<]
TUDelft

Delft University of Technology

Near optimal control with reachability and safety guarantees

Verdier, Cees; Babuska, Robert; Shyrokau, Barys; Mazo, Manuel

DOI
10.1016/j.ifacol.2019.09.146

Publication date
2019

Document Version
Final published version

Published in
IFAC-PapersOnLine

Citation (APA)
Verdier, C., Babuska, R., Shyrokau, B., & Mazo, M. (2019). Near optimal control with reachability and safety
guarantees. IFAC-PapersOnLine, 52(11), 230-235. https://doi.org/10.1016/j.ifacol.2019.09.146

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1016/j.ifacol.2019.09.146
https://doi.org/10.1016/j.ifacol.2019.09.146

ScienceDirect

Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

IFAC PapersOnLine 52-11 (2019) 230-235

Near Optimal Control With Reachability
and Safety Guarantees

Cees F. Verdier * Robert Babuska* Barys Shyrokau *
Manuel Mazo, Jr. *

* The authors are with DCSC and Department of Cognitive Robotics,
Delft University of Technology, Delft, The Netherlands,
{c.f.verdier, r.babuska, b.shyrokau, m.mazo} @tudelft.nl

Abstract: Control systems designed via learning methods, aiming at quasi-optimal solutions,
typically lack stability and performance guarantees. We propose a method to construct a
near-optimal control law by means of model-based reinforcement learning and subsequently
verifying the reachability and safety of the closed-loop control system through an automatically
synthesized Lyapunov barrier function. We demonstrate the method on the control of an anti-
lock braking system. Here the optimal control synthesis is used to minimize the braking distance,
whereas we use verification to show guaranteed convergence to standstill and formally bound

the braking distance.

© 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: nonlinear optimal control, reinforcement learning, value iteration, verification,

vehicle safety

1. INTRODUCTION

Learning control systems typically rely on haphazard pa-
rameter tuning, without stability and performance guar-
antees of the learning algorithm and of the resulting con-
troller. Recent years have witnessed an increased in inter-
est in combining machine learning approaches with formal
methods, including e.g. Berkenkamp et al. (2017); Pathak
et al. (2018); Fulton and Platzer (2018). In this paper we
propose a novel approach to automate formal controller
synthesis through reinforcement learning, followed by a
verification of reachability and safety guarantees of the
synthesized controllers. We apply model-based reinforce-
ment learning control design which returns a near-optimal
controller described by an analytic expression (Kubalik
et al.,, 2017). This allows for verification using existing
verification tools such as Flow* (Chen et al., 2013), CORA
(Althoff, 2015) and dReach (Kong et al., 2015), to name
a few. In this work, we verify the closed-loop system
by means of synthesis of a certificate function, similar
to Lyapunov and barrier functions. We use a counter-
example guided synthesis-like approach akin to Kapinski
et al. (2014); Ravanbakhsh and Sankaranarayanan (2016);
Verdier and Mazo Jr (2018), where candidate solutions
are synthesized based on a finite set of sampled states,
and are subsequently validated or disproved using an sat-
isfiability modulo theories (SMT) solver: a tool capable of
reasoning about first-order logic formulae based on a set
of background theories. If a candidate is disproved, the
SMT solver provides a counterexample which is used to
enrich the set of sampled states. As in Verdier and Mazo Jr
(2018), we propose grammar-guided genetic programming
to synthesize candidate solutions, which is an evolutionary
computation method capable of evolving entire expres-

* This work is supported by NWO Domain TTW under the
CADUSY project #13852.

sions. Here, no exact structure has to be pre-specified by
the user, such as e.g. a fixed-order polynomial.

The proposed approach is demonstrated on the synthesis
of an optimal controller for an Anti-lock Braking System
(ABS), which actively controls the wheel dynamics during
severe braking. Its purpose is to maximize braking perfor-
mance while avoiding excessive wheel slip or wheel lock
and so keeping the vehicle’s ability to steer. We use an
reinforcement learning-based control design to minimize
the braking distance and formally verify convergence to
standstill and bounds on the braking distance.

2. PRELIMINARIES AND PROBLEM DEFINITION

Given a system, we denote its state as € R™, a continuous
time trajectory with £ : R — R™ and a discrete state at
time k with xx. The interior of a set D is denoted by 0D.

Consider a nonlinear system of the form

&(t) = f(&(t), u(t)), (1)
where £(t) € X € R™ and u(t) € U C R™ denote the
state and input respectively. In this work we consider an
optimal control design method for discrete-time systems,
requiring system (1) to be discretized. To ensure aspects
like reachability and safety are not lost for the original
system, we formally verify the resulting control law w.r.t.
original continuous time model.

2.1 Optimal control design

The discretized system (1) is described by the state tran-
sition function

T1 = f(zk, uk) (2)
with xg, xk+1 € X and ug € U. This function is assumed
to be available, but it does not have to be stated by explicit

2405-8963 © 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2019.09.146

Cees F. Verdier et al. / IFAC PapersOnLine 52-11 (2019) 230-235 231

equations; it can be, for instance, a generative model
given by a numerical simulation of complex differential
equations. The control goal is specified through a reward
function which assigns a scalar reward r;+1 € R to each
state transition from xj to zpy1:

Thtr1 = P(Th, Uk, Th1) - (3)
This function is defined by the user and typically calculates
the reward based on the difference between the current

state and a given constant reference state x, that should
be attained.

The goal is to find an (approximately) optimal control
policy m : X — U such that in each state it selects a
control action so that the cumulative discounted reward
over time, called the return, is maximized:

R™ :E{];)Wkp(xk,w(xk),xkﬂ)}. (4)

Here v € (0,1) is a discount factor and the initial state
is drawn uniformly from the state space domain X or its
subset. Hence the considered control problem is:

Problem 1. Design a control policy m : X — U such that
the return is maximized.

2.2 Formal verification

Given an optimal controller 7, the next goal is to formally
verify whether the continuous closed-loop system

£(t) = f(£(), 7(E(1)) ()
satisfies a reachability and safety specification. Given a
compact safe set S C A, compact initial set I C S

and compact goal set G, the following specification is
considered:

RWS Reach while stay: all trajectories starting in I even-
tually reach G, while staying within S:

VE(to) € I,3T,Vt € [to, T): £(t) € SANET) € G (6)
We addresses the following problem:

Problem 2. Given the compact sets (S,I,G) and closed-
loop system (5), verify that specification RWS is satisfied.

This verification is done by means of automatic synthesis
of a Lyapunov Barrier function as introduced in Section
3.2.

3. METHODS
3.1 Optimal controller design

The return (4) is approximated by the value function
V7™ : X — R defined as:

(oo}
V™ (x) :E{Z’ykp(xk,ﬂ(xk),xk+1)‘xo za:}. (7)
k=0
An approximation of the optimal V-function, denoted by
V*(x), can be computed by solving the Bellman optimality
equation

V(@) = max|p(a, 7(@), /(2. 0) + 9V (f(@,0)] . (8)

To simplify the notation, in the sequel, we drop the hat
and the star superscript: V' (z) will therefore denote the
approximately optimal V-function.

To compute V(x), we use the fuzzy V-iteration algorithm
(Bugoniu et al., 2010). Given the process model (2) and
the reward function (3), define the set C = {c1,...,cn}
of points on a regular grid in the state space. Further
define a vector of triangular membership functions ¢ =
[gbl(a:),...,(éN(x)]T so that each ¢;(x) is centered at ¢;,
ie., ¢i(c;) =1 and ¢j(c;) = 0, Vj # i. The membership
functions are normalized so that Z;\le oi(x) =1,Vr e X.

Finally, define a finite set of discrete control input values
U= {ul,uQ,...,uM} cUu.

The value function is approximated by the following basis-
function expansion

Viz) =076 ()

where 6 = [0y, ... ,ON]T € RY is a parameter vector found
through the following value iteration:

0; rq?ea[}([p(ci,u, f'(ci,u) + 79T¢ (fl(CiaU))] (9)

fori=1,2,..., N. This iteration is guaranteed to converge
(Busoniu et al., 2010) and terminates when the following
condition is satisfied:

[(10)
with 6~ the parameter vector calculated in the previous
iteration and € a user-defined convergence threshold. Fuzzy
value iteration is very effective for second and third-
order systems; computing the optimal value function is
a matter of seconds. However, the computational and
memory requirements grow exponentially and the method
becomes impractical for systems above order four.

There are two principal ways to derive the control policy
from the value function (Kubalik et al., 2017). The first
one is based on an online maximization of the Bellman op-
timality equation’s right-hand side (hill-climbing policy),
while the second one applies the Bellman equation off-line
and uses basis functions to interpolate online (interpolated
policy). Here we apply the latter method. For all states ¢;,

i1=1,2,..., N compute off-line the optimal control action
Pi:
pi = argmUaX [p(ci,u, f(ci,u) + 0T (f'(ci, w))] (11)
ue

and collect the control actions in a vector: p = [py, ... ,pN]T
€ UV. In an arbitrary state x, the corresponding control
action is then obtained by interpolation:

u=p"¢(z) (12)
where ¢ (x) are the same basis functions as defined for
V(z). An obvious advantage of this method is its com-
putational simplicity: most computations are done off-line
(vector p is actually obtained for free as a byproduct of
the fuzzy value iteration algorithm) and the online in-
terpolation is computationally cheap. Another advantage
is that (12) directly produces continuous control actions.
However, the control signal is not necessarily smooth and
the interpolation can also result in a steady-state error.
Therefore, in Kubalik et al. (2017), we proposed a symbolic
approximation method which is computationally effective
and also yields smooth controls. A simplified version of
this method is also applied here.

We build an analytic approximation of the policy in the
following way. For a typical optimal control problem, the
policy surface can be split into saturated parts where the

232 Cees F. Verdier et al. / IFAC PapersOnLine 52-11 (2019) 230-235

control signal attains the minimal or maximal possible
value, and a rather steep transition between the two parts.
The transition is generally nonlinear, but often can be
well enough approximated by a linear function. The overall
policy is then described by:

u=sat(Kz) (13)
with K obtained by using linear regression on samples
of the steep transition augmented with samples on the
boundaries between the transition and the saturated hyper
planes. The function sat(-) defined as follows:

sat(z) = max (Upin, min (Upax, 7))
For general systems for which such an approximation does
not suffice, the aforementioned symbolic approximation in
Kubalik et al. (2017) can be used within the framework
presented in this paper.

3.2 Verification through Lyapunov Barrier functions

The safety and reachability specification RWS can be ver-
ified indirectly by means of a Lyapunov barrier func-
tion (LBF), heavily inspired by control Lyapunov barrier
functions, see e.g. Verdier and Mazo Jr (2018) and the
references therein.

Definition 3. (Lyapunov Barrier Function). A function

V € CY(S,R) is a Lyapunov Barrier Function w.r.t. the
compact sets S C X, I, G C int(S) and system (5) if there
exists a scalar v > 0 such that

Veel:V(z)<O0, (14a)
Yz e dS: V(z) >0, (14b)
Vo e A\G : V(z) < —, (14c)

where A == {z € § | V(x) < 0} and V(z) =
(VV(2), f(z,7(x))).

Note that the choice of v is arbitrary, as shown in Verdier
and Mazo Jr (2018). The existence of a LBF V implies
that the closed-loop system satisfies specification RWS, as
shown in the following theorem.

Theorem 4. Given a system (5), if there exists a LBF V
w.r.t. compact sets (S, I, G), then specification RWS holds.

The proof is given in Appendix A. The possibility to prove
RWS by the existence of a LBF motivates the automatic
LBF synthesis. Our used method to automatically synthe-
size LBF's combines grammar-guided genetic programming
with an SMT solver. Here the former is used to propose
candidate LBFs, whereas the latter is used to formally
verify candidate solutions or provide counterexamples.

3.8 Grammar-guided genetic programming

Similar to Verdier and Mazo Jr (2018); Verdier and
M. Mazo (2017), we use grammar-guided genetic program-
ming, a variant of genetic programming (Koza, 1992).
Genetic programming is an evolutionary algorithm capa-
ble of synthesizing entire programs (in our case analytic
expressions), rather than optimizing just over the parame-
ters. This allows us to synthesize candidate LBFs, without
restricting to a single parameterized structure.

Genetic programming utilizes a random population of
candidate solutions that are encoded in way that allows

Nonterminals A and starting tree S Nonterminalless form

N = {(pol), (mon) , (var) , (const)},
S = (pol)

Production rules P

(pol) ::= (mon) | (pol) + (pol)
(mon) ::= (var) | (var) x (mon) Phenotype
(var) u=axq |22 | 23 Y
(const) ::= RandomReal € [—10, 10] T2

(a) Grammar (b) (c) Phenotype

Genotype

Fig. 1. An example of a grammar to construct polynomials,
a fully expanded genotype and the corresponding
phenotype in tree form and analityc form.

for easy manipulation, typically an expression tree. This
encoding is called the genotype, whereas the solution
itself the phenotype. Given the random population, each
candidate solution, also referred to as individual, is tested
based on a fitness function. The returned fitness value
measures the performance of the individual and is used
to select fit individuals for recombination and adaptation
by means of genetic operators. By applying the genetic
operators, a new population is created with the hypothesis
that these new individuals perform better than their
ancestors. This procedure is repeated until a solution is
found or a maximum number of generations is met.

As the name implies, the variant grammar-guided genetic
programming utilizes a grammar to construct the geno-
type. This grammar can be used to restrict the search
space and to bias the evolutionary search based on expert
knowledge. We use a grammar in Backus-Naur form that
is defined by the tuple (N, S,P), where A/ denotes non-
terminals, S € N the starting tree and P the production
rules. An example of a grammar to construct polynomials
is shown in Figure 1.

Based on a grammar, a genotype is grown by starting with
the starting tree S and expanding all nonterminals in the
leaves. This expansion is done by randomly selecting a
subtree from the production rules corresponding to the
nonterminal and placing it under the leave. Given the new
tree, all leaves with nonterminals are expanded and this
procedure is repeated until there are no more nonterminals
in the leaves of the resulting tree. To prevent infinite length
trees due to recursive production rules, a maximum recur-
sion depth is defined, after which only the non-recursive
rules can be selected. Given a genotype, its corresponding
phenotype is obtained by replacing all nonterminals nodes
by their underlying subtrees. An example of a fully grown
genotype and its phenotype based on the grammar in
Figure la are shown in Figure 1b and lc.

In this work we use two genetic operators: crossover and
mutation. In the former, two individuals are combined
by interchanging two randomly selected subtrees with the
same nonterminal and in the latter a random subtree
under a nonterminal is replaced by a new subtree grown
form the same nontermial. Finally, in each generation the
constants present in the genotype are optimized using Co-
variance Matrix Adaptation Evolution Strategies (CMA-
ES) (Hansen and Ostermeier, 2001).

Cees F. Verdier et al. / IFAC PapersOnLine 52-11 (2019) 230-235 233

The fitness function for LBF synthesis is constructed as
follows. The three inequalities in (14) can be expressed as
the following first order logic formula:

©Y; = Ve e X;: gl(l') <0, (15)
with ¢ € 1,2,3. Given the standard form, two fitness
metrics are considered. The first one is based on a finite
number of test samples and is used to provide a search
direction to the evolutionary search. The second metric
is based on the outcome of an SMT solver, providing a
Boolean answer to whether the inequallity formally holds.

Given the logic formula in (15) and a single point z € X,
we define the following error:

() i= max(gy(z), 0). (16)

Now for a finite set of test samples {x1,...,2,} C X;, the
sample-based fitness metric is defined as:

Fsamp,pi = (L4 [|[ep; (1), - - - s €y, (gfn)]”)%- (17)

In this work we use the SMT solver dReal (Gao et al.,
2013), as it is capable of reasoning about nonlinear in-
equalities over the reals. The fitness metric based on the
SMT solver is defined as:

T) 1, if ¢; is satisfied
SMT.¢: =3 0, otherwise)

In case an inequality is not satisfied, the solver returns
a small set in which it is violated. Samples from this
violation set are added to the set of test samples X; used
in Fsamp,p;, therefore refining the sample-based fitness
evaluation.

(18)

The overall fitness function is defined as a weighted sum
over the the sample-based and SMT-based fitness for all
three conditions in (14):

3
1
Fi= 6 Zwi (]:samp,api +]:SMT,%) .

i=1

(19)

Here, the weights are sequentially defined as:

Wi = Lwi—l}—samp,tpl_lJ; (XS {273}7
and w; = 1. This weighting is motivated by the insight
that prior to checking the condition on the derivative in
(14c), the function should have the correct shape w.r.t. the
initial set and the boundary set, as imposed by (14a) and

(14b). Note that the full fitness function is equal to 1 if all
conditions are formally verified.

3.4 LBF synthesis algorithm outline

The LBF synthesis algorithm undergoes the following
steps, given a user-provided system (5), compact sets
(S,1,G) and a grammar:

(1
2

A population is created based on the grammar.

The parameters of each individual are optimized
w.r.t. the sample-based fitness using CMA-ES.

The full fitness is computed.

Counterexamples returned from the SMT solver are
added to the sets of sampled states.

The best individual is copied to the next generation.
New individuals are created by applying genetic op-
erators on individuals which are selected using tour-
nament selection (Koza, 1992), until a new full pop-
ulation is created.

)
6

Nl N ~—_——

(
3
(4
(
(

| I I I

— 1.5 N
Z 1]
0.5 .

0 | | | |
0 0.2 0.4 0.6 0.8 1

Fig. 2. Longitudinal force vs. tire slip for a wet asphalt
with a water level of 3 mm

(7) Step 2 to 6 are repeated until an individual has the
maximum fitness or a maximum number of genera-
tions is met.

4. CASE-STUDY: ANTI-LOCK BRAKING SYSTEM

The control synthesis for an ABS system poses challenges
due to the highly nonlinear and uncertain dynamic behav-
ior of the wheel slip phenomenon. A longitudinal model of
a corner vehicle is given by:

8(t) = ——F(r),

oft) = "F () - 7Dy
i(t) = i)

where v(t) denotes the vehicle velocity, w(t) the wheel
angular velocity, s(t) the braking distance, r; the tire
effective rolling radius, u(t) the braking torque, m the
corner vehicle mass and J the wheel moment of inertia.
Moreover, F(x) is the longitudinal force due to the wheel
slip k:

F(r) = mgdsin(ctan™' (b(1 — e)x + etan™ ' (br)), (21)

(20)

with b, ¢, d and e road surface-specific constants and
w(t)ry
v(t)

the tire slip. Finally, ¢ : R — R is a continuous approxi-
mation of the signum function defined as

o(x) = tanh(100z).

—1-

(22)

In this case-study we use the parameters J = 1.2 kgm?,
re = 0.305 m, m = 407.75 kg and 9.81 = m/s%
We consider the slip force parameters (b,c,d,e) =
(55.56, 1.35, 0.4, 0.52), which correspond to wet asphalt
for a water level of 3 mm (Gnadler et al., 1995). Figure 2
shows the resulting force for different wheel slip values.

The choice of safe set, goal set and initial set are motivated
as follows. According to the EU regulation N13 (Nol3,
2016), for wet asphalt the maximum (initial) longitudinal
velocity is 90 km/h (=25 m/s). The ABS is initialized
of a slip angle of approximately 0 (i.e. o = x1/r)
and is active until the longitudinal velocity meets the
threshold of 5 km/h (= 5/3.6 m/s). Since the radius r;
can deviate slightly, we inflate the initial angular velocity
to be bounded by z1/(r+9,) < xo < 21/(r; —9,). Finally,
we impose an absolute maximum braking distance of 100
meters. This motivates the following choices for the safe
set, initial set and goal set:

234 Cees F. Verdier et al. / IFAC PapersOnLine 52-11 (2019) 230-235

Table 1. Value iteration parameters

Parameter Symbol Value Units
State domain X [10,0] x [33,0] radxrad/s
Num. of membership func. N 961 =31x31 -
Discount factor v 0.9999 -
Convergence threshold € 0.001 -
Sampling period Ts 0.001 s
S =[0,30] x [~10,30/r] x [~10,100],

T T

5
I=qzeS| —<2,<25, —— <9< ——
{ ‘36_ b= 7rt+6’r_ 2_7"15—57«’
0<z3<0.1},
G={zxeS |z <5/3.6}.
Given this safe set, the upper bound on the braking
distance compared to the braking distance obtained from
simulation is quite conservative. The bounds on the safe
set could be chosen to be tighter, but this comes at the
cost of longer computation times of the used SMT solver,
assuming for the chosen bound a solution exists.

4.1 Controller design

For optimal control design, we use a discrete-time model
obtained by numerically integrating the continuous-time
dynamics (20) using the fourth-order Runge-Kutta method
with the sampling period of Ty = 0.001s. The state is the
car velocity, x = [vg,wi]', and the reward function is
defined as:

i1 = p(Tk, g, i) = —2 ' Qu (23)
with @ = diag(1,0) a weighting matrix, specifying that
the car velocity must reach zero, regardless of the wheel
angular velocity.

The parameters of the fuzzy value iteration algorithm are
listed in Table 1. The number of membership functions for
each state variable was chosen quite large (31) in order to
get a dense coverage of the state space domain of interest.
The discount factor v = 0.999 is selected close to one, so
that not too much discounting takes place even at the end
of a typical closed-loop transient which lasts about 1200

samples (71290 ~ 0.3).

2,000
=

£ 1,000
3
0
50 20
00 10
xo [rad/s z1 [m/s]

Fig. 3. Piecewise linear policy (24) for wet asphalt with
water level of 3 mm.

The resulting policy is:

U(.T) = Sat(k1$1 + koxo + k‘o) (24)

with k; = 474.4, ko = 152.2 and kg = 1091.4. This policy
is shown in Figure 3.

Table 2. Statistics on the number of gener-
ations and total time for 5 successful LBF
synthesis runs.

Min Max Mean SD
7 generations 142 437 257.4 118.2
Total time [min] 51.3 3156 161.1 104.4

For an initial condition of 90 km/h with a zero wheel
slip and a sampling time of 0.001 seconds, we obtain
from simulation a braking distance of 81.7874 meter. In
comparison, in the case of a wheel lock, the braking
distance is 90 meter.

4.2 Verification

The LBF synthesis is implemented in Mathematica 11.1
and performed on a desktop with Intel Xeon CPU E5-
1660 v3 3.00 GHz using 14 parallel CPU cores. Given the
specification sets S, I, G, we bias our search by having
a grammar that imposes a template for the LBFs that
consists of a polynomial plus a predefined barrier function.
With the safe set written as S = II?_,[s;,s;], we use a
predefined barrier function B : R® — R of the form:

B i (const)
- im1 L1 —s+e
where € is a parameter that is chosen to be ¢ = 0.001.
In our grammar, the starting symbol of the LBF is then
selected to be

V(z) =S = (const) + (pol) + B(z), (26)
where (const) and (pol) denote nonterminals of a constant

and polynomial. Besides the starting symbol, the remain-
der of the grammar is chosen to be as given in Figure la.

B(z) (25)

We consider a population of 28 individuals with a maxi-
mum of 500 generations and fix the number of CMA-ES
generations to be 40. For the sample-based fitness, we start
per inequality with a set of 100 samples, which can be
complemented with up to 300 counterexamples, where a
first-in-first out principle is used. The rates of the genetic
operators are 0.5 for both crossover and mutation and the
maximum tree recursion depth is chosen to be 6.

Synthesis is performed over 8 independent runs, in which
5 times a LBF was found before the maximum number
of generations was met. For the 5 successful runs, the
statistics on the number of generations and elapsed time
is shown in Table 2. An example of a found solution is:
V(z) = — 590553. + 985.64x1 + 2303.02x2 + 1230.37x5
— 1035.76x1 25 4+ 167.85522 — 1003.362:5

+ 94.5467x1 23 + 6.1364627 73 + 69.623323.
685.651 621.366 631.618

B(z) = .
(z) 0.001 +x; 10.001 +x2 10.001 + z3

The corresponding sublevel set A and sets I and G are
shown in Figure 4. Note that set A can be seen as a forward
invariant sublevel up until G is reached.

By the existence of an LBF, specification RWS holds w.r.t.
the safe set, initial set and goal set. This implies that for all
trajectories starting in the initial set, eventually the target
velocity op 5km/h is reached and the braking distance up
to that point is guaranteed to be below 100 meters. Note

Cees F. Verdier et al. / IFAC PapersOnLine 52-11 (2019) 230-235 235

Fig. 4. Sublevel set A of the synthesized LBF, initial set I
and goal set G. Trajectories starting in I remain in A
until they eventually reach G.

that if we select the initial set to be equal to the found
sublevel set A, the conditions in (14) still hold, hence for
all trajectories starting in A specification RWS holds.

5. CONCLUSIONS

We have demonstrated an automated approach to the
design and verification for control systems. The proposed
methodology combines reinforcement learning for optimal
control design and automatic synthesis of LBF for formal
verification of control specifications. The methodology has
been demonstrated on the design of an ABS system.

In future work we intend to extend the verification to
include uncertainties w.r.t. e.g. the mass and slip force
parameters. These uncertainties can be introduced natu-
rally into the LBF, similar to Ravanbakhsh and Sankara-
narayanan (2016). Moreover, typically controllers are im-
plemented in a digital fashion, resulting in a sampled-data
systems. We intent to extend the verification to include
the sampled-data nature of a digital controller. Finally, the
computed upper-bound of the braking distance is the same
for all initial conditions. We plan to exploit the level-sets
of the LBF to derive guaranteed bounds on the braking
distance as a function of the initial condition.

Appendix A. PROOF OF THEOREM 4

Proof. First of all, by the continuity of ¥V and the com-
pactness of S, it follows that V is lower bounded on S\G.

It follows from (14a) and the definition of A that for £(¢g) €
I C A. Using (14c) and the comparison theorem (see
e.g. Khalil (2002)), it follows that V¢ > 0, V&(t) € A\G:
V() < V(E(to)) — y(t — to) < —~(t — to). Therefore,
&(t) € A\G implies that V(£(t)) is decreasing and thus
cannot reach the superlevel set V(z) > 0. Therefore, by
(14b), these trajectories cannot reach 0S. Finally, since
V(x) is lower bounded on the domain A\G C S\G,
trajectories will decrease until in finite time £(t) leaves
A\G and can only enter G, therefore (6) holds. O

REFERENCES

Althoff, M. (2015). An introduction to CORA 2015.
In Proc. of the Workshop on Applied Verification for
Continuous and Hybrid Systems.

Berkenkamp, F., Turchetta, M., Schoellig, A., and Krause,
A. (2017). Safe model-based reinforcement learning with
stability guarantees. In Advances in Neural Information
Processing Systems 30, 908-918. Curran Associates, Inc.

Busoniu, L., Ernst, D., Babugka, R., and De Schutter,
B. (2010). Approximate dynamic programming with a
fuzzy parameterization. Automatica, 46(5), 804-814.

Chen, X., Abraham, E., and Sankaranarayanan, S. (2013).
Flow*: An analyzer for non-linear hybrid systems. In
Computer Aided Verification, 258-263. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Fulton, N. and Platzer, A. (2018). Safe reinforce-
ment learning via formal methods: Toward safe control
through proof and learning. In Thirty-Second AAAI
Conference on Artificial Intelligence.

Gao, S., Kong, S., and Clarke, E.M. (2013). dReal:
An SMT solver for nonlinear theories over the reals.
In International Conference on Automated Deduction,
208-214. Springer.

Gnadler, R., Unrau, H.J., Fischlein, H., and Frey, M.
(1995). Ermittlung von My-Schlupf-Kurven an Pkw-
Reifen, volume 119 of FAT-Schriftenreihe. FAT, Frank-
furt /M.

Hansen, N. and Ostermeier, A. (2001). Completely deran-
domized self-adaptation in evolution strategies. FEwvolu-
tionary computation, 9(2), 159-195.

Kapinski, J., Deshmukh, J.V., Sankaranarayanan, S., and
Arechiga, N. (2014). Simulation-guided lyapunov anal-
ysis for hybrid dynamical systems. In Proceedings of
the 17th International Conference on Hybrid Systems:
Computation and Control, 133-142. ACM, New York,
NY, USA.

Khalil, H. (2002). Nonlinear Systems. Pearson Education.
Prentice Hall.

Kong, S., Gao, S., Chen, W., and Clarke, E. (2015). dreach:
d-reachability analysis for hybrid systems. In Tools
and Algorithms for the Construction and Analysis of
Systems, 200-205. Springer Berlin Heidelberg, Berlin,
Heidelberg.

Koza, J.R. (1992). Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Selection.
MIT Press, Cambridge, MA, USA.

Kubalik, J., Alibekov, E., and Babuska, R. (2017). Op-
timal control via reinforcement learning with symbolic
policy approximation. In Preprints 20th IFAC World
Congress (IFAC-17). Toulouse, France.

Nol13, U.R. (2016). Uniform provisions concerning the
approval of vehicles of categories M, N and O with
regard to braking.

Pathak, S., Pulina, L., and Tacchella, A. (2018). Verifica-
tion and repair of control policies for safe reinforcement
learning. Applied Intelligence, 48(4), 886—908.

Ravanbakhsh, H. and Sankaranarayanan, S. (2016). Ro-
bust controller synthesis of switched systems using coun-
terexample guided framework. In Embedded Software
(EMSOFT), 2016 International Conference on, 1-10.
IEEE.

Verdier, C.F. and Mazo Jr, M. (2018). Formal synthesis of
analytic controllers for sampled-data systems via genetic
programming. arXiw preprint arXiv:1812.02711.

Verdier, C. and M. Mazo, J. (2017). Formal controller syn-
thesis via genetic programming. IFAC-PapersOnLine,
50(1), 7205 — 7210. 20th IFAC World Congress.

