ze ro s (1 , l en) ; % Index o f l a r g e problems
385 RRref_all = ze ro s (1 , l en) ; % Reference RR i n t e r v a l s
386

387 % Set f i r s t RR−r e f e r e n c e
388 RR_ref = trimmean (RR_int_segm (1 : 5) ,50) ;
389 RRref_all (1) = RR_ref ;
390

391 % Set loop s t a r t
392 counter = 1 ;
393

394 % Loop over the d i f f e r e n t RR−i n t e r v a l s
395 whi le counter < len−1
396 % Def ine the RR−r e f i f you are f u r t h e r than the f i r s t RR−i n t e r v a l
397 i f counter > 2
398

399 % Set v a r i a b l e s
400 k = 1 ; % Number o f prev ious RR−i n t e r v a l s
401 sum_ref = 0 ; % Sum of the good prev ious RRI ’ s
402 num = 0 ; % Number o f good prev ious RRI ’ s
403 wght = [0 . 5 0 .3 0 . 2] ; % Weights : the f a r t h e r away , the lower the

weight
404

405 whi le counter−k > 0 && num < 3 && k < max_k
406

407 % Check i f the prev ious RRI i s a b ig problem
408 i f large_prob (counter−k) == 1
409 prob_check = 1 ;
410 e l s e i f large_prob (counter−k) == 0
411 prob_check = 0 ;
412 end
413

414 % I f t h i s i s not the case , use i t f o r r e f e r e n c e
415 i f ~prob_check
416 num = num + 1 ;
417 sum_ref = sum_ref + wght (num) ∗RR_int_segm(counter−k) ;
418 end
419 k = k+1;
420 end
421

422 % I f no good prev ious RR−i n t e r v a l s are found , t h i s probably means
that

423 % th i s i s the new normal , so j u s t take the three prev ious
424 i f num <= 1
425 k = 1 ;
426 whi le counter−k > 0 && num < 3

52

427 num = num + 1 ;
428 sum_ref = sum_ref + wght (num) ∗RR_int_segm(counter−k) ;
429 k = k+1;
430 end
431 end
432

433 % Def ine the r e f e r e n c e v a r i a b l e s
434 RR_ref = sum_ref/sum(wght (1 :num)) ;
435 no_RR_ref = nnz (RRref_all) ;
436 RRref_all (no_RR_ref+1) = RR_ref ;
437 end
438

439 % Check f o r too smal l RR−i n t e r v a l s
440 i f RR_int_segm(counter) < (1−a) ∗RR_ref | | RR_int_segm(counter) < 200
441 % Set loop ing v a r i a b l e s
442 counter1 = 1 ;
443 counter2 = 0 ;
444 t e s t = 1 ;
445

446 % Get the sum with the prev ious RR−i n t e r v a l
447 t ry
448 RRnew1 = RR_int_segm(counter) + RR_int_segm(counter −1) ;
449 catch
450 RRnew1 = [] ;
451 end
452

453 % Get the sum with the next RR−i n t e r v a l
454 sumRR = RR_int_segm(counter) + RR_int_segm(counter + counter1) ;
455 RRnew2 = sumRR;
456

457 % Loop un t i l a good summation i s found
458 whi le t e s t == 1
459

460 % Only proceed i f we are not at the end o f the s i g n a l
461 i f counter + counter1 < len
462 % I f the new RR−i n t e r v a l i s s t i l l too smal l
463 i f sumRR < (1−a) ∗RR_ref | | sumRR < 200
464 % Adjust counter
465 counter1 = counter1 + 1 ;
466

467 % Add the next RR−i n t e r v a l
468 sumRR = sumRR + RR_int_segm(counter+counter1) ;
469

470 % Good summation
471 e l s e i f abs (sumRR−RR_ref) < a∗RR_ref
472 % Set new loop ing va r i ab l e
473 t e s t 2 = 1 ;
474

475 % Adjust the second counter
476 counter2 = counter2 + 1 ;
477

478 % Loop un t i l the best summation i s found
479 whi le t e s t 2 == 1
480

481 % Only proceed i f we are not at the end o f the
482 % s i g n a l
483 i f counter + counter1 + counter2 < len
484

53

485 % Add the next RR−i n t e r v a l
486 sumRR2 = sumRR + RR_int_segm(counter + counter1

+ counter2) ;
487

488 % Compute the d i f f e r e n c e o f both sums with the
489 % RR−r e f e r e n c e
490 d i f f 1 = abs (RR_ref−sumRR) / RR_ref ;
491 d i f f 2 = abs (RR_ref−sumRR2) / RR_ref ;
492

493 % I f the i n i t i a l sum i s bes t
494 i f d i f f 1 < d i f f 2
495 % Stop both loops
496 t e s t = 0 ;
497 t e s t 2 = 0 ;
498

499 % Store the i n i t i a l sum as new RR−i n t e r v a l
500 RRnew2 = sumRR;
501

502 % Adjust the second counter (nece s sa ry f o r
503 % l a t e r)
504 counter2 = counter2 −1;
505

506 % I f the second sum i s best
507 e l s e
508 % Redef ine the i n i t i a l sum and go through
509 % the loop again
510 sumRR = sumRR2 ;
511

512 % Adjust the counter
513 counter2 = counter2+1;
514

515 % Stop the loop i f we are at the end o f the
516 % s i g n a l
517 i f counter + counter1 + counter2 > len
518 t e s t = 0 ;
519 t e s t 2 = 0 ;
520 RRnew2 = sumRR2 ;
521 end
522 end
523 e l s e
524 % Stop the loop
525 t e s t = 0 ;
526 t e s t 2 = 0 ;
527 RRnew2 = sumRR;
528 end
529 end
530 % Too big
531 e l s e
532 % Stop the loop
533 t e s t = 0 ;
534

535 % Se l e c t the prev ious sum as c o r r e c t
536 RRnew2 = sumRR − RR_int_segm(counter + counter1) ;
537

538 % Adjust the f i r s t counter (nece s sa ry f o r l a t e r)
539 counter1 = counter1 − 1 ;
540 end
541 e l s e

54

542 % Stop loop
543 t e s t = 0 ;
544 RRnew2 = sumRR;
545 end
546 end
547

548 % I f no be t t e r opt ion has been found ,
549 % or i f the new opt ion i s b e t t e r than the
550 % combination o f the prev ious RR−i n t e r v a l s
551

552 i f ~isempty (RRnew1) && abs (RRnew1 − RR_ref) < abs (RRnew2 − RR_ref)
&& abs (RRnew1−RR_ref) < a∗RR_ref

553 % Set RRnew
554 RRnew = RRnew1 ;
555

556 % Replace RR−i n t e r v a l
557 RR_int_segm(counter − 1) = RRnew1 ;
558

559 % Change RR
560 RR_int_segm(counter) = [] ;
561

562 % Change l a r g e prob vec to r (has equal l ength as RR)
563 large_prob (counter) = [] ;
564

565 % Change RRref_all (i s one sma l l e r than RR)
566 i f counter + 1 < len−1
567 RRref_all (counter) = [] ;
568 end
569

570 % Get new length
571 l en = length (RR_int_segm) ;
572

573 % Make sure that the new i n t e r v a l i s checked
574 counter = counter −1;
575 e l s e
576 % Set RRnew
577 RRnew = RRnew2 ;
578

579 % Replace RR−i n t e r v a l
580 RR_int_segm(counter) = RRnew;
581

582 % Change the v a r i a b l e s depending on c i rcumstances
583 i f counter1 >= 1
584 % Change RR
585 RR_int_segm(counter + 1 : counter + counter1 + counter2) =

[] ;
586

587 % Change l a r g e prob vec to r (has equal l ength as RR)
588 large_prob (counter + 1 : counter + counter1 + counter2) =

[] ;
589

590 % Change RRref_all (i s one sma l l e r than RR)
591 i f counter+1 < len−1
592 RRref_all (counter+1:min ([counter+counter1+counter2 , len

−1])) = [] ;
593 end
594

595 % Get new length

55

596 l en = length (RR_int_segm) ;
597 end
598 end
599

600

601 % Check i f the i n t e r v a l i s a b ig problem
602 i f abs (RRnew−RR_ref) /RR_ref > d | | RRnew < 200 % Check f o r b ig

problems
603 large_prob (counter) = 1 ;
604 end
605

606 % Check f o r too big RR−i n t e r v a l s
607 e l s e i f RR_int_segm(counter) > (1+a) ∗RR_ref | | RR_int_segm(counter) >

1600
608

609 % Convert RR−i n t e r v a l s to samples
610 RR_samples = RR_int_segm∗ f s /1000 ;
611

612 % Def ine R−peak p o s i t i o n s
613 R_peak_positions = cumsum(RR_samples (1 : counter)) + R_peak_segm(1) ;
614

615 % Def ine beg inning and end o f the i n t e r v a l
616 i f counter > 1
617 begin_int = R_peak_positions (end−1) ;
618 e l s e
619 begin_int = R_peak_segm(1) ;
620 end
621 end_int = R_peak_positions (end) ;
622

623 % Get the f i r s t peak that i s b i gge r than the beg inning o f the
624 % in t e r v a l
625 test_peak = al l_peaks (a l l_peaks > begin_int) ;
626 test_peak = test_peak (test_peak < end_int) ;
627

628 i f l ength (test_peak) > 1
629 % Get the t e s t RR i n t e r v a l
630 RR_test = 1000∗(test_peak−begin_int) / f s ;
631

632 % Find the sma l l e s t d i f f e r e n c e with the
633 % re f e r e n c e RR i n t e r v a l
634 [~ , I] = min (abs (RR_test−RR_ref)) ;
635 test_peak = test_peak (I) ;
636 end
637

638 % See i f that peak i s be f o r e the end o f the
639 % in t e r v a l and not too smal l
640 i f ~isempty (test_peak) &&.. .
641 s i g n a l (test_peak) > p r c t i l e (s i gna l , 5 0)

&& . . .
642 (((test_peak−begin_int) / f s) ∗1000) > (1−a) ∗RR_ref

&&.. .
643 (((test_peak−begin_int) / f s) ∗1000) > 200

&&.. .
644 (((end_int−test_peak) / f s) ∗1000) > (1−a) ∗RR_ref

&& . . .
645 (((end_int−test_peak) / f s) ∗1000) > 200
646

647 % Add an RR i n t e r v a l

56

648 i f counter > 1
649 RR_int_segm = [RR_int_segm (1 : counter −1) (((test_peak−

begin_int) / f s) ∗1000) (((end_int−test_peak) / f s) ∗1000)
RR_int_segm(counter+1:end)] ;

650 e l s e i f counter+1 > len
651 RR_int_segm = [RR_int_segm (1 : counter −1) (((test_peak−

begin_int) / f s) ∗1000) (((end_int−test_peak) / f s) ∗1000)] ;
652 e l s e
653 RR_int_segm = [(((test_peak−begin_int) / f s) ∗1000) (((end_int−

test_peak) / f s) ∗1000) RR_int_segm(counter+1:end)] ;
654 end
655

656 % Get new length
657 l en = length (RR_int_segm) ;
658

659 % Adjust the l a r g e problem va r i ab l e
660 large_prob = [large_prob 0] ; %#ok
661

662 % Adjust the RR−r e f a l l v a r i a b l e
663 RRref_all = [RRref_all 0] ; %#ok
664

665 % Make sure that the new i n t e r v a l i s checked
666 counter = counter −1;
667

668 e l s e
669 % State that the i n t e r v a l i s a l a r g e problem and should not
670 % be inc luded f o r the r e f e r e n c e i n t e r v a l s
671 large_prob (counter) = 1 ;
672 end
673 end
674

675 % Go one peak f u r th e r
676 counter = counter + 1 ;
677 end
678

679 % Def ine the R−peak p o s i t i o n s
680 RR_int_segm = RR_int_segm∗ f s /1000 ; % Go back to samples
681 R_peak_segm (2 : l ength (RR_int_segm)+1) = round (cumsum(RR_int_segm) +

R_peak_segm(1)) ;
682 end
683

684

685 f unc t i on R_peak_temp = peaks_in_ecg (s i gna l , R_peak_temp , window)
686

687 % % Get the percentage o f p o s i t i v e R−peaks
688 % perc_pos = sum(s i gn (s i g n a l (R_peak_temp))) / l ength (R_peak_temp) ;
689

690 f o r idx = 1 : l ength (R_peak_temp)
691 % Get the samples from the R−peak minus the enve lope l ength
692 % to the R−peak
693

694 p = s i g n a l (max(1 , R_peak_temp(idx) − window) : R_peak_temp(idx)) ;
695

696 % Do the same but f o r the time l o c a t i o n s
697 t = max(1 ,R_peak_temp(idx)−window) : R_peak_temp(idx) ;
698

699 % Search f o r the maximum in p
700 [~ , ip] = max(p) ;

57

701

702 % % Search f o r the extremum in p
703 % i f perc_pos >= 0.5
704 % [~ , ip] = max(p) ;
705 % e l s e
706 % [~ , ip] = min (p) ;
707 % end
708

709 % Adjust the R−peak
710 t ry
711 i f s i g n a l (t (ip (end))) >= s i g n a l (t (ip (end))−1) && s i g n a l (t (ip (end)))

>= s i g n a l (t (ip (end))+1)
712 R_peak_temp(idx) = t (ip (end)) ;
713 end
714 catch
715 R_peak_temp(idx) = t (ip (end)) ;
716 end
717 end
718 end

B.1.7 RRPeakCalc.m

1 f unc t i on [R_peak , RR_int] = RRPeakCalc (DATA, fs_ecg)
2 %RRPEAKCALC Summary o f t h i s f unc t i on goes here
3

4

5 % envelope s i z e = 300ms
6 % heart ra t e [bpm] = 100
7 % pos tp ro c e s s i ng = true
8 % ec top i c beats removal = true
9 % inve r t ed s i g n a l = f a l s e

10 parameters = {300 , 75 , 1 , 1 , 0} ;
11

12 [R_peakTEMP(: , 1) , RR_intTEMP(: , 1)] = RRpeak(parameters , DATA{1} , fs_ecg) ;
13 t ry
14 [R_peakTEMP(: , 2) , RR_intTEMP(: , 2)] = RRpeak(parameters , DATA{2} , fs_ecg)

;
15 catch E
16 [R_peakTEMP(: , 2) , RR_intTEMP(: , 2)] = RRpeak(parameters , DATA{1} , fs_ecg)

;
17 end
18

19 parameters = {300 , 75 , 1 , 1 , 1} ;
20 [R_peakTEMP(: , 3) , RR_intTEMP(: , 3)] = RRpeak(parameters , DATA{3} , fs_ecg) ;
21

22

23 i f (l ength (R_peakTEMP{1}) == length (R_peakTEMP{2}) && length (R_peakTEMP{1})
== length (R_peakTEMP{3}))

24 RR_int = f l o o r (RR_intTEMP{1}./3 + RR_intTEMP{2}./3 + RR_intTEMP{3} ./3) ;
25 R_peak = f l o o r (R_peakTEMP{1}./3 + R_peakTEMP{2}./3 + R_peakTEMP{3} ./3) ;
26 e l s e
27 i f (l ength (R_peakTEMP{1}) == length (R_peakTEMP{2}))
28 RR_int = f l o o r (RR_intTEMP{1}./2 + RR_intTEMP{2} ./2) ;
29 R_peak = f l o o r (R_peakTEMP{1}./2 + R_peakTEMP{2} ./2) ;
30

31 e l s e i f (l ength (R_peakTEMP{2}) == length (R_peakTEMP{3}))
32 RR_int = f l o o r (RR_intTEMP{2}./2 + RR_intTEMP{3} ./2) ;
33 R_peak = f l o o r (R_peakTEMP{2}./2 + R_peakTEMP{3} ./2) ;
34

58

35 e l s e i f (l ength (R_peakTEMP{1}) == length (R_peakTEMP{3}))
36 RR_int = f l o o r (RR_intTEMP{1}./2 + RR_intTEMP{3} ./2) ;
37 R_peak = f l o o r (R_peakTEMP{1}./2 + R_peakTEMP{3} ./2) ;
38 e l s e
39

40

41 % ca l c u l a t e average o f the l eng th s
42 avg = mean ([l ength (RR_intTEMP{1}) l ength (RR_intTEMP{2}) l ength (

RR_intTEMP{3})]) ;
43

44 % ca l c u l a t e d i f f e r e n c e between average f o r each length
45 dfc = [l ength (RR_intTEMP{1}) l ength (RR_intTEMP{2}) l ength (RR_intTEMP

{3})] − avg ;
46

47 % get index o f the one that i s f u r t h e s t away
48 [~ , index] = max(abs (d fc)) ;
49

50 % remove that one
51 i n d i c e s = [1 2 3] ;
52 i n d i c e s (index) = [] ;
53

54

55 % get the sma l l e s t l ength o f the two
56 minLength = min ([l ength (RR_intTEMP{ i nd i c e s (1) }) l ength (RR_intTEMP{

i nd i c e s (2) })]) ;
57

58 % average the i n t e r v a l o f the f i n a l two
59 RR_int = f l o o r (RR_intTEMP{ i nd i c e s (1) } (1 : minLength) . /2 + RR_intTEMP{

i nd i c e s (2) } (1 : minLength) . / 2) ;
60

61 % get the sma l l e s t l ength o f the two
62 minLength = min ([l ength (R_peakTEMP{ i nd i c e s (1) }) l ength (R_peakTEMP{

i nd i c e s (2) })]) ;
63

64 % average the i n t e r v a l o f the f i n a l two
65 R_peak = f l o o r (R_peakTEMP{ i nd i c e s (1) } (1 : minLength) . /2 + R_peakTEMP{

i nd i c e s (2) } (1 : minLength) . / 2) ;
66

67 end
68

69

70 end
71

72 %
73 % plo t (DATA{1})
74 %
75 % input (’ p r e s s to continue ’ , ’ s ’) ;
76

77 end

B.1.8 calc-pos-opt.m

1 f unc t i on [pos_opt] = calc_pos_opt (s i gna l , step ,maxmin)
2 % Calcu la t i on o f optima
3 %
4 % Input : s i g n a l s i g n a l
5 % step s t e p s i z e accord ing to app l i c a t i o n
6 % maxmin f o r f i nd i n g maxima : maxmin = 1
7 % fo r f i nd i n g minima : maxmin = −1

59

8 % Output : pos_opt p o s i t i o n s o f the optima
9 %

10 % Author (s) : Jonathan Moeyersons (Jonathan . Moeyersons@esat . kuleuven . be)
11 % Sabine Van Hu f f e l (Sabine . Vanhuffe l@esat . kuleuven . be)
12 % Caro l ina Varon (Caro l ina . Varon@esat . kuleuven . be)
13 %
14 % Vers ion History :
15 % − 06/05/2019 JM I n i t i a l v e r s i on
16 %
17 % Copyright (c) 2019 , Jonathan Moeyersons , KULeuven−ESAT−STADIUS
18 %
19 % This so f tware i s made av a i l a b l e f o r non commercial r e s ea r ch purposes only
20 % under the GNU General Publ ic L i cense . However , notwithstanding any
21 % prov i s i on o f the GNU General Publ ic License , t h i s so f tware may not be
22 % used f o r commercial purposes without e x p l i c i t wr i t t en permis s ion a f t e r
23 % contac t ing jonathan . moeyersons@esat . kuleuven . be
24 %
25 % This program i s f r e e so f tware : you can r e d i s t r i b u t e i t and/ or modify
26 % i t under the terms o f the GNU General Publ ic L i cense as publ i shed by
27 % the Free Software Foundation , e i t h e r v e r s i on 3 o f the License , or
28 % (at your opt ion) any l a t e r v e r s i on .
29 %
30 % This program i s d i s t r i b u t e d in the hope that i t w i l l be u se fu l ,
31 % but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
32 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
33 % GNU General Publ ic L i cense f o r more d e t a i l s .
34 %
35 % You should have r e c e i v ed a copy o f the GNU General Publ ic L i cense
36 % along with t h i s program . I f not , s e e <https : //www. gnu . org / l i c e n s e s />.
37

38 % Get the l ength o f the s i g n a l
39 s ze = length (s i g n a l) ;
40

41 %% Se l e c t the upward s l op e s
42

43 % Pre−a l l o c a t e
44 d i f f e r e n c e = ze ro s (sze −1 ,1) ;
45

46 f o r i i = 1 : sze−s tep
47 % I f the amplitude o f the s e l e c t e d sample i s sma l l e r than the amplitude
48 % of the s e l e c t e d sample p lus the s tep s i z e
49 i f (s i g n a l (i i+step)−s i g n a l (i i)) ∗maxmin > 0
50

51 d i f f e r e n c e (i i , 1) = 1 ;
52 e l s e
53 d i f f e r e n c e (i i , 1) = 0 ;
54 end
55 end
56

57 % time = 1 : l ength (s i g n a l) ;
58 % f i g u r e ; p l o t (s i g n a l) ; hold on ; s c a t t e r (time (d i f f e r e n c e==1) , s i g n a l (d i f f e r e n c e

==1))
59

60 %% Se l e c t the optima
61

62 % Pre−a l l o c a t e
63 pos_opt = ze ro s (1 , sze−s tep) ;
64 no_opt = 0 ;

60

65

66 f o r i i = 2 : sze−s tep %step /2+1: sze−s tep
67 real_opt = 1 ;
68

69 % I f you are at the end o f the upwards s l ope
70 i f d i f f e r e n c e (i i −1 ,1) == 1 && d i f f e r e n c e (i i , 1) == 0
71 count = 1 ;
72

73 % Check i f the upward s l ope l a s t s long enough
74 whi le real_opt == 1 && count < step && count < i i
75 i f d i f f e r e n c e (i i −count , 1) == 1
76 real_opt = 1 ;
77 e l s e
78 real_opt = 0 ;
79 end
80 count = count + 1 ;
81 end
82

83 % I f the upward s l ope i s long enough
84 i f real_opt == 1 && count >= 0.75∗ s tep
85

86 % Se l e c t the i n t e r v a l conta in ing the peak
87 i n t e r v a l = i i : i i + step ;
88

89 % Se l e c t the extremum in that i n t e r v a l
90 i f maxmin == 1
91 [~ , index] = max(s i g n a l (i n t e r v a l)) ;
92 e l s e
93 [~ , index] = min (s i g n a l (i n t e r v a l)) ;
94 end
95

96 % Se l e c t the po s i t i o n o f the peak
97 no_opt = no_opt + 1 ;
98 pos_opt (no_opt) = i n t e r v a l (index) ;
99 end

100 end
101 end
102

103 pos_opt = pos_opt (1 : no_opt) ;
104

105 % f i g u r e
106 % plo t (s i g n a l) ;
107 % hold on
108 % plo t (pos_opt , s i g n a l (pos_opt) , ’ ro ’)
109 % t i t l e (’ Optima ’)

B.1.9 ectopic-detection.m

1 f unc t i on [ect_loc] = ec top i c_detec t i on (Rpos)
2 % Input
3 % Rpos − Pos i t i on o f the R peaks
4 %
5 % Output
6 % ect_loc − Pos i t i on o f the e c t op i c peaks . Used f o r r e s p i r a t i o n ana l y s i s
7 %
8 % Author (s) : Jonathan Moeyersons (Jonathan . Moeyersons@esat . kuleuven . be)
9 % Sabine Van Hu f f e l (Sabine . Vanhuffe l@esat . kuleuven . be)

10 % Caro l ina Varon (Caro l ina . Varon@esat . kuleuven . be)
11 %

61

12 % Vers ion History :
13 % − 17/02/2019 JM I n i t i a l v e r s i on
14 %
15 % Copyright (c) 2019 , Jonathan Moeyersons , KULeuven−ESAT−STADIUS
16 %
17 % This so f tware i s made av a i l a b l e f o r non commercial r e s ea r ch purposes only
18 % under the GNU General Publ ic L i cense . However , notwithstanding any
19 % prov i s i on o f the GNU General Publ ic License , t h i s so f tware may not be
20 % used f o r commercial purposes without e x p l i c i t wr i t t en permis s ion a f t e r
21 % contac t ing jonathan . moeyersons@esat . kuleuven . be
22 %
23 % This program i s f r e e so f tware : you can r e d i s t r i b u t e i t and/ or modify
24 % i t under the terms o f the GNU General Publ ic L i cense as publ i shed by
25 % the Free Software Foundation , e i t h e r v e r s i on 3 o f the License , or
26 % (at your opt ion) any l a t e r v e r s i on .
27 %
28 % This program i s d i s t r i b u t e d in the hope that i t w i l l be u se fu l ,
29 % but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
30 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 % GNU General Publ ic L i cense f o r more d e t a i l s .
32 %
33 % You should have r e c e i v ed a copy o f the GNU General Publ ic L i cense
34 % along with t h i s program . I f not , s e e <https : //www. gnu . org / l i c e n s e s />.
35

36 % Set ba s i c v a r i a b l e s
37 a = 0 . 1 ; % 10% d i f f e r e n c e
38 b = 0 . 0 5 ; % 5% d i f f e r e n c e
39 max_k = 5 ; % Maximum ammount o f prev ious RR−i n t e r v a l s
40

41 % Get the RR−i n t e r v a l s
42 RR = d i f f (Rpos) ;
43

44 % Get the amount o f RR−i n t e r v a l s
45 l en = length (RR) ;
46

47 % Pre−a l l o c a t e
48 RRref_all = ze ro s (1 , l en) ; % Reference RR i n t e r v a l s
49 e c t op i c = ze ro s (1 , l en) ; % Index o f e c t op i c s
50

51 % Set f i r s t RR−r e f e r e n c e
52 RR_ref = median (RR(1 :max_k)) ;
53 RRref_all (1) = RR_ref ;
54

55 % Set loop s t a r t
56 counter = 1 ;
57

58 % Loop over the d i f f e r e n t RR−i n t e r v a l s
59 whi le counter < len−1
60 % Def ine the RR−r e f i f you are f u r t h e r than the f i r s t RR−i n t e r v a l
61 i f counter > 2
62

63 % Set v a r i a b l e s
64 k = 1 ; % Number o f prev ious RR−i n t e r v a l s
65 sum_ref = 0 ; % Sum of the good prev ious RRI ’ s
66 num = 0 ; % Number o f good prev ious RRI ’ s
67 wght = [0 . 5 0 .3 0 . 2] ; % Weights : the f a r t h e r away , the lower the weight
68

69 whi le counter−k > 0 && num < 3 && k < max_k

62

70

71 % Check i f the prev ious RRI i s an e c t op i c
72 i f e c t op i c (counter−k) == 1
73 prob_check = 1 ;
74 e l s e i f e c t op i c (counter−k) == 0
75 prob_check = 0 ;
76 end
77

78 % I f t h i s i s not the case , use i t f o r r e f e r e n c e
79 i f ~prob_check
80 num = num + 1 ;
81 sum_ref = sum_ref + wght (num) ∗RR(counter−k) ;
82 end
83 k = k+1;
84 end
85

86 % I f no good prev ious RR−i n t e r v a l s are found , t h i s probably means that
87 % th i s i s the new normal , so j u s t take the three prev ious
88 i f num <= 1
89 k = 1 ;
90 whi le counter−k > 0 && num < 3
91 num = num + 1 ;
92 sum_ref = sum_ref + wght (num) ∗RR(counter−k) ;
93 k = k+1;
94 end
95 end
96

97 % Def ine the r e f e r e n c e v a r i a b l e s
98 RR_ref = sum_ref/sum(wght (1 :num)) ;
99 no_RR_ref = nnz (RRref_all) ;

100 RRref_all (no_RR_ref+1) = RR_ref ;
101 end
102

103 % Check f o r e c t op i c s
104 i f ((RR(counter) < (1−a) ∗RR_ref) && (RR(counter+1) > (1+b) ∗RR_ref)) | | . . .
105 ((RR(counter) > (1+b) ∗RR_ref) && (RR(counter+1) < (1−a) ∗RR_ref))
106

107 % Ind i c a t e the presence o f an e c t op i c
108 e c t op i c (counter) = 1 ;
109 end
110

111 % Add to the counter
112 counter = counter + 1 ;
113 end
114

115 % Def ine the e c t op i c l o c a t i o n s
116 ect_loc = f i nd (e c t op i c == 1)+1;

B.1.10 ectopic-detection-correction.m

1 f unc t i on [Rpos , RR, Pod] = ec top i c_detec t i on_cor r e c t i on (f s ,RR, Rpos)
2 % Input
3 % f s − sampling f requency
4 % RR − RR s i g n a l
5 % Rpos − Pos i t i on o f the R peaks
6 %
7 % Output
8 % Rpos − New po s i t i o n o f the peaks
9 % RR − Corrected RR i n t e r v a l

63

10 % Pod − Pos i t i on o f the e c t op i c peaks . Used f o r r e s p i r a t i o n ana l y s i s
11 % The two beats are rep laced , even i f the l a s t one i s ok .
12 %
13 % Author (s) : Jonathan Moeyersons (Jonathan . Moeyersons@esat . kuleuven . be)
14 % Sabine Van Hu f f e l (Sabine . Vanhuffe l@esat . kuleuven . be)
15 % Caro l ina Varon (Caro l ina . Varon@esat . kuleuven . be)
16 %
17 % Vers ion History :
18 % − 06/05/2019 JM I n i t i a l v e r s i on
19 %
20 % Copyright (c) 2019 , Jonathan Moeyersons , KULeuven−ESAT−STADIUS
21 %
22 % This so f tware i s made av a i l a b l e f o r non commercial r e s ea r ch purposes only
23 % under the GNU General Publ ic L i cense . However , notwithstanding any
24 % prov i s i on o f the GNU General Publ ic License , t h i s so f tware may not be
25 % used f o r commercial purposes without e x p l i c i t wr i t t en permis s ion a f t e r
26 % contac t ing jonathan . moeyersons@esat . kuleuven . be
27 %
28 % This program i s f r e e so f tware : you can r e d i s t r i b u t e i t and/ or modify
29 % i t under the terms o f the GNU General Publ ic L i cense as publ i shed by
30 % the Free Software Foundation , e i t h e r v e r s i on 3 o f the License , or
31 % (at your opt ion) any l a t e r v e r s i on .
32 %
33 % This program i s d i s t r i b u t e d in the hope that i t w i l l be u se fu l ,
34 % but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f
35 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
36 % GNU General Publ ic L i cense f o r more d e t a i l s .
37 %
38 % You should have r e c e i v ed a copy o f the GNU General Publ ic L i cense
39 % along with t h i s program . I f not , s e e <https : //www. gnu . org / l i c e n s e s />.
40

41 % Pre−a l l o c a t e
42 Pod = [] ;
43

44 % Remove e c t op i c s f i r s t
45 RRmed = med f i l t 1 (RR, 5) ; % F i f th order median f i l t e r
46 f o r i i = 6 : l ength (RR)−1
47 i f ((RR(i i) < RRmed(i i) ∗0 . 9) && (RR(i i +1) > RRmed(i i) ∗1 . 05)) . . .
48 | | ((RR(i i) > RRmed(i i) ∗1 . 05) && (RR(i i +1) < RRmed(i i) ∗0 . 9))% one way

down , next one way up and v i c ev e r s a
49

50 % Adjust the i n v e s t i g a t e d RR−i n t e r v a l
51 RR(i i) = (RR(i i)+RR(i i +1)) /2 ;
52 Rpos (i i +1) = Rpos (i i)+round (RR(i i) ∗ f s /1000) ;
53

54 % Adjust the next RR−i n t e r v a l
55 RR(i i +1) = RR(i i) ;
56 Rpos (i i +2) = Rpos (i i +1)+round (RR(i i +1)∗ f s /1000) ;
57

58 % Store the index o f the e c t op i c beats
59 Pod = [Pod ; Rpos (i i +1) ; Rpos (i i +2)] ; %#ok
60 end
61 end
62

63 % Correct ion o f e c t op i c beats . 20% f i l t e r i s used but f o r ca s e s when the
64 % actua l i n t e r v a l i s smal l and the next one i s l a r g e and v i c e v e r s a
65 RRmed = med f i l t 1 (RR, 5) ; % F i f th order median f i l t e r
66 f o r i i = 6 : l ength (RR)−1

64

67 i f ((RR(i i) < RRmed(i i) ∗0 . 85) && (RR(i i +1) > RRmed(i i) ∗1 . 15)) . . .
68 | | ((RR(i i) > RRmed(i i) ∗1 . 15) && (RR(i i +1) < RRmed(i i) ∗0 . 85))% one way

down , next one way up and v i c ev e r s a
69

70 % Adjust the i n v e s t i g a t e d RR−i n t e r v a l
71 RR(i i) = (RR(i i)+RR(i i +1)) /2 ;
72 Rpos (i i +1) = Rpos (i i)+round (RR(i i) ∗ f s /1000) ;
73

74 % Adjust the next RR−i n t e r v a l
75 RR(i i +1) = RR(i i) ;
76 Rpos (i i +2) = Rpos (i i +1)+round (RR(i i +1)∗ f s /1000) ;
77

78 % Store the index o f the e c t op i c beats
79 Pod = [Pod ; Rpos (i i +1) ; Rpos (i i +2)] ; %#ok
80 end
81 end
82

83 % Clean and so r t Pod
84 Pod = so r t (unique (Pod)) ;

B.1.11 env-secant.m

1 f unc t i on [env] = env_secant (x_data , y_data , view , s i d e)
2 % Function c a l l : env_secant (x_data , y_data , view , s i d e)
3 % Cal cu l a t e s the top enve lope o f data <y_data> over <x_data>.
4 % Method used : ’ secant−method ’
5 % env_secant () obse rva t e s the max . s l ope o f about <view> points ,
6 % and j o i n t s them to the r e s u l t i n g enve lope .
7 % An i n t e r p o l a t i o n over o r i g i n a l x−va lue s i s done f i n a l l y .
8 % <side> (’ top ’ or ’ bottom ’) d e f i n e s which s i d e to evo lve .
9 % Author : Andreas Martin , Volkswagen AG, Germany

10

11

12 s i d e = strcmpi ({ ’ top ’ , ’ bottom ’ } , s i d e) ∗ [1 ; −1] ;
13

14 a s s e r t (view > 1 , . . .
15 ’ Parameter <view> too smal l ! ’) ;
16 a s s e r t (ndims (x_data) == 2 , . . .
17 ’ Parameter <x_data> has to be vec to r type ! ’) ;
18 a s s e r t (s i z e (x_data , 1) == 1 | | s i z e (x_data , 2) == 1 , . . .
19 ’ Parameter <x_data> has to be vec to r type (Nx1) ! ’) ;
20 a s s e r t (ndims (y_data) == 2 , . . .
21 ’ Parameter <y_data> has to be vec to r type (Nx1) ! ’) ;
22 a s s e r t (s i z e (y_data , 1) == 1 | | s i z e (y_data , 2) == 1 , . . .
23 ’ Parameter <y_data> has to be vec to r type (Nx1) ! ’) ;
24 a s s e r t (l ength (x_data) == length (y_data) , . . .
25 ’ Parameters <x_data> and <y_data> must have same length ! ’) ;
26 a s s e r t (s i d e ~= 0 , . . .
27 ’ Parameter <s ide> must be ’ ’ top ’ ’ or ’ ’ bottom ’ ’ ’) ;
28

29 data_len = length (y_data) ;
30 x_new = x_data (1) ;
31 y_new = y_data (1) ;
32

33 i = 2 ;
34 whi le i < data_len
35 m_max = −I n f ; % s t o r e s maximum s lope in forward viewed neighbourhood
36 f o r i i = i+1 : min (i+view , data_len)
37 m = (y_data (i i) − y_data (i)) / (i i−i) ∗ s i d e ;

65

38 % Equid i s tant x_data assumed ! Use next row instead , i f not :
39 % m = (y_data (i i) − y_data (i)) / (x_data (i i) − x_data (i)) ;
40 i f m >= m_max
41 % New max . s l ope found : s t o r e new " obse rvat i on po int "
42 % always t raced when i i==1
43 m_max = m;
44 i_op = i i ;
45 end
46 end
47 x_new = [x_new x_data (i_op)] ;
48 y_new = [y_new y_data (i_op)] ;
49 i = i_op ;
50 end
51

52 env = in t e rp1 (x_new , y_new , x_data , ’ l i n e a r ’ , ’ extrap ’) ;

B.1.12 SQI-ACF.m

1 f unc t i on [SQI4 , averagewe ights] = SQI_ACF(Fs , iECG, segm , f i l t r o , l a g s)
2 weights= ACF_Artefact (iECG, Fs , segm , f i l t r o , l a g s) ;
3 %SQI_ACF Summary o f t h i s f unc t i on goes here
4 % This func t i on determines i f the weight o f the c a l c u l a t ed au t o c o r r e l a t i o n
5 % func t i on i s acceptab l e or not . The output o f t h i s f unc t i on i s a b i t and
6 % i s de f ined with SQI :
7 % I f SQI = 1 , s i g n a l i s acceptab l e
8 % I f SQI = 0 , s i g n a l i s not acceptab l e
9 % Deta i l ed exp lanat ion goes here

10

11 % The func t i on ACF_Artefact can f i l t e r the s i g n a l be f o r e
12 % For ECG s i g n a l s i t i s recommended to use a bandpass f i l t e r with c u t o f f
13 % f r e qu en c i e s at 1Hz and 40Hz
14

15 f i l t r o . type = ’HL ’ ;
16 f i l t r o . hf = 40 ;
17 f i l t r o . l f = 1 ;
18

19 f s = Fs ;
20 ecg = iECG;
21

22 % segm = 1 ; % length o f the segments to be analyzed (in seconds)
23 % lag s = [] ; % Lags used in the ACF (de f au l t 250ms)
24 %manual = 1 ; % 1 in case you want to apply a th re sho ld in the weights
25

26 averagewe ights = mean(weights) ;
27 i f averagewe ights > 0 .91
28 SQI4 = 1 ;
29 e l s e
30 SQI4 = 0 ;
31 end
32

33 end

B.1.13 ACF-Artefact.m

1 % Arte fac t d e t e c t i on based on the Autoco r r e l a t i on Function o f the ECG
2 % s i g n a l
3 f unc t i on weights =ACF_Artefact (iECG, Fs , segm , f i l t r o , l a g s)
4 f s = Fs ;
5 ecg = iECG;

66

6 % INPUTS:
7 % ecg − S igna l to be segmented
8 % f s − Sampling f requency (Hz)
9 % segm − Duration o f the segments , in seconds

10 %
11 % f i l t r o . type − F i l t e r type ’ low ’ (low pass) , ’ high ’ (high pass) ,
12 % ’ stop50 ’ , ’ stop60 ’ ’ All ’ .
13 % ’LS ’ low and stop
14 % ’HS’ high and stop
15 % ’HL’ high and low
16 % f i l t r o . hf − c u t o f f f requency f o r lowpass f i l t e r
17 % f i l t r o . l f − c u t o f f f requency f o r h ighpass f i l t e r
18 %
19 % lag s − l a g s o f the au t o c o r r e l a t i o n . Defau l t 250ms
20 % manual− (1) Use the manual s e l e c t i o n t o o l
21 %
22 % OUTPUTS:
23 % good − I nd i c e s o f the good segments
24 % bad − I nd i c e s o f the bad segments
25 % Cutecgs − Segments o f ECG
26 % weights − Values o f s im i l a r i t y f o r each segment
27 %
28 %
29 % This func t i on f i r s t s p l i t s the s i g n a l ’ ecg ’ sampled at ’ f s ’ (Hz) , i n to
30 % segments o f l ength s p e c i f i e d in ’ segm ’ . Then i t f i l t e r s the s i g n a l us ing
31 % the parameters i nd i c a t ed in the s t r u c tu r e f i l t r o . After th i s , i t computes
32 % the au t o c o r r e l a t i o n func t i on o f each segment (each column) us ing the
33 % ind i c a t ed ’ lags ’ . Then i t computes the co s i n e s im i l a r i t y and the degree
34 % vector . From th i s degree vec to r a th r e sho ld can be determined by the
35 % pr e c e n t i l e or by the i n t e r q u a r t i l e range .
36 %
37 % You w i l l be asked d i f f e r e n t que s t i on s :
38 % >> Method : 1 f o r Pe r c en t i l e , 0 f o r I n t e r q u a r t i l e range (3 to stop)=
39 %
40 % ∗ Press 1 i f you want to use the p e r c e n t i l e as th r e sho ld .
41 % >> Percentage ? (5 d e f au l t) =
42 % − Press ente r i f you want to keep the d e f au l t va lue (5%)
43 % − I nd i c a t e the percentage you wish to use in case i t i s d i f f e r e n t
44 % than 5%
45 % >> Dec i s i on : 1 to change =
46 % − Press ente r i f you are s a t i s f i e d with the th r e sho ld
47 % − Press 1 i f you want to change the th r e sho ld
48 %
49 % ∗ Press 0 i f you want to use the i n t e r u a n t i l e range f o r the d e f i n i t i o n
50 % of the th r e sho ld . This i s how many times you subt rac t the IQR from
51 % the th i rd q u a r t i l e (75%)
52 % >> IQR? (1 . 25 d e f au l t) =
53 % − Press ente r i f you want to keep the d e f au l t va lue (Q3 − 1 .25IQR)
54 % − I nd i c a t e the f a c t o r in case i t i s d i f f e r e n t than 1 .25
55 % >> Dec i s i on : 1 to change =
56 % − Press ente r i f you are s a t i s f i e d with the th r e sho ld
57 % − Press 1 i f you want to change the th r e sho ld
58 %
59 % ∗ Press 3 to stop
60

61 % Varon C. , Testelmans D. , Buyse B. , Suykens J .A.K. , Van Hu f f e l S . Robust
62 % a r t e f a c t d e t e c t i on in long−term ECG reco rd ing s based on au t o c o r r e l a t i o n
63 % func t i on s im i l a r i t y and p e r c e n t i l e a n a l y s i s . In proceed ings o f the 34 th

67

64 % Annual I n t e r n a t i o n a l Conference o f the IEEE Engineer ing in Medicine and
65 % Biology Soc i e ty (EMBC) , San Diego CA, USA, Aug . 2012 .
66 %
67 % Owner o f code : KU Leuven
68 % Developer o f code : Caro l ina Varon (STADIUS−ESAT−KU Leuven)
69 % Contact persons : Caro l ina Varon (c a r o l i n a . varon@esat . kuleuven . be) ,
70 % Sabine Van Hu f f e l (sab ine . vanhuf f e l@esat . kuleuven . be)
71

72 i f isempty (ecg)
73 e r r o r (’ P lease load an ECG s i g n a l as double ’ , ’Bad Input ’ , ’modal ’)
74 end
75 i f isempty (f s) && isempty (segm)
76 e r r o r (’You must ente r a numeric va lue f o r f s and segment ’ , ’Bad Input ’ , ’modal

’)
77 end
78 i f ~ i s s c a l a r (f s) && ~ i s i n t e g e r (i n t8 (segm)) && segm<0
79 e r r o r (’You must ente r a numeric va l i d value f o r f s and/ or segment . ’ , ’Bad

Input ’ , ’modal ’)
80 end
81

82

83 m = mean(ecg) ; s = std (ecg) ; % mean y std para normal i zar
84 i f s i z e (ecg , 1)>1
85 ecg = ecg ’ ;
86 end
87

88 s ze = length (ecg) ; segm = segm∗ f s ;
89 nl=f l o o r (s ze /segm) ; % how many segments ?
90 i f n l==0
91 e r r o r (’The l ength o f the segment i s too long ’ , ’Bad Input ’ , ’modal ’)
92 end
93 % segments in the columns
94 Cutecgs = double (reshape (double (ecg (1 : (n l ∗segm))) , segm , n l)) ;
95 Cutecgs = Cutecgs−(repmat (m, s i z e (Cutecgs , 1) , s i z e (Cutecgs , 2))) ;
96 Cutecgs = Cutecgs . / (repmat (s , s i z e (Cutecgs , 1) , s i z e (Cutecgs , 2))) ;
97

98 % ∗∗∗
99 % F i l t e r the ECG

100 i f isempty (f i l t r o . type)
101 e r r o r (’ P lease s p e f i f y the type o f f i l t e r : low , high , stop60 , stop50 , LS , HS,

HL ’)
102 end
103 i f e x i s t (’ l a g s ’ , ’ var ’)==0 | | isempty (l a g s)
104 l a g s = 0 . 2 5 0 ;
105 end
106 l g = round (l a g s ∗ f s) ;
107 type = f i l t r o . type ;
108 hf = f i l t r o . hf ;
109 l f = f i l t r o . l f ;
110

111 C = ze ro s (s i z e (Cutecgs , 1) , s i z e (Cutecgs , 2)) ;
112 l = s i z e (Cutecgs , 2) ;
113 par f o r i =1: l
114 Fecg = fi l terECG (Cutecgs (: , i) , f s , type , hf , l f) ;
115 C(: , i) = Fecg ;
116 a (: , i) = ac r r (C(: , i) , l g) ; % Autoco r r e l a t i on
117 end
118

68

119 % ∗∗∗
120 % Cosine s i m i l a r i t t and computation o f the degree s (weights)
121 Au = a ;
122 idx = f i nd (i snan (sum(Au))) ; l g2 = s i z e (Au, 1) ;
123 f o r i =1: l ength (idx)
124 Au(: , idx (i)) = ze ro s (lg2 , 1) ;
125 end
126 X2 = sum(Au(2 : end , :) .∗Au(2 : end , :) , 1) ; XY=Au(2 : end , :) ’∗Au(2 : end , :) ;
127 K = XY./ sq r t (X2’∗X2) ;
128 f o r i =1: l ength (idx)
129 K(: , idx (i)) = ze ro s (nl , 1) ; K(idx (i) , :) = ze ro s (1 , n l) ;
130 end
131 sg = sum(K) . /max(sum(K)) ;
132

133 % ∗∗∗
134

135 i 2 = 5 ;
136 thr = p r c t i l e (sg , i 2) ;
137 i 1 = 1 ;
138

139 % f i gu r e ,
140 % subplot (121) , p l o t (Au) , x l ab e l (’ Time lags ’) , y l ab e l (’ Autocor re la t ion ’)
141 % subplot (122)
142 % plo t (sg , ’ . − ’) , hold on , x l ab e l (’ Segment ’) , y l ab e l (’ S im i l a r i t y ’)
143 % plo t ([0 l ength (sg)] , [thr thr] , ’−− r ’)
144 % legend (’ S im i l a r i t y ’ , ’ Cr i t e r i on ’)
145 % hold o f f
146

147 i f i 1 == 1 | | i 1 == 0
148 weights = sg ;
149 Id = [1 : l ength (sg)] ; bad = f i nd (sg<thr) ;
150 good = s e t d i f f (Id , bad) ;
151 end
152

153 % disp ([’ Number o f segments : ’ , num2str (s i z e (Cutecgs , 2))])
154 % disp ([’ Number o f segments marked as o u t l i e r : ’ , num2str (l ength (bad))])
155 % disp ([’ Number o f segments marked as good : ’ , num2str (l ength (good))])

B.1.14 acrr.m

1 f unc t i on varargout = ac r r (S e r i e s , nLags , Q , nSTDs)
2 %AUTOCORR Compute or p l o t sample auto−c o r r e l a t i o n func t i on .
3 % Compute or p l o t the sample auto−c o r r e l a t i o n func t i on (ACF) o f a un ivar i a t e ,
4 % s t o c h a s t i c time s e r i e s . When c a l l e d with no output arguments , AUTOCORR
5 % d i sp l a y s the ACF sequence with con f idence bounds .
6 %
7 % [ACF, Lags , Bounds] = autocor r (S e r i e s)
8 % [ACF, Lags , Bounds] = autocor r (S e r i e s , nLags , M , nSTDs)
9 %

10 % Optional Inputs : nLags , M , nSTDs
11 %
12 % Inputs :
13 % Se r i e s − Vector o f ob s e rva t i on s o f a un i va r i a t e time s e r i e s f o r which the
14 % sample ACF i s computed or p l o t t ed . The l a s t row o f S e r i e s conta in s the
15 % most r e c ent obse rvat i on o f the s t o c h a s t i c sequence .
16 %
17 % Optional Inputs :
18 % nLags − Pos i t i ve , s c a l a r i n t e g e r i n d i c a t i n g the number o f l a g s o f the ACF
19 % to compute . I f empty or miss ing , the d e f au l t i s to compute the ACF at

69

20 % lag s 0 ,1 ,2 , . . . T = minimum[20 , l ength (S e r i e s) −1]. S ince an ACF i s
21 % symmetric about zero lag , negat ive l a g s are ignored .
22 %
23 % M − Non−negat ive i n t e g e r s c a l a r i n d i c a t i n g the number o f l a g s beyond which
24 % the t h e o r e t i c a l ACF i s deemed to have died out . Under the hypothes i s that
25 % the under ly ing S e r i e s i s r e a l l y an MA(M) process , the la rge−l ag standard
26 % er r o r i s computed (v ia Bar t l e t t ’ s approximation) f o r l a g s > M as an
27 % ind i c a t i o n o f whether the ACF i s e f f e c t i v e l y zero beyond lag M. On the
28 % assumption that the ACF i s zero beyond lag M, Bar t l e t t ’ s approximation
29 % i s used to compute the standard dev i a t i on o f the ACF f o r l a g s > M. I f M
30 % i s empty or miss ing , the d e f au l t i s M = 0 , in which case S e r i e s i s
31 % assumed to be Gaussian white no i s e . I f S e r i e s i s a Gaussian white no i s e
32 % proce s s o f l ength N, the standard e r r o r w i l l be approximately 1/ sq r t (N) .
33 % M must be l e s s than nLags .
34 %
35 % nSTDs − Pos i t i v e s c a l a r i n d i c a t i n g the number o f standard dev i a t i on s o f the
36 % sample ACF es t imat i on e r r o r to compute assuming the t h e o r e t i c a l ACF o f
37 % Se r i e s i s ze ro beyond lag M. When M = 0 and S e r i e s i s a Gaussian white
38 % no i s e p roce s s o f l ength N, s p e c i f y i n g nSTDs w i l l r e s u l t in con f idence
39 % bounds at +/−(nSTDs/ sq r t (N)) . I f empty or miss ing , d e f au l t i s nSTDs = 2
40 % (i . e . , approximate 95% con f idence i n t e r v a l) .
41 %
42 % Outputs :
43 % ACF − Sample auto−c o r r e l a t i o n func t i on o f S e r i e s . ACF i s a vec to r o f
44 % length nLags + 1 corre spond ing to l a g s 0 , 1 , 2 , . . . , nLags . The f i r s t
45 % element o f ACF i s unity (i . e . , ACF(1) = 1 = lag 0 c o r r e l a t i o n) .
46 %
47 % Lags − Vector o f l a g s cor re spond ing to ACF (0 , 1 , 2 , . . . , nLags) .
48 %
49 % Bounds − Two element vec to r i n d i c a t i n g the approximate upper and lower
50 % con f idence bounds assuming that S e r i e s i s an MA(M) proce s s . Note that
51 % Bounds i s approximate f o r l a g s > M only .
52 %
53 % Example :
54 % Create an MA(2) p roce s s from a sequence o f 1000 Gaussian dev ia te s , then
55 % v i s u a l l y a s s e s s whether the ACF i s e f f e c t i v e l y zero f o r l a g s > 2 :
56 %
57 % x = randn (1000 ,1) ; % 1000 Gaussian dev i a t e s ~ N(0 , 1) .
58 % y = f i l t e r ([1 −1 1] , 1 , x) ; % Create an MA(2) proce s s .
59 % autocor r (y , [] , 2) % Inspec t the ACF with 95% con f idence .
60 %
61 % See a l s o CROSSCORR, PARCORR, FILTER.
62

63 % Copyright 1999−2003 The MathWorks , Inc .
64 % $Revis ion : 1 . 1 . 8 . 2 $ $Date : 2008/06/16 16 : 37 : 57 $
65

66 %
67 % Reference :
68 % Box , G.E.P. , Jenkins , G.M. , Re inse l , G.C. , "Time S e r i e s Ana lys i s :
69 % Forecas t ing and Control " , 3 rd ed i t i on , Prent i c e Hall , 1994 .
70

71 %
72 % Ensure the sample data i s a VECTOR.
73 %
74

75 [rows , columns] = s i z e (S e r i e s) ;
76

77 i f (rows ~= 1) && (columns ~= 1)

70

78 e r r o r (’ econ : autocor r : NonVectorInput ’ , ’ Input ’ ’ S e r i e s ’ ’ must be a vec to r . ’
) ;

79 end
80

81 rowSer i e s = s i z e (Se r i e s , 1) == 1 ;
82

83 S e r i e s = S e r i e s (:) ; % Ensure a column vecto r
84 n = length (S e r i e s) ; % Sample s i z e .
85 de fau l tLags = 20 ; % BJR recommend about 20 l a g s f o r ACFs .
86

87 %
88 % Ensure the number o f lags , nLags , i s a p o s i t i v e
89 % in t e g e r s c a l a r and s e t d e f au l t i f nece s sa ry .
90 %
91

92 i f (narg in >= 2) && ~isempty (nLags)
93 i f numel (nLags) > 1
94 e r r o r (’ econ : autocor r : NonScalarLags ’ , ’ Number o f l a g s ’ ’ nLags ’ ’ must be a

s c a l a r . ’) ;
95 end
96 i f (round (nLags) ~= nLags) | | (nLags <= 0)
97 e r r o r (’ econ : autocor r : NonPos i t ive Integer ’ , ’ Number o f l a g s ’ ’ nLags ’ ’ must

be a p o s i t i v e i n t e g e r . ’) ;
98 end
99 i f nLags > (n − 1)

100 e r r o r (’ econ : autocor r : LagsTooLarge ’ , ’ Number o f l a g s ’ ’ nLags ’ ’ must not
exceed ’ ’ S e r i e s ’ ’ l ength − 1 . ’) ;

101 end
102 e l s e
103 nLags = min (de fau l tLags , n − 1) ;
104 end
105

106 %
107 % Ensure the hypothes ized number o f lags , Q, i s a non−negat ive i n t e g e r
108 % sca l a r , and s e t d e f au l t i f nece s sa ry .
109 %
110 i f (narg in >= 3) && ~isempty (Q)
111 i f numel (Q) > 1
112 e r r o r (’ econ : autocor r : NonScalarQ ’ , ’ Number o f l a g s ’ ’Q ’ ’ must be a s c a l a r

. ’) ;
113 end
114 i f (round (Q) ~= Q) | | (Q < 0)
115 e r r o r (’ econ : autocor r : Negat ive Intege r ’ , ’ Number o f l a g s ’ ’Q ’ ’ must be a

non−negat ive i n t e g e r . ’) ;
116 end
117 i f Q >= nLags
118 e r r o r (’ econ : autocor r : QTooLarge ’ , ’ ’ ’Q ’ ’ must be l e s s than ’ ’ nLags ’ ’ . ’) ;
119 end
120 e l s e
121 Q = 0 ; % Defau l t i s 0 (Gaussian white no i s e hypo th i s i s) .
122 end
123

124 %
125 % Ensure the number o f standard dev ia t i ons , nSTDs , i s a p o s i t i v e
126 % sc a l a r and s e t d e f au l t i f nece s sa ry .
127 %
128

129 i f (narg in >= 4) && ~isempty (nSTDs)

71

130 i f numel (nSTDs) > 1
131 e r r o r (’ econ : autocor r : NonScalarSTDs ’ , ’ Number o f standard dev i a t i on s ’ ’

nSTDs ’ ’ must be a s c a l a r . ’) ;
132 end
133 i f nSTDs < 0
134 e r r o r (’ econ : autocor r : NegativeSTDs ’ , ’ Number o f standard dev i a t i on s ’ ’

nSTDs ’ ’ must be non−negat ive . ’) ;
135 end
136 e l s e
137 nSTDs = 2 ; % Defau l t i s 2 standard e r r o r s (95% condf idence i n t e r v a l) .
138 end
139

140 %
141 % Convolution , polynomial mu l t i p l i c a t i on , and FIR d i g i t a l f i l t e r i n g are
142 % a l l the same opera t i on . The FILTER command could be used to compute
143 % the ACF (by computing the c o r r e l a t i o n by convo lv ing the de−meaned
144 % Se r i e s with a f l i p p ed ve r s i on o f i t s e l f) , but FFT−based computation
145 % i s s i g n i f i c a n t l y f a s t e r f o r l a r g e data s e t s .
146 %
147 % The ACF computation i s based on Box , Jenkins , Re inse l , pages 30−34 , 188 .
148 %
149

150 nFFT = 2^(nextpow2 (l ength (S e r i e s)) + 1) ;
151 F = f f t (Se r i e s−mean(S e r i e s) , nFFT) ;
152 F = F .∗ conj (F) ;
153 ACF = i f f t (F) ;
154 ACF = ACF(1 : (nLags)) ;% + 1)) ; % Retain non−negat ive l a g s .
155 ACF = ACF ./ ACF(1) ; % Normalize .
156 ACF = r e a l (ACF) ;
157

158 %
159 % Compute approximate con f idence bounds us ing the Box−Jenkins−Re in se l
160 % approach , equat ions 2 . 1 . 1 3 and 6 . 2 . 2 , on pages 33 and 188 , r e s p e c t i v e l y .
161 %
162

163 sigmaQ = sqr t ((1 + 2∗(ACF(2 :Q+1) ’∗ACF(2 :Q+1))) /n) ;
164 bounds = sigmaQ ∗ [nSTDs ; −nSTDs] ;
165 Lags = [0 : nLags] ’ ;
166

167 i f nargout == 0 % Make p lo t i f r eques ted .
168

169 %
170 % Plot the sample ACF.
171 %
172 l i n eHand l e s = stem (Lags , ACF , ’ f i l l e d ’ , ’ r−o ’) ;
173 s e t (l i neHand l e s (1) , ’ MarkerSize ’ , 4)
174 g r id (’ on ’)
175 x l ab e l (’ Lag ’)
176 y l ab e l (’ Sample Autoco r r e l a t i on ’)
177 t i t l e (’ Sample Autoco r r e l a t i on Function (ACF) ’)
178 hold (’ on ’)
179 %
180 % Plot the con f idence bounds under the hypothes i s that the under ly ing
181 % Se r i e s i s r e a l l y an MA(Q) proce s s . Bar t l e t t ’ s approximation g i v e s
182 % an i nd i c a t i o n o f whether the ACF i s e f f e c t i v e l y zero beyond lag Q.
183 % For t h i s reason , the con f idence bounds (ho r i z on t a l l i n e s) appear
184 % over the ACF ONLY fo r l a g s GREATER than Q (i . e . , Q+1, Q+2, . . . nLags) .
185 % In other words , the con f idence bounds en c l o s e ONLY those l a g s f o r

72

186 % which the nu l l hypothes i s i s assumed to hold .
187 %
188

189 p lo t ([Q+0.5 Q+0.5 ; nLags nLags] , [bounds ([1 1]) bounds ([2 2])] , ’−b ’) ;
190

191 p lo t ([0 nLags] , [0 0] , ’−k ’) ;
192 hold (’ o f f ’)
193 a = ax i s ;
194 ax i s ([a (1 : 3) 1]) ;
195

196 e l s e
197

198 %
199 % Re−format outputs f o r c ompa t i b i l i t y with the SERIES input . When SERIES i s
200 % input as a row vector , then pass the outputs as a row vec to r s ; when SERIES
201 % i s a column vector , then pass the outputs as a column vec to r s .
202 %
203 i f r owSer i e s
204 ACF = ACF. ’ ;
205 Lags = Lags . ’ ;
206 bounds = bounds . ’ ;
207 end
208

209 varargout = {ACF , Lags , bounds } ;
210

211 end

B.1.15 filterECG.m

1

2 f unc t i on [Fecg] = f i l terECG (ecg , f s , type , hf , l f) ;
3

4 % INPUT: ecg − S igna l
5 % f s − Sampling f requency
6 % type − F i l t e r type ’ low ’ , ’ high ’ , ’ stop50 ’ , or ’ stop60 ’ .
7 % ’LS50 ’ low and stop50 , ’ LS60 ’ low and stop60
8 % ’HS50 ’ high and stop50 , ’HS60 ’ low and stop60
9 % ’HL’ high and low

10 % hf − c u t o f f f requency f o r lowpass f i l t e r
11 % l f − c u t o f f f requency f o r h ighpass f i l t e r
12 %
13 % OUTPUT: Fecg − F i l t e r e d ECG
14 %
15 %
16

17 % Copyright (c) 2015 , Caro l ina Varon , KULeuven−ESAT−SCD
18 % This so f tware i s made av a i l a b l e f o r non commercial r e s ea r ch purposes only
19 % under the GNU General Publ ic L i cense . However , notwithstanding any p rov i s i on
20 % of the GNU General Publ ic License , t h i s so f tware may not be used f o r

commercial
21 % purposes without e x p l i c i t wr i t t en permis s ion a f t e r contac t ing
22 % ca r o l i n a . varon@esat . kuleuven . be
23 %%%
24 Nf = f s /2 ; % Nyquist f requency
25

26

27 i f strcmp (type , ’ low ’) | | strcmp (type , ’ A l l ’) | | strcmp (type , ’LS ’) | | strcmp (type ,
’HL ’)

28 Cf = hf /Nf ; % Cutof f f r e q . Passband corner f r e q . 100Hz

73

29

30 [bl , a l] = butte r (4 , Cf , ’ low ’) ; % Low pass f i l t e r
31 y l = f i l t f i l t (bl , a l , ecg) ;
32 ecg = y l ;
33 end
34

35 i f strcmp (type , ’ high ’) | | strcmp (type , ’ A l l ’) | | strcmp (type , ’HS ’) | | strcmp (type
, ’HL ’)

36 Cf = l f /Nf ; % Cutof f f r e q . Passband corner f r e q . 0 . 5Hz
37

38 [bh , ah] = butte r (2 , Cf , ’ high ’) ; % High pass f i l t e r
39 yh = f i l t f i l t (bh , ah , ecg) ;
40 ecg = yh ;
41 end
42

43 i f strcmp (type , ’ stop50 ’) | | strcmp (type , ’ A l l ’) | | strcmp (type , ’HS50 ’) | | strcmp (
type , ’ LS50 ’)

44 Cf = [45 55]/Nf ; % Cutof f f r e q . Passband corner f r e q . 0 . 5Hz
45

46 [bs , as] = butte r (6 , Cf , ’ s top ’) ; % stopband f i l t e r
47 ys = f i l t f i l t (bs , as , ecg) ;
48 ecg = ys ;
49 end
50

51 i f strcmp (type , ’ stop60 ’) | | strcmp (type , ’ A l l ’) | | strcmp (type , ’HS60 ’) | | strcmp (
type , ’ LS60 ’)

52 Cf = [55 65]/Nf ; % Cutof f f r e q . Passband corner f r e q . 0 . 5Hz
53

54 [bs , as] = butte r (6 , Cf , ’ s top ’) ; % stopband f i l t e r
55 ys = f i l t f i l t (bs , as , ecg) ;
56 ecg = ys ;
57 end
58

59 Fecg = ecg ;

B.1.16 ECGFILTER.m

1 %%
2 % Output :
3 % fi lteredECG : The f i l t e r e d ECG s i g n a l
4 %
5 % Author (s) : Enes Kinaci
6 % Talha Kuruoglu
7 %
8 % The a lgor i tm f i l t e r s the incoming ECG s i g n a l . The power l ine Noise , the
9 % Base l i n e Wander and frequency components h igher than 150 Hz are removed

10 % removed from the incoming ECG.
11 %%
12

13 f unc t i on f i l teredECG = ECGFILTER(Fs , iECG, Fnotch , Fnotch2 , Fnotch3 , Order1 , fcut ,
Order2 , f cu t2)

14 %% Powerl ine Noise removal
15

16 BW = 1 ; %Bandwidth
17 [b , a] = i i r n o t c h (Fnotch/ (Fs /2) , BW/ (Fs /2)) ;
18 y1= f i l t f i l t (b , a , iECG) ;
19

20 [b2 , a2] = i i r n o t c h (Fnotch2/ (Fs /2) , BW/ (Fs /2)) ;
21 y2= f i l t f i l t (b2 , a2 , y1) ;

74

22

23 [b3 , a3] = i i r n o t c h (Fnotch3/ (Fs /2) , BW/ (Fs /2)) ;
24 y3= f i l t f i l t (b3 , a3 , y2) ;
25

26

27

28 %% Base l i n e Removal
29 [b4 , a4] = butte r (Order1 , f cu t /(Fs /2) , ’ high ’) ;
30 y4 = f i l t f i l t (b4 , a4 , y3) ;
31

32 %% Removal o f f r e qu en c i e s h igher than 150Hz
33 [b5 , a5] = butte r (Order2 , f cu t2 /(Fs /2) , ’ low ’) ;
34 y5 = f i l t f i l t (b5 , a5 , y4) ;
35 %% UNKNOWN YET
36 BW2 = 4 ;
37 [b6 , a6] = i i r n o t c h (120/ (Fs /2) , BW2/ (Fs /2)) ;
38 f i l teredECG= f i l t f i l t (b6 , a6 , y5) ;
39

40 end

B.2 respiratory system design code

B.2.1 mainrespiratory.m

1 %% Main r e s p i r a t o r y
2 %
3 % Author (s) : Enes Kinaci
4 % Talha Kuruoglu
5 %
6 % This a lgor i tm supp l i e s the Resp i ratory .m with i t s inputs .
7 %
8 %
9 %%

10

11 c l e a r a l l ;
12 load (’ Data_Respiration .mat ’)
13

14 A = Resp_SA ;
15 pat i entdata = A{1 ,7} ;
16 t = 80 ; %Time length in sec
17 Nsegment =t ∗ f s_resp ;
18 p = 1 ;
19 q = 125 ; % p and q are the r a t i o o f downsampling used on the func t i on resample
20 Order1 = 6 ;
21 f c u t = 0 . 5 ;
22 Order2 = 4 ;
23 f cu t2 = 0 . 1 ;
24

25 l e n g t h s i g n a l = length (pat i entdata) ;
26 number_segments = f l o o r (l e n g t h s i g n a l /Nsegment) ;
27 proce s s ed_s igna l = c e l l (1 , number_segments) ;
28

29 f o r i = 0 : (number_segments − 1)
30

31 r e sp i r a t i on s egment = pat i entdata (1+(i ∗Nsegment) : (Nsegment∗(1+ i))) ;
32 r e sp i ra t i onsegmentde t r end = detrend (r e sp i r a t i on s egment) ;
33

34 [Resp ,RR, SQI] = Resp i ratory (t , fs_resp , p , q , Order1 , fcut , Order2 , fcut2 ,
r e sp i ra t ionsegmentdet rend , r e sp i r a t i on s egment) ;

75

35

36

37 proce s s ed_s igna l {1 , (i +1)} = Resp ;
38 proce s s ed_s igna l {2 , (i +1)} = RR;
39 proce s s ed_s igna l {3 , (i +1)} = SQI ;
40 end

B.2.2 Respiratory.m

1 %%
2 %
3 % Output :
4 % Resp : The f i l t e r e d r e s p i r a t o r y s i g n a l
5 % RR = Resp i ratory ra t e obta ined from the r e s p i r a t o r y s i g n a l
6 % SQI = Signa l qua l i t y i nd i c a t o r a s s i gned to the f i l t e r e d r e s p i r a t o r y .
7 %
8 % Author (s) : Enes Kinaci
9 % Talha Kuruoglu

10 %
11 % This a lgor i tm performs a l l the computations made in the r e s p i r a t o r y
12 % s i g n a l system . The f o l l ow i n g s c r i p s are used to make the computations in
13 % th i s a lgor i thm : NaNorNotResp .m, Powerresp .m, F i l t e r r e s p .m and
14 % RespiratoryRate .m. The NaNorNotResp func t i on i s used to de t e c t p o s s i b l e NaNs

in the r e s p i r a t o r y s i g n a l
15 % be fo r e making computations . F i l t e r r e s p func t i on i s used to f i l t e r the
16 % re s p i r a t o r y s i g n a l . The Powerresp func t i on performs the power
17 % qua l i t y check on the downsampled and f i l t e r e d r e s p i r a t o r y s i g n a l .
18 % Afterwards the RR i s c a l c u l a t ed with the RespiratoryRate func t i on .
19 % Afterwards the second qua l i t y check i s performed where i t i s checked
20 % wheter the breath taken in the r e s p i r a t o r y i s taken with in 10 seconds or
21 % longe r than 10 seconds .
22 %
23

24 %%
25

26 f unc t i on [Resp ,RR, SQI] = Resp i ratory (t , fs_resp , p , q , Order1 , f cut , Order2 , fcut2 ,
r e sp i ra t ionsegmentdet rend , r e sp i r a t i on s egment)

27

28 NaN = NaNorNotResp (r e sp i ra t i onsegmentde t r end) ; % NaN check
29

30 i f (NaN == 0)
31 %% F i l t e r i n g and downsampling
32

33 [f i l t e r e d r e s p i r a t i o n] = F i l t e r r e s p (re sp i ra t ionsegmentdet rend , Order1 , f cut , Order2 ,
fcut2 , f s_resp) ;

34 r e spdown f i l t e r ed = resample (f i l t e r e d r e s p i r a t i o n , p , q) ;
35 respdownnormal = resample (re sp i ra t ionsegmentdet rend , p , q) ;
36 fs_resp_down = fs_resp ∗ (p/q) ;
37

38 %% Power Qual i ty Ind i c a t o r Check
39 [Ipower] = Powerresp (fs_resp_down , r e spdown f i l t e r ed) ;
40 i f (Ipower == 1)
41

42 i y2 = (− r e spdown f i l t e r ed) ;
43 [invminresp , p o s i n i t i e e lm i n] = f indpeaks (iy2) ;
44 [maxresp_in i t i ee l , p o s i n i t i e e l] = f indpeaks (r e spdown f i l t e r ed) ; % Detect ion

o f ’ peaks ’ in the r e s p i r a t o r y s i g n a l
45

46 [RR, posit ionmax] = RespiratoryRate (r e spdownf i l t e r ed , fs_resp_down , t ,

76

maxresp_in i t i ee l , invminresp) ; % Ca l cu la t i on o f r e s p i r a t o r y ra t e
47 distanceMaxPeak = d i f f (pos it ionmax) ;
48 %% Second Qual i ty i nd i c a t o r
49 i f distanceMaxPeak > 10
50 SQI = 0 ;
51 Resp = f i l t e r e d r e s p i r a t i o n ;
52 e l s e
53 SQI = 1 ;
54 Resp = f i l t e r e d r e s p i r a t i o n ;
55 end
56

57

58 e l s e %I f power qua l i t y i s bad
59 i y2 = (− r e spdown f i l t e r ed) ;
60 [invminresp , p o s i n i t i e e lm i n] = f indpeaks (iy2) ;
61 [maxresp_in i t i ee l , p o s i n i t i e e l] = f indpeaks (r e spdown f i l t e r ed) ;
62

63 Resp = f i l t e r e d r e s p i r a t i o n ;
64 [RR, posit ionmax] = RespiratoryRate (f i l t e r e d r e s p i r a t i o n , fs_resp_down , t ,

maxresp_in i t i ee l , invminresp) ;
65 SQI = 0 ;
66 end
67 e l s e %When there i s a NaN
68 Resp = re sp i r a t i on s egment ;
69 RR = 0 ;
70 SQI = 0 ;
71 end
72 end

B.2.3 NaNorNotResp.m

1 %%
2 % Output :
3 % SQI_NaN − s i g n a l qua l i t y i nd i c a t o r which i s an i nd i c a t i o n o f the p o s s i b l e

presence o f a NaN/NaNs .
4 %
5 %
6 % Author (s) : Enes Kinaci
7 % Talha Kuruoglu
8 %
9 %This a lgor i tm checks whether the incoming Resp i ratory s i g n a l s i g n a l has a NaN

or NaNs i n s i d e o f i t .
10 %Depending on the presence o f a NaN or NaNs , a SQI i s sent as output .
11 %SQI = 1 , means that a NaN i s detected , whi l e SQI = 0 , means that no NaNs are

detec ted .
12 %%
13 f unc t i on SQI_NaN = NaNorNotResp (r e sp i ra t i onsegmentde t r end)
14 i =1;
15 SQI_NaN =0;
16 Index = isnan (r e sp i ra t i onsegmentde t r end (i : 1)) ;
17 i f Index == 1
18 SQI_NaN = 1 ;
19 e l s e
20 SQI_NaN =0;
21 end
22

23 end

B.2.4 Filterresp.m

77

1 %%
2 %
3 % Output :
4 % f i l t e r e d r e s p i r a t i o n : The f i l t e r e d r e s p i r a t o r y s i g n a l
5 %
6 % Author (s) : Enes Kinaci
7 % Talha Kuruoglu
8 %
9 % This a lgor i tm implements the bandpass f i l t e r o f 0 . 1 Hz − 0 .5 Hz on the

10 % re s p i r a t o r y s i g n a l .
11 %
12 %%
13

14 f unc t i on [f i l t e r e d r e s p i r a t i o n] = F i l t e r r e s p (re sp i ra t ionsegmentdet rend , Order1 ,
f cut , Order2 , fcut2 , f s_resp)

15 %% Bandpass f i l t e r between 0 .1 Hz and 0 .5 Hz
16

17 [b , a] = butte r (Order1 , f cu t /(f s_resp /2) , ’ low ’) ;
18 y1 = f i l t f i l t (b , a , r e sp i ra t i onsegmentde t r end) ;
19

20 [b2 , a2] = butte r (Order2 , f cu t2 /(f s_resp /2) , ’ high ’) ;
21 f i l t e r e d r e s p i r a t i o n = f i l t f i l t (b2 , a2 , y1) ;
22

23 end

B.2.5 Powerresp.m

1

2 %%
3 % Output :
4 % Ipower = S igna l qua l i t y i nd i c a t o r a f t e r the power qua l i t y check
5 %
6 %
7 % Author (s) : Enes Kinaci
8 % Talha Kuruoglu
9 %

10 % This a lgor i thm i s the conta in s the power qua l i t y check in which the percentage
o f the power in the band o f i n t e r e s t o f the

11 % re s p i r a t o r y s i g n a l i s compared with i t s whole spectrum . Depending on t h i s
percentage , a Ipower = 0 or I_power = 1 i s send as output .

12

13 %%
14 f unc t i on [Ipower] = Powerresp (fs_resp_down , respdown)
15

16 %% input
17 windowlength = length (respdown) ; %Length o f the window
18 over lap = 0.7∗ l ength (respdown) ; %number o f over lap samples
19 ndft = length (respdown) ; %number o f DFT po in t s
20 %% Plo t t i ng the PSD us ing Welch Method
21

22 [pxx , f] = pwelch (respdown , windowlength , over lap , ndft , fs_resp_down) ;
23

24 %% Calcu la t ing the t o t a l power
25

26 P0 = trapz (pxx) ; %Whole spectrum power
27 pxxresp = pxx (6 : 3 0) ;
28 Presp = trapz (pxxresp) ;
29 f r a c = ((Presp) /P0) ∗100 ;
30

78

31 i f (f r a c > 80)
32 Ipower = 1 ;
33 e l s e
34 Ipower = 0 ;
35 end
36

37 end

B.2.6 RespiratoryRate.m

1 %% Resp i ratory Rate Ca l cu l a t i on .
2 %
3 % Output :
4 % RR = Resp i ratory Rate o f r e s p i r a t o r y s i g n a l
5 % posit ionmax = Pos i t i on o f the maximum va lue s r e s p i r a t o r y s i g n a l .
6 %
7 % Author (s) : Enes Kinaci
8 % Talha Kuruoglu
9 %

10 % The Resp i ratory Rate i s c a l c u l a t ed by look ing at the amount o f breaths
11 % taken in the r e s p i r a t o r y s i gna l , ’ breaths ’ that are taken f a s t e r than 2

seconds are ignored in the
12 % re s p i r a t o r y ra t e c a l c u l a t i o n .
13 %
14 %% Determining o f RR ra t e with Resp i ratory s i g n a l e s t imate
15

16 f unc t i on [RR, posit ionmax] = RespiratoryRate (r e spdownf i l t e r ed , fs_resp_down , t ,
maxresp_in i t i ee l , invminresp)

17

18 % Minimum d i s t ance i s determined :
19 [maxresp , posit ionmax] = f indpeaks (r e spdownf i l t e r ed , fs_resp_down , ’

MinPeakDistance ’ , 2) ; %Check i f breath i s taken f a s t e r than 2 seconds
20

21 %making sure that i nha l e and exha le par t s in r e s p i r a t o r y s i g n a l i s in
22 %pai r s , to t r u e l y de t e c t breath ing
23 N = length (maxre sp_in i t i e e l) − l ength (maxresp) ;
24 lengthMinimum = length (invminresp) − N;
25

26 %Calcu l a t i on RR
27 i f (lengthMinimum >= length (maxresp))
28 bpm = length (maxresp) ;
29 RR = bpm/ t ;
30 e l s e
31 bpm = lengthMinimum ;
32 RR = bpm/ t ;
33 end
34 end

79

	Introduction
	Problem Definition
	State of the Art Analysis
	Document Structure

	Program of Requirements
	Functional Requirements
	Non-Functional Requirements

	Data Sets
	Stress Dataset
	Drivers Dataset
	CinC2017 Dataset

	ECG System Design
	Finite State Machine
	Signal Quality Indicator of the ECG Signal
	Spectral Distribution Ratio of the ECG
	Weight based on the Autocorrelation function
	The Heart Rate

	Artifact Removal
	ECG Artifacts
	Filtering

	Respiratory signal system design
	Finite State Machine of the Respiratory System
	Artifact Removal
	Artifacts Affecting The Respiratory Signal
	Filtering

	Respiratory Rate Calculation
	Signal Quality Indicator of The Respiratory Signal
	Downsampling
	Spectral Distribution Ratio of Respiration Signal
	Breath Check

	Results & Discussion
	Results
	Discussion

	Conclusion
	Appendices
	Power Spectral Density
	Matlab Code
	ECG system design code
	MainECG.m
	FINALECG.m
	NaNorNot.m
	Power.m
	Rpeak.m
	RRpeak.m
	RRPeakCalc.m
	calc-pos-opt.m
	ectopic-detection.m
	ectopic-detection-correction.m
	env-secant.m
	SQI-ACF.m
	ACF-Artefact.m
	acrr.m
	filterECG.m
	ECGFILTER.m

	respiratory system design code
	mainrespiratory.m
	Respiratory.m
	NaNorNotResp.m
	Filterresp.m
	Powerresp.m
	RespiratoryRate.m

