

Delft University of Technology

Generating graphs that approach a prescribed modularity

Trajanovski, S; Kuipers, FA; Martin Hernandez, J; Van Mieghem, PFA

DOI
10.1016/j.comcom.2012.10.004
Publication date
2013
Document Version
Accepted author manuscript
Published in
Computer Communications

Citation (APA)
Trajanovski, S., Kuipers, FA., Martin Hernandez, J., & Van Mieghem, PFA. (2013). Generating graphs that
approach a prescribed modularity. Computer Communications, 36(4), 363-372.
https://doi.org/10.1016/j.comcom.2012.10.004

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.comcom.2012.10.004
https://doi.org/10.1016/j.comcom.2012.10.004

Generating graphs that approach a prescribed modularity

S. Trajanovski∗, F.A. Kuipers, J. Martı́n-Hernández, P. Van Mieghem

Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, P.O. Box 5031, 2600 GA Delft, The Netherlands

Abstract

Modularity is a quantitative measure for characterizing the existence of a community structure in a network. A network’s modularity
depends on the chosen partitioning of the network into communities, which makes finding the specific partition that leads to the
maximum modularity a hard problem. In this paper, we prove that deciding whether a graph with a given number of links, number
of communities, and modularity exists is NP-complete and subsequently propose a heuristic algorithm for generating graphs with a
given modularity. Our graph generator allows constructing graphs with a given number of links and different topological properties.
The generator can be used in the broad field of modeling and analyzing clustered social or organizational networks.

Keywords: Modularity, Graph generator, Modeling community structure

1. Introduction

Community structure is observed in many real-world net-
works, such as (online) social networks, where groups of
friends of a certain person are often also friends of each other.
For instance, one group of friends could originate from the
school community, another from the sports community, and yet
another group could be living in the same neighborhood.

Community detection or characterizing the level of commu-
nity structure in a network is difficult. The modularity met-
ric, initially proposed by Newman and Girvan [1] to detect
network communities, has attracted significant attention, e.g.
see [2, 3, 4]. The maximum modularity expresses how clus-
tered the network is and gives the resulting partitioning into
the corresponding clustered communities. Modularity has its
limitations in detecting community structure, for instance com-
munities smaller than a certain resolution limit may be unde-
tectable [5], while larger sub-graphs may be partitioned even
if they are random graphs [6]. Additionally, computing the
maximum modularity of a given graph is an NP-complete prob-
lem, as was proved by Brandes et al. [2]. Nonetheless, has re-
mained a popular metric for representing community structure
and several heuristic algorithms for detecting maximum modu-
larity [7, 4, 8] have been proposed.

Ever since the seminal work of Erdős and Rényi [9] on mod-
eling and analyzing random graphs, various graph generators
have been proposed. Graph generators are predominantly used
to mimic existing networks, such that either a proper network
abstraction can be analyzed or simply to test new algorithms
and applications when the actual network is too big or not com-
pletely known. Popular graph generators include the:

∗Corresponding author
Email addresses: S.Trajanovski@tudelft.nl (S. Trajanovski),

F.A.Kuipers@tudelft.nl (F.A. Kuipers),
J.MartinHernandez@tudelft.nl (J. Martı́n-Hernández),
P.F.A.VanMieghem@tudelft.nl (P. Van Mieghem)

• Erdős-Rényi random graph generator [9, 10] that generates
networks with a binomial degree distribution and where
links exist with a fixed probability p.

• Barabási-Albert power-law graph generator [11] and its
variations [12, 13] that produce graphs with a power-law
degree distribution. Power-law graphs are for instance
used to reflect the Internet AS topology [14].

• Watts and Strogatz small-world graph generator [15],
which was proposed to generate networks with high clus-
tering coefficient and small diameter.

However, the proposed models produce graphs with low
modularity, thus failing to match the strong community struc-
ture of social networks. To date, there does not exist any gen-
erator that produces graphs with a given number of commu-
nities and fixed modularity. This paper aims to fill this gap by
proposing such a generator. Artificially generated graphs with a
required modularity would offer the possibility to analyze com-
munity detection, information spreading, or robustness proper-
ties on an appropriate scale.

We study the problem of finding a graph G with a given mod-
ularity m, number L of links and number c of communities. As
it is shown in the paper, the modularity m taken together with
the number of communities c quantitatively shows community
presence or absence. Our main contributions are:

(a) We prove that deciding whether a graph, with a modularity
m, number L of links, and partitioning into c communities
exists, is NP-complete.

(b) We analyze the influence of link rewiring strategies on the
modularity of a graph.

(c) We propose a novel graph generator that produces graphs
with a given number of communities and a modularity
close to that of a given modularity.

The paper is organized as follows. A short overview of the
state-of-the-art on modularity, community detection and related
graph generators is given in Section 2. The complexity of gener-
ating graphs with a given modularity is discussed in Section 3.
Section 4 analyzes the effect of link rewiring on the modularity
of a graph. Section 5 proposes a heuristic algorithm for gen-
erating network structures with a given modularity and number
of communities. The properties of the generated graphs are dis-
cussed in Section 6. We conclude in Section 7.

2. Related Work

The modularity metric has been proposed by Newman and
Girvan [1] as a global metric for quantifying community ex-
istence in networks. Subsequently, modularity has been ex-
plored as a metric for community detection in graphs and net-
works [16, 7, 8, 17, 18]. A thorough summary of the state-
of-the-art in community detection in general and modularity
in particular has been provided by Fortunato [19]. Brandes
et al. [2] proved that finding the maximum modularity is an
NP-complete problem. In addition, they proposed a linear pro-
gramming (LP) technique for finding the maximum modular-
ity. A similar LP-based approach for modularity maximiza-
tion was proposed in [20]. In our previous work [21], we have
determined a tight bound and the properties of the maximum
modular graphs for a given number of links. An algorithm
that seeks for the local maxima, based on a greedy technique
has been given in [16]. Fast modularity based community de-
tection algorithms on very large networks have been proposed
in [17, 8, 22]. Some weaknesses in modularity optimization
have also been determined, such as the incapability to detect
communities smaller than a resolution limit [5] or the breaking
up of large random sub-graphs into separate communities [6].
A spectral analysis of the modularity as well as correlation with
other metrics, such as assortativity [23, 24], has been conducted
in [25].

Orman et al. [26] have made a qualitative comparison of
community detection algorithms and surveyed the models for
generating graphs with community structure. The model pre-
sented by Girvan and Newman [27] generates a network con-
sisting of a small number of Erdős-Rényi graphs [9] that are
weakly connected. Few other models with a larger number
of communities have been proposed that lead to more realistic
(e.g., power-law) degree distributions [28, 29]. Finally, mod-
els that produce weighted and undirected graphs with commu-
nity overlap have been proposed by Lancichinetti and Fortu-
nato [30].

Unlike previous work, we first prove the NP-completeness
of deciding whether a graph with a given modularity, number
of links and number of communities exists. To the best of our
knowledge, our generator is the first in producing graphs with a
given modularity, number of links and number of communities.
Moreover, our generator returns the number of links per com-
munity, leaving space for leveraging other structural properties
per community, such as the degree distribution.

3. Complexity of modular graph generation

For a certain partitioning of a network G of N nodes into
c communities, modularity has been defined by Newman and
Girvan [1] as a function of the graph’s adjacency matrix values
ai j and its node degrees di for i, j = 1, 2, ...,N as

m =
1

2L

N∑
i=1

N∑
j=1

(
ai j −

did j

2L

)
1{i, j∈ the same community} (1)

where we follow the notation introduced in [31].
By considering the cumulative degree DCi , which is the sum

of all the nodal degrees in community Ci; the total number LCi

of links within Ci; and the number Linter of links that connect
nodes in different communities, the original form for the mod-
ularity (1) can be modified [25] into

m = 1 −
1
c
−

Linter

L
−

1
2c

c∑
j=1

c∑
k=1

(
DC j − DCk

2L

)2

(2)

We use the term inter-community links to refer to links that
connect nodes in different communities and the term intra-
community links for those links, where both end-points reside
in the same community. For each community Ci (i = 1, ..., c),
the number of inter-community links, where exactly one node
is in Ci, is denoted as LCi

out and the number of intra-community
links within Ci as LCi

in . Because, from a degree perspective, all
inter-community links in Ci are counted twice, we have

DCi = 2LCi
in + LCi

out

Over all possible partitions of G, the partitioning that leads to
highest modularity m is of general interest. Based on (2), an
immediate conclusion is that maximum modularity is achieved
by minimizing the number Linter of links that connect nodes in
different communities, while keeping the cumulative degrees of
the communities as equal as possible.

In order to gain more control over modularity-based commu-
nity structure (and its weaknesses as exposed in [5, 6]), we con-
sider the modularity m and the number of communities c as joint
indicators for the community existence in a graph. For a fixed
number c of communities, a rough upper bound for the modu-
larity is (1− 1

c). The modularity value should therefore be inter-
preted based on the number of communities. For instance, for
c = 2, a modularity value m = 0.48 would constitute a “highly
clustered” network, while the same value for c = 5 could be in-
terpreted as “medium clustered.” Theoretically, m < 1 and the
asymptotic value of 1 is only achieved for an infinite number
of fully isolated communities. However, we are interested in
modularity maximization in connected networks.

We proceed to formalize the problem of graph construction
with a given modularity. Using the fact that

∑c
i=1 DCi = 2L, we

transform (2) into

c∑
i=1

D2
Ci

=
4cL (L − Linter − mL)(

c
2

)
+ 1

(3)

2

We consider two variants of the graph generation problem,
namely one where Linter is fixed, and the other in which it is
not.
Problem 1. Find a graph G with a given total number L of links
and corresponding partitioning into c communities, where the
communities are connected by Linter links, for which the modu-
larity of the generated graph equals m, i.e.

∑c
i=1 D2

Ci
=

4cL(L−Linter−mL)
(c

2)+1

DCi = 2LCi
in + LCi

out∑c
i=1 DCi = 2L∑c
i=1 LCi

out = 2Linter

Problem 1 is equivalent to
Problem 1*. For given L, c, Linter and m, find a non-negative
integer vector ~LC =

{
LCi

in , L
Ci
out

}
i=1,...,c

of 2c elements in total, such
that 

∑c
i=1

(
2LCi

in + LCi
out

)2
=

4cL(L−Linter−mL)
(c

2)+1∑c
i=1 LCi

out = 2Linter∑c
i=1 LCi

in = L − Linter

Relaxing the requirement for ~LC to be an integer val-
ued vector results in a convex quadratically constrained
program, which can be solved in polynomial time (i.e.,∑c

i=1

(
2LCi

in + LCi
out

)2
= ~LT

C P~LC , with P a 2c × 2c matrix consist-

ing of the sub-matrix
[

4 1
1 1

]
along the diagonal and 0 for the

other elements. Since P is positive semi-definite, the quadratic
constraint is convex).
Problem 2. Find a graph G with a given number of links L,
a corresponding partitioning into c communities, and a given
modularity m, such that

4cLLinter +
((

c
2

)
+ 1

)∑c
i=1 D2

Ci
= 4cL2 (1 − m)

DCi = 2LCi
in + LCi

out∑c
i=1 DCi = 2L∑c
i=1 LCi

out = 2Linter

Problem 2 is equivalent to
Problem 2*. For given L, c, and m, find a non-negative integer
vector ~LC =

{
LCi

in , L
Ci
out

}
i=1...c

of 2c elements in total, such that 2cL
∑c

i=1 LCi
out +

((
c
2

)
+ 1

)∑c
i=1

(
2LCi

in + LCi
out

)2
= 4cL2 (1 − m)∑c

i=1

(
2LCi

in + LCi
out

)
= 2L

Problem 2* is the problem of main interest in this paper and
in the remainder we refer to it as the Modular Graph Existence
(MGE) problem. A solution to the MGE problem does not con-
stitute a graph, but gives the number of links inside and between
communities. Based on this information, various instantiations
of graphs might be possible. We will now prove that the MGE
problem is NP-complete, even for a fixed partitioning c = 2 into
two communities. We start with the following Lemma 1.

Lemma 1. For x < b
√

Cc, x2 ≡ C(mod B) is equivalent to
x2 + By = C.

Proof. Let us assume that x is a solution of x2 ≡ C(mod B),
then the pair (x, y = C−x2

B) is a solution of x2 + By = C, since
x2 = Bk + C for some k ∈ N and thus x2 + By = Bk + C +

BC−Bk−C
B = C. On the other hand, assuming that (x, y) is a

solution of x2 + By = C and taking modulo B on both sides,
using (By) mod B = 0, we arrive at x2 ≡ C(mod B), hence x is a
solution.

Lemma 1 shows that finding a solution to the quadratic Dio-
phantine equation x2 + By = C is as hard as finding a solution
to x2 ≡ C(mod B). This problem has been shown to be NP-
complete by Manders and Adleman [32] even for few known
factors of B, for instance with B an even number1. Hence, the
quadratic Diophantine problem x2 + By = C is NP-complete.

Theorem 2. The MGE problem, i.e. deciding whether a graph,
with modularity m, number L of links, and a partitioning into
c = 2 communities, exists, is NP-complete.

Proof. Given c = 2 and L, a solution to the MGE prob-
lem returns two integer numbers, namely LC1

in and LC1
out (where

LC2
in = L − LC1

in − LC1
out and LC2

out = LC1
out). Based on (2), it can

be verified in polynomial time whether those numbers indeed
lead to a modularity m, and hence the problem is in the class
NP2. To prove that the MGE problem is also NP-hard3, we
demonstrate how solving the modular graph existence problem
would present a solution to the NP-complete quadratic Dio-
phantine problem, which asks whether an x ∈ N exists for
which x2 + By = C holds with B,C ∈ N and B even. We
proceed in two steps. First we translate, in polynomial time,
the quadratic Diophantine problem into an MGE problem and
subsequently demonstrate how a solution to that MGE problem
can be translated back, in polynomial time, to a solution of the
quadratic Diophantine problem.

1. Diophantine to MGE. Let us assume that we are looking
for a solution (x, y) to x2 + By = C with B even, where
the implicit factor of 2 does not affect the hardness of the
problem. This problem translates to deciding whether a
graph G exists with L = B

2 links and with modularity m =
1
2 −

C
2L2 . If indeed a solution (x, y) exists, then a solution

to MGE also exists where community C1 contains L−y+x
2

links and community C2 contains L−y−x
2 links, and where

both communities are connected via y links. Indeed, based
on the expression in (2), such a solution has L links and a

1In the same paper [32], Manders and Adleman have also proved that finding
a solution to the general quadratic Diophantine equation Ax2 + By = C is NP-
complete.

2NP (non-deterministic polynomial time) refers to a class of problems
whose solution correctness can be verified in polynomial time [33].

3NP-hard problems refer to a class of problems that are “at least as hard as
the hardest problems in NP,” and it is generally believed that they cannot be
solved in polynomial time. NP-hard problems that themselves are in NP are
called NP-complete [33].

3

modularity

m = 1 −
1
2
−

y
L
−

1
8L2 (2

L − y + x
2

− 2
L − y − x

2
)2

=
1
2
−

y
L
−

1
8L2 4x2 =

1
2
−

x2 + 2Ly
2L2 =

1
2
−

x2 + By
2L2

=
1
2
−

C
2L2

2. MGE to Diophantine. Let us assume that the constraints
of the MGE problem are satisfied, namely

4L(LC1
out + LC2

out) + 2
((

2LC1
in + LC1

out

)2
+

(
2LC2

in + LC2
out

)2
)

= 8L2 (1 − m)(
2LC1

in + LC1
out

)
+

(
2LC2

in + LC2
out

)
= 2L

Going back to the notation of DCi = 2LCi
in + LCi

out, i = 1, 2,
and setting y = LC1

out = LC2
out we have{

4L(y + y) + 2(D2
C1

+ D2
C2

) = 8L2 (1 − m)
DC1 + DC2 = 2L

With DC2 = 2L − DC1 , where we choose DC1 ≥ DC2 , we
obtain

8Ly + 2(D2
C1

+ (2L − DC1)2) = 8L2 (1 − m)

or

(DC1 − L)2 + 2Ly = L2 − 2mL2

From our initial Diophantine to MGE translation we have
that B = 2L and C = L2 − 2mL2, thus the solution to x2 +

By = C is obtained from a solution to the corresponding
MGE problem as x = DC1 − L, and y = LC1

out, with C1 the
largest community.

In our proof, we have relied on quantifying the number of
links in and between communities that would lead to a given
modularity and we have not relied on a possible graph realiza-
tion. Although the difference is subtle, since the Diophantine
problem depends on numbers, our reliance on link numbers in-
stead of real links in a graph is crucial. Numbers can be stored
in binary representation and therefore only grow logarithmi-
cally in the size of the input, while real links in a graph cannot
be represented in binary notation (and are often represented via
an adjacency matrix).

Within a community Ci, several (sub)-graph structures can
be devised that obey the required number LCi

in of links in the
solution vector ~LC =

{
LCi

in , L
Ci
out

}
i=1,...,c

to the MGE problem. The
denser (in terms of the average degree E[D]) this community
graph is, the better it actually reflects a community, and the
less likely it becomes that another partitioning would result in
a higher modularity.

4. Changing the modularity via link rewiring

We identify three link rewiring steps, referred to as transfor-
mations, to change a graph’s modularity.
Transformation 1. The modularity m of a graph G (parti-
tioned into communities Ci) increases by replacing an inter-
community link between Ci and C j with an intra-community
link in Ci or C j (in Figure 1).

Ci

Cj

Figure 1: Replacing an inter-community link between Ci and C j with an intra-
community link in C j (Transformation 1).

The difference ∆m1 in modularity between G and the result-
ing graph G′ after having rewired is

∆m1(G,DCi ,DC j) =
2L + DC j − DCi − 1

2L2

The derivation of ∆m1 has been placed in the Appendix. Be-
cause the sum of all degrees equals twice the number of links,
we have DCi < 2L and DC j ≥ 1. Therefore,

∆m1(G,DCi ,DC j) >
2L + 1 − 2L − 1

2L2 = 0

The reverse operation, which decreases the modularity, is also
possible: provided that we assure that a rewiring does not dis-
connect the graph.
Transformation 2. If there are two communities Ci and C j,
such that DCi − DC j > 2, then the modularity can be increased
by moving an intra-community link from Ci to C j (in Figure 2).

Ci
Cj

Figure 2: Replacing an intra-community link in Ci with an intra-community
link in C j (Transformation 2).

In this case, the number of inter-community links remains
the same, while DC j is increased by 2 and DCi decreased by 2.
The difference ∆m2 in modularity, as derived in the Appendix,
after this transformation is

∆m2(G,DCi ,DC j) =
DCi − DC j − 2

L2 > 0

4

Transformation 2 demonstrates that the modularity of G in-
creases by making the cumulative degrees DCi of all the com-
munities as close as possible.
Transformation 3. The modularity of a graph G increases by
replacing an inter-community link between Ci and C j with an
intra-community link in a third community Ck, if 2L + DCi +

DC j > 2DCk + 3 (in Figure 3).

Ci Cj

Ck

Figure 3: Replacing an inter-community link between Ci and C j with an intra-
community link in a third community Ck (Transformation 3).

As demonstrated in the Appendix, the difference between the
modularity of G and the resulting graph G′ is

∆m3(G,DCi ,DC j ,DCk) =
2L + DCi + DC j − 2DCk − 3

2L2 > 0

Transformation 3 is in fact obtained by consecutively applying
Transformations 1 and 2.

In our proposed graph generator TMGG, explained in Sec-
tion 5, we start with an initial graph and subsequently apply
the transformations until we reach the desired modularity. We
propose to start with the connected graph (determined in our
previous work [21]) of L links and c communities that has max-
imum modularity

mmax = 1 −
1
c
−

c − 1
L
−


1

2L2 , r = 0
r(c−2r)

2cL2 , 1 ≤ r ≤ b c
2 c

(c−r)(2r−c)
2cL2 , b c

2 c < r ≤ c − 1

where r = L mod c.

5. Tunable modularity graph generator

Let us denote by community graph the abstraction where a
node reflects one community and a link connects two nodes
from different communities. In this section, we propose the
Tunable Modularity Graph Generator (TMGG) algorithm that
generates graphs with a given modularity m and number c of
partitions. Our generator starts by generating a graph of max-
imum attainable modularity for a given m and c in Initialize.
The initial community graph is a tree with no more than 1 link
between two communities. We subsequently use Transforma-
tions 1 and 2 (in ReplaceInternalExternal and ShiftInternal,

Algorithm 1: Initialize
input : Number L of links, number c of communities
output: Max modularity mmax = max{m(L, c)}, initial

community graph C, initial internal link sums
{LCi

in }i=1,...,c

1 r← L mod c, k← b L
c c, mmax ← 1 − 1

c −
c−1

L ;
2 LC1

in ← k, i← 2;
3 if r == 0 then
4 while i ≤ c do
5 C : create a link (i − 1, i)
6 LCi

in ← k − 1, i← i + 1;

7 mmax ← mmax −
1

2L2

8 else if r ≤ b c
2 c then

9 while i ≤ c − r do
10 C : create a link (i − 1, i)
11 LCi

in ← k − 1;
12 if i ≤ r then
13 C : create a link (i, c − i + 1);
14 LCc−i+1

in ← k;

15 i← i + 1;

16 LCi
in ← k, mmax ← mmax −

r(c−2r)
2cL2

17 else
18 while i ≤ r do
19 C : create a link (i − 1, i)
20 LCi

in ← k;
21 if i ≤ c − r then
22 C : create a link (i, c − i + 1);
23 LCi

in ← LCi
in − 1, LCc−i+1

in ← k;

24 i← i + 1;

25 mmax ← mmax −
(c−r)(2r−c)

2cL2 ;

respectively) to increase/decrease the modularity towards the
desired modularity m.

We vary the order of using these transformations, resulting in
three generator variants:

• StartReplacing

• StartShifting

• Random

All generator variants use Initialize to construct a commu-
nity graph of maximum attainable modularity mmax for a given
L and c. Variant StartReplacing (lines 6-11 in TMGG) starts
by applying procedure ReplaceInternalExternal to the com-
munity graph to establish a modularity close to the interval
[m−ε,m+ε]. If the obtained modularity fluctuates twice around
the interval [m − ε,m + ε] (explained in the next paragraph
of this section), StartReplacing continues with the procedure
ShiftInternal (lines 10-11 in TMGG). As soon as the range
[m − ε,m + ε] is met, the algorithm stops. Similarly, the variant

5

Procedure ReplaceInternalExternal (Transformation 1)
input : Number L of links, number c of communities,

desired modularity m, the current modularity
mcur, the current modularity change ∆mcur, the
current state ∈ {1, 2}, internal link sums
{LCi

in }i=1,...,c

1 find i and j, such that ∆m1(G,DCi ,DC j) is minimum;
2 if mcur > m then // in state 1
3 if state == 2 and ∆m1(G,DCi ,DC j) ≥ ∆mcur then

return false;
4 if LC j

in == 0 then break;
5 C: add 1 link between Ci and C j;

6 ∆mcur ← ∆m1(G,DCi ,DC j), mcur ← mcur − ∆mcur;

7 LC j

in ← LC j

in − 1, state← 1;

8 else // in state 2
9 if state == 1 and ∆m1(G,DCi ,DC j) ≥ ∆mcur then

return false;
10 ∆mcur ← ∆m1(G,DCi ,DC j), mcur ← mcur + ∆mcur;

11 if ∃! a link between Ci and C j then break;
12 C: remove 1 link between Ci and C j if C is still

connected; otherwise break;

13 LC j

in ← LC j

in + 1, state← 2;

14 return true

Procedure ShiftInternal (Transformation 2)
input : Number L of links, number c of communities,

desired modularity m, the current modularity
mcur, the current modularity change ∆mcur, the
current state ∈ {1, 2}, internal link sums
{LCi

in }i=1,...,c

1 find i and j, such that ∆m2(G,DCi ,DC j) is minimum;
2 if mcur > m then // in state 1
3 if state == 2 and ∆m2(G,DCi ,DC j) ≥ ∆mcur then

return false;
4 ∆mcur ← ∆m2(G,DCi ,DC j), mcur ← mcur − ∆mcur;

5 LCi
in ← LCi

in + 1, LC j

in ← LC j

in − 1, state← 1;

6 else // in state 2
7 if state == 1 and ∆m1(G,DCi ,DC j) ≥ ∆mcur then

return false;
8 ∆mcur ← ∆m2(G,DCi ,DC j), mcur ← mcur + ∆mcur;

9 LCi
in ← LCi

in − 1, LC j

in ← LC j

in + 1, state← 2;

10 return true

StartShifting (lines 12-17 in TMGG) tries to obtain a modu-
larity in the interval [m − ε,m + ε], but with a reversed order
of the procedures as in StartReplacing. First, the procedure
ShiftInternal is preferred over ReplaceInternalExternal. Fi-

nally, the last variant Random (lines 18-23 in algorithm TMGG)
randomly chooses one of the procedures ReplaceInternalEx-
ternal (with a certain probability p) and ShiftInternal (with
probability (1 − p)) until the value in the interval [m − ε,m + ε]
is achieved.

For a very small value of ε, a modularity in [m − ε,m + ε]
may not be found. The termination condition effectuates when
in consecutive (link rewiring) transformations the modularity
value alternatively goes below and above the interval [m−ε,m+

ε] (lines 3 and 9 in ReplaceInternalExternal; lines 3 and 7 in
ShiftInternal; and line 25 in TMGG), without getting closer to
that interval. In the algorithm, this is reflected by the current
modularity going from state 1 (above m) to 2 (below m) or vice
versa twice in a row. Hence, TMGG either finds a modular-
ity in the interval [m − ε,m + ε] (as it “converges” towards the
interval) or it terminates when no further improvements are ob-
served in four consecutive transformations. All three variants
StartReplacing, StartShifting and Random return the commu-
nity graph, i.e., a family of graphs or the topology between
communities and the number of links within each community.
Based on the output, we are able to construct arbitrary graphs
with a given number of links for each community. The topolog-
ical differences of the resulting graphs are studied in Section 6.

5.1. Algorithm complexity and accuracy
The algorithm variants approach the given value m with dif-

ferent speed and accuracy. In the paper, we use the probability
p = 0.5 in the variant Random, leading to an equal probabil-
ity in choosing between ReplaceInternalExternal and Shift-
Internal. For p ≈ 0, Random would be closer to the StartRe-
placing variant, and for p ≈ 1, Random would be closer to the
StartShifting variant. Figure 4 presents the speed in terms of
number of iteration steps, at which the three algorithm variants
approach the requested modularity m. One iteration step cor-
responds to a single modularity change in the TMGG variants.

0 50 100 150 200 250 300 350
0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8 max. modularity m
max

iteration step

M
od

ul
ar

ity

StartReplacing
Random (p=0.5)
StartShifting
desired modularity m

Figure 4: Approaching speed of algorithm variants, with L = 1000, c = 5,
m = 0.655, mmax = 0.796 and ε = 5 · 10−3. One iteration step corresponds to a
single modularity change in the TMGG variants.

The variant StartReplacing reaches m in the smallest number
of iterations, which is expected because its modularity change

6

Algorithm 2: TMGG
input : Number L of links, number c of communities, desired modularity m, variant algVariant, probability p
output: community graph C, internal link sums {LCi

in }i=1,...,c

1 [mmax,C, {L
Ci
in }i=1,...,c]←Initialize (L,c);

2 mcur ← mmax;
3 if mcur − ε > m then return There is no graph with modularity in [m − ε,m + ε];
4 ∆mcur ← +∞, state← 0, approachM← true;
5 switch algVariant do
6 case StartReplacing // try 1st Transformation 1 then 2
7 while |mcur −m| > ε and approachM == true do
8 approachM← ReplaceInternalExternal (L,c,m,mcur,∆mcur,state,{LCi

in }i=1,...,c);

9 approachM← true;
10 while |mcur −m| > ε and approachM == true do
11 approachM← ShiftInternal (L,c,m,mcur,∆mcur,state,{LCi

in }i=1,...,c);

12 case StartShifting // try 1st Transformation 2 then 1
13 while |mcur −m| > ε and approachM == true do
14 approachM← ShiftInternal (L,c,m,mcur,∆mcur,state,{LCi

in }i=1,...,c);

15 approachM← true;
16 while |mcur −m| > ε and approachM == true do
17 approachM← ReplaceInternalExternal (L,c,m,mcur,∆mcur,state,{LCi

in }i=1,...,c);

18 case Random // choose randomly Transformation 1 or 2
19 while |mcur −m| > ε and approachM == true do
20 choose randomly 1) with probability p OR 2) with probability (1 − p):
21 1) approachM← ReplaceInternalExternal (L,c,m,mcur,∆mcur,state,{LCi

in }i=1,...,c);
22 2) approachM← ShiftInternal (L,c,m,mcur,∆mcur,state,{LCi

in }i=1,...,c);
23 if the procedure has changed then state← 0; approachM← true;

24 otherwise break;

25 if approachM == f alse then return There is no graph with modularity in [m − ε,m + ε];

∆m1 = O(1/L) is bigger than the modularity change ∆m2 =

O(1/L2) in StartShifting. Regarding the time complexity, all
three variants start with Initialize, which “costs” O(c). If we
denote by mstart the initial modularity obtained after Initialize,
we obtain the time complexity of StartReplacing as

O(StartReplacing) =
mstart − m − ε

O(1/2L)
= O((mstart − m − ε)L)

Similarly, the time complexity of StartShifting is

O(StartShifting) =
mstart − m − ε

O(1/2L2)
= O((mstart − m − ε)L2)

Moreover, because ∆m2 < ∆m1, we have a better accuracy in
StartShifting. The variant Random is in between StartShift-
ing and StartReplacing, in terms of the approaching speed, the
time-complexity and the accuracy. The modularity of the pro-
duced graph, if one is returned, differs from the desired mod-
ularity m by at most ±ε in all three variants. The smaller ε,
the higher the accuracy. Figure 4 illustrates that both StartRe-
placing and Random variants attain the modularity m linearly,
as opposed to a “non-linear” (∆m2 = O(1/L2)) decrease for the
variant StartShifting.

6. Properties of the obtained graphs

The three algorithm variants generate community graphs
with different topological properties.

6.1. Topological properties

The variant StartShifting ends up with a community graph,
with a very small number of inter-community links. In most of
the cases, the community graph is a tree or very close to a tree.
On the other hand, there are just a few (usually only one) com-
munities with a very high number of links and all the other com-
munities have a similar number of links. Unlike StartShift-
ing, the StartReplacing variant generates graphs with higher
number of inter-community links, but all the communities have
a similar number of intra-community links (communities with
similar size). These properties are exhibited in Figure 5. When
comparing the number of inter-community links, the variant
Random (p = 0.5) is somewhere in between StartShifting and
StartReplacing.

Table ?? shows the difference in topological metrics for the
three graphs produced by the three variants for given values of
L, c, m and ε. The variant Random (p = 0.5) has topologi-
cal metrics’ values that lie in between the corresponding val-

7

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp
pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp
pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp

pp

pp

pp

pp

pp

pp pppp

pp

pp

pp

pp

pp

pp

pp
pppp

pp

pp
pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp pp

pp pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp pp

pp
pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp pp

pp

pp
pp

pp pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp pp
pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp pp pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp
pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp
pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp pp

pp

pp

pp pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp
pp

pp

pp pp

pp

pp pppp

pp
pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp pp

pp pp

pp

pp

pp

pp
pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp
pp

pp

pp

pp
pp

pp

pp pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp pp

pp

pp pp

pp

pp

pp

pp

pp

pppp

pp
pp

pppp

pp

pp

pp

pp

pp

pp

pp
310

301

316

283

328

276

270
285

303
287

327 302

288

271284

281300
299

268

278

279307

277

309

282

318

272

294

295

324

315

274

317
325

298

304

292

47

8

11

51

21

44

41

45

56

35

15

19

39

25

33

55

64 50

20

2
6

10

7
59

16

27

43

61

12

49

67

62
14

17

13

5

37
54

1

28 29

23

48

63

66

9

383

18

42

52

40

32

53

65

57

4624

3436
58

6030
31

26 22

74

108

94

88
106

123

93

77

99

107

82

84

113

95

76

115

105

122

72
109

73

90

80 121

100

79

81

117

89

75

112

69

96

104

98

71

85

119

91

114

78

116

83
97

124

118

102

111

86
101

120

87

68

70

103

92

197

172

194

147

131

165

182

185

203202

151

168188

198

166

133 179

167

189 175

152
181

144

160
140

184

191

196

156

161

150180

200

136
146

186 148

201178
177

187

155

154

126 190

173

195157

204

149

159

129

220

234 221

233

223

257

206

261

232

244

247 230

236

259

252

209

263

264

231

248

267

240

219

241

246

213

243

242

217

207

222

218

208

239

211

255 251249
225 205

245212

256

258
227

216

260

229 250

210

224

214

235

228

266

215

237226 254

262

238

253

265

169

138137

183

176

163 158

141

125 4
199

139143

174

153

145

134

132

135

164
142

192

127

323

130

314

293

162

291

193

308

322

313

311

273

286

320

275

269

296

297

326

280

321

312

305

306

319

289

290

110

128

170
171

(a) StartReplacing

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pppp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp

pp
pp

pp
pppp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp
pp

pp

pp

pp
pp

pp
pppp

pp

pp pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp pp
pp

pp pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pppp

pp

pp pp

pp

pp

pp pp

pp
pp

pp

pp

pp

pp

pp
pp

pppp

pp
pp pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp
pp

pp
pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp
pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp
pp

pp
pp pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp pp
pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp pp

pp

pp

pp

pp pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp
pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp pp

pp

pp
pp

pp

pp

pp

pp

pp

pp
pp

pp

pp pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp
pp

pp

pp pp

pp

pp
pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp
pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp pp

202 226229218

225

213 228
214

231
239

241

215

230

217

208

103

79

112

13

129

93

4

197

200

199

198

220
233

209

222

238

243

240
232

207

219

211

227

236

205

210
235

234

212
242

138
97139

53

85

142

144

50

182

196

189
165

195

188 190

193
194152

171 186 168

169
163

158

151

175

155
178

192

162

187

157

3

223 221

216

206

203224

204

244

179

173
150183

149

185
160

164
191

156

184

153

159

167

176

172

174

177

170

181
180

166

161

154

312
334

303

325320

301 328

309

338

321

322

299

336
332 302

311

289

282

280

256

272

292

261
278

290

268

250

326

318

327

340

335

295

339

281

291

262

271

246

276

287293

275

274

288

284253

245

285

251

257

260

263

267

249 270

247

248

279
266

273

294

313

324

343

306

308
329

341

24

28 69

128

106

122

147

84

35

70104

37

89

92

116

140
68

48

44117

141

113 25

96

52

56

95
124

41 59
72

49
125

10
2246

315

296

305

317

307
304

310

201

51

5

277

283

258

252

39

265

331

342

300

333

323

319

330

6

269

254 286

264

255
259

237

298

297
316

314

337

131

98

63
82

111

135

60

21

88
114

74143

90

145

107

118

2

86

146

34

31

80
17 55 110

76

27
75 109 130

77

14

18

67

78

108

58

121 87

133

105

38

40

45

94
100

1

132

71

36
15

19
33 11

54

7
136

16

148
12

6130

81
4783

91

126

119
9

26

62
73

1349966

123 23

42

8

29

120
4332

57

101127

64 102

65
20

115

137

(b) Random (p = 0.5)

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp
pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp
pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp
pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp
pp

pp pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp
pp

pp

pp
pp

pp
pppp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp pp

pp

pp pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp
pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp
pp

pp

pp

pp

pp pp

pp

pp

pp

pp
pp

pp

pp

pp
pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp
pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp
pp

pp

pp

pp

pp
pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp
pp

pp

pppp

pp

pp

pp pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp pp

pp
pp

pp

pp
pp

pp
pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp
pp

pp
pppp

pp

pp

pp

pp
pp

pp

pp
pp

pp

pppp
pp

pp

pp

28

2029

41

1

16

4

18

37
34

14

24

26

21

25

35

10

39

8

31

38 33

19

9

7

12

36

17
5

6

2

11
23

40

15

13

27

3 22

32

88

66

64

86

45

52

84

85

43

50

4282

30

276
235

171

202

282

256

184

143

46

215

218

237

48

49

76

57

83

73

53

79

81

63
60

74

67

77

58

62

80
4469

65
61

56

87

54

75

68

71

51

70

55

72

59

78

47

400

368

401 398

367

399

380

370

366

396

387

386

406

394

378

390

391 381

395
369

402

374
384

372
376

373
379

377

389

393

397

392

375

405
404

403

388
382

385

383

371

203
289

265
144

158

251

283

182
141

288163

181

157
95

247

234

285

108

314

167 209

191 319

189

162112

232
116

326

105

310
269

219

244

97

111

321

103

115

258

169

305

173
271

250273
267

166
94

92

168

164

216

233

190
223

186311

227

179

99

106

307 89
151

313

93
287

255
136

109
262

253
306

152

217135

96
309

213294
133

242

126

139

222

324

180

194

150
246303

268
140128

327 104 137
257

323

214

102208

129

318

146

238

122

316
266

297

293

138

176

295

188 170
123

165

160
308 130

107

260 110

220

228

290

134

281

322

245

90

236

117

270

201

312

113

174

118

300

298

183

196
148187

302

264

291 243

211

98

239

154

274

159

210

229

155193

230

206

120

249

254

261

161
296

124 100

205

299

127

315

342

340

349

345

362

331

350

346

353

347

365

332

338

330

329

343

361

341
352

363

337

334

359

333

339

360

355

364

344

354

357

336

348

356

351
335

358

131 192
224

221
172

248
145 301

195
278

231

101

241
207

200 199

259

263

212

91

156 284
198

292
119

272 304

325

317
277

178
286

252

175

142
225

132

177
197

279
185

328
114

149

153

320

121

240 280

147
204

125
275

226

(c) StartShifting

Figure 5: Graphs returned by the three algorithm variants (L = 1000, c = 5, m = 0.655 and ε = 5 · 10−3).

Table 1: Topological metrics of the three returned graphs (L = 1000, c = 5, m = 0.655 and ε = 5 · 10−3).

Algorithm variant E[D] C E[H] ρD µN−1 λ1 K
StartReplacing 5.88 0.355 3.70 -0.06 0.041 9.87 84%
Random (p = 0.5) 5.67 0.167 4.00 -0.04 0.036 8.84 86%
StartShifting 4.93 0.151 5.26 -0.01 ≈ 0 6.52 95%

ues for StartReplacing and StartShifting. In general, the vari-
ant StartReplacing (StartShifting) produces graphs with the
highest (lowest) average degree E[D]; the highest (lowest) av-
erage clustering coefficient C; the lowest (highest) average hop-
count E[H]; the highest (lowest) algebraic connectivity µN−1;
the highest (lowest) spectral radius λ1; and the smallest (largest)
assortativity ρD.

We define the modularity quality coefficient K = m
mmax

as
a ratio between the desired modularity m and the maximum
modularity mmax of the obtained graph (using Newman’s algo-
rithm [16], because as stated before, finding the mmax is also an
NP-complete problem [2]). Because mmax is the maximum of
a given graph with an unknown number c of communities, we
have K ∈ [0, 1]. The higher K, the more likely the original num-
ber c of communities is preserved. Table ?? (the last column)
shows that the StartShifting variant has produced the graph
with the largest K due to the small number of inter-community
links and “higher link density” within the communities, fol-
lowed by Random (p = 0.5) and StartReplacing.

In Figure 6, we display the relation between the average clus-
tering coefficient and the desired modularity. The average clus-
tering coefficient reflects to what extent nodes tend to cluster
together and depends on the number of triangles in a graph.
Figure 6 shows a linear relation between the modularity and the
average clustering coefficient, where StartReplacing produces
the graphs with highest average clustering coefficient. The

0.3 0.4 0.5 0.6 0.7 0.8
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Modularity (m)

A
ve

ra
ge

 c
lu

st
er

in
g

co
ef

fi
ci

en
t (

C
)

StartReplacing

Random (p=0.5)

StartShifting

Figure 6: Clustering coefficient C as a function of the desired modularity value
m for the algorithm variants with L = 1000, c = 5 and ε = 5 · 10−3. Internally,
the communities are constructed as random graphs.

StartReplacing produced graphs have many inter-community
links, which means there is a higher probability of also having
triangles spanning different communities than with StartShift-
ing, which generates few inter-community links.

8

68

65
7174

73

70

81

93

79
76

8967
80

66

58
64

59

63

62

61
78

72

57

98

113

104111

105

103

114

119

83

87

85

92

91

86

88

84

90

106

116

118
96

107

102

82

60

75

77

69

117

100

94

115

97

99

101

112

110

95

109

108

16

7
5

22

10

8

13

12

6

9

17

38

4836

43

39

55

42

53

34

26

30

40

27

32
28

37

52

54

41

5031

47

29

4633

20

56

24

11

15

19

4

1

14

3

2

174

178 179

175

177

176

23
21

25
18

49
35 45

5144

152

188

156

123

171

170

185
133

149

189

145
163

142
141

137

201

167

198

200

199

202

169153

196

194

147

120

164

197

165

121

186

151

158
154

172

187 173148

150

157

180
182

184

183

181

128

130

139

136

124

168
166

138

155

131
140

126

144

127

125

135

192

190

193

191

122

129

132

143

195

146

134

161

162

159

160

(a) User-centric friendship network of the person X in Facebook.

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp
pp

pp pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp
pppp

pp

pp
pp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp pp

pp

pp

pp
pp

pp pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp pp

pp pp

pp

pp

pppp

pp

pp

pppp pp

pp pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp
pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pppp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp
pp

pppp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp
pppp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp
pp

pppp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp pp

pp

pp

pp

pp

pp
pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp
pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp
pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp
pp pp

pp
pp

pp

pp

pp

pp

pppp
pp

pp

pp

pp

pp

pp
pp

pp pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

pp pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp
pp

pp

pp

pp
pp

pp

pp

pp pp

pp
pp

pp

pp

pp

pp

pp

pp

pp
pp

pp pp

pp
pp

pp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp
pp

pp

pp

pp
pp

pp

pp

pp

pp
pp

pp
pp

pp

pp

pp

pp
pp

pp
pp

pp
pp

pp

pp
pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp
pp

pp

pp

pp

pp

pp
pp

pp

pp

pp
pp

pppp

70
63

48

65
61

66

60

68

54
58

74 59

5752
55

72

62
64

69

73

126

108

118

114

67
53

49 56
51

5071

8
4

5
1

6
39

33

117
109

102

112

107 110

123

128

113

152
141

135

155

131

151

140

148

133

147

146 129

136

132

144

134

138

130

90

99
79

89

9694

95
76

86

81

75

78 85

97

98

100

84

80 137

150

145

153
142

149

154
139

143

103
120

124

125

106

83

87

92

77

82

88

91

93

9
43

1028

13

16

12

1736

3

11
22

42
18

25

37

26

2
23

45
46

47
24

44

21

31
20

19
15

41

27

40

30

29

35

32

38

14

34
7

121

101

119

116

115

111

104
127105

122

(b) TMGG modeled network.

Figure 7: Real Facebook friendship and TMGG constructed networks.

6.2. Online social network modeling

To demonstrate that TMGG can indeed generate realistic
community-structured networks we will make a comparison
with a real user-centric friendship network of a single person
X in Facebook4, as displayed in Figure 7a. The nodes are Face-
book friends of X and a link exists between two nodes if the
corresponding two friends of X are also friends of each other.
The visualization shows a clear community structure. Using
TMGG (variant StartShifting), we have generated a network,
in Figure 7b, that has the same modularity (m = 0.7), number
of communities (c = 5) and number of links (L = 1773) as the
Facebook network of X. The two networks have similar prop-
erties, such as similar average nodal degree (E[D] = 20) and
clustering coefficient (C = 0.68), which supports our claim that
TMGG can generate realistic networks.

7. Conclusions

We have considered the problem of constructing graphs with
a given modularity and have proved that deciding whether such
a graph exists is NP-complete. Subsequently, we have proposed
a heuristic algorithm TMGG that generates graphs with a given
modularity and number of links. TMGG has three variants and
all start from a graph with maximum modularity [21] that is
altered via rewiring. Furthermore, we have analyzed the dif-
ference in speed and accuracy of the three variations, and we
have studied the topological properties of the graphs generated
by them. All three TMGG variants produce community graphs,
i.e. a family of graphs consisting of the topology between com-
munities and the number of links within each community. The
community graph presents ample flexibility to generate and

4http://www.facebook.com

fine-tune the final graph towards other desired topological prop-
erties, such as nodal degree distribution, without affecting the
modularity.

Acknowledgments

We are grateful to Norbert Blenn for the useful discussions.
This research has been supported by the EU FP7 Network of
Excellence in Internet Science EINS (project no. 288021) and
by the GigaPort3 project led by SURFnet.

Appendix A. The derivations for the modularity changes

We consider the difference ∆m in modularity between the
graph G and the graph G′, obtained from G after a change in
communities Ci and C j. Using the modularity definition (2),

the difference is reflected in
(
DCp − DCk

)2
−

(
D′Cp
− D′Ck

)2
, 0,

with p ∈ {i, j}. Hence, ∆m boils down to

∆m =
Linter − L′inter

L
−

1
8cL2

c∑
p=1

c∑
k=1

[(
DCp − DCk

)2
−

(
D′Cp
− D′Ck

)2
]

=
Linter − L′inter

L
−

2
8cL2

c∑
k=1

[(
D′Ci
− D′Ck

)2
−

(
DCi − DCk

)2

+
(
D′C j
− DCk

)2
−

(
DC j − DCk

)2
]

=
Linter − L′inter

L
−

1
4cL2

c∑
k=1
k,i, j

[(
DCi + D′Ci

− 2DCk

) (
D′Ci
− DCi

)
+

(
DC j + D′C j

− 2DCk

) (
D′C j
− DC j

)]
−

1
4cL2

(
D′Ci
− DCi − (D′C j

− DC j)
) (

D′Ci
+ DCi − (D′C j

+ DC j)
)
(A.1)

9

http://www.facebook.com

Appendix A.1. Transformation 1
Here, L′inter = Linter − 1, D′Ci

= DCi − 1 and D′C j
= DC j + 1 as

has been discussed in Transformation 1. The expression (A.1)
becomes

∆m1(G,DCi ,DC j) =

=
1
L
−

1
4cL2

c∑
k=1
k,i, j

[(
2DCi − 2DCk + 1

)
−

(
2DC j − 2DCk − 1

)]

−
1

4cL2

(
DCi − DCi − (DC j − DC j) + 2

) (
DCi + DCi − (DC j + DC j) + 2

)
=

1
L
−

2
4cL2

c∑
k=1
k,i, j

(
DCi − DC j + 1

)
−

2
(
2DCi − 2DC j + 2

)
4cL2

=
1
L
−

c − 2
2cL2

(
DCi − DC j + 1

)
−

DCi − DC j + 1

cL2

=
1
L
−

c − 2 + 2
2c · L2

(
DCi − DC j + 1

)
=

1
L
−

1
2L2

(
DCi − DC j + 1

)
=

2L − 1 − DCi + DC j

2L2

Appendix A.2. Transformation 2
Here, L′inter = Linter, D′Ci

= DCi − 2 and D′C j
= DC j + 2 as

has been discussed in Transformation 2. The expression (A.1)
becomes

∆m2(G,DCi ,DC j) = −
1

4cL2

c∑
k=1
k,i, j

[(
DCi + D′Ci

− 2DCk

) (
D′Ci
− DCi

)
+

(
DC j + D′C j

− 2DCk

) (
D′C j
− DC j

)]
−

1
4cL2

(
D′Ci
− DCi − (D′C j

− DC j)
) (

D′Ci
+ DCi − (D′C j

+ DC j)
)

=
4

4cL2

c∑
k=1
k,i, j

[(
DCi − DCk − 1

)
−

(
DC j − DCk + 1

)]

+
4

4cL2

(
2DCi − 2 − 2DC j − 2

)
=

1
cL2

c∑
k=1
k,i, j

(
DCi − DC j − 2

)
+

2
cL2

(
DCi − DC j − 2

)

=
c − 2 + 2

cL2

(
DCi − DC j − 2

)
=

1
L2

(
DCi − DC j − 2

)

Appendix A.3. Transformation 3
The difference ∆m in modularity between the graph G and

the graph G′, obtained from G after a change in communities
Ci, C j and Ck (Transformation 3) is

∆m3(G,DCi ,DC j ,DCk) =
1
L
−

1
4cL2

c∑
p=1

p,i, j,k

[
(
DCi + D′Ci

− 2DCp

) (
D′Ci
− DCi

)
+

(
DC j + D′C j

− 2DCp

) (
D′C j
− DC j

)
+

(
DCk + D′Ck

− 2DCp

) (
D′Ck
− DCk

)
]

−
1

4cL2

(
D′Ci
− DCi − (D′C j

− DC j)
) (

D′Ci
+ DCi − (D′C j

+ DC j)
)

−
1

4cL2

(
D′Ci
− DCi − (D′Ck

− DCk)
) (

D′Ci
+ DCi − (D′Ck

+ DCk)
)

−
1

4cL2

(
D′C j
− DC j − (D′Ck

− DCk)
) (

D′C j
+ DC j − (D′Ck

+ DCk)
)

=
1
L

+
1

4cL2

c∑
p=1

p,i, j,k

[
(
2DCi − 2DCp − 1

)
+

(
2DC j − 2DCp − 1

)

− 2
(
2DCk − 2DCp + 2

)
] −

1
4cL2

(−1 − 2)
(
2DCi − 1 − (2DCk + 2)

)
−

1
4cL2

(−1 − 2)
(
2DC j − 1 − (2DCk + 2)

)
=

1
L

+
1

2cL2

c∑
p=1

p,i, j,k

(
DCi + DC j − 2DCk − 3

)

+
3

4cL2

(
2DCi + 2DC j − 4DCk − 6

)
=

1
L

+
2c − 6 + 6

4cL2

[
DCi + DC j − 2DCk − 3

]
=

2L + DCi + DC j − 2DCk − 3

2L2

References

[1] M. E. J. Newman, M. Girvan, Finding and evaluating community struc-
ture in networks, Phys. Rev. E 69 (2004) 026113.

[2] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikoloski,
D. Wagner, On Finding Graph Clusterings with Maximum Modularity, in:
Graph-Theoretic Concepts in Computer Science, volume 4769 of Lecture
Notes in Computer Science, Springer Berlin/Heidelberg, 2007, pp. 121–
132.

[3] R. Guimerà, L. A. N. Amaral, Functional cartography of complex
metabolic networks, Nature 433 (2005) 895–900.

[4] J. Duch, A. Arenas, Community detection in complex networks using
extremal optimization, Phys. Rev. E 72 (2005) 027104.

[5] S. Fortunato, M. Barthélemy, Resolution limit in community detection,
Proceedings of the National Academy of Sciences 104 (2007) 36–41.

[6] A. Lancichinetti, S. Fortunato, Limits of modularity maximization in
community detection, Phys. Rev. E 84 (2011) 066122.

[7] R. Guimerà, M. Sales-Pardo, L. A. N. Amaral, Modularity from fluctu-
ations in random graphs and complex networks, Phys. Rev. E 70 (2004)
025101.

[8] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfold-
ing of communities in large networks, Journal of Statistical Mechanics:
Theory and Experiment (2008) P10008.

[9] P. Erdős, A. Rényi, On the evolution of random graphs, Publications
of the Mathematical Institute of the Hungarian Academy of Sciences 5
(1960) 17–61.

[10] E. Gilbert, Random graphs, Annals of Mathematical Statistics 30 (1959)
1141.

[11] R. Albert, A.-L. Barabási, Statistical Mechanics of Complex Networks,
Review of Modern Physics 74 (2002) 47–97.

[12] R. Albert, A.-L. Barabási, Topology of evolving networks: Local events
and universality, Phys. Rev. Lett. 85 (2000) 5234–5237.

[13] T. Bu, D. Towsley, On distinguishing between internet power law topol-
ogy generators, in: INFOCOM 2002. Twenty-First Annual Joint Confer-
ence of the IEEE Computer and Communications Societies., volume 2,
pp. 638 – 647.

[14] M. Faloutsos, P. Faloutsos, C. Faloutsos, On power-law relationships of
the Internet topology, in: Proceedings of SIGCOMM ’99, ACM, New
York, NY, USA, 1999, pp. 251–262.

[15] D. J. Watts, S. H. Strogatz, Collective dynamics of small world networks,
Nature (1998) 440–442.

[16] M. E. J. Newman, Detecting community structure in networks, Eur. Phys.
J. B 38 (2004) 321–330.

[17] A. Clauset, M. E. J. Newman, C. Moore, Finding community structure in
very large networks, Phys. Rev. E 70 (2004) 066111.

[18] P. Schumm, C. Scoglio, Bloom: A stochastic growth-based fast method
of community detection in networks, Journal of Computational Science
3 (2012) 356 – 366.

10

[19] S. Fortunato, Community detection in graphs, Physics Reports 486
(2010) 75 – 174.

[20] G. Agarwal, D. Kempe, Modularity-maximizing graph communities via
mathematical programming, Eur. Phys. J. B 66 (2008) 409–418.

[21] S. Trajanovski, H. Wang, P. Van Mieghem, Maximum modular graphs,
Eur. Phys. J. B 85 (2012) 1–14.

[22] N. Blenn, C. Doerr, S. van Kester, P. Van Mieghem, Crawling and detect-
ing community structure in online social networks using local informa-
tion, in: IFIP Networking, Prague, Czech Republic, 2012.

[23] M. E. J. Newman, Mixing patterns in networks, Phys. Rev. E 67 (2003)
026126.

[24] P. Van Mieghem, H. Wang, X. Ge, S. Tang, F. A. Kuipers, Influence of
assortativity and degree-preserving rewiring on the spectra of networks,
Eur. Phys. J. B 76 (2010) 643–652.

[25] P. Van Mieghem, X. Ge, P. Schumm, S. Trajanovski, H. Wang, Spectral
graph analysis of modularity and assortativity, Phys. Rev. E 82 (2010)
056113.

[26] G. K. Orman, V. Labatut, H. Cherifi, Qualitative comparison of commu-
nity detection algorithms., in: DICTAP (2), volume 167 of Communica-
tions in Computer and Information Science, Springer, 2011, pp. 265–279.

[27] M. Girvan, M. E. J. Newman, Community structure in social and bio-
logical networks, Proceedings of the National Academy of Sciences 99
(2002) 7821–7826.

[28] A. Lancichinetti, S. Fortunato, F. Radicchi, Benchmark graphs for testing
community detection algorithms, Phys. Rev. E 78 (2008) 046110.

[29] J. P. Bagrow, Evaluating local community methods in networks, Journal
of Statistical Mechanics: Theory and Experiment (2008) P05001.

[30] A. Lancichinetti, S. Fortunato, Community detection algorithms: A com-
parative analysis, Phys. Rev. E 80 (2009) 056117.

[31] P. Van Mieghem, Graph Spectra for Complex Networks, Cambridge Uni-
versity Press, Cambridge, UK, 2011.

[32] K. Manders, L. Adleman, NP-complete decision problems for quadratic
polynomials, in: Proceedings of the eighth annual ACM symposium on
theory of computing, STOC ’76, ACM, New York, NY, USA, 1976, pp.
23–29.

[33] M. R. Garey, D. S. Johnson, Computers and Intractability; A Guide to
the Theory of NP-Completeness, W. H. Freeman & Co., New York, NY,
USA, 1990.

11

	Introduction
	Related Work
	Complexity of modular graph generation
	Changing the modularity via link rewiring
	Tunable modularity graph generator
	Algorithm complexity and accuracy

	Properties of the obtained graphs
	Topological properties
	Online social network modeling

	Conclusions
	The derivations for the modularity changes
	Transformation 1
	Transformation 2
	Transformation 3

