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Abstract

Flooding is globally one of the most damaging natural hazard. Flood risk will most likely increase in the
near future due to increases in flood frequency attributed to climate change and growth in population
and wealth in flood prone areas. This growth in wealth and population is increasingly considered
as a major driver for the increase in flood losses in the last decades. Floodplains are susceptible to
floods, but historically people have always been settling in floodplains. The growth of population in
floodplains, which is a substantial cause for increased flood risk, is essential to consider for decision
making in floodplain development, as improper development increases flood exposure and aggravates
flood risk. The science of socio-hydrology tries to capture the interaction between humans and floods
in the floodplain. But, it is necessary to identify these mechanisms on a broader scale. A way of doing
this, is to look at the development of floodplain population density over the years, but population data
is not available on a long temporal scale. Therefore, Nighttime light data was used to model the gaps
in the availability of population data. Nighttime light data data captures the illumination on earth, and
is available on a large temporal and spatial scale, and has a high correlation with population data.
However, the relationship between Nighttime light data and population data is not straightforward.
This study tries to model a population proxy through the use of Nighttime light data data and explains
when and why it does or does not work. Validation of the model shows that in some regions the
predicted data is relatively precise, but ultimately, due to the lack of data, the accuracy is unknown.
This study shows that understanding the behaviour of NTL is valuable, because it has the potential to
map Socio-Economic variables in data-scarce areas.
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1
Introduction

Flooding is globally one of the most damaging natural hazards (Ritchie and Roser, 2019). In the last
decades, the impact of floods has increased substantially, causing more economic damage and victims
than ever before. In fact, in terms of global weather-related disaster losses, 2017 was the costliest
year, exceeding 300 billion US dollars (Jongman, 2018). Flood risk will most likely increase in the near
future due to increases in flood frequency attributed to climate change and growth in population and
wealth in flood-prone areas (Jongman, Ward and Aerts 2012). This growth in wealth and population is
increasingly considered as a major driver for the increase in flood losses in the last decades (Bouwer,
2011; Jongman et al., 2012; Kundzewicz et al., 2014; Winsemius et al., 2016). Of the ten largest urban
agglomerations in the world, nine are located in floodplains (Di Baldassarre et al., 2013). Between
1970 and 2010, the global population in floodplains increased twofold (Fang et al., 2018b).

A floodplain is the land surface next to a river. The features of a floodplain landscape can be clearly
distinguished from neighbouring uplands in terms of shape and dominant hydrologic processes. Flood-
plains are susceptible to floods, storing excess water in case of extreme hydrological events (Nardi,
Vivoni and Grimaldi, 2006). Yet, people have historically been settling in floodplains, as floodplains also
bring trade junctions, fertile land and water availability (Tockner and Stanford, 2002).

The growth of population in floodplains, which is a substantial cause for increased flood risk, is es-
sential to consider for decision making in floodplain development, as improper development increases
flood exposure and aggravates flood risk (Fowler and White, 1945; Mileti, 1999). Reclaiming floodplains
for urban development (and other human interferences) creates increased flood risk, flood impact and
decreases the biodiversity (Tockner and Stanford, 2002). Even though much progress is made in quan-
titatively assessing flood risk, a fundamental understanding of the interplay between physical and social
processes is still lacking, according to Di Baldassarre, Martinez, Kalantari and Viglione (2017). As a
result, unintended consequences can stem from current policies and measurements to mitigate flood
impacts.

The science of socio-hydrology, which was first coined by Sivapalan et al. (2012), tries to capture
these bi-directional feedbacks between physical and social processes. One of the mechanisms studied
in socio-hydrology is the interaction between human behaviour and floods in the floodplain (Di Baldas-
sarre et al., 2013; Di Baldassarre et al., 2015). Within the conceptualization of human-flood interaction,
flood coping strategies are studied (Di Baldassarre et al., 2015; Ciullo, Viglione, Castellarin, Crisci and
Di Baldassarre, 2017; Viglione et al., 2014; Barendrecht, Viglione and Bloschl, 2017). Kundewicz and
Schnellnhuber (2004) identified three basic strategies of coping with floods:

1. Protection (as far as technically possible and financially feasible, bearing in mind that absolute
protection cannot be achieved)

2. Accommodation (living with floods)

3. Retreat (relocation from flood-risk to flood-safe areas). This strategy aims to rectify maladaptation
and floodplain development.
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In socio-hydrology, these three strategies of coping with floods have been conceptualized by Di Bal-
dassarre et al. (2013) and Ciullo et al. (2017) as technological societies versus green societies. In this
conceptualization, technological societies cope with floods through protection and green societies cope
with floods by either accommodation or retreat. Di Baldassarre et al. (2015) and Ciullo et al. (2017)
propose a modelling framework where they describe societies in terms of being a green or technological
society. Societies are differentiated through their use of mainly structural and non-structural measures.
This modelling framework proved to be effective in capturing bi-directional feedbacks between social
and physical processes in floodplains. These feedbacks are able to describe both the adaptation and
levee effect.

The levee effect describes the consequences of a decrease in flood memory that stems from levee
heightening. Levee heightening lowers the flood hazard and decreases the possibility of flooding. It
also fosters economic growth in floodplains due to the reduced frequency of economic losses. On
the other hand, the heightening of levees induce an increased feeling of safety, stemming from the
reduced flood memory, which generally leads to an increase in exposure caused by people moving
into floodplains in flood-poor periods. This is dangerous as the floods that do occur in these areas are
often disastrous ones, and the effects of a flood will be more catastrophic. On the other hand, the
adaptation effect describes the way people’s flood awareness increases after experiencing a damaging
flood event. Because of this increase in awareness, flood-related damages will decrease when a flood
event with a similar magnitude occurs.

The modelling exercise carried out by Di Baldassarre et al. (2015) and Ciullo et al. (2017) sug-
gest the occurrence of levee effects in technological systems and adaptation effects in the case of
green systems. The impact of the hydrological system is conceptualized through relative losses given a
certain flood magnitude. The social system is modelled through flood memory which affects floodplain
population density, capturing processes that result in resettlement outside of flood-prone areas, and
flood-risk protection level. Furthermore, green societies are modelled as having higher social flood
memory and lower flood risk protection, leading to a decrease in floodplain population density. In
contrast, technological societies are modelled as having an increase in flood risk protection, leading to
a decrease in flood memory and an increase in floodplain population density.

The model was applied for two case studies only (Rome and Bangladesh), while in socio-hydrology,
there is a need to move beyond case studies. Therefore, it is necessary to identify these mechanisms
on a broader (Pande and Sivapalan, 2017). A way of doing this is to look at the development of flood-
plain population density over the years, as the mechanisms are easily identifiable through floodplain
density. They can then be related to the occurrence of flood events. To capture these mechanisms in
floodplains on a larger scale, large temporal and spatial datasets are needed.

Unfortunately, population data is not available simultaneously on a long temporal scale and a large
spatial scale. To solve this gap in data availability, the use of Nighttime Light data might be a possi-
ble solution. This data is available on a large temporal and spatial scale. Furthermore, it has a high
correlation with population density, which is why NTL data has been used extensively to model popu-
lation density in multiple studies (Sutton, Elvidge and Obremski, 2003; Zhuo et al., 2009). However,
population density has mainly been modelled for only one year of data and mostly small study areas.
Therefore it is interesting to link NTL and population density on a country and floodplain level for mul-
tiple years (1992-2013) and multiple countries. In such manner, a population density proxy might be
able to fill the gaps for years no population data is available.

1.1. Research Questions
The objective of this research is to understand, interpret and quantify the spatial and temporal evolution
of Nighttime Light linking it to human development in floodplains. This objective will be examined
through the following research question:

1. Can NTL be used to accurately quantify and monitor changes in population density in floodplains
and therefore be used to identify flood coping mechanisms?
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1.2. Document Structure
First, chapter 2 contains a literature review on the use of NTL data. Chapter 3 (Methodology) intro-
duces the data used in linking NTL to population density. It explains the data used and the investigated
countries in this study. In addition, the method for linking NTL and population data is explained. This
includes intercalibration of the NTL data, the regression methods used and including extra parame-
ters like GDP and urban areas. Chapter 4 (Results) provides the results of the procedure described
in chapter 3 and explains the validity of the results. Chapter 5 (Discussion) then addresses the the
shortcomings of the model and the pitfalls of using NTL. Lastly, chapter 6 (Conclusions and Recom-
mendations) summarized the answers to the research question and the most important findings in this
study. Furthermore, it discusses recommendations for future research.





2
Nighttime Light Data

Nighttime Lights (NTL) Data is a gridded data set that globally shows measured luminosity at night for
the years 1992-2013. This chapter explains how NTL data was used in other socio-hydrological studies,
what the pitfalls of NTL data are and what parameters can be described with the use of NTL data.

2.1. NTL in Socio-hydrology
Socio-hydrology aims to explain the bi-directional feedbacks between human behaviour and hydrolog-
ical parameters. For this end, NTL is an easy to use indicator of human activities on earth over time,
due to large spatial and long temporal coverage and its easiness to acquire. Furthermore, NTL has the
ability to show human signatures on river networks (Ceola, Laoi and Montanari, 2014; Ceola, Laoi and
Montanari, 2015; Ceola et al., 2016; Elshorbagy et al., 2017; Fang et al., 2018a; Mard, Di Baldassarre
and Mazzoleni 2018). Ceola et al., (2014) shows that increased luminosity at night is associated with
flood damage intensification. This relationship shows that higher NTL in floodplains leads to higher
economic damages to floods. Furthermore, Ceola et al. (2014) shows that there is an increase in
exposure (measured as a proxy with NTL) to floods worldwide, as can be seen in figure 2.1.

Figure 2.1: Country level percentages of per year variation in nightlight intensity in correspondence to the river network (Ceola
et al., 2014)

Ceola et al. (2015) found that in most countries in the world, the amount of NTL has grown in the
vicinity of the river network and that people move closer to rivers. Furthermore, Mard et al. (2018)
found a correlation between flood protection and human proximity to rivers. In general, countries
with a higher flood protection level settle closer to rivers. Furthermore, Mard et al. (2018) shows the
average distance of the population to rivers per country and how this develops over the years. Figure
2.2 shows this average distance of the population to the river. The difference in the development
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8 2. Nighttime Light Data

of distance from the river between a green and technological society is visible quite clearly. Here,
Mozambique is identified as a green society, and it can be seen that people resettle further away from
the river over the last few years.

Figure 2.2: Fraction of inundated area occupied by nightlights (empty diamonds, right axis) and Average distance of human
settlements to the river (black dots, left axis) between 1992 and 2013 for Limpopo and St. Louis. (Mard et al., 2018)

2.2. Caution in NTL use
Although used frequently in socio-hydrology, NTL data is not an immediate proxy for human behaviour.
For example, a 1 percent increase of NTL in Austria does not have the same meaning as a 1 percent
NTL increase in Albania. Pinkovskiy (2017) shows that national-level variables such as institutions and
policies may have essential effects on growth of NTL. More specifically, both the amount of light and
its growth rate are shown to increase discontinuously upon crossing a border from a poorer (or lower
growing) to a richer (or higher growing) country and vice versa. For example, figure fig:pinkovskiy
shows the differences between Romania (in this case, the more prosperous country) and Ukraine and
Moldova (in this case, the less prosperous countries). These differences in growth of light per capita
close to the border show the influence of national institutions and that in every country, population and
light have a different relationship.

Figure 2.3: Average 5-year NTL per capita growth vs Distance to Border for Moldova and Romania (left) and Ukraine en
Romania (right). Blue shows the 5 year average close to the border for the more prosperous country, while green shows the

less prosperous country. (Pinkovskiy, 2017)

2.2.1. Pitfalls of Nighttime Light
Next to NTL being incomparable between countries, there are a few pitfalls of using NTL. First, a
phenomenon called blooming occurs in the NTL dataset. Blooming is caused by light scattering, which
results in bright pixels extending beyond the real bright area. Practically, this means that a large,
bright city appears to be much larger than it is (Shen, Zhu, Cao and Chen, 2019). Next to capturing
light behaviour itself, there are problems with the six satellites (F10, F12, F14, F15, F16 and F18)
that capture luminosity at night. The satellites are not on-board calibrated and therefore are hard to
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compare with each other. The inability to compare different years is amplified by the fact that the
sensor performance degrades over time, which even makes the comparison of the data captured by
the same satellite not straightforward (Zhang and Seto, 2011). Intercalibration tries to solve the lack
of on-board calibration, but no optimal calibration method is available at this time. The performance
of intercalibration is valued through the phenomenon of convergence between different satellites that
were used in the same year. Another indication of a successful intercalibration is the emergence of clear
trajectories, such as continuous growth in lighting across the time series. Thus, when convergence
happens, the intercalibration is less successful for that country or area for that year (Pandey, Zhang and
Seto, 2017). The last problem occurring in NTL data is saturation. When the sensor captures luminosity
at night, this data is later transformed into digital numbers (DN) that go from 0 to 63, to represent
this luminosity. The low memory and dynamic range causes the sensor to be unable to measure the
accurate light intensity higher than the threshold of 63, which leads to many saturated pixels with a DN
value of 63 (Imhoff, Lawrence, Stutzer and Elvidge, 1997; Small, Pozzi and Elvidge, 2005). Practically,
this means that a very brightly lit area grows in population over the years, but the data cannot capture
this change, because it already achieved the highest value of 63 in the first year of measuring.

2.2.2. Behaviour of NTL
The pitfalls of NTL and the differences in what NTL mean per country, make that every country behaves
differently. Elvidge et al. (2013) found national-level differences in the behaviour of nighttime lights,
when correlating NTL with population and GDP and identifies seven categories of national lighting
trends:

1. Rapid and Moderate Growth: describes a positive correlation with NTL and both GDP and popu-
lation.

2. Population Centric lighting: describes a positive correlation between NTL and population and a
negative correlation between NTL and GDP.

3. Economic Centric lighting: describes a positive correlation with NTL and GDP and a negative
correlation with NTL and population.

4. Stable and Erratic lighting: describes a low correlation between NTL and both GDP and population.

5. Antipole lighting: describes a negative correlation between NTL and both GDP and population.

These behaviours can be further explained by figure 2.4 below.

Figure 2.4: In this chart each quadrant gives a different correlation between NTL, population and GDP. Upper right positively
correlates with both Population and GDP. Upper left negatively correlates with population, but positively with GDP. Lower left
correlates negatively with GPD and population and lower right negatively correlateds with GDP but not with population (Elvidge

et al., 2013)
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In this study, NTL is linked to population density on a country and floodplain level. In this way, the
country-wide institutional effects found by Pinkovskiy (2017) are corrected, which allows for comparison
between countries. Furthermore, the pitfalls of NTL will be taken into account when transforming and
analyzing the data.



3
Methodology

This chapter describes the study area, the data, and how the data is applied.

3.1. Study Region Administrative Boundaries Data
This study investigates the human-floodplain dynamics in the European continent. The European
countries taken into account can be seen below in figure 3.1.

Figure 3.1: Study Area

Not every country on the European continent was included in this research. First, Luxembourg,
Cyprus and Malta are excluded, because they were deemed too small to run regressions on. Secondly,
Norway, Sweden and Finland were left out of the data, because the data does not cover the high
latitudes of these countries. In addition, four Asian and four African countries are added to the study
area. They are added to check the development of population against NTL data for countries with
different development levels than European countries and different flood risk situations, as flood coping
mechanisms tend to be related to development level.

3.2. Floodplain Delineation Data
The Global Floodplain (GFplain) dataset was used to identify the delineation of floodplains in every
country (Nardi, Annis, Di Baldassarre, Vivoni and Grimaldi, 2019). The dataset is a vector layer (raster

11



12 3. Methodology

files are also available) that represents the shape of floodplains globally. It was constructed with the
use of the Shuttle Radar Topography Mission (SRTM) Digital Terrain Model and geomorphic algorithms
that are able to identify the location of floodplains. River basins are dissected into domains of low lying
riparian corridors, separated from their surrounding landscapes. From the stream network, extracted
from the DTM, the algorithm assigns each cell with a maximum potential channel flow depth (h), while
adopting the power law equation ℎ 𝛼 𝐴 , where the contributing area (A) is a scaling parameter. The
GFplain algorithm produces a gridded floodplain layer by pointing out the low-lying cells along river
networks. The algorithm recognizes the floodplain extent as formed by those low-lying cells. They
drain to the selected channel locations, that are characterized by elevations that are lower than the
corresponding maximum channel flow level, described as H = z + h. Here, z is the channel cell elevation
obtained from the DTM expressed as absolute elevation in meters above sea level. The variation of
floodplain flow levels across spatial scales is evaluated employing the dimensionless b exponent to
produce a consistent floodplain zoning analysis (Nardi et al., 2019).

3.3. Population data
To model population on a large scale, the Gridded Population of the World, Version 4 (GPW) dataset
was used (Center for International Earth Science Information Network (CIESIN), 2016). This dataset
is constructed and maintained by the Socioeconomic Data and Applications Center (SEDAC) at the
Center for International Earth Science Information Network (CIESIN) at the Earth Institute at Colombia
University. The data is available at a resolution of 30 arcseconds, which is approximately 900 𝑚 at the
equator and was created for the years 2000, 2005, 2010, 2015 and 2020. In this study, only the years
2000, 2005 and 2010 were used. The gridded population layers consist of estimates of population
count, which are based on counts consistent with the national censuses and population registers for
the year 2010 for small political units (municipalities, census tracts). In every political unit, of which
around 12.5 million are used in this global data set, population is distributed evenly. A proportional
allocation gridding algorithm is used for assigning a value for every pixel of the dataset. Lastly, by
extrapolating the raw census estimates, the population data is derived for the years 2000, 2005, 2010,
2015, and 2020.

3.4. Nighttime Light Data
The NTL Data Set is a gridded data set that globally shows measured luminosity at night for the years
1992-2013. The data is collected by the Defense Meteorological Program (DMSP) Operational Line-Scan
System (OLS), which consists of six satellites (F10, F12, F14, F15, F16 and F18) and is maintained and
processed by NOAA. Over time the satellites/sensors age and eventually are no longer able to produce
data. The degradation is typically gradual enough that a replacement satellite can be deployed to
ensure continuity. Thus in most years, two satellites collected data, and two separate composites were
produced, as can be seen in Table 3.1.

OLS images are collected from a -65 to 65 degrees latitude at a resolution of 30 arcseconds (NOAA
Earth Observation Group, 2018). The DMSP-OLS collects global cloud imagery using visible and thermal
bands. At night the visible band signal is intensified with a photomultiplier tube (PMT) to enable the
detection of moonlit clouds. The boost in gain enables the detection of lights present at the earth‘s
surface. In the typical annual cloud-free composite most areas have twenty to a hundred cloud-free
observations, providing a temporal sampling of the locations and brightness variation of lights present at
the earth’s surface. Most of these lights are from human settlements (cities and towns) and ephemeral
fires. These fires are removed based on their high DN values and lack of persistence (=continued
presence across the years). Background noise is removed through thresholds based on values found
in areas known to be free of detectable lighting (Baugh, Elvidge, Ghosh and Ziskin, 2010). These steps
ultimately result in a readily downloadable stable lights product (NOAA NGDC, 2018). Each pixel in the
luminosity data is assigned a digital number (DN), representing its luminosity. The DN’s are integers
ranging from 0 to 63, with the relationship between DN and luminosity being (Chen and Nordhaus,
2011):

𝐿𝑢𝑚𝑖𝑛𝑜𝑠𝑖𝑡𝑦 𝛼 𝐷𝑁3/2 (3.1)
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Satellites

Year F10 F12 F14 F15 F16 F18

1992 F101992
1993 F101993
1994 F101994 F121994
1995 F121995
1996 F121996
1997 F121997 F141997
1998 F121998 F141998
1999 F121999 F141999
2000 F142000 F152000
2001 F142001 F152001
2002 F142002 F152002
2003 F142003 F152003
2004 F152004 F162004
2005 F152005 F162005
2006 F152006 F162006
2007 F152007 F162007
2008 F162008
2009 F162009
2010 F182010
2011 F182011
2012 F182012
2013 F182013

Table 3.1: DMSP/OLS Satellites and overlays in corresponding years.

3.4.1. Intercalibration of NTL
Because the OLS has no onboard calibration, the individual composites are not comparable directly
between the years, which poses a challenge for trend analyses. Therefore, before analysing the data,
an intercalibration is required. In literature, a wide array of intercalibration methods are available
(Pandey et al., 2017). In this case, the method developed by Elvidge et al. (2009) and Chen and
Nordhaus (2011) is used because it is relatively robust. It is also the most widely used method in
literature (Ceola et al., 2014; Mard et al., 2018).

This method found that F121999 had the highest digital value range and was subsequently used
as the reference data set (Elvidge et al., 2013). The island of Sicily of the country Italy has the
most favourable characteristics for yearly comparison. Sicily has an even spread of data, the total
range of digital numbers and relatively minimal changes in luminosity. These minimal changes can be
observed in figure 3.2 in which Sicily is compared to other regions in Italy with roughly the same size.
Furthermore, in terms of socio-economic activities over recent decades, Sicily had not changed much
(Li and Zhou, 2017). This framework has been extensively adopted over the world due to its easy
implementation and robust performance (Zhou, Peo, Haynie and Fan,citeyearMa 012).

Subsequently, all the other satellites were adjusted to match the F121999 data range of Sicily. The
matching of the satellite products to F121999 was done with regressions. A second-order fit, as done in
equation 3.2 is drawn on the density distribution of pixels to adjust the digital numbers. The coefficients
are empirically derived by comparing images of Sicily with F121999. The derived coefficients that were
used can be found in appendix A.

𝐷𝑁adjusted = 𝐶 + 𝐶 × 𝐷𝑁 + 𝐶 × 𝐷𝑁 (3.2)

3.5. Additional Datasets
Besides the datasets mentioned earlier, GDP, Census data, Land use data, and the Hanze dataset were
used in this thesis. GDP and population census data per country were taken from the World Bank
(2019a; 2019b). GDP data is normalized for the values of 2010.
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Figure 3.2: Sum of NTL over the years in different regions of Italy. Blue shows Sicily, Orange Veneto and Green Lombardy.

Land use data was retrieved from (ESA, 2018). This is a gridded dataset that shows land use and
land cover (LULC) on a global scale. For this research, the years 1992-2013 were used. The dataset
consists of multiple LULC categories, but for this study, the dataset was transformed into a binary grid
showing 1 for urban areas and 0 for non-urban areas.
The monetary losses caused by floods were retrieved from the HANZE dataset (Paprotny, Morales-
Nápoles and Jonkman, 2018). These monetary losses are in euros and all the years are intercompara-
ble, through converting the value of the monetary losses to the 2011 economical standard. The flood
losses per country were calculated by summing the monetary flood losses during the period 1992-2013.

3.6. Regression Model
The goal of regressing NTL with population data is to describe a population proxy to fill the gaps for
years no population data is available. In doing so, the three years of GPW data are evaluated against
the nighttime light data with the use of regression. Thus, two datasets are employed in this model;
the population dataset and the NTL dataset as described in the previous paragraphs. The GPW dataset
only contains five years (2000, 2005, 2010, 2015 and 2020), of which we use three (2000, 2005,
2010) of global coverage data. The Nighttime Light dataset has 22 consecutive years (from 1992 till
2013). The assumption behind this regression is that the correlation between NTL and population data
is very high (𝑅 is between 0.7 and 0.9, depending on the country of interest). With the information
on the relation between NTL and GPW, interpolation for the missing population years is possible. Three
different models are tested on validity through 𝑅 and RMSE. The first model uses only the relationship
between NTL and population, the second model corrects for GDP effects and the third model tries to
solve the saturation effect through differentiation between urban and non-urban areas.

3.6.1. Box cox transformations
Using the GPW and NTL datasets, a regression model was built to predict the population in a country
based on the lights emitted. The transformed population proxy (𝑦new) is modelled as a function of
nighttime light (𝑥).

𝑦new = 𝛽 + 𝛽 𝑥 + 𝜖 (3.3)

To find the values for the parameters 𝛽 and 𝜖, first, the relationship between the actual population
data and NTL data must be found for each country and each year, which is done with regression.
Some regression assumptions are that x and y are linearly related and that the errors are normally
distributed. This is unfortunately not the case for the population and NTL data, and therefore a Box-
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Cox transformation is employed of which the aim is to ensure that the usual assumptions for linear
models hold. The Box-Cox transformation (Box and Cox, 1964) was first defined for situations in which
the dependent variable y is known to be positive and for which the following transformation can be
used:

𝑦 = {
( ) , if 𝜆 ≠ 0
𝑙𝑜𝑔(𝑦 ), if 𝜆 = 0

(3.4)

such that for unknown 𝜆,

𝑦 = 𝑋𝛽 + 𝜖 (3.5)

Where 𝑦 is the 𝜆 transformed response variable, 𝜆 a transformation parameter, x is the matrix
of explanatory variables, 𝛽 is a vector of unknown regression coefficients and 𝜖 is the error term for
which 𝑁(0, 𝜎 ) applies. To simultaneously estimate 𝛽, 𝜎 and 𝜆, maximum likelihood estimation is used
(Carroll and Ruppert, 1985).

3.6.2. Model Steps
In the model, first the parameters 𝛽 and 𝜆 are evaluated through an inverse Box-Cox transformation
with formula 3.6. With that information, the NTL data is plotted against the original population data
(𝑦) as can be seen in figure 3.3. Subsequently, a relationship between NTL and Population is found.
Thereafter, the Box-Cox transformation 3.7, to make the residuals normal is applied, is carried out.

𝑦 = (((𝛽 + 𝛽 𝑥)𝜆) + 1) (3.6)

Figure 3.3: Scatterplot which shows the original population data on the y-axis and the NTL data on the x-axis. In red it shows
the fit of the transformed data.

𝑦 = (𝑦 − 1)
𝜆

𝑥 = 𝛽 + 𝛽 𝑥
𝑟 = 𝑦 − 𝑥

(3.7)

Where 𝑦 and 𝑥 are the transformed variables and r the residuals. Furthermore, 𝜎 and 𝜇 are
found by fitting a histogram with normal distribution on the residuals. With the 𝜆, 𝛽 , 𝛽 and 𝜎 known,
the transformation from nighttime light into a population proxy can be made. This population proxy
is made by estimating a transformed value for every value of DN of the nighttime light data for every
country with formula 3.11.
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𝑦new = {
(((𝛽 + 𝛽 𝑥 + 𝜖)𝜆) + 1) , if 𝜆 > 1𝐸 − 4
exp(𝛽 + 𝛽 𝑥 + 𝜖), if 0 < 𝜆 < 1𝐸 − 4

(3.8)

The model and the outcomes of using only the model described above is called model 1 from now
on.

3.6.3. Model Expansion
Next to the steps explained in the previous paragraph, steps were added to the model to make it more
robust.

Population constraints
First, a population count constraint was added. This means that for every country and for every year
of data, a line of info on the inserted. The model is calibrated such that the average over the three
years is within +/-10 percent of the observed population count.

GDP subtraction
Next to population, NTL also has large correlations with GDP. Therefore, the effect of GDP was added
to the model. To model population density of a country without the influence of GDP, a relationship
between the NTL and GDP per capita in a country was investigated. First, the relation between NTL
(x) and GDP per capita (z) was investigated for every country through regression.

𝑙𝑜𝑔(𝑥) = 𝑏1 ∗ 𝑙𝑜𝑔(𝑧) + 𝑏2 (3.9)

Subsequently, GDP was transformed into an NTL-proxy. The proxy was then subtracted from the
raw NTL, creating a new NTL value (NTL-new) with the following formula:

𝑥new = 𝑥 − 𝑒𝑥𝑝(𝑏2) ∗ 𝑧 (3.10)

Thereafter, new 𝑥new was regressed with y (population), with the same steps as in the previous
model explained in paragraph 3.5. The model version using the GDP subtraction is from now on called
model 2.

Land Use Valuation
When trying to describe Population through NTL, the shortcomings of NTL need to be acknowledged.
One of these shortcomings is that the data is constrained on top, which is called saturation. Saturation
means in this case that the data does not go beyond the value of DN = 63. This means that cities are
often valued as 63, but have way more population than other areas valued 63. Therefore a valuing
system was created for urban and non-urban areas and land use data (w) was added to the model.
First, a pixel was flagged as either 0 (non-urban) or 1 (urban). Then a new population value was
created through the valuation of these pixels.

𝑦new = {
(𝑦 + 1/𝑦), if 𝑤 = 0
(𝑦), if 𝑤 = 1 (3.11)

3.7. Population density through Haversine
With the population proxy, we can identify the floodplain and countrywide population density (PD) for
multiple years. This is done by taking the sum of the population proxy (POPP) and dividing it by the
area (A).

𝑃𝐷 =∑𝑃𝑂𝑃𝑃/𝐴 (3.12)

The floodplain area is calculated with the use of the Haversine method. It is applied in this study to
accurately calculate the size of a pixel in 𝑘𝑚 (Ivis, 2006). This is necessary because the size of a
raster pixel used in this study is approximately 900 𝑚 at the equator and differs with latitude. The
correction assures an accurate calculation of population density.
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Results

In this chapter, the results of the NTL-model are shown, the behaviour of NTL is investigated, and
growth rates of the population proxy are compared. Lastly, the growth rates are compared to monetary
losses caused by flood events.

4.1. Nighttime Light Behaviour
Before converting NTL data into a population proxy for the years no population raster data is available,
it is important to understand the behaviour of NTL. In doing so, the model output can be interpreted
correctly. First, the average NTL is compared with population density in the floodplain for the year
2010 to see if there is a strong correlation between both datasets. This relationship is shown in figure
4.1.

Figure 4.1: Relationship between average NTL and population density in the floodplain for the year 2010. The red dots are
Eastern European countries, the blue dots are Western European countries, the green dots are Asian countries and the yellow

dots are African countries.

The results in Figure 4.1 show that for most countries, high NTL coincides with high population
density. Likewise, low NTL corresponds with low population density. The correlation between NTL and
population density is 𝑅 = 0.900 when only taking European countries into account. When taking the

17
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African and Asian countries into account, the correlation drops to 𝑅 = 0.227. Only taking Asian and
African countries into account, 𝑅 = 0.589. Bangladesh, Egypt, and Vietnam are not depicted in Figure
4.1, as they have a population density in the floodplain exceeding 500 𝑝𝑒𝑜𝑝𝑙𝑒/𝑘𝑚 and that would
make the figure less readable. The figure with these countries included can be found in Appendix
B. The results show that Eastern European countries (depicted in red) tend to have lower population
density and lower NTL values in the floodplain than Western countries (depicted in blue). The African
and Asian countries tend to have a lower NTL values when relating it to floodplain population den-
sity. Egypt, Vietnam, and Bangladesh have a very high population density, but the average NTL in the
floodplain in these countries does not reflect that.

To acquire an understanding of patterns of change in both the NTL and population dataset, the rela-
tionship between NTL growth and population density growth is illustrated in figure 4.2.

Figure 4.2: Average NTL growth plotted against population density growth in the floodplain for the years 2000 - 2010. In blue,
Western European countries are pictured, in red, Eastern European countries, and the Asian countries in green. African

countries are pictured in yellow. The horizontal axis shows the average NTL growth in percent change and the vertical axis
shows the population density growth in percent change.

The results in figure 4.2 show a less linear pattern than the results in figure 4.1. The 𝑅 = -0.341
when looking at European countries only. The average NTL seems to grow for all of the countries,
except for Hungary, Bangladesh, Great Britain, and Slovakia. The results show an overall pattern
of Western European countries experiencing growth in floodplain population density. They have an
average NTL growth between -0.02 and 0.31 percent. Eastern/Central European countries mostly ex-
perience decline in population density. The change in NTL is more scattered in Eastern Europe. Lastly,
the Asian and African countries experience large amounts of population density growth in the flood-
plain. Except for Malawi and Bangladesh, the African and Asian countries also have a large growth in
average NTL. Mozambique is not pictured in this graph, as the average NTL growth in the floodplain
exceeds 175 percent. The figure showing the numbers of Mozambique as well, can be found in ap-
pendix B.

The correlations of GDP and population for whole countries and in the floodplain are shown in fig-
ures 4.3 and 4.4. Figure 4.3 shows the correlation coefficient of NTL with GDP per capita and with
population for whole countries. Interestingly, the results cluster in each of the four quadrants. Ac-
cording to the light behaviours discussed by Elvidge et al. (2013) the results can be grouped together
and they divide themselves between two axes. The groups are GDP centric in the top left of figure
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Figure 4.3: Correlations of NTL with population and GDP per country. In blue, Western European countries are depicted. In
red, Eastern European countries are depicted and the Asian countries are depicted in green.

Figure 4.4: Correlations between NTL, population and GDP per country in the floodplain. In blue, Western European countries
are pictured. In red, Eastern European countries, the Asian countries in green and the African in yellow.

4.3, rapid/moderate growth in the top right, antipole in the bottom left and stable/erratic or population
centric in the bottom right. Figure 4.3 shows a trend as well for Western and European countries,
where the Western and Asian countries follow the axis going from (-1, -1) till (1,1) and Eastern Euro-
pean countries follow the opposite axis. The only exception here is Slovakia. The African and Asian
countries mostly categorize in the top right corner, showing rapid/moderate growth behaviour. The
exception here is Bangladesh.
The results of figure 4.4 are less clustered than the results in figure 4.3. Overall, the countries remain
in the same category, with the exception of a few, which will be explained in the discussion.
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Figure 4.5: Histograms showing the digital number distribution of raw NTL data in Albania and Austria for the year 2000

Focusing on one Eastern (Albania) and one Western European (Austria) country, the results in
figure 4.5 show the distribution of raw NTL data across the floodplain. The results also show that the
distribution of NTL is different for Eastern and Western European countries. The light is concentrated
in low DN values for Eastern countries, and the DN values are more spread for Western European
countries.

4.2. Regression Model Performance
A regression model is set up to interpolate NTL data into a population proxy, filling up the gaps for the
years population raster data is not available. The regression model performance is validated against
the 𝑅 and root mean square error (RMSE) statistical metrics. The validation results are shown in
table 4.1 for three types of model runs. Model 1 refers to the model that interpolates NTL directly
to the population proxy. Model 2 refers to the model that first subtracts GDP from NTL and than
interpolates the data into the population proxy. Model 3 refers to the model that accounts for differences
in population between urban and non-urban areas.

M1 Country M1 Floodplain M2 Country M2 Floodplain M3 Country M3 Floodplain

Countries R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Albania 0.73 3.99 0.69 24.34 0.73 4.56 0.69 27.67 0.73 4.35 0.69 23.54
Austria 0.76 2.02 0.80 1.05 0.76 0.95 0.80 1.36 0.76 0.86 0.80 0.87
Belarus 0.71 2.30 0.62 1.11 0.71 0.92 0.63 0.94 0.71 0.72 0.63 0.90
Belgium 0.57 0.95 0.66 2.76 0.58 1.57 0.67 0.53 0.58 1.00 0.66 0.65
Bulgaria 0.52 5.46 0.58 30.81 0.52 3.19 0.58 32.31 0.52 3.26 0.58 31.26
Croatia 0.60 1.75 0.73 2.32 0.60 1.47 0.73 0.86 0.60 1.65 0.73 0.90
Czech Republic 0.78 2.17 0.81 2.34 0.78 0.94 0.81 0.81 0.78 1.04 0.81 0.83
Denmark 0.65 0.95 0.66 2.75 0.65 1.48 0.68 2.88 0.65 0.88 0.68 1.87
Estonia 0.68 1.34 0.76 1.87 0.68 1.34 0.76 2.09 0.68 1.50 0.76 2.45
France 0.61 0.89 0.61 1.97 0.62 2.96 0.61 2.84 0.62 2.01 0.61 1.88
Germany 0.78 0.77 0.80 1.23 0.78 0.78 0.80 0.81 0.78 0.83 0.80 0.85
Greece 0.64 1.13 0.70 2.77 0.66 2.83 0.70 0.98 0.66 1.98 0.70 1.10
Hungary 0.67 2.59 0.70 0.80 0.67 0.87 0.74 3.56 0.67 0.75 0.74 2.89
Ireland 0.70 0.78 0.75 0.92 0.70 1.29 0.75 1.80 0.70 0.80 0.75 1.07
Italy 0.50 2.18 0.48 2.06 0.51 2.32 0.48 2.15 0.51 2.21 0.48 2.06
Latvia 0.79 1.19 0.80 1.89 0.79 0.84 0.80 1.10 0.79 0.90 0.80 1.39
Lithuania 0.60 2.37 0.72 2.36 0.61 1.83 0.72 0.92 0.61 1.66 0.72 0.89
Moldova 0.55 9.42 0.56 9.92 0.62 22.67 0.56 12.62 0.62 20.74 0.56 12.48
The Netherlands 0.73 2.61 0.67 3.41 0.72 0.99 0.67 0.84 0.72 0.76 0.67 0.69
Poland 0.70 2.71 0.68 1.17 0.71 0.70 0.68 0.82 0.71 0.69 0.68 0.79
Portugal 0.44 223.68 0.48 2.46 0.57 2.34 0.48 2.91 0.57 2.33 0.48 3.19
Romania 0.70 1.19 0.68 2.89 0.70 0.90 0.68 1.35 0.70 0.96 0.68 1.48
Serbia 0.66 10.58 0.68 2.33 0.70 1.18 0.68 0.84 0.70 1.33 0.68 0.89
Slovakia 0.66 3.12 0.70 0.83 0.66 0.86 0.70 0.84 0.66 0.95 0.70 0.69
Slovenia 0.76 14.93 0.85 3.68 0.79 2.70 0.85 2.74 0.79 2.65 0.85 2.63
Spain 0.56 2.27 0.60 1.37 0.59 2.69 0.61 2.46 0.59 1.93 0.61 1.84
Switzerland 0.58 7766.71 0.68 1.73 0.74 1.36 0.69 2.67 0.73 1.07 0.66 1.72
United Kingdom 0.68 1.78 0.65 1.51 0.69 2.10 0.65 1.90 0.69 1.57 0.65 1.51
Ukraine 0.64 15.67 0.68 9.38 0.64 6.14 0.68 9.18 0.64 5.65 0.68 8.72

Table 4.1: The value of and RMSE for every model used in this study.
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The results in table 4.1 show that the third model, which incorporates a difference in population
between urban and non-urban areas, has a better fit and transformation of the NTL data into the
population proxy than the first and second model. These fits can be compared with the way the
population density is modelled and how this relates to modelled population values. As can be seen in
figure 4.8 on page 22, model 3 also gives a modelled population density for Austria that is closest to
the actual population density according to the population data.

Figure 4.6: Modelled population Density results for Austria from Model 1

Figure 4.7: Modelled population Density results for Austria from Model 2

Furthermore, the 95 percent interval was examined. In picture 4.9, the example of Austria, you
can see that the confidence interval has large bounds. This means that the standard deviation is very
high and has a high spread. This is due to the use of a trend amongst a high range of values. This
can be observed in 3.3. Because the readability of the figures decreases when the confidence interval
is added, the confidence interval will not be plotted hereafter.
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Figure 4.8: Modelled population Density results for Austria from Model 3

Figure 4.9: The population density proxy modelled with the 95 percent confidence interval.

The model performance is further validated by comparing the absolute differences between the
predicted population proxy and the GPW population data. The absolute difference for all countries is
below 8 percent and for most countries below 5 percent, as shown in figure 4.10. The difference is
smaller when the model transformed the values of entire countries, compared to transforming only in
the floodplains. In addition to the correlations, RMSE and the absolute difference between predicted
and real value, the Lambda transformation parameter predicts characteristics of light behaviour in
countries. The Lambda value determines the division of lights. Eastern European countries tend to
have values closer to 1 and Western European countries closer to zero. This can also be seen from the
distribution of NTL in the previous paragraph. A value close to 1 corresponds to the distribution found
in Eastern European countries earlier, where there are a lots of low NTL values and only a few high
NTL values. In Western European countries the value is closer to zero and this means that there are
a lot of bright lit pixels, but also an abundance of dim lit pixels. The lambda numbers can be found in
appendix C.
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Figure 4.10: Absolute difference between the modelled population through NTL and census data for 1993-2013 (Top) and the
absolute difference between NTL and GPW data for the floodplain for 2000-2010 (Bottom)

Figure 4.11: Lambda values for the floodplain, obtained by model 3.
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4.3. Capturing the population proxy
In this section the spatial and temporal patterns of the population proxy are investigated. For this
investigation the results are based on the results of model 3 that accounts for the valuation of urban
areas.

4.3.1. Spatial differences in population proxy
The census change rates of figure 4.12 show a division between Western, Central and Eastern European
countries. Western European countries tend to grow in population and Eastern European countries
either grow moderately in population or have declining populations.

Figure 4.12: Population density change rate per country, based on census results for the years 1992-2013

However, the results of the change rate of the population proxy, shown in figure 4.13 contain
different divisions. A clear pattern cannot be observed, the countries that show decline (or very little
growth) in transformed population are clustered in either the lower left corner of figure 4.3 which shows
antipole behaviour of lights, or in the middle-right area, which shows population centric behaviour of
lights. The same can be said of the change rates for the floodplain, shown in figure 4.14. Also, the
percentages of population proxy change rate are higher than census change rate. This corresponds
with the findings of 4.2
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Figure 4.13: Population proxy density change rate per country for the years 1992-2013

Figure 4.14: Population proxy density change rate per country modelled for the floodplain for the years 1992-2013
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4.3.2. Temporal behavior of the population proxy
The growth dynamics of population do not seem to coincide with the lights or the transformed popu-
lation everywhere, which can be explained by the large confidence interval bounds, even though 𝑅
showed promising results. However it does seem to coincide with light behaviour divisions, which relate
the lights to GDP and population. Therefore, the yearly sum of transformed population of countries
and their floodplains are modelled individually.

Rapid/Moderate Lighting growth
One of the countries categorized under Rapid/Moderate growth of light is Indonesia. As you can see
in figure 4.15, the growth of the proxy is rapid as well. The results show that the growth of the
population proxy contains the same development as the actual population. However, the population
proxy underestimates the actual density of people per 𝑘𝑚 living in Indonesia.

Figure 4.15: Development of the Population Proxy for the years 1992-2013 for Indonesia, compared with census data and GPW
data

Figure 4.16: Development of the Population Proxy for the years 1992-2013 for the floodplain of Indonesia, compared with GPW
data



4.3. Capturing the population proxy 27

Figure 4.16 shows the development of the population proxy in the floodplain. It was established in
the last figure that the modelled population density follows the same trajectory as the actual population
density. Furthermore, figure 4.16 shows that the modelled population density is close to the population
density given by the population data. Another country categorized under rapid/moderate growth is
Austria. The results indicate a growth in population. The population density modelled by the proxy
for the whole country is underestimated, similar as for Indonesia. Also similar is that the floodplain
population density is modelled more accurately than for the whole country.

Figure 4.17: Development of the Population Proxy for the years 1992-2013 for Austria, compared with census data and GPW
data

Figure 4.18: Development of the Population Proxy for the years 1992-2013 for the floodplain of Austria, compared with GPW
data
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Stable/Erratic Lighting growth
Bangladesh is categorized under stable growth. The results in figure 4.19 show that the dynamics of
the population proxy and the actual density are counter intuitive. The transformed population density
seems to be stable and not growing, but in reality, the population density in Bangladesh is growing at
a rapid rate. The same is happening in the floodplain.

Figure 4.19: Development of the Population Proxy for the years 1992-2013 for Bangladesh, compared with census data and
GPW data

Figure 4.20: Development of the Population Proxy for the years 1992-2013 for the floodplain of Bangladesh, compared with
GPW data
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Germany is another example of stable light behaviour and the data shows that the trajectory fol-
lowed by the population proxy is stable. The actual population is stable, but not declining. Furthermore,
the population proxy is underestimated when viewing the census and GPW data, both for the whole
country and for the floodplain

Figure 4.21: Development of the Population Proxy for the years 1992-2013 for Germany, compared with census data and GPW
data

Figure 4.22: Development of the Population Proxy for the years 1992-2013 for the floodplain of Germany, compared with GPW
data
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Antipole Lighting behaviour
An example of antipole lighting behaviour is Great Britain. The Nighttime Lights decrease both in the
floodplain and in the whole country, though the census data shows a growing trend.

Figure 4.23: Development of the Population Proxy for the years 1992-2013 for Great Britain, compared with census data and
GPW data

Figure 4.24: Development of the Population Proxy for the years 1992-2013 for the floodplain of Great Britain, compared with
GPW data
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Population centric
An example of population centric lighting is Ukraine. This means that the correlation with population
is positive and the correlation with GDP is negative. The population proxy also shows this, as both the
census data and the transformed data show a declining trend. The transformed population proxy has
a steeper declining trend than the census data, but other than that the population density seems to be
captured quite good.

Figure 4.25: Development of the Population Proxy for the years 1992-2013 for Bangladesh, compared with census data and
GPW data

Figure 4.26: Development of the Population Proxy for the years 1992-2013 for the floodplain of Bangladesh, compared with
GPW data
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GDP centric
Albania is a country with GDP centric lighting behaviour. A lot of countries in Eastern Europe show this
behaviour, as it shows that the GDP is increasing, but population is declining. This behaviour can also
be seen in the transformed population, which is increasing steeply, though the census shows decline.
The value of the population density in the floodplain is captured quite well for the year 2005, even
though the lights primarily describe GDP in Albania.

Figure 4.27: Development of the Population Proxy for the years 1992-2013 for Bangladesh, compared with census data and
GPW data

Figure 4.28: Development of the Population Proxy for the years 1992-2013 for the floodplain of Bangladesh, compared with
GPW data
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4.4. Linking NTL change to floods
The coping patterns defined in the introduction are technological societies and green societies and
can be distinguished through, amongst others, growth or decline in population density in areas that
have been hit by river floods (which are located in floodplains). To see if there are coping patterns
recognizable in areas of big historical disasters, the spatial extents of these disasters were clipped with
the population proxy files. Because the chance of success in modelling the population behaviour of
countries is the highest for countries with a high correlation with GDP and population, countries in the
category of rapid or moderate lighting growth have been selected: Austria, Italy and Mozambique.
The disasters were selected through the historical flood database of the Dartmouth Flood Observatory.
For Austria the 2002 European flood was chosen, as it was the most costly flood event in the period
1992-2013. Furthermore, the flood event of Italy in the Lombardia region for 2000 was chosen as it
also made the top 10 of costliest flood events (Choryński, Pińskwar, Kron, Brakenridge and Kundzewicz,
2012). For Mozambique a flood of 2000 was chosen, as this was the most damaging flood in the years
between 1992-2013. The expectation is that Austria and Italy are technological societies and that
Mozambique is a green society.

Figure 4.29: Proxy Population Density modelled for Mozambique for the disaster area of the flood of 2000

Change rate Change rate before flood Change rate after flood

Italy 2000 flood 3.474 3.919 3.200
Austria 2002 flood 4.689 7.310 2.306
Mozambique 2000 flood 0.378 0.045 0.583

Table 4.2: Change rate of population proxy growth for three different area’s in Mozambique

The figures show that in all three cases, the populations keeps growing, before and after the flood
events and no drop in NTL is visible. Also the datapoints are fluctuating too much to know if a drop
in NTL is caused by an error in the satellite capturing luminosity or due to a disaster. The change
rates before and after the flood show different behaviour than was expected beforehand. The results
show that the NTL grows in Mozambique and that a resettling effect that sometimes manifests in green
societies, cannot be seen. Italy and Austria can also not be identified as technological societies, as
their change rate declines.
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Figure 4.30: Proxy Population Density modelled for Italy for the disaster area of the flood of 2000

Figure 4.31: Proxy Population Density modelled for Austria for the disaster area of the flood of 2002

4.4.1. Relating Monetary Loss to NTL
The hypothesis is that green societies have a decreasing population density and that technological
societies an increasing population density, but this assumption might be too harsh. Therefore it was
tested if countries with large monetary losses develop differently from countries with smaller monetary
losses. This was also researched by Ceola et al. (2014), but did not take change into account.

The figures show that the initial assumptions found in Ceola et al. (2014) are right, as countries with
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Figure 4.32: Flood related monetary losses per km2 for the year 1992-2013 correlated with the average floodplain density for
several European countries.

Figure 4.33: Flood related monetary losses per km2 for the year 1992-2013 correlated with the change rate in floodplain
population density for several European countries.

high NTL in the floodplain experience larger flood losses. This is different from looking at change rates
of population density. The correlation is too low to find a relation between change rate and monetary
losses, which indicates that every country has different ways of coping with floods.





5
Discussion

In this chapter, the results of the population density quantification with NTL data and the behaviour of
NTL data in different countries are discussed.

5.1. Quantifying Population Density with NTL
Although the preliminary validation of the regression models showed promising results, NTL has to be
used with caution due to multiple reasons. Firstly, the confidence intervals of the regression results
are very high due to the use of a trend amongst a high range of values. This can be observed in 3.3.
Furthermore, it is difficult to verify the floodplain population density results against real data, because
only three points of gridded population data are available for the floodplain. The countrywide data
is checked against census numbers from the worldbank. Also, the relationship between average NTL
and population density in the floodplain is not constant. Here, the model picked a relation based on
the interpolation of three years, but this relation may have changed substantially between 1992 and
2013. Next to the lack of verification data, the pitfalls of NTL data cause urgency to use the data with
enough precaution. Why it is difficult to compare NTL change over the years (and thus population
proxy change) is mainly due to blooming, saturation, and the satellites not being on-board calibrated.
Blooming and saturation can be counteracted, but there is no proper solution for the lack of on-board
calibration. A diminished saturation effect can be observed in the validation results of the third model,
which shows better behaviour and a better fit of population density when light emittance is related to
a higher population density in urban areas than in rural areas. Next to problems that lie within the
NTL dataset, the relationship between population and NTL in a country is of interest. When modelling
a population proxy with the use of NTL it seems that a one on one relationship between NTL and
population is applied, but this is not the case. Nighttime Lights are more than just population, as there
is also a high correlation with GDP. Areas like highways, recreational parks, sports fields, and airports
light up, even though no people are living there.

5.1.1. Behaviour of lights in different countries
The behavioral categories defined by Elvidge et al. (2013) show that the influence of GDP and popu-
lation is not evenly spread in every country. While the rapid, moderate and population centric lighting
categories show results that follow the same trajectory as the population data and might be good fits
for measuring population density in the floodplain, the other categories have completely different tra-
jectories than their population counterpart and give unreliable results. Hereafter, it is explained why
this lighting behaviour is occuring in countries. Antipole lighting behaviour is defined as a country of
which the NTL negatively correlates with both GDP and population. Countries that have antipole light-
ing behaviour are Great Britain, the Netherlands, Belgium and Slovakia. Antipole lighting can easily be
explained through changes in lighting policies. These countries all have made improvements to their
lighting efficiency to either be less polluting for the environment or save money. For example, The
Netherlands have made a switch to LED light which emits less luminance than regular light. Therefore,
the Netherlands experience a decline in NTL. On the other hand, in Slovakia they have shut of lights
at night to save money. GDP centric lighting behaviour is defined as a positive correlation with GDP
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and a negative correlation with population. Many Eastern European countries are part of this category.
This is because these countries experience a growth in GDP, but experience a population decline. The
ten worlds fastest shrinking populations are all in Eastern Europe, and some of these ten countries
fall under the GDP centric lighting behaviour: Bulgaria, Latvia, Croatia, Romania, Serbia, Hungary and
Poland. Ukraine and Moldova are part of these ten countries, but their lighting behaviour is explained
by Population centric behaviour. This doesn’t mean the opposite of GDP centric behaviour though.
This behaviour is explained by a growing GDP and a decline in NTL. This is due to governments being
unable to provide enough electricity. The last category is erratic and stable lighting. Erratic behaviour
occurs in some countries, and the main assumption behind this is that the erratic behaviour is due
to noise within the NTL dataset. When countries experience stable lighting, they actually just lack
strong correlations between GDP and NTL data. Next to nighttime lights containing information on
GDP and population, the electrification of a country has to be taken into account. For example, in
Myanmar there is no universal access to electricity. So not all population will be visible in the data that
is used to identify population behavior in Myanmar. Furthermore, when population density declines in
an urbanized area, the lighting does not always decrease. Thus, NTL should be used with caution. For
example, Ceola et al. (2014) shows the growth rates of NTL near river networks. However, a country
like Bangladesh is overlooked here as a danger zone for floodplain development as the lights are not
growing as fast as the population is. The categories derived by Elvidge et al. (2013) give insight in
which countries the population density can be predicted relatively accurate and for which for which
countries making a fit based on population density does not create reliable results.

5.2. Relating NTL to floods
The work done by Mard et al. (2018) seemed promising to be able to tell apart different flood coping
mechanisms of different countries, but the question is if NTL is the right dataset to research this. At first
it was hypothesized that drops in NTL in the floodplain of a certain country could have been the effect
of devastating flood events. However drops and rises in NTL cannot be explained that easily. First, the
erratic behaviour (due to the satellites capturing NTL not being on-board calibrated) can cause drops.
Furthermore, there can be more than one reason for a drop in NTL, as NTL is not only the result of
GDP and population. There are probably a multitude of explanations. In general, the human behaviour
in floodplains is a result of socio-economic and hydro-climatic variables and these occur over longer
timescales and not instantaneously, which would make the timescale of NTL too short to see shifts in
behaviour. Thus, instantaneous drops cannot be observed by NTL, but change rates over the timescale
of NTL (1992-2013) might give more insight. Therefore, the monetary losses of the floodplains were
modelled against the change rate of the population proxy. A relation between the proxy of average
population density in the floodplain was found, which was also found by Ceola et al. (2014). A higher
population density in the floodplain also means a higher flood exposure and probably more assets in
the floodplain. When a flood occurs, a flood is more damaging in countries with high floodplain density
than in countries with low population density. The relationship between monetary loss and change
rate is therefore less evident. This could be due to every country having a different way of coping
with floods. Also, the change rate of some countries do not change a lot for example, because the
floodplain is already very densely populated, or because the electrification is growing very rapidly.

In addition, the change rate of some countries does not change a lot because the floodplain is
already very dense and it changes a lot in some countries because the electrification rate is very high.
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Conclusion and Recommendations

6.1. Conclusion
The objective of this research was to understand, interpret and quantify the spatial and temporal evolu-
tion of Nighttime Light, linking it to human development in the floodplain. This was done by modelling
a population proxy based on the relation between NTL and population data in the floodplain. In this
way, the behaviour of humans in floodplains could be monitored, while also accounting for institutional
effects in the NTL dataset, allowing comparison of results between countries.

The research question of this thesis is: ”Can Nighttime Light be used to accurately quantify and
monitor changes in population density in floodplains and therefore be used to identify flood coping
mechanisms?” The first part of this question investigates if NTL is a good enough proxy of popula-
tion density. Although validation of the model, in terms of 𝑅 and RMSE seemed promising, there
is not enough data available on population in the floodplain to know for certain that the data over
the longer timescale is accurate. Furthermore, the behaviour of NTL differs in every country, thus it
probably cannot be described with one regression relation alone. The categories derived by Elvidge et
al. (2013) give insight in which countries the population density can be predicted relatively accurate
(which are countries whose growth in population and GDP change in the same ratio as NTL) and for
which countries a fit based on population density will be less accurate. The latter countries cannot be
modelled well due to the lighting not being affected by GDP and Population in the same ratio. This is
due to a decline in population growth not being noticeable in declining light, thus having a NTL growth
that is dominated by GDP growth. Furthermore, important factors are the governments not being able
to provide enough lighting or due to regulations in lighting efficiency for environmental reasons. Sec-
ondly, the NTL in itself poses limitations. The inner noise of NTL itself is high due to satellites capturing
NTL not being on-board calibrated, resulting in satellite images that are hard to compare. The inter-
calibration looks promising as well, but an optimal calibration is not achieved yet (and can probably
not be achieved). This results in convergence in satellite images. All together, there is a multitude of
explanations for the behaviour of light and it is therefore hard to accurately predict population through
this proxy.

The second part of the research question investigates whether the population proxy constructed with
the use of NTL can be used to identify flood coping mechanisms. Although, the population proxy has
its limitations right now, future datasets are promising in being able to capture the population proxy
in a more reliable way. For now, the NTL population proxy is too noisy in capturing human reaction
to events. In addition, drops and growth in NTL cannot be explained by single events and can be ex-
plained by a multitude of reasons. Furthermore, the time scale of the NTL data is too short to measure
flood coping mechanisms because they are not a result of a single event, but of multiple events over
multiple years and are influenced by culture and institutions. Instead of looking at single events, the
change rate was captured. Here correlations with flood losses are low, thus a relationship between
change rate and flood losses is lacking.
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6.2. Recommendations
Some datasets can be improved with the use of NTL data, as it has a good distribution of socio-
economic variables in a country. Understanding behaviour of light is valuable, because it has the
potential to map Socio-Economic variables in data-scarce areas. Especially with the new NTL dataset
of Visible Infrared Imaging Radiometer Suite (VIIRS), which is a component of the Suomi National Polar-
orbiting Partnership (NPP) (Zhao et al., 2019). This NTL dataset improves the capturing of luminosity
compared to DMSP-OLS and has on-board calibration. Understanding how light behaves can improve
socio-economic variable modelling in the future. Therefore it is important to have understanding about
the meaning of light in different countries. The first recommendation is to refrain from NTL data when
researching historical flood coping mechanisms. As the DMSP/OLS NTL data can not accurately compare
countries on a large temporal and spatial scale. The second recommendation is that modelling the
population density through the use of NTL can be done, but not the most accurate with the DMSP/OLS.
One of the main setbacks of NTL data is the noise that is present in NTL data due to the lack of on-
board calibration. Fortunately, a new dataset is released from 2012 onwards. This is the VIIRS dataset
and it has on-board calibration, thus solving a lot of problems experienced with the DMSP-OLS dataset.
VIIRS is not useful for the time period of 1992 - 2011, but very useful for future research. Which is
why understanding the behaviour of light is important, so in the future socio-economic variables can
be modelled more accurately for data scarce areas. The VIIRS dataset also has a higher resolution
and has monthly datasets, which will also capture change in population better, and give even more
possibilities for using NTL. For example, capturing the behaviour of people after a single flood event
could be more successful, as the changes before and after an event can be monitored one month apart.
Furthermore, regional economic development could be modelled for regions in data scarce areas. The
country-based regression proved to be able to give a relationship based on institutional effects, but
modelling regional effect might also be interesting. Lastly, the migration of population due to climate
change, conflicts and economic development could be researched with the use of VIIRS.



A
Intercalibration Coefficients

The graph shows the coefficients found for the intercalibration using equation A.1 using the images of
Sicily F121999 for intercalibration.

𝐷𝑁adjusted = 𝐶 + 𝐶 × 𝐷𝑁 + 𝐶 × 𝐷𝑁 (A.1)

Satellite Year C0 C1 C2 R2 Number

F10 1992 -2.0570 1.5903 -0.0090 0.9075 35720
F10 1993 -1.0582 1.5983 -0.0093 0.9360 38893
F10 1994 -0.3458 1.4864 -0.0079 0.9243 36494
F12 1994 -0.6890 1.1770 -0.0025 0.9071 34485
F12 1995 -0.0515 1.2293 -0.0038 0.9178 37571
F12 1996 -0.0959 1.2727 -0.0040 0.9319 35762
F12 1997 -0.3321 1.1782 -0.0026 0.9245 37413
F12 1998 -0.0608 1.0648 -0.0013 0.9536 37791
F12 1999 0.0000 1.0000 0.0000 1.0000 39157
F14 1997 -1.1323 1.7696 -0.0122 0.9101 36811
F14 1998 -0.1917 1.6321 -0.0101 0.9723 36701
F14 1999 -0.1557 1.5055 -0.0078 0.9717 38894
F14 2000 1.0988 1.3155 -0.0053 0.9278 37888
F14 2001 0.1943 1.3219 -0.0051 0.9448 38558
F14 2002 1.0517 1.1905 -0.0036 0.9203 36964
F14 2003 0.7390 1.2416 -0.0040 0.9432 38701
F15 2000 0.1254 1.0452 -0.0010 0.9320 38831
F15 2001 -0.7024 1.1081 -0.0012 0.9593 38632
F15 2002 0.0491 0.9568 0.0010 0.9658 38035
F15 2003 0.2217 1.5122 -0.0080 0.9314 38788
F15 2004 0.5751 1.3335 -0.0051 0.9479 36998
F15 2005 0.6367 1.2838 -0.0041 0.9335 38903
F15 2006 0.8261 1.2790 -0.0041 0.9387 38684
F15 2007 1.3606 1.2974 -0.0045 0.9013 37036
F16 2004 0.2853 1.1955 -0.0034 0.9039 36856
F16 2005 -0.0001 1.4159 -0.0063 0.9390 38984
F16 2006 0.1065 1.1371 -0.0016 0.9199 37204
F16 2007 0.6394 0.9114 0.0014 0.9511 37759
F16 2008 0.5564 0.9931 0.0000 0.9450 37469
F16 2009 0.9492 1.0683 -0.0016 0.8918 33895
F18 2010 2.3430 0.5102 0.0065 0.8462 36445
F18 2011 1.8956 0.7345 0.0030 0.9095 36432
F18 2012 1.8750 0.6203 0.0052 0.9392 37576

Table A.1: Calibration Coefficients Elvidge et al. 2013
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B
Relationship GPW and NTL

Relationship GPW and NTL with Bangladesh, Egypt and Vietnam added.

Figure B.1: Relationship between average ntl and population density in the floodplain for the year 2010
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Figure B.2: Relationship between average ntl and population density in the floodplain for the year 2010



C
Lamda Table

Countries Lambda

Albania 0.67822
Austria 0.00001
Belarus 0.06728
Belgium 0.00006
Bulgaria 0.70678
Croatia 0.00018
Czech Republic 0.00007
Denmark 0.00013
Estonia 0.01723
France 0.00009
Germany 0.00022
Greece 0.00010
Hungary 0.00018
Ireland 0.00004
Italy 0.00018
Latvia 0.08855
Lithuania 0.05651
Moldova 0.61222
The Netherlands 0.00024
Poland 0.00029
Portugal 0.00007
Romania 0.00021
Serbia 0.00015
Slovakia 0.00008
Slovenia 0.25963
Spain 0.00020
Switzerland 0.00005
Great Britain 0.00008
Ukraine 0.50689

Table C.1
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