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Preface

This thesis consists of an introduction and five chapters.

• Chapter 2 is an adaptation of:
A. Dall’Acqua and G. Sweers, Estimates for Green function and Poisson kernels
of higher order Dirichlet boundary value problems, J. Differential Equations 205
(2004) 466-487.

• Chapter 3 is an adaptation of:
A. Dall’Acqua and G. Sweers, The clamped plate equation for the Limaçon, to
appear in: Annali di Matematica Pura ed Applicata.

• Chapter 4 is an adaptation of:
A. Dall’Acqua and G. Sweers, On domains for which the clamped plate system is
positivity preserving, Partial Differential Equations and Inverse Problems (eds
C. Conca, R. Manasevich, G. Uhlmann, M.S. Vogelius), Contem. Math. 362
(American Mathematical Society, 2004) 133–144.

• Chapter 6 is an adaptation of:
A. Dall’Acqua, H.-Ch. Grunau and G. Sweers, On a conditioned Brownian
motion and a maximum principle in the disk, Journal d’Analyse Mathématique
93 (2004) 309-329.
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5.3.1 Limaçon de Pascal . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3.2 Improved ε-closeness to the disk . . . . . . . . . . . . . . . . . . 93
5.3.3 Perturbations from the bilaplacian on a limaçon . . . . . . . . . 96
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Chapter 1

Introduction

The subject of this thesis is the study of positivity for fourth order elliptic problems.
By positivity we mean that a positive source term in the differential equation leads to
a positive solution. For second order elliptic partial differential equations such a result
is known, and usually referred to by the name “maximum principle”. It is also well-
known that such a maximum principle does not have a straightforward generalization
to higher order elliptic equations. Nevertheless, the mechanical models that lead to
fourth order elliptic equations, such as the elastic deformation of beams and plates,
seem to indicate that some positivity remains. These features we will discuss in the
introduction.

In the first section we will present the problem through some models in the one
dimensional case. This case is rather simple since everything can be computed explic-
itly. We will start with the one-dimensional setting to have a gentle introduction of
some features that will appear in the higher dimensional case. The core of the present
thesis will be the two-dimensional case.

1.1 One dimension

1.1.1 Laundry line

To introduce the setting we would like to start with a rather simple model, namely
that of a laundry line. Using x for the horizontal coordinate and u for the deviation
from the horizontal, we may consider u as a function of x. A simplified mathematical
formulation for the deviation u when this laundry line, of length 2, is loaded by a
weight is the following second order problem −uxx(x) =

g

c
f(x) with x ∈ (−1, 1),

u(−1) = u(1) = 0.
(1.1.1)

Here c is a constant that depends on the material and tension of the line, g is the
gravity constant and f is the weight density of the laundry hanging on this line. In

1



2 Chapter 1. Introduction

the model the boundary conditions u(−1) = 0 and u(1) = 0 appear since the laundry
line is fixed at the end-points.

The model in (1.1.1) can be derived from the balance of forces. One could also look
at the laundry line from the energy point of view. This energy has two components: one
due to the internal tension and the other one due to the weight. The first component
is proportional to the increase of length compared with the length at rest, see [17,
page 245]:

Es(u) = c

∫ 1

−1

(√
1 + u2

x(x)− 1
)
dx.

One finds that the total energy is given by

Etot(u) = c

∫ 1

−1

(√
1 + u2

x(x)− 1
)
dx− g

∫ 1

−1

f(x) u(x) dx.

For small deformations we may simplify to

Ẽtot(u) =
c

2

∫ 1

−1

u2
x(x) dx− g

∫ 1

−1

f(x) u(x) dx. (1.1.2)

A physically relevant solution will minimize the energy. If we are looking for a
minimizer of (1.1.2) it has to satisfy

∂

∂τ
Ẽtot(u+ τϕ)

∣∣∣∣
τ=0

= 0, (1.1.3)

for all appropriate test functions ϕ satisfying ϕ(−1) = ϕ(1) = 0, that is,

c

∫ 1

−1

ux(x)ϕx(x) dx− g
∫ 1

−1

f(x) ϕ(x) dx = 0.

Integrating by parts, one finds∫ 1

−1

(c uxx(x) + g f(x))ϕ(x) dx = 0. (1.1.4)

Since (1.1.4) has to hold for all appropriate ϕ we recover the differential equation in
(1.1.1).

We are interested in positivity, that is, when f > 0 in problem (1.1.1) implies that
the solution u is also positive, or in other words, a Positivity Preserving Property.

Positivity Preserving Property Let w ∈ S, with S some set of functions and
let L be an operator acting on S. Then Lw > 0 implies w > 0.

In the present setting we may take for S the set of twice continuously differentiable
functions in [−1, 1] that equal zero in −1 and 1; Lu = −uxx. Problem (1.1.1) has the
Positivity Preserving Property. Indeed, notice that f positive in (1.1.1) implies −uxx
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positive, hence u concave, which in turn gives, together with the boundary conditions,
that u itself is positive. Notice that this argument contains a Maximum Principle.

Maximum Principle Let w ∈ S, with S some set of functions and let L be an
operator acting on S. Then Lw > 0 implies −w cannot attain an interior maximum.

With the same choice of S and L as before, one sees that the Maximum Principle
implies the Positivity Preserving Property.

Going back to the model we started with, this is clearly what one expects from
every day experience:

The line moves down when hanging laundry on it.

Figure 1.1: The displacement of the laundry line loaded by three point-masses. From
the figure one may guess that the first derivative of the solution is not continuous.
Notice that in the figures the positive direction is downward.

A nice feature of problem (1.1.1) is that we can give an explicit formula for the
solution by means of a so-called Green function:

Gs(x, y) =

{
1
2
(x+ 1)(1− y) for − 1 ≤ x ≤ y,

1
2
(y + 1)(1− x) for y < x ≤ 1.

Indeed the solution of (1.1.1) is given by

u(x) =
g

c

∫ 1

−1

Gs(x, y) f(y) dy. (1.1.5)

Notice that the positivity of the Green function immediately gives a Positivity Pre-
serving Property without going through the Maximum Principle.

1.1.2 Curtain rod

Another simple model where the positivity question appears is that of a beam. One
could think of a rod carrying a curtain. Using the same notation x and u, the total
energy (see [17, page 245]) is given by

Etot(u) =
c

2

∫ 1

−1

(
d

dx

(
ux(x)√

1 + u2
x(x)

))2

dx− g
∫ 1

−1

f(x) u(x) dx.
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Notice that the energy density due to the bending is proportional to the square of the
curvature. Again considering small displacements we find

Ẽtot(u) =
c

2

∫ 1

−1

(uxx(x))
2 dx− g

∫ 1

−1

f(x) u(x) dx.

Recalling (1.1.3) a minimizer should satisfy

c

∫ 1

−1

uxx(x) ϕxx(x) dx− g
∫ 1

−1

f(x) ϕ(x) dx = 0, (1.1.6)

for any appropriate test function ϕ. For this model we may consider two configurations.

(i) We fix the position, that is, we prescribe u(−1) = u(1) = 0.

(ii) We fix both position and angle at the boundary, that is, u(−1) = u(1) = 0 and
u′(−1) = u′(1) = 0.

Ad (i) Supported beam. The appropriate test functions to be considered for
(1.1.6) have to satisfy ϕ(−1) = ϕ(1) = 0. Integrating by parts we find

0 =

∫ 1

−1

(c uxx(x) ϕxx(x)− g f(x) ϕ(x)) dx

= [cuxx(x)ϕx(x)]
1
−1 +

∫ 1

−1

(−c uxxx(x) ϕx(x)− g f(x) ϕ(x)) dx

= c uxx(1)ϕx(1)− c uxx(−1)ϕx(−1) +

∫ 1

−1

(c uxxxx(x)− g f(x))ϕ(x)dx.

Choosing first test functions ϕ that disappear at the boundary we find that u has to
satisfy the fourth order differential equation

uxxxx(x) =
g

c
f(x) for x ∈ (−1, 1) .

Next considering test functions ϕ such that ϕx(1) 6= 0 and respectively ϕx(−1) 6= 0
we get that u has to satisfy the so-called natural boundary conditions:

uxx(1) = uxx(−1) = 0.

Hence the corresponding model is{
uxxxx(x) =

g

c
f(x) with x ∈ (−1, 1),

u(−1) = u(1) = uxx(−1) = uxx(1) = 0.
(1.1.7)

System (1.1.7) is called a supported beam.
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As in problem (1.1.1) we would like to see if the Positivity Preserving Property
holds. Thinking at the rod carrying the curtain, it is obvious that such a feature
holds in everyday life. We would like to show that such a property follows from
the mathematical model. It gives some evidence that the model corresponds to what
happens physically. In order to do that notice that problem (1.1.7) can be written as a
system of two differential equations of second order. Indeed, defining v(x) := −uxx(x)
problem (1.1.7) is equivalent to

−vxx(x) =
g

c
f(x) with x ∈ (−1, 1),

−uxx(x) = v(x) with x ∈ (−1, 1),

u(−1) = u(1) = v(−1) = v(1) = 0.

(1.1.8)

As before f positive means −vxx positive, hence with the boundary condition v itself is
positive and repeating the argument for u we find that u is positive. So, the Positivity
Preserving Property for the fourth order problem follows by using twice the maximum
principle for second order problems. Going back to the model, we see that:

Hanging the curtain on the supported rod will move the rod downward everywhere.

Figure 1.2: Displacement of a supported beam loaded by a one-point mass. The solution
is convex and the first and second derivative are continuous. The positive direction is
downward.

Also this problem allows for a Green function:

Gsb(x, y) =

{
1
12

(x+ 1)(1− y)(2− x2 − y2 + 2(y − x)) for − 1 ≤ x ≤ y,

1
12

(y + 1)(1− x)(2− y2 − x2 + 2(x− y)) for y < x ≤ 1.

The solution u is then as in (1.1.5) with Gs(., .) replaced by Gsb(., .). Notice that again
this Green function is positive implying directly the Positivity Preserving Property.
We would like to observe that one may compute directly Gsb using the equivalence of
problem (1.1.7) with system (1.1.8). Indeed, from this it directly follows that:

Gsb(x, y) =

∫ 1

−1

Gs(x, z)Gs(z, y)dz.
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Ad (ii) Clamped beam. Coming back to the rod with position and angle fixed
to be zero at the boundary, we find that in this case the model is{

uxxxx(x) =
g

c
f(x) with x ∈ (−1, 1),

u(−1) = u(1) = ux(−1) = ux(1) = 0.
(1.1.9)

The system in (1.1.9) is called a clamped beam.
If one wants to prove the Positivity Preserving Property for (1.1.9) we cannot

use the Maximum Principle for second order problems as before since the boundary
conditions do not separate nicely as in the case of the supported beam. However one
may still construct a Green function, namely

Gcb(x, y) =

{
1
24

(x+ 1)2(y − 1)2(1− xy + 2(y − x)) for − 1 ≤ x ≤ y,

1
24

(y + 1)2(x− 1)2(1− xy + 2(x− y)) for y < x ≤ 1.

Notice that since this Green function is positive one finds the Positivity Preserving
Property. Also here:

Hanging the curtain on the clamped rod will move the rod downward everywhere.

Figure 1.3: Displacement of a clamped beam loaded by a point-mass. In this case the
first and second derivative are still continuous but the solution is not convex.

We would like to remark that the positivity of the Green function is a sufficient
and necessary condition for the Positivity Preserving Property to hold. Indeed if the
Green function would be sign changing, say G(x0, y0) < 0, then taking a point weight
at position y0 will force the solution to be negative at x0.

A special curtain rod

We would like to give the model of a rod that does not have the Positivity Preserving
Property. However we will be able to classify the way in which it may fail to be
positive. What does remain is that locally the sign is preserved. We will explain what
we mean by that.

Let us consider a rod that is supported in the middle. The corresponding system
is as follows

uxxxx(x) =
g

c
f(x) with x ∈ (−1, 0) ∪ (0, 1),

u(−1) = u(1) = ux(−1) = ux(1) = 0,

u(0) = 0 and ux(0
+) = ux(0

−) and uxx(0
+) = uxx(0

−).

(1.1.10)
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Notice that the rod we consider here is clamped in −1 and 1. One may also consider a
rod supported in the middle and at the boundary. The behavior, concerning positivity,
is the same.

In order to see if problem (1.1.10) have the Positivity Preserving Property we
cannot use the second order Maximum Principle. So we may try to proceed through
the Green function. The Green function associated to this problem when 0 < y < 1
is:

Grp(x, y) =


1
8
xy(1 + x)2(1− y)2 for − 1 ≤ x ≤ 0,

1
24
x(1− y)2(4x(y − x) + 2yx(1− x) + 3y(1− x2)) for 0 < x ≤ y,

1
24
y(1− x)2(4y(x− y) + 2yx(1− y) + 3x(1− y2)) for y < x ≤ 1.

For −1 < y < 0 one finds a similar formula. This Green function is sign changing.
We illustrate this by showing in Figure 1.4 the solution u of problem (1.1.10) with in
the right hand side a point-mass at position .3. Indeed, this u will be a multiple of the
Green function with y fixed at .3.

Figure 1.4: Loading this rod supported in the middle with a point mass in the right half
forces the left half of the rod to bend upward. Only a restricted Positivity Preserving
Property holds.

However we can show this local positivity.

Proposition 1.1.1. If y is in (0, 1) then x 7→ Grp(x, y) is positive in (0, 1) and negative
in (−1, 0).

Proposition 1.1.2. For any f positive there exists a ∈ [−1, 1] such that the solution u
of (1.1.10) with f in the right hand side satisfies u(x) < 0 for x ∈ (min (a, 0) ,max (a, 0))
and u(x) ≥ 0 elsewhere.

1.2 Two dimensions

The topic of this thesis is concerned with two and higher dimensional problems. For
the sake of illustration we will now present some two dimensional models.

1.2.1 Membrane

We consider a membrane spanned over a flat frame and loaded by a weight. An example
that we can keep in mind is that of a soap film. Using x1 and x2 as coordinates in the
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plane and u for the deviation from the flat position, we can consider u as a function
of x1 and x2. Let Ω be the area over which the membrane is spanned.

The energy in this membrane has two components. The one due to the tension is
proportional to the change of area ([17, page 247]). When restricting to small devia-
tions we may consider the linearized version and so the total energy of the membrane
is given by

Ẽtot(u) =
c

2

∫
Ω

|∇u(x1, x2)|2 dx1dx2 − g
∫

Ω

f(x1, x2) u(x1, x2) dx1dx2.

By (1.1.3) and considering a membrane fixed at its border we find that the displacement
of the membrane is modelled by the following system{

−∆u =
g

c
f in Ω,

u = 0 on ∂Ω.
(1.2.1)

Here ∂Ω denotes the boundary of the membrane and ∆u = ∂2

∂x2
1
u+ ∂2

∂x2
2
u.

As it is well known the boundary value problem (1.2.1) satisfies the Maximum
Principle, implying that the Positivity Preserving Property holds. Going back to the
example we see that:

Pushing a membrane from below forces the membrane to go upward everywhere.

Figure 1.5: Picture of the solution of (1.2.1) on a Limaçon de Pascal with a = .49
(see Figure 1.9) and with a point mass in the right hand side. The solution has a
singularity that takes place in the point where the force is applied.

Explicit formulas for the Green function G(., .) of problem (1.2.1) are only available
for special domains. Nevertheless arguments based on the Maximum Principle and its
extensions, such as Harnack’s inequality, allow to prove estimates of the Green function
for (1.2.1) on smooth Ω of the following type (see [76] and [45]):

c1 ln

(
1 +

dΩ(x)dΩ(y)

|x− y|2

)
≤ G(x, y) ≤ c2 ln

(
1 +

dΩ(x)dΩ(y)

|x− y|2

)
for x, y in Ω. (1.2.2)
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Here c1 and c2 are two positive constants and dΩ(.) denotes the distance function to
the boundary of Ω, that is

dΩ(x) := min
y∈∂Ω
|x− y|. (1.2.3)

1.2.2 Plate

In this thesis we will study what remains of positivity for the model of a clamped
plate. We will now derive the model starting from the energy functional using the
same notation x1, x2, Ω and u as before.

In [17, page 250] one finds that the density of the energy due to the tension is a
quadratic form of the principal curvatures for the plate. That is, for small displacement
u the total energy of a plate loaded by a weight of density f is given by

Ẽtot(u) = c

∫
Ω

(
1

2
(∆u)2 − (1− σ)(ux1x1ux2x2 − u2

x1x2
)

)
dx1dx2 − g

∫
Ω

f u dx1dx2.

Here c and σ are two constants that depend on the elastic properties of the plate. By
(1.1.3) a minimizer of the energy should satisfy

c

∫
Ω

(∆u∆ϕ− (1− σ)(ux1x1ϕx2x2 + ϕx1x1ux2x2 − 2ux1x2ϕx1x2)) dx1dx2 +

−g
∫

Ω

f ϕ dx1dx2 = 0, (1.2.4)

for any appropriate test function ϕ. As in the case of the rod for this model we may
consider two configurations.

(i) Supported plate: we fix the position, that is, u = 0 on the boundary of the plate
Ω.

(ii) Clamped plate: we fix the position and the angle of ∂Ω, that is, u = 0 and,
considering ν the exterior normal to the boundary of Ω on the plane x1x2,

∂
∂ν
u =

ν.∇u = 0 on the boundary of the plate.

Ad (i) Supported plate. The test functions to be considered for (1.2.4) have to
be zero at the boundary of the plate. Integrating by parts in (1.2.4) one finds that

0 = c

∫
∂Ω

(
∆u

∂

∂ν
ϕ− (1− σ) (ux1x1ϕx2νx2 + ux2x2ϕx1νx1 − 2ux1x2ϕx1νx2)

)
dσ

−c
∫

Ω

(∇∆u.∇ϕ− (1− σ)(ux1x1x2ϕx2 + ux2x2x1ϕx1 − 2ux1x2x2ϕx1)) dx1 dx2

−g
∫

Ω

f ϕ dx1 dx2
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= c

∫
∂Ω

(
∆u− (1− σ)

(
ux1x1ν

2
x2

+ ux2x2ν
2
x1
− 2ux1x2νx1νx2

)) ∂

∂ν
ϕ dσ

+c

∫
Ω

∆2u ϕ dx1 dx2 − g
∫

Ω

f ϕ dx1 dx2,

where ∆2u = ∂4

∂x4
1
u + 2 ∂4

∂x2
1x

2
2
u + ∂4

∂x4
2
u. Hence the displacement u has to satisfy the

differential equation

∆2u =
g

c
f in Ω,

and the natural boundary condition

∆u− (1− σ)(ux1x1ν
2
x2

+ ux2x2ν
2
x1
− 2ux1x2νx1νx2) = 0 on ∂Ω.

So, the model for a supported plate is
∆2u =

g

c
f in Ω,

u = 0 on ∂Ω,

∆u− (1− σ)(ux1x1ν
2
x2

+ ux2x2ν
2
x1
− 2ux1x2νx1νx2) = 0 on ∂Ω.

(1.2.5)

For results concerning positive solutions of (1.2.5) we refer to [54].
One usually studies the following simpler model{

∆2u =
g

c
f in Ω,

u = ∆u = 0 on ∂Ω,
(1.2.6)

that does correspond to the previous one when σ = 1.
System (1.2.6) can be written as a system of two differential equations of second

order. Indeed, defining v(x) := −∆u(x) problem (1.2.6), for smooth Ω, is equivalent
to 

−∆v =
g

c
f in Ω,

−∆u = v in Ω,
u = v = 0 on ∂Ω,

(1.2.7)

and since the maximum principle holds for system (1.2.7) it holds also for problem
(1.2.6). Also in this case the Positivity Preserving Property for the fourth order
problem follows iterating twice the Maximum Principle for the second order problem.

A supported plate loaded by a force moves all in the same direction.

Problem (1.2.6) allows for an explicit Green function Gsp(., .) only for some special
Ω’s. However, using the same notation as in (1.2.2), one can prove the following
estimate for x, y in Ω (see [45])

c1dΩ(x)dΩ(y) ln

(
2 +

1

|x− y|2 + dΩ(x)dΩ(y)

)
≤

≤ Gsp(x, y) ≤ c2dΩ(x)dΩ(y) ln

(
2 +

1

|x− y|2 + dΩ(x)dΩ(y)

)
.
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Figure 1.6: Picture of the solution of (1.2.6) on a Limaçon de Pascal with a = .49
(see Figure 1.9) and with f a point mass. The point mass is located at “the center
of the circular axis”. Notice that the maximum of u is located more to the center of
the domain. In this case the solution and also its first derivative are continuous. A
discontinuity is appearing in the second derivatives.

The major tools in the proof are the estimate in (1.2.2) and that the following relation
holds between the Green function G for problem (1.2.1) on a domain Ω and the Green
function Gsp associated to problem (1.2.6) on the same domain:

Gsp(x, y) =

∫
Ω

G(x, z)G(z, y)dz for x, y in Ω.

Ad (ii) Clamped plate. The model for a clamped plate is
∆2u =

g

c
f in Ω,

u = 0 on ∂Ω,
∂
∂ν
u = 0 on ∂Ω.

(1.2.8)

The solution of (1.2.8) gives, for example, the displacement of a flat roof when loaded
by a force f . One may think at the force f as the extra weight that the roof has to
support because of rain or snow.

As for the previous models we would like to see if the Positivity Preserving Property
holds. Problem (1.2.8) does not satisfy the Maximum Principle and we do not have
a formula for the Green function associated on a general domain. One may think as
Hadamard (see [47] and [31]) at first did, namely

If a perpendicular force is applied at some point of a thin, flat elastic plate
which is rigidly clamped on its boundary, then the displacement of the plate
is of one sign at all points.

However in general this is not the case. We will illustrate this in Figure 1.7 by showing
the graph of a sign-changing solution.

In this thesis we will show that, although the Positivity Preserving Property does
not hold, there is a form of local positivity. We will also prove estimates of the Green
function for (1.2.8) depending on the distance to the boundary.
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Figure 1.7: Picture of the solution of (1.2.8) with on the right hand side a point mass
and on a Limaçon de Pascal with a = .49. The dark part in the figure shows the region
where the solution becomes negative. The arrow indicates the point where the force is
applied. Notice that not always the solution of (1.2.8) is sign changing. Indeed, as it
is known, [8], problem (1.2.8) on the unit disk has the Positivity Preserving Property.
This figure has been taken from [25].

A special clamped plate

We consider now a special plate that, to some extent, is close to the rod supported in
the middle of the previous section. We consider a plate with the shape of a dumb-bell
that is clamped on the boundary.

Problem (1.2.8) on a dumb-bell does not have the Positivity Preserving Property.
Indeed the associated Green function is sign-changing. We illustrate this by Figure
1.8 showing the plot of the numerical solution of (1.2.8) with f a point-mass. The

-0.02

0

0.02

0.04

Figure 1.8: The solution of the clamped plate equation on a dumb-bell with f a point-
mass on the right part of it. On the right a view from the side of the solution that
shows the change of sign. This figure has been magnified and truncated from above
since when it is negative the solution is very small in absolute value. These figures are
taken from [70].

fact that the Green function is sign changing can be explained heuristically as follows.
At the center of the dumb-bell the solution gets a strong influence from the boundary
and, because of the boundary condition, it is almost forced to go to zero. From Figure
1.8 one intuitively understands that this plate behaves similarly to the special rod of
the previous section with the extra boundary point in the middle. (See Figure 1.4).
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1.3 Statement of the problem and results

The main subject of this thesis is the study of the sign of the solution of the following
fourth order Dirichlet boundary value problem

∆2u = f in Ω,
u = 0 on ∂Ω,

∂
∂ν
u = 0 on ∂Ω.

(1.3.1)

Here f is a continuous non-negative function on Ω and Ω is a bounded smooth domain
in Rn, n ∈ N with n ≥ 2. System (1.3.1) is the model of a clamped plate Ω ⊂ Rn. In
the previous section we have considered the clamped plate in two dimensions, however
the model, from a mathematical point of view, is also interesting in higher dimensions.

This thesis concerns the influence that a positive source f in problem (1.3.1) has
on the behavior (sign) of the solution u. We now give the precise definition of what
we mean by solution of (1.3.1). We consider several type of solutions. We will call
classical the solution in the Hölder spaces setting and strong the one in Lp-spaces
setting. For definitions and properties of Hölder, Lp and Sobolev spaces we refer to
[2].

Definition 1.3.1. a: Let f ∈ Cα(Ω) with α ∈ (0, 1). We say that u ∈ C4,α(Ω) is
a classical solution of (1.3.1) if ∆2u = f holds point-wise in Ω and if u and its first
derivatives are all zero at the boundary.

b: Let f ∈ Lp(Ω) for p ∈ (1,∞). We call u ∈ W 4,p(Ω)∩W 2,p
0 (Ω) a strong solution

of (1.3.1) with right hand side f if ∆2u = f holds in Lp-sense in Ω.

Remark 1.3.2. Sometimes we will also use the notion of weak and half-weak solutions.
For p ∈ (1,∞) and with p′ := p

p−1
:

i: a weak solution of (1.3.1) is a function u ∈ Lp(Ω) that satisfies∫
Ω

u(x) ∆2v(x) dx =

∫
Ω

f(x) v(x) dx for every v ∈ W 4,p′(Ω) ∩W 2,p′

0 (Ω).

ii: a one-half weak solution of (1.3.1) is a function u ∈ W 2,p
0 (Ω) such that the

following holds∫
Ω

(∆u(x)) (∆v(x)) dx =

∫
Ω

f(x) v(x) dx for every v ∈ W 2,p′

0 (Ω).

Before focusing on the behavior of the solutions, we recall here a classical result
that assures the existence of solutions.

Existence of solution. Existence, uniqueness and regularity theory both for
classical and strong solutions of problem (1.3.1) are well known. We refer to the
classical work of [3]. The result from [3] that we will use is the following.

Theorem 1.3.3. (Agmon, Douglis, Nirenberg) Let α ∈ (0, 1) and let Ω be a bounded
domain in Rn, n ∈ N, with ∂Ω ∈ C4,α.
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(i) If f ∈ Cα(Ω) then there exists a unique classical solution u ∈ C4,α(Ω) of problem
(1.3.1). Moreover the following estimate holds

‖u‖C4,α(Ω) ≤ C1‖f‖Cα(Ω).

(ii) If f ∈ Lp(Ω) then there exists a unique strong solution u ∈ W 4,p(Ω) ∩W 2,p
0 (Ω)

of problem (1.3.1) and the following estimate holds

‖u‖W 4,p(Ω) ≤ C2‖f‖Lp(Ω).

The constants C1 and C2 depend on the domain Ω and on the dimension n.

For completeness we recall that another approach to find a solution to problem
(1.3.1) is the variational one, that is, to find the function u in W 2,2

0 (Ω) that minimizes
the energy functional associated to the clamped plate equation, that is

E(u) =

∫
Ω

1
2

(
(∆u)2 − (1− σ)

n∑
i,j=1, i6=j

(uxixi
uxjxj

− (uxixj
)2)− fu

)
dx.

Such a minimizer u is a half-weak solution of problem (1.3.1). It is interesting to see
that the term uxixi

uxjxj
− (uxixj

)2 appears when considering the energy functional but
not in the differential equation.

In the previous section we have illustrated that problem (1.3.1) in general does
not have the Positivity Preserving Property. Since the history of this problem is quite
interesting, we briefly present it.

A short history of positivity for the clamped plate equation. Boggio
and Hadamard at the beginning of the 20th century conjectured that the Positivity
Preserving Property of the clamped plate equation holds true on almost any domain.
In 1905 ([8]) Boggio derived the Green function for the clamped plate equation on
the unit ball in Rn. From this explicit expression it directly follows that on the ball
problem (1.3.1) is positivity preserving.

A first evidence that the conjecture of Boggio and Hadamard was not true in its
full generality comes from Hadamard himself. In [47] he states, without giving a proof,
that the Green function for problem (1.3.1) in an annulus is sign changing. A proof of
Hadamard’s claim is in [14].

For a long time the conjecture that the clamped plate equation at least in convex
domain has the Positivity Preserving Property stood open. In 1949 Duffin ([31])
showed the first counterexample by an infinite strip. Numerous other counterexamples
followed. We recall the one of Garabedian ([34]). He obtained that the Green function
of the clamped plate equation on an ellipse with axes having ratio approximately 2
is sign changing. In 1980 Coffman and Duffin ([13]) showed that also in squares and
rectangles the clamped plate equation is not positivity preserving. Results concerning
the behavior in angles may be found in [58] and [14]. We would like to notice that all



1.3. Statement of the problem and results 15

counterexamples concern domains in dimension two. In higher dimensions one knows
that problem (1.3.1) is positivity preserving in the ball. At the author’s knowledge
there are no examples of other domains in dimension n ≥ 3 where the Green function
for the clamped plate equation is positivity preserving, neither are there examples of
domains where the Green function changes sign.

We may say that in general the clamped plate equation is not positivity preserving.
Neither convexity, nor smoothness, nor symmetries of a domain may guarantee the
positivity of the Green function of (1.3.1).

Previous results in the literature. In the literature results that are called
“maximum principle” for higher order equations do appear. Usually such results state
an estimate for or by a functional of u. One such example is [31] where Duffin showed
the following principle.

Proposition 1.3.4. Let w be biharmonic on a region R. Let (a, b) be a point in R
and let χ denote a vector with components x− a, y − b. Then it holds

w(a, b) ≤ max
∂R

[
w − χ.∇w + |χ|2 ∆w

4

]
.

Nehari in [56] looked for sub-domains of a smooth domain Ω characterized by the
positions of the points P and Q and by simple geometric properties of Ω in which the
Green function may be shown to be positive. He proved that if the ball of center Q and
of radius twice the distance between P and Q is contained in Ω ⊂ R3, then the Green
function computed in (P,Q) is positive. For a two-dimensional domain the condition is
a bit more complicated. He also showed that the Green function associated to problem
(1.3.1) in a smooth three-dimensional domain is more regular than the Green function
associated to a smooth two-dimensional domain.

Our results. Our approach will be different. Knowing that the Green function
for the clamped plate equation may change sign, we will look at “how much” it may
be negative. The idea is that near the singularity the Green function is positive, while
far away from the singularity the sign may change but we gain in regularity. The
method consists in studying separately the local behavior. We will write the Green
function as a sum of two terms: one positive and singular, the other sign-changing and
regular. The aim is to separate positivity from regularity. Our results are limited to
two-dimensional domains. We expect these to hold true also in higher dimensions.

The main results of the thesis are the following.

Theorem 1.3.5. Assume that Ω ⊂ R2 is a bounded simply connected domain with
∂Ω ∈ C16. Then there exist Greg

Ω , Gsing
Ω : Ω̄2 → R such that the Green function for

(1.3.1) may be written as

GΩ(x, y) = Greg
Ω (x, y) +Gsing

Ω (x, y)

and the following is satisfied:
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(i) (a) Gsing
Ω (x, y) ≥ 0 on Ω̄2;

(b) Gsing
Ω ∈ C1,γ

(
Ω̄2
)
∩ C1

0

(
Ω̄2
)

for all γ ∈ (0, 1) ;

(c) Gsing
Ω ∈ C15,γ

({
(x, y) ∈ Ω̄2;x 6= y

})
for all γ ∈ (0, 1) ;

(ii) (a) Greg
Ω ∈ C15,γ

(
Ω̄2
)
∩ C1

0

(
Ω̄2
)

for all γ ∈ (0, 1) .

Moreover there exist positive constants c1 and c2 such that the following estimate holds
for every x, y ∈ Ω

−c1dΩ(x)2 dΩ(y)2 ≤ GΩ(x, y) ≤ c2dΩ(x) dΩ(y) min

{
1,
dΩ(x)dΩ(y)

|x− y|2

}
.

Here dΩ is as in (1.2.3).

As a consequence we are able to show the following type of maximum principle. In
the statement of the next result we use negative Sobolev spaces. For definitions and
properties we refer to [2].

Theorem 1.3.6. Let 0 < α < 1 and p ∈ (1,∞). Let Ω be a bounded simply connected
domain in R2 with ∂Ω ∈ C4,α (see Definition 2.1.3).

Then for any q > 2 and ε > 0 there exists a constant cq,Ω,ε > 0 such that for
f ∈ Lp(Ω) the solution u ∈ W 4,p(Ω) ∩W 2,p

0 (Ω) of (1.3.1) satisfies

u(x) ≤ cq,Ω,ε

(∥∥f+
∥∥
L1(B(x,ε)∩Ω)

+ ‖u‖W−1,q(Ω)

)
for every x ∈ Ω.

Here f+ denotes the positive part of f .

1.4 Contents of the thesis

In the first chapters, namely 2 to 5, we focus on the local positivity for the clamped
plate equation and we prove Theorems 1.3.5 and 1.3.6. In the last chapter, Chapter
6, we study a problem arising in the study of the Positivity Preserving Property for
second order elliptic systems and that has some connections with probability.

We first present the preliminary results that lead to Theorem 1.3.5 and Theorem
1.3.6. Our goal is to prove that the sign preserving effects are much stronger than
the opposite ones. Of course this is directly connected with the behavior of the Green
function. We expect that the Green function associated to problem (1.3.1) does not
have any singularity from below.

We start by showing sharp estimates of the absolute value of the Green function
depending on the distance to the boundary. We will do this in Chapter 2 where we
consider the following polyharmonic problem{

(−∆)mu = f in Ω,
∂i

∂νiu = 0 for i = 0, . . . ,m− 1, on ∂Ω,
(1.4.1)
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with Ω a bounded smooth domain in Rn. Using the result of Krasovskĭı in [51] we
prove optimal estimates from above of the Green function (and its derivatives). The
precise result is the following.

Theorem 1.4.1. Let Gm(x, y) be the Green function associated to problem (1.4.1) in
a bounded domain Ω ⊂ Rn with ∂Ω ∈ C6m+4 if n = 2 or ∂Ω ∈ C5m+2 if n ≥ 3.

Then the following estimates hold for every x, y ∈ Ω:

(i) if 2m− n > 0, then

|Gm(x, y)| ≤ c1dΩ(x)m−
1
2
n dΩ(y)m−

1
2
n min

{
1,
dΩ(x)dΩ(y)

|x− y|2

} 1
2
n

,

(ii) if 2m− n = 0, then

|Gm(x, y)| ≤ c2 log

(
1 +

(
dΩ(x)dΩ(y)

|x− y|2

)m)
,

(iii) if 2m− n < 0, then

|Gm(x, y)| ≤ c3 |x− y|2m−n min

{
1,
dΩ(x)dΩ(y)

|x− y|2

}m
,

with c1, c2 and c3 positive constants and with dΩ defined as in (1.2.3).

This kind of estimates is a useful tool to prove regularity results in spaces involving
the behavior at the boundary. Indeed, a direct consequence of Theorem 1.4.1 is that
the solution u of (1.3.1) in a domain Ω ⊂ Rn, with n = 2, 3 satisfies for appropriate f :∥∥dΩ(.)−2+θnu

∥∥
L∞(Ω)

≤ C1
Ω,2

∥∥dΩ(.)2−(1−θ)nf
∥∥
L1(Ω)

for all θ ∈ [0, 1] .

The main tool for the proof of Theorem 1.4.1 is the result of Krasovskĭı in [51] . He
proves the existence of the Green function associated to problem (1.4.1) and he also
gives estimates for the absolute value of this Green function. For the precise statement
of the result of Krasovskĭı see Section 2.3.

A previous result concerning estimates of the Green function in terms of the dis-
tance to the boundary is to be found in [41]. In this paper the authors study the Green
function associated to the polyharmonic problem with Dirichlet boundary conditions
on the unit ball in Rn. They start from the explicit formula of Boggio. They proved
optimal two-sided estimates of the Green function depending on the distance to the
boundary.

The estimates in Theorem 1.4.1 give a first understanding on how the singularity
of the Green functions behaves in relation with the special boundary conditions of
problem (1.3.1). These estimates are sharp from above (that is, for positive values
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of the Green function) but not from below (that is, for negative values of the Green
function). The only known sharp estimates from below of the Green function are the
one in [41] for the ball. The crucial fact used in that paper is the knowledge of the
explicit formula of the Green function due to Boggio [8]. Hence, for general domains
we have to find another method.

The idea is to cover a general domain Ω with a finite number of sub-domains that
have a positive Green function. Then we will compare the solution of the clamped plate
equations in the domain Ω with the sum (with a partition of unity) of the solutions of
the clamped plate in each sub-domain.

First we have to find a suitable finite covering of the domain Ω with its bound-
ary: suppose that Ω = ∪Nj=1Ej. By suitable we mean that ∂Ej is as regular as ∂Ω,
∂Ω ⊂ ∪Nj=1∂Ej and that each Ej is such that the clamped plate equation is positivity
preserving in Ej.

So far we have seen that problem (1.3.1) is positivity preserving on balls. This
result is not sufficient since a general domain cannot be covered with the boundary by
a finite number of balls. In [40] Grunau and Sweers show that in two dimensions on
domains that are small C2,γ perturbations of the ball the clamped plate equation is
positivity preserving. Since the smallness of these perturbation is defined in C2,γ-norm
all these domains are necessarily convex. Also in this case this result is not sufficient
since in general a non-convex domain cannot be covered with its boundary by a finite
number of convex domains.

The question arises if there are examples of non-convex domains on which the
clamped plate equation has the Positivity Preserving Property. Hadamard in [47]
states that this property holds for the clamped plate equation on plates having the
shape of a Limaçon de Pascal. In this context, the term Limaçon de Pascal refers to a
generic element of the family of domains described by the parameter a ∈ [0, 1

2
] given

by
Ωa =

{
(ρ cosϕ, sinϕ) ∈ R2 : 0 ≤ ρ < 1 + 2a cosϕ, ϕ ∈ [0, 2π)

}
.

These Ωa are smooth for a ∈ [0, 1
2
) and convex for a ∈ [0, 1

4
]. In Chapter 3 we show

that the statement of Hadamard is wrong in its full generality but that however,
there are non-convex limaçons on which the clamped plate equation has the Positivity
Preserving Property.

Theorem 1.4.2. The clamped plate problem on Ωa with a ∈
[
0, 1

2

]
is positivity pre-

serving if and only if a ∈
[
0, 1

6

√
6
]
.

The main tool used in the proof is the knowledge of the explicit formula for the
Green function for the clamped plate equation on Ωa. This supplies also the proof of
the following optimal estimates from below:

(i) for a ∈ [0, 1
6

√
6]:

GΩa(x, y) ≥ c1

(
1
6

√
6− a

)
dΩa(x) dΩa(y) min

{
1,
dΩa(x)dΩa(y)

|x− y|2

}
;
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Figure 1.9: Limaçons for respectively a = .1, .175, .25, .325, 1
6

√
6, .45, .5. The

third one is critical for convexity. The fifth one is critical for the Positivity Preserving
Property. For the two last limaçons there are positive f with the corresponding u
solution of the clamped plate equation with f in the right hand side that is negative
somewhere. This figure has been taken from [26].

(ii) for a ∈ (1
6

√
6, ā] with ā < 1

2
:

GΩa(x, y) ≥ −c2
(
a− 1

6

√
6
)
dΩa(x)

2 dΩa(y)
2, (1.4.2)

with c1 and c2 positive constants. We would like to recall that a natural solution space
for the clamped plate equation is the Banach lattice

Ce(Ω̄) :=

{
u ∈ C(Ω̄) : ‖u‖e := sup

x∈Ω

|u(x)|
d2

Ω(x)

}
.

The estimate in (1.4.2) shows that the function x 7→ GΩa(x, y) from Ω̄a onto Ce(Ω̄a)
does not have a singular behavior from below when x goes to the boundary of Ω.

We have now found a family of domains, some convex and others non-convex, on
which the Positivity Preserving Property holds. In order to approximate a general
domain Ω with sub-domains, we can consider scaled limaçons and we can “play” with
the parameter a, for a ∈ [0, ā] with ā < 1

6

√
6. However, in order to approximate with

the boundary the domain Ω we need a further step. Indeed, choosing the appropriate
a and the appropriate scaled limaçon Ωa,R we can approximate the domain Ω in a
boundary point in C2-sense, but we want it to be equal in a neighborhood of the
point. In order to do that, we consider C2,γ-perturbations of the limaçon Ωa for
a ∈ [0, ā] with ā < 1

6

√
6. Using the method in [40] we prove that on these domains

the Positivity Preserving Property for the clamped plate equation holds. Moreover,
the Green function on these C2,γ-perturbations of the limaçons is strictly positive in
the following sense. Let Ω∗ be a C2,γ-perturbation of a limaçon Ωa with a ∈ [0, ā],
ā < 1

6

√
6, then there exists a positive constant c1 such that for x, y ∈ Ω∗

GΩ∗(x, y) ≥ c1

(
1
6

√
6− a

)
dΩ∗(x) dΩ∗(y) min

{
1,
dΩ∗(x)dΩ∗(y)

|x− y|2

}
.

In Chapter 4 one may find the methods presently available to get domains on which
the clamped plate equation is positivity preserving. One notices that there is a big
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difference between the two-dimensional case and the higher-dimensional one. This is
due to the fact that the only transformations that do keep the highest order terms
polyharmonic are the conformal mappings. In two dimensions there are many of these
mappings while in higher dimensions the only conformal mappings are the Möbius
transformations.

Using the results of the previous chapters, we show in Chapter 5 that a general
C4,α domain Ω can be covered with the boundary by a finite number of sub-domains
that are scaled C2,γ-perturbations of limaçons. For the precise statement of the result
see Theorem 5.4.29.

Thanks to this covering we will be able to split the Green function as the sum
of a positive term and a sign-changing regular one. This is indeed the result stated
in two closely related versions in Theorems 1.3.5 and 1.3.6. We explain now roughly
the method that has been used in the proof of these theorems. First, working with
a partition of unity we solve the clamped plate equation on each element Ej of the
covering of Ω with an appropriate right hand side and with zero boundary conditions.
The solution of this problem may be considered as a local approximation of the solution
of the clamped plate equation in Ω. What is relevant is that in Ej the Positivity
Preserving Property holds and that we have optimal estimates of the Green function
both from above and from below. Summing up this local solution via a partition of
unity we get a function defined in all the domain Ω and that satisfies the boundary
condition of (1.3.1). The solution u of the clamped plate equation in Ω with f in the
right hand side can be written as the sum of this function and another term coming
from ‘patching up’ the domains. This component is smooth. In terms of the Green
function this reads as: the Green function can be written as the sum of a positive
term that gives the local behavior, with a term, that could be sign-changing, that only
indirectly depends on the local behavior and hence, that is regular.

The topic of Chapter 6 differs somewhat from the other ones. Studying positivity
for general elliptic boundary value problems we encountered some open problems in
probability theory.

Some interesting questions concerning positivity arise also in the study of systems
of second order elliptic boundary value problems. In [66] the following system is
presented as a model problem for the positivity preserving property of systems coupled
in a non-cooperative way 

−∆u = f − λv in Ω,
−∆v = f in Ω,
u = v = 0 on ∂Ω.

(1.4.3)

Here Ω is a bounded regular subset of Rn and λ ∈ R+. One can show that there exists
a value λc(Ω) ∈ (0,∞) such that for all f ≥ 0 the solution u of problem (1.4.3) is
positive if and only if λ ≤ λc(Ω). The value λc(Ω) is defined as follows

λc(Ω)−1 = sup
x,y∈Ω

HΩ(x, y),



1.4. Contents of the thesis 21

where

HΩ(x, y) =

∫
Ω

GΩ (x, z)GΩ (z, y)

GΩ (x, y)
dz.

Here GΩ the Green function for{
−∆u = f in Ω,

u = 0 on ∂Ω.

Notice that the function HΩ(x, y), defined above, is equal to the quotient of the Green
function for the supported plate and the one for the membrane.

The function HΩ(x, y) has also a probabilistic interpretation. Indeed, it is equal
to Eyx(τΩ) the expected lifetime of a conditioned Brownian motion that starts in x, is
conditioned to converge to y and that is killed at the boundary of Ω.

There are many open problems regarding this function. In particular, one open
question is where the function HΩ(x, y) attains its maximum in Ω̄× Ω̄. In [37] Griffin,
McConnell and Verchota showed that

sup
x∈Ω̄, y∈∂Ω

HΩ(x, y) ≤ sup
x,y∈∂Ω

HΩ(x, y),

with Ω a general simply connected domain in R2. The main tools used in the proof are
series expansions and a conformal map that transforms the problem from the general
Ω to the unit disk.

In Chapter 6 we study this problem with Ω the unit ball in Rn, n ≥ 2. What we
are interested in is the term supx,y∈Ω̄HΩ(x, y). Since now both points might be in the
interior the method of Griffin, McConnell and Verchota cannot be used. Our main
tool will be the Maximum Principle.

The main result of the chapter is the following.

Theorem 1.4.3. Let Ω be the unit ball in Rn, n ≥ 2. For all y ∈ Ω̄ the function
x 7→ HΩ (x, y) is

(i) increasing along ‘ the hyperbolic geodesics through y’ in increasing Euclidean
distance;

(ii) increasing along the orthogonal trajectories of ‘ the hyperbolic geodesics through
y’ in increasing Euclidean distance.

A direct consequence of the theorem is that the maximum is attained at opposite
boundary points. Moreover, although it shows that the function HΩ(., y) is increasing
along the hyperbolic geodesics through y, it also shows that these are not the best
increasing directions.

At the end of the chapter we compute the explicit formula for λc(Ω)−1 and we
discuss some remarkable identities involving supx,y∈Ω̄HΩ(x, y) and a sum of inverse
Dirichlet eigenvalues.
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1.5 Ideas for future research

In the last part of this introduction we present some possible extensions and open
problems.

1. In Chapter 3 we show that the positivity of the Green function associated to the
clamped plate equation on the Limaçon de Pascal is equivalent with the positivity of
minus the Bergman kernel on the same domain. It would be interesting to see if the
limaçon is a special case or if this result is true in more generality, [39].

2. To the author’s knowledge the ball is the only domain in dimension n ≥ 3 where
the Green function for the generalized clamped plate equation is known to be positive.
Can one find other domains in Rn for n ≥ 3 on which the positivity preserving property
holds?

3. It is my dream to be able to generalize the “maximum principle” type result
of Chapter 5 to the higher dimensional case. This would be an useful tool in the
study of the semilinear problem associated to the generalized clamped plate equation
in dimension n ≥ 4.

Indeed, considering the fourth order boundary value problem{
∆2u+ g(x, u) = f in Ω,

u = ∂
∂ν
u = 0 on ∂Ω,

(1.5.1)

by analogy with the second order equation one may think that the hypothesis

g(x, t) · t ≥ 0 for every x ∈ Ω and t ∈ R,

is sufficient to prove existence of regular solution even without assuming sub-critical
growth. This result will depend strongly on a generalization of the “maximum princi-
ple” type result of Chapter 5 to the higher dimensional case. See [38] and [53].

4. In Chapter 6 we study where the maximum of Eyx(τΩ) is attained when Ω is the
unit ball in Rn. The question is still completely open for a general domain Ω.

5. A direct consequence of the main result in Chapter 6 is that the hyperbolic
geodesic through y are not the best “increasing direction” of x 7→ Eyx(τΩ). It would be
interesting to find the curves that give the best increasing direction of Eyx(τΩ) and if
there exists a metric such that the best increasing direction of Eyx(τΩ) are geodesics in
this metric. See [5].



Chapter 2

Estimates of the Green function

2.1 Introduction

In this chapter we present optimal pointwise estimates for the kernels associated to
the following higher order Dirichlet boundary value problem

(−∆)m u = ϕ in Ω,
u = ψ0 on ∂Ω,

∂
∂ν
u = ψ1 on ∂Ω,
. . . . . .

( ∂
∂ν

)m−1u = ψm−1 on ∂Ω,

(2.1.1)

where m ∈ N+ and Ω is an open bounded connected subset of Rn, n ≥ 2. The
regularity of the boundary that we assume depends on the dimension n: for n = 2
we assume ∂Ω ∈ C6m+4 and for n ≥ 3 ∂Ω ∈ C5m+2 (see Definition 2.1.3). The Green
function Gm and the Poisson kernels Kj are such that the solution of problem (2.1.1),
for appropriate ϕ and ψj, can be written as

u(x) =

∫
Ω

Gm(x, y)ϕ(y) dy +
m−1∑
j=0

∫
∂Ω

Kj(x, y)ψj(y) dσy.

Our aim will be to prove estimates from above of Gm and Kj depending on the
distance to the boundary. For example when m = 2 and n = 2 we will prove that
there is a constant cΩ such that

|G2(x, y)| ≤ cΩdΩ(x)dΩ(y) min

{
1,
dΩ(x)dΩ(y)

|x− y|2

}
, (2.1.2)

where dΩ is the distance of x to the boundary ∂Ω:

dΩ(x) := inf
x̃∈∂Ω
|x− x̃|. (2.1.3)

23
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For the sake of an easy statement we have used L = (−∆)m in system (2.1.1) but
in fact the estimates that we will derive hold for any uniformly elliptic operator L of
order 2m.

We will focus on the estimates for Gm and Kj. However, we would like to mention
that those estimates are the optimal tools for deriving regularity results in spaces that
involve the behavior at the boundary. Coming back to the case m = n = 2 it follows
from (2.1.2) that the solution u of{

∆2u = f in Ω ⊂ R2,
u = ∂

∂ν
u = 0 on ∂Ω,

satisfies for appropriate f∥∥∥∥ ud2
Ω

∥∥∥∥
L∞(Ω)

≤ cΩ ‖f‖L1(Ω) and ‖u‖L∞(Ω) ≤ cΩ
∥∥f d2

Ω

∥∥
L1(Ω)

.

These kinds of estimates, for general m and n, and also Lp-Lq estimates will be ad-
dressed in Section 2.7. The estimates are interesting by their own merits. A special
case for m = 1 appears in [33].

Not only we will derive estimates for those kernels but also for their derivatives.
The main tool will be the result of Krasovskĭı in [51] where he considered general
elliptic operators and boundary conditions. The estimates he derived did not involve
special growth rates near the boundary. We instead will focus on estimates that contain
growth rates near the boundary. These estimates seem to be optimal and indeed, when
we consider Gm for Ω = B a ball in Rn the growth rates near the boundary are sharp
(see e.g. [45]).

For m = 1 or m ≥ 2 and Ω = B it is known that the Green function is positive
and can even be estimated from below by a positive function with the same singular
behavior (see [41]). Let us remind the reader that for m ≥ 2 the Green function in
general is not positive. We believe, however that for general domains the optimal
behavior in absolute values is captured in our estimates. Sharp estimates for Km−1

and Km−2 in case of a ball can be found in [43].
Instead of using Krasovskĭı’s result one might use appropriate “heat kernel” esti-

mates. Indeed, integrating pointwise estimates for the parabolic kernel p(t, x, y) with
respect to t from 0 to ∞, yields pointwise estimates for the Green function. How-
ever, only limited results seem to be available. Barbatis [6] considered higher order
parabolic problems on domains and derived pointwise estimates for the kernel using a
non-Euclidean metric. Classical estimates by Eidel’man (see e.g. [32]) for higher order
parabolic systems do not consider domains with boundary.

For a survey on spectral theory of higher order elliptic operators, including some
estimates for the corresponding kernels, we refer to [27].

Finally we would like to remark that we do not pretend that our pointwise estimates
are completely new. However we have not been able to find any reference to such
estimates for the special type of boundary conditions above.
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The chapter is organized as follows. We will complete the first section fixing some
notation and giving the main results. We then recall some general properties of the
Green function and Poisson kernels for (2.1.1), the results of Krasovskĭı and some
technical lemmas. In the fifth and sixth sections we prove the estimates of the Green
function and of the Poisson kernels respectively. In the last section we give some
estimates of the solution of (2.1.1) with zero boundary conditions in terms of the
distance to the boundary.

2.1.1 Preliminaries and main results

Before stating the main results we fix some notations.

Notation 2.1.1. (See Grunau and Sweers [41]) Let f and g be functions defined on
Ω×Ω with g ≥ 0. Then we call f ∼ g on Ω×Ω if and only if there are c1, c2 > 0 such
that

c1f(x, y) ≤ g(x, y) ≤ c2f(x, y) for all x, y ∈ Ω.

We will say f � g on Ω× Ω if and only if there is c > 0 such that

f(x, y) ≤ c g(x, y) for all x, y ∈ Ω.

Notation 2.1.2. Let f a function defined on Ω × Ω and α, β ∈ Nn. Derivatives are
denoted

Dα
xD

β
y f(x, y) =

∂|α|

∂xα1
1 x

α2
2 .. x

αn
n

∂|β|

∂yβ1

1 y
β2

2 .. y
βn
n

f(x, y),

where |α| =
∑n

k=1 αk.

In the literature several definitions of C`,α-domains appear. To avoid any ambiguity
we explicitly give the version that we will use in this chapter and also in the following
ones.

Definition 2.1.3 (Uniform C`,α regularity condition for Ω). Let α ∈ [0, 1], ` ∈ N+

and Ω be a bounded domain in Rn. The domain Ω satisfies the uniform C`,α regularity
condition (we write ∂Ω ∈ C`,α) if there exist a positive constant M, a finite open
covering {Uj}j∈J of ∂Ω, a corresponding collection {ϕj}j∈J of C`,α mappings such that
for every j ∈ J :

(i) ϕj : Uj → B = {y ∈ Rn : |y| < 1} is a bijection; set ψj = ϕinvj ;

(ii) with (ϕj,1, . . . , ϕj,n) and (ψj,1, . . . , ψj,n) the components of ϕj and ψj :

‖ϕj,i‖C`,α(Ūj) ≤M and ‖ψj,i‖C`,α(B̄) ≤M for i = 1, . . . , n;

(iii) it holds that ϕj (Uj ∩ Ω) = {y ∈ B : yn > 0};
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and moreover, there exists δ > 0 such that

{x ∈ Ω : dΩ(x) < δ} ⊂
⋃
j∈J

ψj
({
y ∈ Rn : |y| < 1

2

})
.

Definition 2.1.3 is similar to the uniform C` regularity condition in [2, Def.4.10
page 84]. In the following ∂Ω ∈ C` denotes ∂Ω ∈ C`,0.

We are now ready to state the main results of the chapter.

Theorem 2.1.4. Let Gm(x, y) be the Green function associated to system (2.1.1) and
let ∂Ω ∈ C6m+4 if n = 2 and ∂Ω ∈ C5m+2 otherwise. The following estimates hold for
every x, y ∈ Ω:

(i) if 2m− n > 0, then

|Gm(x, y)| � dΩ(x)m−
1
2
n dΩ(y)m−

1
2
n min

{
1,
dΩ(x)dΩ(y)

|x− y|2

} 1
2
n

,

(ii) if 2m− n = 0, then

|Gm(x, y)| � log

(
1 +

(
dΩ(x)dΩ(y)

|x− y|2

)m)
,

(iii) if 2m− n < 0, then

|Gm(x, y)| � |x− y|2m−n min

{
1,
dΩ(x)dΩ(y)

|x− y|2

}m
.

Theorem 2.1.5. Let Kj(x, y), for j = 0, ...,m− 1, be the Poisson kernels associated
to system (2.1.1). Suppose furthermore that ∂Ω ∈ C6m+4 if n = 2 and ∂Ω ∈ C5m+2 if
n ≥ 3. Then the following estimate holds for every x ∈ Ω and y ∈ ∂Ω

|Kj(y, x)| �
dΩ(x)m

|x− y|n−j+m−1 . (2.1.4)

Remark 2.1.6. If n− 1 < j ≤ m− 1 inequality (2.1.4) gives that on ∂Ω× Ω

|Kj(y, x)| � dΩ(x)1+j−n.

The estimates in Theorems 2.1.4 and 2.1.5 hold for (−∆)m replaced by any uni-
formly elliptic operator of order 2m. Indeed, the main ingredients are the Dirichlet
boundary condition and the estimates of Krasovskĭı. In the proof one has to use the
Dirichlet boundary condition both for the original and the adjoint problem. Although
the adjoint problem is different for general elliptic problems the Dirichlet boundary
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condition will remain. Notice that Krasovskĭı’s derived the estimates for the general
case.

In [41] the estimates as in Theorem 2.1.4 are given for the case that Ω is a ball in
Rn. There the authors could use the explicit formula of Gm given by Boggio in [8].
We recall that for balls the Green function associated to problem (2.1.1) is positive.

For general domains one cannot expect an explicit formula and instead we will
proceed by the estimates of Krasovskĭı for Gm and Kj given in [51]. For sufficiently
regular domains Ω (see Section 2.3) he first proves that the Green function and the
Poisson kernels exist and then he gives estimates for these functions.

Our aim will be to prove estimates from above of Gm and Kj depending on the
distance to the boundary. We will do so by estimating the j-th derivative through an
integration of the (j + 1)-th derivative along a path to the boundary. The dependence
on the distance to the boundary dΩ(x) will appear choosing a path which length is
proportional to dΩ(x). The path will be constructed explicitly in Lemma 2.5.1.

2.2 Green function and Poisson kernels

In this section we recall some of the well known properties of the Green function and
the Poisson kernels.

The Green function for (2.1.1)
This function Gm : Ω×Ω→ R is such that for every y ∈ Ω the mapping x 7→ G(x, y)
satisfies (in the sense of distribution){

(−∆)mGm (·, y) = δy(·) in Ω,(
∂
∂ν

)j
Gm (·, y) = 0 on ∂Ω, j = 0, ...,m− 1.

(2.2.1)

Since (−∆)m is selfadjoint on W 2m,2 (Ω) ∩Wm,2
0 (Ω) ⊂ L2 (Ω) , the Green function is

symmetric. Observe that for y ∈ Ω identity (2.2.1) gives for |s| ≤ m− 1

Ds
xG (x, y) = 0 for x ∈ ∂Ω. (2.2.2)

In fact, taking j = 0 in (2.2.1) one finds that x 7→ Gm(x, y) for y ∈ Ω is zero at the
boundary. Hence the tangential derivatives of x 7→ Gm(x, y) of any order, for y ∈ Ω,
are identically zero on ∂Ω. Since the normal derivatives up to order m− 1 are zero at
the boundary, (2.2.2) follows.

The functionGm has a singular behavior onDΩ :=
{
(x, x) : x ∈ Ω̄

}
. Assuming that

∂Ω is C4,α one finds that Gm belongs to C4,α
((

Ω̄× Ω̄
)
\DΩ

)
and also to C∞((Ω× Ω)\

DΩ).

The Poisson kernels for (2.1.1)
For j = 0, ...,m − 1, and y ∈ ∂Ω the functions x 7→ Kj(y, x) satisfy (in the sense of
distribution)

(−∆)mKj(y, ·) = 0 in Ω,(
∂
∂ν

)k
Kj(y, ·) = 0 on ∂Ω, for k 6= j, 0 ≤ k ≤ m− 1,(

∂
∂ν

)j
Kj(y, ·) = δy,∂Ω(·) on ∂Ω,

(2.2.3)
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where δy,∂Ω is the delta-function defined on ∂Ω (that is, the delta-function on an
(n− 1)-dimensional manifold). Moreover, the kernels satisfy for |s| ≤ m − 1 and
j = 0, ...,m− 1

Ds
xKj(y, x) = 0, for x, y ∈ ∂Ω, x 6= y. (2.2.4)

In fact, the mappings x 7→ Kj(y, x) on Ω̄ \ {y} with j = 0, ...,m − 1 are zero on
∂Ω \ {y}. Hence the tangential derivatives of any order are zero on ∂Ω \ {y}. Since
(2.2.3) implies that the normal derivatives up to order m− 1 are zero, we find (2.2.4).

The kernels Kj have a singular behavior on D∂Ω = {(x, x) : x ∈ ∂Ω} . Assuming
that ∂Ω is C∞ one finds that Kj belong to C∞ ((Ω̄× Ω̄

)
\D∂Ω

)
.

By an integration by part and by using the explicit order of the singularities of the
Green function (for instance from the result of Krasovskĭı in [51]), one can explicitly
write the relation between the Poisson kernels and the Green function. Namely for
j ∈ {0, ...,m− 1} and y in ∂Ω the following relation holds in Ω

Kj(y, x) =

{
∂
∂νy

(−∆y)
m−( j

2
+1)G(x, y) for j even,

(−∆y)
m− j+1

2 G(x, y) for j odd,

where νy denotes the external normal to ∂Ω in y.

2.3 The estimates of Krasovskĭı

We will now recall the theorem in [51] which gives the estimates of the Green function
and the Poisson kernels. We first give the main assumption.

Consider the boundary value problem{
Lu = ϕ in Ω,
Bju = ψj on ∂Ω for j = 0, ...,m− 1.

(2.3.1)

The following hypothesis are assumed.

(i) The operator

L :=
∑

|β|≤2m

aβ (x)Dβ,

is uniformly elliptic (see the condition for L on page 663 of [3]).

(ii) The boundary operators

Bj =
∑
|β|≤mj

bjβ (x)Dβ, for j = 0, ...,m− 1,

satisfy the complementing condition relative to L (see the complementing con-
dition on page 663 of [3]).
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(iii) Let l1 > maxj (2m−mj) and l0 = maxj (2m−mj) . The coefficients aβ belong
to C l1+1

(
Ω̄
)

and bjβ belong to C l1+1 (∂Ω) ;

(iv) The boundary ∂Ω is C l1+2m+1.

Theorem 2.3.1. Let the condition above be satisfied and let l1 be such that l1 >
2 (l0 + 1) for n = 2 and l1 >

3
2
l0 for n ≥ 3. If problem (2.3.1) is uniquely solvable then

the Green function Gm and the Poisson kernels Kj, with j = 0, ...,m − 1, for (2.3.1)
exist.

Theorem 2.3.2. Assume that the conditions of Theorem 2.3.1 are satisfied. Moreover
let α, β, γ ∈ Nn with |α| ≤ 2m+ l1 − l0, |β| ≤ l1 and |γ| ≤ l1 − 2m+mj + 1.

Then wherever they are defined, the derivatives of the Green function Gm satisfy:

(i) if |α|+ |β| < 2m− n then ∣∣Dα
xD

β
yGm (x, y)

∣∣ � 1,

(ii) if |α|+ |β| = 2m− n then

∣∣Dα
xD

β
yGm (x, y)

∣∣ � log

(
2 diamΩ

|x− y|

)
,

(iii) if |α|+ |β| > 2m− n then∣∣Dα
xD

β
yGm (x, y)

∣∣ � |x− y|2m−n−|α|−|β| ,
and the derivatives of Kj satisfy on ∂Ω× Ω:

(i) if |α|+ |γ| < mj − n+ 1 then∣∣Dα
xD

γ
yKj (y, x)

∣∣ � 1,

(ii) if |α|+ |γ| = mj − n+ 1 then

∣∣Dα
xD

γ
yKj (y, x)

∣∣ � log

(
2 diamΩ

|x− y|

)
,

(iii) if |α|+ |γ| > mj − n+ 1 then∣∣Dα
xD

γ
yKj (y, x)

∣∣ � |x− y|mj−n+1−|α|−|γ| .

Here diamΩ denotes the diameter of Ω.



30 Chapter 2. Estimates of the Green function

Remark 2.3.3. In case of Dirichlet boundary conditions, hence l0 = 2m, the conditions
on l1 are:

for n ≥ 3: l1 > 3m,
for n = 2: l1 > 4m+ 2.

Hence one needs ∂Ω ∈ C6m+4 for n = 2 and ∂Ω ∈ C5m+2 for n ≥ 3.

Krasovskĭı has quite strong assumptions on the regularity of the boundary of Ω.
This is also due to the fact that he works with general elliptic operators and boundary
conditions. One may think that when L = (−∆)m and with Dirichlet boundary
conditions, it would be sufficient the hypothesis ∂Ω ∈ C2m,α for α ∈ (0, 1). The
assumptions that we have on the boundary of Ω are the ones needed to use the result
of Krasovskĭı.

2.4 Some technical lemmas

In the proof of Theorems 2.1.4 and 2.1.5 we will use some relations involving the term

min
{
dΩ(x)dΩ(y)

|x−y|2

}
. These relations have been studied in [41]. For the sake of convenience

we recall here some of their results.

Lemma 2.4.1. If |x− y| ≤ 1
2
max {dΩ(x), dΩ(y)} then it holds

1
2
dΩ(x) ≤ dΩ(y) ≤ 2dΩ(x) and 1 ≤ dΩ(x)dΩ(y)

|x− y|2
.

Otherwise if |x− y| ≥ 1
2
max {dΩ(x), dΩ(y)} then it holds

dΩ(x)

|x− y|
≤ 2,

dΩ(y)

|x− y|
≤ 2 and

dΩ(x)dΩ(y)

|x− y|2
≤ 4.

Lemma 2.4.2. Let p, q ≥ 0. The following relations hold on Ω× Ω:

i: min
{

1, dΩ(x)pdΩ(y)q

|x−y|p+q

}
∼ min

{
1, dΩ(x)p

|x−y|p

}
min

{
1, dΩ(y)q

|x−y|q

}
,

ii: log
(
1 + dΩ(x)pdΩ(y)q

|x−y|p+q

)
∼ log

(
2 + dΩ(x)

|x−y|

)
min

{
1, dΩ(x)pdΩ(y)q

|x−y|p+q

}
,

iii: log
(
2 + dΩ(x)

|x−y|

)
∼ log

(
2 + dΩ(x)dΩ(y)

|x−y|2

)
,

iv: min
{

1, dΩ(x)pdΩ(y)q

|x−y|p+q

}
∼

(
dΩ(y)
dΩ(x)

) 1
2
(q−p)

min

{
1, dΩ(x)

1
2 (p+q)dΩ(y)

1
2 (p+q)

|x−y|p+q

}
,

v: min
{

1, dΩ(x)dΩ(y)

|x−y|2

}
∼ min

{
dΩ(y)
dΩ(x)

, dΩ(x)
dΩ(y)

, dΩ(x)dΩ(y)

|x−y|2

}
.
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2.5 Estimates of the Green function

In this section we will prove Theorem 2.1.4. First we derive an estimate of the j−th
derivatives of Gm integrating an estimate of the (j + 1)−th derivative along an ap-
propriate path. We let the path finish at the boundary to benefit from the boundary
condition. Moreover, we have to construct the path such that it stays away from the
singularity x = y and such that it has a length of the same magnitude as dΩ(x).

In the following lemma we state the existence of such a path.

Lemma 2.5.1. Let x ∈ Ω and y ∈ Ω̄. There exists a curve γyx : [0, 1] → Ω̄ with
γyx(0) = x, γyx(1) ∈ ∂Ω and such that:

(i) for every t ∈ [0, 1] : |γyx(t)− y| ≥ 1
2
|x− y| ,

(ii) l ≤ (1 + π) dΩ(x) where l is the length of γyx.

Moreover, letting γ̃yx : [0, l]→ Ω̄ be the parametrization by arclength of γyx, it holds
that

(iii) 1
5
s ≤ |x− γ̃yx(s)| ≤ s for s ∈ [0, l] .

Proof. A description on how to define such a path is as follows. One connects x with
a straight line to its nearest boundary point x̃ until the straight line possibly gets
too close to y. To avoid the neighborhood of y we take a circular route on ∂B with
B = B(y, 1

2
|x− y|). In the case that x̃ ∈ B one moves on ∂B to some other point on

∂Ω. We will not give the details of the proof but refer to Figure 2.1. �

rx̃ r
x

∂Ω

ry r
x

∂Ω

ry
r̃x r

x

∂Ω

ry
rx̃

Figure 2.1: The path γyx for several positions of y.

We proceed with the proof of Theorem 2.1.4 and start from the estimates in [51] of
the m-th derivative of Gm. Integrating this function along the path γyx of Lemma 2.5.1
we find the estimates of the (m−1)-th derivative of Gm in terms of the distance to the
boundary. Next starting from the new estimates one repeats the argument. Iterating
the procedure m times we find the result as stated in Theorem 2.1.4.

There are four cases. Each of the following lemmas will consider one of these cases.

Lemma 2.5.2. Let ν1, ν2, k ∈ N0, k ≥ 2. If

|∇xH(x, y)| � |x− y|−k min

{
1,
dΩ(x)

|x− y|

}ν1
min

{
1,

dΩ(y)

|x− y|

}ν2
for x, y ∈ Ω,
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and H(x̃, y) = 0 for every x̃ ∈ ∂Ω and y ∈ Ω, then the following inequality holds:

|H(x, y)| � |x− y|−k+1 min

{
1,
dΩ(x)

|x− y|

}ν1+1

min

{
1,

dΩ(y)

|x− y|

}ν2
for x, y ∈ Ω.

Proof. Let x, y ∈ Ω and let γyx the path from x to the boundary from Lemma 2.5.1.
Let x̃ := γyx (l). Since x̃ ∈ ∂Ω one has that

H(x, y) = H(x̃, y) +

∫
γy

x

∇zH(z, y) · dz =

∫ l

0

∇xH(γ̃yx(s), y) · τ(s)ds, (2.5.1)

with τ(s) the unit tangent vector. By the hypothesis and Lemma 2.4.2, i) we obtain
from (2.5.1) that

|H(x, y)| �
∫ l

0

|γ̃yx(s)− y|
−k min

{
1,
dΩ(γ̃yx(s))

ν1dΩ(y)ν2

|γ̃yx(s)− y|ν1+ν2

}
ds �

�
∫ l

0

(
|x− y|+ s

)−k
min

{
1,

dΩ(x)ν1dΩ(y)ν2

( |x− y|+ s)ν1+ν2

}
ds �

� |x− y|−k+1

∫ l
|x−y|

0

(1 + t)−k min

{
1,

dΩ(x)ν1dΩ(y)ν2

|x− y|ν1+ν2 (1 + t)ν1+ν2

}
dt. (2.5.2)

Here we used Lemma 2.5.1 and that dΩ(γ̃yx(s)) � dΩ(x). It is convenient to separate
the following two cases.

Case 1, dΩ(x)
|x−y| < 1 : Then min

{
1, dΩ(x)ν1dΩ(y)ν2

|x−y|ν1+ν2 (1+t)ν1+ν2

}
= dΩ(x)ν1dΩ(y)ν2

|x−y|ν1+ν2 (1+t)ν1+ν2
and one

finds by Lemma 2.4.1 that

|H(x, y)| � dΩ(x)ν1dΩ(y)ν2

|x− y|k+ν1+ν2−1

∫ l
|x−y|

0

1

(1 + t)k+ν1+ν2
dt �

� dΩ(x)ν1+1dΩ(y)ν2

|x− y|ν1+ν2+k
� |x− y|−k+1 min

{
1,
dΩ(x)ν1+1

|x− y|ν1+1

dΩ(y)ν2

|x− y|ν2
}
. (2.5.3)

Case 2, dΩ(x)
|x−y| ≥ 1 : Since k ≥ 2 we get again by Lemma 2.4.1 that

|H(x, y)| � |x− y|−k+1

∫ l
|x−y|

0

(1 + t)−k dt � |x− y|−k+1 �

� |x− y|−k+1 min

{
1,
dΩ(x)ν1+1

|x− y|ν1+1

dΩ(y)ν2

|x− y|ν2
}
. (2.5.4)

�

Lemma 2.5.3. Let ν1, ν2 ∈ N0. If

|∇xH(x, y)| � |x− y|−1 min

{
1,
dΩ(x)

|x− y|

}ν1
min

{
1,

dΩ(y)

|x− y|

}ν2
for x, y ∈ Ω,
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and H(x̃, y) = 0 for every x̃ ∈ ∂Ω and y ∈ Ω, then the following inequality holds:

|H(x, y)| � log

(
2 +

dΩ(x)dΩ(y)

|x− y|2

)
min

{
1,
dΩ(x)

|x− y|

}ν1+1

min

{
1,

dΩ(y)

|x− y|

}ν2
,

for x, y ∈ Ω.

Proof. Similarly as in (2.5.2) we find that

|H(x, y)| �
∫ l

|x−y|

0

(1 + t)−1 min

{
1,

dΩ(x)ν1dΩ(y)ν2

|x− y|ν1+ν2 (1 + t)ν1+ν2

}
dt.

Again we will separate the two cases.

Case 1, dΩ(x)
|x−y| < 1 : As in (2.5.3) we obtain

|H(x, y)| � dΩ(x)ν1+1

|x− y|ν1+1

dΩ(y)ν2

|x− y|ν2
�

� log

(
2 +

dΩ(x)

|x− y|

)
min

{
1,
dΩ(x)ν1+1

|x− y|ν1+1

dΩ(y)ν2

|x− y|ν2
}
.

Case 2, dΩ(x)
|x−y| ≥ 1 : As in (2.5.4) we get by using Lemma 2.4.2, ii) that

|H(x, y)| �
∫ l

|x−y|

0

(1 + t)−1 dt �

� log

(
1 +

(1 + π) dΩ(x)

|x− y|

)
∼ log

(
2 +

dΩ(x)

|x− y|

)
min

{
1,
dΩ(x)ν1+1

|x− y|ν1+1

dΩ(y)ν2

|x− y|ν2
}
.

The claim follows using Lemma 2.4.2, iii). �

Lemma 2.5.4. Let ν1, ν2 ∈ N0. If

|∇xH(x, y)| � log

(
2 +

dΩ(x)dΩ(y)

|x− y|2

)
min

{
1,
dΩ(x)

|x− y|

}ν1
min

{
1,

dΩ(y)

|x− y|

}ν2
,

for x, y ∈ Ω, and H(x̃, y) = 0 for every x̃ ∈ ∂Ω and y ∈ Ω, then the following inequality
holds:

|H(x, y)| � dΩ(x) min

{
1,
dΩ(x)

|x− y|

}ν1
min

{
1,

dΩ(y)

|x− y|

}ν2
for x, y ∈ Ω.
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Proof. Proceeding as before and using Lemma 2.4.2, iii) one obtains that

|H(x, y)| �
∫ l

0

log

(
2 +

dΩ(γ̃yx(s))dΩ(y)

|γ̃yx(s)− y|2

)
min

{
1,
dΩ(γ̃yx(s))

ν1dΩ(y)ν2

|γ̃yx(s)− y|ν1+ν2

}
ds �

� |x− y|
∫ l

|x−y|

0

log
(
2 + dΩ(x)

|x−y|(1+t)

)
min

{
1, dΩ(x)ν1dΩ(y)ν2

|x−y|ν1+ν2 (1+t)ν1+ν2

}
dt. (2.5.5)

Case 1, dΩ(x)
|x−y| < 1 : From Lemma 2.4.1 it follows that

|H(x, y)| � dΩ(x)ν1dΩ(y)ν2

|x− y|ν1+ν2−1

∫ l
|x−y|

0

1

(1 + t)ν1+ν2
dt �

� dΩ(x)ν1dΩ(y)ν2

|x− y|ν1+ν2−1

dΩ(x)

|x− y|
∼ dΩ(x) min

{
1,
dΩ(x)ν1dΩ(y)ν2

|x− y|ν1+ν2

}
.

Case 2, dΩ(x)
|x−y| ≥ 1 : We first observe that 6dΩ(x)

|x−y|(1+t) > 1. Indeed since t ≤ (1+π)dΩ(x)
|x−y|

we have that

6dΩ(x)

|x− y| (1 + t)
≥ 6dΩ(x)

|x− y|+ (1 + π) dΩ(x)
≥ 6

2+π
> 1.

Hence from (2.5.5) applying Lemma 2.4.1 we obtain

|H(x, y)| � |x− y|
∫ l

|x−y|

0

log

(
6

dΩ(x)

|x− y| (1 + t)

)
dt ∼

∼ |x− y|
[(

1 + l
|x−y|

)
log

(
6dΩ(x)

|x−y|(1+ l
|x−y|)

)
− log

(
6dΩ(x)
|x−y|

)
+ l

|x−y|

]
�

� |x− y|
(

1 +
(1 + π) dΩ(x)

|x− y|

)
log

(
6dΩ(x)
|x−y|

(1+π)dΩ(x)
|x−y| + 1

)

+dΩ(x)

(
|x− y|
dΩ(x)

log

(
|x− y|
6dΩ(x)

)
+ 1 + π

)
∼

∼ dΩ(x) ∼ dΩ(x) min

{
1,
dΩ(x)ν1dΩ(y)ν2

|x− y|ν1+ν2

}
.

�

Lemma 2.5.5. Let ν1, ν2, α1, α2 ∈ N0. If

|∇xH(x, y)| � dΩ(x)α1dΩ(y)α2 min

{
1,
dΩ(x)

|x− y|

}ν1
min

{
1,

dΩ(y)

|x− y|

}ν2
,

for x, y ∈ Ω, and H(x̃, y) = 0 for every x̃ ∈ ∂Ω and y ∈ Ω, then the following inequality
holds:

|H(x, y)| � dΩ(x)α1+1dΩ(y)α2 min

{
1,
dΩ(x)

|x− y|

}ν1
min

{
1,

dΩ(y)

|x− y|

}ν2
for x, y ∈ Ω.
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Proof. Proceeding as before, one obtains that

|H(x, y)| �
∫ l

0

dΩ(γ̃yx(s))
α1dΩ(y)α2 min

{
1,
dΩ(γ̃yx(s))

ν1dΩ(y)ν2

|γ̃yx (s)− y|ν1+ν2

}
ds �

� |x− y| dΩ(x)α1dΩ(y)α2

∫ l
|x−y|

0

min

{
1,

dΩ(x)ν1dΩ(y)ν2

|x− y|ν1+ν2 (1 + t)ν1+ν2

}
dt.

Again we will separate the two cases.

Case 1, dΩ(x)
|x−y| < 1 : As before it follows that

|H(x, y)| � dΩ(x)ν1+α1dΩ(y)ν2+α2

|x− y|ν1+ν2−1

∫ l
|x−y|

0

1

(1 + t)ν1+ν2
dt �

� dΩ(x)
dΩ(x)ν1+α1dΩ(y)ν2+α2

|x− y|ν1+ν2
∼ dΩ(x)α1+1dΩ(y)α2 min

{
1,
dΩ(x)ν1dΩ(y)ν2

|x− y|ν1+ν2

}
.

Case 2, dΩ(x)
|x−y| ≥ 1 : We obtain

|H(x, y)| � |x− y| dΩ(x)α1dΩ(y)α2

∫ l
|x−y|

0

1 dt ∼

∼ dΩ(x)α1+1dΩ(y)α2 ∼ dΩ(x)α1+1dΩ(y)α2 min

{
1,
dΩ(x)ν1dΩ(y)ν2

|x− y|ν1+ν2

}
.

�
The four lemmas above allow us to prove the following theorem of which Theorem

2.1.4 is a special case.

Theorem 2.5.6. Let Gm(x, y) be the Green function associated to system (2.1.1) and
let ∂Ω ∈ C6m+4 if n = 2 and ∂Ω ∈ C5m+2 otherwise. Let k ∈ Nn with |k| ≤ 4m+ 3 if
n = 2 and |k| ≤ 3m+ 2 if n ≥ 3.

The following estimates hold for every x, y ∈ Ω :

(i) For |k| ≥ m:

(a) if 2m− n− |k| < 0, then∣∣Dk
xGm(x, y)

∣∣ � |x− y|2m−n−|k| min

{
1,

dΩ(y)

|x− y|

}m
,

(b) if 2m− n− |k| = 0, then∣∣Dk
xGm(x, y)

∣∣ � log

(
1 +

dΩ(y)m

|x− y|m
)
∼

∼ log

(
2 +

dΩ(y)

|x− y|

)
min

{
1,

dΩ(y)

|x− y|

}m
,
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(c) if 2m− n− |k| > 0, then

∣∣Dk
xGm(x, y)

∣∣ � dΩ(y)2m−n−|k| min

{
1,

dΩ(y)

|x− y|

}n+|k|−m

,

(ii) For |k| < m:

(a) if 2m− n− |k| < 0, then

∣∣Dk
xGm(x, y)

∣∣ � |x− y|2m−n−|k| min

{
1,
dΩ(x)

|x− y|

}m−|k|
min

{
1,

dΩ(y)

|x− y|

}m
,

(b) if 2m− n− |k| = 0, then

∣∣Dk
xGm(x, y)

∣∣ � log

(
1 +

dΩ(y)mdΩ(x)m−|k|

|x− y|2m−|k|

)
∼

∼ log

(
2 +

dΩ(x)

|x− y|

)
min

{
1,

dΩ(y)

|x− y|

}m
min

{
1,
dΩ(x)

|x− y|

}m−|k|
,

(c) if 2m− n− |k| > 0, and moreover

i. m− 1
2
n ≤ |k|, then

∣∣Dk
xGm(x, y)

∣∣ � dΩ (y)2m−n−|k| min
{

1, dΩ(x)
|x−y|

}m−|k|
min

{
1, dΩ(y)

|x−y|

}n−m+|k|
,

ii. |k| < m− 1
2
n, then

∣∣Dk
xGm(x, y)

∣∣ � dΩ(y)m−
n
2 dΩ(x)m−

n
2
−|k| min

{
1,
dΩ(x)dΩ(y)

|x− y|2

}n
2

.

Proof. Let x, y ∈ Ω. We will start from the estimates of Krasovskĭı for the higher order
derivatives of Gm which are stated in Theorem 2.3.2. The estimates for the lower order
derivatives of Gm will be obtained by integrating the higher order estimates along the
path γyx from Lemma 2.5.1. Each of the four lemmas above corresponds to one such
integration step. Indeed, with α, β ∈ Nn and x̃ ∈ ∂Ω the end point of γyx, we find

Dα
xD

β
yGm(x, y) = Dα

xD
β
yGm(x̃, y) +

∫
γy

x

∇zD
α
zD

β
yGm(z, y) · dz. (2.5.6)

If |α| ≤ m− 1 then the first term on the right hand side of (2.5.6) equals 0 and we get

∣∣Dα
xD

β
yGm(x, y)

∣∣ ≤ ∫ l

0

∣∣∇xD
α
xD

β
yGm(γ̃yx(s), y)

∣∣ ds. (2.5.7)
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If |β| ≤ m− 1, then similarly by integrating with respect to y we find∣∣Dα
xD

β
yGm(x, y)

∣∣ ≤ ∫ l

0

∣∣∇yD
β
yD

α
xGm(x, γ̃xy (s))

∣∣ ds. (2.5.8)

The explicit estimate coming out of one of such steps depends on which of the four
lemmas above we have to use. We take H(x, y) = Dα

xD
β
yGm(x, y) and depending on

|k| = r we have to make an appropriate choice for α and β. By hypothesis r ≤ 4m+ 3
if n = 2 while r ≤ 3m+ 1 otherwise.

We distinguish the cases as in the statement of the theorem.
Case 1, r ≥ m: Let β ∈ Nn with |β| = m − 1. Then proceeding from (2.5.8)

with k = α and using the estimate in Theorem 2.3.2, namely
∣∣∇yD

α
xD

β
yGm(x, y)

∣∣ ≤
|x− y|m−n−r , three different cases have to be considered.

Case 1(a), 2m− n− r < 0 : The claim follows applying m times Lemma 2.5.2.

Case 1(b), 2m − n − r = 0 : One gets the estimates by using Lemma 2.5.2 m − 1
times and Lemma 2.5.3 once.

Case 1(c), 2m − n − r > 0 : By first applying Lemma 2.5.2 n + r −m − 1 times
and then Lemma 2.5.3 once we find∣∣∣Dβ̃

yD
k
xGm(x, y)

∣∣∣ � log

(
1 +

dΩ(y)n+r−m

|x− y|n+r−m

)
,

with β̃ ∈ Nn, β̃ ≤ β and
∣∣∣β̃∣∣∣ = 2m − n − r. Next one uses Lemma 2.5.4 once and

Lemma 2.5.5 2m− n− r − 1 times.

Case 2, r < m: Let α, β ∈ Nn with |α| = m− r and |β| = m. One starts from the
Krasovskĭı estimates for |Dβ

yD
α
xD

k
xGm(x, y)| and then integrates m times with respect

of y and m− r times with respect to x.
Case 2(a), 2m − n − r < 0 : The claim follows by applying Lemma 2.5.2 first m

times with respect to y and then m− r times with respect to x.

Case 2(b), 2m − n − r = 0 : One proves the estimates by using Lemma 2.5.2 m
times with respect to y, m− r− 1 times with respect to x and then Lemma 2.5.3 once
with respect to x.

Case 2(c), 2m − n − r > 0 : One has to separate the cases m − r ≤ n − 1 and
m− r > n− 1.

Case m − r ≤ n − 1 : Applying Lemma 2.5.2 n − 1 times and Lemma 2.5.3 once
we get ∣∣∣Dβ̃

yD
k
xGm(x, y)

∣∣∣ � log

(
1 +

dΩ(x)m−rdΩ(y)n−m+r

|x− y|n

)
,

with β̃ ∈ Nn, β̃ ≤ β with
∣∣∣β̃∣∣∣ = 2m−n−r. Then using once Lemma 2.5.4 and Lemma

2.5.5 2m− n− r − 1 times we obtain∣∣Dk
xGm (x, y)

∣∣ � d (y)2m−n−r min

{
1,
dΩ(x)

|x− y|

}m−r
min

{
1,

dΩ(y)

|x− y|

}n−m+r

. (2.5.9)
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The claim follows from (2.5.9) when m − 1
2
n ≤ r. Otherwise when r < m − 1

2
n we

rewrite (2.5.9) as

∣∣Dk
xGm(x, y)

∣∣ � dΩ(y)2m−n−r
(
dΩ(y)

dΩ(x)

)n
2
−m+r

min

{
1,
dΩ(x)dΩ(y)

|x− y|2

}n
2

∼

∼ dΩ(y)m−
n
2 dΩ(x)m−

n
2
−r min

{
1,
dΩ(x)dΩ(y)

|x− y|2

}n
2

.

Here we use Lemma 2.4.2, iv).

Case m− r > n− 1 : Let α̃ ∈ Nn, α̃ ≤ α with |α̃| = m−n− r. Using Lemma 2.5.2
n− 1 times and 2.5.3 once we get

∣∣Dβ
yD

α̃
xD

k
xGm (x, y)

∣∣ � log

(
1 +

dΩ(x)n

|x− y|n

)
.

Then applying once Lemma 2.5.4 and Lemma 2.5.5 m− 1 times with respect to y and
m− r − n times with respect to x, one obtains

∣∣Dk
xGm (x, y)

∣∣ � d (y)m d (x)m−r−n min

{
1,
dΩ(x)

|x− y|

}n
∼

∼ d (y)m−
1
2
n d (x)m−r−

n
2 min

{
1,
dΩ(x)d (y)

|x− y|2

}n
2

,

using again Lemma 2.4.2, iv). Observe that m − r > n − 1 implies r < m − 1
2
n for

n ≥ 2. �

2.6 Estimates of the Poisson kernels

In this section we prove Theorem 2.1.5. The method is similar to the one used for
Theorem 2.1.4. A difference is that in this case there is no symmetry between x and
y.

In the proof of Theorem 2.1.5 we repeatedly integrate the derivatives of the Poisson
kernels along the path constructed in Lemma 2.5.1. The following lemma corresponds
to one such integration step.

Lemma 2.6.1. Let ν1, k ∈ N with k ≥ 2. If

|∇xH(y, x)| � |x− y|−k dΩ(x)ν1 for x ∈ Ω, y ∈ ∂Ω,

and H(y, x̃) = 0 for every x̃ ∈ ∂Ω with x̃ 6= y, then the following inequality holds

|H(y, x)| � |x− y|−k dΩ(x)ν1+1 for x ∈ Ω, y ∈ ∂Ω.
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Proof. Let x ∈ Ω and y ∈ ∂Ω. Let γyx the path from x to the boundary from Lemma
2.5.1 and let x̃ := γyx (1). Since x̃ ∈ ∂Ω and x̃ 6= y it holds that

H(y, x) = H(y, x̃) +

∫
γy

x

∇zH(y, z) · dz =

∫
γy

x

∇zH(y, z) · dz.

By the hypothesis we get that

|H(y, x)| �
∫ l

0

|∇xH(y, γ̃yx(s))| ds �
∫ l

0

|γ̃yx(s)− y|
−k dΩ(γ̃yx(s))

ν1 ds.

Since dΩ(γ̃yx(s)) � dΩ(x), from Lemma 2.5.1 it follows that

|H(y, x)| � dΩ(x)ν1
∫ l

0

(|x− y|+ s)−k ds �

� dΩ(x)ν1 |x− y|−k+1

∫ l
|x−y|

0

(1 + t)−k dt � dΩ(x)ν1+1

|x− y|k
.

�
The lemma above allows us to prove the following theorem of which Theorem 2.1.5

is a special case.

Theorem 2.6.2. Let Kj (y, x) , for j = 0, ...,m− 1, be the Poisson kernels associated
to system (2.1.1). Suppose furthermore that ∂Ω ∈ C6m+4 if n = 2 and ∂Ω ∈ C5m+2

otherwise. Let α ∈ Nn with |α| ≤ m − 1. The following estimate holds for x ∈ Ω,
y ∈ ∂Ω

|Dα
xKj(y, x)| �

dΩ(x)m−|α|

|x− y|n−j+m−1 .

Remark 2.6.3. The estimates of Dα
xKj(x, y) for |α| ≥ m can be found in the paper of

Krasovskĭı [51]: for x ∈ Ω and y ∈ ∂Ω

|Dα
xKj(y, x)| � |x− y|−n+j−|α|+1 .

Proof. Let x ∈ Ω, y ∈ ∂Ω, j ∈ {0, . . . ,m− 1} and α ∈ Nn with |α| ≤ m − 1. We
will start from the estimates of Krasovskĭı for the derivative of order m of Kj which
are stated in Theorem 2.3.2. The estimates for the lower order derivatives of Kj will
be obtained by integrating the higher order estimates along the path γyx from Lemma
2.5.1. Indeed, with β ∈ Nn, β ≥ α and |β| = m− 1 we find

Dβ
xKj(y, x) = Dβ

xKj(y, γ
y
x(1)) +

∫
γy

x

∇zD
β
zKj(y, z) · dz =

∫
γy

x

∇zD
β
zKj(y, z) · dz.

Applying Lemma 2.6.1 with H(y, x) = Dβ
xKj(y, x) we get∣∣Dβ

xKj(y, x)
∣∣ � |x− y|j−n+1−m dΩ(x).

The claim follows iterating the procedure m− |α| − 1 times. �
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2.7 Estimates for the solution with zero boundary

conditions

In this section we will derive regularity estimates for{
(−∆)m u = f in Ω,

( ∂
∂ν

)ku = 0 on ∂Ω with 0 ≤ k ≤ m− 1,
(2.7.1)

where Ω ⊂ Rn is bounded and has the boundary regularity as before. First we recall
an estimate involving the Riesz potential (see [36]). Defining Kγ(x) = |x|−γ and

(Kγ ∗ f) (x) :=

∫
Ω

|x− y|−γ f(y)dy,

one has:

Lemma 2.7.1. Let Ω ⊂ Rn be bounded, γ < n and 1 ≤ p ≤ q ≤ ∞. If γ
n
< 1

r
= 1+ 1

q
− 1
p

then there is Cn−γr,Ω > 0 such that for all f ∈ Lp(Ω):

‖Kγ ∗ f‖Lq(Ω) ≤ Cn−γr,Ω ‖f‖Lp(Ω) . (2.7.2)

Proof. This proof is standard, let us recall it for easy reference. Let

γ

n
<

1

r
= 1 +

1

q
− 1

p
= 1− δ.

Let σn denote the surface area of the unit ball in Rn. For 1 < p ≤ q <∞ one finds by
Hölder, setting cn−γr,Ω = 1

n−γrσn (diamΩ)n−γr ,

(Kγ ∗ f) (x) =

∫
Ω

1

|x− y|γ
r
q

|f(y)|
p
q

1

|x− y|γ(
p−1

p )r
|f(y)|pδ dy ≤

≤
(∫

Ω

1

|x− y|γr
|f(y)|p dy

) 1
q
(∫

Ω

1

|x− y|γr
dy

) p−1
p
(∫

Ω

|f(y)|p dy
)δ

≤ (cn−γr,Ω)
p−1

p

(∫
Ω

1

|x− y|γr
|f(y)|p dy

) 1
q
(∫

Ω

|f(y)|p dy
)δ

.

Hence, with a change in the order of integration,∫
Ω

|(Kγ ∗ f) (x)|q dx ≤ (cn−γr,Ω)
p−1

p
q+1

(∫
Ω

|f(y)|p dy
)1+δq

implying (2.7.2) since (cn−γr,Ω)1− 1
p
+ 1

q ≤ Cn−γr,Ω := cn−γr,Ω + 1.
For p = 1 one may skip the middle term in the Hölder estimate; for q = ∞ the

first term. �
As a consequence of the pointwise estimates and using the lemma above, we next

state the optimal Lp-Lq-regularity results mentioned before. Let us recall that dΩ(.)
is the distance function defined in (2.1.3).
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Proposition 2.7.2. Assume the hypothesis of Theorem 2.5.6. Let u ∈ C2m
(
Ω̄
)

and
f ∈ C

(
Ω̄
)

satisfy (2.7.1).

• If 2m > n, then there exists C1
Ω,m > 0 such that for all θ ∈ [0, 1]∥∥dΩ(.)−m+θnu

∥∥
L∞(Ω)

≤ C1
Ω,m

∥∥dΩ(.)m−(1−θ)nf
∥∥
L1(Ω)

. (2.7.3)

• Let 1 ≤ p ≤ q ≤ ∞. If 1
p
− 1

q
< min

{
2m
n
, 1
}
, then taking

α ∈
(

1
p
− 1

q
,min

{
1, 2m

n

}]
there exists C2

Ω,m,α > 0 such that for all θ ∈ [0, 1]∥∥dΩ(.)−m+θnαu
∥∥
Lq(Ω)

≤ C2
Ω,m,α

∥∥dΩ(.)m−(1−θ)nαf
∥∥
Lp(Ω)

. (2.7.4)

Remark 2.7.3. Notice that the shift in the exponent of dΩ(.) between the right and the
left hand side of (2.7.4) is 2m− nα. Hence the shift increases when α goes to 1

p
− 1

q
.

Remark 2.7.4. The conditions u ∈ C2m
(
Ω̄
)

and f ∈ C
(
Ω̄
)

may be considerable
relaxed for each of the estimates by using a density argument.

Remark 2.7.5. The estimate in (2.7.3) is sharp and does not seem to follow through
imbedding results. The estimates in (2.7.4) do need an application of Hölder’s in-
equality. As a consequence the condition 1

p
− 1

q
< min

{
2m
n
, 1
}

appears with a strict
inequality. Such estimates will also follow through regularity results in Lp, Poincaré
estimates, Sobolev imbeddings and dual Sobolev imbeddings. See [11].

Remark 2.7.6. In a similar way one may also derive estimates for combinations of
boundary behavior and derivatives. For example if n = m = 2 one finds with θ ∈ [0, 1] :∥∥dΩ(.)−1+2θDxu

∥∥
L∞(Ω)

≤ C3
Ω,m

∥∥dΩ(.)2θf
∥∥
L1(Ω)

.

Remark 2.7.7. Fila, Souplet and Weissler in [33, Proposition 2.2] obtained for the case
m = 1, the following estimate. Assume that 1 ≤ p ≤ q ≤ ∞ satisfy 1

p
− 1

q
< 2

n+1
, then

any u ∈ W 1,2
0 (Ω) with dΩ(.)

1
p ∆u ∈ Lp (Ω) satisfies∥∥∥dΩ(.)

1
qu
∥∥∥
Lq(Ω)

≤ C4
Ω

∥∥∥dΩ(.)
1
p ∆u

∥∥∥
Lp(Ω)

.

This is a special case of (2.7.4). The proof in [33] uses heat kernel estimates.

Proof. In order to consider all the possible splitting between the boundary behavior
and the internal regularity we use Lemma 2.4.2, v) to find for all α ∈ [0, 1] and
σ ∈ [−1, 1] that

min

{
1,
dΩ(x)dΩ(y)

|x− y|2

}
�
(
dΩ(x)dΩ(y)

|x− y|2

)1−α(
dΩ(x)

dΩ(y)

)ασ
.
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Hence, for 2m − n > 0, we may use Theorem 2.1.4, i) to obtain that there exists
CΩ,m > 0 such that for σ ∈ [−1, 1] and for all x, y ∈ Ω

Gm (x, y) ≤ CΩ,m dΩ(x)m−
1
2
nαdΩ(y)m−

1
2
nα 1

|x− y|n(1−α)

(
dΩ(y)

dΩ(x)

) 1
2
nασ

≤ CΩ,m dΩ(x)m−
1
2
nα(1+σ)dΩ(y)m−

1
2
nα(1−σ) 1

|x− y|n(1−α)
. (2.7.5)

For 2m− n < 0 and with n
2m
α ∈ [0, 1] we find for σ ∈ [−1, 1] and x, y ∈ Ω

Gm (x, y) ≤ CΩ,m |x− y|2m−n
(
dΩ(x)dΩ(y)

|x− y|2

)m(1− n
2m

α)(
dΩ(y)

dΩ(x)

)m n
2m

ασ

≤ CΩ,m dΩ(x)m−
1
2
nα(1+σ)dΩ(y)m−

1
2
nα(1−σ) 1

|x− y|n(1−α)
. (2.7.6)

Hence we find

dΩ(x)−m+ 1
2
nα(1+σ) |u(x)| ≤ CΩ,m

∫
Ω

1

|x− y|n(1−α)
dΩ(y)m−

1
2
nα(1−σ) |f(y)| dy. (2.7.7)

The estimate in (2.7.3) follows from (2.7.7) taking α = 1 and θ = 1
2
(1 + σ). For the

Lp − Lq estimates we may use (2.7.7) and Lemma 2.7.1 to find that:∥∥∥d−m+ 1
2
nα(1+σ)u

∥∥∥
Lq(Ω)

≤ c
∥∥∥dm− 1

2
nα(1−σ)f

∥∥∥
Lp(Ω)

,

since α ∈
(

1
p
− 1

q
,min

{
1, 2m

n

}]
. So with θ = 1

2
(1 + σ) we obtain the estimate in

(2.7.3).
In the case that 2m−n = 0 we may proceed as for (2.7.6) except for a logarithmic

term. This term can be taken care of through

log

(
2 +

dΩ(x)

|x− y|

)
≤ CΩ,ε

1

|x− y|ε
,

where we take ε = 1
2
n
(
α− 1

p
+ 1

q

)
. �



Chapter 3

The Clamped Plate Equation for
the Limaçon

3.1 Introduction

Hadamard in [47] states that the clamped plate equation for plates having the shape
of a Limaçon de Pascal is positivity preserving. Positivity preserving for this (linear)
equation on Ω ⊂ R2 means that in the fourth order boundary value problem{

∆2u = f in Ω,
u = ∂

∂ν
u = 0 on ∂Ω,

(3.1.1)

the sign of f is preserved by u. Here f is the force (density) and u the deflection of
the plate of shape Ω. So the statement reads as, say for f ∈ L1 (Ω):

f ≥ 0 implies u ≥ 0. (3.1.2)

For a precise citation of Hadamard let ΓBA = GΩ (A,B) be the corresponding Green
function, that is, u (x) =

∫
Ω
GΩ (x, y) f (y) dy solves (3.1.1). Concerning ΓBA Hadamard

in [47] writes:

M. Boggio, qui a, le premier, noté la signification physique de ΓBA, en
a déduit l’hypothése que ΓBA était toujours positif. Malgré l’absence de
démonstration rigoureuse, l’exactitude de cette proposition ne parâit pas
douteuse pour les aires convexes. Mais il était l’intéressant d’examiner si
elle est vraie pour le cas du Limaçon de Pascal, qui est concave. La rėponse
est affirmative.

Let us focus on Hadamard’s two claims separately.

Claim 3.1.1. There is no doubt that ΓBA is positive for convex domains.

43
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This conjecture stood for a long time and only in 1949 a first counterexample, with
Ω a long rectangle, was established by Duffin in [31]. This counterexample was soon
to be followed by numerous others. A short survey can be found in the introduction of
[69]. See also the introduction of Chapter 4. So by now it is well known that convexity
is not a sufficient condition.

Let us remind the reader that around 1905 Boggio [8] did prove that (3.1.2) holds
in case of a disk. In fact some believed that the disk might be the only domain where
(3.1.2) holds. However in [40] it is shown that (3.1.2) also holds in domains that are
small perturbations of the disk. Since smallness of these perturbations is defined by a
C2-norm non-convex domains are not included.

Claim 3.1.2. ΓBA is positive for some non-convex domains, namely for the Limaçons
de Pascal.

Hadamard in [47] starts his proof of this claim by observing that:

... on constate aisément que, si l’un de ces deux points est très voisin
du contour, la partie principale de ΓBA est positive.

Although we are not certain what he meant by ‘partie principale’ we know by now
that ΓBA can be negative when one point is near the boundary. In fact we will show
that if the Green function (on a limaçon) is negative somewhere it will be negative for
some A and B near the boundary. Hadamard continues his proof by referring to the
results in [46]. In this paper he gives an explicit formula for the Green function for
(3.1.1) in case of a limaçon. This formula will allow us to show the theorem below.
Since there is no explicit proof that his formula indeed gives the Green function we
will supply such a proof in the next section.

The domains under consideration are defined for a ∈
[
0, 1

2

]
by

Ωa =
{
(ρ cosϕ, ρ sinϕ) ∈ R2; 0 ≤ ρ < 1 + 2a cosϕ

}
.

For 0 ≤ a ≤ 1
2

the curve ρ = 1 + 2a cosϕ is a non self-intersecting limaçon. Special
values of the parameter a are the following:

• a = 0: Ω0 is the unit disk;

• a = 1
4
: Ωa is convex if and only if a ∈

[
0, 1

4

]
;

• a = 1
2
: Ω 1

2
is a cardioid.

We will show the following:

Theorem 3.1.3. The clamped plate problem on Ωa with a ∈
[
0, 1

2

]
is positivity pre-

serving if and only if a ∈
[
0, 1

6

√
6
]
.
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Figure 3.1: Limaçons for resp. a = .1, .175, .25, .325, 1
6

√
6, .45, .5. The fifth one with

a = 1
6

√
6 is critical for positivity.

dis
k

ca
rd

ioi
d

a −→0 1
4

� -
Ωa convex

� -
Ωa non-convex

1
2

1
6

√
6

� -

GΩa ≥ 0
� -

GΩa

changes sign

Figure 3.2: In the graph the critical values of the parameter a for convexity of the
limaçons and positivity of the Green function. This table has been taken from [23].

Remark 3.1.4. The limaçon is convex precisely if 0 ≤ a ≤ 1
4
. Notice that 1

4
< 1

6

√
6.

So Hadamard is right in the sense that convexity is not a necessary condition. He is
wrong in claiming the positivity preserving property for all limaçons.

Remark 3.1.5. One could view this result as a perturbation argument but only the
explicit formula allows us to come up with the explicit number 1

6

√
6 that is large

enough to allow non-convex domains. A small C2-bound on the perturbation from the
unit disk gives a small bound for the curvature κ, namely that |1−κ| should be small.
Note that κ ≥ 0 means convex.

Remark 3.1.6. A related question is if the first eigenfunction has a fixed sign for all
limaçons (compare the Boggio-Hadamard-conjecture versus the Szegö-conjecture in
[71], see also [69]). Since one cannot expect an explicit formula for the eigenfunction
this seems a much harder question. One does know that the number a where positivity
of the first eigenfunction breaks down is strictly larger than the number where (3.1.2)
fails. See [44].

We would like to mention some papers that consider explicit solutions for the
clamped plate equation. Schot constructed in [61], see also Boggio in [8], an explicit
Green function on the disk and on the half-plane. Other publications concerning the
clamped plate equation on limaçon are [63] and [30]. Sen considered explicit formula’s
for the clamped plate equation on other domains in R2 bounded by fourth order
polynomials but only for constant right hand side f . Sen proceeded directly with no
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hint at Hadamard’s result. Dube in [30] gives a series solution for the Green function
on a limaçon. He does not refer to Hadamard’s explicit formula for the limaçon nor
does he consider positivity.

In this chapter we will also prove sharp estimates in term of the distance to the
boundary of the Green function for (3.1.1) in case of a limaçon. With respect to the
result of Chapter 2 here we have sharp estimates also from below of the Green function.
The reason is that in this case we can use the explicit formula of the Green function.
It is interesting to see that “boundary singularity”from below does not appear when
the Green function becomes somewhere negative.

The quantity −∆x∆yGΩ(x, y) is called the Bergman kernel function. Between the
sign of this kernel function and the sign of the Green function there is an interesting
relation. At the end of this chapter we will study this relation in the case of the
limaçons.

The chapter is organized as follows. In the next section we show that the function
given by Hadamard is indeed the Green function for problem (3.1.1) in the case of the
limaçon. We then prove Theorem 3.1.3 and the estimates of the Green function in
terms of the distance to the boundary. In the last section we will study the relation
between the sign of the Green function and the Bergman kernel.

3.2 The Green function for the limaçon

This section will contain a proof that the function supplied by Hadamard in [46,
Supplement] is indeed the Green function for the limaçons.

Any limaçon can be seen as the image of a circle through the conformal map z → z2

combined with two shifts. It will be convenient in the following to use complex notation
for the unit disk: B = {z ∈ C ; |z| < 1} . The appropriate conformal map from B ⊂ C
to Ωa ⊂ R2 is then given by

ha : B → Ωa,

η 7→ x =
(
Re (η + aη2) , Im (η + aη2)

)
.

(3.2.1)

The fact that this conformal map is quadratic, and hence that ∂Ω is a quartic curve,
seems to allow an explicit Green function. This makes the limaçon a special case. For
the clamped plate equation with constant f on domains bounded by quartic curves
see [63]. In the following x and y denote points in the limaçon while ξ and η denote
points in the unit disk.

In [46, Supplement] one finds the explicit formula of the Green function for (3.1.1)
on a limaçon Ωa, which we will denote with Ga. For x, y ∈ Ωa we may rewrite this
function as follows

Ga (x, y) = 1
2
a2s2r2

[
log
(
r2

r21

)
+

r21
r2
− 1− a2

1−2a2
r2

s2

(
r21
r2
− 1
)2
]
, (3.2.2)
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where, with η, ξ ∈ B such that x = ha (η) and y = ha (ξ), the r, r1 and s are given by

r2 = |η − ξ|2 , r2
1 =

∣∣1− ηξ̄∣∣2 , s2 =
∣∣η + ξ + 1

a

∣∣2 . (3.2.3)

In order to show that Ga is the Green function for the limaçon it is convenient
to rewrite the function as the sum of the fundamental solution for ∆2 in R2 and a
biharmonic function. For x, y ∈ R2 let R = |x− y|. The function U = R2 log(R) is the
fundamental solution for ∆2 in R2 : it satisfies ∆2U(·) = δy(·) in R2. Then writing

Ga (x, y) = R2 log (R) + Ja (x, y) , (3.2.4)

the function

Ja(x, y) := −R2 log (ar1s) + a2

2
s2
(
r2
1 − r2

)
− a4

2(1−2a2)

(
r2
1 − r2

)2
, (3.2.5)

should be biharmonic and such that Ga satisfies the boundary condition.
Note that (3.2.4) follows from (3.2.2) using that ars = R. In fact one has

R =
∣∣(η + aη2

)
−
(
ξ + aξ2

)∣∣ = a
∣∣η2 + η

a
− ξ2 − ξ

a

∣∣ =

= a |η − ξ|
∣∣η + ξ + 1

a

∣∣ = ars.

3.2.1 Boundary condition

Let us rewrite (3.2.4) as

Ga (x, y) = 1
2
a2s2

[
r2 log

(
r2

r21

)
+ r2

1 − r2
]
− a4

2(1−2a2)

(
r2
1 − r2

)2
. (3.2.6)

When x ∈ ∂Ωa, then η ∈ ∂D and it holds that r1 = r. It follows from (3.2.6) that
Ga (x, y) = 0 at the boundary. Now we are interested in ∂

∂ν
Ga (x, y) on ∂Ωa. One

observes that the term (r2
1 − r2)

2
gives no contribution because it is a zero of order

two at the boundary. The remaining term is a product of two factors: one that is
non-zero at the boundary and the other that is identically zero. Hence, when we look
at the normal derivative at the boundary the only relevant term will be

∂
∂ν

[
r2 log

(
r2

r21

)
+ r2

1 − r2
]
. (3.2.7)

Using that the term inside the brackets in (3.2.7) is the Green function for the disk,
see [8], one gets that also the second Dirichlet boundary condition is satisfied. Notice
that we are using that Ωa is image of the unit disk through a conformal map.

3.2.2 The function Ja (x, y) is biharmonic on Ωa.

To prove the biharmonicity of Ja it is convenient to consider separately the term with
the logarithm and the remaining part.

We first observe that log (ar1s) is a harmonic function on Ωa. From this, the identity
∆2 (R2 log (ar1s)) = 0 follows using that if v is a harmonic function then R2v is
biharmonic.
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Lemma 3.2.1. It holds that

∆2
x

(
s2
(
r2
1 − r2

)
− a2

1−2a2

(
r2
1 − r2

)2)
= 0.

Proof. Next to ha : B ⊂ C→ R2 we will use ha (η) : C→ C defined by ha (η) = η+aη2

with η = η1 + iη2.
Let us consider

K(x, y) :=
∣∣h−1
a (x) + h−1

a (y) + 1
a

∣∣2 (1− ∣∣h−1
a (x)

∣∣2)
− a2

1−2a2

(
1−

∣∣h−1
a (x)

∣∣2)2 (
1−

∣∣h−1
a (y)

∣∣2) .
One finds that s2 (r2

1 − r2)− a2

1−2a2 (r2
1 − r2)

2
= (1− |h−1

a (y)|2)K(x, y), and that

Y (η, ξ) := K(ha(η), ha(ξ))

=
∣∣η + ξ + 1

a

∣∣2 (1− |η|2)− a2

1−2a2

(
1− |η|2

)2 (
1− |ξ|2

)
.

Since h is a conformal map, it holds that:

∆ηY (η, ξ) = |h′a(η)|
2
(∆xK) (ha(η), ha(ξ)), (3.2.8)

∆2
ηY (η, ξ) = ∆η |h′a(η)|

2
∆xK(ha(η), ha(ξ))

+ 2
2∑
i=1

∂
∂ηi
|h′a(η)|

2 ∂
∂ηi

(∆xK) (ha(η), ha(ξ))

+ |h′a(η)|
4 (

∆2
xK
)
(ha(η), ha(ξ)). (3.2.9)

The idea is to use (3.2.9) in order to calculate the term (∆2
xK) (ha(η), ha(ξ)) in terms

of ∆2
ηY (η, ξ). Since ∆η = 4 ∂

∂η̄
∂
∂η
, one has

∂
∂η
Y (η, ξ) =

(
η̄ + ξ̄ + 1

a

)
(1− |η|2)− η̄

∣∣η + ξ + 1
a

∣∣2
+ 2a2

1−2a2 η̄(1− |η|2)(1− |ξ|2),
∂2

∂η̄∂η
Y (η, ξ) = (1− |η|2)− η

(
η̄ + ξ̄ + 1

a

)
−
∣∣η + ξ + 1

a

∣∣2− η̄ (η + ξ + 1
a

)
+ 2a2

1−2a2 (1− |η|2)(1− |ξ|2)− 2a2

1−2a2 η̄η(1− |ξ|2),
∂3

∂η∂η̄∂η
Y (η, ξ) = −2η̄ − 2

(
η̄ + ξ̄ + 1

a

)
− 4a2

1−2a2 η̄(1− |ξ|2),
∂4

∂η̄∂η∂η̄∂η
Y (η, ξ) = −4− 4a2

1−2a2 (1− |ξ|2),

which gives

∆ηY (η, ξ) = 4(1− 3 |η|2)− 4η
(
ξ̄ + 1

a

)
− 4

∣∣η + ξ + 1
a

∣∣2 − 4η̄
(
ξ + 1

a

)
+ 8a2

1−2a2 (1− 2 |η|2)(1− |ξ|2),
∆2
ηY (η, ξ) = −64− 64a2

1−2a2 (1− |ξ|2).
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By the definition of the conformal map ha in (3.2.1) and from (3.2.8) we obtain that
|h′a(η)|

2 = |2aη + 1|2, ∆η |h′a(η)|
2 = 16a2 and

(∆xK) (ha(η), ha(ξ)) = 4
|2aη+1|2

(
(1− 3 |η|2)− η

(
ξ̄ + 1

a

)
−
∣∣η + ξ + 1

a

∣∣2)
+ 4

|2aη+1|2

(
−η̄
(
ξ + 1

a

)
+ 2a2

1−2a2 (1− 2 |η|2)(1− |ξ|2)
)
.

One finds

2∑
i=1

∂
∂ηi
|h′a(η)|

2 ∂
∂ηi

(∆xK) (ha(η), ha(ξ))

= − 64a2

|2aη+1|2
(
−4η2

1 − 4η2
2 − 4η1ξ1 − 4

a
η1 − 4η2ξ2 − 1

a2 − 2
a
ξ1 + 1− |ξ|2

)
− 64a2

|2aη+1|2
2a2

1−2a2 (1− 2 |η|2)(1− |ξ|2) + 32a2

|2aη+1|2
(
−8η2

2 − 4ξ2η2

)
+ 16a
|2aη+1|2

(
−8η1 − 4ξ1 − 4

a
− 16aη2

1 − 8aη1ξ1 − 8η1

)
+ 16a
|2aη+1|2

2a2

1−2a2

(
−8aη2

1 − 4η1 − 8aη2
2

)
(1− |ξ|2)

= − 64a2

|2aη+1|2
(
−2η1ξ1 − 2η2ξ2 − 1

a
ξ1 + 1− |ξ|2

)
− 64a2

|2aη+1|2
2a2

1−2a2

(
1 + η1

a

)
(1− |ξ|2).

Hence from (3.2.9) we get

−1− a2

1−2a2 (1− |ξ|2) =

= a2

|2aη+1|2
(
−4η2

1 − 4η2
2 − 4η1ξ1 − 4

a
η1 − 4η2ξ2 − 1

a2 − 2
a
ξ1 + 1− |ξ|2

)
+ a2

|2aη+1|2
2a2

1−2a2 (1− 2 |η|2)(1− |ξ|2)− 2a2

|2aη+1|2
2a2

1−2a2

(
1 + η1

a

)
(1− |ξ|2)

− 2a2

|2aη+1|2
(
−2η1ξ1 − 2η2ξ2 − 1

a
ξ1 + 1− |ξ|2

)
+ |h′a(η)|

4 (
∆2
xK
)
(ha(η), ha(ξ)),

−1− a2

1−2a2 (1− |ξ|2) =

= − 1
|2aη+1|2 |2aη + 1|2 − 2a2

|2aη+1|2
(
2η1ξ1 + 2η2ξ2 + 1

a
ξ1
)

+ a2

|2aη+1|2 (1− |ξ|
2)

+ a2

|2aη+1|2
2a2

1−2a2 (1− |ξ|2)− a2

|2aη+1|2
4a2

1−2a2 |η|2 (1− |ξ|2)

− 2a2

|2aη+1|2
2a2

1−2a2 (1− |ξ|2)− 2a2

|2aη+1|2
2a

1−2a2η1(1− |ξ|2)

− 2a2

|2aη+1|2 (1− |ξ|
2)− 2a2

|2aη+1|2
(
−2η1ξ1 − 2η2ξ2 − 1

a
ξ1
)

+ |h′a (η)|4
(
∆2
xK
)
(ha(η), ha(ξ)),
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− a2

1−2a2 (1− |ξ|2) =

= − a2

|2aη+1|2 (1− |ξ|
2)− a2

|2aη+1|2
1

1−2a2 (1− |ξ|2) |2aη + 1|2

+ a2

|2aη+1|2
1

1−2a2 (1− |ξ|2)− a2

|2aη+1|2
2a2

1−2a2 (1− |ξ|2)

+ |h′a (η)|4
(
∆2
xK
)
(ha(η), ha(ξ)),

0 = + a2

|2aη+1|2 (1− |ξ|
2)
(
−1 + 1

1−2a2 − 2a2

1−2a2

)
+ |h′a (η)|4

(
∆2
xK
)
(ha(η), ha(ξ)),

which gives the claim. �

3.3 Proof of Theorem 3.1.3

In this section we prove Theorem 3.1.3. We will first study the behavior and then the
positivity of the Green function.

3.3.1 Behavior of the Green function

We want to study when the function Ga is of fixed sign in Ωa × Ωa. For establishing
this positivity we will need to consider the function

F (β, q) := log

(
1

q

)
+ q − 1− β (q − 1)2

q
. (3.3.1)

Note that q = r2
1/r

2 ≥ 1.

Lemma 3.3.1. Set Iβ := {q ≥ 1 : F (β, q) ≤ 0} . It holds that:

• Iβ = {1} for β ∈
[
0, 1

2

]
;

• Iβ = [1, qβ] with qβ > 1 for β ∈
(

1
2
, 1
)
;

• Iβ = [1,∞) for β ∈ [1,∞) .

Remark 3.3.2. Note that β 7→ F (β, q) is decreasing and hence that β 7→ qβ is non-
decreasing.

It will be convenient to work with functions defined in the disk. If f is a function
defined on Ωa, then f̃a will denote the function f̃a := f ◦ ha defined on the disk.

We fix the auxiliary function

H̃a (η, ξ) := a2

1−2a2

r2
1

s2
= a2

1−2a2

|1− ηξ̄|2

|η + ξ + 1
a
|2
, (3.3.2)
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1 qβ

0 ≤ β ≤ 1
2

1
2
< β < 1

β ≥ 1

Figure 3.3: Graphs of q 7→ F (β, q).

and hence the Green function in (3.2.2) becomes

G̃a (η, ξ) := 1
2
a2s2r2 F

(
H̃a (η, ξ) ,

r21
r2

)
= 1

2
a2s2r2 F

(
H̃a (η, ξ) ,

|1−ηξ̄|2
|η−ξ|2

)
. (3.3.3)

The preceding Lemma 3.3.1 gives that if

sup
η,ξ∈B

H̃a (η, ξ) ≤ 1

2
, (3.3.4)

then F and hence Ga are positive. Note that (3.3.4) gives a condition on the parameter
a which is a sufficient condition for the positivity of the function. In the following we
will see that this condition is also necessary.

First we will reduce the dimension of the problem. The following lemma states
that it is sufficient to study the behavior of H̃a for couples of conjugate points.

Lemma 3.3.3. Let a < 1
2

and define the sets `η,ξ for (η, ξ) ∈ B ×B by

`η,ξ =
{
χ = χ1 + iχ2 ∈ B : χ1 = η1+ξ1

2
, |χ| ≥ max {|η| , |ξ|}

}
, (3.3.5)

where η = η1 + iη2 and ξ = ξ1 + iξ2.
If H̃a (η, ξ) > 1

2
, then for every χ ∈ `η,ξ it holds that H̃a (χ, χ̄) > 1

2
.

Proof. By hypothesis one has:

H̃a (η, ξ) =
a2

1− 2a2

(1− η1ξ1 − η2ξ2)
2 + (η1ξ2 − η2ξ1)

2(
η1 + ξ1 + 1

a

)2
+ (η2 + ξ2)

2
>

1

2
,

which is equivalent to

2a2
(
1 + η2

1ξ
2
1 + η2

2ξ
2
2 − 2η1ξ1 − 2η2ξ2 + η2

1ξ
2
2 + η2

2ξ
2
1

)
>(

1− 2a2
) (
η2

1 + ξ2
1 + 1

a2 + 2η1ξ1 + 2
a
η1 + 2

a
ξ1 + η2

2 + ξ2
2 + 2η2ξ2

)
,
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η •

ξ •

`η,ξ

Figure 3.4: A set `η,ξ and its image within a limaçon.

or similarly

2a2(1 + |η|2)(1 + |ξ|2) >
(η1 + ξ1)

2 + (η2 + ξ2)
2 + 1

a2 + 2
a
(η1 + ξ1)− 2− 4a(η1 + ξ1). (3.3.6)

For χ ∈ `η,ξ, we have

H̃a (χ, χ̄)− 1
2

= a2

1−2a2

(1− χ2
1 + χ2

2)
2
+ 4χ2

1χ
2
2(

2χ1 + 1
a

)2 −
2χ2

1 + 1
2a2 + 2

a
χ1(

2χ1 + 1
a

)2
= a2

1−2a2

1+χ4
1+χ4

2−2χ2
1+2χ2

2−2χ2
1χ

2
2+4χ2

1χ
2
2−

2
a2 χ

2
1−

1
2a4−

2
a3 χ1+4χ2

1+ 1
a2 + 4

a
χ1

(2χ1+ 1
a)

2

= 1
1−2a2

1

(2χ1+ 1
a)

2

(
a2(1 + |χ|2)2 − (2χ2

1 + 1
2a2 + 2

a
χ1 − 1− 4aχ1)

)
. (3.3.7)

By the definition of `η,ξ and (3.3.6) it follows that the last term is positive. Indeed:

(1 + |χ|2)2 ≥ (1 + |η|2)(1 + |ξ|2)
> 1

2a2 (η1 + ξ1)
2 + 1

2a2 (η2 + ξ2)
2 + 1

2a4 + 1
a3 (η1 + ξ1)− 1

a2 − 2
a
(η1 + ξ1)

> 1
a2

(
2χ2

1 + 1
2a2 + 2

a
χ1 − 1− 4aχ1

)
.

�

Remark 3.3.4. Note that (3.3.7) implies: H̃a (χ, χ̄) is increasing in |χ2| .
We are now able to prove that (3.3.4) also gives a necessary condition for the

positivity of F and hence of Ga.

Lemma 3.3.5. Let a < 1
2
.

i. If H̃a(v, v̄) >
1
2

then there is χ ∈ `v,v̄ such that

F
(
H̃a (χ, χ̄) ,

|1−χ2|2
|χ−χ̄|2

)
< 0. (3.3.8)
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ii. If (3.3.8) holds, then F
(
H̃a (z, z̄) ,

|1−z2|2
|z−z̄|2

)
< 0 for every z ∈ `χ,χ̄.

Proof. First claim: Since the function β 7→ F (β, q) is decreasing, see (3.3.1), and the
function H̃a (z, z̄) is increasing in |z2|, by Remark 3.3.4, one gets that

F
(
H̃a (z, z̄) ,

|1−z2|2
|z−z̄|2

)
≤ F

(
H̃a (v, v̄) ,

|1−z2|2
|z−z̄|2

)
for every z ∈ `v,v̄. (3.3.9)

In F
(
H̃a (v, v̄) ,

|1−z2|2
|z−z̄|2

)
the first argument does not depend on z; it is a fixed coeffi-

cient which is larger then 1/2 by hypothesis. Hence, applying Lemma 3.3.1, one has
that there exists a qH̃a(v,v̄) > 1 such that

F
(
H̃a (v, v̄) ,

|1−z2|2
|z−z̄|2

)
< 0, ∀z ∈ `v,v̄ with

|1−z2|2
|z−z̄|2 < qH̃a(v,v̄). (3.3.10)

Note that the function |z2| 7→
|1−z2|2
|z−z̄|2 is decreasing, since

∂

∂z2

|1− z2|2

|z − z̄|2
= − 1

2z32
(1− |z|2 + 2z2

2)(1− |z|2). (3.3.11)

Hence, since |1−z2|2
|z−z̄|2 is equal to 1 at the boundary, it follows that there exists χ ∈ `v,v̄

such that
|1−χ2|2
|χ−χ̄|2 < qH̃a(v,v̄). (3.3.12)

Combining (3.3.9), (3.3.10) and (3.3.12) the first claim follows.

Second claim: If F
(
H̃a(χ, χ̄), |1−χ

2|2
|χ−χ̄|2

)
< 0 we can deduce from Lemma 3.3.1 that

H̃a(χ, χ̄) > 1
2

and
|1−χ2|2
|χ−χ̄|2 < qH̃a(χ,χ̄). (3.3.13)

Since H̃a(z, z̄) is increasing in |z2| (Remark 3.3.4) and the function |z2| 7→
|1−z2|2
|z−z̄|2 is

decreasing, see (3.3.11), from (3.3.13) one gets that

H̃a(z, z̄) >
1
2

and
|1−z2|2
|z−z̄|2 < qH̃a(χ,χ̄) for every z ∈ `χ,χ̄. (3.3.14)

Since β 7→ qβ is increasing (Remark 3.3.2), from (3.3.14) we have that

|1−z2|2
|z−z̄|2 < qH̃a(z,z̄) for every z ∈ `χ,χ̄. (3.3.15)

By (3.3.14), (3.3.15) and Lemma 3.3.1 it follows that F
(
H̃a(z, z̄),

|1−z2|2
|z−z̄|2

)
< 0 for

every z ∈ `χ,χ̄. �
The previous results show that if the functionGa(x, y) is negative for some x, y ∈ Ωa

then Ga will be negative somewhere near opposite boundary points. To be precise:
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Corollary 3.3.6. Suppose that Ga(x, y) < 0 for some x, y ∈ Ωa, then for all ε > 0
there is xε ∈ Ωa with dΩa(x

ε) < ε such that:

Ga((x
ε
1, x

ε
2), (x

ε
1,−xε2)) < 0.

Here dΩ(x) denotes the distance of x to the boundary of Ω as defined in (2.1.3).

Proof. If G̃a(η, ξ) < 0, Lemma 3.3.1 gives that necessarily H̃a(η, ξ) >
1
2
. Hence, one

has from Lemma 3.3.3 that H̃a(z, z̄) >
1
2

for every z ∈ `η,ξ. The claim follows directly
from Lemma 3.3.5. �

3.3.2 Positivity of the Green function

Using the results of the previous section, we have seen that the function H̃a in (3.3.2)
plays a crucial role for the positivity of the Green function. Let us collect this result.

Corollary 3.3.7. The Green function for the clamped plate equation on a limaçon is
positive if and only if

sup
η,ξ∈B

H̃a (η, ξ) =
a2

1− 2a2
sup
η,ξ∈B

∣∣1− ηξ̄∣∣2∣∣η + ξ + 1
a

∣∣2 ≤ 1

2
. (3.3.16)

Condition (3.3.16) gives an upper bound for the parameter a. In the following
lemma we give the explicit value of this upper bound.

Lemma 3.3.8. Inequality (3.3.16) is satisfied if and only if a ≤ 1
6

√
6.

Proof. Lemma 3.3.3 implies that it is sufficient to verify (3.3.16) for couples of conju-
gate points, that is:

sup
χ∈B

H̃a (χ, χ̄) = a2

1−2a2 sup
χ∈B

|1− χ2|2∣∣χ+ χ̄+ 1
a

∣∣2 ≤ 1

2
.

By (3.3.7) we find

H̃a (χ, χ̄)− 1
2

= 1
1−2a2

a2(1 + |χ|2)2 + 1 + 4aχ1(
2χ1 + 1

a

)2 − 1
1−2a2

1
2
,

which gives

sup
χ∈B

H̃a (χ, χ̄)− 1
2

= 1
1−2a2 sup

χ∈B

4a2 + 1 + 4aχ1(
2χ1 + 1

a

)2 − 1
1−2a2

1
2
. (3.3.17)

A straightforward computation shows that the maximum in (3.3.17) is attained for
χ1 = −2a (and |χ| = 1). We obtain

sup
χ∈B

H̃a (χ, χ̄)− 1
2

= a2

1−2a2

1

−4a2 + 1
− 1

1−2a2
1
2

= 1
1−2a2

6a2 − 1

2 (1− 4a2)
,

which is non-negative for a > 1
6

√
6. �



3.4. Sharp estimates for the Green function 55

Remark 3.3.9. Let a ∈
(

1
6

√
6, 1

2

)
. Notice that from Corollary 3.3.6 and Lemma 3.3.8

it follows that the Green function GΩa becomes negative for conjugate points near
the boundary. More precisely GΩa((x, y), (x,−y)) < 0 for (x, y) in a neighborhood of
ha(−2a,

√
1− 4a2). See Figure 3.5.

Figure 3.5: Near strongly inward pointing boundary parts pushing up on one side results
in bending downward on the other side due to the stiffness of the plate (fourth order)
and the zero normal derivative. The arrow denotes the upward force; the dark part the
bending downward. This figure has been taken from [25].

3.4 Sharp estimates for the Green function

The Green function for the biharmonic problem in two dimensions does not have
a singularity in the L∞-sense: (x, y) 7→ G(x, y) is uniformly bounded. However, a
natural solution space concerning the Dirichlet boundary condition (u = ∂

∂ν
u = 0), see

[4], is the Banach lattice (with the natural ordering):

Ce(Ω̄) = {u ∈ C(Ω̄); ‖u‖e := sup
x∈Ω

∣∣∣∣ u(x)d2
Ω(x)

∣∣∣∣ <∞},
where dΩ(.) is as in (2.1.3). However (x 7→ G (x, .)) from Ω̄ into Ce(Ω̄) does show ‘a
singularity’ when x → ∂Ω. Precise information for the singularity of polyharmonic
Dirichlet Green functions on balls in Rn, where the Green function is known to be
positive, can be found in [45].

The next theorem shows how the estimate of Ga from below changes depending
on a. It is interesting to see that although the Green function becomes negative, no
‘boundary-singularity’ from below appears.

Theorem 3.4.1. For every (η, ξ) ∈ B ×B, the following estimates hold:

i. for all a ∈
[
0, 1

2

]
there exists c1 > 0 such that

G̃a(η, ξ) ≤ c1 dB(η)dB(ξ) min

{
1,
dB(η)dB(ξ)

|η − ξ|2

}
, (3.4.1)
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ii. for all a ∈
[
0, 1

6

√
6
]
, there exists c2 > 0 such that

G̃a(η, ξ) ≥ c2

(
1
6

√
6− a

)
dB(η)dB(ξ) min

{
1,
dB(η)dB(ξ)

|η − ξ|2

}
, (3.4.2)

iii. for a ∈
(

1
6

√
6, 1

2

]
there exists (η∗, ξ∗) ∈ B ×B such that

G̃a(η
∗, ξ∗) < 0.

iv. for all a ∈
(

1
6

√
6, 1

2

]
, there exists c3 > 0 such that

G̃a(η, ξ) ≥ −c3
(
a− 1

6

√
6
)
dB(η)2dB(ξ)2, (3.4.3)

where the constants c1, c2 and c3 do not depend on a.

Remark 3.4.2. Let us observe that for every ε > 0 there exists two constants mε, M
such that for every η, ξ ∈ B and a ∈ [0, 1

2
− ε] it holds:

mε . |η − ξ| ≤ |ha(η)− ha(ξ)| ≤ M . |η − ξ| ,

mε . d(η, ∂B) ≤ d(ha(η), ∂Ωa) ≤ M .d(η, ∂B).
(3.4.4)

Using (3.4.4) one can prove estimates for Ga similar to the one proven for G̃a in
Theorem 3.4.1. Near the cusp (when a→ 1

2
) the estimate from below in (3.4.4) breaks

down.

Remark 3.4.3. One may derive that for a ∈
[
0, 1

6

√
6
]

there exist constants c4, c5,
independently of a, such that

c4

(
1
6

√
6− a

)
DΩa(x, y) ≤ Ga (x, y) ≤ c5 DΩa(x, y),

where DΩa(x, y) = dΩa(x)dΩa(y) min
{

1,
dΩa (x)dΩa (y)

|x−y|2

}
.

Remark 3.4.4. Note that the Green function is positive on the diagonal. This follows
from the eigenfunction expansion and taking x = y:

G(x, y) =
∑
i

1

λi
ϕi(x)ϕi(y).

Here λi, ϕi are the eigenvalues/functions of the corresponding eigenvalue problem.
Note that λi > 0 holds for all i.

Proof. We will prove the statements separately.
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i. One has from (3.2.2) that

G̃a(η, ξ) ≤ 1
2
a2s2

[
−r2 log

(
r2
1

r2

)
+ r2

1 − r2

]
≤ 2

[
−r2 log

(
r2
1

r2

)
+ r2

1 − r2

]
. (3.4.5)

The term inside the brackets in the right hand side of (3.4.5) is the Green function
for the clamped plate equation on the disk. Inequality (3.4.1) follows using the
estimate in [41, Prop.2.3(iii)].

ii. Let a0 = 1
6

√
6 and s0 = |η+ξ+ 1

a0
|. We consider first the case a ∈

[
1
4
, 1

6

√
6
]
. Using

that s is decreasing in a for all η, ξ ∈ B when a < 1
2
, one finds for a ∈

[
1
4
, 1

6

√
6
]

that

G̃a(η, ξ) ≥ 1
2
a2

(
s2
0r

2 log

(
r2

r2
1

)
+ s2

0(r
2
1 − r2)− a2

1−2a2 (r
2
1 − r2)2

)
= a4

1−2a2

1−2a2
0

a4
0
G̃a0 (η, ξ)

+1
2
a2s2

0

(
1− a2

1−2a2

1−2a2
0

a2
0

)[
−r2 log

(
r2
1

r2

)
+ r2

1 − r2

]
≥ 1

2
a2s2

0

(
1− 4 a2

1−2a2

)[
−r2 log

(
r2
1

r2

)
+ r2

1 − r2

]
,

since G̃a0 (η, ξ) ≥ 0, see Corollary 3.3.7 and Lemma 3.3.8. For a ∈
[

1
4
, 1

6

√
6
]

one

has 1
2
a2s2

0(1− 4 a2

1−2a2 ) ≥ 1
40

(1
6

√
6− a), hence by using [41, Prop.2.3(iii)] one gets

G̃a (η, ξ) ≥ c2

(
1
6

√
6− a

)
dB (η) dB (ξ) min

{
1,
dB (η) dB (ξ)

|η − ξ|2

}
.

For a ∈ [0, 1
4
] one finds that

1
2
log

(
r2

r2
1

)
+ 1

2

(
r2
1

r2
− 1

)
− a2

1−2a2

r2

s2

(
r2
1

r2
− 1

)2

≥ 0. (3.4.6)

Indeed with q =
r21
r2

formula (3.4.6) can be written as

−1
2
log(q) + 1

2
(q − 1)− a2

1−2a2

r2
1

s2

(q − 1)2

q

≥ −1
2
log(q) + 1

2
(q − 1)− a4

1−2a2
4

|aξ+aη+1|2
(q − 1)2

q

≥ −1
2
log(q) + 1

2
(q − 1)− a4

1−2a2
4

(1−2a)2
(q − 1)2

q

≥ −1
2
log(q) + 1

2
(q − 1)− 1

14

(q − 1)2

q
,
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that is non-negative. Hence from formula (3.2.2) one finds for a ∈ [0, 1
4
]

Ga(x, y) ≥ 1
4
a2s2r2

[
log

(
r2

r2
1

)
+
r2
1

r2
− 1

]
.

The claim follows by using [41, Prop.2.3(iii)].

iii. This claim follows from Corollary 3.3.7 and Lemma 3.3.8.

iv. Let a0 = 1
6

√
6 and s0 = |η + ξ + 1

a0
|. We have

G̃a (η, ξ) =
1

2
a2 s

2

s2
0

(
r2s2

0 log

(
r2

r2
1

)
+ s2

0(r
2
1 − r2)− a2

0

1− 2a2
0

(
r2
1 − r2

)2)
+

1

2
a2

(
s2

s2
0

a2
0

1− 2a2
0

− a2

1− 2a2

)(
r2
1 − r2

)2
≥ 1

2
a2

(
s2

s2
0

1

4
− a2

1− 2a2

)(
r2
1 − r2

)2
, (3.4.7)

since G̃a0 is positive in the entire domain. Using that s2
0 ≥ (

√
6 − 2)2 one gets

that

1

2
a2

(
s2

s2
0

1

4
− a2

1− 2a2

)
=

1

8
a2

(
1− 6a2

1− 2a2
+
s2 − s2

0

s2
0

)
≥

≥ −1

8
a2

(
1 +
√

6a

1− 2a2

√
6 +

1

(
√

6− 2)2

(
1

a
+
√

6 + 4

) √
6

a

)
(a− 1

6

√
6)

≥ −7

(
a− 1

6

√
6

)
, (3.4.8)

Hence, from (3.4.7) and (3.4.8) it follows that there exists a constant c3 > 0 such
that

G̃a (η, ξ) ≥ −c3
(
a− 1

6

√
6

)
dB (η)2 dB (ξ)2 ,

for a ∈ (1
6

√
6, 1

2
) .

�

3.5 The Bergman kernel

Let Ω be a domain in Rn and GΩ(., .) be the Green function associated to problem
(3.1.1) on Ω. The quantity −∆x∆yGΩ(x, y) is called the Bergman kernel function. For
the definition and the properties of the Bergman kernel we refer to [7, pages 127-131]
and [35, pages 266-268]. What we are interested in is the relation between the sign
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of the Green function and the sign of the Bergman kernel function. From the Taylor
expansion at the boundary of the Green function it follows that

GΩ(x, y) ≥ 0 in Ω2 ⇒ −∆x∆yGΩ(x, y) ≤ 0 for (x, y) ∈ ∂Ω× ∂Ω \D∂Ω. (3.5.1)

with D∂Ω := {(z, z) : z ∈ ∂Ω}. For relation (3.5.1) see e.g. [34, page 510].
It is an open problem whether the converse of (3.5.1) holds. We will show via a

direct computation that in the case of the limaçons this converse does hold. The main
result is the following.

Theorem 3.5.1. The Bergman kernel function −∆x∆yGa(x, y) is non-positive on
∂Ω× ∂Ω \D∂Ω if and only if a ∈ [0, 1

6

√
6].

Theorem 3.5.1 shows that the value of the parameter a critical to have positivity
of the Green function is also critical for the positivity of minus the Bergman kernel
function. We will also show that the points at the boundary where the Green function
becomes negative are also the points where minus the Bergman kernel function becomes
negative.

In the following technical lemma we compute the Bergman kernel function for the
limaçon.

Lemma 3.5.2. The Bergman kernel function for the limaçon is given for x, y ∈ ∂Ωa

by

−∆x∆yGa(x, y) = 16 |2aη + 1|2 |2aξ + 1|2
(
aη + aξ̄ + aη̄ + aξ + 1 + 4a2

ηξ̄ + η̄ξ − 2
+

a2

1− 2a2

)
,

with η, ξ ∈ ∂B such that ha(η) = x and ha(ξ) = y.

Proof. Since it holds

−∆x∆yGa(x, y) = − |2aη + 1|2 |2aξ + 1|2 (∆ξ∆ηGa(ha(η), ha(ξ))) , (3.5.2)

it remains to study the term ∆ξ∆ηGa(ha(η), ha(ξ)).
In the following we use complex notation. Notice that ∆ξ = 4 ∂

∂ξ̄
∂
∂ξ

.
One has

∂

∂ξ
Ga(ha(η), ha(ξ))

= 1
2
a2(ξ̄ + η̄ + 1

a
)

[
|η − ξ|2 log

|η − ξ|2∣∣1− ηξ̄∣∣2 +
∣∣1− ηξ̄∣∣2 − |η − ξ|2]

+1
2
a2
∣∣ξ + η + 1

a

∣∣2 [−(η̄ − ξ̄) log
|η − ξ|2∣∣1− ηξ̄∣∣2 +

|η − ξ|2

1− η̄ξ
η̄ − η̄(1− ηξ̄)

]
− a4

1−2a2

(∣∣1− ηξ̄∣∣2 − |η − ξ|2) (−η̄(1− ηξ̄) + η̄ − ξ̄)
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= −1
2
a2(ξ̄ + η̄ + 1

a
)(η̄ − ξ̄)(2ξ + 1

a
) log

|η − ξ|2∣∣1− ηξ̄∣∣2
+1

2
a2(ξ̄ + η̄ + 1

a
)
[∣∣1− ηξ̄∣∣2 − |η − ξ|2]+ 1

2
a2
∣∣ξ + η + 1

a

∣∣2 η̄ [ |η − ξ|2
1− η̄ξ

− (1− ηξ̄)

]
+ a4

1−2a2

(∣∣1− ηξ̄∣∣2 − |η − ξ|2) ξ̄(1− η̄η);
∂2

∂ξ̄ξ
Ga(ha(η), ha(ξ))

= 1
2
a2
∣∣2ξ + 1

a

∣∣2 log
|η − ξ|2∣∣1− ηξ̄∣∣2 + 1

2
a2(ξ̄ + η̄ + 1

a
)(2ξ + 1

a
)

−1
2
a2(ξ̄ + η̄ + 1

a
)(η̄ − ξ̄)(2ξ + 1

a
)η

1

1− ηξ̄
+ 1

2
a2
[∣∣1− ηξ̄∣∣2 − |η − ξ|2]

−1
2
a2(ξ̄ + η̄ + 1

a
)ξ(1− ηη̄)− 1

2
a2(ξ + η + 1

a
)
η − ξ
1− η̄ξ

(2ξ̄ + 1
a
)η̄

−1
2
a2(ξ + η + 1

a
)η̄(1− ηξ̄) + 1

2
a2
∣∣ξ + η + 1

a

∣∣2 η̄η − a4

1−2a2 (1− ηη̄)2 ξξ̄

+ a4

1−2a2

(∣∣1− ηξ̄∣∣2 − |η − ξ|2) (1− η̄η);

∂3

∂ηξ̄ξ
Ga(ha(η), ha(ξ))

= 1
2
a2
∣∣2ξ + 1

a

∣∣2 1

η − ξ
+ 1

2
a2
∣∣2ξ + 1

a

∣∣2 ξ̄

1− ηξ̄

−1
2
a2(ξ̄ + η̄ + 1

a
)(η̄ − ξ̄)(2ξ + 1

a
)

1

(1− ηξ̄)2

−1
2
a2η̄

[
1− ξ̄ξ

]
+ 1

2
a2(ξ̄ + η̄ + 1

a
)ξη̄ − 1

2
a2 η̄

1− η̄ξ
(2ξ̄ + 1

a
)(2η + 1

a
)

−1
2
a2η̄(1− ηξ̄) + 1

2
a2(ξ + η + 1

a
)η̄ξ̄ + 1

2
a2(ξ̄ + η̄ + 1

a
)η̄η + 1

2
a2
∣∣ξ + η + 1
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∣∣2 η̄
+ 2a4

1−2a2 (1− ηη̄) η̄ξξ̄ − a4

1−2a2

(
1− ξ̄ξ

)
η̄(1− η̄η)− a4

1−2a2

(∣∣1− ηξ̄∣∣2 − |η − ξ|2) η̄
= 1

2
a2
∣∣2ξ + 1
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∣∣2 1

η − ξ
+ 1

2
a2
∣∣2ξ + 1
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∣∣2 ξ̄

1− ηξ̄

−1
2
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a
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a
)

1

(1− ηξ̄)2
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2
a2η̄(1− ξ̄ξ)

+1
2
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)(ξ + η)η̄ − 1

2
a2 η̄

1− η̄ξ
(2ξ̄ + 1
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a
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a2η̄(1− ηξ̄) + 1

2
a2(ξ + η + 1

a
)η̄ξ̄ + 1

2
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∣∣ξ + η + 1
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∣∣2 η̄
+ 2a4

1−2a2 (1− ηη̄) η̄ξξ̄ − a4

1−2a2

(
1− ξ̄ξ

)
η̄(1− η̄η)− a4

1−2a2

(∣∣1− ηξ̄∣∣2 − |η − ξ|2) η̄;
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∂4

∂η̄ηξ̄ξ
Ga(ha(η), ha(ξ))

= −1
2
a2(2η̄ + 1

a
)(2ξ + 1

a
)

1

(1− ηξ̄)2
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2
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a
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(1− η̄ξ)2
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a
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a
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a
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2
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2
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2
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a
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a
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− 2a4

1−2a2ηη̄ξξ̄ + 2a4
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+2 a4
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(∣∣1− ηξ̄∣∣2 − |η − ξ|2) .
Considering x, y ∈ ∂Ωa and so η, ξ ∈ ∂B we find

1
16

∆η∆ηGa(ha(η), ha(ξ))
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2
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a
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a
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(1− η̄ξ)2

η̄ξ
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= −1
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ηη̄ξξ̄
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2
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a2 )− 2a4
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2
a2
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2ξ + 1

a
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2η̄ + 1

a
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)
+
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a
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a
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(2− η̄ξ)

(1− η̄ξ)2 ηξ̄

+1
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a2(6− 1

a2 )− 2a4

1−2a2 =

= −1
2
a2 8ξη̄ + 4
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η̄ + 4

a
ξ + 2

a2 − 4− 2
a
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a
ξ̄ − 1

a2ηξ̄

(1− η̄ξ)2 ηξ̄

−1
2
a2 8ξ̄η + 4

a
η + 4

a
ξ̄ + 2

a2 − 4− 2
a
η̄ − 2

a
ξ − 1

a2 η̄ξ

(1− η̄ξ)2 ηξ̄
+ 1

2
a2(6− 1

a2 )− 2a4

1−2a2

= −a2

[
aη + aξ̄ + aη̄ + aξ + 1 + 4a2

a2
(
ηξ̄ + η̄ξ − 2

) +
1

1− 2a2

]
(3.5.3)

The claim follows directly from (3.5.2) and (3.5.3). �

Proof of Theorem 3.5.1. By the result of Lemma 3.5.2 one sees that in determining
the sign of the Bergman kernel the interesting part is the term

aη + aξ̄ + aη̄ + aξ + 1 + 4a2

ηξ̄ + η̄ξ − 2
+

a2

1− 2a2
. (3.5.4)

We first find where the maximum of (3.5.4) is attained.
We consider

max
ξ,η∈∂B

aη + aξ̄ + aη̄ + aξ + 1 + 4a2

ηξ̄ + η̄ξ − 2
= −a min

α,β∈[0,2π]

cos(α) + cos(β) + 1+4a2

2a

1− cos(α− β)
.

For sake of conciseness let fix the following function

F (α, β) :=
cos(α) + cos(β) + 1+4a2

2a

1− cos(α− β)
.

Since,

∂αF (α, β) = −
sinα (1− cos(α− β)) + sin(α− β)(cosα+ cos β + 1+4a2

2a
)

(1− cos(α− β))2 ,

∂βF (α, β) = −
sin β (1− cos(α− β)) + sin(β − α)(cosα+ cos β + 1+4a2

2a
)

(1− cos(α− β))2 ,

one sees that the minimum of F is attained at α = −β and cos(α) = cos(β) = −2a.
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Hence, the maximum is attained at the couple of conjugate points

ξ = (−2a,
√

1− 4a2) and η = (−2a,−
√

1− 4a2).

Using the result of Lemma 3.5.2 we find that −∆x∆yGa(x, y) becomes somewhere
positive in ∂Ωa×∂Ωa when the term in (3.5.4) becomes somewhere positive in ∂B×∂B.
Considering the maximum one finds

max
ξ,η∈∂B

(
aη + aξ̄ + aη̄ + aξ + 1 + 4a2

ηξ̄ + η̄ξ − 2
+

a2

1− 2a2

)
= −a

−4a+ 1+4a2

2a

2− 8a2
+

a2

1− 2a2

= −a−8a2 + 1 + 4a2

4a(1− 4a2)
+

a2

1− 2a2

= −1
4

+
a2

1− 2a2
=

6a2 − 1

4(1− 2a2)
. (3.5.5)

From (3.5.5) it follows that the Bergman kernel function changes sign (becoming some-
where positive) when a > 1

6

√
6. �

Remark 3.5.3. Notice that the points where minus the Bergman kernel becomes some-
where negative are exactly the points where the Green function changes sign. Compare
with Remark 3.3.9.





Chapter 4

Positivity for the Clamped Plate

4.1 Introduction

In 1905 Boggio in [8] gave an explicit Green formula for the clamped plate equation
on a disk, that is, for the boundary value problem{

∆2u = f in Ω,
u = ∂

∂ν
u = 0 on ∂Ω,

(4.1.1)

with Ω = B = {x ∈ R2; |x| < 1} . As a direct consequence of that formula one finds
that (4.1.1) is positivity preserving:

f > 0 implies u > 0. (4.1.2)

Boggio and Hadamard conjectured that such a property holds on almost any (con-
vex) domain. By now this conjecture has numerous counterexamples. Duffin [31] was
the first one who in 1949 showed that on the infinite strip a positive f exists for which
(4.1.1) has a sign-changing solution u. Garabedian [34] obtained a similar result for
an elongated ellipse with axes having ratio 2. Other domains such as non-simply con-
nected ones ([14]) and domains with corners ([58],[13]) followed. It was believed that
most non-circular domains failed to have the sign preserving property, or as Hayman
and Korenblum stated in [48]: “We are tempted to conjecture that balls are the only
domains in Rn”. But since they consider the sign not just for biharmonic but for all
polyharmonic Green functions they could still be right.

In this chapter we will show that for the biharmonic there are many domains even
quite different from the disk where the clamped plate problem is positivity preserving.
A first result in this direction was obtained in [40]. The authors did show via a
perturbation argument that on domains very close to the disk (4.1.2) remained. The
result concerns domains that are close to the disk in C2,γ-sense and so necessarily
convex domains. In Chapter 3, [26], we prove that also on limaçons Ωa for a ∈ [0, 1

6

√
6]

(4.1.2) holds. This result shows that convexity is not a necessary condition for the
positivity preserving property of the clamped plate equation.

65
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Next to showing some more domains for which (4.1.2) holds we aim to survey the
limited methods to find such domains that we know to be available presently. In doing
so we will also explain that the Möbius transformation plays a special role not only in
higher dimensions but also for polyharmonic equations in 2 dimensions.

Different ways of finding domains other than a disk and for which (4.1.2) holds will
be addressed in the next sections. Although each of these approaches is known, the
combination has not been exploited. The perturbation that we state has a wider range
than the version published in [40]. Finally we observe that one ingredient for possible
extensions of these results are the optimal estimates from above for the polyharmonic
Green functions and its derivatives on general domains proved in Chapter 2. See also
[24].

4.2 Direct approaches

The example (x3 − x)′′′′ = 0 immediately shows that for the biharmonic one cannot
proceed to a positivity preserving property by way of the local maximum principle
as for second order elliptic equations. A way out is to start from a domain with an
explicitly known positive Green function and try to transform this to another domain.
One may start from the result of Boggio mentioned above or from the result concerning
the limaçons.

By the way, Boggio in [8] not only derived the Green function for the clamped plate
equation on the disk but did even so for any polyharmonic equation, (−∆)m u = f,
on a ball in any dimension under zero Dirichlet boundary conditions u = ∂

∂n
u = · · · =(

∂
∂n

)m−1
u = 0. This Green function is as follows:

GB(x, y) = cn,m|x− y|2m−n
∫ (1−|x|2)(1−|y|2)

|x−y|2

0

wm−1 (1 + w)−
1
2
n dw,

with cn,m some explicit constants. The solution of (4.1.1) is u(x) =
∫
B
GB(x, y)f(y)dy.

One might try to transfer this formula or, in the two-dimensional case, the formula
of the Green function for the limaçon given in [46] (see also formula (3.2.2)) to other
domains. A necessary condition that such a transformation h at least keeps the highest
order terms polyharmonic, that is (−∆)m (w. (u ◦ h)) = w̃. ((−∆)m u) ◦ h + l.o.t., is
that h is conformal. Without the conformality assumption the transformed differential
equation would become anisotropic.

In the following we address such conformal mappings. The two-dimensional case
differs considerably from the higher dimensional situation. While for n = 2 there are
many conformal maps in dimensions n ≥ 3 the only conformal maps are the Möbius
transformations. We first consider the two-dimensional case and then we study the
special role played by the Möbius transformations in dimension 2 and higher.
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4.2.1 Conformal mappings in two dimensions

For the second order Laplace equation in two dimensions Riemann’s Mapping Theorem
allows us to solve {

−∆u = f in Ω,
u = 0 on ∂Ω,

(4.2.1)

at least for simply connected Ω by way of a Green function for the disk. Indeed,
Riemann’s Mapping Theorem says that there exists a conformal map h : B → Ω that
is bijective. Moreover it holds that

∆ (u ◦ h) = |h′|2 (∆u) ◦ h, (4.2.2)

where h(x+iy) = h1(x, y)+ih2(x, y). Hence, since |h′(x+iy)|2 = Jh(x, y), the Jacobian
of h, the solution u of (4.2.1) in Ω is given by

u(x) =

∫
Ω

GB(h−1(x), h−1(y))f(y)dy.

For the biharmonic equation we could try to mimic this approach even if we have
to add weight functions. Let us recall that a mapping φ is called a similarity if there
are c ∈ R+, a ∈ Rn and an orthogonal matrix F such that φ(x) = a + cFx. In the
following boldface is used for the complex alternative.

Lemma 4.2.1. Let h ∈ C1(Ā;R2) be a conformal mapping from A to Ω ⊂ R2 and
suppose h is not a similarity. Then there exists a meromorphic function f defined on
A and a number c such that for all u ∈ C4(Ω̄):

∆2
(
|f |2 (u ◦ h)

)
= c |f |2|h′|4

(
∆2u

)
◦ h

if and only if h is a Möbius transformation, c = 1 and |f |2|h′| is constant.

Proof. Using the complex notation and new independent variables z = x + iy and
z̄ = x− iy the notations will simplify. Setting U(x+ iy, x− iy) = u(x, y) we find

∆u = 4∂z̄∂zU.

Notice that formally h(z) = h̄(z̄) and hence ∂z̄h(z) = h′(z). With h = h(z), h̄ =
h̄(z̄)and F1(x1, x2) := ∂

∂x1
F (x1, x2) and a tedious computation:

∂z̄∂z∂z̄∂z

(
f(z)̄f(z̄) U(h(z), h̄(z̄))

)
= (4.2.3)

= ∂z̄∂z∂z̄

(
f ′ f̄ U + f f̄ U1 h′

)
= ∂z̄∂z

(
f ′ f̄ ′ U + f ′ f̄ U2 h̄′ + f f̄ ′ U1 h′ + f f̄ U12 h′ h̄′

)
= ∂z̄

(
f ′′ f̄ ′ U + f ′ f̄ ′ U1 h′ + f ′′ f̄ U2 h̄′ + f ′ f̄ U21 h′ h̄′

)
+

+∂z̄

(
f ′ f̄ ′ U1 h′ + f f̄ ′ U11 (h′)

2
+ f f̄ ′ U1 h′′

)
+

+∂z̄

(
f ′ f̄ U12 h′ h̄′ + f f̄ U121 (h′)

2
h̄′ + f f̄ U12 h′′ h̄′

)
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= f ′′ f̄ ′′ U + f ′′ f̄ ′ U2h̄
′ + f ′ f̄ ′′ U1 h′ + f ′ f̄ ′ U12 h′h̄′ +

+f ′′ f̄ ′ U2 h̄′ + f ′′ f̄ U22 (h̄′)2 + f ′′ f̄ U2 h̄′′

+f ′ f̄ ′ U21 h′ h̄′ + f ′ f̄ U212 h′ (h̄′)2 + f ′ f̄ U21 h′ h̄′′

+f ′ f̄ ′′ U1 h′ + f ′ f̄ ′ U12 h′h̄′ + f f̄ ′′ U11 (h′)
2
+ f f̄ ′ U112 (h′)

2
h̄′

+f f̄ ′′ U1 h′′ + f f̄ ′ U12 h′′h̄′ + f ′ f̄ ′ U12 h′ h̄′ + f ′ f̄ U122 h′ (h̄′)2

+f ′ f̄ U12 h′ h̄′′ + f f̄ ′U121 (h′)
2
h̄′ + f f̄ U1212 (h′)

2
(h̄′)2 + f f̄ U121 (h′)

2
h̄′′

+f f̄ ′ U12 h′′ h̄′ + f f̄ U122 h′′ (h̄′)2 + f f̄ U12 h′′ h̄′′

= f ′′ f̄ ′′ U + f̄ ′′ (2f ′ h′ + f h′′) U1 + f ′′
(
2f̄ ′ h̄′ + f̄ h̄′′

)
U2 +

+f f̄ ′′ (h′)
2
U11 + f ′′ f̄

(
h̄′
)2

U22 +
(
2f̄ ′ h̄′ + f̄ h̄′′

)
(2f ′ h′ + f h′′) U12 +

+f
(
2f̄ ′ h̄′ + f̄ h̄′′

)
(h′)

2
U121 + f̄ (2f ′ h′ + f h′′)

(
h̄′
)2

U212 +

+f f̄ (h′)
2 (

h̄′
)2

U1212.

In order for the lower order coefficients to cancel we need f ′′ = 0 and hence find

f(z) = α+ βz.

Plugging this result in we may see that (4.2.3) simplifies to

. . . =
(
2β̄ h̄′ +

(
ᾱ+ β̄z̄

)
h̄′′
)(

2β h′ + (α+ βz) h′′
)
U12 +

+ (α+ βz)
(
2β̄ h̄′ +

(
ᾱ+ β̄z̄

)
h̄′′
)

(h′)
2
U121 +

+
(
ᾱ+ β̄z̄

) (
2β h′ + (α+ βz) h′′

) (
h̄′
)2

U212 +

+|α+ βz|2 (h′)
2 (

h̄′
)2

U1212.

Since h′ 6= 0 it follows that the remaining lower order terms vanish if and only if

2β h′ + (α+ βz) h′′ = 0,

which implies h′′ = β = 0 or h′ = γ (α+ βz)−2 . The first possibility gives the similar-
ities h(z) = γ1 + γ2z and the second one the Möbius transformations

h(z) =
−γ/β
α+ βz

+ δ.

Also note that h′ = γf−2. �
The preceding lemma shows that if we want to keep the same biharmonic differ-

ential operator it is not sufficient to consider a conformal map but one has to restrict
himself to a Möbius transformation, even in dimension 2.
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4.2.2 Möbius transformations

In this subsection we study the particular role that the Möbius transformations play
concerning the positivity preserving property of the polyharmonic problem with Diri-
chlet boundary condition in Ω ⊂ Rn for n ≥ 2.

It is well known that in dimensions 3 and larger very few conformal mappings exist.
Except so-called similarities the only ones that exist are the Möbius transformations.
This result is due to Liouville around 1850 for n = 3. For general dimensions n ≥ 3
see Theorem 5.10 in [60].

A Möbius transformation can be written as a finite combination of similarities and
the inversion j0 : x 7→ |x|−2x. In fact, see Corollary 4 on page 39 of [60], every Möbius
transformation φ can be written as

φ = φ1 ◦ j0 ◦ φ2 (4.2.4)

with φ1, φ2 similarities and j0(x) = |x|−2x.
Combining polyharmonic equations with similarity transformations one gets an

obvious result. Let us address how one may combine biharmonic (and polyharmonic)
equations with the inversion j0. By the way, for n = 2 it is common to use notation
in C and to consider the conjugate version j̄0(z) = z−1.

We shall see that there is only one obvious choice if we want to keep the same
polyharmonic differential operator. Since pure powers of |x| remain in this class both
under j0 and ∆ it seems reasonable to try with power functions of |x| only.

Lemma 4.2.2. Let Ω be an open bounded domain in Rn\ {0}. The numbers α, β, γ ∈ R
are such that

∆k (|x|α (u ◦ j0) (x)) = γ |x|β
(
∆ku

)
◦ j0(x) for all x ∈ j0(Ω), u ∈ C2k(Ω̄),

if and only if α = 2k − n, β = −2k − n and γ = 1.

Proof. By testing with u(x) = |x|δ for δ ∈ R, using ∆rad = r1−n∂rr
n−1∂r, one finds:

∆k(|x|α|j0(x)|δ) =

(
k−1∏
m=0

(α− δ − 2m)(n− 2 + α− δ − 2m)

)
|x|α−δ−2k, (4.2.5)

|x|β(∆k|y|δ)y=j0(x) =

(
k−1∏
m=0

(δ − 2m)(n− 2 + δ − 2m)

)
|x|β−(δ−2k). (4.2.6)

These two expressions are identical for all δ if and only if α− δ − 2k = β − (δ − 2k) ,
and hence

β = α− 4k.

This leaves us with two coefficients which are polynomials in δ and these are multiples
of each other if and only if the roots coincide. For the largest root one finds n−2+α =
2 (k − 1) and hence

α = 2k − n.
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In fact now all roots coincide and one finds that γ = 1.
To show that

∆k
(
|x|2k−n (u ◦ j0) (x)

)
= |x|−2k−n (∆ku

)
◦ j0(x) (4.2.7)

holds for all sufficiently smooth functions u we remark that ∆ = r1−n∂rr
n−1∂r+r

−2∆Γ

where ∆Γ is the Laplace-Beltrami operator on the surface of the unit ball. Let ϕ denote
these angular coordinates. Then

∆
(
rδΦ(ϕ)

)
= rδ−2

(
δ (δ + n− 2) + ∆Γ

)
Φ(ϕ).

So a similar computation as for (4.2.5-4.2.6) leads for u = rδΦ(ϕ) to

∆k(r2k−n−δΦ(ϕ)) =

(
k−1∏
m=0

((2k − δ − n− 2m)(2k − δ − 2m− 2) + ∆Γ)

)
r−n−δΦ(ϕ),

r−2k−n(∆ksδΦ(ϕ))s=r−1 =

(
k−1∏
m=0

((δ − 2m)(δ + n− 2m− 2) + ∆Γ)

)
r−n−δΦ(ϕ).

Both right hand sides are equal so (4.2.7) holds for a dense set of functions in C2k(Ω̄)
and hence for all u ∈ C2k(Ω̄). �

Proposition 4.2.3. For any Möbius transformation h in Rn one finds:

∆k
(
J

1
2
− k

n
h u ◦ h

)
= J

1
2
+ k

n
h

(
∆ku

)
◦ h, (4.2.8)

where Jh = |det( ∂hi

∂xj
)| is the Jacobian.

Remark 4.2.4. Some special cases:

(i) For k = 2 and n = 2:

∆2
(
J
− 1

2
h · (u ◦ h)

)
= J

3
2
h ·
(
∆2u

)
◦ h. (4.2.9)

(ii) For k ≥ 1 and n = 2k:

∆k (u ◦ h) = Jh ·
(
∆ku

)
◦ h. (4.2.10)

Proof. It is sufficient to show that (4.2.8) holds for each of the transformations in-
volved. Since scaling, dilation, rotation and reflection give immediately the appropri-
ate changes and since every Möbius transformation can be expressed as (4.2.4), we are
left with the inversion j0. For j0 one finds(

∂

∂xj
j0,i(x)

)
ij

=

(
∂

∂xj

xi
|x|2

)
ij

=
1

|x|2
I −

(
2xixj
|x|4

)
ij

=
1

|x|2

[
I − 2

(
x

|x|

)(
x

|x|

)T]
,
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using column notation for x. Since the matrix between square brackets describes the
reflection in the hyperplane through 0 perpendicular to x, it has determinant −1.
Hence the Jacobian of j0 satisfies:

Jj0(x) =

∣∣∣∣∣det

(
∂

∂xj
j0,i(x)

)
ij

∣∣∣∣∣ =
1

|x|2n
.

�
A direct consequence of Proposition 4.2.3 is that the positivity preserving property

for the polyharmonic problem with Dirichlet boundary condition{
(−∆)ku = f in Ω,(

∂
∂ν

)i
u = 0 for i = 0, . . . , k − 1 on ∂Ω,

(4.2.11)

is invariant under Möbius transformations in Rn. Let give the precise statement.

Corollary 4.2.5. Suppose that A,Ω ⊂ Rn are bounded domains such that there exists
a Möbius transformation from A to Ω. Then (4.2.11) is positivity preserving for Ω if
and only if (4.2.11) is positivity preserving for A.

Proof. Let GΩ, GA be the respective Green functions and let us call the Möbius trans-
formation h. A direct computation shows that

(Jh(x)Jh(y))
k
n
− 1

2 GA(x, y) = GΩ(h(x), h(y)). (4.2.12)

Indeed, if u is the solution of (4.2.11) on Ω, then it holds (−∆)k
(
Jh(x)

1
2
− k

n (u ◦ h)(x)
)

=

Jh(x)
1
2
+ k

n (f ◦ h) (x) and since also the boundary conditions go over nicely in the case
of zero Dirichlet type:

(u ◦ h) (x) = Jh(x)
k
n
− 1

2

∫
A

GA(x, y)Jh(y)
1
2
+ k

n (f ◦ h) (y)dy =

=

∫
A

Jh(x)
k
n
− 1

2Jh(y)
k
n
− 1

2GA(x, y) (f ◦ h) (y)Jh(y)dy.

On the other hand

u(h(x)) =

∫
Ω

GΩ(h(x), η)f(η)dη =

∫
A

GΩ(h(x), h(y)) (f ◦ h) (y)Jh(y)dy.

The claim follows from (4.2.12). �
A well-known property of Möbius transformations is that the image of a (general-

ized) sphere is again a (generalized) sphere (see Theorem 3.4 in [60]). Hence there is
no conformal mapping in dimensions ≥ 2 available that could extend Boggio’s result
to other domains than generalized spheres. By the way, a generalized sphere is either
a sphere or a hyperplane.
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Figure 4.1: Domains for which the clamped plate system is positivity preserving.

In dimension 2 some domains quite different from the disk where the clamped plate
equation is positivity preserving are obtained considering Möbius transformation of the
limaçons Ωa, a ∈ [0, 1

6

√
6]. For sake of completeness we recall that the clamped plate

equation on limaçons Ωa for a ∈ [0, 1
6

√
6] has the positivity preserving property. See

Theorem 3.1.3.

In particular, combining the Green function for a limaçon Ωa, a ∈ [0, 1
6

√
6], with an

inversion that has its ‘center’ just outside of this limaçon one obtains a new domain on
which (4.1.1) is positivity preserving. The drawings in Figure 4.1 are transforms of the
limaçon in the extreme case a = 1

6

√
6 and taking the inversion center just outside that

limaçon. Both the angular position and the distance to the limaçon of the inversion
center are varied. All graphs are scaled back to unit size. The arrow denotes the
inversion center.
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4.3 A perturbation argument

In [40] it has been shown that small perturbations of the disk do not destroy property
(4.1.2). However, the perturbed domains for which f > 0 implies u > 0 that were
allowed needed a small C2-bound for the difference between Ω and B. The result of
[40] in fact is not restricted to the small perturbations of the disk; only the appropriate
estimates for the Green function on the specific domain are needed. Let us give the
precise statement.

Here α is a multi-index of non-negative integers, |α| =
∑
αi and ∂αx =

∏ ∂αi

∂xαi
i

.

Here dΩ denotes the distance function to the boundary as defined in (2.1.3).

Proposition 4.3.1. Suppose that the Green function for (4.1.1) on Ω satisfies the
following estimates:

(i) from below: ∃cΩ > 0 ∀x, y ∈ Ω

GΩ(x, y) ≥ cΩdΩ(x)dΩ(y) min
{

1, dΩ(x)dΩ(y)
|x−y|2

}
, (4.3.1)

(ii) from above: ∃ci,Ω ∀x, y ∈ Ω :

|GΩ(x, y)| ≤ c0,Ω dΩ(x)dΩ(y) min
{

1, dΩ(x)dΩ(y)
|x−y|2

}
,

|α| = 1 : |∂αxGΩ(x, y)| ≤ c1,Ω dΩ(y) min
{

1, dΩ(x)dΩ(y)
|x−y|2

}
,

|α| = 2 : |∂αxGΩ(x, y)| ≤ c2,Ω log
(
1 + dΩ(y)2

|x−y|2

)
,

|α| = 3 : |∂αxGΩ(x, y)| ≤ c3,Ω
1

|x−y| min
{

1, dΩ(y)2

|x−y|2

}
.

Then there exists ε > 0 such that the following holds. If there is a conformal map
h from A to Ω with ‖h− Id‖C2(Ā) ≤ ε, then (4.1.1) is also positivity preserving for
Ω replaced by A.

Here we used the identity Id on C: Id(z) = z.

Remark 4.3.2. As in [40] one may show that it is sufficient that there is a C3,γ-
diffeomorphism from A to Ω close to the identity.

Remark 4.3.3. For the estimate from above to hold we expect to need a more regular
boundary than just the C2 from the conformal map. The estimates above are based
on results of Krasovskĭı that would use a C16 boundary in the present setting, see
Chapter 2.

Remark 4.3.4. If we consider a Möbius transformation of a limaçon Ωa taking a < 1
6

√
6

the resulting domains would allow a (small) perturbation argument without destroying
property (4.1.2). Note that for the domains in Figure 4.1 no extra perturbation is
allowed since a = 1

6

√
6 is critical for positivity.



74 Chapter 4. Positivity for the Clamped Plate

Proof. Proceeding as in (4.2.3) with f = 1 one obtains since ∆|h′|2 = 4|h′′|2 that

∆2(u ◦ h) = ∆
(
|h′|2(∆u) ◦ h

)
=

= |h′|2∆((∆u) ◦ h) + 2∇|h′|2 · ∇((∆u) ◦ h) + ∆|h′|2((∆u) ◦ h)

= |h′|4
(
((∆2u) ◦ h) + 2∇|h′|2

|h′|4 · (∂ihj)(∇∆u) ◦ h) + 4|h′′|2
|h′|4 ((∆u) ◦ h)

)
. (4.3.2)

If the L∞-norms of ∇|h′|2|h′|−4 and |h′′|2|h′|−2 are sufficiently small then we may
use the Green function estimates and the method of [41, Theorem 5.1] to find that
the modified fourth order operator in (4.3.2) on Ω has a positive Green function. And
indeed, these L∞-norms become as small as one likes by choosing the ε-bound for the
C2-difference of h and the identity. For the disk such an approach is found in [40]. If
(4.3.2) with Dirichlet boundary conditions on Ω has the positivity preserving property
then (4.1.1) is positivity preserving on A. �

Remark 4.3.5. The obvious guess would be to proceed considering ∆2(|h′|−1u ◦ h)
instead of ∆2(u◦h). However this approach gives lower order terms that contain third
order derivatives of h. Indeed one gets

1
16

∆2(|h′(z)|−1
u ◦ h) (4.3.3)

= 1
16
|h′|3

(
∆2u

)
◦ h− 1

2

(
h̄′′′(z)− 3

2

(
h̄′′(z)

)2
(h̄′(z))−1

)
(h′(z))

3
2 (h̄′(z̄))−

3
2 U11

−1
2

(
h′′′(z)− 3

2
(h′′(z))2(h′(z))−1

)
(h̄′(z̄))

3
2 (h′(z))−

3
2 U22

+1
4

∣∣h′′′(z)− 3
2
(h′′(z))2(h′(z))−1

∣∣2 |h′|−3
u ◦ h.

Here we used formula (4.2.3) with f = (h′)−
1
2 and u ◦ h(x̃, ỹ) = U(h(z), h̄(z̄)) with

z = x̃+ iỹ and z̄ = x̃− iỹ. Notice that in this case 2f ′h′ + fh′′ = 0.
Since with w = x+ iy it holds

∂2
xU(w, w̄)− ∂2

yU(w, w̄) = 2 (U11 + U22)

∂2
xyU(w, w̄) = i (U11 − U22) ,

we may rewrite (4.3.3) as

∆2(|h′(z)|−1
u ◦ h) = |h′|3

(
∆2u

)
◦ h+ 8Re

(
v(z)h̄′(z̄)

3
2

) (
(∂2
xu) ◦ h− (∂2

yu) ◦ h
)

+16 Im
(
v(z)h̄′(z̄)

3
2

) (
∂2
xyu
)
◦ h+ 16 |v(z)|2 u ◦ h,

with
v(z) = −1

2

(
h′′′(z)− 3

2
(h′′(z))2(h′(z))−1

)
h′(z)−

3
2 .

One would need C3-closeness of h to the identity in order to apply the result in [41].

The three main ingredients of the proof of this proposition are 1) a conformal
mapping near the identity from A to Ω, 2) estimates for the Green function from
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below, and 3) estimates from above for the Green function and its derivatives. By the
way, the estimates for the derivatives of the Green function are not the necessary ones
for the proposition but are the ones that come out of the Green function itself.

Let us focus on the three ingredients just mentioned.
Using conformal mappings other than Möbius will restrict us to 2-dimensional

domains. If estimates would be available for small perturbations in the leading order
this could be overcome. We are not aware if such estimates exist in dimensions higher
than 2. In two dimensions small perturbations in the leading order terms are allowed
since such a differential equation can be transformed to one with bi(poly)harmonic
leading order on a disk. See [40].

One can prove estimates from below of the Green function starting from the explicit
formula. For optimal estimates from below for the polyharmonic Green function for
zero Dirichlet boundary values on the ball in Rn see [45]. Theorem 3.4.1 gives the
estimates from below for the Green function associated to the clamped plate equation
on limaçons Ωa, a ∈ [0, 1

6

√
6]. Also through the perturbation arguments as in [40], [41]

one finds optimal estimates from below for the Green function.
The estimates from above for the Green function are known to hold in a much wider

range. Indeed, such estimates exists for all polyharmonic systems under zero Dirichlet
boundary data, at least when this boundary has sufficient regularity. Theorem 2.5.6
in Chapter 2 gives these estimates for rather general domains starting from the kernel
estimates of Krasovskĭı in [52].





Chapter 5

Separating positivity and regularity

5.1 Introduction and main results

A mayor tool for second order elliptic equations is the maximum principle. The maxi-
mum principle not only implies that a positive source will give a positive solution but
it helps to obtain a priori estimates and hence to find regularity results. Especially
in nonlinear equations such a priori estimates play a crucial role. Several results are
referred to by the name maximum principle but the result that we want to refer to is
the local result that reads for the laplacian as ∆u ≥ 0 in a neighborhood of a implies
that u cannot have a strict maximum in a. A serious obstruction for higher order el-
liptic equations is that one cannot expect a similar result as functions like ±x2 clearly
show.

The situation becomes more complicated when considering a positivity preserving
property which is often also named “maximum principle”. For the laplacian that is:
−∆u ≥ 0 in Ω and u ≥ 0 on ∂Ω implies u ≥ 0 in Ω (with Ω a bounded domain in Rn).
This “global maximum principle” also holds for some special higher order problems.
Indeed, ∆2u ≥ 0 in B and − ∂

∂|x|u ≥ 0, u ≥ 0 on ∂B implies u ≥ 0 in B. Here B is a

ball in Rn with n ≤ 4. For this special result see [43]. With ∂
∂|x|u = u = 0 on ∂B the

result holds for B in any Rn and goes back 100 years to Boggio ([8]). The restriction
to the ball is rather crucial. Since Duffin’s counterexample ([31]) it has become well
known that on most domains such a positivity preserving property fails (see [42]).

In [56] Nehari looks for subdomains of Ω, characterized by the position of the
points x and y and by simple geometric properties of Ω, in which the Green function
for the biharmonic problem with Dirichlet boundary condition on Ω may be shown to
be positive.

In order to find a priori estimates it is however not necessary to have such a sign
preserving result; it is sufficient that the singularity of the solution operator has a fixed
sign. This separation of the solution operator in a smooth but sign changing part and
a singular part of fixed sign is the main result of this chapter. However, since we are
using conformal mappings, our present result is restricted to two dimensional domains.
Note that in two dimensions the singularity of the solution operator for the bilaplacian

77
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appears in the second derivative. Indeed the fundamental solution is −1
8π
|x|2 ln |x|.

Let us be more precise. For Ω an open bounded C4,α domain in R2 we will show
that the solution operator for 

∆2u = f in Ω,
u = 0 on ∂Ω,

∂
∂ν
u = 0 on ∂Ω,

(5.1.1)

can be split in the way we just mentioned. Crucial is that we find a uniform behavior
of such a splitting even near the boundary. Such a result away from the boundary,
that is in compact subsets of Ω, was proven in [45].

We proceed as follows. First, we recall some results of elliptic regularity focusing
on the quantities on which the constants in the estimates depend. Secondly, using the
results of Chapter 3 that for some family of limaçons the Green function for (5.1.1)
is positive, we will show that small perturbations of those limaçons do not destroy
the positivity of the corresponding Green function. Thirdly, one may construct a
finite number of such slightly perturbed limaçons {Ej ⊂ R2} that are such that the
boundary of Ω is covered by the boundaries of those perturbed limaçons while these
limaçons cover a neighborhood of the boundary of Ω. Together with a covering of
the interior one is able to construct the desired splitting of the solution through a
separation of unity related with that covering. Roughly explained, for each x ∈ Ω
there is an element Ej in this finite covering such that the Green function for (5.1.1)
can be decomposed as the sum of GEj

(x, y) and a remainder term Grest
j (x, y) where

GEj
(x, y) is positive and Grest

j (x, y) is without singularity. Note that the choice of Ej
depends on x. Since the extension of GEj

(x, y) from E2
j to Ω2 by 0 is not smooth

one may guess that the just mentioned decomposition is more involved than just this
simple sum.

5.1.1 Main results

In this section we state the two main results of the chapter. First we fix some notation.
The Green function GΩ is such that the solution of problem (5.1.1) for appropriate

f can be written as

u(x) =

∫
Ω

GΩ(x, y)f(y)dy.

In the following dΩ(.) denotes the distance to the boundary in the domain Ω as defined
in (2.1.3).

Two closely related versions of the main result are the following. The first one is
a pointwise description which focusses on the splitting of the solution operator.

Theorem 5.1.1. Assume that Ω ⊂ R2 is a bounded simply connected domain with
∂Ω ∈ C16. Then there exist Greg

Ω , Gsing
Ω : Ω̄2 → R such that the Green function for

(5.1.1) can be written as

GΩ(x, y) = Greg
Ω (x, y) +Gsing

Ω (x, y)
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and the following is satisfied:

(i) (a) Gsing
Ω (x, y) ≥ 0 on Ω̄2;

(b) Gsing
Ω ∈ C1,γ

(
Ω̄2
)
∩ C1

0

(
Ω̄2
)

for all γ ∈ (0, 1) ;

(c) Gsing
Ω ∈ C15,γ

({
(x, y) ∈ Ω̄2;x 6= y

})
for all γ ∈ (0, 1) ;

(ii) (a) Greg
Ω ∈ C15,γ

(
Ω̄2
)
∩ C1

0

(
Ω̄2
)

for all γ ∈ (0, 1) .

Remark 5.1.2. For the condition ∂Ω ∈ C16 see Definition 2.1.3.

Remark 5.1.3. Since GΩ is symmetric one may assume that both Greg
Ω and Gsing

Ω are
symmetric. If not yet symmetric, then set G···

Ω,new(x, y) := 1
2
G···

Ω (x, y) + 1
2
G···

Ω (y, x).

The next result is a kind of maximum principle, that is, it gives a pointwise bound
from above for the solution in terms of the positive part of the right hand side and
a weaker norm of the solution itself. Before we state the result let us recall that the
space W−m,p(Ω) is the dual space of Wm,p′

0 (Ω), with 1
p

+ 1
p′

= 1, and its norm can be
defined as follows

‖u‖W−m,p(Ω) := sup
{
u(ϕ);ϕ ∈ Wm,p′

0 (Ω), ‖ϕ‖Wm,p′ (Ω) ≤ 1
}
.

Theorem 5.1.4. Let 0 < α < 1 and p ∈ (1,∞). Let Ω be a bounded simply connected
domain in R2 with ∂Ω ∈ C4,α.

Then for any q > 2 and ε > 0 there exists a constant cq,Ω,ε > 0 such that for
f ∈ Lp(Ω) the solution u ∈ W 4,p(Ω) ∩W 2,p

0 (Ω) of (5.1.1) satisfies

u(x) ≤ cq,Ω,ε

(∥∥f+
∥∥
L1(B(x,ε)∩Ω)

+ ‖u‖W−1,q(Ω)

)
for every x ∈ Ω.

Here f+ denotes the positive part of f .

Remark 5.1.5. More precise information on how cq,Ω,ε depends on q,Ω and ε can be
found in Theorem 5.5.2. For those who want to avoid norms for negative Sobolev
spaces we recall that ‖u‖W−1,q(Ω) ≤ c(s, q,Ω)‖u‖Ls(Ω) for s > 2q(q + 2)−1.

5.1.2 Some notations

The Hölder spaces Cr(Ω̄) and Cr,γ(Ω̄) with r ∈ N and γ ∈ (0, 1] are supplied with the
norm:

‖f‖Cr(Ω̄) :=
∑
|α|≤r

‖Dαf‖∞,

‖f‖Cr,γ(Ω̄) := ‖f‖Cr(Ω̄) +
∑
|α|=r

[Dαf ]γ ,

where [f ]γ := sup
{
|f(x)−f(y)|
|x−y|γ ;x, y ∈ Ω̄, x 6= y

}
. Here Dα denotes the derivative of f

as fixed in Notation 2.1.2. For convenience we set Cr,0(Ω̄) := Cr(Ω̄).
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In the following Cr
c (Ω) denotes the set of all functions in Cr(Ω) whose supports are

compact subsets of Ω.

For m ∈ N and p ≥ 1, p ∈ R, Wm,p(Ω) denotes the Sobolev space with the norm

‖f‖Wm,p(Ω) =
∑
|α|≤m

‖Dαf‖Lp(Ω) .

Notation 5.1.6. With p ∈ (1,∞) , p′ denotes the conjugate of p, that is:

1

p
+

1

p′
= 1.

We fix the following notation to point out on which quantities the constants depend.

Notation 5.1.7. For α, β, γ ∈ R, C = C(α, β, γ) means that C depends only on α,
β and γ, and that C is bounded for bounded values of these parameters.

Next we will need some notation concerning the domain and its boundary.

Notation 5.1.8 (Relatively open subset of the boundary). For K a subset of ∂Ω ⊂ Rn,
set

K◦,∂Ω := (K ∪ (∂Ω)c)◦ ∩ ∂Ω.

It will also be convenient to fix the following numbers.

Notation 5.1.9. Let Ω be a bounded domain with ∂Ω ∈ C2.

(i) We write ρΩ for the largest number r such that both Ω and Rn\Ω can be filled with
balls of radius r. To be precise: for r > 0 set Ωr := {z ∈ Ω : d (z, ∂Ω) ≥ r}, Ω̃r :={
z ∈ Rn \ Ω̄ : d (z, ∂Ω) ≥ r

}
. Set ρΩ > 0 the largest r such that the following

holds:

Ω =
⋃
z∈Ωr

Br (z) and Rn \ Ω̄ =
⋃
z∈Ω̃r

Br (z) .

(ii) We will also use RΩ defined as the smallest R such that Ω ⊂ BR(z) for some
z ∈ R2.

Remark 5.1.10. For most domains we may take ρΩ = κ−1 where κ denotes the maximal
curvature. But notice that ρΩ can be strictly smaller than κ−1. For example this
happens in the case of a dumb-bell shaped domain with a very narrow passage.

Since some results are quite technical we will use, also in this chapter, Notation
2.1.1 introduced in Chapter 2.
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5.2 Elliptic regularity and interpolation

Elliptic regularity results for linear equations can be found in numerous places. How-
ever, if one goes beyond second order and if one needs to know how the constants
depend on the domain there is no easy reference. For that reason we will collect such
type of results in the present section. For the explicit dependence of these constants
we will go back to the original source of Agmon, Douglis and Nirenberg ([3]).

This section is organized as follows. First we recall some classical results and
the Calderon-Zygmund inequality for n = 2. Then we consider a strong and a weak
formulation of problem (5.1.1). Finally we study three intermediate versions (between
strong and weak) of problem (5.1.1).

Throughout this section the following condition will appear.

Condition 5.2.1. The number α lies in (0, 1) and Ω is a bounded simply connected do-
main (open subset) in R2 satisfying the uniform C4,α regularity condition with constant
M.

5.2.1 Classical results

In this section we recall some results from [36]. For sake of brevity we do not give the
most general statements.

Theorem 5.2.2. [36, Th.9.13] Let Ω be a bounded domain in Rn satisfying the uniform
C1,1 regularity condition with constant M . Then it holds

‖u‖W 2,2(Ω) ≤ C
(
‖u‖L2(Ω) + ‖∆u‖L2(Ω)

)
for every u ∈ W 2,2 (Ω) ∩W 1,2

0 (Ω),

with C = C(n,M, ρ−1
Ω , RΩ).

Remark 5.2.3. The dependence of the constant can be deduced from the proof, see
[36, Th.9.13].

We will use the Calderon-Zygmund inequality for n = 2. This inequality is usually
proved by contradiction. Since we are interested in the dependence of the constant on
the domain, we give here a direct proof.

Lemma 5.2.4. Let Ω be a bounded domain in R2. Then there is C = C(RΩ) such
that

‖u‖L2(Ω) ≤ C ‖∆u‖L2(Ω) for every u ∈ W 2,2(Ω) ∩W 1,2
0 (Ω).

Proof. Let u ∈ W 2,2(Ω)∩W 1,2
0 (Ω). An application of Aleksandrov’s maximum princi-

ple ([36, Th.9.1]) and of Theorem IX.17 in [9] yields

sup
Ω
|u| ≤ C ‖∆u‖L2(Ω) ,
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for some C = C(RΩ). Hence we find

‖u‖L2(Ω) ≤ C ‖∆u‖L2(Ω) |Ω|
1
2 .

�
The following result is a direct consequence of Theorem 5.2.2 and Lemma 5.2.4.

Corollary 5.2.5. Suppose Ω is a bounded domain in R2 satisfying the uniform C1,1

regularity condition with constant M . Then there is C = C(M,ρ−1
Ω , RΩ) such that

‖u‖W 2,2(Ω) ≤ C ‖∆u‖L2(Ω) for every u ∈ W 2,2 (Ω) ∩W 1,2
0 (Ω) .

5.2.2 Regularity for strong solutions

The classical regularity result that we like to recall in an explicit statement is the
following.

Theorem 5.2.6. Assume Condition 5.2.1. For every f ∈ Lp(Ω) with p ∈ (1,∞) there
exists a unique solution u ∈ W 4,p(Ω) ∩W 2,p

0 (Ω) of (5.1.1).
Moreover the solution satisfies

1
2
‖f‖Lp(Ω) ≤ ‖u‖W 4,p(Ω) ≤ Cs ‖f‖Lp(Ω) , (5.2.1)

with Cs = Cs(p, p
′,M, ρ−1

Ω , RΩ) where Cs satisfies the convention of Notation 5.1.7.

Before proving Theorem 5.2.6 we present some estimates.

Lemma 5.2.7. Let Ω be a bounded domain in R2 satisfying the uniform C1,1 regularity
condition with constant M and let p ∈ (1,∞) . Then there is C = C(p, p′,M, ρ−1

Ω , RΩ)
such that

‖u‖Lp(Ω) ≤ C
∥∥∆2u

∥∥
Lp(Ω)

for every u ∈ W 4,p(Ω) ∩W 2,p
0 (Ω).

Proof. Since n = 2 we find by Sobolev inequalities that

‖u‖Lp(Ω) ≤ C1 ‖u‖W 2,2(Ω) and ‖u‖Lp′ (Ω) ≤ C2 ‖u‖W 2,2(Ω) ,

for every u ∈ W 4,p(Ω) ∩ W 2,p
0 (Ω). Notice that C1 = C1(p,M, ρ−1

Ω , RΩ) and C2 =
C2(p

′,M, ρ−1
Ω , RΩ). Hence we have by Corollary 5.2.5, by integrating by parts and by

Hölder that

‖u‖Lp′ (Ω) ‖u‖Lp(Ω) ≤ C1C2 ‖u‖2W 2,2(Ω) ≤ C3

∫
Ω

|∆u|2 dx =

= C3

∫
Ω

u ∆2u dx ≤ C3

∥∥∆2u
∥∥
Lp(Ω)

‖u‖Lp′ (Ω) ,

with C3 = C3(p, p
′,M, ρ−1

Ω , RΩ). The claim follows. �
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Lemma 5.2.8. Assume Condition 5.2.1. Then there exists C = C(p, p′,M, ρ−1
Ω , RΩ)

such that

‖u‖W 4,p(Ω) ≤ C
∥∥∆2u

∥∥
Lp(Ω)

for every u ∈ W 4,p(Ω) ∩W 2,p
0 (Ω).

Remark 5.2.9. Usually Lemma 5.2.8 is proved by contradiction and this does not
explain on what the constant depends on. However by using Lemma 5.2.7 we find the
explicit quantities.

Proof. The result follows from [3, Th.15.2] and Lemma 5.2.7. The proof of [3, Th.15.2]
shows that the dependence of the constant is as given in the statement. �

Proof of Theorem 5.2.6. Uniqueness follows by a standard integration by parts. In-
deed, if ∆2u = 0 then ∫

Ω

|∆u|2 dx =

∫
Ω

u ∆2u dx = 0,

and with the boundary condition one finds u ≡ 0.

Estimate: By definition of the norm in W 4,p(Ω) one finds

1
2

∥∥∆2u
∥∥
Lp(Ω)

≤ ‖u‖W 4,p(Ω) .

The other side of inequality (5.2.1) follows from Lemma 5.2.8.

Existence: For f ∈ Cα (Ω) the existence of a solution u ∈ C4,α (Ω) ∩ C1
0(Ω̄) is

given by [3, Th.12.7]. Such a solution satisfies (5.2.1), ([3, Th.9.3]). The existence in
W 4,p (Ω) ∩W 2,p

0 (Ω) follows by an approximation argument . �

Remark 5.2.10. The hypothesis ∂Ω ∈ C4,α is needed in order to use Theorem 12.7 in
[3]. For the rest of the paper it would be sufficient to assume ∂Ω ∈ C4.

By Theorem 5.2.6 the solution operator for problem (5.1.1) from the space Lp(Ω)
into W 4,p(Ω) ∩W 2,p

0 (Ω) is well defined, surjective and continuous.
For 1 < p <∞ we formally fix the operator T4,p by

D(T4,p) := W 4,p (Ω) ∩W 2,p
0 (Ω) ,

T4,pu := ∆2u for u ∈ D(T4,p).
(5.2.2)

Notice that this operator T4,p is the inverse of the solution operator.

The following result is a consequence of Theorem 5.2.6.

Corollary 5.2.11. Let 1 < p < ∞. Assuming Condition 5.2.1 the operator T4,p de-
fined in (5.2.2) gives an isomorphism from W 4,p (Ω)∩W 2,p

0 (Ω) onto Lp (Ω) . Moreover
one has

1

Cs
≤ ‖T4,p‖(W 4,p(Ω)∩W 2,p

0 (Ω)→Lp(Ω)) ≤ 2,

where Cs is the constant appearing in Theorem 5.2.6.
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5.2.3 Regularity for weak solutions

In the following section we give the explicit definition of what we will call a weak
solution for problem (5.1.1) and we recall the classical regularity result in this setting.

Definition 5.2.12. Let p ∈ (1,∞) and F ∈
(
W 4,p′(Ω) ∩W 2,p′

0 (Ω)
)′

. We call u ∈
Lp(Ω) a weak solution of problem (5.1.1) with right hand side F if the following holds∫

Ω

u(x) ∆2v(x) dx = F (v) for every v ∈ W 4,p′(Ω) ∩W 2,p′

0 (Ω).

Theorem 5.2.13. Assume Condition 5.2.1 and let p ∈ (1,∞) . Then for every F ∈(
W 4,p′(Ω) ∩W 2,p′

0 (Ω)
)′

there exists a unique u weak solution of problem (5.1.1) with

right hand side F .
Moreover u satisfies

1
2
‖F‖�

W 4,p′ (Ω)∩W 2,p′
0 (Ω)

�′ ≤ ‖u‖Lp(Ω) ≤ Cw ‖F‖�
W 4,p′ (Ω)∩W 2,p′

0 (Ω)
�′ ,

with Cw = Cw(p, p′,M, ρ−1
Ω , RΩ).

Proof. Let ip be the canonical isometry Lp(Ω) →
(
Lp

′
(Ω)
)′
, that is, ip(u)(v) =∫

Ω

u(x) v(x) dx for every v ∈ Lp′(Ω).

Existence of u follows by a duality argument. Indeed, by Corollary 5.2.11 we may
define

U(f) := F (T−1
4,p′(f)) for every f ∈ Lp′(Ω).

The solution u is given by u := i−1
p (U). Uniqueness and the estimate follow from

Corollary 5.2.11. �

For 1 < p <∞ let us formally fix the operator T0,p by

D(T0,p) := Lp(Ω),

(T0,p(u))(v) := ip(u)(T4,p′(v)) for every v ∈ W 4,p′(Ω) ∩W 2,p′

0 (Ω).
(5.2.3)

From Theorem 5.2.13 it follows:

Corollary 5.2.14. Let 1 < p <∞ and assume Condition 5.2.1. The operator T0,p de-

fined in (5.2.3) gives an isomorphism from Lp(Ω) onto
(
W 4,p′(Ω) ∩W 2,p′

0 (Ω)
)′

. More-

over one has
1

Cw
≤ ‖T0,p‖�

Lp(Ω)→
�
W 4,p′ (Ω)∩W 2,p′

0 (Ω)
�′� ≤ 2,

where Cw is the constant appearing in Theorem 5.2.13.
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5.2.4 Regularity between weak and strong

In the following section we consider via interpolation solutions between the ‘strong’ and
the ‘weak’ ones defined in the previous sections.

We first give the three intermediate notions of solution.

Definition 5.2.15. Let p ∈ (1,∞).

(i) Let F ∈
(
W 1,p′

0 (Ω)
)′

. We say that u ∈ W 3,p(Ω) ∩ W 2,p
0 (Ω) is a “one-quarter

weak solution” of problem (5.1.1) with right hand side F if it satisfies

−
∫

Ω

(∇∆u(x)). (∇v(x)) dx = F (v) for every v ∈ W 1,p′

0 (Ω).

(ii) Let F ∈
(
W 2,p′

0 (Ω)
)′

. We say that u ∈ W 2,p
0 (Ω) is a “one-half weak solution” of

problem (5.1.1) with right hand side F if it satisfies∫
Ω

(∆u(x)) (∆v(x)) dx = F (v) for every v ∈ W 2,p′

0 (Ω).

(iii) Let F ∈
(
W 3,p′(Ω) ∩W 2,p′

0 (Ω)
)′

. We say that u ∈ W 1,p
0 (Ω) is a “three-quarter

weak solution” of problem (5.1.1) with right hand side F if it satisfies

−
∫

Ω

(∇u(x)). (∇∆v(x)) dx = F (v) for every v ∈ W 3,p′(Ω) ∩W 2,p′

0 (Ω).

Theorem 5.2.16. Assume Condition 5.2.1 and let 1 < p <∞. Then:

(i) for every F ∈
(
W 1,p′

0 (Ω)
)′

there exists a unique u “one-quarter weak solution” of

problem (5.1.1) with right hand side F .

Moreover u satisfies

1

C1

‖F‖�
W 1,p′

0 (Ω)
�′ ≤ ‖u‖W 3,p(Ω) ≤ C1 ‖F‖�

W 1,p′
0 (Ω)

�′ ,

with C1 = C1(p, p
′,M, ρ−1

Ω , RΩ).

(ii) for every F ∈
(
W 2,p′

0 (Ω)
)′

there exists a unique u “one-half weak solution” of

problem (5.1.1) with right hand side F .

Moreover u satisfies

1

C2

‖F‖�
W 2,p′

0 (Ω)
�′ ≤ ‖u‖W 2,p(Ω) ≤ C2 ‖F‖�

W 2,p′
0 (Ω)

�′ ,

with C2 = C2(p, p
′,M, ρ−1

Ω , RΩ).
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(iii) for every F ∈
(
W 3,p′(Ω) ∩W 2,p′

0 (Ω)
)′

there exists a unique u “three-quarter weak

solution” of problem (5.1.1) with right hand side F .

Moreover u satisfies

1

C3

‖F‖�
W 3,p′ (Ω)∩W 2,p′

0 (Ω)
�′ ≤ ‖u‖W 1,p(Ω) ≤ C3 ‖F‖�

W 3,p′ (Ω)∩W 2,p′
0 (Ω)

�′ ,

with C3 = C3(p, p
′,M, ρ−1

Ω , RΩ).

Remark 5.2.17. Theorem 5.2.16 part 2 has been studied in [64, Chap.7].

Our aim in giving the proof of Theorem 5.2.16 is to show how the constants in the
estimates depend on the domain. We proceed through interpolation: [·, ·]θ denotes the
complex interpolation with parameter θ ∈ (0, 1).

For sake of conciseness we fix the following notation:

A0,p := Lp(Ω) A4,p := W 4,p(Ω) ∩W 2,p
0 (Ω),

B0,p := (A4,p′)
′ B4,p := Lp(Ω)(∼= (A0,p′)

′),

and for θ ∈ (0, 1)

A4θ,p := [A0,p, A4,p]θ and B4θ,p := [B0,p, B4,p]θ .

With this notation we have T0,p : A0,p → B0,p and T4,p : A4,p → B4,p, where T0,p

is defined in (5.2.3) and T4,p is defined in (5.2.2).

Lemma 5.2.18. Assume Condition 5.2.1 and let 1 < p < ∞. The operator T4,p is a
restriction of T0,p to A4,p in the following sense:

T0,p(u) ∈ (B4,p′)
′ and T0,p(u) = ip(T4,p(u)) for every u ∈ A4,p.

Proof. Let u ∈ A4,p. For every v ∈ A4,p′ we have

(T0,p(u))(v) =

∫
Ω

u ∆2v dx =

∫
Ω

v ∆2u dx =

∫
Ω

v T4,p(u) dx.

The claim follows. �

As a consequence of Lemma 5.2.18 in the following lemma we find via interpolation
a family of isomorphisms which are extensions of T4,p and restrictions of T0,p.

Lemma 5.2.19. Assume Condition 5.2.1 and fix θ ∈ (0, 1). Consider the operator
T4θ,p such that D(T4θ,p) := A4θ,p and T4θ,p(u) := T0,p(u) for u ∈ D(T4θ,p) and 1 < p <
∞.

Then T4θ,p is an isomorphism from A4θ,p onto B4θ,p and moreover

1

max {Cs, Cw}
≤ ‖T4θ,p‖(A4θ,p→B4θ,p) ≤ 2, (5.2.4)

where Cs and Cw are the constants appearing in Theorems 5.2.6 and 5.2.13 respectively.
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Proof. The claim follows from Corollaries 5.2.11 and 5.2.14 since the complex inter-
polation functor is exact and of type θ ([72, Th.1.9.3a]). �

Remark 5.2.20. Notice that (5.2.4) implies that for every u ∈ A4θ,p it holds

1
2
‖T4θ,p(u)‖B4θ,p

≤ ‖u‖A4θ,p
≤ max {Cs, Cw}‖T4θ,p(u)‖B4θ,p

.

In the following we consider the operators T1,p, T2,p and T3,p; i.e. the operators
T4θi,p defined in Lemma 5.2.19 with θi = 1

4
i and i = 1, 2, 3. Notice that the solution

operator for the “three-quarter weak solution” of problem (5.1.1) is the inverse of T1,p.
Analogously the solution operator for the “one-half weak solution” of problem (5.1.1)
is the inverse of T2,p and the solution operator for the “one-quarter weak solution” of
problem (5.1.1) is the inverse of T3,p.

For these operators we have that

Ai,p = W i,p(Ω) ∩Wmin {i,2},p
0 (Ω) with equivalent norms, (5.2.5)

where Ai,p = D(Ti,p). Identity (5.2.5) can be found in Triebel for C∞-domains. We
first show that in order (5.2.5) to hold it is sufficient that ∂Ω ∈ C4,α. Furthermore we
give the dependence on the domain of the constants D1,p,i and D2,p,i that appear in

D1,p,i‖u‖W i,p(Ω)∩Wmin {i,2},p
0 (Ω)

≤ ‖u‖Ai,p
≤ D2,p,i‖u‖W i,p(Ω)∩Wmin {i,2},p

0 (Ω)
,

for u ∈ W i,p(Ω) ∩Wmin {i,2},p
0 (Ω).

We first recall a classical result from [72].

Proposition 5.2.21. [72, Th.4.3.3] Let B denote the unit ball in Rn. Then for i =
1, 2, 3 and 1 < p <∞ one has[

Lp(B),W 4,p(B) ∩W 2,p
0 (B)

]
1
4
i
= W i,p(B) ∩Wmin {i,2},p

0 (B)

as Banach spaces. Hence there exist constants C1,p,i and C2,p,i such that for every

u ∈ W i,p(B) ∩Wmin {i,2},p
0 (B) one has

C1,p,i‖u‖W i,p(B) ≤ ‖u‖[Lp(B),W 4,p(B)∩W 2,p
0 (B)] 1

4 i

≤ C2,p,i‖u‖W i,p(B).

Theorem 5.2.22. Let assume Condition 5.2.1. Then for 1 < p < ∞ and i = 1, 2, 3
it holds

[A0,p, A4,p] 1
4
i = W i,p(Ω) ∩Wmin {i,2},p

0 (Ω),

as Banach spaces. Hence there exist constants D1,p,i and D2,p,i such that one has for

every u ∈ W i,p(Ω) ∩Wmin {i,2},p
0 (Ω)

D1,p,i‖u‖W i,p(Ω) ≤ ‖u‖[A0,p,A4,p] 1
4 i
≤ D2,p,i‖u‖W i,p(Ω),

with Dj,p,i = Dj,p,i(p,M, ρ−1
Ω , RΩ) for j = 1, 2.
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Proof. Let S denote a C4,α transformation from Ω̄ onto B̄.
Considering the operator

Ep : Lp(Ω)→ Lp(B) such that Ep(f) := f ◦ S−1,

one finds that the following properties hold:

• Ep is an isomorphism;

• for i = 1, . . . , 4 the restriction of Ep to W i,p(Ω)∩Wmin {i,2},p
0 (Ω) is an isomorphism

onto W i,p(B) ∩Wmin {i,2},p
0 (B);

• there are constants C̄1,p and C̄2,p such that

C̄1,p‖Ep(u)‖W i,p(B) ≤ ‖u‖W i,p(Ω) ≤ C̄2,p‖Ep(u)‖W i,p(B), (5.2.6)

for every i = 0, 1, . . . , 4 and u ∈ W i,p(Ω) ∩ Wmin {i,2},p
0 (Ω). Furthermore the

constants C̄1,p and C̄2,p depend only on p, RΩ, ρ−1
Ω and the M of Condition 5.2.1.

For θ ∈ (0, 1) the operator Ep induces isomorphisms

Ep,θ : A4θ,p →
[
Lp(B),W 4,p(B) ∩W 2,p

0 (B)
]
θ
,

and since the complex interpolation functor is exact ([72, Th.1.9.3a]) one has

C̄1,p‖Ep,θ(u)‖[Lp(B),W 4,p(B)∩W 2,p
0 (B)]

θ

≤

≤ ‖u‖A4θ,p
≤ C̄2,p‖Ep,θ(u)‖[Lp(B),W 4,p(B)∩W 2,p

0 (B)]
θ

, (5.2.7)

(See Theorem 1.2.4 in [72]).
Hence, by (5.2.7) and Proposition 5.2.21, we have that

Ai,p =
[
Lp(Ω),W 4,p(Ω) ∩W 2,p

0 (Ω)
]

1
4
i

=
(
Ep, 1

4
i

)−1 ([
Lp(B),W 4,p(B) ∩W 2,p

0 (B)
]

1
4
i

)
=

(
Ep, 1

4
i

)−1 (
W i,p(B) ∩Wmin {i,2},p

0 (B)
)

= W i,p(Ω) ∩Wmin {i,2},p
0 (Ω).

Furthermore we explicitly find the constants that give the equivalence of the norms.
Indeed from (5.2.6), (5.2.7) and Proposition 5.2.21 it follows

‖u‖Ai,p
≤ C̄2,p‖Ep, 1

4
i(u)‖[Lp(B),W 4,p(B)∩W 2,p

0 (B)] 1
4 i

≤ C̄2,pC2,p,i‖Ep, 1
4
i(u)‖W i,p(B) ≤

C̄2,p

C̄1,p

C2,p,i‖u‖W i,p(Ω),
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and

‖u‖W i,p(Ω) ≤ C̄2,p‖Ep(u)‖W i,p(B) = C̄2,p‖Ep, 1
4
i(u)‖W i,p(B)

≤ C̄2,p

C1,p,i

‖Ep, 1
4
i(u)‖[Lp(B),W 4,p(B)∩W 2,p

0 (B)] 1
4 i

≤ C̄2,p

C̄1,p

1

C1,p,i

‖u‖Ai,p
.

�

Remark 5.2.23. The existence of the C4,α transformation from Ω̄ onto B̄ depends upon
the regularity of Ω and the fact that Ω is simply connected. This technical assumption
can be removed.

Corollary 5.2.24. Let assume Condition 5.2.1. Then for 1 < p < ∞ and i = 1, 2, 3
it holds

[B0,p, B4,p] 1
4
i =

(
W 4−i,p′(Ω) ∩Wmin {4−i,2},p′

0 (Ω)
)′
.

Moreover there exist constants D̄j,p,i = D̄j,p,i(p
′,M, ρ−1

Ω , RΩ) for j = 1, 2 such that

D̄1,p,i‖u‖�
W 4−i,p′ (Ω)∩Wmin {4−i,2},p′

0 (Ω)
�′ ≤ ‖u‖[B0,p,B4,p] 1

4 i

and
D̄2,p,i‖u‖�

W 4−i,p′ (Ω)∩Wmin {4−i,2},p′
0 (Ω)

�′ ≥ ‖u‖[B0,p,B4,p] 1
4 i
,

hold for every u ∈
(
W 4−i,p′(Ω) ∩Wmin {4−i,2},p′

0 (Ω)
)′

.

Proof. The result follows from Theorem 5.2.22 through duality results for complex
interpolation spaces ([72, Th.1.11.3]). �

Corollary 5.2.25. Assume Condition 5.2.1 and let 1 < p <∞.
Then for i = 1, 2, 3 there exist isomorphisms

Ti,p : W i,p(Ω) ∩Wmin {i,2},p
0 (Ω)→

(
W 4−i,p′(Ω) ∩Wmin {4−i,2},p′

0 (Ω)
)′
,

which are restrictions of T0,p and extensions of T4,p.
Moreover there exists constants Ci = Ci(p, p

′,M, ρ−1
Ω , RΩ) such that for every u ∈

W i,p(Ω) ∩Wmin {i,2},p
0 (Ω) it holds

1

Ci
‖Ti,p(u)‖�

W 4−i,p′ (Ω)∩Wmin {4−i,2},p′
0 (Ω)

�′ ≤ ‖u‖W i,p(Ω),

and
Ci‖Ti,p(u)‖�

W 4−i,p′ (Ω)∩Wmin {4−i,2},p′
0 (Ω)

�′ ≥ ‖u‖W i,p(Ω).

Proof. The result follows from Lemma 5.2.19, Theorem 5.2.22 and Corollary 5.2.24.
�

Theorem 5.2.16 follows directly from the previous corollary.
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5.3 Small perturbations of a limaçon

By now we know that problem (5.1.1) is positivity preserving on the disk ([8]) and on
limaçons Ωa for a ∈ [0, 1

6

√
6] (see Chapter 3). In this chapter we will show that small

C2,γ perturbations of these domains (Ωa with a < 1
6

√
6) do not destroy this property.

In other words, if a domain Ω∗ is ε-close in C2,γ-sense to a limaçon for ε sufficiently
small then the clamped plate equation on Ω∗ is positivity preserving.

The concept of ε-closeness of domains that we use is the one introduced in [40,
Def.1.1]. For sake of completeness we recall the definition.

Definition 5.3.1. Let ε > 0. We call Ω ε−close in Ck,γ-sense to Ω∗ if there exists a
Ck,γ-mapping g : Ω̄∗ → Ω̄ such that g(Ω̄∗) = Ω̄ and

‖g − Id‖Ck,γ(Ω̄∗) ≤ ε.

The main result of the section is the following.

Theorem 5.3.2 (Perturbation of the domain). Let ā ∈ (1
4
, 1

6

√
6) and γ ∈ (0, 1). Then

there exist ε0 > 0 and c1, c2 > 0 such that for every ε ∈ [0, ε0] and a ∈ [0, ā] the
following holds.

If Ω is ε-close in C2,γ-sense to Ωa, then the Green function GΩ of (5.1.1) satisfies

0 < c1DΩ(x, y) ≤ GΩ(x, y) ≤ c2DΩ(x, y) for every x, y ∈ Ω, (5.3.1)

where

DΩ(x, y) = dΩ(x)dΩ(y) min

{
1,
dΩ(x)dΩ(y)

|x− y|2

}
. (5.3.2)

Remark 5.3.3. In [24] the same estimates from above of GΩ are given but with more
regularity required at the boundary. Thanks to the ε-closeness we get a better estimate
from below and the same from above with less assumptions on the boundary.

Remark 5.3.4. Notice that one needs to consider limaçons Ωa with a < 1
6

√
6. Indeed,

problem (5.1.1) on a domain that is a small C2,γ perturbation of Ω 1
6

√
6 does not have

in general the positivity preserving property. In order to allow perturbations of the
domain the Green function has to be positive in the strict sense as in (5.3.1). See
Chapter 4.

The first result of this kind was proven in [40]. In this paper the authors show
that Ω∗ ε-close to the unit disk in C3,γ-sense implies that the clamped plate equation
on Ω∗ is positivity preserving and moreover, that GΩ∗(., .) ∼ DΩ∗(., .) in Ω∗ ×Ω∗ with
DΩ∗(., .) defined as in (5.3.2).

The proof of Theorem 5.3.2 consists of several steps and uses similar arguments as
in [40] for a disk.

For convenience we summarize here the structure of the section. First we will
shortly recall some properties of the limaçons. For technical reason, we will introduce
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a notation that is slightly different to the one used in Chapter 3. Then we improve
Proposition 2.6 in [40]. In this paper the authors show that C2m,γ-closeness to the disk
implies the existence of a conformal map that satisfies the C2m−1-closeness condition.
We will show that from C2m,γ-closeness to the disk one gets the existence of a conformal
map that satisfies the C2m,γ′-closeness condition for γ′ ∈ (0, γ). Finally in the last
subsection we prove Theorem 5.3.2.

5.3.1 Limaçon de Pascal

The Limaçon de Pascal Ωa with a ∈
[
0, 1

2

]
is defined as the image of the unit disk

through the conformal map

ha(x1, x2) =
(
x1 + 2ax1x2, x2 + ax2

2 − ax2
1 + 1− a

)
for a ∈

[
0, 1

2

]
. (5.3.3)

2

−x 1
6

√
6 x 1

6

√
6−y 1

6

√
6

Figure 5.1: Limaçons Ωa for respectively a = 0, a = 3
10

and a = 1
6

√
6.

The key ingredient to prove Theorem 5.3.2 is the main result of Chapter 3 (and in
[26]). For convenience we recall the result.

Proposition 5.3.5. The Green function GΩa for (5.1.1) with Ω = Ωa and a ∈
[
0, 1

2

]
is positive if and only if a ∈

[
0, 1

6

√
6
]
. Moreover, there exist c1, c2 > 0 such that for

a ∈
[
0, 1

6

√
6
]

the following estimates hold. Writing da(.) = dΩa(.):

GΩa(x, y) ≤ c1 da(x)da(y) min

{
1,
da(x)da(y)

|x− y|2

}
,

GΩa(x, y) ≥ c2

(
1
6

√
6− a

)
da(x)da(y) min

{
1,
da(x)da(y)

|x− y|2

}
.

In the present chapter we will consider limaçons Ωa for a ∈ [0, ā] where ā is strictly
between 1

4
and 1

6

√
6. By taking ā strictly smaller than 1

6

√
6 we will obtain estimates

of the Green function GΩa(., .) which are uniform with respect to a.
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We will also need scaled limaçons and we will define these for R > 0 by

Ωa,R := {(Rx,Ry) : (x, y) ∈ ha(B1(0))} ,

with B1(0) = {(η, ξ) ∈ R2 : η2 + ξ2 < 1}. In the following Ωa denotes Ωa,1.

Some geometrical facts :

(i) For all a ∈
[
0, 1

2

]
the limaçon Ωa,R is symmetric with respect to the second axis

and both (0, 0) and (0, 2R) lie on ∂Ωa,R.

(ii) Let [−xa, xa]× [−ya, 2] denote the smallest rectangle that contains Ωa,1. Then

a 7→ xa and a 7→ ya (5.3.4)

are nondecreasing functions for a ∈
[
0, 1

2

]
with 1 ≤ xa ≤ 1.3 and 0 ≤ ya ≤ 0.25.

(iii) For a ∈ [ 3
16
, 5

16
] we will use ka,R : [−Rxa, Rxa]→ R to describe the lower part of

the boundary ∂Ωa,R :

ka,R (x) = inf {y : (x, y) ∈ Ωa,R} . (5.3.5)

In particular in the approximation we will use that the following relations hold:

k′′a,R (0) =
1

R

1− 4a

(1− 2a)2 and (5.3.6)

∥∥∥∥ ∂i∂xika,R
∥∥∥∥
C0[−Rx∗a,Rx∗a]

≤ bi
Ri−1

for i = 1, . . . , 5, (5.3.7)

with x∗a = 1
2
(1 −

√
3a). Notice that x∗a ∈ (1

5
xa,

1
2
xa) where xa is defined near

(5.3.4). The constants bi can be taken independently of a ∈ [ 3
16
, 5

16
].

For sake of completeness we prove formulas (5.3.6) and (5.3.7). The boundary of
the limaçon Ωa,R can be parametrized by{

y = R (1 + 2a sin θ) sin θ +R− 2aR,
x = R (1 + 2a sin θ) cos θ,

(5.3.8)

for θ ∈ [0, 2π). Notice that (0, 0) is attained by θ = 3
2
π for every a. From the parametric

equations in (5.3.8), we have{
dy
dx

= R (1 + 4a sin θ) cos θ dθ
dx
,

1 = −R
(
sin θ − 2a+ 4a sin2 θ

)
dθ
dx
.

The term sin θ−2a+4a sin2 θ is never zero for θ in a neighborhood of 3
2
π and a ∈ [ 3

16
, 5

16
].

Hence for θ in this interval we get

dy

dx
= − 1 + 4a sin θ

sin θ − 2a+ 4a sin2 θ
cos θ. (5.3.9)
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Relation (5.3.7) for i = 1 follows directly from (5.3.9). Notice that (Rx∗a, ka,R(Rx∗a))
is attained for θ = 5

3
π for every a and that θ 7→ sin θ − 2a + 4a sin2 θ is not zero in

[4
3
π, 5

3
π] for a ∈ [ 3

16
, 5

16
].

Differentiating once more one obtains

d2y

dx2
=

1 + 4a sin θ(
sin θ − 2a+ 4a sin2 θ

)2 cos2 θ (1 + 8a sin θ)
dθ

dx
+

sin θ + 8a sin2 θ − 4a

sin θ − 2a+ 4a sin2 θ

dθ

dx

=
dθ

dx

cos2 θ + 4a cos2 θ sin θ + 8a cos2 θ sin θ + 32a2 cos2 θ sin2 θ(
sin θ − 2a+ 4a sin2 θ

)2
+
dθ

dx

sin2 θ + 8a sin3 θ − 4a sin θ − 2a sin θ − 16a2 sin2 θ + 8a2(
sin θ − 2a+ 4a sin2 θ

)2
+
dθ

dx

4a sin3 θ + 32a2 sin4 θ − 16a2 sin2 θ(
sin θ − 2a+ 4a sin2 θ

)2
=

dθ

dx

1 + 6a sin θ + 8a2(
sin θ − 2a+ 4a sin2 θ

)2
= − 1

R

1 + 8a2 + 6a sin θ(
sin θ − 2a+ 4a sin2 θ

)3 . (5.3.10)

Computing in 0 one finds (5.3.6) since

d2y

dx2
(0) = − 1

R

1 + 8a2 − 6a

(−1 + 2a)3 =
1

R

1− 4a

(1− 2a)2 ,

and moreover, (5.3.10) implies directly (5.3.7) for i = 2.

One can prove relation (5.3.7) for i = 3, 4, 5 proceeding as before. We skip this
proof to avoid too many computations.

5.3.2 Improved ε-closeness to the disk

In this section we show that from C2m,γ-closeness to the disk one gets the existence
of a conformal map that also satisfies the C2m,γ′-closeness condition for γ′ ∈ (0, γ),
improving [40, Prop.2.6]. We state the result in the following proposition. The proof
follows the main steps of the one in [40] except in the last part.

Proposition 5.3.6. Let γ ∈ (0, 1) and m ∈ N be given. Then there exist ε0 = ε0(m) >
0 and c > 0 such that for ε ∈ [0, ε0] and γ′ ∈ (0, 1) with γ′ < γ we have the following.

If Ω∗ is ε-close in C2m,γ-sense to the disk B, then there exists a biholomorphic
mapping ϕ : B̄ → Ω̄∗, with ϕ ∈ C2m,γ′(B̄) and ϕ−1 ∈ C2m,γ′(Ω̄∗), such that

‖ϕ− Id‖C2m,γ′ (B̄) ≤ c εγ−γ
′
.
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Proof. Let f : B̄ → Ω̄∗ be a mapping such that ‖f − Id‖C2m,γ(B̄) ≤ ε with ε ≤ ε0 small
enough. According to [16] (see also [69, Sec.4.2]), a holomorphic mapping ϕ−1 : Ω∗ →
B, that has the desired qualitative properties, may be constructed in the following
way. First set

ω(x) := 2πG(x, 0).

Here G is the Green function for −∆ in Ω∗ under homogeneous Dirichlet boundary
condition. Next define the conjugate harmonic function

ω∗(x) :=

∫ x

1/2

(
− ∂

∂ξ2
ω(ξ) dξ1 +

∂

∂ξ1
ω(ξ) dξ2

)
,

where the integral is taken with respect to any curve from 1
2

to x in Ω∗ \ {0}. The
function ω∗ is well defined up to multiples of 2π. One finds that ϕ−1 is uniquely defined
by

ϕ−1(x) := exp(−ω(x)− iω∗(x)) for x ∈ Ω̄∗,

where R2 and C are identified. The function ϕ−1 maps 0 onto 0 and the point 1
2

somewhere into the positive real half-axis. Moreover, for x ∈ ∂Ω∗ we find that
|ϕ−1(x)| = | exp(−iw∗(x)| = 1 and hence ϕ−1(∂Ω∗) ⊂ ∂B. For x ∈ Ω∗ \ {0} we
have ω(x) > 0 and hence |ϕ−1(x)| < 1 implying ϕ−1(Ω∗) ⊂ B.

Setting
r(x) = 2πG(x, 0) + log |x| for x ∈ Ω̄∗

one has that r satisfies {
−∆r = 0 in Ω∗,
r(x) = θ(x) := log |x| on ∂Ω∗.

(5.3.11)

In order to have that ‖ϕ−1 − Id‖C2m,γ′ (Ω̄∗) = O(εγ−γ
′
) (and consequently also ‖ϕ −

Id‖C2m,γ′ (B̄) = O(εγ−γ
′
)) it would be sufficient that

‖r‖C2m,γ′ (Ω̄∗) = O(εγ−γ
′
), (5.3.12)

since
ϕ−1(x) = x exp(−r(x)− ir∗(x)) for x ∈ Ω̄∗,

again identifying R2 and C. The estimate in (5.3.12) follows from the extension of the
boundary data θ|∂Ω∗ to some θ̂ on Ω̄∗ with

‖θ̂‖C2m,γ′ (Ω̄∗) = O(εγ−γ
′
). (5.3.13)

Indeed, the estimate for ‖r‖C0(Ω̄∗) is immediate by the maximum principle applied to

(5.3.11). Furthermore, by means of elliptic estimates for second order equations (see
[3, Th.7.3] and [36, Chap.6.3-6.4]), we find ‖r‖C2m,γ′(Ω̄∗) = O(εγ−γ

′
). Note that due to

the closeness of Ω∗ to B in C2m,γ-sense, according to Definition 5.3.1, the constants in
these estimates may be chosen independently of Ω∗.
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It remains to show the existence of some θ̂ that satisfies (5.3.13). This is done as
follows. Since Ω∗ is ε−close to B in C2m,γ-sense one may show that (θ ◦ f) |∂B can be
extended to θf on B̄ with ‖θf‖C2m,γ′(B̄) = O(εγ−γ

′
), provided

∥∥(θ ◦ f) |∂B
∥∥
C2m,γ′ (∂B)

=

O(εγ−γ
′
). This means that we only have to estimate the tangential derivatives of

(θ ◦ f) |∂B.
Set ϑ(t) := θ(f(cos(t), sin(t))). We are done, if we have shown that

max
j=0,...,2m

max
t∈[0,2π]

∣∣∣∣∣
(
d

dt

)j
ϑ(t)

∣∣∣∣∣ = O(εγ), (5.3.14)[(
d

dt

)2m

ϑ

]
γ′

= O(εγ−γ
′
). (5.3.15)

Notice that (5.3.14) was already proved in [40]. The improvement here is that also
(5.3.15) holds.

We observe that ϑ(t) = O(ε) since it holds that

log |f(cos(t), sin(t))| = log (1 +O(ε)) = O(ε).

Let us denote f̃(t) := f(cos(t), sin(t)). Then f̃ = (f̃1, f̃2) : R→ R2 and(
d

dt

)j
ϑ =

(
d

dt

)j (
θ ◦ f̃

)

=

j∑
|α|=1,
α∈N2

(
(Dαθ) ◦ f̃

)  ∑
p1+···+p|α|=j

1≤pi

dj,α,~p

|α|∏
l=1

f̃
(pl)
βl

 ,

with some suitable coefficients dj,α,~p and with βl = 1 if 1 ≤ l ≤ α1 and βl = 2 otherwise.
We want to compare this with the corresponding expression with f replaced by Id .

Writing f̃0(t) = Id ◦ (cos(t), sin(t)) we find(
d

dt

)j
ϑ =

j∑
|α|=1,
α∈N2

((
(Dαθ) ◦ f̃ − (Dαθ) ◦ f̃0

)
+ (Dαθ) ◦ f̃0

)

×

 ∑
p1+···+p|α|=j

1≤pi

dj,α,~p

|α|∏
l=1

((
f̃

(pl)
βl
− f̃ (pl)

0,βl

)
+ f̃

(pl)
0,βl

) .

Since θ(f̃0(t)) = log |(cos(t), sin(t))| ≡ 0, all expressions containing f̃0 only (and not a
difference), sum up to zero. In the remaining sum, every term contains at least one
factor of the form

(Dαθ) ◦ f̃ − (Dαθ) ◦ f̃0 or f̃
(pl)
βl
− f̃ (pl)

0,βl
,
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with |α| , pl ∈ {1, . . . , 2m}. For ε small, each of this factors is at most O(εγ). Choosing
ε0 sufficiently small, the other factors remain uniformly bounded with respect to ε ∈
[0, ε0). This shows (5.3.14). In order to verify (5.3.15) we remark that

[
f̃

(pl)
βl
− f̃ (pl)

0,βl

]
γ

= O(ε) for pl ∈ {1, . . . , 2m} by the definition of ε-closeness. It remains to study the

term
[
(Dαθ) ◦ f̃ − (Dαθ) ◦ f̃0

]
γ′

for |α| ∈ {1, . . . , 2m} . One finds[
(Dαθ) ◦ f̃ − (Dαθ) ◦ f̃0

]
γ′

= sup
t,s∈[0,2π],
|t−s|>ε

∣∣∣(Dαθ) ◦ f̃(t)− (Dαθ) ◦ f̃0(t)− (Dαθ) ◦ f̃(s) + (Dαθ) ◦ f̃0(s)
∣∣∣

|t− s|γ′

+ sup
t,s∈[0,2π],
|t−s|<ε

∣∣∣(Dαθ) ◦ f̃(t)− (Dαθ) ◦ f̃0(t)− (Dαθ) ◦ f̃(s) + (Dαθ) ◦ f̃0(s)
∣∣∣

|t− s|γ′
= . . . .

Since Dαθ ∈ Cγ for |α| ≤ 2m,
∥∥∥f̃ − f̃0

∥∥∥
C1(0,2π)

= O(ε) and f̃ , f̃0 ∈ C1 [0, 2π] , we get

. . . ≤ c sup
t,s∈[0,2π],
|t−s|>ε

∣∣∣f̃(t)− f̃0(t)
∣∣∣γ +

∣∣∣f̃(s)− f̃0(s)
∣∣∣γ

|t− s|γ′
+

+c sup
t,s∈[0,2π],
|t−s|<ε

∣∣∣f̃(t)− f̃(s)
∣∣∣γ +

∣∣∣f̃0(t)− f̃0(s)
∣∣∣γ

|t− s|γ′

≤ 2c sup
t,s∈[0,2π],
|t−s|>ε

εγ

|t− s|γ′
+ 2c′ sup

t,s∈[0,2π],
|t−s|<ε

|t− s|γ−γ
′
≤ O(εγ−γ

′
).

�

5.3.3 Perturbations from the bilaplacian on a limaçon

In this section we prove Theorem 5.3.2. Since the proof consists of several parts, for
convenience we first summarize the main steps here.

We first show that ε-closeness in C2,γ-sense of Ω to Ωa implies the existence of a
biholomorphic map ϕa : Ωa → Ω such that

‖ϕa − Id‖C2,γ′ (Ω̄a) ≤ δ(ε) for 0 < γ′ < γ. (5.3.16)

Next, through this conformal mapping ϕa problem (5.1.1) on Ω is transformed into
the following problem on Ωa: (∆2 + A)u = f̃ in Ωa,

u = 0 on ∂Ωa,
∂
∂ν
u = 0 on ∂Ωa,

(5.3.17)
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where A is a lower order perturbation of the biharmonic operator; i.e. A can be written
as A =

∑
|α|≤3Aα(.)D

α (see [41, Remark after Theorem 5.1]). From (5.3.16) one also

has that there exists a δ1 = δ1(ε) > 0 such that the coefficients of A in (5.3.17) satisfy

sup
|α|≤3

‖Aα‖∞ ≤ δ1.

We then see that the positivity of the Green function associated to problem (5.3.17)
implies the positivity of the Green function associated to problem (5.1.1) thanks to
the properties of conformal maps ([59]). Hence, instead of proving directly Theorem
5.3.2 we prove the following result.

Theorem 5.3.7 (Perturbation of ∆2 by lower order terms ). Let a ∈ [0, ā] with ā as
in Theorem 5.3.2. Consider problem (5.3.17) with A =

∑
|α|≤3Aα(x)D

α, Aα ∈ C(Ω̄a)

and let GΩa,A the Green function associated to (5.3.17).
Then there exists η0 > 0 such that, whenever ‖Aα‖∞ ≤ η0 for all α with |α| ≤ 3,

the Green function associated to (5.3.17) is positive. Moreover, there exist d1,d2 > 0
such that, with DΩa(x, y) as in (5.3.2), the following holds:

d1DΩa(x, y) ≤ GΩa,A(x, y) ≤ d2DΩa(x, y). (5.3.18)

Theorem 5.3.7 says that if the lower order perturbation of the biharmonic operator
is small then the positivity preserving property of system (5.3.17) in Ωa follows from
the positivity preserving property of problem (5.1.1) on the same domain.

A result similar to Theorem 5.3.7 was proven in [41] for the polyharmonic Dirichlet
boundary value problem on the unit disk B. The main ingredient of the proof are
appropriate estimates of

Hk
B(x, y, z) :=

GB(x, z)
∣∣Dk

zGB(z, y)
∣∣

GB(x, y)
with k ∈ N2, |k| ≤ 3, (5.3.19)

which were proved in [40]. Notice that in [40] one considers Ω being a ball. The only
place however where that fact is used is in the explicit estimates of Hk

B. Indeed all
the other arguments can be applied to any planar smooth domain Ω whose Green
function is positive in the strict sense as in the left hand side of (5.3.18). Hence to
prove Theorem 5.3.7 we first show that Hk

Ωa
(that is the quotient in (5.3.19) calculated

for GΩa) satisfies the same estimates as Hk
B and then refer to the work in [41].

In the next paragraph we construct the conformal mapping from “Ω ε-close to Ωa”
to the limaçon Ωa and we state the equivalence of Theorem 5.3.2 and Theorem 5.3.7.
Then we prove the perturbation result of Theorem 5.3.7.

Conformal transformation

In this subsection we prove that problem (5.1.1) on Ω that is ε-close to Ωa, corresponds
to a problem of the type (5.3.17) on Ωa with the coefficients of A, the lower order
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perturbation of ∆2, being small. Or, to be more precise, there is a function ε 7→ δ(ε)
with δ(ε)→ 0 when ε ↓ 0, such that

Ω ε-close in C2,γ-sense to Ωa ⇒ sup
|α|≤3

‖Aα‖∞ ≤ δ(ε).

Or in other words, that Theorem 5.3.7 implies Theorem 5.3.2.
The first step consist of proving existence of a biholomorphic map from the limaçon

to a domain ε-close to the limaçon which is near the identity in C2,γ-sense.

Proposition 5.3.8. Let a ∈ [0, ā] and γ ∈ (0, 1). Then there exist ε̄ > 0 and c =
c(ā) > 0 such that for ε ∈ [0, ε̄) and every γ′ ∈ (0, 1) with γ′ < γ we have the following.

If Ω is ε-close in C2,γ-sense to Ωa then there is a biholomorphic map ϕa : Ω̄a → Ω̄,
with ϕa ∈ C2,γ′(Ω̄a) and ϕ−1

a ∈ C2,γ′(Ω̄), such that

‖ϕa − Id‖C2,γ′ (Ω̄a) ≤ c εγ−γ
′
.

The proof of Proposition 5.3.8 consist of the following three lemmas.
Since a ≤ ā < 1

6

√
6 < 1

2
one may check that the map ha, defined in (5.3.3), is

conformal and one-to-one on the domain

B√
1.5 :=

{
x ∈ R2 : ‖x‖2 <

√
1.5
}
.

We choose the value ε1 ∈ (0, 1) such that, if Ω is ε-close in C2,γ-sense to Ωa for
ε ∈ (0, ε1), then h−1

a (Ω) ⊂ B√
1.5. It follows that h−1

a is a conformal map on any
domain Ω which is ε-close in C2,γ-sense to the limaçon for ε < ε1.

Lemma 5.3.9. Let a ∈ [0, ā] and γ ∈ (0, 1). There exists c1 = c1(ā) > 0 such that the
following holds. If Ω is ε-close in C2,γ-sense to Ωa for ε ∈ (0, ε1), then Ω∗ := h−1

a (Ω)
is c1ε-close in C2,γ-sense to the disk B.

Proof. Let g be a C2,γ-mapping, g : Ω̄a → Ω̄, such that ‖g− Id‖C2,γ(Ω̄a) ≤ ε. We define
the map f : B̄ → Ω̄∗ by

f(x) :=
(
h−1
a ◦ g ◦ ha

)
(x),

where ha : B̄ → Ω̄a and h−1
a : Ω̄→ Ω̄∗ are conformal (see Figure 5.2). Then there exists

a positive constant c1, depending on ‖ha‖C4 and ‖h−1
a ‖C4 , such that ‖f − Id‖C2,γ(B̄) ≤

c1ε. �
In the following Ω∗ denotes h−1

a (Ω).

Lemma 5.3.10. Let a ∈ [0, ā] and γ ∈ (0, 1). Then there exist ε2 > 0 and c2 =
c2(ā) > 0 such that for every ε ∈ (0, ε2) and γ′ ∈ (0, 1) with γ′ < γ, the following
holds. If Ω is ε-close in C2,γ-sense to Ωa, then there exists a biholomorphic mapping
ϕ : B̄ → Ω̄∗ with ϕ ∈ C2,γ′(B̄), ϕ−1 ∈ C2,γ′(Ω̄∗) and such that

‖ϕ− Id‖C2,γ′ (B̄) ≤ c2ε
γ−γ′ .
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g
6

ϕa

6

ha
�

h−1
a -

ha
�

h−1
a -

f
6

ϕ
6

Ωa

Ω

B

Ω∗

Figure 5.2: The maps between Ω, Ωa, B and Ω∗.

Proof. From Lemma 5.3.9 it follows that Ω∗ is c1ε-close to B. Applying Proposition
5.3.6 we have that there exists ε0 > 0 such that “Ω∗ c1ε-close to B” for c1ε ∈ (0, ε0)
implies the existence of a biholomorphic mapping ϕ : B̄ → Ω̄∗ with ϕ ∈ C2,γ′(B̄),
ϕ−1 ∈ C2,γ′(Ω̄∗) and such that it holds

‖ϕ− Id‖C2,γ′ (B̄) ≤ c2ε
γ−γ′ ,

for every γ′ ∈ (0, 1) with γ′ < γ. The claim follows taking ε2 = min
{
ε1, c

−1
1 ε0

}
. �

Lemma 5.3.11. Let a ∈ [0, ā] and γ ∈ (0, 1). There exist ε3 > 0 and c3 = c3(ā) > 0
such that for every ε ∈ (0, ε3) and γ′ ∈ (0, 1) with γ′ < γ the following holds.

If Ω is ε-close in C2,γ-sense to Ωa, then there exists a biholomorphic mapping
ϕa : Ω̄a → Ω̄ with ϕa ∈ C2,γ′(Ω̄a), ϕ

−1
a ∈ C2,γ′(Ω̄) and such that

‖ϕa − Id‖C2,γ′ (Ω̄a) ≤ c3ε
γ−γ′ .

Proof. We denote ϕa the map from Ω̄a to Ω̄ given by

ϕa(x) :=
(
ha ◦ ϕ ◦ h−1

a

)
(x).

Here ϕ is the conformal map of Lemma 5.3.10. The map ϕa is biholomorphic as
a composition of biholomorphic maps. Furthermore we have ϕa ∈ C2,γ′(Ω̄a) and
ϕ−1
a ∈ C2,γ′(Ω̄) since ϕ ∈ C2,γ′(B̄) and ϕ−1 ∈ C2,γ′(Ω̄∗).

By the way the holomorphic map ϕa is defined one finds that there exists a positive
constant K, depending on ‖ha‖C4 and ‖h−1

a ‖C4 , such that

‖ϕa − Id‖C2,γ′(Ω̄a) ≤ K ‖ϕ− Id‖C2,γ′(B̄) .

The claim will follow choosing c3 = Kc2 and ε3 = ε2 with c2 and ε2 as defined in
Lemma 5.3.10. �
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Remark 5.3.12. Notice that Proposition 5.3.8 follows from Lemma 5.3.11.

We are now ready to prove that the positivity preserving property of problem
(5.3.17) with a small perturbation of ∆2 on Ωa implies the positivity preserving prop-
erty of problem (5.1.1) on Ω ε-close in C2,γ-sense to Ωa.

Corollary 5.3.13. Let γ ∈ (0, 1). For every δ > 0 small enough and a ∈ [0, ā] there
exists ε0 > 0 such that for ε ∈ [0, ε0) the following holds.

If Ω is ε-close in C2,γ-sense to the limaçon Ωa and the coefficients of the operator
A satisfy

sup
|α|≤3

‖Aα‖∞ ≤ δ, (5.3.20)

then the positivity of the Green function associated to problem (5.3.17) on Ωa implies
the positivity of the Green function associated to problem (5.1.1) on Ω.

Proof. To prove the claim we show that problem (5.1.1) on Ω ε-close in C2,γ-sense to
Ωa can be “transformed” into problem (5.3.17) on Ωa with the coefficients of the lower
order operator A satisfying (5.3.20).

Let u be solution of problem (5.1.1) on Ω. Consider δ0 < min
{

1
2
, 2−7δ

}
. By

Proposition 5.3.8 we know that there exists a ε0 = ε0 (δ0) > 0 such that for ε ∈ [0, ε0)
and γ′ ∈ (0, 1) with γ′ < γ we have the following. If Ω is ε-close to Ωa in C2,γ-sense
then there exists a conformal map ϕa : Ω̄a → Ω̄ such that

‖ϕa − Id‖C2,γ′ (Ω̄a) ≤ δ0.

We define the function va(x) := u ◦ ϕa(x) on Ωa. Clearly u > 0 if and only if
va > 0. Since ϕa is a conformal map, the function va satisfies

∆2va − 2∇|ϕ′a|2 · ∇ ∆va

|ϕ′a|2
− 4|ϕ′′a|2 ∆va

|ϕ′a|2
= |ϕ′a|4f ◦ ϕa in Ωa,

va = 0 on ∂Ωa,
∂
∂ν
va = 0 on ∂Ωa,

(5.3.21)

where ϕ′a denotes the complex derivative of ϕa. Hence va is solution of a problem as
in (5.3.17). The coefficients of the lower order perturbation of ∆2 in (5.3.21) satisfy
(5.3.20) by the choice of δ0. �

Remark 5.3.14. Notice that since we are working with conformal mappings it is suffi-
cient to have C2,γ-closeness in order to transform problem (5.1.1) into problem (5.3.17).
Working with general transformations fourth order derivatives would appear and C4,γ-
closeness would be necessary.

As a consequence of Corollary 5.3.13, Theorem 5.3.2 will follow from Theorem
5.3.7.
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Proof of the perturbation theorem

In [41] Theorem 5.3.7 has been proven in the unit disk (that is Ω0). We now give a
sketch of the proof for Ωa, a ∈ [0, ā], by following similar steps.

First we state some estimates for (5.3.19) with GB replaced by GΩa .

Theorem 5.3.15. Let k = (k1, k2) with k1, k2 ∈ N and |k| ≤ 3. The following
estimates hold for any a ∈ [0, ā] and x, y, z ∈ Ωa.

(i) If |k| = 3, then

GΩa(x, z)
∣∣Dk

zGΩa(z, y)
∣∣

GΩa(x, y)
� 1

|x− z|
+

1

|y − z|
.

(ii) If |k| = 2, then

GΩa(x, z)
∣∣Dk

zGΩa(z, y)
∣∣

GΩa(x, y)
� log

(
3

|z − y|

)
.

(iii) If |k| ≤ 1, then
GΩa(x, z)

∣∣Dk
zGΩa(z, y)

∣∣
GΩa(x, y)

� 1.

Proof. With the same method as has been used in [41] the result follows from the
optimal estimate from below of GΩa , which has been proved in Chapter 3 (see [26] and
Proposition 5.3.5), and from the estimates of the derivatives of the Green function,
which have been proved in Theorem 2.5.6 (see also [24]).

For completeness we give the idea of the proof in the case |k| = 3. Using the results
in Proposition 5.3.5 and Theorem 2.5.6 we find

GΩa(x, z)
∣∣Dk

zGΩa(z, y)
∣∣

GΩa(x, y)
�

dΩa(z) min
{

1,
dΩa (x)dΩa (z)

|x−z|2

}
|z − y|−1 min

{
1,

dΩa (y)

|y−z|

}2

dΩa(y) min
{

1,
dΩa (x)dΩa (y)

|x−y|2

}
� dΩa(z)

dΩa(y)

Q(x, y, z)

|z − y|
min

{
1,
dΩa(y)

|y − z|

}
,

where

Q(x, y, z) :=
min

{
1,

dΩa (x)dΩa (z)

|x−z|2

}
min

{
1,

dΩa (y)

|y−z|

}
min

{
1,

dΩa (x)dΩa (y)

|x−y|2

} .

The claim follows since it holds

min

{
1,
dΩa(y)

|y − z|

}
� dΩa(y)

dΩa(z)
and Q(x, y, z) � 1 +

|z − y|
|z − x|

,
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see [40, Lemma 4.3].
The proof for |k| ≤ 2 follows using similar arguments. �
Let GΩ denote the Green operator associated to problem (5.1.1) in Ω, that is

GΩf(x) :=

∫
Ω

GΩ(x, y)f(y)dy.

By the estimate in Theorem 5.3.15 one may observe that the derivatives of the Green
function have an integrable singularity. Hence one finds the following two corollaries
of Theorem 5.3.15.

Corollary 5.3.16. There exists M ∈ R+such that for any 0 ≤ f ∈ Lp(Ωa) with p ≥ 1
and k = (k1, k2) ∈ N2 with 0 ≤ |k| ≤ 3, the following estimate holds for all a ∈ [0, ā]∣∣(GΩaD

kGΩa f
)
(x)
∣∣ ≤M (GΩa f) (x) for all x ∈ Ωa.

Corollary 5.3.17. Let a ∈ [0, ā] and η > 0 be such that the coefficients of A in
(5.3.17) satisfy ‖Aα‖∞ ≤ η for all |α| ≤ 3. Then for any 0 ≤ f ∈ Lp(Ωa) with p ≥ 1

|(GΩaAGΩa f) (x)| ≤ 10Mη (GΩa f) (x) for all x ∈ Ωa,

and furthermore∣∣∣((GΩaA)i GΩaf
)

(x)
∣∣∣ ≤ (10M η)i (GΩa f) (x) for all x ∈ Ωa,

where M is the constant of Corollary 5.3.16.

For the proofs we refer to [41, Cor.4.2, Lem.5.4-5.5].

Proof of Theorem 5.3.7. Let u be a solution of (5.3.17). Proceeding as in [41, Lemma
5.3] one finds that there exists a η1 > 0 such that (I + GΩaA)−1 is well defined when
the coefficients of A satisfy ‖Aα‖∞ ≤ η1 for |α| ≤ 3. We have

u = −GΩaAu+ GΩaf = (I + GΩaA)−1 GΩaf,

and may formally write

GΩa,A = (I + GΩaA)−1 GΩa

= GΩa − GΩaAGΩa + (GΩaA)2 GΩa − (GΩaA)3 GΩa + . . . . (5.3.22)

Using Corollary 5.3.17 from (5.3.22) taking η0 = min
{

1
30M

, η1

}
and η ≤ η0 the series

converges and we get
1
2
GΩa ≤ GΩa,A ≤ 3

2
GΩa . (5.3.23)

The estimate in (5.3.18) follows directly from (5.3.23) and Proposition 5.3.5. �

Remark 5.3.18. For the problem
(∆2 + A)u = f in Ω,

u = 0 on ∂Ω,
∂
∂ν
u = 0 on ∂Ω,

with Ω ε-close in C2,γ-sense to Ωa for a ∈ [0, ā] and with A the lower order perturbation
of the bilaplacian such that ‖Aα‖∞ ≤ η for |α| ≤ 3, the result stated in Theorem 5.3.7
is still valid for ε and η sufficiently small.
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5.4 Filling the domain with perturbed limaçons

In this section we prove that a sufficiently smooth bounded two-dimensional domain
can be approximated by limaçon-like domains in the sense we want. That is, we will
construct a finite number of domains Ej such that:

(i) the union of Ej covers Ω near ∂Ω;

(ii) the union of ∂Ej covers the boundary ∂Ω;

(iii) each Ej is close in C2,γ-sense to a limaçon Ωa,R with a ∈ [0, ā] in a uniform way;

(iv) the Ej uniformly satisfy the uniform C4,γ regularity condition in a ∈ [0, ā].

The precise statement is given in Theorem 5.4.29.

5.4.1 Local approximation

We first show that for each z0 on ∂Ω there exists a domain ε-close to a limaçon
which boundary intersects ∂Ω in a neighborhood of z0. In order to do that it will be
convenient to use local systems of cartesian coordinates. The following lemma lists
some technical results.

Lemma 5.4.1. Let ` ≥ 2 and Ω be a domain in R2 satisfying the uniform C`,α

regularity condition, Definition 2.1.3, with constant M and mappings ϕj ∈ C`,α, j ∈ J.
Let ρΩ be as in Notation 5.1.9 and set xρΩ :=

√
3

2
ρΩ.

Then for every z0 ∈ ∂Ω there exists a local cartesian coordinates system and a
function gz0 ∈ C`,α, gz0 : [−xρΩ , xρΩ ]→ R, such that:

(i) z0 = (0, 0) ;

(ii) the x-axis is tangential to ∂Ω in z0;

(iii) the y-axis has the direction of the internal normal to ∂Ω in z0;

(iv) B 1
2
ρΩ

(z0) ∩ ∂Ω ⊂ {(x, y) : x ∈ [−xρΩ , xρΩ ] and y = gz0 (x)} ;

(v) ‖gz0‖C`,α[−xρΩ
,xρΩ ] ≤ 2(`+ 1)M .

Remark 5.4.2. Observe that the function gz0 of Lemma 5.4.1 satisfies
∣∣g′z0 (x)

∣∣ ≤ √3.

Remark 5.4.3. Notice that the norm of gz0 grows linearly in `. If we fix the size of
the interval of definition of the function gz0 (i.e. [−xρΩ , xρΩ ]) the constant increases
when taking more derivatives that is, a bigger `. Instead we can choose a constant
independent of ` if we let the size of the interval change. For the purpose of an uniform
estimate we need to fix the size of the interval. Notice that in our case ` = 4 fixed.
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We skip the rather technical proof of Lemma 5.4.1.

In the following theorem we will state that for every point of the boundary of a
domain satisfying the uniform C4,α regularity condition there exists a limaçon Ωa,R

that approximates ∂Ω in the point in C2-sense. Furthermore we will construct a
domain Ω̃ that is ε-close to the limaçon Ωa,R and which boundary coincides with ∂Ω
in a neighborhood of that point. By construction Ω̃ is a domain satisfying the uniform
C4,α regularity condition with constant M1 where M1 depends only on M and ρΩ.

For the purpose of a uniform statement we will have to rescale to limaçons of ‘unit’
size. In order to do so we define for a given f the scaled function:

fR(x, y) := R−1 f(Rx,Ry) for R ∈ R+. (5.4.1)

Theorem 5.4.4. Assume that the following holds for some α, γ ∈ (0, 1):

(i) Ω ⊂ R2 is a simply connected domain satisfying the uniform C4,α regularity
condition with constant M ;

(ii) gz0 ∈ C4,α for z0 ∈ ∂Ω are functions that describe the boundary of Ω as in Lemma

5.4.1 and fix R := min
{

1
2

(
maxz0∈∂Ω

∥∥g′′z0∥∥∞)−1
, 1
}

;

(iii) ε > 0 is such that for all Ω̃ which are ε−close to Ωa,1 in C2,γ sense with a ∈[
3
16
, 5

16

]
, the Green function associated to problem (5.1.1) on Ω̃ is positive.

Then there is δ = δ(M,ρ−1
Ω , ε, γ) ∈

(
0, 1

16
R
)

such that the following holds. For
every z0 ∈ ∂Ω there exist a ∈

[
3
16
, 5

16

]
, a limaçon Ωa,R and a C4,α mapping fa,R :

Ω̄a,R → fa,R
(
Ω̄a,R

)
such that:

i: ∂Ω ∩Bδ (z0) = ∂ (fa,R (Ωa,R)) ∩Bδ (z0) ;

ii: the map fRa,R := (fa,R)R is ε-close in C2,γ-sense to the identity in Ω̄a,1:∥∥fRa,R − Id
∥∥
C2,γ(Ω̄a,1)

≤ ε;

iii: the map fRa,R is C4,α-bounded by some A = A(M,ρ−1
Ω , ε, γ) > 0:∥∥fRa,R∥∥C4,α(Ω̄a,1)

≤ A

.

Remark 5.4.5. We construct a C4,α mapping fa,R : Ω̄a,R → fa,R
(
Ω̄a,R

)
in order that

fa,R
(
Ω̄a,R

)
is a domain satisfying the uniform C4,α regularity condition with constant

M1 where M1 = M1(M,ρ−1
Ω , ε, γ). Using the result in [28] it should be possible to

relax the regularity of the boundary to C4.
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Remark 5.4.6. In order to approximate ∂Ω with limaçons in C2,γ-sense it is sufficient
that Ω satisfies the uniform C2,α regularity condition for α > γ.

Remark 5.4.7. R defined in Theorem 5.4.4 depends on Ω via the constant M of the
uniform C4,α regularity condition.

Corollary 5.4.8. Assume Ω, α, γ, ε are such that the hypothesis of Theorem 5.4.4
hold true and let R as defined in that Theorem. Then there is δ > 0 such that for
every z0 ∈ ∂Ω there exists a domain Ez0 that satisfies the following:

(i) Ez0 satisfies the uniform C4,α regularity condition with constant

M1 = M1(M,ρ−1
Ω , ε, γ) > 0;

(ii) Ez0 is ε-close in C2,γ-sense to a limaçon Ωa,R with a ∈
[

3
16
, 5

16

]
;

(iii) z0 ∈
(
Ēz0 ∩ ∂Ω

)◦,∂Ω
.

Furthermore, letting Kz0 be the component of
(
Ēz0 ∩ ∂Ω

)◦,∂Ω
that contains z0:

(i) Bδ(z0) ∩ ∂Ω = Bδ(z0) ∩Kz0;

(ii) Ez0 and Ω have the same outward normal for any x ∈ Kz0.

The proof of Theorem 5.4.4 is divided into several steps. We first present the
setting for a fixed z0 ∈ ∂Ω.

Let us consider the local system of coordinates in z0 and the function gz0 ∈ C4,α

given by Lemma 5.4.1 (in this case l = 4). In the following we write gz0 = g.
Let δ be a positive number such that

δ < min

{
1,
xρΩ
4
,
R

16

(
1− 5

16

√
3

)}
and δ1−γ < ε

(
C10R

1+γ
)−1

. (5.4.2)

Here C10 is a positive constant that depends on M . We remark that δ depends on Ω
through ρ−1

Ω and M .

5.4.2 Approximation by a limaçon in one point

There exists a ∈
[

3
16
, 5

16

]
such that z0 = (0, 0) ∈ Ω̄a,R and

k′′a,R(0) = g′′(0),

where ka,R ∈ C∞ is the map that describes, as in (5.3.5), the lower part of the limaçon.

In order to get that ∂Ωa,R approximates the boundary of Ω in (0, 0) up to the
second derivative, we have to impose the condition g′′ (0) = k′′a,R(0). Using (5.3.6) this
reads as

g′′ (0) =
1

R

1− 4a

(1− 2a)2 . (5.4.3)
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←→

Figure 5.3: A domain, the finite number of approximating limaçons with their bound-
aries covering the boundary of the domain, and a zoomed view.

Since the map a 7→ 1−4a
(1−2a)2

sends the interval
[

3
16
, 5

16

]
onto

[
−1

2
, 1

2

]
and |g′′ (0)|R ≤ 1

2

by the definition of R, one finds that a ∈
[

3
16
, 5

16

]
exists such that (5.4.3) holds.

Note that R is fixed and that it is sufficient to play with the parameter a to fit the
limaçon Ωa,R to the domain Ω around z0.

5.4.3 Construction of the mapping fa,R

Again we fix some preliminaries. Let xa be the number defined in (5.3.4) and let us
fix x∗a := 1

2
(1−

√
3a) ∈

(
1
5
xa,

1
2
xa
)
. We introduce two cut-off functions:

(i) ϕa,R ∈ C∞(R) such that

ϕa,R ≡ 1 for |x| ≤ 1
2
x∗aR,

ϕa,R ≡ 0 for |x| ≥ x∗aR,

‖ϕa,R‖Ck,ν ≤ Dk,ν

Rk+ν for k = 0, . . . , 4 and ν ∈ (0, 1) ,

with Dk,ν some positive constants;

(ii) ψa,δ ∈ C∞(R) such that

ψa,δ ≡ 1 for |x| ≤ δ,
ψa,δ ≡ 0 for |x| ≥ 2δ,

‖ψa,δ‖Ck,ν ≤
D′

k,ν

δk+ν for k = 0, . . . , 4 and ν ∈ (0, 1) ,

with D′
k,ν some positive constants.
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We define a C4,α-mapping gδ on [−Rxa, Rxa] that follows the boundary of Ω when
|x| ≤ δ and the boundary of the limaçon when Rx∗a ≤ |x| ≤ Rxa :

gδ(x) :=



g(x) for 0 ≤ x ≤ δ,

ka,R(x) +
2∑
i=0

1

i!
(g − ka,R)(i)

∣∣∣
δ
(x− δ)i+

+ ψa,δ(x)
4∑
i=3

1

i!
(g − ka,R)(i)

∣∣∣
δ
(x− δ)i for δ < x ≤ 2δ,

ka,R(x) +
2∑
i=0

1

i!
(g − ka,R)(i)

∣∣∣
δ
(x− δ)i for 2δ < x ≤ 1

2
Rx∗a,

ka,R(x) + ϕa,R(x)
2∑
i=0

1

i!
(g − ka,R)(i)

∣∣∣
δ
(x− δ)i for 1

2
Rx∗a < x ≤ Rx∗a,

ka,R(x) for Rx∗a < x ≤ Rxa,
(5.4.4)

and similarly for x ∈ [−Rxa, 0].

0−δ δ Rx∗a−Rx∗a−Rxa Rxa

∂Ω

Ωa,R

0−
δ

−2δ δ 2δ R
x ∗
a

−
R
x ∗
a

1
2 R
x ∗
a

−
1

2 R
x ∗
a

−
R
x
a

R
x
a

supp (ψa,δ)

supp (ϕa,R)

Figure 5.4: Left: the limaçon that approximates in (0, 0) the behavior of ∂Ω up to the
second derivative.
Right: scheme for the support of the cut-off functions ϕa,R and ψa,δ.

Remark 5.4.9. In the definition of gδ we use two cut-off functions. The reason for
this construction is that we want gδ to be close to ka,R in C2,γ-sense and also to
be a C4,α-mapping. Indeed, considering ‖gδ − ka,R‖C2,γ(−Rxa,Rxa) one sees that the

terms (g − ka,R)(i)
∣∣∣
δ

have a different behavior in the cases i = 0, 1, 2 respectively for

i = 3, 4. One cut-off function can be chosen independent of δ since we will show that

for i = 0, 1, 2 the term (g − ka,R)(i)
∣∣∣
δ

= O(δ). While for i = 3, 4 (g − ka,R)(i)
∣∣∣
δ

will

be just bounded, and hence one needs a cut-off function depending on δ in order that
the C2,γ-norm of g − ka,R is an O(δ). By the way, close in C2,γ-sense is needed for
positivity, C4,α is used in the regularity result.
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We define the function fa,R : Ω̄a,R → fa,R
(
Ω̄a,R

)
by(

x
y

)
fa,R−−→

(
x

3R−gδ(x)
3R−ka,R(x)

(y − 3R) + 3R

)
, (5.4.5)

which gives (
x
y

)
fa,R−Id
−−−−−→

(
0

ka,R(x)−gδ(x)

3R−ka,R(x)
(y − 3R)

)
.

By construction fa,R ∈ C4,α
(
Ω̄a,R

)
and the boundary of fa,R (Ωa,R) coincides with

∂Ω in a neighborhood of z0 = (0, 0) of length at least 2δ.
In the next paragraph we show that fa,R(Ωa,R) is ε-close to Ωa,R in C2,γ-sense and

that fa,R(Ωa,R) satisfies the uniform C4,α regularity condition.

Remark 5.4.10. Notice that fa,R ≡ Id for (x, y) ∈ Ω̄a,R with |x| ≥ Rx∗a. While for
|x| < Rx∗a it holds that fa,R ≡ Id for x = 0 only. The map fa,R also changes the
boundary of Ωa,R in a neighborhood of the point (0, 2R). That is not a problem since
one may notice from the expression of fa,R − Id that in the approximation only the

term
ka,R(x)−gδ(x)

3R−ka,R(x)
plays a role.

5.4.4 The mapping is close to identity in C2,γ-sense

In this section we will prove that the function fRa,R, which is the fa,R from (5.4.5)
rescaled as in (5.4.1), satisfies ∥∥fRa,R − Id

∥∥
C2,γ(Ω̄a,1)

≤ ε. (5.4.6)

By the results of section 5.3 and our choice of ε, it then follows that the Green function
for the clamped plate equation on fa,R(Ωa,R) is positive.

We first fix some notation. In the following N1 and N2 denote respectively

N1 :=

∥∥∥∥ ∂4

∂x4
ka,R −

∂4

∂x4
g

∥∥∥∥
C0[−δ,δ]

+

∣∣∣∣ ∂3

∂x3
ka,R(0)− ∂3

∂x3
g(0)

∣∣∣∣ , (5.4.7)

N2 :=

[
∂4

∂x4
ka,R −

∂4

∂x4
g

]
Cα[−δ,δ]

+

∣∣∣∣ ∂4

∂x4
ka,R (0)− ∂4

∂x4
g(0)

∣∣∣∣ . (5.4.8)

Notice that Ni = Ni(M) for i = 1, 2. Indeed R depends on M and the dependence of
ka,R on a is continuous in

[
3
16
, 5

16

]
and hence uniform.

We have ∥∥∥∥ ∂i∂xika,R − ∂i

∂xi
g

∥∥∥∥
C0[−δ,δ]

≤ N1δ
3−i for i = 0, . . . , 3,∥∥∥∥ ∂4

∂x4
ka,R −

∂4

∂x4
g

∥∥∥∥
C0[−δ,δ]

≤ N2.
(5.4.9)
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In order to prove (5.4.6) one has first to consider the effect of the scaling. In
the following general lemma we give the effect on the norms of the scaling defined in
(5.4.1).

Lemma 5.4.11. Let Ω be a subset of Rn and let f : Ω̄ → Ω̄′ be a C2,γ-function. Let
fR be the f rescaled as in (5.4.1). Then it holds∥∥fR − Id

∥∥
C2,γ(R−1Ω̄) =

1

R
‖f − Id‖C0(Ω̄) +

n∑
i=1

∥∥∥∥ ∂

∂xi
(f − Id)

∥∥∥∥
C0(Ω̄)

+

+ R

n∑
i,j=1

∥∥∥∥ ∂2

∂xixj
f

∥∥∥∥
C0(Ω̄)

+R1+γ

n∑
i,j=1

[
∂2

∂xixj
f

]
Cγ(Ω̄)

. (5.4.10)

Lemma 5.4.12. Let γ ∈ (0, 1). The function fRa,R satisfies∥∥fRa,R − Id
∥∥
C2,γ(Ω̄a,1)

≤ 5

∥∥∥∥ ka,R − gδ3R− ka,R

∥∥∥∥
C0[−Rx∗a,Rx∗a]

+ 5R

∥∥∥∥ ∂∂x ka,R − gδ3R− ka,R

∥∥∥∥
C0[−Rx∗a,Rx∗a]

+ 9R2

∥∥∥∥ ∂2

∂x2

ka,R − gδ
3R− ka,R

∥∥∥∥
C0[−Rx∗a,Rx∗a]

+ 4R2+γ

[
∂2

∂x2

ka,R − gδ
3R− ka,R

]
Cγ [−Rx∗a,Rx∗a]

. (5.4.11)

Proof. We estimate separately the terms in the right-hand side of (5.4.10) for f = fa,R
and Ω = Ωa,R.

1. Since −y ≤ R and ka,R − gδ ≡ 0 for |x| ∈ [Rx∗a, Rxa] we find

‖fa,R − Id‖C0(Ω̄a,R) ≤ 4R

∥∥∥∥ ka,R − gδ3R− ka,R

∥∥∥∥
C0[−Rx∗a,Rx∗a]

.

2. We also have
2∑
i=1

∥∥∥∥ ∂

∂xi
(fa,R − Id)

∥∥∥∥
C0(Ω̄a,R)

≤
∥∥∥∥ ka,R − gδ3R− ka,R

∥∥∥∥
C0[−Rx∗a,Rx∗a]

+ 4R

∥∥∥∥ ∂∂x ka,R − gδ3R− ka,R

∥∥∥∥
C0[−Rx∗a,Rx∗a]

.

3. From the definition of the function fa,R in (5.4.5) we get

2∑
i,j=1

∥∥∥∥ ∂2

∂xixj
fa,R

∥∥∥∥
C0(Ω̄a,R)

≤
∥∥∥∥ ∂∂x ka,R − gδ3R− ka,R

∥∥∥∥
C0[−Rx∗a,Rx∗a]

+ 4R

∥∥∥∥ ∂2

∂x2

ka,R − gδ
3R− ka,R

∥∥∥∥
C0[−Rx∗a,Rx∗a]

.

4. One finds
2∑

i,j=1

[
∂2

∂xixj
fa,R

]
Cγ(Ω̄a,R)

=

[
(x, y) 7→ (y − 3R)

∂2

∂x2

ka,R(x)− gδ (x)

3R− ka,R (x)

]
Cγ(Ω̄a,R)

+

[
∂

∂x

ka,R − gδ
3R− ka,R

]
Cγ [−Rx∗a,Rx∗a]

≤ . . . . (5.4.12)
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Since it holds that [(x, y) 7→ f(x)g(y)]Cα[a,b]2 ≤ ‖f‖C0[a,b] [g]Cα[a,b] + ‖g‖C0[a,b] [f ]Cα[a,b]

one gets from (5.4.12) that

. . . ≤ 3R1−γ
∥∥∥∥ ∂2

∂x2

ka,R − gδ
3R− ka,R

∥∥∥∥
C0[−Rx∗a,Rx∗a]

+ 4R

[
∂2

∂x2

ka,R − gδ
3R− ka,R

]
Cγ [−Rx∗a,Rx∗a]

+ 2R1−γ
∥∥∥∥ ∂2

∂x2

ka,R − gδ
3R− ka,R

∥∥∥∥
C0[−Rx∗a,Rx∗a]

,

and the claim follows. �

Proposition 5.4.13. Let γ ∈ (0, 1). There is C10 = C10(M) > 0 such that∥∥fRa,R − Id
∥∥
C2,γ(Ω̄a,1)

≤ C10R
1+γδ1−γ. (5.4.13)

Relation (5.4.6) follows since the right-hand side in (5.4.13) is less then ε thanks
to the choice of δ in (5.4.2).

In order to prove Proposition 5.4.13 we have to estimate the terms in the right
hand side of (5.4.11). The technical details of the proof are given in the following
paragraph.

Proof of Proposition 5.4.13

We divide the rather technical proof of Proposition 5.4.13 in several lemmas. Using
the result of Lemma 5.4.12, to bound

∥∥fRa,R − Id
∥∥
C2,γ(Ω̄a,1)

it is sufficient to get the

estimates of the terms in the right hand side of (5.4.11) separately. We will do so in
the next lemmas.

In the following Ci = Ci(M) > 0, for i = 1, . . . , 9. The constants Ni, i = 1, 2 are
defined in (5.4.7) and (5.4.8) respectively.

Lemma 5.4.14. For ka,R and gδ respectively as in (5.3.5) and (5.4.4) it holds that∥∥∥∥ ka,R − gδ3R− ka,R

∥∥∥∥
C0[−Rx∗a,Rx∗a]

≤ C1δR.

Proof. By the definition of gδ in (5.4.4), and (5.4.9) one has

‖ka,R − gδ‖C0[−Rx∗a,Rx∗a] ≤ ‖ka,R − g‖C0[−δ,δ] +

+
∑

σ=±

∥∥∥ϕa,R (·)
∑2

i=0
1
i!

(g − ka,R)(i)
∣∣∣
σδ

(· − σδ)i
∥∥∥
C0[σδ,σRx∗a]

+
∑

σ=±

∥∥∥ψa,δ (·)
∑4

i=3
1
i!

(g − ka,R)(i)
∣∣∣
σδ

(· − σδ)i
∥∥∥
C0[σδ,σ2δ]

≤ N1δ
3 + 2

∑2
i=0

1
i!
N1δ

3−iRi + 2
3!
N1δ

3 + 2
4!
N2δ

4 ≤ C1δR
2.

The claim follows since |ka,R| ≤ 2R. �
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Lemma 5.4.15. Let ka,R and gδ be given respectively as in (5.3.5) and (5.4.4). Then
it holds ∥∥∥∥ ∂∂x ka,R − gδ3R− ka,R

∥∥∥∥
C0[−Rx∗a,Rx∗a]

≤ C2δ.

Proof. Using Lemma 5.4.14 and (5.3.7) one finds directly∥∥∥∥ ∂∂x ka,R − gδ3R− ka,R

∥∥∥∥
C0[−Rx∗a,Rx∗a]

≤ 1

R

∥∥∥∥ ∂∂x (ka,R − gδ)
∥∥∥∥
C0[−Rx∗a,Rx∗a]

+ C1δb1 ≤ . . . .

By the definition of gδ and the choice of the cut-off functions ϕa,R and ψa,δ we get

. . . ≤ N1

R
δ2 + 2

R

2∑
i=1

1
(i−1)!

N1δ
3−iRi−1 + 2

R

D1,0

R

2∑
i=0

1
i!
N1δ

3−iRi

+ 1
2!

2
R
N1δ

2 + 1
3!

2
R

D′
1,0

δ
N1δ

3 + 1
3!

2
R
N2δ

3 + 1
4!

2
R

D′
1,0

δ
N2δ

4 + C1b1δ ≤ C2δ.

Here we used (5.4.9) and that δ < R and δ < 1. �

Lemma 5.4.16. For ka,R and gδ respectively as in (5.3.5) and (5.4.4) it holds that∥∥∥∥ ∂2

∂x2

ka,R − gδ
3R− ka,R

∥∥∥∥
C0[−Rx∗a,Rx∗a]

≤ C3
δ

R
.

Proof. Since
(
α
β

)′′
= 1

β
α′′ − 2β

′

β

(
α
β

)′
− β′′

β
α
β
, using Lemmas 5.4.14 and 5.4.15 and

(5.3.7) one finds∥∥∥∥ ∂2

∂x2

ka,R − gδ
3R− ka,R

∥∥∥∥
C0[−Rx∗a,Rx∗a]

≤ 1
R

∥∥∥∥ ∂2

∂x2
(ka,R − gδ)

∥∥∥∥
C0[−Rx∗a,Rx∗a]

+ 2
R
b1C2δ + 1

R
b2
R
C1δR ≤ . . . .

By the definition of gδ in (5.4.4) one gets

. . . ≤ 1
R
N1δ + 2

R
N1δ + 4

R

D1,0

R

2∑
i=1

1
(i−1)!

N1δ
3−iRi−1 + 2

R

D2,0

R2

2∑
i=0

1
i!
N1δ

3−iRi

+ 2
R
N1δ + 2

R
1
2
2
D′

1,0

δ
N1δ

2 + 2
R

1
3!
N1δ

3D
′
2,0

δ2
+ 2

R
1
2
N2δ

2 + 2
R

2
3!

D′
1,0

δ
N2δ

3

+ 2
R

1
4!

D′
2,0

δ2
N2δ

4 + 1
R

(2b1C2 + b2C1) δ ≤ C3
δ

R
.

The constant C3 depends on Ω through N1 and N2. �

Remark 5.4.17. Notice that the proof also implies that∥∥∥∥ ∂2

∂x2
(ka,R − gδ)

∥∥∥∥
C0[−Rx∗a,Rx∗a]

≤ C4δ.



112 Chapter 5. Separating positivity and regularity

Lemma 5.4.18. For ka,R and gδ respectively as in (5.3.5) and (5.4.4) it holds that[
∂2

∂x2
(ka,R − gδ)

]
Cγ [−Rx∗a,Rx∗a]

≤ C5δ
1−γ.

Proof. Writing explicitly the function gδ yields[
∂2

∂x2
(ka,R − gδ)

]
Cγ [−Rx∗a,Rx∗a]

≤ 2N1δ
1−γ + 2

[
∂2

∂x2

(
ϕa,R (·)

2∑
i=0

1
i!

(g − ka,R)(i)
∣∣∣
δ
(· − δ)i

)]
Cγ [δ,Rx∗a]

+2

[
∂2

∂x2

(
ψa,δ (·)

4∑
i=3

1
i!

(g − ka,R)(i)
∣∣∣
δ
(· − δ)i

)]
Cγ [δ,2δ]

. (5.4.14)

It is convenient to study separately the terms on the right-hand side of (5.4.14). In
the following C̃i = C̃i(M) > 0, i = 1, 2.

1. By (5.4.9) one has[
∂2

∂x2

(
ϕa,R (·)

2∑
i=0

1
i!

(g − ka,R)(i)
∣∣∣
δ
(· − δ)i

)]
Cγ [δ,Rx∗a]

≤
2∑
i=0

1
i!
N1δ

3−i
[
(· − δ)i ∂

2

∂x2
ϕa,R

]
Cγ [δ,Rx∗a]

+ 2
2∑
i=1

1
(i−1)!

N1δ
3−i
[
(· − δ)i−1 ∂

∂x
ϕa,R

]
Cγ [δ,Rx∗a]

+N1δ [ϕa,R]Cγ [δ,Rx∗a] ≤ . . . .

Via the definition of the cut-off function ϕa,R we get

. . . ≤
2∑
i=1

1
(i−1)!

N1δ
3−iRi−1R1−γ D2,0

R2 +
2∑
i=0

1
i!
N1δ

3−i D2,γ

R2+γR
i + 2N1δR

1−γ D1,0

R

+ 2
2∑
i=1

1
(i−1)!

N1δ
3−i D1,γ

R1+γR
i−1 +N1δ

D0,γ

Rγ ≤ C̃1δ
1−γ.

2. Since [
∂2

∂x2

(
ψa,δ (·)

4∑
i=3

1
i!

(g − ka,R)(i)
∣∣∣
δ
(· − δ)i

)]
Cγ [δ,2δ]

≤
4∑
i=3

1
i!

(g − ka,R)(i)
∣∣∣
δ

[
(· − δ)i ∂

2

∂x2
ψa,δ(·)

]
Cγ [δ,2δ]

+



5.4. Filling the domain with perturbed limaçons 113

+
4∑
i=3

2
(i−1)!

(g − ka,R)(i)
∣∣∣
δ

[
(· − δ)i−1 ∂

∂x
ψa,δ(·)

]
Cγ [δ,2δ]

+
4∑
i=3

1
(i−2)!

(g − ka,R)(i)
∣∣∣
δ

[
(· − δ)i−2 ψa,δ(·)

]
Cγ [δ,2δ]

≤ . . . ,

from (5.4.9) and the choice of ψa,δ one obtains

. . . ≤
4∑
i=3

1
i!

(g − ka,R)(i)
∣∣∣
δ

(
δi
D′

2,γ

δ2+γ + iδi−1δ1−γ D′
2,0

δ2

)
+

4∑
i=3

2
(i−1)!

(g − ka,R)(i)
∣∣∣
δ

(
δi−1D

′
1,γ

δ1+γ + (i− 1) δi−2δ1−γ D′
1,0

δ

)
+

4∑
i=3

1
(i−2)!

(g − ka,R)(i)
∣∣∣
δ

(
δi−2D

′
0,γ

δγ + (i− 2) δi−3δ1−γ
)
≤ C̃2δ

1−γ.

The claim follows. �

Lemma 5.4.19. Let ka,R and gδ be given respectively in (5.3.5) and (5.4.4). Then it
holds [

∂2

∂x2

ka,R − gδ
3R− ka,R

]
Cγ [−Rx∗a,Rx∗a]

≤ C9

R
δ1−γ.

Proof. We have

[
∂2

∂x2

ka,R − gδ
3R− ka,R

]
Cγ [−Rx∗a,Rx∗a]

≤
[

1

3R− ka,R
∂2

∂x2
(ka,R − gδ)

]
Cγ [−Rx∗a,Rx∗a]

+2

[
1

3R− ka,R
∂

∂x
ka,R

∂

∂x

ka,R − gδ
3R− ka,R

]
Cγ [−Rx∗a,Rx∗a]

+

[
ka,R − gδ

(3R− ka,R)2

∂2

∂x2
ka,R

]
Cγ [−Rx∗a,Rx∗a]

. (5.4.15)

We study the terms in the right-hand side of (5.4.15) separately.

1. From (5.3.7), Remark 5.4.17 and Lemma 5.4.18 it follows that

[
1

3R− ka,R
∂2

∂x2
(ka,R − gδ)

]
Cγ [−Rx∗a,Rx∗a]

≤ 1
R2 b12R

1−γC4δ + C5

R
δ1−γ ≤ C6

R
δ1−γ.
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2. Using (5.3.7) and Lemmas 5.4.15 and 5.4.16 one obtains[
1

3R− ka,R
∂

∂x
ka,R

∂

∂x

ka,R − gδ
3R− ka,R

]
Cγ [−Rx∗a,Rx∗a]

≤ b1C2δ

[
1

3R− ka,R

]
Cγ [−Rx∗a,Rx∗a]

+ 1
R
C2δ

[
∂

∂x
ka,R

]
Cγ [−Rx∗a,Rx∗a]

+b1
1
R

[
∂

∂x

ka,R − gδ
3R− ka,R

]
Cγ [−Rx∗a,Rx∗a]

≤ 1
R2 b12R

1−γC2b1δ + b2
R

2R1−γ C2

R
δ + C3

δ
R
2R1−γ b1

R
≤ C7

R
δ1−γ.

3. Since [
ka,R − gδ

(3R− ka,R)2

∂2

∂x2
ka,R

]
Cγ [−Rx∗a,Rx∗a]

≤
[
ka,R − gδ
3R− ka,R

]
Cγ [−Rx∗a,Rx∗a]

1
R
b2
R

+

[
1

3R− ka,R

]
Cγ [−Rx∗a,Rx∗a]

b2
R
C1δR +

+

[
∂2

∂x2
ka,R

]
Cγ [−Rx∗a,Rx∗a]

1
R
C1δR ≤ . . . ,

applying (5.3.7) and Lemmas 5.4.14 and 5.4.15 one finds

· · · ≤ C2δ2R
1−γ b2

R2 + 1
R2 2b1R

1−γb2C1δ + b3
R2 2R

1−γC1δ ≤
C8

R
δ1−γ.

The claim follows directly from (5.4.15) using the results of the previous points 1,
2 and 3. �

The proof of Proposition 5.4.13 follows from Lemmas 5.4.14, 5.4.15, 5.4.16 and
5.4.19.

5.4.5 Bounded third and fourth derivative of the mapping

In this section we derive the estimate of
∥∥fRa,R∥∥C4,α(Ω̄a,1)

. Again this fRa,R is the fa,R

from (5.4.5) rescaled as in (5.4.1). The estimate will imply that fa,R(Ωa,R) satisfies the
uniform C4,α regularity condition.

Lemma 5.4.20. Let α ∈ (0, 1). There is C11 = C11(M) > 0 such that:∥∥fRa,R∥∥C4,α(Ω̄a,1)
≤ xa + 9 + 5C11δR + 5R3

∥∥∥∥ ∂3

∂x3

ka,R − gδ
3R− ka,R

∥∥∥∥
C0(−Rx∗a,Rx∗a)

+

+6R4

∥∥∥∥ ∂4

∂x4

ka,R − gδ
3R− ka,R

∥∥∥∥
C0(−Rx∗a,Rx∗a)

+R3+α

[
(x, y) 7→ (y − 3R)

∂4

∂x4

ka,R − gδ
3R− ka,R

]
Cα(Ω̄a,R)

. (5.4.16)
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Proof. Let fa,R,1 and fa,R,2 be respectively the first and the second component of fa,R.
From the definition of fa,R we find: fa,R,1 (x, y) = x and

fa,R,2 (x, y) =
3R− gδ (x)

3R− ka,R (x)
(y − 3R) + 3R.

Hence ‖fa,R,1‖C4,α(Ω̄a,1) ≤ xa + 1 and Lemma 5.4.11 yields

∥∥fRa,R,2∥∥C4,α(Ω̄a,1)
≤

4∑
|β|=0,
β∈N2

R|β|−1
∥∥Dβfa,R,2

∥∥
C0(Ω̄a,R) +

+ R3+α
∑
|β|=4,
β∈N2

[
Dβfa,R,2

]
Cα(Ω̄a,R) = . . . .

By observing that

1

R
‖fa,R,2‖C0(Ω̄a,R) ≤ 3 + 4

∥∥∥∥ 3R− gδ
3R− ka,R

∥∥∥∥
C0(−Rx∗a,Rx∗a)

,

using that fa,R,2 is linear in y, and by the definition of xa in (5.3.4), one finds

. . . ≤ 3 + 5
3∑
i=0

Ri

∥∥∥∥ ∂i∂xi 3R− gδ
3R− ka,R

∥∥∥∥
C0(−Rx∗a,Rx∗a)

+

+6R4

∥∥∥∥ ∂4

∂x4

3R− gδ
3R− ka,R

∥∥∥∥
C0(−Rx∗a,Rx∗a)

+R3+α

[
(x, y) 7→ (y − 3R)

∂4

∂x4

3R− gδ
3R− ka,R

]
Cα(Ω̄a,R)

.

Since
3R− gδ

3R− ka,R
= 1 +

ka,R − gδ
3R− ka,R

the claim follows from Lemmas 5.4.14, 5.4.15 and 5.4.16. �
The estimate we are looking for is then:

Proposition 5.4.21. Let α ∈ (0, 1). There is C19 = C19(M) > 0 such that

∥∥fRa,R∥∥C4,α(Ω̄a,1)
≤ C19

R3+α

δ1+α
.

In order to prove Proposition 5.4.21 it is sufficient to estimate the terms in the
right hand side of (5.4.16). The technical details are given in the next paragraph.
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Proof of Proposition 5.4.21

We also divide the proof of Proposition 5.4.21 in several lemmas.

In the following Ci = Ci(M) > 0, for i = 12, . . . , 18. The constants Ni, i = 1, 2 are
as given in (5.4.7) and (5.4.8).

Lemma 5.4.22. For ka,R and gδ respectively as in (5.3.5) and (5.4.4) it holds that∥∥∥∥ ∂3

∂x3
(ka,R − gδ)

∥∥∥∥
C0[−Rx∗a,Rx∗a]

≤ C12.

Proof. By the definition of gδ we have∥∥∥∥ ∂3

∂x3
(ka,R − gδ)

∥∥∥∥
C0[−Rx∗a,Rx∗a]

≤
∥∥∥∥ ∂3

∂x3
(ka,R − g)

∥∥∥∥
C0[−δ,δ]

+ 2

∥∥∥∥∥ ∂3

∂x3

(
ϕa,R (·)

2∑
i=0

1
i!

(g − ka,R)(i)
∣∣∣
δ
(· − δ)i

)∥∥∥∥∥
C0[δ,Rx∗a]

+2

∥∥∥∥∥ ∂3

∂x3

(
ψa,δ (·)

4∑
i=3

1
i!

(g − ka,R)(i)
∣∣∣
δ
(· − δ)i

)∥∥∥∥∥
C0[δ,2δ]

. (5.4.17)

It is convenient to study the terms on the right-hand side of (5.4.17) separately. In
the following C̄i = C̄i(M) > 0 for i = 1, 2.

1. It follows directly from (5.4.9) that

∥∥∥∥ ∂3

∂x3
(ka,R − g)

∥∥∥∥
C0[−δ,δ]

≤ N1.

2. Via (5.4.9) and the definition of the cut-off function ϕa,R we get∥∥∥∥∥ ∂3

∂x3

(
ϕa,R (·)

2∑
i=0

1
i!

(g − ka,R)(i)
∣∣∣
δ
(· − δ)i

)∥∥∥∥∥
C0[δ,Rx∗a]

≤
2∑
i=0

1
i!
N1δ

3−i D3,0

R3 R
i + 3

2∑
i=1

1
(i−1)!

N1δ
3−i D2,0

R2 R
i−1 + 3N1δ

D1,0

R
≤ C̄1

R
δ < C̄1.

3. One finds ∥∥∥∥∥ ∂3

∂x3

(
ψa,δ (·)

4∑
i=3

1
i!

(g − ka,R)(i)
∣∣∣
δ
(· − δ)i

)∥∥∥∥∥
C0[δ,2δ]

≤

≤
4∑
i=3

1
i!

(g − ka,R)(i)
∣∣∣
δ

D′
3,0

δ3
δi + 3

4∑
i=3

1
(i−1)!

(g − ka,R)(i)
∣∣∣
δ

D′
2,0

δ2
δi−1 +

+ 3
4∑
i=3

1
(i−2)!

(g − ka,R)(i)
∣∣∣
δ

D′
1,0

δ
δi−2 +

4∑
i=3

(g − ka,R)(i)
∣∣∣
δ
δi−3 ≤ C̄2.

The claim follows. �
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Lemma 5.4.23. For ka,R and gδ respectively as in (5.3.5) and (5.4.4) it holds that∥∥∥∥ ∂3

∂x3

ka,R − gδ
3R− ka,R

∥∥∥∥
C0(−Rx∗a,Rx∗a)

≤ C13

R
.

Proof. Since (
α

β

)′′′
=
α′′′

β
− 3

β′

β

(
α

β

)′′
− 3

β′′

β

(
α

β

)′
− β′′′

β

α

β
,

using Lemma 5.4.22, (5.3.7) and Lemmas 5.4.16, 5.4.15, 5.4.14 we get∥∥∥∥ ∂3

∂x3

ka,R − gδ
3R− ka,R

∥∥∥∥
C0(−Rx∗a,Rx∗a)

≤ 1
R
C12 + 3 b1

R
C3δ
R

+ 3 b2
R2C2δ + b3

R3C1δR ≤
C13

R
.

�

Lemma 5.4.24. For ka,R and gδ respectively as in (5.3.5) and (5.4.4) it holds that∥∥∥∥ ∂4

∂x4
(ka,R − gδ)

∥∥∥∥
C0[−Rx∗a,Rx∗a]

≤ C14

δ
.

Proof. From the definition of gδ it follows∥∥∥∥ ∂4

∂x4
(ka,R − gδ)

∥∥∥∥
C0[−Rx∗a,Rx∗a]

≤
∥∥∥∥ ∂4

∂x4
(ka,R − g)

∥∥∥∥
C0[−δ,δ]

+

+2

∥∥∥∥∥ ∂4

∂x4

(
ϕa,R (·)

2∑
i=0

1
i!

(g − ka,R)(i)
∣∣∣
δ
(· − δ)i

)∥∥∥∥∥
C0[δ,Rx∗a]

+

+2

∥∥∥∥∥ ∂4

∂x4

(
ψa,δ (·)

4∑
i=3

1
i!

(g − ka,R)(i)
∣∣∣
δ
(· − δ)i

)∥∥∥∥∥
C0[δ,2δ]

. (5.4.18)

It is convenient to study the terms on the right-hand side of (5.4.18) separately. Here
C̃i = C̃i(M) > 0 for i = 1, 2.

1. From (5.4.9) it follows directly that

∥∥∥∥ ∂4

∂x4
(ka,R − g)

∥∥∥∥
C0[−δ,δ]

≤ N2.

2. By (5.4.9) and the definition of the cut-off function ϕa,R we get that∥∥∥∥∥ ∂4

∂x4

(
ϕa,R (·)

2∑
i=0

1
i!

(g − ka,R)(i)
∣∣∣
δ
(· − δ)i

)∥∥∥∥∥
C0[δ,Rx∗a]

≤
2∑
i=0

1
i!
N1δ

3−i D4,0

R4 R
i + 4

2∑
i=1

1
(i−1)!

N1δ
3−i D3,0

R3 R
i−1 + 6N1δ

D2,0

R2 ≤ C̃1

R2 δ <
C̃1

R
.
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3. From (5.4.9) and the choice of ψa,δ one obtains∥∥∥∥∥ ∂4

∂x4

(
ψa,δ (·)

4∑
i=3

1
i!

(g − ka,R)(i)
∣∣∣
δ
(· − δ)i

)∥∥∥∥∥
C0[δ,2δ]

≤
4∑
i=3

1
i!

(g − ka,R)(i)
∣∣∣
δ

D′
4,0

δ4
δi + 4

4∑
i=3

1
(i−1)!

(g − ka,R)(i)
∣∣∣
δ

D′
3,0

δ3
δi−1

+6
4∑
i=3

1
(i−2)!

(g − ka,R)(i)
∣∣∣
δ

D′
2,0

δ2
δi−2 + 4

4∑
i=3

(g − ka,R)(i)
∣∣∣
δ

D′
1,0

δ
δi−3

+ (g − ka,R)(4)
∣∣∣
δ
≤ C̃2

δ
.

The claim follows. �

Lemma 5.4.25. Let ka,R and gδ be given respectively in (5.3.5) and (5.4.4). Then it
holds that ∥∥∥∥ ∂4

∂x4

ka,R − gδ
3R− ka,R

∥∥∥∥
C0(−Rx∗a,Rx∗a)

≤ C15

δR
.

Proof. From(
α

β

)(iv)

=
α(iv)

β
− 4

β′

β

(
α

β

)′′′
− 6

β′′

β

(
α

β

)′′
− 4

β′′′

β

(
α

β

)′
− β(iv)

β

α

β
, (5.4.19)

using Lemma 5.4.24, (5.3.7) and Lemmas 5.4.23, 5.4.16, 5.4.15, 5.4.14 we get∥∥∥∥ ∂4

∂x4

ka,R − gδ
3R− ka,R

∥∥∥∥
C0(−Rx∗a,Rx∗a)

≤ 1
R
C14

δ
+ 4 b1

R
C13

R
+ 6 b2

R2C3
δ
R

+ 4 b3
R3C2δ + b4

R4C1δR ≤
C15

δR
.

�

Lemma 5.4.26. For ka,R and gδ respectively as in (5.3.5) and (5.4.4) it holds that[
∂4

∂x4
(ka,R − gδ)

]
Cα[−Rx∗a,Rx∗a]

≤ C16

δ1+α
.

Proof. From the definition of gδ one finds[
∂4

∂x4
(ka,R − gδ)

]
Cα[−Rx∗a,Rx∗a]

≤
[
∂4

∂x4
(ka,R − g)

]
Cα[−δ,δ]

+

+2

[
∂4

∂x4

(
ϕa,R (·)

2∑
i=0

1
i!

(g − ka,R)(i)
∣∣∣
δ
(· − δ)i

)]
Cα[δ,Rx∗a]

+2

[
∂4

∂x4

(
ψa,δ (·)

4∑
i=3

1
i!

(g − ka,R)(i)
∣∣∣
δ
(· − δ)i

)]
Cα[δ,2δ]

. (5.4.20)
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It is convenient to study the terms on the right-hand side of (5.4.20) separately. In
the following C̃i = C̃i(M) > 0 for i = 1, 2, 3.

1. Since Ω is a C4,α domain with constant M we have[
∂4

∂x4
(ka,R − g)

]
Cα[−δ,δ]

≤
[
∂4

∂x4
ka,R

]
Cα[−δ,δ]

+M ≤ C̃1.

Notice that we may choose a constant C̃1 that depends only on M .
2. One has [

∂4

∂x4

(
ϕa,R (·)

2∑
i=0

1
i!

(g − ka,R)(i)
∣∣∣
δ
(· − δ)i

)]
Cα[δ,Rx∗a]

≤
2∑
i=0

1
i!

(g − ka,R)(i)
∣∣∣
δ

[
(· − δ)i ∂

4

∂x4
ϕa,R(·)

]
Cα[δ,Rx∗a]

+4
2∑
i=1

1
(i−1)!

(g − ka,R)(i)
∣∣∣
δ

[
(· − δ)i−1 ∂3

∂x3
ϕa,R(·)

]
Cα[δ,Rx∗a]

+6 (g − ka,R)(2)
∣∣∣
δ

[
∂2

∂x2
ϕa,R

]
Cα[δ,Rx∗a]

≤ . . . .

Via (5.4.9) and the definition of the cut-off function ϕa,R we get

. . . ≤
2∑
i=0

1
i!
N1δ

3−i D4,α

R4+αR
i +

2∑
i=1

1
(i−1)!

N1δ
3−i D4,0

R4 R
i−1R1−α

+4
2∑
i=1

1
(i−1)!

N1δ
3−i D3,α

R3+αR
i−1 + 4N1δ

D3,0

R3 R
1−α + 6N1δ

D2,α

R2+α ≤
C̃2

R2+α
δ.

3. Since [
∂4

∂x4

(
ψa,δ (·)

4∑
i=3

1
i!

(g − ka,R)(i)
∣∣∣
δ
(· − δ)i

)]
Cα[δ,2δ]

≤
4∑
i=3

1
i!

(g − ka,R)(i)
∣∣∣
δ

[
(· − δ)i ∂

4

∂x4
ψa,δ(·)

]
Cα[δ,2δ]

+
4∑
i=3

4
(i−1)!

(g − ka,R)(i)
∣∣∣
δ

[
(· − δ)i−1 ∂3

∂x3
ψa,δ(·)

]
Cα[δ,2δ]

+
4∑
i=3

6
(i−2)!

(g − ka,R)(i)
∣∣∣
δ

[
(· − δ)i−2 ∂2

∂x2
ψa,δ(·)

]
Cα[δ,2δ]

+4
4∑
i=3

(g − ka,R)(i)
∣∣∣
δ

[
(· − δ)i−3 ∂

∂x
ψa,δ(·)

]
Cα[δ,2δ]

+ (g − ka,R)(4)
∣∣∣
δ
[ψa,δ]Cα[δ,2δ] ≤ . . . ,
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from (5.4.9) and the choice of ψa,δ one obtains

. . . ≤
4∑
i=3

1
i!

(g − ka,R)(i)
∣∣∣
δ

(
δi
D′

4,α

δ4+α + iδi−1δ1−αD′
4,0

δ4

)
+

4∑
i=3

4
(i−1)!

(g − ka,R)(i)
∣∣∣
δ

(
δi−1D

′
3,α

δ3+α + (i− 1) δi−2δ1−αD′
3,0

δ3

)
+

+
4∑
i=3

6
(i−2)!

(g − ka,R)(i)
∣∣∣
δ

(
δi−2D

′
2,α

δ2+α + (i− 2) δi−3δ1−αD′
2,0

δ2

)
+4

4∑
i=3

(g − ka,R)(i)
∣∣∣
δ

(
δi−3D

′
1,α

δ1+α + (i− 3) δi−4δ1−αD′
1,0

δ

)
+ (g − ka,R)(4)

∣∣∣
δ

D′
0,α

δα ≤
C̃3

δ1+α
.

The claim follows. �

Lemma 5.4.27. For ka,R and gδ respectively as in (5.3.5) and (5.4.4) it holds that[
∂4

∂x4

ka,R − gδ
3R− ka,R

]
Cα[−Rx∗a,Rx∗a]

≤ C17

Rδ1+α
.

Proof. From (5.4.19) by Lemma 5.4.24, (5.3.7) and Lemmas 5.4.26, 5.4.23, 5.4.16,
5.4.15, 5.4.14 one obtains[

∂4

∂x4

ka,R − gδ
3R− ka,R

]
Cα(−Rx∗a,Rx∗a)

≤
[

1

3R− ka,R

]
Cα(−Rx∗a,Rx∗a)

C14

δ
+ 1

R
C16

δ1+α +

+4

[
1

3R− ka,R

]
Cα(−Rx∗a,Rx∗a)

b1
C13

R
+ 4

[
∂

∂x
ka,R

]
Cα(−Rx∗a,Rx∗a)

1
R
C13

R

+4

[
∂3

∂x3

ka,R − gδ
3R− ka,R

]
Cα(−Rx∗a,Rx∗a)

b1
R

+ 6

[
1

3R− ka,R

]
Cα(−Rx∗a,Rx∗a)

b2
R
C3

δ
R

+6

[
∂2

∂x2
ka,R

]
Cα(−Rx∗a,Rx∗a)

1
R
C3

δ
R

+ 6

[
∂2

∂x2

ka,R − gδ
3R− ka,R

]
Cα(−Rx∗a,Rx∗a)

b2
R2

+4

[
1

3R− ka,R

]
Cα(−Rx∗a,Rx∗a)

b3
R2C2δ + 4

[
∂3

∂x3
ka,R

]
Cα(−Rx∗a,Rx∗a)

1
R
C2δ

+4

[
∂

∂x

ka,R − gδ
3R− ka,R

]
Cα(−Rx∗a,Rx∗a)

b3
R3 +

[
1

3R− ka,R

]
Cα(−Rx∗a,Rx∗a)

b4
R3C1δR

+

[
∂4

∂x4
ka,R

]
Cα(−Rx∗a,Rx∗a)

1
R
C1δR +

[
ka,R − gδ
3R− ka,R

]
Cα(−Rx∗a,Rx∗a)

b4
R4
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≤ b1
R2 2R

1−αC14

δ
+ 1

R
C16

δ1+α + 4 b1
R2 2R

1−αb1
C13

R
+ 4 b2

R
2R1−αC13

R2 + 4C15

δR
2R1−α b1

R

+6 b1
R2 2R

1−α b2
R
C3

δ
R

+ 6 b3
R2 2R

1−α 1
R
C3

δ
R

+ 6C13

R
2R1−α b2

R2 + 4 b1
R2 2R

1−α b3
R2C2δ

+4 b4
R3 2R

1−α 1
R
C2δ + 4C3

δ
R
2R1−α b3

R3 + b1
R2 2R

1−α b4
R3C1δR + b5

R4 2R
1−α 1

R
C1δR

+C2δ2R
1−α b4

R4 ≤ C16
1

Rδ1+α
.

The claim follows. �

Lemma 5.4.28. For ka,R and gδ respectively as in (5.3.5) and (5.4.4) it holds that[
(x, y) 7→ (y − 3R)

∂4

∂x4

ka,R − gδ
3R− ka,R

]
Cα(Ω̄a,R)

≤ C18

δ1+α
.

Proof. Since

[(x, y) 7→ f (x) g (y)]Cα[a,b]2 ≤ [f ]Cα[a,b] ‖g‖C0[a,b] + ‖f‖C0[a,b] [g]Cα[a,b] ,

one finds[
(x, y) 7→ (y − 3R)

∂4

∂x4

ka,R − gδ
3R− ka,R

]
Cα(Ω̄a,R)

≤ 3R1−α
∥∥∥∥ ∂4

∂x4

ka,R − gδ
3R− ka,R

∥∥∥∥
C0(−Rx∗a,Rx∗a)

+ 4R

[
∂4

∂x4

ka,R − gδ
3R− ka,R

]
Cα(−Rx∗a,Rx∗a)

≤ . . . .

By Lemma 5.4.25 and Lemma 5.4.27 we get

· · · ≤ 3R1−αC15

δR
+ 4R C17

Rδ1+α <
C18

δ1+α
.

�
The boundness of fa,R in C4,α-norm follows directly from Lemma 5.4.20 and Lem-

mas 5.4.23, 5.4.25 and 5.4.28.

5.4.6 The covering

We are now ready to prove that for any domain Ω with ∂Ω ∈ C4,α one may find an
appropriate covering by finitely many open domains that are ε-close in C2,γ sense to
some limaçon.

Theorem 5.4.29. Let Ω, α, γ and ε satisfy the assumptions of Theorem 5.4.4 and
let R defined as in that theorem. Then there exist finitely many balls Bj, j ∈ JB
with B̄j ⊂ Ω, finitely many open domains Ej ⊂ R2, j ∈ JE, and constants M̄ =
M̄(M,ρ−1

Ω , ε, γ) > 0 and δ > 0 such that:

(i) Ω ⊂
⋃
j∈JB

Bj ∪
⋃
j∈JE

Ej;
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(ii) (Ej ∩ ∂Ω)◦,∂Ω 6= ∅ for all j ∈ JE;

(iii) every Ej with j ∈ JE is a domain satisfying the uniform C4,α regularity condition
with constant M̄ ;

(iv) each Ej is ε-close in C2,γ sense to a limaçon Ωa,R with a ∈
[

3
16
, 5

16

]
.

Furthermore, for Kj =
(
Ēj ∩ ∂Ω

)◦,∂Ω
with j ∈ JE it holds:

5. Ej and Kj have the same outward normal for any x ∈ Kj;

6. {Kj}j∈JE
is a relatively open covering of ∂Ω;

7. for all j ∈ JE the diameter of Kj is larger than δ.

Proof. According to Corollary 5.4.8 there is a δ > 0 such that for every z0 ∈ ∂Ω there
exists a domain Ez0 such that the following holds:

• Ez0 satisfies the uniform C4,α regularity condition with constant

Mz0 = Mz0(M,ρ−1
Ω , ε, γ);

• Ez0 is ε-close in C2,γ-sense to a limaçon Ωa,R with a ∈
[

3
16
, 5

16

]
;

• letting Kz0 the connected component of
(
Ēz0 ∩ ∂Ω

)◦,∂Ω
that contains z0, it holds

Bδ(z0) ∩ ∂Ω = Bδ(z0) ∩Kz0 .

By compactness of ∂Ω there exist z1, . . . , zÑ ∈ ∂Ω such that ∂Ω =
⋃Ñ
j=1Kzj

. Set-

ting Ej := Ezj
and M̄ = max Mzj

and Kj accordingly one finds that this family
{Kj}j=1,...,N satisfies the properties of the last three items.

A straightforward argument implies that Ω\
⋃N
j=1(Ej∩Ω) can be covered by finitely

many open balls Bj with B̄j ⊂ Ω. �

Remark 5.4.30. In the proof we use that Ω is simply connected. However with a slightly
different argument the method would work also for general connected domains.

5.5 Proving the estimates

In this section we prove the main results of the chapter. First we give pointwise
estimates for the solution of (5.1.1), and then we prove the splitting of the solution
operator between a positive singular part and a sign changing regular part.



5.5. Proving the estimates 123

5.5.1 A maximum principle type estimate

Before presenting the pointwise estimate we recall a general result about partitions of
unity that will be used in the proofs.

Lemma 5.5.1 (Partition of unity with boundary). Let Ω ⊂ Rn be a bounded domain
and let {Dj}j∈J ⊂ Ω be a finite open covering of Ω such that ∂Ω ⊂

⋃
j∈J (∂Dj ∩ ∂Ω)◦,∂Ω.

For every δ > 0 there exist finitely many smooth functions ψi ∈ C∞ (Ω̄) , i ∈ I, such
that:

(i) ψi ≥ 0 for all i ∈ I and
∑

i∈I ψi (x) = 1 for all x ∈ Ω̄;

(ii) for every i ∈ I there exists j = j (i) such that supp (ψi) ⊂ Dj ∪ (∂Dj ∪ ∂Ω)◦,∂Ω,

(iii) diam(suppψi) ≤ δ for all i ∈ I.

Proof. Fix j ∈ J and let Kj = (∂Dj ∩ ∂Ω)◦,∂Ω. Since Dj ∪Kj is relatively open in Ω̄
there exists an open bounded set Uj in Rn such that Uj ∩ Ω̄ = Dj ∪Kj. Let Ω0 denote
the set ∪j∈JUj. The domain Ω0 is open and bounded in Rn since J is finite.

By compactness of Ω̄0 it holds

Ω̄0 ⊂
⋃
l∈J̃

Bl,

with Bl open balls with diameter δ and J̃ a finite set. Set

Vj,l = Uj ∩Bl for j ∈ J and l ∈ J̃ .

On Ω0 = ∪j∈J,l∈J̃Vj,l we have a partition of unity {ϕi}i∈I of functions in C∞
0 (Rn) where

the set I may have infinitely many elements, see [75, Page 61].

The set {x ∈ Ω̄ : ϕi(x) > 0} is relatively open in Ω̄ and since Ω̄ is compact there
are finitely many indices i1, . . . , iN such that

Ω̄ =
⋃

i∈{i1,...,iN}

{x ∈ Ω̄ : ϕi(x) > 0}.

We may assume that i1 = 1, . . . , iN = N . We set

S(x) =
N∑
i=1

ϕi(x) for every x ∈ Ω̄,

ψi(x) :=
ϕi(x)

S(x)
for every x ∈ Ω̄.

The claim follows. �

The pointwise estimates for the solution of (5.1.1) will be obtained using negative
Sobolev spaces. We refer to [2, pages 62-65].
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Theorem 5.5.2. Suppose that the hypothesis of Theorem 5.4.4 hold true with 0 <
γ, α < 1.

Then for any q > 2 and ε ∈ (0, 4R] there exists C = C( 1
2−q ,M, ρ−1

Ω , RΩ, ε, γ) > 0

such that for any f ∈ Lp(Ω), with p ∈ (1,∞), the solution u ∈ W 4,p(Ω) ∩W 2,p
0 (Ω) of

(5.1.1) satisfies

u(x) ≤ C
(
‖f+‖L1(B(x,ε)∩Ω) + ‖u‖W−1,q(Ω)

)
for every x ∈ Ω. (5.5.1)

Proof. Let Ej, j ∈ J, be the finite covering of Ω of Theorem 5.4.29. For every j ∈ J
we define Dj := Ej ∩ Ω. We first consider the case ε = 4R.

Let ψi, i ∈ I, be a partition of unity with boundary associated to the covering
{Dj}j∈J of Ω obtained applying Lemma 5.5.1 with δ = 2R. We may choose the
partition of unity such that it also satisfies for every i ∈ I:

i. |Dαψi| ≤ cαR
−|α| with α ∈ N2, |α| ≤ 4;

ii. ψi 6= 0 at the boundary only when
(
∂Ej(i) ∩ ∂Ω

)◦,∂Ω 6= ∅.

Here j(i) denotes the j ∈ J such that supp(ψi) ⊂ Ej. By the choice of ψi it also holds

that ψi ∈ C∞
c (Ω ∪

(
∂Ej(i) ∩ ∂Ω

)◦,∂Ω
), ψi ∈ C∞

c (Ej(i) ∪
(
∂Ej(i) ∩ ∂Ω

)◦,∂Ω
) and ψi 6= 0

only on
(
Ej(i) ∩ Ω

)
∪
(
∂Ej(i) ∩ ∂Ω

)◦,∂Ω
. Notice that I is a finite set.

We choose a new family of cut-off functions χi ∈ C∞
c

(
Ω ∪

(
∂Ej(i) ∩ ∂Ω

)◦,∂Ω
)
,

i ∈ I, such that for every i ∈ I:

i. supp(ψi) ⊂
{
x ∈ Ω̄ : χi(x) = 1

}
⊂ supp(χi) ⊂

(
Ej(i) ∩ Ω

)
∪
(
Ej(i) ∩ ∂Ω

)◦,∂Ω
;

ii. 0 ≤ χi(x) ≤ 1;

iii. ‖∇αχi‖∞ ≤ cαR
−|α| for every α ∈ N2 with |α| ≤ 4.

Observe that the cut-off function χi is not zero only in
(
Ej(i) ∩ Ω

)
∪
(
∂Ej(i) ∩ ∂Ω

)◦,∂Ω
.

The functions χig and ψig denote (with abuse of notation) respectively

χig(x) :=

{
χi(x)g(x) in Ω̄,
0 otherwise,

ψig(x) :=

{
ψi(x)g(x) in Ω̄,
0 otherwise.

In the following, if not explicitly stated, every function will be extended by 0 outside
its domain of definition.

Let GEj
be the Green function associated to ∆2 on Ej with zero Dirichlet boundary

condition. Let vg,j the function that satisfies{
∆2vg,j = g in Ej,

vg,j = ∂
∂ν
vg,j = 0 on ∂Ej.
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Figure 5.5: In the picture on the left one finds some Ej’s that cover Ω locally. The
dark part shows the support of the cut-off function ψi. On the right the effect of
the multiplication with the cut-off function considered on the dashed line: in black a
function f and in red (lighter) the function ψif . The scaling is arbitrary but consistent
with the one in the following figures.

We define
ũi(x) := χi(x)vψif,j(i)(x) and ũ(x) :=

∑
i∈I

ũi(x).

Here j(i) denotes the j ∈ J such that supp(ψi) ⊂ Ej.
Since the Green function GEj

(x, y) is positive and bounded on Ej × Ej (Theorem
5.3.2) we have for some c1 = c1(M,ρ−1

Ω )

ũi(x) = χi(x)

∫
Ej(i)

GEj(i)
(x, y)ψi(y)f(y) dy

≤ χi(x)

∫
supp(ψi)∩Ω

GEj(i)
(x, y)f+(y) dy ≤ c1 χi(x)

∥∥f+
∥∥
L1(supp(ψi)∩Ω)

.

Hence with εR := 4R one gets

ũ(x) ≤ c1
∑
i∈I

χi(x)
∥∥f+

∥∥
L1(supp(ψi)∩Ω)

≤ c2
∥∥f+

∥∥
L1

0
@S

i∈I,
χi(x) 6=0

(supp(ψi)∩Ω)

1
A
≤ c2

∥∥f+
∥∥
L1(B(x,εR)∩Ω)

. (5.5.2)

We will now estimate the difference u− ũ. For every i ∈ I, one has in Ej(i) :

∆2vψif,j(i) = ψi∆
2u = ∆2 (ψiu)−

∑
|α+β|=4,
|β|≤3

nα,βD
αψiD

βu, (5.5.3)

where nα,β are positive coefficients. From (5.5.3) we find in Ej(i) that

∆2
(
vψif,j(i) − ψiu

)
= −

∑
|α+β|=4,
|β|≤3

nα,βD
αψiD

βu.
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Figure 5.6: On the left one finds in black the boundary of Ej and in red the set
{x : ∇ψi(x) 6= 0}. In the right one in black the function vψif,j(i), that is the solution
of the clamped plate equation on Ej(i) with on the right hand side ψif, that is, the
truncated f (red in the picture).
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Figure 5.7: On the left one now also finds in green the set {x : ∇χi(x) 6= 0} . On the
right in green (lighter) the function ũi = χivψif,j(i).

Furthermore the function vψif,j(i) − ψiu satisfies zero Dirichlet boundary condition on
∂Ej(i). Indeed by construction: u = ∂

∂ν
u = 0 on ∂Ej(i) ∩ supp (ψi) ⊂ ∂Ej(i) ∩ ∂Ω and

ψi = ∂
∂ν
ψi = 0 for x ∈ ∂Ej(i)\ supp (ψi) .

Hence we may write for x ∈ Ej(i)

vψif,j(i)(x) = ψi(x)u(x)−Ri(x), (5.5.4)

where

Ri(x) :=

∫
Ej(i)

GEj(i)
(x, y)

(
∆2(ψi(y)u(y))− ψi(y)∆2u(y)

)
dy.

On the other hand we get from (5.5.4)

∆2ũi = ∆2
(
χivψif,j(i)

)
= χi∆

2vψif,j(i) +
(
∆2
(
χivψif,j(i)

)
− χi∆2vψif,j(i)

)
= χiψif +

(
∆2 (χiψiu− χiRi)− χi∆2 (ψiu−Ri)

)
.
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Since supp(ψi) ⊂
{
x ∈ Ω̄ : χi(x) = 1

}
it holds ∆2 (χiψiu) = χi∆

2 (ψiu) . Hence we get

∆2ũi = χiψif −∆2 (χiRi) + χi∆
2Ri.

Notice that this last relation holds in all of Ω. Hence the function ũ satisfies in Ω

∆2ũ = f −
∑
i∈I

∆2 (χiRi) +
∑
i∈I

χi∆
2Ri.

It follows that u− ũ satisfies
∆2 (u− ũ) =

∑
i∈I

∆2 (χiRi)−
∑

i∈I
χi∆

2Ri in Ω,

u− ũ = 0 on ∂Ω,
∂
∂ν

(u− ũ) = 0 on ∂Ω.

(5.5.5)

Here we used that ũi = ∂
∂ν
ũi = 0 on ∂Ω for every i ∈ I.

Writing

u(x) = ũ(x) +
∑
i∈I

∫
Ω

GΩ(x, y)
(
∆2 (χiRi)− χi∆2Ri

)
(y) dy

= ũ(x) +
∑

i∈I,|β′|≤3.
|α′+β′|=4

nα′,β′

∫
Ω

GΩ(x, y)Dα′χi(y)D
β′Ri(y) dy

= ũ(x) +
∑

i∈I,|β|,|β′|≤3,
|α′+β′|=4,
|α+β|=4

nα,β,α′,β′

∫
Ω

GΩ(x, y)Dα′χi(y)D
β′vDαψiDβu,j(i)(y)dy,

and using the estimate in (5.5.2) we find

u(x) ≤ c2
∥∥f+

∥∥
L1(B(x,εR)∩Ω)

+
∑

i∈I,|β|,|β′|≤3,
|α′+β′|=4,
|α+β|=4

nα,β,α′,β′

∥∥∥∥∫
Ω

GΩ(·, y)Dα′χi(y)D
β′vDαψiDβu,j(i)(y)dy

∥∥∥∥
∞
. (5.5.6)

In the following we will estimate the second term in the right hand side of (5.5.6). We
fix i ∈ I, α, β, α′, β′ ∈ N2 with |α′ + β′| = |α+ β| = 4 and |β′| , |β| ≤ 3.

We first notice that it is sufficient to prove (5.5.1) for q > 2 and near 2. Indeed
the result for general q > 2 will then follow from the observation that the following
inequality holds

‖u‖W−1,q(Ω) ≤ |Ω|
1
q
− 1

q̃ ‖u‖W−1,q̃(Ω) for any q̃ > q > 2.
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Let fix q > 2 with q − 2 small. The Sobolev Imbedding Theorem yields that for
some c3 = c3(

1
2−q , ρ

−1
Ω , RΩ)∥∥∥∥∫
Ω

GΩ(·, y)Dα′χi(y)D
β′vDαψiDβu,j(y) dy

∥∥∥∥
∞
≤

≤ c3

∥∥∥∥∫
Ω

GΩ(·, y)Dα′χi(y)D
β′vDαψiDβu,j(y) dy

∥∥∥∥
W 1,q

0 (Ω)

= . . . .

Here and in the following we write simply j instead of j(i).

We proceed using the regularity result for the “three-quarter weak solution” of
problem (5.1.1) (see Definition 5.2.15). Indeed by Theorem 5.2.16 the solution operator

from
(
W 3,q′(Ω) ∩W 2,q′

0 (Ω)
)′

to the space W 1,q
0 (Ω) is an isomorphism. Hence we get

for some c4 = c4(
1

2−q ,M, ρ−1
Ω , RΩ)

. . . ≤ c4

∥∥∥Dα′χi(·)Dβ′vDαψiDβu,j(·)
∥∥∥�

W 3,q′ (Ω)∩W 2,q′
0 (Ω)

�′

= c4 sup
{
〈Dα′χiD

β′vDαψiDβu,j, ϕ〉
∣∣∣

ϕ ∈ W 3,q′(Ω) ∩W 2,q′

0 (Ω) with ‖ϕ‖W 3,q′ (Ω) ≤ 1
}

= . . . .

Notice that the constant in Theorem 5.2.16 depends on q and q′. However, since here
we consider q near 2 we can choose a constant that depends only on the distance of q
to 2.

Next, we consider a restriction from(
W 3,q′(Ω) ∩W 2,q′

0 (Ω)
)′

onto
(
W 3,q′(Ej) ∩W 2,q′

0 (Ej)
)′
.

One uses that the cut-off function χi has support in (Ej ∩ Ω) ∪ (∂Ω ∩ ∂Ej)◦,∂Ω . Pro-

ceeding formally we take a cut-off function hi ∈ C∞
c (Ω ∪ (∂Ω ∩ ∂Ej)◦,∂Ω) such that:

i. supp(χi) ⊂
{
x ∈ Ω̄ : hi(x) = 1

}
;

ii. supp(hi) ⊂ (Ej ∩ Ω) ∪ (∂Ej ∩ ∂Ω)◦,∂Ω ;

iii. 0 ≤ hi ≤ 1;

iv. ‖∇αhi‖∞ ≤ cαR
−|α| for every α ∈ N2, |α| ≤ 4.

Such a cut-off function exists since supp(χi) ⊂ (Ej ∩ Ω)∪(∂Ej ∩ ∂Ω)◦,∂Ω . The function

hiϕ lies in W 3,q′(Ej) ∩W 2,q′

0 (Ej) for every ϕ ∈ W 3,q′(Ω) ∩W 2,q′

0 (Ω) and moreover it
holds

〈Dα′χiD
β′vDαψiDβu,j, ϕ〉Ω = 〈Dα′χiD

β′vDαψiDβu,j, hiϕ〉Ω
= 〈Dα′χiD

β′vDαψiDβu,j, hiϕ〉Ej.
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Hence using that there exists a constant c5 such that ‖hiϕ‖W 3,q′ (Ω) ≤ c5R
−3 ‖ϕ‖W 3,q′ (Ω)

we get

. . . = c4 sup
{
〈Dα′χiD

β′vDαψiDβu,j, hiϕ〉Ej

∣∣∣
ϕ ∈ W 3,q′(Ω) ∩W 2,q′

0 (Ω) with ‖hiϕ‖W 3,q′ (Ω) ≤ c5R
−3
}

≤ c4 sup
{
〈Dα′χiD

β′vDαψiDβu,j, ϕ̃〉Ej

∣∣∣
ϕ̃ ∈ W 3,q′(Ej) ∩W 2,q′

0 (Ej) with ‖ϕ̃‖W 3,q′ (Ej)
≤ c5R

−3
}

≤ c6 sup
{
〈Dβ′vDαψiDβu,j, ϕ̃〉Ej

∣∣∣
ϕ̃ ∈ W 3,q′(Ej) ∩W 2,q′

0 (Ej) with ‖ϕ̃‖W 3,q′ (Ej)
≤ 1
}

= . . . .

Here c6 = c6(
1

2−q ,M, ρ−1
Ω , RΩ) since R depends on M.

We now proceed integrating by parts. Since vDαψiDβu,j and ϕ̃ and their first deriv-
atives are zero on ∂Ej there is no contribution from the boundary. We find

. . . = c6 sup
{
〈vDαψiDβu,j, D

β′ϕ̃〉Ej

∣∣∣
ϕ̃ ∈ W 3,q′(Ej) ∩W 2,q′

0 (Ej) with ‖ϕ̃‖W 3,q′ (Ej)
≤ 1
}

≤ c6 sup
{
〈vDαψiDβu,j, ϕ〉Ej

∣∣
ϕ ∈ W 3−|β′|,q′(Ej) ∩Wmin{2,3−|β′|},q′

0 (Ej), ‖ϕ‖W 3−|β′|,q′ (Ej)
≤ 1
}

≤ c6 sup
{
〈vDαψiDβu,j, ϕ〉Ej

∣∣ϕ ∈ Lq′(Ej), ‖ϕ‖Lq′ (Ej)
≤ 1
}

= c6
∥∥vDαψiDβu,j

∥∥
Lq(Ej)

= . . . .

Next, we apply the regularity result for weak solution of problem (5.1.1) (see De-
finition 5.2.12). Notice that in order to do that one needs that ∂Ej ∈ C4,α. By the
result in Theorem 5.2.13 we get for some c7 = c7(

1
2−q ,M, ρ−1

Ω , RΩ)

. . . ≤ c7
∥∥DαψiD

βu
∥∥�

W 4,q′ (Ej)∩W 2,q′
0 (Ej)

�′

= c7 sup
{
〈DαψiD

βu, ϕ〉Ej

∣∣ϕ ∈ W 4,q′(Ej) ∩W 2,q′

0 (Ej), ‖ϕ‖W 4,q′ (Ej)
≤ 1
}

= . . . .

Since we consider q near 2 we can choose the dependence on q of the form 1
2−q in the

constant appearing in the estimate in Theorem 5.2.13.

We now consider an extension from(
W 4,q′(Ej) ∩W 2,q′

0 (Ej)
)′

onto
(
W 4,q′(Ω) ∩W 2,q′

0 (Ω)
)′
.

Since ψi has compact support in (Ω ∩ Ej) ∪ (∂Ω ∩ ∂Ej)◦,∂Ω one has

〈DαψiD
βu, ϕ〉Ej

= 〈DαψiD
βu, ϕ〉Ω,
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which implies

. . . = c7 sup
{
〈DαψiD

βu, ϕ〉Ω
∣∣ϕ ∈ W 4,q′(Ej) ∩W 2,q′

0 (Ej), ‖ϕ‖W 4,q′ (Ej)
≤ 1
}

≤ c7 sup
{
〈DαψiD

βu, ϕ〉Ω
∣∣ϕ ∈ W 4,q′(Ω) ∩W 2,q′

0 (Ω), ‖ϕ‖W 4,q′ (Ω) ≤ 1
}

≤ c8 sup
{
〈Dβu, ϕ〉Ω

∣∣ϕ ∈ W 4,q′(Ω) ∩W 2,q′

0 (Ω), ‖ϕ‖W 4,q′ (Ω) ≤ 1
}

= . . . .

Here c8 = c8(
1

2−q ,M, ρ−1
Ω , RΩ).

The last step is an integration by part. We do not have any contribution from the
boundary since u and ϕ and their first derivative are zero on ∂Ω. Hence one finds

. . . = c8 sup
{
〈u,Dβϕ〉Ω

∣∣ϕ ∈ W 4,q′(Ω) ∩W 2,q′

0 (Ω), ‖ϕ‖W 4,q′ (Ω) ≤ 1
}

≤ c8 sup
{
〈u, ϕ̃〉Ω

∣∣ ϕ̃ ∈ W 4−|β|,q′(Ω) ∩Wmin{2,4−|β|},q′
0 (Ω), ‖ϕ‖W 4−|β|,q′ (Ω) ≤ 1

}
≤ c8 sup

{
〈u, ϕ̃〉Ω

∣∣ ϕ̃ ∈ W 1,q′

0 (Ω), ‖ϕ‖W 1,q′ (Ω) ≤ 1
}

= c8 ‖u‖�
W 1,q′

0 (Ω)
�′ .

The claim follows for εR = 4R. For ε ∈ (0, εR] one may repeat the same construc-
tion with a refinement of the partition of unity ψi, i ∈ I. �

Remark 5.5.3. The hypothesis Ω simply connected is required in order to use The-
orem 5.2.16. The result can be proved also for general connected domains using a
generalization of Theorem 5.2.16.

5.5.2 Green function estimates

In this section we prove Theorem 5.1.1 and we give optimal estimates from below for
the Green function of a two-dimensional domain Ω with ∂Ω ∈ C16. In this section we
have to assume more regularity on the boundary of Ω in order to use Theorem 2.5.6
in Chapter 2 (see also [24]). As before, GΩ denotes the Green function associated to
problem (5.1.1) on Ω.

We first present some preliminary lemmas.

Lemma 5.5.4. Assume that Ω is a bounded domain in R2 with ∂Ω ∈ C16. Then

GΩ ∈ W 3,p(Ω2) for any p ∈ [1, 2).

Proof. In Chapter 2 Theorem 2.5.6 (see also [24]) one finds

∣∣DβGΩ(x, y)
∣∣ � |x− y|−1 min

{
1,

d(y)

|x− y|

}2

for any β ∈ N2 with |β| ≤ 3. (5.5.7)

The result follows directly from (5.5.7). �
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Lemma 5.5.5. Let Ω be a bounded domain in R2 with ∂Ω ∈ C16. Then for every
γ ∈ (0, 1)

GΩ ∈ C15,γ({(x, y) ∈ Ω̄2 : x 6= y}) and GΩ ∈ C1,γ(Ω̄2) ∩ C1
0(Ω̄2)

Proof. From general regularity results for elliptic partial differential equations (see [3])
it is well known that GΩ ∈ C15,γ({(x, y) ∈ Ω̄2 : x 6= y}) for any γ ∈ (0, 1). Indeed, in
general, given l ∈ N, β ∈ [0, 1) and a bounded domain D ∈ C l,β then the regularity of
GD on {(x, y) ∈ D̄2 : x 6= y} is as follows:

if β = 0 : GD ∈ C l−1,γ
(
{(x, y) ∈ D̄2 : x 6= y}

)
for any γ ∈ (0, 1) ;

if β 6= 0 : GD ∈ C l,β
(
{(x, y) ∈ D̄2 : x 6= y}

)
.

The result that GΩ ∈ C1,γ(Ω̄2) for any γ ∈ (0, 1) follows directly from Lemma 5.5.4
by the Sobolev imbedding Theorem ([2, Th.4.12 Part 2]). Hence GΩ ∈ W 3,p(Ω2) ∩
C1,γ(Ω̄2) for p ∈ [1, 2) and γ ∈ (0, 1). Moreover the function and its first derivatives
are zero on ∂Ω× Ω and on Ω× ∂Ω. Hence by continuity and Theorem IX.17 in [9] it
follows that GΩ ∈ C1

0(Ω̄2) (and also GΩ ∈ W 2,p
0 (Ω2) for p ∈ [1, 2)). �

Proof of Theorem 5.1.1. Following the construction in Theorem 5.5.2, see (5.5.5), one
may write the solution of problem (5.1.1) as

u(x) = ũ(x) +

∫
Ω

GΩ(x, z)
∑
i∈I

(
∆2(χi(z)Ri(z))− χi(z)∆2Ri(z)

)
dz

=
∑
i∈I

χi(x)

∫
Ej(i)

GEj(i)
(x, z)ψi(z)f(z)dz +

+

∫
Ω

GΩ(x, z)
∑
i∈I

(
∆2(χi(z)Ri(z))− χi(z)∆2Ri(z)

)
dz,

where

Ri(z) =

∫
Ej(i)

GEj(i)
(z, z′)

(
∆2(ψi(z

′)u(z′))− ψi(z′)∆2u(z′)
)
dz′,

and j(i) denotes the j ∈ J such that supp(ψj) ⊂ Ej. Considering formally f(x) =
δy(x) we get

GΩ(x, y) =
∑
i∈I

χi(x)GEj(i)
(x, y)ψi(y) +

+

∫
Ω

GΩ(x, z)
∑
i∈I

(
∆2(χi(z)Ri(z, y))− χi(z)∆2Ri(z, y)

)
dz,

where

Ri(z, y) =

∫
Ej(i)

GEj(i)
(z, z′)

(
∆2(ψi(z

′)GΩ(z′, y))− ψi(z′)∆2GΩ(z′, y)
)
dz′.
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We define

Gsing
Ω (x, y) :=

∑
i∈I

χi(x)GEj(i)
(x, y)ψi(y), (5.5.8)

Greg
Ω (x, y) := GΩ(x, y)−Gsing

Ω (x, y). (5.5.9)

From the definition it follows that Greg
Ω ∈ C15,γ(Ω̄2) for any γ ∈ (0, 1) . Indeed,

writing explicitly Ri and looking at the support of the term inside the integral, we
find

Greg
Ω (x, y) =

∑
i∈I

∑
|α+β|=4,
|α′+β′|=4,
|β|,|β′|≤3

nα,β,α′,β′

∫
Bi

GΩ(x, z)Dαχi(z) ·

·Dβ

∫
Ai

GEj(i)
(z, z′)Dα′ψi(z

′)Dβ′GΩ(z′, y)dz′dz, (5.5.10)

with nα,β,α′,β′ some positive coefficients and

Bi = {z ∈ Ω : ∇χi(z) 6= 0} and Ai = {z ∈ Ω : ∇ψi(z) 6= 0} . (5.5.11)

Since by construction Ai∩Bi = ∅ one always has z 6= z′ in (5.5.10). Hence GEj
(z, z′) ∈

C∞(Bi×Ai). Since the term Dα′ψi(z
′)Dβ′GΩ(z′, y) is integrable it follows that Greg

Ω is
as regular as we want in the interior. The regularity up to the boundary is given by
the fact that ∂Ω ∈ C16.

The positivity of Gsing
Ω follows from the positivity of GEj

. Furthermore by Lemma

5.5.5, the definition of Gsing
Ω and since Greg

Ω ∈ C15,γ(Ω̄2) for any γ ∈ (0, 1), it follows that
Gsing

Ω ∈ C1,γ(Ω̄2) ∩ C1
0(Ω̄2) and Gsing

Ω ∈ C15,γ(
{
(x, y) ∈ Ω̄2 : x 6= y

}
) for any γ ∈ (0, 1).

Notice that by the boundary condition satisfied by GΩ and Gsing
Ω we also have that

Greg
Ω ∈ C1

0(Ω̄2). �

Remark 5.5.6. The functions Gsing and Greg defined in proof of Theorem 5.1.1 are
not symmetric. In order to get symmetric functions one may consider G···

Ω,new(x, y) :=
1
2
G···

Ω (x, y) + 1
2
G···

Ω (y, x).

Optimal estimates from above for the Green function as well as estimates for the
absolute value are known. We refer respectively to [52], [41] and [24]. We will next
prove optimal estimates from below for GΩ.

First we prove the following lemma.

Lemma 5.5.7. Let Ω be a bounded domain in R2 with ∂Ω ∈ C16. Then GΩ satisfies

‖∇GΩ(·, y)‖Lp(Ω) ≤ c′p,Ωd(y)
2 for every y ∈ Ω and p ∈ [1, 2).

Proof. Via Theorem 2.5.6 in Chapter 2 (see [24]) one finds

‖∇GΩ(·, y)‖pLp(Ω) ≤ cΩ

∫
Ω

d(y)p min

{
1,

d(y)

|x− y|

}p
min

{
1,

d(x)

|x− y|

}p
dx

≤ cΩd(y)
2p

∫
Ω

1

|x− y|p
dx ≤ c′p,Ωd(y)

2p,
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for p ∈ [1, 2). �

Theorem 5.5.8. Let Ω be a bounded domain in R2 with ∂Ω ∈ C16. Then there exists
cΩ > 0 such that GΩ satisfies:

GΩ(x, y) ≥ −cΩd(x)2d(y)2 for every x, y ∈ Ω.

Proof. Since GΩ(x, y) = Gsing
Ω (x, y) +Greg

Ω (x, y), with Gsing
Ω and Greg

Ω defined in (5.5.8)
and (5.5.9) respectively, and Gsing

Ω is positive it holds

GΩ(x, y) ≥ − |Greg
Ω (x, y)| for every x, y ∈ Ω.

Hence in order to prove the result it is sufficient to get an estimate of the absolute
value of Greg

Ω .
We first study the W 4,p-norm of Greg

Ω (·, y) for p ∈ (1,∞).
Let Ai and Bi as defined in (5.5.11). From (5.5.10) and elliptic regularity theory

(see Theorem 5.2.6) it follows that

‖Greg
Ω (·, y)‖W 4,p(Ω) ≤ c

∑
i∈I

∑
|α+β|=4,
|β|≤3

nα,β
∥∥Dαχi(·)DβRi(·, y)

∥∥
Lp(Bi)

.

We study separately the term
∥∥Dαχi(·)DβRi(·, y)

∥∥
Lp(Bi)

. One has∥∥Dαχi(·)DβRi(·, y)
∥∥
Lp(Bi)

≤

≤ cΩ
∑

|α′+β′|=4,
|β′|≤3

nα′,β′

∥∥∥∥Dβ

∫
Ai

GEj(i)
(·, z′)Dα′ψi(z

′)Dβ′GΩ(z′, y)dz′
∥∥∥∥
Lp(Bi)

.

We first observe that GEj
is non singular in Bi×Ai. Indeed since Āi∩ B̄i = ∅, the

function GEj
(z, z′) is in C∞(Bi×Ai) and all its derivatives are bounded by a constant

depending only on Ω.
The next step consists in an integration by part. There are no contribution from

the boundary since in ∂Ai ∩ Ω the function ψi and its derivatives are zero, while in
∂Ai ∩ ∂Ω both GEj

and GΩ and their first derivatives are zero.
Let β′′ ∈ N2 denote a multiindex such that β′′ < β′, |β′′| = |β′| − 1. We obtain∥∥Dαχi(·)DβRi(·, y)

∥∥
Lp(Bi)

≤ cΩ
∑

|α′+β′|=4,
|β′|≤3

nα′,β′

∥∥∥∥Dβ

∫
Ai

Dβ′′
(
GEj

(·, z′)Dα′ψi(z
′)
)
Dβ′−β′′GΩ(z′, y)dz′

∥∥∥∥
Lp(Bi)

≤ cΩ,p
∑

|α′+β′|=4,
|β′|=2,3

nα′,β′

∫
Ω

∣∣∣Dβ′−β′′GΩ(z′, y)
∣∣∣ dz′ ≤ c′Ω,pd(y)

2.
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In the last step we used Lemma 5.5.7.

Since Greg
Ω (x, y) ∈ W 4,p(Ω)∩W 2,p

0 (Ω) for any p ∈ (1,∞) , from [12, Lem.5] it follows
that

|Greg
Ω (x, y)|
d(x)2

≤ cΩ ‖Greg
Ω (·, y)‖W 4,p(Ω) .

Hence we obtain
|Greg

Ω (x, y)| ≤ c′′Ωd(y)
2d(x)2.

The claim follows. �

Remark 5.5.9. In [12, Lemma 5] the authors consider a bounded domain Ω with ∂Ω
smooth. One can consider a weaker assumption on the boundary. Indeed, in order to
apply the Rellich-Kondrachov Theorem, [2, Th.6.3], it is sufficient that Ω is bounded
and satisfies the strong Lipschitz condition, [2, Def.4.9]. Notice that if Ω satisfies the
uniform C l regularity condition with l ≥ 2 then Ω satisfies also the strong Lipschitz
condition.



Chapter 6

Brownian motion on the ball in Rn

6.1 Introduction

Let Ω be a Lipschitz domain in Rn and let GΩ denote the Green function for{
−∆u = f in Ω,

u = 0 on ∂Ω,
(6.1.1)

that is, the solution of (6.1.1) is given by u(x) =
∫

Ω
GΩ(x, y)f(y)dy. Let us define

HΩ(x, y) :=

∫
Ω

GΩ(x, z)GΩ(z, y)

GΩ(x, y)
for x, y ∈ Ω× Ω.

The function HΩ(x, y) is of some importance in two different areas of mathematics:
elliptic partial differential equations and probability.

The topic of this chapter is the study of the function HΩ with Ω = B the unit
ball in Rn, n ≥ 2. We will show that for every y ∈ B̄ the function x 7→ HB (x, y)
is increasing away from y along the hyperbolic geodesics through y and also along a
family of trajectories orthogonal to the hyperbolic geodesic through y in increasing
Euclidean distance from y. As a consequence we will find that x 7→ HB (x, y) has
no interior maximum and we will even pinpoint the location of the maximum at the
boundary.

Our aim in studying this problem was to supply an answer to some questions left
open in [19], [37] and in [49], [50].

6.1.1 The link between analysis and probability

The model problem for the positivity preserving property of systems of second order
elliptic boundary value problems that are coupled in a noncooperative way is

−∆u = f − λv in Ω,
−∆v = f in Ω,
u = v = 0 on ∂Ω,

(6.1.2)

135
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where Ω is a bounded set in Rn and λ ∈ R+. One knows, at least for Ω that satisfy
some boundary regularity, that there exists λc (Ω) ∈ (0,∞) such that for all f ≥ 0 the
solution u satisfies u ≥ 0 if and only if λ ≤ λc (Ω) . See [50], [55] and [68]. Since the
solution u of (6.1.2) equals

u (x) =

∫
y∈Ω

GΩ (x, y)

(
1− λ

∫
z∈Ω

GΩ (x, z)GΩ (z, y)

GΩ (x, y)
dz

)
f (y) dy,

one can show that

λc (Ω)−1 = sup
x,y∈Ω

∫
z∈Ω

GΩ (x, z)GΩ (z, y)

GΩ (x, y)
dz

= sup
x,y∈Ω

HΩ(x, y). (6.1.3)

For rather general elliptic problems Cranston, Fabes and Zhao in [20] showed that the
right hand side of (6.1.3) is finite. For the Laplacian such a bound has been obtained
by Cranston in [18] for n ≥ 3 and with McConnell in [19] for n = 2.

The link between (6.1.3) and probability theory is:

Eyx (τΩ) =

∫
z∈Ω

GΩ (x, z)GΩ (z, y)

GΩ (x, y)
dz, (6.1.4)

where Eyx (τΩ) is the expectation of the lifetime of a Brownian motion in Ω starting in
x, conditioned to converge to and to be stopped at y and to be killed on exiting Ω.

The famous result from [19] states that there is a c > 0 such that

Eyx (τΩ) ≤ c|Ω| for all Ω ⊂ R2,

where |Ω| is the Lebesgue measure of Ω.

Some details for identity (6.1.4). A Brownian motion that starts in x ∈ Ω and is
killed on ∂Ω has transition density given by pΩ(t, x, y) and has expected lifetime given
by

Ex(τΩ) =

∫
Ω

GΩ(x, z)dz.

Here pΩ(t, x, y) denotes the heat kernel for
∂
∂t
u−∆u = 0 in R+ × Ω,

u = 0 on R+ × ∂Ω,
u = f on {0} × Ω,

(6.1.5)

that is, the solution of (6.1.5) is given by

u(t, x) =

∫
Ω

pΩ(t, x, y)f(y)dy for (t, x) ∈ R+ × Ω.
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We would like to recall that the following relation holds in Ω× Ω

GΩ(x, y) =

∫ ∞

0

pΩ(t, x, y)dt.

To consider Brownian motion that is conditioned to exit Ω through Γ ⊂ ∂Ω and
stopped at leaving Ω, one uses the transition density phΩ(t, x, z) = pΩ(t, x, z)h(z)

h(x)
where

h is the solution of 
−∆h = 0 in Ω,
h = 0 on ∂Ω \ Γ,
h = 1 on Γ.

This is a so-called Doob’s conditioned Brownian motion, see [29, Part 2, Chap. X].
The expected lifetime is given by

Ehx(τΩ) =

∫
Ω

GΩ(x, z)
h(z)

h(x)
dz. (6.1.6)

We want to consider the expectation for the time that a Brownian motion spends
going from x to y and staying inside Ω. This can be approximated by the expected
lifetime for the following conditioned Brownian motion. One considers the domains
Ωε = Ω \Bε(y) and the functions hy,ε such that

−∆hy,ε = 0 in Ω \Bε(y),
hy,ε = 1 on ∂Bε(y),
hy,ε = 0 on ∂Ω,

with the expected lifetime given by (6.1.6) replacing h by hy,ε and GΩ by GΩε . The
expectation of the time we are interested in becomes the expected lifetime of the
Brownian motion starting at x and conditioned to leave Ω \ {y} at {y}. This is now
given by

Eyx(τΩ\{y}) = lim
ε→0

Ehy,ε
x (τΩε). (6.1.7)

For x and y in the interior, using that

hy,ε(z)

hy,ε(x)
→ GΩ(z, y)

GΩ(x, y)
,

and that GΩε → GΩ holds in dimension n > 1, identity (6.1.4) follows from (6.1.6)
and (6.1.7).

In the particular case of y ∈ ∂Ω a similar procedure leads to

Eyx (τΩ) =

∫
z∈Ω

GΩ (x, z)
KΩ (y, z)

KΩ (y, x)
dz, (6.1.8)

where KΩ (y, ·) is the Poisson kernel for y ∈ ∂Ω, namely the function such that u (x) =∫
y∈∂Ω

KΩ (x, y) g (y) dσy solves {
−∆u = 0 in Ω,
u = g on ∂Ω.
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For sufficiently regular domains the expression in (6.1.8) is a continuous extension of
(6.1.4) to Ω × Ω̄. Note that in the above we have used the analyst’s −∆ instead of
−1

2
∆.

6.1.2 Main result

Since in this chapter we work in the unit ball we skip the subscript B and we write
H(x, y) = HB(x, y).

We first extend the definition of H up to the closure B̄ × B̄ by using dominated
convergence and taking limits. The complete definition of H then reads:

H (x, y) =



∫
B
GB (x, z)GB (z, y) dz

GB (x, y)
if x, y ∈ B with x 6= y,

0 if x = y ∈ B̄,∫
B
KB (x, z)GB (z, y) dz

KB (x, y)
if x ∈ ∂B, y ∈ B,∫

B
KB (y, z)GB (z, x) dz

KB (y, x)
if x ∈ B, y ∈ ∂B,

nωn

2
|x− y|n

∫
B
KB (x, z)KB (y, z) dz if x, y ∈ ∂B with x 6= y,

(6.1.9)

where ωn = 2π
n
2

nΓ(n
2
)

is the volume of B ⊂ Rn.
This function H lies in C

(
B̄ × B̄

)
and is strictly positive on B̄2\

{
(x, x) ; x ∈ B̄

}
.

A precise formulation of the main result is the following:

Theorem 6.1.1. For all y ∈ B̄ the function x 7→ H (x, y) is

(i) increasing along ‘ the hyperbolic geodesics through y’ in increasing Euclidean
distance;

(ii) increasing along the orthogonal trajectories of ‘ the hyperbolic geodesics through
y’ in increasing Euclidean distance.

Remark 6.1.2. For y ∈ ∂B and in dimension 2 part i of Theorem 6.1.1 has been proved
by Griffin, McConnell and Verchota in [37].

Remark 6.1.3. In dimension two ‘the hyperbolic geodesics through y’ are the circles
through y that intersect ∂B perpendicularly. The orthogonal trajectories are again
circles. See Figure 6.1.

In dimensions n ≥ 3 the hyperbolic geodesics in B are the intersection of B with
the Euclidean circles that meet ∂B at right angle (see [73, page 66]). See Figure 6.1.

In dimension two it is clear what we mean by orthogonal trajectories to the hyper-
bolic geodesic through y. It is convenient to explain what we mean by this in higher
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y

Figure 6.1: To the left: The geodesics through y in green (light) and the orthogonal
trajectories in red (dark) in the ball in dimension two.
To the right: Some hyperbolic geodesic in the ball in R3.

dimensions. A generic hyperbolic geodesic through y in B ⊂ Rn, n ≥ 3, is obtained
in the following way. One considers a generic unit disk in B to which the origin and
y belong. Each hyperbolic geodesic through y in this disk is a hyperbolic geodesic
through y in B ⊂ Rn. Then the orthogonal trajectories to this hyperbolic geodesic
through y in B are the orthogonal trajectories to the hyperbolic geodesic through y
in the disk.

A direct consequence of Theorem 6.1.1 is the following result.

Corollary 6.1.4. One directly finds that:

(i) sup
x∈B̄

H (x, y) = H (−y/ |y| , y) for any y ∈ B̄\ {0} ;

(ii) sup
x∈B̄

H (x, 0) = H (e1, 0) with e1 = (1, 0, . . . , 0) ∈ Rn;

(iii) and sup
x,y∈B̄

H (x, y) = H (−e1, e1) .

Remark 6.1.5. Since the problem has a rotational symmetry one finds that e1 above
might be replaced by any a ∈ ∂B.

The chapter is organized as follows. We first complete this section presenting some
previous results and open questions. In the second section we recall some known
properties of conformal transformations focusing on the difference between the two-
dimensional and the higher-dimensional case. We also recall a formulation of the
maximum principle that will be used. In the third and fourth section we prove Theorem
6.1.1 in the two dimensional case and in the higher dimensional case respectively.
The proof is divided in these two parts firstly because the expression of H changes
when n = 2 and n ≥ 3 and hence the arguments in the proof are, to some extent,
different, and secondly since the two parts appear in two different works ([22] and [21]
respectively). In the last section we discuss some identities involving λ−1

c (Ω), defined
in 6.1.3, and a sum of inverse Dirichlet eigenvalues.
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6.1.3 Earlier related results

Critical numbers related to (6.1.3) have been studied before in a number of papers.
Caristi and Mitidieri in [10] considered the radially symmetric case (in any dimension
n), that is, system (6.1.2) for radially symmetric functions and hence with −∆ replaced
by −r1−n ∂

∂r

(
rn−1 ∂

∂r

)
. They showed that the corresponding Hradial (r, s) is maximal for

(r, s) being extremal which means r = 0 and s = 1 or vice versa. The critical number
that they find for this radial case is as follows:

sup
r,s∈[0,1]

Hradial (r, s) =
1

2n
.

In the one-dimensional case they also considered ∂2

∂x2 + c without assuming symmetry.

Maximal lifetime on the disk. Griffin, McConnell and Verchota in [37] considered
H for general simply connected 2-dimensional domains Ω but fixed y ∈ ∂Ω. Two of
their main results for such Ω are

sup
x∈Ω̄,y∈∂Ω

H (x, y) = sup
x,y∈∂Ω

H (x, y)

and that (with our ‘analytic’ normalization)

sup
x,y∈Ω̄

H (x, y) ≤ 1

2π
|Ω| .

For Ω = B and y ∈ ∂B they sharpen this estimate:

sup
x∈B̄,y∈∂B

H (x, y) ≤ 2 log 2− 1 =
2 log 2− 1

π
|B| .

The numerical values are 1
2π

= .159155... and 2 log 2−1
π

= .12296.... Our result considered
for B ⊂ R2 improves the last estimate by

sup
x,y∈B̄

H (x, y) = sup
x∈B̄,y∈∂B

H (x, y) ≤ 2 log 2− 1,

thereby giving an estimate for the lifetime inequality on a disk with a small hole which
is sharper than 1/(2π) (which corresponds to 1/π in [37, Remark 5.7]). We will also
give the explicit formula of supx,y∈B̄H(x, y) in B ⊂ Rn for general n.

Domain optimization. In [49] Kawohl and coauthor showed that the disk does not
give the smallest bound for H among all convex planar sets of equal area. Indeed,
they considered a sector-like domain S, with |S| = |B|, and proved that:

sup
x∈S̄,y∈∂S

H (x, y) < sup
x∈B̄,y∈∂B

H (x, y) .
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The question remains open if

sup
x,y∈S̄

H (x, y) < sup
x,y∈B̄

H (x, y) ? (6.1.10)

In the present paper we show that sup
x∈B̄,y∈∂B

H (x, y) = sup
x,y∈B̄

H (x, y) holds. We expect

the last identity to hold for all planar domains Ω. Let us put it as a conjecture.

Conjecture 6.1.6. If Ω is a (simply connected) planar domain, then

sup
x,y∈Ω

H (x, y) = sup
x,y∈∂Ω

H (x, y) .

The obvious consequence of this conjecture is (6.1.10). We want to remark that
such a result is not likely to hold on a manifold. Consider for example the surface of
a ball with a small hole near the pole, see Fig.6.2. Taking y near the north pole one
expects the maximum of H to be attained at an interior point near the south pole.

Figure 6.2: Sphere with a small hole near the north pole.

Relation with eigenvalues In one dimension critical numbers for sign-changing in
(6.1.2) were studied by Schröder [62]. The precise result was revisited in [50]. Due to
the fact that in one dimension the boundary consists of isolated points one recovers
an eigenvalue problem for the critical number.

A relation between that critical number and the Dirichlet eigenvalues in an interval
I ⊂ R is

sup
x,y∈I

H (x, y) =
∞∑
k=1

1

λk
= 2

∞∑
k=1

(−1)k−1

λk
.

Note that for the unit interval I = (0, 1) these eigenvalues are λk = π2k2, k ∈ N.
For the disk one finds

sup
x,y∈B

H (x, y) = 4
∞∑
ν=1

(−1)ν−1
∞∑
k=1

mν,k

λν,k
, (6.1.11)
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where λν,k is the eigenvalue for the eigenfunction with k− 1 circular nodal lines and ν
radial nodal lines, and where mν,k is the multiplicity, that is, mν,k = 1 for ν = 0 and
mν,k = 2 for ν ≥ 1. The numbers for the two right hand sides above can be found in
[50].

At the end of this chapter we will give an explanation for identity (6.1.11). We will
also show that a relation exists also between supx,y∈BH(x, y) for B ⊂ R3 and a sum
of inverse Dirichlet eigenvalues. It is still an open question if such a relation holds for
the unit ball in dimension n ≥ 4.

6.2 Conformal maps and a Maximum Principle

For completeness, we recall here some known properties of conformal maps. We will
repeatedly use this kind of mappings in the proof of Theorem 6.1.1. The situation is
different in Rn for n = 2 and n ≥ 3.

Conformal maps are a very useful tool for problems in the plane. The first reason
is that there are many conformal maps: every simply connected domain D  R2 can
be mapped conformally onto the ball (Riemann Mapping Theorem, [59]). A second
important property of conformal maps is the ‘invariance’ of the Green function. The
precise result is stated in the following lemma.

Lemma 6.2.1. Let A, D be simply connected bounded domains in R2 and let ϕ : A→
D a conformal map. Let GA denote the Green function for the Laplace problem with
Dirichlet boundary condition in A.

Then it holds GD(ϕ(x), ϕ(y)) = GA(x, y).

In higher dimension the situation is different. The only conformal mappings are
the Möbious transforms. Liouville’s Theorem, [57], states that every conformal trans-
formation in Rn with n ≥ 3 must necessarily reduce to a translation, a magnification,
an orthogonal transformation, a reflection through reciprocal radii, or a combination
of these elementary transformations. Moreover there is no ‘invariance’ of the Green
function via conformal mappings. However a relation still holds. We write the result
in the following lemma.

Lemma 6.2.2. Let A, D be simply connected bounded domain in Rn, n ≥ 3, and let
ϕ : A→ D be a conformal map. Let Jϕ denote the Jacobian of ϕ. Then it holds that

GD(ϕ(x), ϕ(y)) = (Jϕ(x)Jϕ(y))
1
n
− 1

2 GA(x, y).

Remark 6.2.3. The result stated in Lemma 6.2.2 holds also if ϕ is an anti-conformal
map since there is only a change in the orientation.

Proof. In Proposition 4.2.3 in Chapter 4 (see also [25, Cor. 2.2]) it is proved that for
any Möbious transformation ψ in Rn and k ∈ N it holds

∆k(J
1
2
− k

n
ψ u ◦ ψ) = J

1
2
+ k

n
ψ

(
∆ku

)
◦ ψ. (6.2.1)
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In our setting using (6.2.1) with k = 1, we get that for any x ∈ B

u(ϕ(x)) = J
1
n
− 1

2
ϕ (x)

∫
A

GA(x, y)J
1
2
+ 1

n
ϕ (y)(∆u)(ϕ(y))dy

=

∫
A

GA(x, y)(Jϕ(x)Jϕ(y))
1
n
− 1

2 (∆u)(ϕ(y))Jϕ(y)dy. (6.2.2)

We can also write

u(ϕ(x)) =

∫
D

GD(ϕ(x), z)∆u(z)dz

=

∫
A

GD(ϕ(x), ϕ(y))(∆u)(ϕ(y))Jϕ(y)dy. (6.2.3)

The claim follows from (6.2.2) and (6.2.3). �

In order to prove Theorem 6.1.1 in the two-dimensional case we will use the maxi-
mum principle. This result will be repeatedly applied to differential operators of which
the coefficients become singular on the boundary. We prefer to give the precise for-
mulation of a maximum principle which is appropriate for this situation. For a proof
we refer to [36, Sect. 3.1].

Theorem 6.2.4. Suppose that Ω ⊂ Rn is open, bounded and connected, and that
b ∈ C(Ω;Rn) and c ∈ C(Ω;R) with c ≥ 0. Set L = −∆ + b · ∇ + c. If u ∈ C2(Ω)
satisfies {

Lu(x) ≥ 0 for x ∈ Ω,
lim inf
Ω3x→x∂

u(x) ≥ 0 for x∂ ∈ ∂Ω,

then u ≥ 0 in Ω.

6.3 In dimension two

In 2 dimensions the direct relation between conformal maps and Green functions is
best exploited using C instead of R2. For the sake of clear notation we will use boldface
for this complex alternative:

for x ∈ R2 set x = x1 + ix2,

for h : R2 → R2 set h (x) = h1 (x) + ih2 (x) .

The explicit expressions of the Green function and of the Poisson kernel in the disk
can now be written as

GB (x, y) =
1

4π
log

(
|ȳx− 1|2

|x− y|2

)
, where x, y ∈ B,

KB (x, y) =
1

2π

1− |y|2

|x− y|2
, where x ∈ ∂B, y ∈ B.
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We first give a brief scheme of the proofs. In subsection 6.3.1 we will consider
the case where one of the points lies on the boundary. As mentioned before the case
with one point at the boundary has been previously studied by Griffin, McConnell and
Verchota in [37]. We will need a more precise characterization of H and in doing so
we will recover some of their results. Instead of using power series in C our basic tools
will be conformal mappings, a monotonicity result for a convolution (see Proposition
6.3.1) and the maximum principle.

Since the function under consideration is symmetric, H(x, y) = H(y, x), the be-
haviour of x ∈ B 7→ H(x, y) with y ∈ ∂B can be used for the behaviour of x ∈ ∂B 7→
H(x, y) with y ∈ B. Using such a result on the boundary and by several applications
of the maximum principle one is able to transfer a inequality valid on the boundary to
the interior. This is done in section 6.3.2 and will lead to our main result. We would
like to observe that also because of this use of the symmetries of the ball our result is
restricted to the ball.

Most of the steps consist of deriving estimates for some tailor-made functions. Since
all these technicalities might blur the line of arguments we hope to clarify our approach
by complementing each intermediate result for a increasing direction of x 7→ H(x, y)
(or a related function) by a sketch.

6.3.1 The proof for one point lying on the boundary

In two-dimensions for y fixed at the boundary part (i) of Theorem 6.1.1 has been proven
in [37]. We now prove part (ii). In order to do that we will consider a transformation
to the half-plane. We first give an explicit expression for H(x, y) for y is fixed at the
boundary.

Assuming y ∈ ∂B we may suppose without loss of generality that y = e1 = (1, 0).
The numerator

∫
B
KB (e1, z)GB (z, x) dz equals:

E (x) := −1− xx̄

8π

(
log (1− x)

x
+

log (1− x̄)

x̄
+ 1

)
for x ∈ B̄\ {e1} and E (e1) = 0.

Indeed, since z 7→ KB (e1, z) ∈ Lp (B) for p ∈ [1, 2) (see Chapter 2) the Dirichlet
problem for the Poisson equation −∆u = KB (e1, ·) in B with u = 0 on ∂B has a
unique solution in W 2,p (B) ∩W 1,p

0 (B) by [36, Theorem 9.15]. Since GB is the kernel
for the solution operator from Lp (B) to W 2,p (B)∩W 1,p

0 (B) this Dirichlet problem is
solved by u (x) =

∫
B
KB (e1, z)GB (z, x) dz.

Next one checks straightforwardly that E lies in W 2,p (B) ∩ C0

(
B̄
)

for p ∈ [1, 2)

and by [9, Theorem IX.17] it follows that E ∈ W 2,p (B) ∩W 1,p
0 (B). Since −∆E =

−4 ∂
∂x

∂
∂x̄
E = KB (e1, ·) in B one finds E = u, the unique solution. The expression

for E can also be deduced from an explicit formula for
∫
B
GB(x, z)GB(z, y)dz with

x, y ∈ B, which is given in [61].
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Dividing E(x) by KB(e1, x) yields:

H (x, e1) = −(1− x) (1− x̄)

4

(
log (1− x)

x
+

log (1− x̄)

x̄
+ 1

)
, (6.3.1)

for x ∈ B̄\ {e1} and by continuity H (e1, e1) = 0. We remark that log denotes the
analytic extension of the standard logarithm to C\ (−∞, 0] and that the function

x 7→ log(1−x)
x

is extended by −1 for x = 0.

In the halfplane

We consider the conformal map from the ball B onto the halfplane R+ × R that
maps (−1, 0) to (0, 0) and (0, 0) to (1, 0). This map is given by h (x) = 1+x

1−x
. Note

that h(e1) = ∞. We let X denote an element of R+ × R, or in complex notation
X = X1 + iX2 ∈ R+ + iR. The inverse of h is also a conformal map and is defined by
h−1 (X) = X−1

X+1
.

It follows from a property of conformal maps (see Lemma 6.2.1) that

H (x, e1) =

∫
R+×R

KB (e1, h
−1(Z))

KB (e1, x)
GB

(
h−1(Z), x

) ∣∣∣(h−1
)′

(Z1 + iZ2)
∣∣∣2 dZ1dZ2

=

∫
R+×R

KB (e1, h
−1(Z))

KB (e1, x)
GR+×R (Z, h (x))

∣∣∣(h−1
)′

(Z1 + iZ2)
∣∣∣2 dZ1dZ2,

where GR+×R(X, Y ) = 1
4π

log

(
1 +

4X1Y1

|X − Y |2

)
is the Green function for the Laplace

problem in R+ × R.
Next, by defining the function

H̃ (X) := H (x, e1) for X = h (x) ,

one finds

H̃ (X) =
1

4π

∫
R+×R

Z1

X1

log

(
1 +

4X1Z1

|X − Z|2

)
4(

(1 + Z1)
2 + Z2

2

)2dZ1dZ2.

Here we use that KB(e1, x) = KB(e1, h
−1(X)) = 1

2π
X1 and that

∣∣(h−1)
′
(Z1 + iZ2)

∣∣2 =

4
(
(1 + Z1)

2 + Z2
2

)−2
.

We want to show that H(x, e1) is increasing along trajectories orthogonal to the
hyperbolic geodesic in B through e1. This is equivalent to show that

X2 7−→ H̃ (X1, X2) is decreasing for X2 > 0. (6.3.2)

Indeed the image through the map h−1 of the hyperbolic geodesic through e1 are the
lines in the half-plane of the kind {(X1, X2) ∈ R+×R : X2 = k} for k ∈ R. Hence the
orthogonal trajectories are the lines {(X1, X2) ∈ R+ × R : X1 = k} for k ∈ R+.

In order to show (6.3.2) we need:
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Proposition 6.3.1. Let f, g ∈ L2(R), f, g ≥ 0, f (t) = f (|t|) , g (t) = g (|t|) and f, g
decreasing for t > 0. Then

t 7→
∫

R
f (x) g (x+ t) dx, (6.3.3)

is decreasing on R+.

Proof. We suppose first that additionally g ∈ C∞0 (R). One has

∂

∂t

∫
R
f (x) g (x+ t) dx =

∫ +∞

−∞
f (x) g′ (x+ t) dx

=

∫ −t

−∞
f (x) g′ (x+ t) dx+

∫ +∞

−t
f (x) g′ (x+ t) dx.

Using that g′ (x+ t) = −g′ (−x− t) , one gets

∂

∂t

∫
R
f (x) g (x+ t) dx = −

∫ −t

−∞
f (x) g′ (−x− t) dx+

∫ +∞

−t
f (x) g′ (x+ t) dx.

Changing the coordinates one obtains

∂

∂t

∫
R
f (x) g (x+ t) dx =

∫ 0

+∞
f (−y − t) g′ (y) dy +

∫ +∞

0

f (y − t) g′ (y) dy

=

∫ +∞

0

g′ (y) (f (y − t)− f (−y − t)) dy.

Now for t > 0, one has |y − t| < |−y − t|. Hence the function (6.3.3) is decreasing.
The preceding arguments yields the result also for g as in the hypothesis. We

observe that such g may be approximated in L2(R) by (gk)k∈N ⊂ C∞0 (R) having the
additional properties above. This is achieved by using an even and in positive x-
direction decreasing mollifier in C∞0 (R). �

Corollary 6.3.2. The relations

max
X2∈R

H̃ (X1, X2) = H̃ (X1, 0) and X2
∂

∂X2

H̃ (X1, X2) ≤ 0,

hold for every X1 ∈ [0,+∞).

Proof. For every X1 ∈ R+, one has

H̃ (X) =
1

π

∫
R+

Z1

X1

∫
R

log

(
1 +

4X1Z1

|X − Z|2

)
1(

(1 + Z1)
2 + Z2

2

)2dZ2dZ1.
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Hence defining

f (Z2) = log

(
1 +

4X1Z1

(X1 − Z1)
2 + Z2

2

)
,

g (Z2) =
1(

(1 + Z1)
2 + Z2

2

)2 ,
we can write∫

R
log

(
1 +

4X1Z1

|X − Z|2

)
1(

(1 + Z1)
2 + Z2

2

)2dZ2 =

∫
R
f (Z2 −X2) g (Z2) dZ2.

Applying Proposition 6.3.1 one gets that the function H̃ is decreasing for X2 positive
and increasing for X2 negative for every X1 ∈ R+. The claim follows using the
regularity of the function. The case X1 = 0 goes similarly by proceeding to the
limit. �

0

Figure 6.3: Illustration of Corollary 6.3.2; the arrows denote some increasing directions
of X 7→ H̃(X).

Back in the disk

Using the properties of conformal mapping, see [15, Sect. III.3], from the increasing
direction of H̃ we get an increasing direction of H (x, e1) . The lines h−1 ({X1 = k1}) ,
varying k1 in R+, are circles inside the disk which are tangent to ∂B in (1, 0) and that
are orthogonal to the hyperbolic geodesic in B through e1. Hence, we have for every
(x1, x2) that the function H is increasing in the direction

v(x1,x2) =

(
−x2,

2x1 − x2
1 − 1 + x2

2

2 (1− x1)

)
, if x2 > 0, (6.3.4)

and in the −v(x1,x2)–direction, if x2 < 0. In particular we obtain that

x2
∂

∂θ
H (x, e1) := x2

(
−x2

∂

∂x1

+ x1
∂

∂x2

)
H (x, e1) ≥ 0 when |x| = 1. (6.3.5)
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e0

x 7→ H(x, e)

Figure 6.4: The result of Corollary 6.3.2 transformed back to the disk; arrows denote
increasing directions of x 7→ H(x, e).

Here we write x1 = |x| cos θ and x2 = |x| sin θ.
Collecting together the result of [37] with what just shown Theorem 6.1.1 follows for

y fixed at the boundary in the two-dimensional case. Before proceeding with the study
of the function H with both points in the interior we will prove that x2

∂
∂θ
H(x, e1) ≥ 0

holds in B. This result will be used in the next step of the proof.

Since we will proceed through properties of the differential equation for H let us
fix the following formula.

Lemma 6.3.3. For a, b ∈ C2 with b 6= 0 the following identity holds

−∆
(a
b

)
− 2
∇b
b
· ∇
(a
b

)
+
−∆b

b

(a
b

)
=
−∆a

b
.

Having e1 ∈ ∂B one finds −∆KB(x, e1) = 0 and that

−∆

(∫
B

GB(x, z)KB(z, e1)dz

)
= KB(x, e1) in B.

These equations together with Lemma 6.3.3 give that the function H satisfies:

−∆H (x, e1)− 2
∇KB (x, e1)

KB (x, e1)
· ∇H (x, e1) = 1 when x ∈ B.

Let us consider the derivative with respect to the angle ∂
∂θ
H. We first observe that

since ∂
∂θ

= x1
∂
∂x2
− x2

∂
∂x1
, for every f sufficiently regular it holds

∇ ∂

∂θ
f = ∇

((
x1

∂

∂x2

− x2
∂

∂x1

)
f

)
=

(
R+

∂

∂θ

)
∇f,

with R =

(
0 1
−1 0

)
. Since ∂

∂θ
and ∆ commute and since R is skew-symmetric, one

obtains that ∂
∂θ
H (x, e1) satisfies the partial differential equation

−∆
∂

∂θ
H − 2∇ log(KB) · ∇ ∂

∂θ
H = − ∂

∂θ
∆H − 2

∇KB

KB

·
(
R+

∂

∂θ

)
∇H =
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=
∂

∂θ

(
−∆H − 2

∇KB

KB

· ∇H
)

+ 2

(
∂

∂θ

∇KB

KB

)
· ∇H − 2

∇KB

KB

· R∇H

= 0 + 2

((
∂

∂θ
+R

)
∇ logKB

)
· ∇H

= 2

(
∇ ∂

∂θ
logKB

)
· ∇H.

We now look at which boundary conditions ∂
∂θ
H(x, e1) satisfies in B+ where

B+ := {x ∈ B : x2 > 0} .

By the symmetry one observes that ∂
∂θ
H(x, e1) = 0 in {x ∈ B : x2 = 0}. Furthermore

it follows from (6.3.5) that ∂
∂θ
H(x, e1) ≥ 0 in {x ∈ ∂B : x2 > 0}. A priori one knows

that x 7→ ∂
∂θ
H (x, e1) is in C2(B+)∩C(B̄+\{e1}) and only the behavior near e1 remains

to be studied. Using the explicit formula of H(x, e1) given by (6.3.1), we will prove
the following:

Lemma 6.3.4. The function H(x, e1) satisfies lim
x→e1,
x∈B+

∂
∂θ
H(x, e1) = 0.

Proof. Since ∂
∂θ

= i
(
x ∂
∂x
− x̄ ∂

∂x̄

)
, one gets

∂

∂θ
H (x, e1) = i

(1− x̄)

4

(
log (1− x) +

x

x̄
log (1− x̄) + x

)
−i(1− x) (1− x̄)

4

(
− log (1− x)

x
− 1

1− x

)
−i(1− x)

4

(
x̄

x
log (1− x) + log (1− x̄) + x̄

)
+i

(1− x) (1− x̄)

4

(
− log (1− x̄)

x̄
− 1

1− x̄

)

= i
log (1− x)

4x
(1− 2x̄ + xx̄)− i log (1− x̄)

4x̄
(1− 2x + xx̄)− i x̄− x

2
.

One observes that

lim
x→e1,
x∈B+

∂

∂θ
H (x, e1) = 0.

�
Hence ∂

∂θ
H (·, e1) ∈ C2(B) ∩ C(B̄) and ∂

∂θ
H (·, e1) satisfies the following boundary

value problem
−∆

∂

∂θ
H − 2

∇KB

KB

· ∇ ∂

∂θ
H = 2∇ ∂

∂θ
logKB · ∇H in B+,

∂

∂θ
H ≥ 0 on ∂B+.

(6.3.6)



150 Chapter 6. Brownian motion on the ball in Rn

e0

x 7→ H(x, e1)

Figure 6.5: For y = e1 ∈ ∂B the function x 7→ H(x, y) is increasing along semicircles
to the left.

Proposition 6.3.5. The inequality x2
∂

∂θ
H (x, e1) ≥ 0 holds for all x ∈ B.

Proof. Since KB (x, e1) =
1− |x|2

|x− e1|2
we have

∂

∂θ
logKB = −

∂
∂θ
|x− e1|2

|x− e1|2
= −

(
x1

∂
∂x2
− x2

∂
∂x1

) (
(x1 − 1)2 + x2

2

)
|x− e1|2

= 2
x2 (x1 − 1)− x1x2

|x− e1|2
=
−2x2

|x− e1|2
,

and

∇ ∂

∂θ
logKB = ∇

(
−2x2

|x− e1|2

)
=

−2

|x− e1|2
(0, 1) +

2x2

|x− e1|4
(2 (x1 − 1) , 2x2)

=
2

|x− e1|4
(
2x2 (x1 − 1) , 2x2

2 − |x− e1|
2)

= 2

(
2x2 (x1 − 1) , x2

2 − (x1 − 1)2)
|x− e1|4

=
4 (1− x1)

|x− e1|4

(
−x2,

2x1 − x2
1 − 1 + x2

2

2 (1− x1)

)
.

We see that∇ ∂
∂θ

logKB (x1, x2) has the direction of v(x1,x2) as defined in (6.3.4) . Hence
the term

∇ ∂

∂θ
logKB · ∇H,

is non-negative. Applying Theorem 6.2.4 to (6.3.6) the claim follows. �



6.3. In dimension two 151

6.3.2 The proof for both points in the interior

We consider now y in the interior. Without loss of generality we may suppose that
y = (−s, 0) with s ∈ (0, 1). The case s = 0 gives the radial symmetric case which has
been considered previously by Caristi and Mitidieri in [19].

In order to prove Theorem 6.1.1 in this case it is convenient to consider a conformal
transformation ks from the disk onto the disk that maps y into 0:

ks (x) =
x + s

1 + sx
.

Proceeding as before we will now study the function

Hs (x) := H
(
k−1
s (x),k−1

s (0)
)
,

which due to the behaviour of conformal mappings transforms into

Hs (x) =

∫
B

GB (x, z)GB (z, 0)

GB (x, 0)

∣∣∣(k−1
s

)′
(z1 + iz2)

∣∣∣2 dz1dz2.

We have k−1
s (z) = z−s

1−sz and
∣∣(k−1

s )
′
(z1 + iz2)

∣∣2 =
(1−s2)

2

|e1−sz|4
, hence

Hs (x) =

∫
B

GB (x, z)GB (z, 0)

GB (x, 0)

(1− s2)
2

|e− sz|4
dz1dz2.

Once again using Lemma 6.3.3 and since x · ∇ = r ∂
∂r

one finds that the function Hs

satisfies for x 6= 0

−∆Hs (x) +
2

r |log r|
∂

∂r
Hs (x) =

(1− s2)
2

|e1 − sx|4
. (6.3.7)

The fact that the function H(., y) is increasing along the hyperbolic geodesic
through y is equivalent with the fact that the function Hs(x) is radially increasing. On
the other hand, increasing along trajectories orthogonal to the hyperbolic geodesic for
the function H(., y) means that the function Hs(x) is tangentially decreasing. Thanks
to this observation in order to prove Theorem 6.1.1 for both points in the interior it
is sufficient to prove that Hs(x) is tangentially decreasing and radially increasing.

Tangential directions

Let us first fix x at the boundary and consider H (x, y) . Let Cs = {y : |y| = s} .
From the previous section it follows that the maximum of H (x, ·) in Cs is attained
in y = −sx. This is equivalent to ask for y = (−s, 0) that x = (1, 0) . So using the
symmetry of the problem we can say that

x2
∂

∂θ
H (x, (−s, 0)) ≤ 0 when x ∈ ∂B,



152 Chapter 6. Brownian motion on the ball in Rn

y 0

x 7→ H(x, y)

y

x 7→ Hs(x)

Figure 6.6: Using the symmetry between x and y we may conclude that for any y ∈ B,
the function x 7→ H(x, y) (left) is increasing along ∂B from the nearest boundary
point of y to the most distant boundary point. Putting y = (−s, 0) with s > 0 it means
increasing to the right along ∂B. Also the function x 7→ Hs(x) (right) is increasing to
the right along ∂B.

or equivalently

x2
∂

∂θ
Hs(x) ≤ 0 when x ∈ ∂B. (6.3.8)

Proposition 6.3.6. The inequality x2
∂
∂θ
Hs (x) ≤ 0 holds for all x ∈ B.

Proof. By symmetry one may assume x ∈ B+. We consider the function Θ (x) :=
∂
∂θ
Hs (x) or to be more specific

Θ (x) = x1
∂

∂x2

Hs (x)− x2
∂

∂x1

Hs (x) .

Since ∆ and ∂
∂θ

commute, one finds

−∆Θ (x) = − ∂

∂θ
∆Hs (x) =

∂

∂θ

[
− 2

r| log r|
∂

∂r
Hs (x) +

(1− s2)
2

|e− sx|4

]

= − 2

r| log r|
∂

∂r
Θ (x)− 4

(1− s2)
2

|e− sx|6
sx2.

A priori Θ ∈ C2(B̄ \ {0}) holds and only the behavior of Θ in 0 remains to be
studied. We have

∂

∂θ
Hs(x) =

1

GB(x, 0)

∂

∂θ
R(x),

where R(x) satisfies {
−∆R (x) = − (1−s2)

2

4π|e−sx|4 log |x|2 in B,

R (x) = 0 on ∂B.
(6.3.9)
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Since the right hand side of (6.3.9) is in Lp(B) for every p ∈ (1,+∞), one gets
R ∈ W 2,p(B) and hence, using the Sobolev imbedding theorem it follows that

R ∈ C1,α(B̄) for every α ∈ (0, 1). (6.3.10)

Setting Ω = B 1
2
(0), we have ∂

∂θ
R and G−1

B (·, 0) ∈ C(Ω̄) (where we extend G−1
B (·, 0) in

0 by 0). Hence Θ ∈ C2(B+) ∩ C0(B̄+).

Using (6.3.8) and the fact that Hs is symmetric in x2 = 0, we find that Θ(x) ≤ 0
on ∂B+. We may summarize: −∆Θ (x) +

2

r| log r|
∂

∂r
Θ (x) = −4

(1− s2)
2

|e− sx|6
sx2 in B+,

Θ (x) ≤ 0 on ∂B+.

The claim follows applying the maximum principle, see Theorem 6.2.4. �

y

x 7→ Hs(x)

Figure 6.7: A conformal mapping changed H(x, y) to Hs(x) and put y in the center.
By Proposition 6.3.6 the mapping x 7→ Hs(x) is increasing to the right along all
semicircles around 0.

The fact that the function H(., y) is increasing along trajectories orthogonal to the
hyperbolic geodesic through y in increasing Euclidean distance from y follows directly
from Proposition 6.3.6

Radial directions

In order to show that the maximum of Hs(x) is attained at the boundary it would be
sufficient to show that the function Hs (x1, 0) is increasing on the interval (0, 1). As
already said, we will prove something more, that is, the function Hs is increasing in
radial direction. The radial directions are the images through the mapping ks of the
hyperbolic geodesics through y. Theorem 6.1.1 will directly follow from this result and
Proposition 6.3.6.

The major tool of the proof is the maximum principle. First we will show that the
function Hs satisfies a zero Neumann boundary condition:
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Lemma 6.3.7. The identity ∂
∂r
Hs (x) = 0 holds for all x ∈ ∂B.

Proof. We write

Hs (x) =
R (x)

GB (x, 0)
,

with R (x) =
∫
B
GB (x, z)GB (z, 0)

(1−s2)
2

|e−sz|4 dz1dz2 and observe that R (x) = GB (x, 0) =

0 for x ∈ ∂B. Moreover

−∆R (x) = GB (x, 0)
(1− s2)

2

|e− sx|4
and −∆GB (x, 0) = 0 for x 6= 0, x ∈ B.

Since −∆ = − ∂2

∂r2
− 1

r
∂
∂r
− 1

r2
∂2

∂2φ
, we find that at the boundary

− ∂2

∂r2
R (x) =

∂

∂r
R (x) ,

− ∂2

∂r2
GB (x, 0) =

∂

∂r
GB (x, 0) .

(6.3.11)

Using the series expansion near the boundary for R (x) and GB (x, 0), we get for
x ∈ ∂B:

lim
B3ξ→x

∂

∂r
Hs (ξ) = lim

B3ξ→x

∂
∂r
GB (ξ, 0)

GB (ξ, 0)

(
∂
∂r
R (ξ)

∂
∂r
GB (ξ, 0)

− R (ξ)

GB (ξ, 0)

)

= lim
B3ξ→x

1
|ξ|−1

(
∂
∂r
R(x)+(|ξ|−1) ∂2

∂r2R(x)+..

∂
∂r
GB(x,0)+(|ξ|−1) ∂2

∂r2GB(x,0)+..
−

∂
∂r
R(x)+

|ξ|−1
2

∂2

∂r2R(x)+..

∂
∂r
GB(x,0)+

|ξ|−1
2

∂2

∂r2GB(x,0)+..

)
=

1

2

∂2

∂r2
R (x) ∂

∂r
GB (x, 0)− ∂2

∂r2
GB (x, 0) ∂

∂r
R (x)(

∂
∂r
GB (x, 0)

)2 ,

which is zero by using (6.3.11). �

Proposition 6.3.8. The inequality r
∂

∂r
Hs(x) ≥ 0 holds for all x ∈ B.

Proof. By 6.3.7 we know that the function Hs satisfies

−∆Hs (x) =
(1− s2)

2

|e− sx|4
+

4

|x|2
(
log |x|2

)x · ∇Hs (x) . (6.3.12)

Let us define Ξ (x) := r ∂
∂r
Hs (x) = x · ∇Hs (x). One has

−∆Ξ (x) = −2∆Hs (x)− x1
∂

∂x1

∆Hs (x)− x2
∂

∂x2

∆Hs (x) = . . . ,
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y

x 7→ Hs(x)

Figure 6.8: A conformal mapping changed H(x, y) to Hs(x) and, roughly spoken, put
y in the center. Here is the result from Proposition 6.3.8: the function x 7→ Hs(x)
is radially increasing. The combination with Figure 6.7 and the inverse conformal
mapping lead to the picture on the left of Figure 6.1.

and by (6.3.12)

. . . = 2
(1− s2)

2

|e− sx|4
+

8

|x|2
(
log |x|2

)x · ∇Hs (x) +

+x · ∇

(
(1− s2)

2

|e− sx|4
+

4

|x|2
(
log |x|2

)x · ∇Hs (x)

)

= 2
(1− s2)

2

|e− sx|4
+

8

|x|2
(
log |x|2

)Ξ (x) + 4sx1
(1− s2)

2

|e− sx|6
(1− sx1)

+
4x1

|x|2
(
log |x|2

) ∂

∂x1

Ξ (x)− 8x2
1

|x|4
(
log |x|2

)Ξ (x)− 8x2
1

|x|4
(
log2 |x|2

)Ξ (x)

− 4s2x2
2

(1− s2)
2

|e− sx|6
+

4x2

|x|2
(
log |x|2

) ∂

∂x2

Ξ (x)

− 8x2
2

|x|4 log |x|2
Ξ (x)− 8x2

2

|x|4
(
log2 |x|2

)Ξ (x) ,

that gives

−∆Ξ (x)− 4x · ∇Ξ (x)

|x|2 log |x|2
+

8Ξ (x)

|x|2
(
log2 |x|2

) = 2
(1− s2)

2

|e− sx|4

(
1− s|x|2

|e− sx|2

)
. (6.3.13)

One sees that the right hand side of (6.3.13) is non-negative. Furthermore, since

Ξ(x) =
r

GB(x, 0)

∂

∂r
R(x)− R(x)

(GB(x, 0))2 r
∂

∂r
GB(x, 0),
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with R ∈ C1,α(B̄) (from (6.3.10)), one has that Ξ(0) = 0 and that Ξ is continuous in B.
With help of the preceding Lemma 6.3.7 we get that Ξ ∈ C0(B̄). Hence, summarizing
we have −∆Ξ (x)− 4

|x|2 log |x|2
x · ∇Ξ (x) +

8Ξ (x)

|x|2
(
log2 |x|2

) ≥ 0 in B \ {0},

Ξ (x) = 0 on ∂B ∪ {0}.

The maximum principle stated in Theorem 6.2.4 finally yields Ξ ≥ 0 in B. �

6.4 In dimensions larger than two

The explicit expression for the Green function in the unit ball in Rn, n ≥ 3, is for
x, y ∈ B,

GB(x, y) =

 1
n(n−2)ωn

(
|x− y|2−n −

∣∣∣x |y| − y
|y|

∣∣∣2−n) for y 6= 0,

1
n(n−2)ωn

(
|x|2−n − 1

)
for y = 0,

where ωn = 2π
n
2

nΓ(n
2
)

is the volume of B.

While the Poisson kernel is given by for x ∈ ∂B and y ∈ B

KB(x, y) :=
1

nωn

1− |y|2

|x− y|n
.

In this section we prove Theorem 6.1.1 for the ball in Rn, n ≥ 3. The method
used for the proof is similar to the one used in the two-dimensional case (see [22])
but, to a certain extent, simpler. We look at the differential boundary value problem
that the function satisfies and then apply the maximum principle. Compared with the
two-dimensional case the proof here is somewhat simplified since, in some cases, we are
able to determine the sign of the functions via a geometrical reasoning. In the present
setting we have also to study the case x 7→ HΩ(x, y) for y fixed at the boundary since
a result as the one in [37] is not available in dimensions n ≥ 3.

In the following ei for i = 1, . . . , n denotes the canonical basis for Rn.

6.4.1 One point fixed at the boundary

In this section we study the function x 7→ H(x, y) with y ∈ ∂B. Without loss of
generality, we can fix y = e1.

Transformation to the half n-space

Instead of studying the problem in the ball it is convenient to consider a transformation
to the half n-space. We consider a (anti-)conformal map ϕ from S := R+ ×Rn−1, the
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half n-space, onto B that maps 0 into −e1 and e1 into 0 given by

ϕ(X1, X2, .., Xn) = e1 − 2
QX + e1

|X + e1|2
, (6.4.1)

where Q11 = 1, Qii = −1 for i = 2, . . . , n and Qij = 0 for i, j = 1, . . . , n and i 6= j.
The map ϕ is conformal if the dimension n is even, is anti-conformal if the dimension
n is odd.

In the following, to avoid ambiguity in the notation, we denote with capital letters
the coordinates on the half n-space.

Using the (anti-)conformal transformation ϕ, we can write

H(x, e1) =

∫
B

KB(e1, z)GB(z, x)

KB(e1, x)
dz

=

∫
S

KB(e1, ϕ(Z))GB(ϕ(Z), x)

KB(e1, x)
Jϕ(Z)dZ,

where Jϕ is the Jacobian of the transformation ϕ. We first compute this Jacobian in
the following lemma.

Lemma 6.4.1. Let ϕ be the (anti-)conformal map defined in (6.4.1). For any n ≥ 3
it holds that

Jϕ(X) =
2n

|X + e1|2n
.

Proof. By the definition of ϕ in (6.4.1) it follows

∂

∂Xj

ϕi(X) = −2
Qei δ

j
i

|X + e1|2
+ 4

(QX + e1)i

|X + e1|4
(X + e1)j,

that gives

(∂jϕi(x))i,j = − 2

|X + e1|2
Q

(
Id − 2

X + e1
|X + e1|

(
X + e1
|X + e1|

)T)
,

using column notation for X + e1. The claim follows directly since the matrix Id −
2 X+e1
|X+e1|

(
X+e1
|X+e1|

)T
defines the reflection in the hyperplane through 0 perpendicular to

X + e1. �

By the definition of the function ϕ and Lemma 6.2.2 we find

H(ϕ(X), e1) =

∫
S

KB(e1, ϕ(Z))GB(ϕ(Z), ϕ(X))

KB(e1, ϕ(X))
Jϕ(Z)dZ

=

∫
S

KB(e1, ϕ(Z))GS(Z,X)

KB(e1, ϕ(X))
(Jϕ(Z)Jϕ(X))

1
n
− 1

2Jϕ(Z)dZ. (6.4.2)
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One may write KB(e1, ϕ(Z)) in terms of Jϕ(Z). Indeed it holds

KB(e1, ϕ(Z)) =
1

nωn

1− |ϕ(Z)|2

|ϕ(Z)− e1|n
=

1

nωn

(
1−

∣∣∣∣e1 − 2
QZ + e1
|QZ + e1|2

∣∣∣∣2
)
|Z + e1|n

2n

=
1

nωn

|Z + e1|n−2

2n−2
Z1 =

1

nωn

1

2
n
2
−1
Jϕ(Z)

1
n
− 1

2Z1.

Hence from (6.4.2) it follows

H(ϕ(X), e1) =

∫
S

Jϕ(Z)
1
n
− 1

2

Jϕ(X)
1
n
− 1

2

Z1

X1

GS(Z,X)(Jϕ(Z)Jϕ(X))
1
n
− 1

2Jϕ(Z)dZ

=
1

n(n− 2)ωn

∫
S

Z1

X1

(
|X − Z|2−n − |X + QZ|2−n

)
Jϕ(Z)

2
ndZ.

For simplicity of notation we define the function H̃ given by

H̃(X) := 1
n(n−2)ωn

∫
S

Z1

X1

(
|X − Z|2−n − |X + QZ|2−n

)
Jϕ(Z)

2
ndZ.

Increasing along the “hyperbolic geodesics” through e1

In the following section we show that the function x 7→ H(x, e1) is increasing along
the “hyperbolic geodesics” through e1. That’s equivalent to prove that the function
H̃(X) is decreasing in the X1 direction. Indeed, the pre-image through the mapping
ϕ, defined in (6.4.1), of a general hyperbolic geodesic in B through e1 is a straight line
in S that intersect the hyperplane {X1 = 0} perpendicularly.

Let H̃X1 denote ∂
∂X1

H̃(X). We proceed studying the differential boundary value

problem that H̃X1 satisfies in order to apply the maximum principle.
Since ∂S is composed of two parts, ∂S = {Z ∈ Rn : Z1 = 0}∪{∞}, we treat those

separately. In the following {Z1 = 0} denotes the hyperplane {Z ∈ Rn : Z1 = 0}.

Lemma 6.4.2. It holds that H̃X1(X) = 0 for X ∈ {X1 = 0} .

Proof. Writing H̃(X) = 1
X1
R̃(X) with

R̃(X) := 1
n(n−2)ωn

∫
S

Z1

(
|X − Z|2−n − |X + QZ|2−n

)
Jϕ(Z)

2
ndZ,

one finds

H̃X1(X) =
1

X1

(
∂

∂X1

R̃(X)− R̃(X)

X1

)
.

We first notice that since R̃(X) = 0 for X ∈ {X1 = 0} and −∆R̃(X) = X1Jϕ(X)
2
n ,

one finds that ∂2

∂X2
1
R̃(X) = 0 on {X1 = 0}. Hence using the series expansion near
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X ∈ {X1 = 0} one has

lim
S3Y→X

H̃X1(Y ) = lim
S3Y→X

1

Y1

(
∂

∂X1

R̃(X) + Y1
∂2

∂X2
1

R̃(X) + ..

· · · − ∂

∂X1

R̃(X)− 1

2
Y1

∂2

∂X2
1

R̃(X) + ..

)
=

1

2

∂2

∂X2
1

R̃(X) = 0.

The claim follows. �

Lemma 6.4.3. It holds that lim|X|→∞ H̃X1(X) = 0.

Proof. Since

H̃X1(X) = − 1
nωn

∫
S

Z1

X1

(
X1 − Z1

|X − Z|n
− X1 + Z1

|X + QZ|n
)

22

|Z + e1|4
dZ

− 1
n(n−2)ωn

∫
S

Z1

X2
1

(
|X − Z|2−n − |X + QZ|2−n

) 22

|Z + e1|4
dZ,

and it holds |X − Z| < |X + QZ|, one has∣∣∣H̃X1(X)
∣∣∣ ≤ 23

nωn

∫
S

Z1

X1

1

|X − Z|n−1

1

|Z + e1|4
dZ

+ 23

n(n−2)ωn

∫
S

Z1

X2
1

1

|X − Z|n−2

1

|Z + e1|4
dZ

≤ 23

nωn

1

X1

∫
S

1

|X − Z|n−1

1

|Z + e1|3
dZ

+ 23

n(n−2)ωn

1

X2
1

∫
S

1

|X − Z|n−2

1

|Z + e1|3
dZ. (6.4.3)

We now proceed studying separately the terms in the right hand side of (6.4.3).
For the first term one finds∫

S

1

|X − Z|n−1

1

|Z + e1|3
dZ =

∫
S∩B |X|

2

(X)

1

|X − Z|n−1

1

|Z + e1|3
dZ +

+

∫
S\B |X|

2

(X),

|Z|<2|X|

1

|X − Z|n−1

1

|Z + e1|3
dZ +

∫
S\B |X|

2

(X),

|Z|>2|X|

1

|X − Z|n−1

1

|Z + e1|3
dZ = . . . .

One observes that |Z + e1| > |Z| ≥ |X|
2

if Z ∈ B |X|
2

(X). While if Z 6∈ B |X|
2

(X) it holds
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|X − Z| > |X|
2

and even more |X − Z| > |Z|
2

if also |Z| > 2 |X|. Hence we get

. . . ≤ 23

|X|3
∫
S∩B |X|

2

(X)

1

|X − Z|n−1dZ +
2n−1

|X|n−1

∫
S,|Z|<2|X|

1

|Z + e1|3
dZ

+2n−1

∫
S,|Z|>2|X|

1

|Z|n−1

1

|Z + e1|3
dZ

≤ C1

|X|2
+

2n−1

|X|n−1

∫
|Z|<2|X|

1

|Z|2
dZ + 2n−1

∫
|Z|>2|X|

1

|Z|n+2dZ

≤ C1

|X|2
+

C2

|X|n−1 |X|
n−2 +

C3

|X|2
,

that goes to zero when |X| goes to infinity.
For the second term proceeding similarly one finds∫

S

1

|X − Z|n−2

1

|Z + e1|3
dZ =

∫
S∩B |X|

2

(X)

1

|X − Z|n−2

1

|Z + e1|3
dZ +

+

∫
S\B |X|

2

(X),

|Z|<2|X|

1

|X − Z|n−2

1

|Z + e1|3
dZ +

∫
S\B |X|

2

(X),

|Z|>2|X|

1

|X − Z|n−2

1

|Z + e1|3
dZ

≤ 23

|X|3

∫
S∩B |X|

2

(X)

1

|X − Z|n−2dZ +
2n−2

|X|n−2

∫
S\B |X|

2

(X),

|Z|<2|X|

1

|Z + e1|3
dZ

+2n−2

∫
S\B |X|

2

(X),

|Z|>2|X|

1

|Z|n−2

1

|Z + e1|3
dZ ≤ C1

|X|
.

The claim follows. �

Proposition 6.4.4. The function H̃(X) is decreasing in the X1 direction.

Proof. Since it holds

−∆H̃(X) = Jϕ(X)
2
n +

2

X1

∂

∂X1

H̃(X),

one gets

−∆H̃X1(X)− 2

X1

∂

∂X1

H̃X1(X) +
2

X2
1

H̃X1(X) =
∂

∂X1

Jϕ(X)
2
n = −24 X1 + 1

|X + e1|6
≤ 0.

Hence the function H̃X1 satisfies −∆H̃X1(X)− 2

X1

∂

∂X1

H̃X1(X) +
2

X2
1

H̃X1(X) ≤ 0 in S,

H̃X1 = 0 on ∂S.
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Applying the maximum principle we find that H̃X1 ≤ 0 on S. �

By the result in the previous proposition and using that the hyperbolic geodesics
are transformed onto hyperbolic geodesics by Möbious transformations, we get the
following.

Corollary 6.4.5. The function x 7→ H(x, e1) is increasing along the “hyperbolic geo-
desics” through e1 in increasing Euclidean distance.

Behavior at the boundary

In this section we study the behavior of x 7→ H(x, e1) on ∂B. Indeed, since by the
result of the previous section we already know that

max
x∈B̄

H(x, e1) = max
x∈∂B

H(x, e1),

it only remains to find the location on ∂B of this maximum. Also in this case it is
convenient to use the transformation ϕ, defined in (6.4.1), and to work in the half
n-space.

Proposition 6.4.6. For any i ∈ {2, . . . , n} it holds that Xi
∂
∂Xi

H̃(X) ≤ 0 on {X1 = 0}.

Proof. We find that for X ∈ {X1 = 0}

H̃(X) =
2

nωn

∫
S

Z2
1

|X − Z|n
Jϕ(Z)

2
ndZ.

Fix i ∈ {2, . . . , n} and X ∈ {X1 = 0}. We have

∂

∂Xi

H̃(X) =
23

ωn

∫
S

Z2
1

|X − Z|n+2

Zi −Xi

|Z + e1|4
dZ. (6.4.4)

We will now determine the sign of the integral in (6.4.4). Let

Sp,i := {Z ∈ S : Zi −Xi > 0} and Sn,i := {Z ∈ S : Zi −Xi < 0} .

Let P ∈ Sp,i and let P ′ the unique element in Sn,i such that: Pj = P ′
j for j ∈ {1, . . . , n}

with j 6= i, and |X − P | = |X − P ′|. By the choice it follows that

P 2
1

|X − P |n+2 (Pi −Xi) = − P ′2
1

|X − P ′|n+2 (P ′
i −Xi).

We notice that the term

P 2
1

|X − P |n+2

Pi −Xi

|P + e1|4
+

P ′2
1

|X − P ′|n+2

P ′
i −Xi

|P ′ + e1|4
,
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r−e1
rX

Sp,i

Sn,i

rP

r
P ′

��������

PPPPPPPP

-

Z1

6Zi

Figure 6.9: The sets Sp,i, Sn,i and the distance to −e1.

is positive if X2 < 0, is negative if X2 > 0 and is zero if X2 = 0. This follows from the
observation that

|P ′ + e1| > |P + e1| if X2 < 0,

|P ′ + e1| = |P + e1| if X2 = 0,

|P ′ + e1| < |P + e1| if X2 > 0,

(see Figure 6.9).
The claim follows repeating the same reasoning for every P ∈ Sp,i and for every

i ∈ {2, . . . , n} . �

Corollary 6.4.7. The function X 7→ H̃(X) for X ∈ S̄ attains its maximum in X = ~0.

By the result of the previous corollary it directly follows that the maximum of
H(x, e1) is attained at x = −e1.

Orthogonal trajectories

In order to prove Theorem 6.1.1 it remains to show that H(x, e1) is increasing, in
increasing Euclidean distance from e1, along a family of trajectories that are orthogonal
to the hyperbolic geodesic through e1. This result will follow from the proof that the
function H̃(X) satisfies

Xi
∂

∂Xi

H̃(X) ≤ 0 in S for every i = 2, . . . , n. (6.4.5)

Indeed, by definition of hyperbolic geodesics in B ⊂ Rn and by symmetry it is sufficient
to consider a family of hyperbolic geodesic through e1 belonging to a unit disk D in
B. Notice that the origin belongs to D. The pre-image via ϕ of this disk D in the half
n-space is a plane Π to which the half-axes {X2 = · · · = Xn = 0} belongs and that is
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generated by e1 and by a unitary vector v ∈ Rn orthogonal to e1. The pre-image via
ϕ of the hyperbolic geodesics through e1 are the lines in the plane Π with directions
e1 and the pre-image of the orthogonal trajectories are the lines in Π parallel to v. A
general line l(t) in Π parallel to v has equation

l(t) = vt+ k1e1 for t ∈ R and a fixed k1 > 0.

The fact that H(., e1) is increasing along trajectories orthogonal to the hyperbolic
geodesic is equivalent to t d

dt
H̃(l(t)) ≤ 0 and this will follow directly from (6.4.5).

We now prove (6.4.5) in the next proposition using the method of Proposition 6.4.6.

Proposition 6.4.8. For any i ∈ {2, . . . , n} and every X ∈ S the following holds true

Xi
∂

∂Xi

H̃(X) ≤ 0.

Proof. Let fix i ∈ {2, . . . , n} and X ∈ S. Starting from the explicit expression of
H̃(X) one finds

Xi
∂

∂Xi

H̃(X) = 1
nωn

Xi

X1

∫
S

Z1(Zi −Xi)
(
|X − Z|−n − |X + QZ|−n

) 22

|Z + e1|4
dZ.

(6.4.6)
We recall that |X − Z|−n > |X +QZ|−n.

In order to determine the sign of the integral in (6.4.6) we set

Sp,i := {Z ∈ S : Zi −Xi > 0} and Sn,i := {Z ∈ S : Zi −Xi < 0} .

Let P ∈ Sp,i and let P ′ the unique element in Sn,i such that: Pj = P ′
j for j ∈ {1, . . . , n}

with j 6= i, and |X − P | = |X − P ′|. By the choice it follows that

(Pi −Xi)
(
|X − P |−n − |X + QP |−n

)
= −(P ′

i −X ′
i)
(
|X − P ′|−n − |X + QP ′|−n

)
.

The claim follows proceeding as in the proof of Proposition 6.4.6. �

Theorem 6.1.1 for y fixed at the boundary and in dimension n ≥ 3 follows directly
from Propositions 6.4.4 and 6.4.8.

6.4.2 One point fixed in the interior

In the following section we study the function x 7→ H(x, y) with y fixed in B. Without
loss of generality, we can fix y = −se1 with s ∈ (0, 1) and e1 = (1, 0, .., 0) ∈ Rn.
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Transformation to the center

Instead of studying directly the function x 7→ H(x,−se1) it is convenient to consider
a transformation. We consider a (anti-)conformal map hs from B onto B that maps 0
into y = −se1 and e1 into e1 given by

hs(x1, x2, .., xn) =
(Id + s2Q)x

|sx− e1|2
− s 1 + |x|2

|sx− e1|2
e1

= −1

s
e1 −

1− s2

s

sQx− e1
|sx− e1|2

,

(6.4.7)

where Q11 = 1, Qii = −1 for i = 2, . . . , n and Qij = 0 for i, j = 1, . . . , n and i 6= j.
Notice that hs is conformal if the dimension n is even, is anti-conformal if the dimension
n is odd. One can also see hs as the combination of the following mappings

x 7−→ Qx− 1
s
e1 7−→

Qx− 1
s
e1

|Qx− 1
s
e1|2
7−→ −1−s2

s
sQx−e1
|sx−e1|2

7−→ −1
s
e1 − 1−s2

s
sQx−e1
|sx−e1|2

.

Using the (anti-)conformal transformation hs, we can write

H(x̃, y) =

∫
B

GB(x̃, z)GB(z, y)

GB(x̃, y)
dz

=

∫
B

GB(x̃, hs(z
′))GB(hs(z

′), y)

GB(x̃, y)
Jhs(z

′)dz′,

where Jhs is the Jacobian of the transformation hs. We now compute Jhs in the fol-
lowing lemma.

Lemma 6.4.9. Let hs the (anti-)conformal map defined in (6.4.7). For any n ≥ 3 it
holds that

Jhs(x) =
(1− s2)n

|sx− e1|2n
.

Proof. The proof is similar to the one of Lemma 6.4.1. One uses that by the definition
of hs in (6.4.7) it holds

(∂jhs,i(x))i,j = − (1− s2)

|sx− e1|2
Q

(
Id − 2

sx− e1
|sx− e1|

(
sx− e1
|sx− e1|

)T)
,

using column notation for sx− e1. �

By the definition of the function hs and Lemma 6.2.2 we find

H(hs(x), hs(0)) =

∫
B

GB(hs(x), hs(z
′))GB(hs(z

′), hs(0))

GB(hs(x), hs(0))
Jhs(z

′)dz′ (6.4.8)

=

∫
B

GB(x, z′)GB(z′, 0)

GB(x, 0)
J

2
n
hs

(z′)dz′.



6.4. In dimensions larger than two 165

For simplicity of notation we define on B the function Hs given by

Hs(x) :=

∫
B

GB(x, z)GB(z, 0)

GB(x, 0)
J

2
n
hs

(z)dz.

Using again Lemma 6.3.3 one sees that the function Hs satisfies in B\{0} the equation

−∆xH
s(x)− 2

∇xGB(x, 0)

GB(x, 0)
· ∇xH

s(x) = J
2
n
hs

(x),

that we can rewrite as

−∆xH
s(x) = 2(2− n)

|x|−n

|x|2−n − 1
x · ∇xH

s(x) + J
2
n
hs

(x), (6.4.9)

using the explicit formula of the Green function.

The radial direction

In the following section we show that the function Hs is increasing in radial direction.
The method consists in studying the differential boundary value problem that ∂

∂r
Hs

satisfies and then apply the maximum principle.
We first prove that Hs satisfies zero Neumann boundary condition.

Lemma 6.4.10. Let s ∈ (0, 1). It holds that ∂
∂r
Hs(x) = 0 for every x ∈ ∂B.

Proof. Let Rs(x) denote the numerator of Hs(x); that is

Rs(x) :=

∫
B

GB(x, z)GB(z, 0)J
2
n
hs

(z)dz. (6.4.10)

One has that Rs(x) = 0 for x ∈ ∂B and that it holds

−∆Rs(x) = GB(x, 0)J
2
n
hs

(x).

Since −∆ = −r1−n ∂
∂r

(
rn−1 ∂

∂r

)
− r−2∆Γ where ∆Γ is the Laplace-Beltrami operator on

the surface of the unit ball, we find that at the boundary

∂
∂r2
Rs(x) = −(n− 1) ∂

∂r
Rs(x),

∂
∂r2
GB(x, 0) = −(n− 1) ∂

∂r
GB(x, 0).

(6.4.11)

Hence from the series expansion near the boundary of Rs(·) and GB(·, 0) one gets
for x ∈ ∂B

lim
B3ξ→x

∂

∂r
Hs(ξ) = lim

B3ξ→x

∂
∂r
GB(ξ, 0)

GB(ξ, 0)

(
∂
∂r
Rs(ξ)

∂
∂r
GB(ξ, 0)

− Rs(ξ)

GB(ξ, 0)

)
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= lim
B3ξ→x

(2− n)

|ξ|2−n − 1

(
∂
∂r
Rs(x) + (|ξ| − 1) ∂

2

∂r2
Rs(x) + ..

∂
∂r
GB(x, 0) + (|ξ| − 1) ∂

2

∂r2
GB(x, 0) + ..

−
∂
∂r
Rs(x) + |ξ|−1

2
∂2

∂r2
Rs(x) + ..

∂
∂r
GB(x, 0) + |ξ|−1

2
∂2

∂r2
GB(x, 0) + ..

)

=
1

2

∂2

∂r2
Rs(x) ∂

∂r
GB(x, 0)− ∂

∂r
Rs(x) ∂

2

∂r2
GB(x, 0)(

∂
∂r
GB(x, 0)

)2 . (6.4.12)

The claim follows from (6.4.12) using (6.4.11). �

We now show that r ∂
∂r
Hs(x) is well defined in 0.

Lemma 6.4.11. Let s ∈ (0, 1). Then limx→0 r
∂
∂r
Hs(x) = 0.

Proof. With Rs defined as in (6.4.10) one finds

r
∂

∂r
Hs(x) = x.∇Hs(x) =

x

GB(x, 0)
.∇Rs(x)− Rs(x)

GB(x, 0)

x

GB(x, 0)
.∇GB(x, 0). (6.4.13)

Since
x

GB(x, 0)
.∇GB(x, 0) =

(2− n) |x|2−n

|x|2−n − 1
=

2− n
1− |x|n−2 ,

and since from Lemma 6.4.9 and [69, Sec.5] (see Remark 6.4.12) it follows that

Rs(x)

GB(x, 0)
≤ (1− s2)2

(s− 1)4

1

GB(x, 0)

∫
B

GB(x, z)GB(z, 0)dz ≤ (1− s2)2

(s− 1)4
cΩ |x| ,

we get

lim
x→0

(
Rs(x)

GB(x, 0)

x

GB(x, 0)
.∇GB(x, 0)

)
= 0.

The other term in (6.4.13) is given by

x

GB(x, 0)
.∇Rs(x) = − 1

nωn

|x|n−2

1− |x|n−2 ·

·x.
∫
B

(
|x− z|−n (x− z)−

∣∣∣x |z| − z
|z|

∣∣∣−n (x |z| − z
|z|) |z|

)(
|z|2−n − 1

)
J

2
n
hs

(z)dz.

One sees directly that

lim
x→0

|x|n−2

1− |x|n−2x.

∫
B

∣∣∣x |z| − z
|z|

∣∣∣−n (x |z| − z
|z|) |z| (|z|

2−n − 1)J
2
n
hs

(z)dz = 0.

Hence to show that limx→0
x

GB(x,0)
.∇Rs(x) = 0 it is sufficient to prove that the limit

for x going to 0 of the modulus of

|x|n−2

1− |x|n−2x.

∫
B

|x− z|−n (x− z)(|z|2−n − 1)J
2
n
hs

(z)dz,
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is zero. One has

lim
x→0

|x|n−2

1− |x|n−2

∣∣∣∣x. ∫
B

|x− z|−n (x− z)(|z|2−n − 1)J
2
n
hs

(z)dz

∣∣∣∣
≤ 4

(1− s2)2

(1− s)4
lim
x→0

(
|x|n−1

∫
B

|x− z|1−n |z|2−n dz
)
.

We study separately the integral term. Writing

|x|n−1

∫
B

|x− z|1−n |z|2−n dz = |x|n−1

∫
|z|< |x|

2

|x− z|1−n |z|2−n dz

+ |x|n−1

∫
B\{|z|< |x|

2 }
|x− z|1−n |z|2−n dz = . . . ,

since |x− z| ≥ |x|
2

for |z| < |x|
2

, one finds

· · · ≤ 2n−1

∫
|z|< |x|

2

|z|2−n dz + 2n−2 |x|
∫
B\{|z|< |x|

2 }
|x− z|1−n dz,

that goes to zero for x going to 0. �

Remark 6.4.12. In [68] it is proved that for x, y ∈ Ω it holds

HΩ(x, y) ≤ cΩ

(
ln

CΩ

|x− y|

)−1

for n = 2,

HΩ(x, y) ≤ cΩ |x− y| for n ≥ 3,

HΩ(x, y) ≤ cΩ,ε |x− y|2−ε for n ≥ 4 and ε > 0.

Notice that there is a different behavior for n = 2 and n ≥ 3 but also between the case
n = 3 and n ≥ 4.

Proposition 6.4.13. For every x ∈ B it holds that r ∂
∂r
Hs(x) ≥ 0.

Proof. Let Σ denote r ∂
∂r
Hs(x)(which is equal to x.∇Hs(x)). By definition of Σ and

(6.4.9) one has that

−∆Σ(x) = −2∆xH
s(x)− x.∇∆xH

s(x)

= 4(2− n)
|x|−n

|x|2−n − 1
Σ(x) + 2J

2
n
hs

(x)

+2(2− n)x.∇
(
|x|−n

|x|2−n − 1
Σ(x)

)
+ x.∇J

2
n
hs

(x)

= 4(2− n)
|x|−n

|x|2−n − 1
Σ(x) + 2(2− n)

|x|−n (n− 2|x|2−n)
(|x|2−n − 1)2

Σ(x)

+2(2− n)
|x|−n

|x|2−n − 1
x.∇ (Σ(x)) + 2J

2
n
hs

(x) + x.∇J
2
n
hs

(x).
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Hence Σ satisfies

−∆Σ(x)− 2(2− n)
|x|−n

|x|2−n − 1
x.∇Σ(x) + 2(n− 2)2 |x|−n

(|x|2−n − 1)2
Σ(x)

= 2J
2
n
hs

(x) + x.∇J
2
n
hs

(x), (6.4.14)

and the right hand side in (6.4.14) is positive. Indeed from Lemma 6.4.9 and since
s ∈ (0, 1) it holds for x ∈ B

2J
2
n
hs

(x) + x.∇J
2
n
hs

(x) = (1− s2)2

(
2

|sx− e1|4
+ x.∇ 1

|sx− e1|4

)
= 2(1− s2)2

(
1

|sx− e1|4
− (sx− e1).2sx
|sx− e1|6

)
= −2(1− s2)2 (sx− e1).(sx+ e1)

|sx− e1|6

= 2(1− s2)2 1− s2 |x|2

|sx− e1|6
> 0.

Using the result of Lemmas 6.4.10 and 6.4.11 one finds{
−∆Σ(x)− 2(2− n) |x|−n

|x|2−n−1
x.∇Σ(x) + 2(n− 2)2 |x|−n

(|x|2−n−1)2
Σ(x) ≥ 0 in B \ {0},

Σ(x) = 0 on ∂B ∪ {0} .

The claim follows by the maximum principle. �

Behavior at the boundary

In the previous section we have shown that x 7→ Hs(x) is radially increasing. In order
to find in which point the maximum of Hs(x) is attained it is sufficient to study the
behavior at the boundary of this function.

For x ∈ ∂B one finds

Hs(x) =

∫
B

KB(x, z)GB(z, 0)

KB(x, 0)
J

2
n
hs

(z)dz

= (1−s2)2

n(n−2)ωn

∫
B

1− |z|2

|x− z|n
|z|2−n − 1

|sz − e1|4
dz. (6.4.15)

Lemma 6.4.14. It holds that maxx∈∂BH
s(x) = Hs(e1).

Proof. We first notice that by symmetry it is sufficient to consider x = (x1, x2,~0) with
~0 ∈ Rn−2 and x2

1 + x2
2 = 1. Then in order to see how the function Hs(x) varies when

x belongs to this circumference we consider

∂

∂θ
Hs(x) = −x2

∂

∂x1

Hs(x) + x1
∂

∂x2

Hs(x).
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From (6.4.15) one finds

∂

∂θ
Hs(x) = −(1−s2)2

(n−2)ωn

∫
B

(1− |z|2) |z|
2−n − 1

|sz − e1|4
−x2(x1 − z1) + x1(x2 − z2)

|x− z|n+2 dz

= (1−s2)2

(n−2)ωn

∫
B

(1− |z|2) |z|
2−n − 1

|sz − e1|4
x1z2 − x2z1

|x− z|n+2 dz.

We now study the sign of the integral. Let

Bp := {z ∈ B : x1z2 − x2z1 > 0} and Bn := {z ∈ B : x1z2 − x2z1 < 0} .

One sees that if ξ ∈ Bp then −ξ ∈ Bn and that the intersection of the closure of Bp

and Bn is a hyperplane in Rn going through x and the origin.
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η
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Bnq qη
ξ

Figure 6.10: The sets Bp and Bn for different positions of x.

Let ξ ∈ Bp and let η the unique element in Bn such that: |ξ| = |η|, ξi = ηi for
every i ≥ 3 and |x− ξ| = |x− η|. By the choice it follows that

(1− |ξ|2)(|ξ|2−n − 1)
x1ξ2 − x2ξ1

|x− ξ|n+2 = −(1− |η|2)(|η|2−n − 1)
x1η2 − x2η1

|x− η|n+2 .

We notice that the term

(1− |ξ|2) |ξ|
2−n − 1

|sξ − e1|4
x1ξ2 − x2ξ1

|x− ξ|n+2 + (1− |η|2) |η|
2−n − 1

|sη − e1|4
x1η2 − x2η1

|x− η|n+2 ,

is positive if x2 < 0, is negative if x2 > 0 and is zero if x2 = 0. This follows from the
observation that

s
∣∣ξ − 1

s
e1
∣∣ < s

∣∣η − 1
s
e1
∣∣ if x2 < 0,

s
∣∣ξ − 1

s
e1
∣∣ = s

∣∣η − 1
s
e1
∣∣ if x2 = 0,

s
∣∣ξ − 1

s
e1
∣∣ > s

∣∣η − 1
s
e1
∣∣ if x2 > 0,
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r 1
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Figure 6.11: The distances |η − x|, |ξ − x|, |ξ − 1
s
e1| and |η − 1

s
e1|.

(See Figure 6.11).

Repeating the same reasoning for every ξ ∈ Bp we get that x2
∂
∂θ
Hs(x) ≤ 0 for every

x ∈ ∂B with x = (x1, x2,~0). Hence, by symmetry it follows that supx∈∂BH
s(x) =

Hs(e1). �

Corollary 6.4.15. Let s ∈ (0, 1). The function Hs(x) is radially increasing in B and

max
x∈B̄

Hs(x) = Hs(e1).

Orthogonal trajectories

In this paragraph we show that the function x 7→ H(x, y) is increasing, in increasing
Euclidean distance from y, along trajectories that are orthogonal to the hyperbolic
geodesic through y. As before we fix y = −se1 with s ∈ (0, 1).

By the definition of hyperbolic geodesic in the ball in Rn, n ≥ 3, and since we
are interested to the orthogonal trajectories it is sufficient to work in a generic disk
of radius 1 in B to which 0 and y belong. By symmetries of the ball without loss in
generality we may consider the disk in the x1, x2-plane, that is D := {x ∈ Rn : xi =
0 for i = 3, . . . , n and x2

1 + x2
2 ≤ 1}. The image through h−1

s of this disk D is D itself
with y sent to 0 and e1 sent to e1. Hence the fact that H(., y) is increasing along
trajectories orthogonal to the hyperbolic geodesic through y is equivalent to

∂

∂θ
Hs(x) := x2

(
−x2

∂

∂x1

+ x1
∂

∂x2

)
Hs(x) ≤ 0 for every x ∈ D.

Proposition 6.4.16. The function Hs(x) satisfies ∂
∂θ
Hs(x) ≤ 0 for every x ∈ D.
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Proof. We use the method of Lemma 6.4.14. We have

∂

∂θ
Hs(x) = −(1− s2)2

nωn

∫
B

(
|x− z|−n(−x2(x1 − z1) + x1(x2 − z2))+

−
∣∣∣∣x|z| − z

|z|

∣∣∣∣−n(−x2

(
x1|z| −

z1

|z|

)
+ x1

(
x2|z| −

z2

|z|

)))
·

· |z|
2−n − 1

|x|2−n − 1

1

|sz − e1|4
dz

=
(1− s2)2

nωn

∫
B

(z2x1 − x2z1)

(
|x− z|−n −

∣∣∣∣x|z| − z

|z|

∣∣∣∣−n 1

|z|

)
·

· |z|
2−n − 1

|x|2−n − 1

1

|sz − e1|4
dz.

We now study the sign of the integral. Let

Bp := {z ∈ B : x1z2 − x2z1 > 0} and Bn := {z ∈ B : x1z2 − x2z1 < 0} .

Let ξ ∈ Bp and let η the unique element in Bn such that: |ξ| = |η|, ξi = ηi for every
i ≥ 3 and |x− ξ| = |x− η|. By the choice it follows that

(ξ2x1 − x2ξ1)

(
|x− ξ|−n −

∣∣∣∣x|ξ| − ξ

|ξ|

∣∣∣∣−n 1

|ξ|

)
|ξ|2−n − 1

|x|2−n − 1
=

= −(η2x1 − x2η1)

(
|x− η|−n −

∣∣∣∣x|η| − η

|η|

∣∣∣∣−n 1

|η|

)
|η|2−n − 1

|x|2−n − 1
.

The claim follows proceeding as in Lemma 6.4.14. �
Theorem 6.1.1 follows from Proposition 6.4.13 and Proposition 6.4.16.

6.5 Relation with the eigenvalues

6.5.1 Previous results

In [50] the authors show that there exists a relation between the inverse of λc(Ω),
defined in (6.1.3), and the Dirichlet eigenvalues for two choices of Ω : Ω = [0, 1] ⊂ R
(see also [67]) and Ω the unit disk. In an interval I = [0, 1] ⊂ R the following identities
hold

1

λc(I)
=

∞∑
m=1

1

λm
= 2

∞∑
m=1

(−1)m−1

λm
,

with λm = π2m2, m ∈ N. For the disk D it holds

1

λc(D)
= 4

∞∑
m=0

(−1)m−1
∞∑
i=1

νm,i
λm,i

, (6.5.1)
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where ν0,i = 1 and νm,i = 2 for m ≥ 1. The eigenvalue λm,i corresponds to the
eigenfunction with i− 1 circular nodal lines and m radial nodal lines.

We are now able to give an explanation to identity (6.5.1). A complete orthonormal
set of eigenfunctions for (6.1.1) on the disk is given by, writing x = reiϕ:

ϕ0,i(x) =
1√
2π

J0(j0,ir)
1√
2
|J ′0(j0,i)|

for i ∈ N,

ϕe,m,i(x) =
cos(mϕ)√

π

Jm(jm,ir)
1√
2
|J ′m(jm,i)|

for m, i ∈ N,

ϕo,m,i(x) =
sin(mϕ)√

π

Jm(jm,ir)
1√
2
|J ′m(jm,i)|

for m, i ∈ N,

with eigenvalues

λ0,i = j2
0,i and λe,m,i = λo,m,i = j2

m,i for i,m ∈ N.

Here, as usual, Jm denotes the m-th Bessel function of the first kind and jm,i denotes
the i-th zero of Jm. For the normalization of the Bessel function see [74, 5.11 (11)].
By orthonormality one finds

1

λc(D)
= sup

x,y∈D

1

GD(x, y)

[
∞∑
i=1

1

j4
0,i

J0(j0,ir)J0(j0,iρ)

πJ ′20 (j0,i)
+

+
∞∑
m=1

1

π
(cos(mϕ) cos(mϕ′) + sin(mϕ) sin(mϕ′))

∞∑
i=1

2

j4
m,i

Jm(jm,ir)Jm(jm,iρ)

J ′2m(jm,i)

]

= lim
x→e1,
y→−e1

1

πGD(x, y)

[
∞∑
i=1

1

j4
0,i

J0(j0,ir)J0(j0,iρ)

J ′20 (j0,i)
+

+ 2
∞∑
m=1

1

π
(cos(mϕ) cos(mϕ′) + sin(mϕ) sin(mϕ′))

∞∑
i=1

1

j4
m,i

Jm(jm,ir)Jm(jm,iρ)

J ′2m(jm,i)

]
= . . . .

Differentiating with respect to ρ and computing for y = −e1, we get

. . . = lim
x→e1

1

πKD(x,−e1)

[
∞∑
i=1

1

j3
0,i

J0(j0,ir)

J ′0(j0,i)

+2
∞∑
m=1

(−1)m cos(mϕ)
∞∑
i=1

1

j3
m,i

Jm(jm,ir)

J ′m(jm,i)

]
= . . . ,

and differentiating with respect to r and computing for x = e1

· · · = 1

π

∑∞
i=1

1
j20,i

+ 2
∑∞

m=1(−1)m
∑∞

i=1
1

j2m,i

1
4π

= 4

(
∞∑
i=1

1

j2
0,i

+ 2
∞∑
m=1

(−1)m
∞∑
i=1

1

j2
m,i

)
.
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In [50] the numbers νm,i in (6.5.1) were interpreted as the multiplicity of the eigen-
value λm,i, since it holds ν0,i = 1 and νm,i = 2 for m ≥ 1. Instead, from the derivation
of the formula it seems that what plays a role is the different normalization of the
eigenfunctions.

6.5.2 The identity for the critical value

We will now show that an identity holds also between λ−1
c (B) and a sum of Dirichlet

eigenvalues when B is the unit ball in R3. We first compute the value of λ−1
c (B) for

B ⊂ Rn with n ≥ 3. By Theorem 6.1.1 and (6.1.9) one has that it holds

1

λc(B)
= H(−en, en) =

2n−1

nωn

∫
B

(1− |z|2)2

|z − en|n |z + en|n
dz.

Via a C.A.S. (computer algebra system) one finds the following

1

λc(B)
=

√
π
(
2Γ(n

2
)− (2 + n)Γ(1 + n) 2F1(2 + 1

2
n, n; 3 + 1

2
n;−1)

)
4(n− 1)Γ(1

2
(n− 1))

,

where Γ(·) denotes the Gamma function and 2F1(·, ·; ·; ·) denotes the Gauss hypergeo-
metric function (see [1, Chap.6 and 15]). In the following table we collect the values
of λ−1

c (B) with B ⊂ Rn for n ≤ 5.

n λ−1
c (B)

1 2
3
' 0.6666

2 2 log 2− 1 ' 0.3862

3 2(π − 3) ' 0.2831

4 3− 2 log(4) ' 0.2274

5 1
3
(10− 3π) ' 0.1917

On the unit ball in R3 a complete orthonormal set of eigenfunctions is given in
polar coordinates (r, ϕ, θ) by:

• with m = 0, k ∈ N0 and i ∈ N,

u0,k,i(r, ϕ, θ) =
√

2k+1
4π

Pk(cos(θ))
jk(j 1

2
+k,ir)

1√
2
j′k(j 1

2
+k,i)

,

• with m, k, i ∈ N and k ≥ m,

ue,m,k,i(r, ϕ, θ) =
√

2k+1
2π

√
(k−|m|)!
(k+|m|)! cos (mϕ)Pm

k (cos(θ))
jk(jk+ 1

2
,ir)

1√
2
j′k(jk+ 1

2
,i)
,

uo,m,k,i(r, ϕ, θ) =
√

2k+1
2π

√
(k−|m|)!
(k+|m|)! sin (mϕ)Pm

k (cos(θ))
jk(jk+ 1

2
,ir)

1√
2
j′k(jk+ 1

2
,i)
,
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(see [65, App. A]). We use the usual convention: 0 ≤ r ≤ 1, 0 ≤ ϕ < 2π and
0 ≤ θ ≤ π. Here Pm

k (·) denotes the Legendre function, jk denotes the fractional Bessel
function of first kind and jk+ 1

2
,i denotes the i-th zero of jk (see [1, Chap.8 and 10] and

[74]). We choose this notation for the i-th zero of jk since it coincides with the i-th
zero of Jk+ 1

2
. Notice that jk(z) = 1√

z
Jk+ 1

2
(z).

The associated eigenvalues are

λ0,0,i =
1

j2
1
2
,i

and λ0,k,i = λe,m,k,i = λo,m,k,i =
1

j2
k+ 1

2
,i

with m, k, i ∈ N and k ≥ m.

Notice that each eigenvalue has multiplicity 2k + 1. For simplicity of notation we fix

µk,i =
1

j2
k+ 1

2
,i

for k ∈ N0 and i ∈ N. (6.5.2)

Hence, µk,i for k ∈ N0 and i ∈ N are the eigenvalues for problem (6.1.1) on B the unit
ball in R3 counted without multiplicity.

Lemma 6.5.1. For k ∈ N0 and i ∈ N let µk,i as defined in (6.5.2). Then it holds that

1

λc(B)
= 4

∞∑
k=0

(−1)k+1νk

∞∑
i=1

1

µk,i
, (6.5.3)

with ν0 = 1 and νk = 4 for k ≥ 1.

Proof. By [74, 15.51] one gets for k ∈ N0

∞∑
i=1

1

µk,i
=

∞∑
i=1

1

j2
k+ 1

2
,i

=
1

4(k + 3
2
)
.

Hence it holds

4
∞∑
k=0

(−1)k+1νk

∞∑
i=1

1

µk,i
= −4

∞∑
i=1

1

µ0,i

+ 16
∞∑
k=1

(−1)k+1

∞∑
i=1

1

µk,i

= −1
3
2

+ 4
∞∑
k=1

(−1)k+1 1

k + 3
2

= −2

3
+

4

6
(3π − 8) = 2(π − 3).

The claim follows. �
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Summary

The main subject of this thesis concerns positivity for fourth order elliptic problems.
By positivity we mean that a positive source term in the differential equation leads to
a positive solution. For second order elliptic partial differential equations such a result
is known and referred to by the name “maximum principle”. It is also well known that
such a maximum principle does not have a straightforward generalization to higher
order elliptic equations.

The difference between second order and higher order elliptic problems appears also
when looking at the mechanical model related to this two kinds of elliptic equations.
A physical problem described by a second order elliptic equation is the displacement
of a membrane loaded by a weight. From everyday experience one knows that when
we apply a force to a membrane all of it will move in the same direction. A fourth
order elliptic equation instead describes the displacement of an elastic plate loaded by
some weight. One may think of the displacement of a flat roof and the weight which it
has to support due to rain or snow. In general the displacement is not everywhere in
one direction. However, the mechanical model seems to indicate that some positivity
remains. In this thesis we will study this aspect.

We will consider the mathematical model of an elastic plate loaded by a force f
and clamped at its edges, that is, the following fourth order Dirichlet boundary value
problem 

∆2u = f in Ω,
u = 0 on ∂Ω,

∂
∂ν
u = 0 on ∂Ω.

(S.1)

Here Ω is a bounded domain in Rn, n ∈ N and n ≥ 2, with ∂Ω ∈ C4,α, α ∈ (0, 1) and
f is a continuous non-negative function defined on Ω̄.

The Green function associated to problem (S.1) on a general Ω may be sign chang-
ing. However, thinking of the physical problem, we expect that the sign preserving
effects are much stronger than the opposite ones.

The main result of this thesis is the splitting of the Green function associated to
(S.1) as the sum of two terms: a positive singular term and a sign-changing regular one,
both satisfying the zero Dirichlet boundary conditions. The positive term describes
the local behavior while the other, that could be sign-changing, depends only indirectly
on the local behavior and hence is regular. As a consequence we prove that the sign
preserving effects are much stronger than the opposite ones. Our results are presently
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limited to the two-dimensional case.

A first understanding on how the singularity of the Green function behaves in
relation with the Dirichlet boundary conditions is studied in Chapter 2. There we
prove sharp estimates for the absolute value of the Green function and for its derivatives
depending on the distance to the boundary. This kind of estimates are a useful tool
to prove regularity results in spaces involving the behavior at the boundary.

In Chapters 3 and 4 we study for which domains the clamped plate equation is
positivity preserving. For a long time it was an open problem if convexity of the domain
is necessary for positivity. Hadamard in [47] states that the clamped plate equation
is positivity preserving on the Limaçons de Pascal. The Limaçons de Pascal is a one-
parameter family of domains varying continuously from the ball to the cardioid. We
prove that Hadamard’s statement is wrong in its full generality but that however,
there are non-convex limaçons on which the clamped plate equation has the positivity
preserving property. In Chapter 4 one may find the methods presently available to find
domains on which the clamped plate equation has the positivity preserving property.

The estimates of the Green function proved in Chapter 2 are sharp from above
but not from below. In order to estimate the behavior of the Green function from
below we construct a covering of the domain Ω and its boundary by a finite number
of sub-domains that have a positive Green function. It is possible to construct a finite
covering of the domain and of its boundary since there are convex and also non-convex
domains in which the clamped plate equation has the positivity preserving property
and since we can show that small C2,γ perturbations of the domain do not destroy
this property. Thanks to this covering we will be able to split the Green function as
the sum of a positive singular term and a sign-changing regular one. This is done in
Chapter 5.

The topic of Chapter 6 differs somewhat from the other ones. Studying positivity
for elliptic boundary value problems we encounter some open problems in probability
theory.

Some interesting questions concerning positivity arise also in the study of systems
of second order elliptic boundary value problems. In [66] the following elliptic system is
presented as a model problem for the positivity preserving property of systems coupled
in a non-cooperative way 

−∆u = f − λv in Ω,
−∆v = f in Ω,
u = v = 0 on ∂Ω.

Here Ω is a bounded regular subset of Rn and λ ∈ R+. One can show that there exists
a value λc(Ω) such that for all f ≥ 0 the solution u is positive if and only if λ ≤ λc(Ω)
and that

λc(Ω)−1 = sup
x,y∈Ω

HΩ(x, y),
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where

HΩ(x, y) =

∫
Ω

GΩ (x, z)GΩ (z, y)

GΩ (x, y)
dz.

Here GΩ is the Green function for the Laplace problem in Ω with Dirichlet boundary
conditions.

The function HΩ(x, y), defined above, has also a probabilistic interpretation. In-
deed, HΩ(x, y) = Eyx(τΩ) the expected lifetime of a conditioned Brownian motion that
starts in x, is conditioned to converge to y and that is killed at the boundary.

There are many open problems regarding this expected lifetime. In particular, one
open question is where HΩ(x, y) attains its maximum in Ω̄× Ω̄. In Chapter 6 we study
this problem for Ω the unit ball in Rn, n ≥ 2.

Our result states that the function x 7→ HΩ(x, y) is increasing along the hyper-
bolic geodesics through y in increasing Euclidean distance and along the orthogonal
trajectories of the hyperbolic geodesics through y. A direct consequence is that the
maximum is attained at opposite boundary points.

At the end of the chapter we compute an explicit formula for λc(Ω)−1 and we dis-
cuss some remarkable identities involving this quantity and a sum of inverse Dirichlet
eigenvalues.





Samenvatting

Hogere Orde Elliptische Vergelijkingen

en Positiviteit

van Anna Dall’Acqua

Dit proefschrift behandelt positiviteit van vierde orde elliptische problemen. Met
positiviteit wordt bedoeld dat een positief rechterlid een positieve oplossing van de dif-
ferentiaalvergelijking geeft. Voor tweede orde elliptische partiële differentiaalvergelijkin-
gen is dit feit bewezen en staat het bekend onder de naam “maximum principe”. Dit
maximum principe heeft echter geen directe uitbreiding naar hogere orde elliptische
differentialvergelijkingen.

Het verschil tussen tweede en hogere orde elliptische problemen komt ook tot uiting
in het mechanische model dat wordt beschreven door deze vergelijkingen. Een tweede
orde elliptische vergelijking beschrijft de verplaatsing van een membraan dat wordt
belast en uit alledaagse ervaring weet men dat dit membraan in het geheel in de
richting van de kracht beweegt. Een vierde orde elliptische vergelijking beschrijft
daarentegen de verplaatsing van een elastische plaat die wordt belast. In praktijk kan
worden gedacht aan een plat dak waarop regenwater of sneeuw druk uitoefent. In
het algemeen zullen niet alle delen van de plaat onder invloed van de last in dezelfde
richting bewegen ten opzichte van de ruststand. Het mechanische model geeft echter
aanleiding te veronderstellen dat enige positiviteit behouden blijft. Dit aspect zal
nader worden bestudeerd in dit proefschrift.

We beschouwen het model dat een elastische plaat beschrijft die is vastgeklemd
aan de rand en waarop een kracht f wordt uitgeoefend. Dit model wordt beschreven
door het volgende vierde orde probleem met Dirichlet randvoorwaarden

∆2u = f in Ω,
u = 0 op ∂Ω,

∂
∂ν
u = 0 op ∂Ω.

(S.1)

Hierin is Ω een begrensd gebied in Rn voor zekere n ∈ N, n ≥ 2 met ∂Ω ∈ C4,α,
α ∈ (0, 1), en f is een continue, niet-negatieve functie die is gedefinieerd op Ω̄.
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De Greense functie die kan worden geassocieerd met (S.1) voor algemene Ω kan
een tekenwisseling hebben. Gezien de fysische interpretatie verwachten we echter dat
de tekenbehoudende effecten veel sterker zijn.

Het voornaamste resultaat van dit proefschrift is het opsplitsen van de Greense
functie voor (S.1) als een som van twee termen: een positieve singuliere term en
een tekenveranderende reguliere term die echter beide wel voldoen aan de Dirichlet
randvoorwaarden. De positieve term beschrijft het lokale gedrag terwijl de andere
term, die mogelijk van teken wisselt, alleen indirect afhangt van het lokale gedrag en
dus regulier is. Als gevolg hiervan bewijzen we dat de tekenbehoudende effecten veel
sterker zijn dan de tekenveranderende. Momenteel zijn onze resultaten beperkt tot
het twee-dimensionale geval.

In Hoofdstuk 2 zetten we een eerste stap in de bestudering van de relatie tussen het
gedrag van de singulariteit van de Greense functie en de Dirichlet randvoorwaarden.
We bewijzen scherpe afschattingen voor de absolute waarde van de Greense func-
tie en haar afgeleiden in termen die afhankelijk zijn van de afstand tot de rand. Dit
soort afschattingen vormen een belangrijk hulpmiddel in het bewijzen van regulariteits-
eigenschappen in de omgeving van de rand.

In Hoofdstuk 3 en 4 bestuderen we voor welke gebieden de vergelijking van de
geklemde plaat positiviteit behoudend is. Lange tijd was onbekend of convexiteit van
het domein een noodzakelijke voorwaarde is voor positiviteit. Hadamard sprak in [47]
het vermoeden uit dat de vergelijking voor de geklemde plaat positiviteit behoudt op
gebieden met de vorm van een Limaçon de Pascal. De Limaçons de Pascal zijn een
één-parameter familie van gebieden die continu overgaan van cirkel naar cardiöıde. We
bewijzen dat dit vermoeden in het algemeen onjuist is. Er bestaan echter wel niet-
convexe limaçons waarop de vergelijking van de geklemde plaat positiviteit behoudt.

De afschattingen voor de Greense functie zijn scherp van boven maar niet van
beneden. Om een ondergrens voor de Greense functie te bepalen construeren we een
overdekking van het gebied Ω en haar rand door een eindig aantal deelgebieden die
ieder een positieve Greense functie hebben. Zo’n overdekking van het gebied en haar
rand bestaat omdat er zowel convexe als niet-convexe gebieden bestaan waarop de
vergelijking van de geklemde plaat positiviteit bewaart en omdat we kunnen aantonen
dat kleine C2,γ verstoringen van het gebied deze eigenschap niet verstoren. Dankzij
deze overdekking kunnen we de Greense functie opsplitsen in een positief, singulier
deel en een tekenveranderend regulier deel. Dit wordt bewezen in Hoofdstuk 5.

Hoofdstuk 6 staat enigszins los van de overige hoofdstukken. In de bestudering
van elliptische randwaardeproblemen stuiten we op enkele open problemen in de waar-
schijnlijkheidsrekening.

Ook voor stelsels van tweede orde elliptische randwaardeproblemen bestaan enkele
interessante vragen betreffende positiviteit. In [66] wordt het volgende stelsel ellip-
tische differentiaalvergelijkingen gëıntroduceerd als model-probleem voor de positivi-
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teit van een stelsel niet-coöperatief gekoppelde differentiaalvergelijkingen
−∆u = f − λv in Ω,
−∆v = f in Ω,
u = v = 0 op ∂Ω.

Hierin is Ω een begrensde reguliere deelverzameling van Rn en λ ∈ R+. Er kan worden
bewezen dat er een waarde λc(Ω) bestaat zodanig dat voor alle f ≥ 0 de oplossing u
positief is dan en slechts dan als λ < λc(Ω) en dat

λc(Ω)−1 = sup
x,y∈Ω

HΩ(x, y),

met

HΩ(x, y) =

∫
Ω

GΩ (x, z)GΩ (z, y)

GΩ (x, y)
dz.

Hierin is GΩ the Greense functie voor het Laplace-probleem in Ω met Dirichlet rand-
voorwaarden.

De functie HΩ(x, y) is ook gelijk aan de verwachte levensduur Eyx(τΩ) van de
Brownse beweging die geconditioneerd is zodanig dat zij begint in x, eindigt in y
en niet meetelt als zij de rand overschrijdt.

Er zijn veel open problemen betreffende de verwachte levensduur. Een van de open
vragen is waar HΩ(x, y) zijn maximum aanneemt in Ω̄× Ω̄. In Hoofdstuk 6 wordt dit
probleem behandeld in het geval dat het gebied Ω de eenheidsbol in Rn is met n ≥ 2.

We bewijzen dat de functie x 7→ HΩ(x, y) stijgend is langs de hyperbolische geode-
ten door y in de richting van toenemende Euclidische afstand en ook langs de ortho-
gonale trajectoriën van deze geodeten. Een direct gevolg hiervan is dat het maximum
wordt aangenomen in tegenoverliggende randpunten.

Aan het einde van het hoofdstuk leiden we een expliciete formule af voor λc(Ω)−1

en we bespreken enkele opmerkelijke relaties van deze uitdrukking met een som van
inverse Dirichlet eigenwaarden.





Sommario

Problemi Ellittici di Ordine Superiore

e Positività

di Anna Dall’Acqua

L’argomento principale di questa tesi è lo studio della positività dei problemi ellit-
tici di quarto ordine. Qui il termine positività si riferisce alla proprietà che un termine
positivo nel membro destro dell’equazione differenziale porti a soluzioni positive. Nel
caso di equazioni alle derivate parziali ellittiche di secondo ordine tale risultato è noto
come “principio di massimo”. Com’è ben noto, il principio di massimo non si può
generalizzare ad equazioni ellittiche di ordine superiore.

La differenza fra i problemi ellittici di secondo ordine e quelli di ordine superiore
appare evidente anche guardando ai problemi fisici descritti da questi due diversi tipi
di equazioni ellittiche. Un’equazione ellittica del secondo ordine descrive la posizione
d’equilibrio assunta da una membrana caricata di un peso. L’esperienza quotidiana
indica che una membrana, su cui è stata applicata una forza, si muove tutta nella
stessa direzione. Un’equazione ellittica di quarto ordine descrive, invece, la posizione
d’equilibrio assunta da una piastra elastica caricata di un peso. Si può pensare, per
esempio, alla posizione di un tetto orizzontale e al peso che questo deve sostenere
per neve o pioggia. In generale la piastra non si muove tutta nella stessa direzione.
Ciò nonostante dal modello meccanico appare evidente che della positività rimane. In
questa tesi studieremo questo aspetto.

Noi considereremo il modello matematico di una piastra elastica su cui è applicata
una forza f e che è incastrata sul bordo, cioè il seguente problema ellittico del quarto
ordine con condizioni al contorno di Dirichlet:

∆2u = f in Ω,
u = 0 su ∂Ω,

∂
∂ν
u = 0 su ∂Ω.

(S.1)

Qui Ω è un dominio limitato in Rn, n ∈ N e n ≥ 2, con ∂Ω ∈ C4,α, α ∈ (0, 1), e f
è una funzione definita su Ω̄ continua e non-negativa. Il problema (S.1) è noto come
“l’equazione della piastra incastrata”.

189



190 Sommario

In generale la funzione di Green associata a (S.1) in un dominio Ω può cambiare
segno. Ciò nonostante, pensando al problema fisico, ci aspettiamo che la tendenza a
preservare il segno sia più forte di quella opposta.

Il maggior risultato di questa tesi consiste nello scrivere la funzione di Green asso-
ciata a (S.1) come la somma di due termini che soddisfano le condizioni al contorno
di Dirichlet: un termine positivo e singolare e un termine regolare ma di segno vari-
abile. Il termine positivo descrive il comportamento locale mentre l’altro termine, che
potrebbe diventare negativo, dipende dal comportamento locale solo indirettamente e
quindi è regolare. Da questo risultato segue che la tendenza a preservare il segno è più
forte di quella opposta. I nostri risultati sono, fino a questo momento, limitati al caso
bidimensionale.

Un primo approfondimento su come la singolarità della funzione di Green si com-
porta in relazione alle condizioni al contorno di Dirichlet è riportato nel Capitolo 2. Il
risultato principale presentato nel secondo capitolo consiste nelle stime ottimali, dipen-
denti dalla distanza dalla frontiera del dominio, del valore assoluto della funzione di
Green associata a (S.1) e delle sue derivate. Queste stime sono utili per dimostrare
risultati di regolarità in spazi che considerano il comportamento della funzione alla
frontiera.

Nel terzo e quarto capitolo studiamo su quali dominii l’equazione della piastra
incastrata preservi la positività. Il seguente problema è stato per molto tempo ir-
risolto: la convessità del dominio è una condizione necessaria per la positività? In
[47], Hadamard dice che il problema (S.1) su una piastra con la forma di un “Limaçon
de Pascal” preserva la positività. Ricordiamo brevemente che il termine “Limaçons de
Pascal” indica una famiglia di dominii dipendente da un parametro e che variano con
continuità dal disco alla cardioide. Nel terzo capitolo dimostriamo che l’affermazione
di Hadamard è sbagliata, ma che comunque ci sono “limaçons” non-convessi su cui
l’equazione della piastra incastrata ha la proprietà di preservare la positività. Nel
quarto capitolo sono presentati i metodi, conosciuti fino a questo momento, per trovare
dominii su cui l’equazione della piastra incastrata preserva la positività.

Le stime della funzione di Green ottenute nel secondo capitolo sono ottime dal
di sopra ma non dal di sotto. Il nostro metodo per ottenere delle stime ottimali del
comportamento della funzione di Green dal di sotto consiste nello costruire un ricopri-
mento del dominio Ω e della sua frontiera con un numero finito di dominii che hanno
una funzione di Green positiva. Questa costruzione è possibile perchè ci sono dominii
convessi e anche non-convessi su cui l’equazione della piastra incastrata ha la proprietà
di mantenere la positività e inoltre perchè si può dimostrare che questa proprietà non
si perde con piccole C2,γ perturbazioni del dominio. Grazie a questo ricoprimento è
possibile scrivere la funzione di Green come la somma di un termine positivo e singo-
lare e di uno regolare ma di segno variabile. Questo risultato è presentato nel quinto
capitolo.

Il sesto capitolo differisce negli argomenti dai precedenti. Studiando la positività
nei problemi ellittici abbiamo incontrato alcuni problemi aperti nella teoria della pro-



Sommario 191

babilità.
Nello studio della positività nei sistemi di equazioni ellittiche di secondo ordine con

condizioni al contorno si incontrano molte questioni interessanti. In [66] il seguente
sistema ellittico 

−∆u = f − λv in Ω,
−∆v = f in Ω,
u = v = 0 su ∂Ω,

è presentato come un problema modello per lo studio della positività nei sistemi ac-
coppiati in modo non-cooperativo. Qui Ω è un dominio in Rn limitato e regolare e
λ ∈ R+. Si può dimostrare che esiste λc(Ω) tale che per ogni f ≥ 0 la soluzione u è
positiva se e solo se λ ≤ λc(Ω). Inoltre si ha che

λc(Ω)−1 = sup
x,y∈Ω

HΩ(x, y),

dove

HΩ(x, y) =

∫
Ω

GΩ (x, z)GΩ (z, y)

GΩ (x, y)
dz.

Qui GΩ indica la funzione di Green per il problema di Laplace con condizioni al
contorno di Dirichlet in Ω.

La funzione HΩ(x, y) definita precedentemente ha anche un’interpretazione prob-
abilistica. Infatti, HΩ(x, y) = Eyx(τΩ), che rappresenta la durata di vita attesa di un
moto Browniano che inizia in x, è condizionato a convergere ad y ed è ucciso sulla
frontiera.

Ci sono molti problemi aperti che riguardano questa attesa durata di vita. Uno
fra questi è il determinare dove la funzione x 7→ HΩ(x, y) raggiunge il suo massimo in
Ω̄× Ω̄. Nel sesto capitolo studiamo questo problema sulla palla unitaria in Rn, n ≥ 2,
e dimostriamo che la funzione HΩ(x, y) è crescente lungo le geodesiche iperboliche pas-
santi per y e allontanandosi da questo punto, e inoltre lungo le traiettorie ortogonali
a queste, sempre allontanandosi dal punto. Una conseguenza diretta di questa carat-
teristica è che il massimo di HΩ(x, y) è raggiunto al bordo per x e y diametralmente
opposti.

Alla fine del capitolo calcoliamo la formula esplicita di λc(Ω)−1 e discutiamo alcune
identità che coinvolgono questa quantità e una somma di inversi degli autovalori di
Dirichlet.
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