<]
TUDelft

Delft University of Technology

Generating graphs that approach a prescribed modularity

Trajanovski, S; Kuipers, FA; Martin Hernandez, J; Van Mieghem, PFA

DOI
10.1016/j.comcom.2012.10.004

Publication date
2013

Document Version
Accepted author manuscript

Published in
Computer Communications

Citation (APA)

Trajanovski, S., Kuipers, FA., Martin Hernandez, J., & Van Mieghem, PFA. (2013). Generating graphs that
approach a prescribed modularity. Computer Communications, 36(4), 363-372.
https://doi.org/10.1016/j.comcom.2012.10.004

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1016/j.comcom.2012.10.004
https://doi.org/10.1016/j.comcom.2012.10.004

Generating graphs that approach a prescribed modularity

S. Trajanovski*, F.A. Kuipers, J. Martin-Herndndez, P. Van Mieghem
Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, P.O. Box 5031, 2600 GA Delft, The Netherlands

Abstract

Modularity is a quantitative measure for characterizing the existence of a community structure in a network. A network’s modularity
depends on the chosen partitioning of the network into communities, which makes finding the specific partition that leads to the
maximum modularity a hard problem. In this paper, we prove that deciding whether a graph with a given number of links, number
of communities, and modularity exists is NP-complete and subsequently propose a heuristic algorithm for generating graphs with a
given modularity. Our graph generator allows constructing graphs with a given number of links and different topological properties.

The generator can be used in the broad field of modeling and analyzing clustered social or organizational networks.

Keywords: Modularity, Graph generator, Modeling community structure

1. Introduction

Community structure is observed in many real-world net-
works, such as (online) social networks, where groups of
friends of a certain person are often also friends of each other.
For instance, one group of friends could originate from the
school community, another from the sports community, and yet
another group could be living in the same neighborhood.

Community detection or characterizing the level of commu-
nity structure in a network is difficult. The modularity met-
ric, initially proposed by Newman and Girvan [1] to detect
network communities, has attracted significant attention, e.g.
see [2, 3L 4]. The maximum modularity expresses how clus-
tered the network is and gives the resulting partitioning into
the corresponding clustered communities. Modularity has its
limitations in detecting community structure, for instance com-
munities smaller than a certain resolution limit may be unde-
tectable [5]], while larger sub-graphs may be partitioned even
if they are random graphs [6]. Additionally, computing the
maximum modularity of a given graph is an NP-complete prob-
lem, as was proved by Brandes et al. [2]. Nonetheless, has re-
mained a popular metric for representing community structure
and several heuristic algorithms for detecting maximum modu-
larity [7 14} 8] have been proposed.

Ever since the seminal work of Erd6s and Rényi [9] on mod-
eling and analyzing random graphs, various graph generators
have been proposed. Graph generators are predominantly used
to mimic existing networks, such that either a proper network
abstraction can be analyzed or simply to test new algorithms
and applications when the actual network is too big or not com-
pletely known. Popular graph generators include the:

*Corresponding author
Email addresses: S.Trajanovski@tudelft.nl (S. Trajanovski),
F.A.Kuipers@tudelft.nl (F.A. Kuipers),
J.MartinHernandez@tudelft.nl (J. Martin-Herndndez),
P.F.A.VanMieghem@tudelft.nl (P. Van Mieghem)

e Erd8s-Rényi random graph generator [[9,[10] that generates
networks with a binomial degree distribution and where
links exist with a fixed probability p.

e Barabdsi-Albert power-law graph generator [11] and its
variations [[12} [13]] that produce graphs with a power-law
degree distribution. Power-law graphs are for instance
used to reflect the Internet AS topology [14].

e Watts and Strogatz small-world graph generator [135]],
which was proposed to generate networks with high clus-
tering coefficient and small diameter.

However, the proposed models produce graphs with low
modularity, thus failing to match the strong community struc-
ture of social networks. To date, there does not exist any gen-
erator that produces graphs with a given number of commu-
nities and fixed modularity. This paper aims to fill this gap by
proposing such a generator. Artificially generated graphs with a
required modularity would offer the possibility to analyze com-
munity detection, information spreading, or robustness proper-
ties on an appropriate scale.

We study the problem of finding a graph G with a given mod-
ularity m, number L of links and number ¢ of communities. As
it is shown in the paper, the modularity m taken together with
the number of communities ¢ quantitatively shows community
presence or absence. Our main contributions are:

(a) We prove that deciding whether a graph, with a modularity
m, number L of links, and partitioning into ¢ communities
exists, is NP-complete.

(b) We analyze the influence of link rewiring strategies on the
modularity of a graph.

(c) We propose a novel graph generator that produces graphs
with a given number of communities and a modularity
close to that of a given modularity.

The paper is organized as follows. A short overview of the
state-of-the-art on modularity, community detection and related
graph generators is given in Section[2] The complexity of gener-
ating graphs with a given modularity is discussed in Section 3]
Section 4 analyzes the effect of link rewiring on the modularity
of a graph. Section [5] proposes a heuristic algorithm for gen-
erating network structures with a given modularity and number
of communities. The properties of the generated graphs are dis-
cussed in Section[@l We conclude in Section[7l

2. Related Work

The modularity metric has been proposed by Newman and
Girvan [1] as a global metric for quantifying community ex-
istence in networks. Subsequently, modularity has been ex-
plored as a metric for community detection in graphs and net-
works [[16} [7, 18} 17, [18]. A thorough summary of the state-
of-the-art in community detection in general and modularity
in particular has been provided by Fortunato [19]. Brandes
et al. [2]] proved that finding the maximum modularity is an
NP-complete problem. In addition, they proposed a linear pro-
gramming (LP) technique for finding the maximum modular-
ity. A similar LP-based approach for modularity maximiza-
tion was proposed in [20]. In our previous work [21]], we have
determined a tight bound and the properties of the maximum
modular graphs for a given number of links. An algorithm
that seeks for the local maxima, based on a greedy technique
has been given in [[16]. Fast modularity based community de-
tection algorithms on very large networks have been proposed
in [17, 18, 22]]. Some weaknesses in modularity optimization
have also been determined, such as the incapability to detect
communities smaller than a resolution limit S]] or the breaking
up of large random sub-graphs into separate communities [6].
A spectral analysis of the modularity as well as correlation with
other metrics, such as assortativity [23}[24]], has been conducted
in [23].

Orman et al. [26] have made a qualitative comparison of
community detection algorithms and surveyed the models for
generating graphs with community structure. The model pre-
sented by Girvan and Newman [27] generates a network con-
sisting of a small number of Erd6s-Rényi graphs [9] that are
weakly connected. Few other models with a larger number
of communities have been proposed that lead to more realistic
(e.g., power-law) degree distributions [28} 29]. Finally, mod-
els that produce weighted and undirected graphs with commu-
nity overlap have been proposed by Lancichinetti and Fortu-
nato [30]].

Unlike previous work, we first prove the NP-completeness
of deciding whether a graph with a given modularity, number
of links and number of communities exists. To the best of our
knowledge, our generator is the first in producing graphs with a
given modularity, number of links and number of communities.
Moreover, our generator returns the number of links per com-
munity, leaving space for leveraging other structural properties
per community, such as the degree distribution.

3. Complexity of modular graph generation

For a certain partitioning of a network G of N nodes into
¢ communities, modularity has been defined by Newman and
Girvan [1] as a function of the graph’s adjacency matrix values
a;j and its node degrees d; for i, j = 1,2, ..., N as

) {i.je the same community} (1)
i=1 j=1

where we follow the notation introduced in [31]].

By considering the cumulative degree Dc,, which is the sum
of all the nodal degrees in community C;; the total number L,
of links within C;; and the number L; ., of links that connect
nodes in different communities, the original form for the mod-
ularity @ can be modified [25] into

1 nter
R I

j=1 k=1

DC‘) 2

We use the term inter-community links to refer to links that
connect nodes in different communities and the term intra-
community links for those links, where both end-points reside
in the same community. For each community C; (i = 1,...,¢),
the number of inter-community links, where exactly one node
is in C;, is denoted as LOut and the number of intra-community
links within C; as Lin. Because, from a degree perspective, all
inter-community links in C; are counted twice, we have

= 2L +L0ut

Over all possible partitions of G, the partitioning that leads to
highest modularity m is of general interest. Based on (2), an
immediate conclusion is that maximum modularity is achieved
by minimizing the number Ly, of links that connect nodes in
different communities, while keeping the cumulative degrees of
the communities as equal as possible.

In order to gain more control over modularity-based commu-
nity structure (and its weaknesses as exposed in [5.6]]), we con-
sider the modularity m and the number of communities ¢ as joint
indicators for the community existence in a graph. For a fixed
number ¢ of communities, a rough upper bound for the modu-
larity is (1 — %). The modularity value should therefore be inter-
preted based on the number of communities. For instance, for
¢ = 2, amodularity value m = 0.48 would constitute a “highly
clustered” network, while the same value for ¢ = 5 could be in-
terpreted as “medium clustered.” Theoretically, m < 1 and the
asymptotic value of 1 is only achieved for an infinite number
of fully isolated communities. However, we are interested in
modularity maximization in connected networks.

We proceed to formalize the problem of graph construction
with a given modularity. Using the fact that });_, D¢, = 2L, we
transform (2)) into

c

Z D2 = 4cL (L — Lipger — mL)
C;

i=1) (;) +1

3

We consider two variants of the graph generation problem,
namely one where L;,,, is fixed, and the other in which it is
not.

Problem 1. Find a graph G with a given total number L of links
and corresponding partitioning into ¢ communities, where the
communities are connected by L;,., links, for which the modu-
larity of the generated graph equals m, i.e.

D2 4cL(L—Liner—mL)

()+1
C = 2L +L0ut

iy D, —2L

c C
i=1 out = 2Linger

Problem 1 is equivalent to

Problem 1%*. For given L, ¢, Liyer and m, find a non-negative
integer vector L = {Llcn‘, Lg‘n} _,.. . Oof 2celements in total, such
that
Z (2 LC/ + Lgm) _ 4L'L(LE§TE],—mL)
o1 Lo = 2Linter
l:1 LICI; = L — Linter

Relaxing the requirement for Lc to be an integer val-
ued vector results in a convex quadratically constrained
program, which can be solved in polynomial time (i.e.,

i (2L + L

Out) = LI PLc, with P a 2¢ X 2¢ matrix consist-

11
other elements. Since P is positive semi-definite, the quadratic
constraint is convex).

ing of the sub-matrix [41] along the diagonal and O for the

Problem 2. Find a graph G with a given number of links L
a corresponding partitioning into ¢ communities, and a given
modularity m, such that

4¢LLiner + (() +1) X6, D% = 4cL? (1 - m)
De, = 208 + LS
. De, =2L

c C
i=1 nu[= 2Linger

Problem 2 is equivalent to

Problem 2*. For given L, ¢, and m, find a non-negative integer

vector ZC = {Lm R Lom} . _of 2¢ elements in total, such that

ZCLZl 1 out + ((;) + 1) Z <2LC/ + Lgut) = 4-CL2 (1 - m)
< (LG + L) =2L

Problem 2* is the problem of main interest in this paper and
in the remainder we refer to it as the Modular Graph Existence
(MGE) problem. A solution to the MGE problem does not con-
stitute a graph, but gives the number of links inside and between
communities. Based on this information, various instantiations
of graphs might be possible. We will now prove that the MGE
problem is NP-complete, even for a fixed partitioning ¢ = 2 into
two communities. We start with the following Lemmal[I]

Lemma 1. For x < | VC|, X2
x> +By=C.

= C(mod B) is equivalent to

Proof. Let us assume that x is a solution of x* = C(mod B),
then the pair (x,y = C;"Z) is a solution of x% + By = C, since

2 = Bk + C for some k € N and thus x> + By = Bk + C +
Bié‘*c = C. On the other hand, assuming that (x,y) is a
solution of x> + By = C and taking modulo B on both sides,
using (By) mod B = 0, we arrive at x% = C(mod B), hence x is a

solution. O

Lemma [I] shows that finding a solution to the quadratic Dio-
phantine equation x> + By = C is as hard as finding a solution
to x> = C(mod B). This problem has been shown to be NP-
complete by Manders and Adleman [32] even for few known
factors of B, for instance with B an even numbelﬂ Hence, the
quadratic Diophantine problem x> + By = C is NP-complete.

Theorem 2. The MGE problem, i.e. deciding whether a graph,
with modularity m, number L of links, and a partitioning into
¢ = 2 communities, exists, is NP-complete.

Proof. Given ¢ = 2 and L, a solution to the MGE prob-
lem returns two integer numbers, namely LC1 and LC1 (where

out
Lln L - LC‘ LS and L$: = LS!). Based on (2), it can

out

be verified in polynom1al time whether those numbers 1ndeed
lead to a modularity m, and hence the problem is in the class
NPﬂ To prove that the MGE problem is also NP-har(ﬂ we
demonstrate how solving the modular graph existence problem
would present a solution to the NP-complete quadratic Dio-
phantine problem, which asks whether an x € N exists for
which x> + By = C holds with B,C € N and B even. We
proceed in two steps. First we translate, in polynomial time,
the quadratic Diophantine problem into an MGE problem and
subsequently demonstrate how a solution to that MGE problem
can be translated back, in polynomial time, to a solution of the
quadratic Diophantine problem.

1. Diophantine to MGE. Let us assume that we are looking
for a solution (x,y) to 2+ By = C with B even, where
the implicit factor of 2 does not affect the hardness of the
problem. This problem translates to deciding whether a

graph G exists with L = B links and with modularity m =

% - 2L7 If indeed a solutlon (x,y) exists, then a solution

to MGE also exists where commumty C1 contains £

2
links and community C; contains £ 2 X links, and where

both communities are connected via y links. Indeed, based
on the expression in @ such a solution has L links and a

!n the same paper [32], Manders and Adleman have also proved that finding
a solution to the general quadratic Diophantine equation Ax?> + By = C is NP-
complete.

2NP (non-deterministic polynomial time) refers to a class of problems
whose solution correctness can be verified in polynomial time [33].

3NP-hard problems refer to a class of problems that are “at least as hard as
the hardest problems in NP,;” and it is generally believed that they cannot be
solved in polynomial time. NP-hard problems that themselves are in NP are
called NP-complete [33].

modularity

1 vy 1 L-y+x L-y-x,
el TR)
1y 14x2_1_x2+2Ly_l_x2+By
2 L 817 2 212 2 212
1 C
T2 o212

2. MGE to Diophantine. Let us assume that the constraints
of the MGE problem are satisfied, namely

C
4L(L),

=8L*(1 - m)
(25 + L) + (2L + L) = 2L

+L32) +2 ((ZLSI‘ + LS

u out

)+ g+ LG))

out out

Going back to the notation of D¢, = 2L§1" +1S Q= 1,2,

out?
G _ G
ot = Lo we have

and setting y = L

4L(y +y) + 2(Dgl + Dgz) =8L%(1 —m)
DC] + Dc2 =2L

With D¢, = 2L — D¢,, where we choose D¢, > Dc,, we
obtain

8Ly + 2(D¢, + (2L - D¢,)*) = 8L* (1 — m)

or
(D¢, — L + 2Ly = L* — 2mlL*

From our initial Diophantine to MGE translation we have
that B = 2L and C = L? — 2mL?, thus the solution to x +
By = C is obtained from a solution to the corresponding
MGE problem as x = D¢, — L,and y = Lgl}t, with C; the
largest community.

O

In our proof, we have relied on quantifying the number of
links in and between communities that would lead to a given
modularity and we have not relied on a possible graph realiza-
tion. Although the difference is subtle, since the Diophantine
problem depends on numbers, our reliance on link numbers in-
stead of real links in a graph is crucial. Numbers can be stored
in binary representation and therefore only grow logarithmi-
cally in the size of the input, while real links in a graph cannot
be represented in binary notation (and are often represented via
an adjacency matrix).

Within a community C;, several (sub)-graph structures can
be devised that obey the required number Lf;l of links in the

: P o _[7C 7GCi
solution vector L¢ = {Lin Lok

.....

denser (in terms of the average degree E[D]) this community
graph is, the better it actually reflects a community, and the
less likely it becomes that another partitioning would result in
a higher modularity.

4. Changing the modularity via link rewiring

We identify three link rewiring steps, referred to as transfor-
mations, to change a graph’s modularity.

Transformation 1. The modularity m of a graph G (parti-
tioned into communities C;) increases by replacing an inter-
community link between C; and C; with an intra-community
link in C; or C; (in Figure[T).

-~ <)
Ci / /// : \
{ , 16

Figure 1: Replacing an inter-community link between C; and C; with an intra-
community link in C; (Transformation 1).

The difference Am; in modularity between G and the result-
ing graph G’ after having rewired is
2L+ D¢, = D¢, - 1
212
The derivation of Am, has been placed in the Appendix. Be-

cause the sum of all degrees equals twice the number of links,
we have D¢, < 2L and D¢, > 1. Therefore,

Am](Ga DC,-, DC_;) =

2L+1-2L-1
212 -
The reverse operation, which decreases the modularity, is also

possible: provided that we assure that a rewiring does not dis-
connect the graph.

Am(G, D¢;, Dc;) > 0

Transformation 2. If there are two communities C; and C;,
such that D¢, — D¢, > 2, then the modularity can be increased
by moving an intra-community link from C; to C; (in Figure[2)).

Figure 2: Replacing an intra-community link in C; with an intra-community
link in C; (Transformation 2).

In this case, the number of inter-community links remains
the same, while D¢, is increased by 2 and Dc, decreased by 2.
The difference Am; in modularity, as derived in the Appendix,
after this transformation is

D¢, — D¢, -2

Amy(G. De,. De)) = ——57— >0

Transformation 2 demonstrates that the modularity of G in-
creases by making the cumulative degrees D¢, of all the com-
munities as close as possible.

Transformation 3. The modularity of a graph G increases by
replacing an inter-community link between C; and C; with an
intra-community link in a third community Cy, if 2L + D¢, +
D¢, > 2D¢, + 3 (in Figure3).

Figure 3: Replacing an inter-community link between C; and C; with an intra-
community link in a third community Cy (Transformation 3).

As demonstrated in the Appendix, the difference between the
modularity of G and the resulting graph G’ is
2L + DC, + DC/' - 2Dck -3
>

212 0

Am3(G, Dc;, Dc;, Dc,) =

Transformation 3 is in fact obtained by consecutively applying
Transformations 1 and 2.

In our proposed graph generator TMGG, explained in Sec-
tion [5] we start with an initial graph and subsequently apply
the transformations until we reach the desired modularity. We
propose to start with the connected graph (determined in our
previous work [21]) of L links and ¢ communities that has max-
imum modularity

1
53 r=0
c—1 2
ST ek N R P
Cc L (c—=r)2r—c)

s> Lsl<r<c-1

where r = Lmod c.

5. Tunable modularity graph generator

Let us denote by community graph the abstraction where a
node reflects one community and a link connects two nodes
from different communities. In this section, we propose the
Tunable Modularity Graph Generator (TMGG) algorithm that
generates graphs with a given modularity m and number ¢ of
partitions. Our generator starts by generating a graph of max-
imum attainable modularity for a given m and ¢ in INITIALIZE.
The initial community graph is a tree with no more than 1 link
between two communities. We subsequently use Transforma-
tions 1 and 2 (in REPLACEINTERNALEXTERNAL and SHIFTINTERNAL,

Algorithm 1: INITIALIZE

input : Number L of links, number ¢ of communities
output: Max modularity mmnax = max{m(L, c)}, initial
community graph C, initial internal link sums

1 r<—Lm0dc,k<—|_'gJ,mmaX<—1—l—ﬂ;

C
2Lﬁ‘<—k,i<—2;

3 if r == 0 then
4 while i < c do
5 C :create alink (i — 1,1)
6 LLiCn"<—k—1,i<—i+1;

Mmax €< Mmax — ﬁ
8 elseif r < |5] then

while i < c-rdo
10 C :create alink (i — 1,1)
1 LE —k-1;
12 if i < r then
13 C :create alink (i,c —i + 1);
14 L Lifl“"'*' — k;
15 i—i+1;
16 Lgf — K, Mmax < Mmax — r(;gl_zzr)
17 else
18 while i <rdo
19 C :create alink (i — 1,1)
20 LE — k;
21 if i < c —rthen
22 C :create a link (i,c —i + 1);
23 L LS« LS -1, LS K
24 i—i+1;
25 | Mmax < Mmax — (C_Qé#;

respectively) to increase/decrease the modularity towards the
desired modularity m.

We vary the order of using these transformations, resulting in
three generator variants:

e STARTREPLACING
e STARTSHIFTING

e RANDOM

All generator variants use INITIALIZE to construct a commu-
nity graph of maximum attainable modularity m,, for a given
L and c. Variant STARTREPLACING (lines 6-11 in TMGG) starts
by applying procedure REPLACEINTERNALEXTERNAL to the com-
munity graph to establish a modularity close to the interval
[m—e, m+e€]. If the obtained modularity fluctuates twice around
the interval [m — €,m + €] (explained in the next paragraph
of this section), STARTREPLACING continues with the procedure
SHIFTINTERNAL (lines 10-11 in TMGG). As soon as the range
[m — €, m + €] is met, the algorithm stops. Similarly, the variant

Procedure ReplacelnternalExternal (Transformation 1)

input : Number L of links, number ¢ of communities,
desired modularity m, the current modularity
Meyr, the current modularity change Amg,, the
current state € {1, 2}, internal link sums

1 find i and j, such that Am,(G, D¢,, ch) is minimum;
if me,, > mthen // in state 1

3 if state == 2 and Am\(G, Dc;, Dc;) = Amgy, then
return false;

4 if lef == (0 then break;

5 C: add 1 link between C; and C;

6 Amgyr — Amy (G, Dc,, DCj), Meyr < Moyr — AMigyr;

[&)

C; Cj .
7 L « L' —1,state — 1,

8 else // in state 2
9 if state == 1 and Am,(G, Dc;, Dc;) = Amgy, then

return false;
10 Amgyr — Amy (G, Dc,, DCj)a Meyr = Meyr + Amigyr;
11 if ! a link between C; and C; then break;
12 C: remove 1 link between C; and C; if C is still

connected; otherwise break;

C; C;
13 Lm’ — Lm’ + 1, state « 2;

14 return true

Procedure ShiftInternal (Transformation 2)

input : Number L of links, number ¢ of communities,
desired modularity m, the current modularity
Meyr, the current modularity change Amigy, the
current state € {1, 2}, internal link sums

1 find i and j, such that Am,(G, Dc,, Dc/.) is minimum;
if me,y > mthen // in state 1
3 if state == 2 and Amy(G, Dc;, Dc;) = Amgy, then

[5]

return false;
4 Amgyr — Amy(G, Dc,, DCj)a Meyr = Moyr — AMigyr;
C; C; Cj Cj _ .
5 L« L +1, L« L/ —1,state < 1;

6 else // in state 2
7 if state == 1 and Am,(G, Dc;, Dc;) = Amgy, then

return false;
8 Amgyr — Amy(G, Dc,, DCJ-), Meyr < Meyr + Amigyr;
G C; Cj Cj .
9 L B« L/ - 1, L) <L’ + 1, state « 2;

10 return frue

STARTSHIFTING (lines 12-17 in TMGG) tries to obtain a modu-
larity in the interval [m — €, m + €], but with a reversed order
of the procedures as in STaARTREPLACING. First, the procedure
SHIFTINTERNAL is preferred over REPLACEINTERNALEXTERNAL. Fi-

nally, the last variant RanpoM (lines 18-23 in algorithm TMGG)
randomly chooses one of the procedures REPLACEINTERNALEX-
TERNAL (with a certain probability p) and SHIFTINTERNAL (with
probability (1 — p)) until the value in the interval [m — €, m + €]
is achieved.

For a very small value of €, a modularity in [m — €,m + €]
may not be found. The termination condition effectuates when
in consecutive (link rewiring) transformations the modularity
value alternatively goes below and above the interval [m—e, m+
€] (lines 3 and 9 in REPLACEINTERNALEXTERNAL; lines 3 and 7 in
SHIFTINTERNAL; and line 25 in TMGG), without getting closer to
that interval. In the algorithm, this is reflected by the current
modularity going from state 1 (above m) to 2 (below m) or vice
versa twice in a row. Hence, TMGG either finds a modular-
ity in the interval [m — €,m + €] (as it “converges” towards the
interval) or it terminates when no further improvements are ob-
served in four consecutive transformations. All three variants
STARTREPLACING, STARTSHIFTING and Ranpom return the commu-
nity graph, i.e., a family of graphs or the topology between
communities and the number of links within each community.
Based on the output, we are able to construct arbitrary graphs
with a given number of links for each community. The topolog-
ical differences of the resulting graphs are studied in Section [6]

5.1. Algorithm complexity and accuracy

The algorithm variants approach the given value m with dif-
ferent speed and accuracy. In the paper, we use the probability
p = 0.5 in the variant Ranpom, leading to an equal probabil-
ity in choosing between REPLACEINTERNALEXTERNAL and SHIFT-
INTERNAL. For p = 0, Ranpom would be closer to the STARTRE-
PLACING variant, and for p = 1, Ranpom would be closer to the
STARTSHIFTING variant. Figure [] presents the speed in terms of
number of iteration steps, at which the three algorithm variants
approach the requested modularity m. One iteration step cor-
responds to a single modularity change in the TMGG variants.

08l Max. modularity M StartReplacing

-@ -Random (p=0.5)
078 %o AAAM -4 - StartShifting
o an, desired modularity m

> “8,
% 074 %s%e AAAAAK N
= ooo‘”% "
.8 072 00%0 AAAA q
S o %, BN]
0.68| ooe@ AAX i
g AAA
0.66, oqoo AA‘A N
08 ‘ ‘ ‘ ‘ ‘ ‘
0 50 100 . 150 . 200 250 300 350
Iteration step

Figure 4: Approaching speed of algorithm variants, with L = 1000, ¢ = 5,
m = 0.655, Mmax = 0.796 and € = 5 - 1073. One iteration step corresponds to a
single modularity change in the TMGG variants.

The variant STARTREPLACING reaches m in the smallest number
of iterations, which is expected because its modularity change

Algorithm 2: TMGG

input : Number L of links, number ¢ of communities, desired modularity m, variant algVariant, probability p

,,,,,

1 [Mmax, C, {Licn"}izl ,,,,, ¢l «Initialize (L,c);

2 Meyr €~ Mmax;

3 if mey — € > m then return There is no graph with modularity in [m — €, m + €];

4 Amgyr « +00, state < 0, approachM « true;

5 switch algVariant do

6 case STARTREPLACING // try 1st Transformation 1 then 2

7 while |mg,, — M| > € and approachM == true do

8 L approachM « ReplaceInternalExternal (L,C,m,mcur,Amcur,state,{LiCn"},~=1 ,,,,, o)
9 approachM « true;

10 while |mg,, — m| > € and approachM == true do

1 L approachM « ShiftInternal (L,C,m,mcur,Amcur,state,{Lii"},~:l ,,,,, o)

12 case STARTSHIFTING // try 1st Transformation 2 then 1

13 while |mg,, — m| > € and approachM == true do

14 L approachM « ShiftInternal (L,C,m,mcur,Amcur,state,{LiCn’},-:1 ,,,,, o)

15 approachM « true;

16 while |mg,, — M| > € and approachM == true do

17 L approachM « ReplaceInternalExternal (L,C,m,mcur,Amcur,state,{Lﬁ"}i=1 ,,,,, o)s
18 case Ranpom // choose randomly Transformation 1 or 2

19 while |mg,, — M| > € and approachM == true do

20 choose randomly 1) with probability p OR 2) with probability (1 — p):

21 1) approachM « ReplaceInternalExternal (L,C,m,mcur,Amcur,state,{Licn"},~=1 ,,,,, o)
2 2) approachM « ShiftInternal (L.C,Mmour,Ameyr,state{LS Yz, o);

23 if the procedure has changed then state «— 0; approachM « true;

24 | otherwise break;

25 if approachM == false then return There is no graph with modularity in [m — €, m + €];

Am; = O(1/L) is bigger than the modularity change Am, =
O(1/L?) in STaRTSHIFTING. Regarding the time complexity, all
three variants start with InrTiaLizE, which “costs” O(c). If we
denote by mg,, the initial modularity obtained after INiTIALIZE,
we obtain the time complexity of STARTREPLACING as

Btat 22 =€ O(mggare = m — €)L)

O(STARTREPLACING) = W

Similarly, the time complexity of STARTSHIFTING is

Mstart — M —

O(STARTSHIFTING) = 0215 € O((Mgary — m — €)L?)
Moreover, because Am, < Am;, we have a better accuracy in
STARTSHIFTING. The variant Ranpowm is in between STARTSHIFT-
ING and STARTREPLACING, in terms of the approaching speed, the
time-complexity and the accuracy. The modularity of the pro-
duced graph, if one is returned, differs from the desired mod-
ularity m by at most +e in all three variants. The smaller €,
the higher the accuracy. Figure {4|illustrates that both STARTRE-
PLACING and RanDoM variants attain the modularity m linearly,
as opposed to a “non-linear” (Am, = O(1/L?*)) decrease for the
variant STARTSHIFTING.

6. Properties of the obtained graphs

The three algorithm variants generate community graphs
with different topological properties.

6.1. Topological properties

The variant STARTSHIFTING ends up with a community graph,
with a very small number of inter-community links. In most of
the cases, the community graph is a tree or very close to a tree.
On the other hand, there are just a few (usually only one) com-
munities with a very high number of links and all the other com-
munities have a similar number of links. Unlike STARTSHIFT-
ING, the STARTREPLACING variant generates graphs with higher
number of inter-community links, but all the communities have
a similar number of intra-community links (communities with
similar size). These properties are exhibited in Figure[5] When
comparing the number of inter-community links, the variant
Ranpom (p = 0.5) is somewhere in between STARTSHIFTING and
STARTREPLACING.

Table [7?] shows the difference in topological metrics for the
three graphs produced by the three variants for given values of
L, ¢, m and €. The variant Ranoom (p = 0.5) has topologi-
cal metrics’ values that lie in between the corresponding val-

(a) STARTREPLACING

(b) Ranpom (p = 0.5)

(c) STARTSHIFTING

Figure 5: Graphs returned by the three algorithm variants (L = 1000, ¢ = 5, m = 0.655 and € = 5 - 1073).

Table 1: Topological metrics of the three returned graphs (L = 1000, ¢ = 5, m = 0.655 and € = 5 - 1073).

Algorithm variant E[D] C E[H] £D HUN-1 A K

STARTREPLACING 5.88 0355 370 -0.06 0.041 9.87 84%

Ranpom (p =0.5) 5.67 0.167 4.00 -0.04 0.036 8.84 86%

STARTSHIFTING 493 0.151 526 -0.01 ~0 652 95%
ues for STARTREPLACING and STARTSHIFTING. In general, the vari-
ant STARTREPLACING (STARTSHIFTING) produces graphs with the o 045 StartReplacing i
highest (lowest) average degree E[D]; the highest (lowest) av- *8' 04l | - -Random (p=0.5) |
erage clustering coefficient C; the lowest (highest) average hop- S - a- StartShifting
count E[H]; the highest (lowest) algebraic connectivity ty_1; % 035 |
the highest (lowest) spectral radius A;; and the smallest (largest) 8
assortativity pp. D o3 1

We define the modularity quality coefficient K = - as o)

a ratio between the desired modularity m and the maximum S 02 1
modularity mp,x of the obtained graph (using Newman’s algo- 3 02l |
rithm [16], because as stated before, finding the my,,y is also an g .9
NP-complete problem [2]]). Because i,y is the maximum of E 015, - = @-=-0--=C--©" "0~ ':'_'_'j_'_'_f,'_’_'ﬁ'.'_'f— -4
a given graph with an unknown number ¢ of communities, we S S e
have K € [0, 1]. The higher K, the more likely the original num- 01— o ‘ ‘ o 08

ber ¢ of communities is preserved. Table [1?‘] (the last column)
shows that the STARTSHIFTING variant has produced the graph
with the largest K due to the small number of inter-community
links and “higher link density” within the communities, fol-
lowed by Ranpom (p = 0.5) and STARTREPLACING.

In Figure[6] we display the relation between the average clus-
tering coefficient and the desired modularity. The average clus-
tering coefficient reflects to what extent nodes tend to cluster
together and depends on the number of triangles in a graph.
Figure[6|shows a linear relation between the modularity and the
average clustering coefficient, where STARTREPLACING produces
the graphs with highest average clustering coefficient. The

0.5 0.6
Modularity (m)

Figure 6: Clustering coefficient C as a function of the desired modularity value
m for the algorithm variants with L = 1000, c =5ande =5 - 1073, Internally,
the communities are constructed as random graphs.

STARTREPLACING produced graphs have many inter-community
links, which means there is a higher probability of also having
triangles spanning different communities than with STARTSHIFT-
ING, which generates few inter-community links.

(a) User-centric friendship network of the person X in Facebook.

® o O
® e o
® e _ 0 o
° o o
° 0% g0 ©
®
® a
® @ e,
® o ®
® & ®
0% ® g - h
. B9
®
e %o ®
@
®
®
5 & 4
k3 o
o = ® PR
° ®
° (] ® g ® ©
e ® 00 o ® & ®
.00. @ ® & @
° ®
(AN 3
®e o0 ° °
] ®

(b) TMGG modeled network.

Figure 7: Real Facebook friendship and TMGG constructed networks.

6.2. Online social network modeling

To demonstrate that TMGG can indeed generate realistic
community-structured networks we will make a comparison
with a real user-centric friendship network of a single person
Xin Facebookﬂ as displayed in Figure The nodes are Face-
book friends of X and a link exists between two nodes if the
corresponding two friends of X are also friends of each other.
The visualization shows a clear community structure. Using
TMGG (variant STARTSHIFTING), we have generated a network,
in Figure that has the same modularity (m = 0.7), number
of communities (¢ = 5) and number of links (L = 1773) as the
Facebook network of X. The two networks have similar prop-
erties, such as similar average nodal degree (E[D] = 20) and
clustering coefficient (C = 0.68), which supports our claim that
TMGG can generate realistic networks.

7. Conclusions

We have considered the problem of constructing graphs with
a given modularity and have proved that deciding whether such
a graph exists is NP-complete. Subsequently, we have proposed
a heuristic algorithm TMGG that generates graphs with a given
modularity and number of links. TMGG has three variants and
all start from a graph with maximum modularity [21] that is
altered via rewiring. Furthermore, we have analyzed the dif-
ference in speed and accuracy of the three variations, and we
have studied the topological properties of the graphs generated
by them. All three TMGG variants produce community graphs,
i.e. a family of graphs consisting of the topology between com-
munities and the number of links within each community. The
community graph presents ample flexibility to generate and

4http://www.facebook.com

fine-tune the final graph towards other desired topological prop-
erties, such as nodal degree distribution, without affecting the
modularity.

Acknowledgments

We are grateful to Norbert Blenn for the useful discussions.
This research has been supported by the EU FP7 Network of
Excellence in Internet Science EINS (project no. 288021) and
by the GigaPort3 project led by SURFnet.

Appendix A. The derivations for the modularity changes

We consider the difference Am in modularity between the
graph G and the graph G’, obtained from G after a change in
communities C; and C;. Using the modularity definition (2)),

2 2
the difference is reflected in (Dcp - Dck) - (D'c,, - D’Ck) # 0,
with p € {i, j}. Hence, Am boils down to

’
Limer - Limer 1

L - 8cl? Z Z [(DCP - DCk)z - (D%p - D/Ck)2]

Am = ——
p=1 k=1

et 2 (0 26 (P -)

k=1

(0,06 - (06,00 |

:le%lﬁlme' - 401[‘2 2 [(Dci + D, - 2Dck)(D,Ci - Dci)
=l
ki j

+ (De, + D, —2D¢,) (De, - D,)|

1
— (D¢, = D, = (D¢, = Dc,)) (D%, + D, = (D¢, + Dc,))

" 4cl?
(A.1)

http://www.facebook.com

c

. . 1 1
Appendix A.l. Transformatlon 1 Ly Z [(2Dci 2D, - 1) + (ZDC, 2D, - 1)

Here, L{ .. = Liner — 1, Di;, = D¢, — 1 and D’ =Dc, +1as L 4cl? =
has been discussed in Transformatlon 1. The express1on (A1) p#ijk
becomes =2(2D¢, = 2Dc, +2)1 - T (-1-2) (2D, ~ 1 - 2Dc, +2))
Am1 (G, DC,- 5 DCj) =
R —@(—1—2)(20Cj—1—(206k+2))
=D ; |(2Dc, - 2Dc, + 1) = (2D¢, - 2D¢, - 1)) Ll <
k;t_i,_j :z + ﬁ Z (Dci + DCj - ZDC;; - 3)
1 e
4 L2 (DC‘ DC,- - (DC/' - D(;/) + 2) (DC,- + DC,- - (ch + ch) + 2) prijk
1 & 2(2Dc,-—2DCj+2) 4 4cl? (2Dc +2Dc; 4Dck—6)
=1~ 2 2(Pa=De;+1) - 42 —l+—26_6+6[D +Dc; - 2Dg, - 3
& TL 4erz PGTEG TG
1 c-2 DC,'_DC>+1 2L+DC‘.+DC/.—2DC,(—3
= - (DC - Dc. + 1) B A— = 2
L 22\ / cl? 2L
1 ¢c-2+2 1 1
- - (De, = De, + 1) = T (D, = D, +1)
2L—-1- DC,- + DC
- 212 References

[1] M.E. J. Newman, M. Girvan, Finding and evaluating community struc-
Appendix A.2. Transformation 2 ture in networks, Phys. Rev. E 69 (2004) 026113.
Here, L/ = Linter» D/C = D¢, — 2 and D/C = D¢, +2 as [2] U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski,
i i j j

nter j
. . . D. Wagner, On Finding Graph Clusterings with Maximum Modularity, in:
has been discussed in Transformation 2. The expression @ Graph-Theoretic Concepts in Computer Science, volume 4769 of Lecture

becomes Notes in Computer Science, Springer Berlin/Heidelberg, 2007, pp. 121-
1 ¢ 132.
Amy(G, DCi»DCj) = —@ Z [(DC,- + D,C,- - 2Dck) (D,C,. - Dci) [3] R. Guimera, L. A. N. Amaral, Functional cartography of complex
k=1 metabolic networks, Nature 433 (2005) 895-900.

k#i,j . S .
I [4] J. Duch, A. Arenas, Community detection in complex networks using

+ (ch + D’CI_ - ZDCk) (D'Cf - DC/.)] extremal optimization, Phys. Rev. E 72 (2005) 027104.
’ [5] S. Fortunato, M. Barthélemy, Resolution limit in community detection,
Proceedings of the National Academy of Sciences 104 (2007) 36—41.

_ =

! (D - D¢, — (D, —ch)) (D’Cl + Dc, - (D, +DC].))

4 Lz [6] A. Lancichinetti, S. Fortunato, Limits of modularity maximization in
4 & community detection, Phys. Rev. E 84 (2011) 066122.
=E Z [(DC, - DCk - 1) - (ch - Dck + 1)] [7]1 R. Guimera, M. Sales-Pardo, L. A. N. Amaral, Modularity from fluctu-
kkf'l' ations in random graphs and complex networks, Phys. Rev. E 70 (2004)
v 025101.
+ 4 (2 D¢, —2—2D¢. — 2) [8] V D. Blondel, J:L. Guillaume, R. Lambiotte, E. Fefel.Jer, Fast unfqld—
4cl? ! ’ ing of communities in large networks, Journal of Statistical Mechanics:
1 < 2 Theory and Experiment (2008) P10008.
=? Z (DCi — D¢ ;= 2) + I (DC,, - DC/, - 2) [9] P. ErdSs, A. Rényi, On the evolution of random graphs, Publications
¢ k=L ¢ of the Mathematical Institute of the Hungarian Academy of Sciences 5
i (1960) 17-61.
_c- 2+2 (D [10] E. Gilbert, Random graphs, Annals of Mathematical Statistics 30 (1959)
=—— " (D¢ -
cl? i 1141.

[11]

[12]

R. Albert, A.-L. Barabdsi, Statistical Mechanics of Complex Networks,
Review of Modern Physics 74 (2002) 47-97.
R. Albert, A.-L. Barabdsi, Topology of evolving networks: Local events

Appendix A.3. Transformation 3 and universality, Phys. Rev. Lett. 85 (2000) 5234-5237.
The difference Am in mOdUIarlty between the graph G and [13] T. Bu, D. Towsley, On distinguishing between internet power law topol-

the graph G’, obtained from G after a change in communities ogy generators, in: INFOCOM 2002. Twenty-First Annual Joint Confer-
C;, C; and Cy (Transformation 3) is ence of the IEEE Computer and Communications Societies., volume 2,
pp. 638 — 647.

1 1 C , , [14] M. Faloutsos, P. Faloutsos, C. Faloutsos, On power-law relationships of
L 4cl? Z [(DC +Dc, - 2DCP)(~Dc) the Internet topology, in: Proceedings of SIGCOMM ’99, ACM, New
York, NY, USA, 1999, pp. 251-262.

, , , , [15] D.J. Watts, S. H. Strogatz, Collective dynamics of small world networks,
+ (DC,» + DC/- - ZDCF) (DC/- - DCj) + (Dck + D¢, - ZDC,,) (Dck - DCk)] Nature (1998) 440442,

Ams(G, D¢, Dc;, Dc,) =

p#i.jk

1

[16]

M. E. J. Newman, Detecting community structure in networks, Eur. Phys.

-~ (D, = De, = (D¢, = De)) (D, + D, = (D¢, + De,)) 1. B 38 (2004) 321-330.
[17] A. Clauset, M. E. J. Newman, C. Moore, Finding community structure in
_ 1 (/ (D’ + D¢, — (D~ + Dc)) very large networks, Phys. Rev. E 70 (2004) 066111.
4cl? Ci ! Ci k [18] P. Schumm, C. Scoglio, Bloom: A stochastic growth-based fast method
1 , , of community detection in networks, Journal of Computational Science
T a2 (D¢, = De; = (DG = D) (De + De, = 3 (2012) 356 - 366.

[19]
[20]
[21]

(22]

[23]

[24]

[25]

(26]

[27]

[28]
[29]
[30]
(31]

(32]

(33]

S. Fortunato, Community detection in graphs, Physics Reports 486
(2010) 75 - 174.

G. Agarwal, D. Kempe, Modularity-maximizing graph communities via
mathematical programming, Eur. Phys. J. B 66 (2008) 409-418.

S. Trajanovski, H. Wang, P. Van Mieghem, Maximum modular graphs,
Eur. Phys. J. B 85 (2012) 1-14.

N. Blenn, C. Doerr, S. van Kester, P. Van Mieghem, Crawling and detect-
ing community structure in online social networks using local informa-
tion, in: IFIP Networking, Prague, Czech Republic, 2012.

M. E. J. Newman, Mixing patterns in networks, Phys. Rev. E 67 (2003)
026126.

P. Van Mieghem, H. Wang, X. Ge, S. Tang, F. A. Kuipers, Influence of
assortativity and degree-preserving rewiring on the spectra of networks,
Eur. Phys. J. B 76 (2010) 643-652.

P. Van Mieghem, X. Ge, P. Schumm, S. Trajanovski, H. Wang, Spectral
graph analysis of modularity and assortativity, Phys. Rev. E 82 (2010)
056113.

G. K. Orman, V. Labatut, H. Cherifi, Qualitative comparison of commu-
nity detection algorithms., in: DICTAP (2), volume 167 of Communica-
tions in Computer and Information Science, Springer, 2011, pp. 265-279.
M. Girvan, M. E. J. Newman, Community structure in social and bio-
logical networks, Proceedings of the National Academy of Sciences 99
(2002) 7821-7826.

A. Lancichinetti, S. Fortunato, F. Radicchi, Benchmark graphs for testing
community detection algorithms, Phys. Rev. E 78 (2008) 046110.

J. P. Bagrow, Evaluating local community methods in networks, Journal
of Statistical Mechanics: Theory and Experiment (2008) P05001.

A. Lancichinetti, S. Fortunato, Community detection algorithms: A com-
parative analysis, Phys. Rev. E 80 (2009) 056117.

P. Van Mieghem, Graph Spectra for Complex Networks, Cambridge Uni-
versity Press, Cambridge, UK, 2011.

K. Manders, L. Adleman, NP-complete decision problems for quadratic
polynomials, in: Proceedings of the eighth annual ACM symposium on
theory of computing, STOC 76, ACM, New York, NY, USA, 1976, pp.
23-29.

M. R. Garey, D. S. Johnson, Computers and Intractability; A Guide to
the Theory of NP-Completeness, W. H. Freeman & Co., New York, NY,
USA, 1990.

11

	Introduction
	Related Work
	Complexity of modular graph generation
	Changing the modularity via link rewiring
	Tunable modularity graph generator
	Algorithm complexity and accuracy

	Properties of the obtained graphs
	Topological properties
	Online social network modeling

	Conclusions
	The derivations for the modularity changes
	Transformation 1
	Transformation 2
	Transformation 3

