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1
Introduction

Bladder cancer (BC) holds the tenth position in terms of incidence rate among all cancers worldwide
[1]. The bladder is a hollow organ in the lower abdomen in which urine is stored. This organ is made
of many layers, including urothelium, lamina propria, muscle and fat tissue, from the innermost to the
outermost. Cancer cells mostly initiate from the urothelium. Bladder cancer is usually classified into
two main categories: non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder can-
cer (MIBC). Among the new diagnosed cases, approximatively 75% belong to the NMIBC group [2].
The term non-muscle invasive bladder encompasses tumors that are limited to the urothelium (such
as carcinoma in situ or Ta) or those that invade the lamina propria (T1). Progression to MIBC involves
the cancer’s inclination to grow and invade the deeper layers of the bladder wall, whereas recurrence
refers to the return of cancerous cells in the bladder following initial treatment. The general recurrence
rate for NMIBC is between 60% to 70%, and the overall progression rate ranges from 20% to 30%.
[6]. EAU guidelines stratify patients into low, intermediate, high and very high risk of progression to
advanced disease. These guidelines are based on the current risk assessment tools such as EORTC
and CUETO which rely on clinical and histopathological markers to classify patients for progression
or recurrence [51]. The primary treatment approach for intermediate and high-risk patients is the use
of Bacillus Calmette-Guerin (BCG) immunotherapy instillation administered locally [3].The latter is a
therapy where the weakened tuberculosis bacteria is directly instilled into the bladder to stimulate an
immune response that targets and destroys cancer cells. However 50% to 70% of patients will bene-
fit from BCG treatment [4]. Patients who will not benefit from BCG immunotherapy or have high-risk
disease may require radical cystectomy, a procedure aimed at removing the entire bladder, followed
by chemotherapy and radiation [50]. Furthermore, patients who will progress to MIBC have a 5-year
survival rate that ranges from 63% to 15% [63].

Accurate risk stratification tools are essential in determining the appropriate initial treatment. However,
the existing methods used to predict the clinical outcome are not very reliable. For intermediate-risk
patients, the EORTC model was impeded by the variability within this risk group, leading to both un-
derestimation and overestimation of the risk of disease recurrence. On the other hand, for high-risk
patients, the EORTC model overestimated the risk of disease recurrence, both at 1 and 5 years. In
contrast, the CUETOmodel demonstrated poor calibration for disease recurrence, with an underestima-
tion of the risk for low-risk patients and an overestimation for high-risk patients [7]. Statistical methods
like the Cox proportional hazards (CPH) model and nomogram are used to predict bladder cancer out-
comes using clinicopathological data. Nevertheless, recent advancements in artificial intelligence (AI)
have shown superior accuracy in predicting disease recurrence and progression compared to statistical
approaches [9, 39].

In this project, we try to overcome the problems of the current risk stratification models and help clin-
icians in the decision making. We aim at predicting the clinical outcome of NMIBC patients by using
Artificial intelligence techniques, analysing clinicopathological data and histopathological images. The
clinical outcome is divided in three binary classes: progression, high-grade recurrence and response to
BCG treatment. The response to BCG treatment is to be considered a failure if the tumour progresses
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to MIBC, or there is recurrence of high grade tumout until 6 months after completing BCG maintenance
or presence of CIS tumour within 12 months after completing adequate BCG [8]. The two research
questions that we want to address are:

• Which AI methods can predict the clinical outcome of NMIBC patients by analyzing clinicopatho-
logical data?

• Which AI methods can predict the clinical outcome of NMIBC patients by performing an integrated
analyses of clinicopathological data and histopathological images?

We implemented six different classifiers. In particular, a neural network called adaptive neuro-fuzzy
inference system, and five machine learning algorithms, such as random forest or gradient boosting.
In the first stage, the clinicopathological data of the patients were used as input for the models. These
include age, smoking status, grade and stage of the tumours. Secondly, the dataset was integrated
with features related to the analysis of the cells nuclei in the histopatological images. To avoid a selec-
tion bias, no particular region of interests in the slides has been selected. The objective is to obtain an
end-to-end unbiased method which can help clinicians in their decision making. Finally, the algorithms’
performances were assessed with five common statistical metrics. The progonostic value of each fea-
ture was computed with a permutation importance analysis.

The report is organized as follows: Chapter 2 provides a systematic review about the state-of-the-art
models developed so far in the field. Chapter 3 presents the mathematical background for the methods
used in this study. The methods used and the research flow is presented in Chapter 4. The results
obtained will be presented in Chapter 5. The discussion of the findings and the conclusions are found
in Chapter 6. Chapter 7 focuses on potential improvements for the models. Tables with a a complete
overview of all the models studied in the systematic review can be found in Appendix A. Appendix B
presents the performances of all the models employed.





2
Systematic Review

This chapter is concerned with the review of the state-of-the-art methods that have been developed so
far in the bladder cancer field. We performed a systematic review on five different databases, namely
Medline, Embase, Web of Science Core Collection, Cochrane Central Register of Controlled Trials
and Google Scholar. The keyword for the search were: bladder cancer, machine learning and predic-
tion.The PRISMA chart of the inclusion criteria is depicted in Figure 2.1.

Figure 2.1: PRISMA chart of the systematic review

We included only papers that were in English, excluding conference abstracts and studies with different
endpoints or type of data. As a result, thirty papers have been here reported. These studies focus on the
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2.1. AI in Bladder Cancer prediction 4

prediction of the clinical outcome of bladder cancer using artificial intelligence and statistical methods,
analysing clinicopathological data. A summary analysis of all the papers can be found in Table A.2.

2.1. AI in Bladder Cancer prediction
Statistical algorithms, such as Cox proportional hazards (CPH) model and nomogram, have been used
to predict the clinical outcome of bladder cancer using clinicopathological data [36]. The Cox propor-
tional hazards model is a widely used statistical technique that can use clinical and pathological vari-
ables to predict the time to recurrence or death. CPH is used to estimate hazard ratios and confidence
intervals to identify significant predictors of bladder cancer outcomes. The nomogram is a graphical
calculating device that uses lines and scales to represent the relationships between multiple variables
and predict a particular outcome. It is used to calculate an individualized risk score for patients, based
on the values of selected predictors. This score can help guide clinical decision-making regarding the
choice and intensity of therapy.

However, in recent times, artificial intelligence (AI) has exhibited better accuracy in predicting disease
recurrence and progression than statistical methods [9, 39]. AI is a wide-ranging set of computational
techniques that simulate human intelligence and has been extensively used in the medical field for
computer-aided diagnosis (CAD) and computer-aided predictive (CAP) systems. Machine learning,
which is one of the most important branches of AI, was developed to address problems in the medical
domain [10].

Artificial neural networks (ANNs) are a type of AI techniques commonly employed in medical appli-
cations, including risk assessment for non-muscle invasive bladder cancer. ANNs are a subset of
machine learning algorithms that mimic the structure and function of biological neural networks in the
brain. ANNs are made up of interconnected nodes, which learn from patterns in data. During the
learning process, the network is fed with labeled data, which helps to adjust the weights and biases of
the nodes to minimize the error between the predicted and actual output. Once the ANNs are trained,
they can predict clinical outcomes such as recurrence, progression of cancer patients using variables
such as tumor size, grade, stage, or other clinical features. High accuracy can be achieved by training
the network to predict the probability of an event, as a continuous output (regression) or as a discrete
variable (classification). For instance, the network can predict the likelihood of disease progression or
recurrence. The output of the ANNs can then be used to make informed clinical decisions.

Regression and classification are two supervised learning algorithms. In this subcategory of machine
learning, the model is provided with labelled training data to learn the relationship between the input
and output variables. In the context of bladder cancer diagnosis and outcome prediction, the vast ma-
jority of current machine learning applications falls under the category of supervised learning problems.
These applications rely on labelled patient data to train themachine learningmodel to predict the clinical
outcome of NMIBC based on a variety of clinical features. By leveraging supervised learning, machine
learning models can help improve the accuracy and efficiency of NMIBC risk assessment and guide
clinical decision-making [11].Supervised classification algorithms, for instance support vector machine
(SVM), have been used to predict the clinical outcome of bladder cancer. SVM is a machine learn-
ing algorithm that is used to classify patients into different outcome groups based on their clinical and
pathological characteristics. This algorithm works by finding the optimal hyperplane that maximizes the
margin between the outcome groups, while minimizing the misclassification error. It has been used to
predict the probability of bladder cancer recurrence to identify important predictors of bladder cancer
outcomes.

Traditionally, the development of machine learning models necessitated the involvement of human ex-
perts who leveraged their domain knowledge to extract relevant features from raw input data. Following
this feature extraction process, classification trees algorithms, such as Decision Tree (DT), Random
Forest (RF), Gradient Boosting (GB) and Extreme Trees (ET), were employed to discover mappings
between the extracted features and the desired outputs [12]. Decision trees, for instance, are used to
build a predictive model that uses a tree-like structure to classify patients into different outcome groups
based on their clinical and pathological characteristics. The algorithm works by recursively splitting
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the data into smaller and more homogeneous subgroups, based on the most significant predictors of
clinical outcomes. The final tree structure provides a set of rules that can be used to predict a pa-
tient’s outcome. Variable importance analysis is a technique commonly used with classification trees
to identify the most significant features in predicting the target variable. This method is used to identify
important predictors of bladder cancer outcomes, such as age, smoking habits or tumor characteristics.
The trace-back process plays a key role in the development of an algorithm of clinical utility. Indeed,
clinicians want to rely on a transparent model. Hence, ensuring an understanding of the learning pro-
cess of the algorithm is of primary importance to effectively implement any model in a clinical setting.

2.2. Recurrence
Although the majority of patients with NMIBC have a good prognosis, a significant proportion will expe-
rience disease recurrence, which can have a significant impact on their quality of life. Various models
have been developed to predict the risk of recurrence, including clinical, pathological, and molecular
features. It is clinically known so far that the prior disease-recurrence rate and number of tumours are
two of the most important prognostic factors for disease recurrence [45]. This section aims to review
and compare the performance of different models for predicting recurrence in NMIBC, with a focus on
their performance, feasibility, and clinical utility.

2.2.1. Statistical models
Xu et al. [38] aimed to predict the 2-year risk of recurrence of bladder cancer in a dataset of 71 pa-
tients. The study used age at the time of initial surgery, gender, histological grade, maximal tumor
size in bladder lumen, tumor size, number of tumors and operation choice (transurethral resection of
bladder tumor or radical cystectomy as features to build a nomogram. The features were selected
using a Rad_Score model constructed with a support vector machine-based recursive feature elim-
ination (SVM-RFE) approach and logistic regression. The nomogram achieved a moderate-to-high
performance with a sensitivity of 0.778, specificity of 0.738, accuracy of 0.755, and an AUC of 0.822 in
predicting recurrence. The study found that the most promising features extracted were image-related.

López de Maturana et al. [40] used age, gender, number of tumors, tumor stage and grade, tumor
size, and treatment as features to predict time to first recurrence, defined as the reappearance of a
NMIBC tumor following a previous negative follow-up cystoscopy. They employed a sequential thresh-
old model on 1105 patients and achieved an AUC of 0.62. The study found that the role of common
SNPs in predicting the risk of recurrence was limited and suggested that future studies should explore
the integration of other genetic variants.

2.2.2. Artificial neural networks
The study conducted by Qureshi et al. [17] aimed to predict 6-month recurrence using a dataset of
212 patients and 14 features, including stage, grade, tumor size, tumor number, gender, EGFR status,
smoking habit, histology, cis presence, metaplasia, architecture, site, c-erbB2, and p53 status. The au-
thors employed an artificial neural network as a model for prediction, implemented with NeuralWorks
Professional II/Plus software. The reported performance of the model, with a sensitivity of 0.7, speci-
ficity of 0.8, and accuracy of 0.75, suggests that it was able to identify patients at risk of recurrence with
moderate accuracy. Despite the small number of patients for this analysis, it is important to mention
that tumour size has shown to be the most significant feature in the prediction model.

The objective of Fujikawa et al.’s [42] investigation was to develop a prediction model for the recurrence
of bladder cancer 15 years post-surgery, with a dataset comprising 90 patients. The analysis included
a range of characteristics, such as tumor stage, grade, number, age, gender, tumor architecture, and
mean nuclear volume estimates. The authors employed a Bayesian neural tool of SPSS Neural Con-
nection 2.1 software as their model, which demonstrated a sensitivity of 0.33 and specificity of 0.4 in
prognosticating recurrence. These findings suggest that the prediction model proposed by Fujikawa
et al. had low efficacy in anticipating recurrence of bladder cancer after a period of 15 years. The low
sensitivity and specificity values indicate an increased likelihood of false negatives and false positives,
respectively. Several factors, including the limited size of the dataset and the selection of attributes
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considered in the model, could have contributed to this low predictive power.

Buchner et al. [30] aimed to predict 5-year recurrence in 2111 patients using age, gender, tumor stage
and grade (in transurethral resection of the bladder/TURB and RC), carcinoma in situ (TURB and RC),
pathological lymph node status and lymphovascular invasion data. They employed an artificial neural
network with a three-layer feed-forward perceptron architecture. Despite promising results in terms of
specificity of 0.895 and accuracy of 0.74, the model sensitivity was low (0.4). The authors identified
lymphovascular invasion, pathological T stage and pathological lymph node status as the most impor-
tant features.

Catto et al. [39] aimed to predict the 80-month recurrence after surgery in 109 patients with bladder
cancer. The study used a neuro fuzzy modeling approach and included several features such as stage,
grade, age, sex, smoking exposure, and previous cancers to predict the recurrence. The results of the
study showed that the neuro fuzzy model had a very high performance in predicting the recurrence
with a sensitivity of 0.92, specificity of 0.9, accuracy of 0.92, and AUC of 0.98. The study also found
that tumor grade, patient age, smoking history, and p53 expression were the most important features
in predicting the recurrence. Overall, the study conducted by Catto et al. in [39] demonstrates the
potential of using neuro fuzzy modeling to predict the post-operative recurrence of bladder cancer.

A second study, conducted by Catto et al. [41], focused on predicting the risk and timing of post-
radical cystectomy tumor recurrence for 609 patients. They used gender, pathologic stage, pathologic
grade, carcinoma in situ, and lymphovascular invasion as features and employed two neuro fuzzy
modelling techniques combined in series to make predictions. The model achieved high performances,
with a sensitivity of 0.81, specificity of 0.85 and a C-index of 0.92. The study found that tumor stage,
lymphovascular invasion, and the number of removed lymph nodes were the most important features
for predicting recurrence.

2.2.3. Ensemble learning
The study by Hasnain et al. [12] aimed to predict the recurrence of bladder cancer within 1, 3 and
5 years after radical cystectomy (RC) using operative findings at transurethral resection and radical
cystectomy as well as pathology data. The dataset comprised 3499 patients who underwent RC. The
study utilized a meta classifier based on support vector machine, bagged SVM, K-nearest neighbors,
AdaBoost, random forest (RF) and gradient boosting trees algorithms, together with the concept of
mutual information to uncover correlated parameters. The model, which has been trained and tested
on 3499 patients, achieved a sensitivity of 0.739, a specificity of 0.714 and a low accuracy of 0.388
on 1 year recurrence. Considering a three-year time interval, the model achieved a good sensitivity
and specificity, of 0.72 and 0.708 respectively, despite a low accuracy of 0.535. For the prediction
of recurrence at 5 years, the model achieved a sensitivity of 0.7, specificity of 0.702 and accuracy of
0.588. The authors identified pathologic stage subgroup, pT stage, pN stage, pM stage, number of
positive lymph nodes, pathologic positive lymph nodes, pathologic lymphovascular invasion, and clini-
cal T stage (preoperative) as the most important features. The authors also highlighted the utility of the
concept of mutual information in uncovering correlated parameters in the prediction of bladder cancer
recurrence. Further studies may benefit from incorporating additional clinical and molecular features
to improve the accuracy of the prediction model.

2.2.4. Combined models
Lucas et al. [36] compared three models, Cox proportional hazards (CPH), Boosted Cox model (BCM),
and Random survival forest (RSF), to predict 1 and 5 years recurrence in 452 patients. WHO’73 grad-
ing, number of tumors as defined by the CUETO, the recurrence rate as defined by the EORTC and the
age classification as defined by the CUETO have been given as input to the models. For the short time
prediction, the performance varied slightly depending on the specific algorithm used, with CPH achiev-
ing the best performances (Se: 0.73, Sp: 0.59, Ac: 0.6 and AUC: 0.66). In the longer time interval of
5 years, the highest values were achieved by BCM, which achieved a sensitivity of 0.64, specificity of
0.61, accuracy of 0.60, and AUC of 0.72. It has been found that the EORTC and EAU risk classifica-
tion systems showed slightly better predictive value than the CUETO risk stratification system in the
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population under study. The subjectivity in assessing the histopathological variables and the difficulty
in assessing grading and staging has been highlighted. The study also suggests that new prognostic
markers are needed.

Dovey et al. [37] investigated the 1,2,5 and 10 years recurrence of bladder cancer. The study included
395 patients and aimed to predict recurrence using features such as multifocality, tumor stage, grade,
and size. The model used in the study was a simplified version of the EORTC and CUETOmodels, and
the performance was measured using the area under the curve (AUC). The model achieved an AUC of
0.7 for 1 year, 0.67 for 2 years, 0.69 and 0.66 for 5 and 10 years, respectively. The findings of the study
suggest that the EORTC, CUETO,WHO ’73 andWHO ’04/16 models tend to underestimate recurrence.
Additionally, the use of clinical covariates to predict recurrence may have reached its upper limits of
accuracy, and studies have investigated molecular subtyping and genomic classification as an alterna-
tive. The authors identified several features that could be used to predict bladder cancer recurrence
and developed a simplified model based on existing models. However, the model’s performances were
moderate, and it is suggested that there may be limitations to the use of clinical covariates in predicting
recurrence accurately. Further research in the field, particularly into molecular subtyping and genomic
classification, may offer alternative approaches to predict recurrence with higher accuracy.

2.2.5. Important features
NMIBC has a high recurrence rate, which poses significant challenges for clinicians and patients. De-
veloping an accurate predictive model that identifies the features associated with recurrence is crucial
for improving patient outcomes. In this section, we will examine the important features for a model
aimed at predicting recurrence for NMIBC. We will review clinical and pathological features, molecular
features, and demographic factors that have been shown to be associated with recurrence in NMIBC.
By identifying the most critical features, it becomes possible to create a more accurate predictive model.

Pathological T stage has been found relevant in the outcome prediction by [12] and [30]. Also [17]
mentions tumour size, one of the factors used to determine the T stage, as promising predictor. The
pathological T stage for NMIBC (non-muscle invasive bladder cancer) refers to the extent of invasion
of the tumor within the bladder lining, as determined by examination of the tissue under a microscope.
The T stage is an important factor used in the TNM (tumor, node, metastasis) staging system to de-
scribe the pathological stage of bladder cancer, including NMIBC. In NMIBC, the cancer is limited to the
inner lining of the bladder (urothelium) and has not invaded the muscle layer of the bladder wall. The
pathological T stage for NMIBC is typically classified as Ta, T1, or CIS (carcinoma in situ), depending
on the depth of invasion of the urothelium.

Lymphovascular invasion (LVI) has been determining in the models for [12] and [30]. LVI refers to the
spread of cancer cells from the primary tumor into the lymphatic or blood vessels surrounding it. In the
case of NMIBC, LVI can indicate a more aggressive tumor behavior and an increased risk of progres-
sion and recurrence. and is relatively uncommon but can occur in higher-grade tumors. When present,
LVI is typically detected through microscopic examination of tissue samples taken during transurethral
resection of the bladder tumor (TURBT).

Pathological lymph node status, which has been considered one of the key predictors in [12] and [30],
refers to the presence or absence of cancer cells in the lymph nodes surrounding the bladder. In the
TNM staging system, the lymph node status is used to describe the extent of the cancer and to guide
treatment decisions. For NMIBC, the lymph node status is typically classified as N0 (no regional lymph
node involvement) or N1-3 (involvement of one or more regional lymph nodes). It is important to note
that high-grade NMIBC can spread to the lymph nodes and other distant sites, leading to a more ad-
vanced stage. The presence of lymph node involvement in NMIBC is typically determined through
imaging studies or surgical removal and pathological examination of the lymph nodes.

Among the studies here included to predict recurrence, only [38] employed a nomogram attaining an
AUC higher than 80% on 71 patients (Se: 0.778, Sp: 0.738 and Ac: 0.755). This finding still reflects
the ability of such statistical technique to obtain moderate and high performance metrics when applied
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to small data sets. Other statistical models, such as CPH, have been implemented with lower results
([16] attained sensitivity, specificity, c-index and accuracy around 60 %, with a slightly better AUC of
0.69). The performance of artificial intelligence techniques, such as artificial neural networks, varied
among the studies analysed. For instance, the ANN with a three-layer feedforward perceptron archi-
tecture employed by [30] attained only 40% of sensitivity. This means that the model was not able to
correctly identify a significant proportion of positive instances in the data set, even if the latter consisted
of 2111 patients. Other types of neural networks, such as a Bayesian neural tool implemented by [42]
poorly performed in this task, with sensitivity and specificity of 0.33 and 0.4, respectively. However,
one specific kind of ANN appears to perform better on this specific task. The algorithm is called neuro
fuzzy modelling and is a hybrid technique that combines the strengths of neural networks and fuzzy
logic to create a more powerful and flexible modeling approach, useful in applications where there is a
high degree of uncertainty and complexity in the data. [39] tried to predict recurrence in a cohort of 109
patients using this technique and obtained very high results in all the performance metrics (Se: 0.92,
Sp: 0.9, Ac: 0.92 and AUC: 0.98). The same author implemented a similar model, combining in series
two neuro-fuzzy modelling networks, in [41]. Sensitivity of 0.81, specificity of 0.85 and c-index of 0.92
have been achieved for a cohort of 609 patients, showing the potentiality of this technique even in a
larger cohort.

2.3. Progression
Predictive models for the progression of NMIBC have been developed to aid in the clinical manage-
ment of patients and to guide therapeutic decision-making. These models utilize various clinical and
pathological factors, including tumor grade, stage, size, and presence of carcinoma in situ, to estimate
the probability of disease progression. However, it is known to clinicians that the three most relevant
risk factors for tumor progression are age, presence of multiple papillary tumours and a large tumour
diameter (> 3 cm) [45]. In recent years, there has been an increased interest in the development
and validation of these models, as they have the potential to improve patient outcomes and optimize
resource allocation in healthcare settings. However, there remains considerable variability in the per-
formance and applicability of these models, and further research is needed to enhance their accuracy
and utility in clinical practice.

2.3.1. Statistical model
Table A.19 shows the analysis conducted by López de Maturana et al. [40] on the time to first progres-
sion in patients diagnosed with non-muscle invasive bladder cancer. The dataset consisted of 1105
patients, and the features used for the analysis included area, age, number of tumors, tumor stage
and grade, number of recurrences, and treatment. The authors used a sequential threshold model
to analyze the data and predict the time to first progression, defined as the development of a muscle
invasive tumor or a metastatic disease, or death because of UCB, after a previous diagnosis of NMIBC.
This model is a type of regression analysis that involves adding variables to a model in a step-wise
manner until the performance can no longer be improved. This approach allows for the selection of the
most significant features and can improve the accuracy of the model. The performance of the algorithm
was evaluated using the area under the curve (0.76), indicating that the model’s predictive power was
moderate. The findings of the study suggest that the role of common SNPs is limited in predicting the
risk of recurrence in patients with NMIBC. The authors suggest that future studies should explore the
integration of other genetic variants to improve the predictive performance of the model.

2.3.2. Artificial neural networks
Qureshi et al. [17] aimed to predict the progression of cancer within 6 months using different features
including stage, grade, tumor size, tumor number, gender and EGFR status. The authors used an
Artificial Neural Network (ANN) implemented with NeuralWorks Professional II/Plus software, which is
a powerful tool that allows the user to customize the structure and parameters of the neural network to
optimize its performance. The model achieved a sensitivity of 0.7, specificity of 0.82, and accuracy of
0.8, indicating the possibility of effectively predicting the progression of cancer within 6 months. How-
ever, it is important to note that the performance metrics used in this study do not provide a complete
picture of the model’s performance and the data set size (212) is relatively small. The findings of this
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study suggest that EGFR status is the most important feature in predicting cancer progression within
6 months, which is clinically significant.

Table A.18 reports the study of Fujikawa et al.’s [42], which aimed to investigate the 15-year progres-
sion of NMIBC in a cohort of 90 patients. The study used tumor stage, grade, number of tumors, age,
gender, tumor architecture, and estimates of mean nuclear volume as features and a Bayesian neural
tool of SPSS Neural Connection 2.1 software as a model to predict the risk of tumor progression. The
performance of the model was evaluated in terms of sensitivity and specificity and resulted in 1 and
0.67, respectively. The findings of the study revealed that patients judged to have a favorable progno-
sis using ANN analysis did not progress within the 15-year follow-up period.The choice of the model,
Bayesian neural tool of SPSS Neural Connection 2.1 software, reflects the need to analyze the com-
plex relationship between multiple features to predict tumor progression accurately. Bayesian neural
networks have shown promising results as they can handle complex, noisy, and uncertain data. The
extremely high sensitivity score indicates that the model correctly identified all patients who progressed,
and the findings suggest that the model’s performance was satisfactory in predicting tumor progression.
However, the specificity score was low, indicating that the model had a high false-positive rate.

The study by Catto et al. [43] aimed to predict 80-month progression using a dataset of 117 patients.
The features implemented in the algorithm were tumor stage, tumor grade, age, gender, smoking ex-
posure, and previous cancers. An hybrid neural network that combined a fuzzy logic model trained
on subgroups defined by hierarchical clustering algorithm has been developed. The model’s perfor-
mance was evaluated using sensitivity, specificity, accuracy, and Area Under the Curve, which were
reported to be 0.88, 0.99, 0.94, and 0.99, respectively. The type of model selected is particularly useful
when dealing with complex and heterogeneous datasets, as it allows for the identification of different
subgroups of patients with similar clinical characteristics. The fuzzy logic model is used to predict the
outcome based on the input features, while the hierarchical clustering algorithm is used to define the
subgroups on which the fuzzy logic model is trained. This approach can lead to a more accurate and
reliable prediction, as it takes into account the heterogeneity of the patient population. The very high
performance achieved by the model, with an AUC of 0.99, suggests that the choice of the model was
appropriate for the task at hand. The high sensitivity and specificity values indicate that the model has a
high ability to correctly classify patients who will and will not experience progression. The small sample
size of 117 patients, with a test set size of only 10%, may limit the generalizability of the findings and
the results obtained. Overall, this study highlights the importance of carefully selecting the appropriate
model and features when developing prediction models for bladder cancer progression.

Abbod et al. [44] aimed to predict the 100-month progression of bladder cancer in a dataset of 117
patients. The features used in the model were stage, grade, age, sex, smoking exposure and previ-
ous cancers. Two models have been implemented: a neuro-fuzzy model (NFM) and a multi-layered
perceptron artificial neural network (ANN) with 15 hidden neurons, to predict the outcome. The NFM
achieved sensitivity of 0.88, specificity of 0.99, accuracy of 0.94, while the ANN achieved sensitivity of
0.81, specificity of 0.95, accuracy of 0.89. The choice of the model used to predict the outcome of the
disease is crucial for achieving high performance. The neuro-fuzzy model combines the advantages
of both fuzzy logic and neural networks allowing for more precise and flexible modeling of complex
systems. On the other hand, the multi-layered perceptron artificial neural network is a well-known and
widely used model in the field of machine learning. However, the results showed that the neuro-fuzzy
model outperformed the ANN in all the evaluation metrics. In terms of the findings, the study highlights
smoking exposure as a significant risk factor for advanced bladder cancer disease.

2.3.3. Combined model
Dovey et al. [37] conducted a study with the aim of predicting bladder cancer progression over 1, 2, 5,
and 10-year periods using a dataset of 395 patients. The study employed multifocality, tumor stage,
grade, and size as features in the algorithm to predict outcomes. The authors developed a simplified
model based on the EORTC and CUETO scoring systems by selecting only the most important fea-
tures which most impacted on the outcome prediction. The model’s performance was assessed using
the Area Under the Curve (AUC), which was found to be 0.88 for 1 and 2-year progression, 0.84 for
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5-year progression, and 0.82 for 10-year progression. Despite a decrease in AUC as the length of
the time period increases, the model’s performance remained consistently above 80%, indicating high
discriminatory power to differentiate between progressing and non-progressing patients for each out-
come. The study also found that the existing scoring systems, including EORTC and CUETO, tend to
underestimate recurrence in bladder cancer patients. As a result, molecular subtyping and genomic
classification are proposed as alternative approaches for future research. However, a limitation of the
study is the small data set size and relatively large proportion of low-risk NMIBC patients, which may
have introduced bias in the analysis of progression data.

2.3.4. Important features
Predicting the likelihood of progression from NMIBC is crucial for determining appropriate treatment
strategies. Clinicopathological data, including patient age, tumor size, and grade, have been used to
develop predictive models. In this section, we will try to identify the most important features for accurate
predictions reported by the different models previously analysed. Understanding the key predictors of
NMIBC progression can aid in the development of personalized treatment plans and improve overall
patient care.

Tumour size and grade have been found to be determining for the outcome prediction in [37] and [43].
Tumor size refers to the physical dimensions of the cancerous tissue within the bladder. In NMIBC,
tumor size is typically measured in centimeters and is often used to classify the cancer as either low-
grade or high-grade. Low-grade NMIBC tumors are typically smaller in size and have a lower likelihood
of progressing to muscle-invasive bladder cancer (MIBC), while high-grade tumors are larger and more
aggressive, with a higher likelihood of progression. Tumor grade refers to the degree of abnormality
of the cancer cells, which is determined by examining the cells under a microscope. In NMIBC, tumor
grade is classified as either low-grade or high-grade. Low-grade NMIBC tumors have cells that closely
resemble normal bladder cells, while high-grade tumors have cells that appear more abnormal and are
more likely to grow and spread quickly. Tumor grade is an important factor in determining the appro-
priate treatment for NMIBC and predicting the likelihood of progression.

Smoking exposure has been relevant in the analysis conducted by [43] and [44]. Smoking exposes
the bladder to carcinogenic compounds and increases the risk of DNA damage, which can lead to the
development of bladder cancer. Patients with a history of smoking may require more frequent follow-up
and surveillance to detect potential recurrence or progression of the cancer.

Additionally, epidermal growth factor receptor (EGFR) has been reported as key predictor in [17]. EGFR
is a protein that is present on the surface of many types of cells, including the cells that line the blad-
der. This protein plays an important role in cell growth and division and its overexpression has been
associated with the development and progression of many types of cancer, including non-muscle inva-
sive bladder cancer. For NMIBC, EGFR expression has been found to be higher in high-grade tumors
compared to low-grade tumors, suggesting a potential role in tumor aggressiveness and progression.

In order to predict the progression of NMIBC, a statistical method called sequential threshold model
has been employed by [40], achieving an AUC of 0.76 on 1105 patients included in the study. The
artificial neural network implemented by [17] on 212 patients showed good performance results, with
sensitivity, specificity and accuracy of 0.7, 0.82 and 0.8, respectively.
However, neuro-fuzzy modelling proved to be the best performing algorithm also for this outcome, even
with a small dataset size. [43] implemented a hybrid neural network that combines a fuzzy logic model
trained on subgroups defined by hierarchical clustering algorithm, attaining very high AUC and speci-
ficity of 0.99 and high accuracy and sensitivity of 0.94 and 0.88, respectively. Furthermore, also [44]
implemented neuro-fuzzy modelling on a cohort of 117 patients. A sensitivity of 0.88, specificity of 0.99
and accuracy of 0.94 proved the outstanding performances of this algorithm among the others.
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2.4. Overview of the models
The prediction of recurrence and progression of NMIBC can be a challenging task. Among the stud-
ies analysed in this review, neuro-fuzzy modelling proved to be the best performing algorithm. The
strength of this model lies in both the high performance achieved by the studies here presented and
the interpretative power of the model. Therefore, our analysis will start with the implementation of such
model. Furthermore, traditional machine learning techniques showedmoderate results in the prediction
of both outcomes. Ensemble trees structure in particular, have shown to provide a robust and accurate
predictions together with a high interpretive power of the learning process. Hence, five traditional ML
algorithms will be implemented, namely random forest, gradient boosting, support vector machine, de-
cision trees and extreme trees. Subsequently, an analysis of the tumour slides will be performed. The
aim of this analysis will be the extraction of important tumour-related features from the histopatologic
images. The variables will be added to the existing predictors in our data set in order to enhance the
reliability and accuracy of our forecasts.





3
Background

3.1. Data
In our study, both clinicopahtological data and histopatological images have been analyzed.

Clinicopathological data combine clinical and pathological information about the medical condition of a
patient. For instance, patient symptoms, medical history, physical examination findings, laboratory test
results, and pathological assessments are considered. Clinical data provide insights into the patient’s
status, such as age, gender, or smoking habits, and the clinical manifestation of the disease. Patho-
logical data involve the analysis of tissues, cells, or biological samples to identify characteristics of the
tumour.

Histopathological images are microscopic images of tissues or cells. Histopathology involves the prepa-
ration of thin slices of tissue, which are then stained using various techniques to enhance specific cel-
lular components or highlight certain pathological features. The stained tissue sections are placed on
glass slides and viewed under a microscope. Pathologists examine these type of images to identify
and characterize various aspects, for example cellular morphology or tissue architecture.

3.2. Neuro-fuzzy modelling
Neuro-fuzzymodelling is a computational model that combines the strengths of artificial neural networks
and fuzzy logic to create a hybrid intelligent system. This model integrates the learning capabilities of
neural networks with the reasoning and linguistic expressiveness of fuzzy logic, by using a layered
architecture of neurons.

3.2.1. Fuzzy logic
The fuzzy logic consists in a set of fuzzy rules. The rules are expressions of the form if A then B
where A and B are labels of fuzzy sets determined by membership functions. In our context, the fuzzy
sets involve only the first part. These are called Takagi and Sugeno’s fuzzy rules [52]. For instance,
the rules can be of the form if velocity is high, then force = k × (velocity)2.These expressions can be
valuable to employ a model in a clinical setting. In particular, the rules give insight into the way the
algorithm predicts the target variable. By following this approach, a clinician would be able to have a
prediction followed by a set of rules which can be further evaluated and validated. Transparency in the
reasoning behind algorithmic predictions significantly enhances the value of the predictions. It enables
clinicians to understand and follow the underlying thought process, thus instilling greater confidence in
the predictions made. Transparency allows clinicians to carefully inspect and confirm the reasoning.

Membership functions offer a more comprehensive representation than the traditional indicator function
for classical sets. In essence, these functions provide a means to quantify the degree or grade of
membership of an element to a fuzzy set. By employing membership functions, we can assign a
numerical value to indicate how strongly an element belongs to a particular fuzzy set, allowing for
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a more nuanced and flexible approach in handling uncertainties and vagueness. In contrast to the
binary nature of classical sets, membership functions enable us to express the varying degrees of
membership associated with elements in a set, facilitating a more realistic and versatile modeling of
complex systems.

3.2.2. Architecture
This neural network’s architecture is made up of five layers as presented in a simplified version in Figure
3.1.

Figure 3.1: Simplified neuro-fuzzy modelling architecture with two rules [46]

The first layer takes the input data, which are standardized and fed to themodel, and applies a Gaussian
membership function (Nij). The data consist of a n dimensional vector (xj) for each sample, where n
is the number of features. The output of the first layer will be Nij(xj), where i = 1, ...,m represent the
rules. Layer 2 is made of a total of m · n nodes, where m is the desired number of fuzzy rules. Every
node in this layer multiplies the inputs and sends the product to the next layer. To avoid overfitting of
the network, an optimal value of m = 2 · n has been chosen. The product is of the form

wi =

n∏
j=1

Nij(xi).

Each output represents the strength of the rule. In the third layer, the ith node computes the ratio of
the ith rule’s strength with respect to all the rules’ strength. That is, the output of this layer is

w̄i =
wi∑m
i=1 wi

.

Layer 4 consist of m nodes, where each node has a function fi. Here, the node function is multiplied
by the strength computed in layer 3 (w̄ifi) to be given as input for the last layer. The final layer, takes
as input the sum over all the nodes of the rules and applies a sigmoid function to generate the final
output [46]. Specifically, the output will be σ(X), where

X =

m∑
i=1

w̄ifi,

and
σ(x) =

1

1 + e−x

is the sigmoid function. Since our target variables are binary, if σ(X) > 0.5 we assigned label 1 to the
input, and 0 otherwise.
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3.3. ML models
3.3.1. Support vector machine
Support Vector Machine (SVM) is a prediction technique, rooted in statistical learning frameworks. With
a given set of labeled training instances, an SVM training algorithm constructs a model that assigns new
instances to one of two categories. It functions as a deterministic binary linear classifier. SVM maps
the training examples onto points in space to maximize the separation between the two categories.
Subsequently, new instances are projected onto the same space and classified based on which side
of the separation they fall on [53].

Consider n data points of the form (xi, yi) i = 1, ..., n, where each xi is a p-dimensional vector and
yi are either 1 or -1, indicating the class to which the point belongs. The algorithm aims at finding an
hyperplane that maximises the distance between the points. A generic hyperplane equation is given
by

wTx− b = 0,

where w is the normal vector to the hyperplane. Assuming that the data is linearly separable, it is possi-
ble to choose two hyperplanes to separate the two classes of data. These hyperplanes are described
by the following equations, for the positive and negative class respectively:

wTx− b = 1,

wTx− b = −1.

Since the distance between these planes is given by d = 2
||w|| , the goal is to minimize ||w||. In order to

avoid points in the margin between the two classes, the following costraints are imposed:

yi(w
Txi − b) ≥ 1 ∀i = 1, ..., n.

Hence, the objective of this method is to solve an optimization problem:

min ||w||22,

s.t. yi(w
Txi − b) ≥ 1 ∀i = 1, ..., n.

If the data are not linearly separable, SVM applies a hinge loss function, given by

Li = max(0, 1− yi(w
Txi − b)).

The new function to minimize will then be

λ||w||2 + 1

n

n∑
i=1

Li,

for the parameter λ > 0.

3.3.2. Decision Tree
A decision tree is a classification method represented as a recursive division of the instance space
[54]. The tree structure consists of nodes forming a directed tree with a ”root” node having no incoming
edges, and all other nodes having exactly one incoming edge. The internal nodes split the instance
space into sub-spaces based on specific discrete functions of the input attribute values. Typically, each
test at an internal node considers a single attribute, dividing the instance space according to its value.
Each leaf node is associated with a class representing the most suitable target value. To classify in-
stances, the decision tree is traversed from the root to a leaf based on the test outcomes along the
path. Decision trees can be visualized geometrically as a collection of hyperplanes, each orthogonal
to one of the axes, for numeric attributes. The tree complexity, which affects accuracy, is controlled by
stopping criteria and pruning methods. Common metrics to measure tree complexity include the total
number of nodes, leaves, tree depth, and number of attributes used.
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Consider a vector xi ∈ Rn i + 1, ..., l and a label vector y ∈ Rl, a decision tree divides the feature
space in a recursive manner, grouping together samples with identical or similar labels [55]. Suppose
at a node m the data are represented by Qm, with nm samples. A candidate split θ = (j, tm), which
consists of a feature j and treshold tm, partitions the dafa in a right and left subset, i.e. Qright

m (θ) and
Qleft

m (θ). Indeed we have
Qleft

m (θ) = {(x, y)|xj ≤ tm},

Qright
m (θ) = Qm \ Qleft

m (θ).

The quality of a possible split for a node m is given by the Gini impurity function.The Gini index is
a measure of impurity that quantifies the differences between probability distributions of the target
attribute’s values [54]. The objective is to select the variable θ that minimises the impurity, i.e. find θ∗

such that:
θ∗ = argminθG(Qm, θ),

where
G(Qm, θ) =

nleft
m

nm
H(Qleft

m (θ)) +
nright
m

nm
H(Qright

m (θ)),

H(Qm) =
∑
k

pmk(1− pmk) ,

and
pmk =

1

nm

∑
y∈Qm

I(y = k).

We can see that pmk is indeed the proportion of class k observations for the node m.

3.3.3. Ensemble Trees
The objective of ensemble methods is to enhance generalization and robustness compared to a single
estimator by aggregating the predictions of multiple base estimators constructed using the same learn-
ing algorithm. These algorithm are divided into two main categories: bagging and boosting methods.

Bagging methods
In ensemble algorithms, bagging methods belong to a group of algorithms that create multiple instances
of an estimator by using random subsets of the original training set. These individual predictions are
then combined to generate the final prediction. The purpose of these methods is to decrease the vari-
ance of a base estimator, such as a decision tree, by introducing randomness into its construction
process and forming an ensemble. Bagging methods offer a straightforward approach to improve over
a single model without requiring modifications to the underlying base algorithm. They are particularly
effective in reducing overfitting and are best suited for strong and complex models [56]. In this class,
random forest and extreme trees are perturb-and-combine methods, particularly tailored for trees. This
approach involves creating a diverse set of classifiers by introducing randomness during the construc-
tion of each classifier. The ensemble’s prediction is obtained by averaging the predictions made by the
individual classifiers (Figure 3.2).



3.3. ML models 16

Figure 3.2: Random forest algorithm [62]

Random forests utilize a specific approach where each tree in the ensemble is constructed from a sam-
ple drawn with replacement (bootstrapped sample) from the training set [56]. Additionally, during the
process of splitting each node while building a tree, the best split is determined either from all input
features or from a random subset of size max_features. The main purpose of introducing these two
sources of randomness is to reduce the variance of the forest estimator. Individual decision trees typi-
cally have high variance and are prone to overfitting. By injecting randomness into the construction of
the forests, the decision trees tend to have somewhat independent prediction errors. When averaging
the predictions of these diverse trees, some errors cancel out, leading to a reduction in variance. While
this may slightly increase bias, the overall model performs better due to the significant reduction in
variance, making random forests a practical and effective modeling technique.

In extreme trees, the level of randomness in split computation is taken a step further. Similar to random
forests, a random subset of candidate features is considered. Instead of seeking themost discriminative
thresholds, these are randomly generated for each candidate feature. From these randomly generated
thresholds, the best one is chosen as the splitting rule. This approach typically results in a slightly
greater increase in bias. However, it allows for a bit more reduction in the model’s variance. In essence,
the increased level of randomness in extremely randomized trees helps further decrease the model’s
variability, making it a useful trade-off for improved overall performance.

Boosting methods
Boosting is an ensemble meta-algorithm primarily used to reduce bias and also variance in supervised
learning. It belongs to a family of machine learning algorithms that aim to transform weak learners into
strong ones [57]. In this context, a weak learner is defined as a classifier that shows only a slight corre-
lation with the true classification. It can perform better than random guessing when labeling examples.
On the other hand, a strong learner is a classifier that demonstrates a high correlation with the true
classification, performing exceedingly well in making accurate predictions. Boosting assigns weights
to the outputs of each individual tree, with higher weights given to incorrect classifications from the first
decision tree as input to the next tree. Through multiple iterations, this method combines the weak
rules into a single, robust prediction rule with enhanced accuracy and power.

Consider a input data xi and a prediction ŷi. The prediction will be of the form

ŷi = FM (xi) =

M∑
m=1

hm(xi),

where hm are the weak learners estimators and M is the total number of estimators. Recursively, we
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can compute
Fm(x) = Fm−1(x) + hm(x).

To build a new fitted tree hm, the aim is to minimize a sum of losses Lm on the previous ensemble
Fm−1. Specifically,

hm = argminhLm = argminh

n∑
i=1

l(yi, Fm−1(xi) + h(xi),

where l(yi, F (xi)) is the log-loss function. Since we are dealing with a classification problem, the
mapping from the continuos value predicted by the trees to the class needs to be specified. For the
log-loss function, the positive class (y = 1) is modelled as

p(yi = 1|xi) = σ(FM (xi)),

where σ is the sigmoid function.

3.3.4. Permutation importance
Permutation feature importance is a method used to inspect and understand a fitted estimator. It is par-
ticularly valuable for models to have insights of the training procedure. In our context, this technique
is essential because a prediction without any insight into how the model reached its conclusions lacks
clinical relevance. This technique measures the impact of each feature on the model’s performance
by randomly shuffling the values of a single feature and observing the decrease in the model’s score
[57]. When the relationship between the feature and the target is broken by the shuffling, the drop in
the model’s score indicates how much the model relies on that specific feature. One of the significant
advantages of this technique is its model-agnostic nature, allowing it to be applied repeatedly with var-
ious permutations of the feature.

Given a predictive model m, a dataset D, and a number of repetitions K, the technique computes the
reference accuracy s of the model. Subsequently, each feature j is randomly shuffled to produce a
corrupted version of the dataset D̃jk for each repetition k ∈ K. The score sjk is then computed again
on D̃jk. Finally the importance of the feature j is defined by

ij = s− 1

K

K∑
k=1

sjk.

3.4. Image segmentation model: Stardist
Image segmentation is a widely employed method in digital image processing and analysis that in-
volves dividing an image into several parts or regions, relying on the characteristics of the pixels within
the image. Recent successful learning-based methods include segmenting cells at the pixel level and
then grouping them, or localizing bounding boxes and refining shapes subsequently [47]. However, in
crowded cell scenarios (Figure 3.3a), these approaches may encounter segmentation errors, such as
merging neighboring cells inaccurately or suppressing valid cell instances due to bounding box limita-
tions.

To overcome these problems, the model developed by [48] has been chosen. The approach consists of
localizing cell nuclei using star-convex polygons, which offer a superior shape representation compared
to bounding boxes and eliminate the need for shape refinement. Star-convex polygons are polygons
that contain a point from which the entire boundary is visible. For this purpose, a convolutional neural
network has been trained to predict a polygon for each pixel, representing the cell instance at that po-
sition. The distances (rki,j

n

k=1
) from each pixel indexed by (i, j) to the boundary of the object to which

the pixel belongs are regressed along a set of n predefined radial directions with equidistant angles
(Figure 3.3b). To make sure that the object contains pixels, only polygons with sufficient high object
probability (di,j) are considered (Figure 3.3b). The object probability is computed as as the normalized
Euclidean distance to the nearest background pixel. After obtaining polygon candidates along with
their corresponding object probabilities, non-maximum suppression (NMS) is conducted to obtain the
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ultimate set of polygons, where each polygon signifies an individual object instance [47] (Figure 3.3c).
NMS is a computer vision technique used to choose a singular entity from a set of overlapping entities.

Figure 3.3: Stardist model architecture [47]

3.5. Clustering technique: FlowSOM
FlowSOM is a clustering technique commonly used in flow cytometry analysis. It was developed as
an extension of Self-Organizing Maps (SOM), which is an unsupervised machine learning algorithm.
FlowSOM is specifically designed to handle high-dimensional data, where each cell is characterized
by multiple parameters. FlowSOM is often used to identify distinct cell populations.

The FlowSOM pipeline is depicted in Figure 3.4. After reading the data, the algorithm consists of three
additional steps: the creation of a self organising map, the generation of a minimal spanning tree and
the computation of a meta-clustering result [49].
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Figure 3.4: FlowSOM pipeline [49]

A self-organizing map (SOM) is an unsupervised method used for both clustering and dimensionality
reduction. It involves training a specific type of artificial neural network on a discretized representation
of the input space. Furthermore, a significantly larger number of clusters compared to the anticipated
cell types are employed. This approach also reveals information about subpopulations that might have
been overlooked during the initial manual gating process. The self organising maps algorithm starts
with the creation of a grid of nodes, in which each node represents a point in the multidimensional input
space. The grid is trained in a manner where nodes in close proximity exhibit greater resemblance
to each other compared to nodes connected by a longer path [49]. The algorithm starts by randomly
initiate the node weight vectors in the map, and randomly picking an input vector V from the nuclei
dataset, with index v. Later, each node in the map is traversed and the euclidean distance between V
and the map’s node weight vector is computed. The node that has the smallest distance to V is called
best matching unit (BMU), with index u. Thus, the weight vectors (W ) of the nodes in the proximity of
BMU are updated by pulling them closer to the input vector. Specifically, for each iteration s,

Wv(s+ 1) = Wv(s) + θ(u, v, s)α(s)(V −Wv(s)),

where α is the learning rate and and θ is a restraint due to the distance to the BMU.

The result of the self organising map can be analysed in a minimal spanning tree (MST). An MST is
a subset of the edges in a connected, edge-weighted graph that links all the vertices together without
forming any cycles and has the lowest total edge weight possible. As a result, the nodes of the SOM
grid are connected to the ones they are the most similar to, taking the multidimensional topology of the
data into account [49].

3.6. Metrics
In order to evaluate the performance of our predictive models, we have employed five evaluation met-
rics. These metrics include accuracy, F1 score, AUC, sensitivity, and specificity. Accuracy is a widely
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used metric that measures the overall correctness of our predictions. It represents the proportion of
correctly predicted instances out of the total number of instances in our dataset. A higher accuracy
score indicates that our model has made more correct predictions, while a lower accuracy score sug-
gests that our model’s predictions are less reliable. The F1 score is a measure of the model’s accuracy,
particularly in cases where the dataset is imbalanced. It considers both precision and sensitivity to pro-
vide a more balanced evaluation. Precision calculates the ratio of correctly predicted positive instances
to all instances predicted as positive, while recall measures the ratio of correctly predicted positive in-
stances to the actual number of positive instances. The F1 score combines these two measures to
give a comprehensive assessment of our model’s performance. The AUC is a metric commonly used
in binary classification tasks. It measures the model’s ability to distinguish between positive and nega-
tive instances by plotting the true positive rate against the false positive rate. The AUC score ranges
from 0 to 1, where a score closer to 1 indicates a model with better discriminative ability. Sensitivity
measures the proportion of actual positive instances correctly identified by our model. It is particularly
useful in scenarios where identifying positive instances is crucial. A high sensitivity score indicates that
our model has a lower chance of missing positive instances. Specificity represents the proportion of
actual negative instances correctly identified by our model. High specificity suggests that our model
has a lower chance of incorrectly labeling negative instances as positive.

The presentation of the results is accomplished through the use of boxplots. A boxplot is a statistical
visualization tool that provides a concise summary of the distribution of a dataset. It consists of a box
that represents the interquartile range (IQR), which encapsulates the middle 50% of the data. Within
the box, a line is drawn to indicate the median, which represents the central tendency of the dataset.
Extending from the box, whiskers are drawn to capture the range of the data. The length of the whiskers
is 1.5 times the IQR. Any data points falling beyond the whiskers are considered outliers and are plotted
individually as distinct points, showed as black circles.





4
Methods

4.1. Experimental setup
In order to conduct the experiments, both clinicopathological data and histopatological images were
available at Erasmus MC. Three different analysis have been performed. The first two consisted in the
use of only clinicopathological data and only histopatological images, followed by an integrated study
of both cinical and image-related features.

The flow diagram of the study is depicted in Figure 4.1. The initial phase of our process involved gather-
ing clinicopathological data and histopathological images. To facilitate analysis, we divided the images
into smaller sections known as patches and conducted segmentation to detect individual cell nuclei
within these patches. Subsequently, a variety of features were extracted from the identified nuclei,
and clustering techniques were applied to group them together, resulting in the creation of a dataset
specifically focused on image-related features. In the subsequent stage, the image-derived dataset
was integrated with the clinicopathological data, merging the information obtained from both sources.
This merged dataset, containing a combination of image-related features and clinicopathological data,
was then used as input for multiple classifiers. To gain insights and make predictions, we ran vari-
ous algorithms on the integrated dataset. These classifiers employed different techniques to analyze
the data and make predictions based on the available features. Additionally, we performed variable
importance analysis, which helped identify the most influential features in the prediction process. By
determining the relative importance of each variable, we gained valuable insights into which factors
were most critical for accurate predictions.

Figure 4.1: Flow diagram of the study
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4.1.1. Clinicopathological data
A collection of tumor samples was gathered from patients with high risk non-muscle invasive bladder
cancer who had undergone at least five or six initial treatments of BCG between 2000 and 2018. These
samples were obtained from six different hospitals, including five in the Netherlands (Erasmus Univer-
sity Medical Center Rotterdam, Franciscus Gasthuis and Vlietland Rotterdam, Amphia Breda, Haga
and Reinier de Graaf Gasthuis, Delft) and one hospital in Norway (Stavanger University Hospital). The
inclusion of diverse patient cohorts enhances the generalizability and robustness of our findings.

The initial group comprised 1134 patients with High Risk Non-Muscle Invasive Bladder Cancer (HR-
NMIBC). Patients who did not receive a sufficient number of BCG instillations and those who were
diagnosed with Muscle Invasive Bladder Cancer (MIBC) during follow-up were excluded. The dataset
encompassed patient information from diverse cohorts and was originally stored in SPSS, a widely
used statistical software for data management and analysis. In order to consolidate the data from dif-
ferent sources, we merged the datasets into a single Excel file.

Nine features were derived from the clinicopathological data and used as predictors for the models.
These include age, gender, smoking status, number and size of the tumours, presence of concomitant
CIS, stage and grade of the tumours and history of cancer, according to previous studies’ findings [9]-
[45].

4.1.2. Histopatological images
For our study, the stained slices have been scanned using a whole-slide imaging scanner at high resolu-
tion (x80 magnifications). Image patches were extracted from whole slide images at 40X magnification
level, with 512X512 pixel size with 25% overlap. The extraction process has been performed using
the algorithm developed by [59]. This tissue segmentation algorithm divides the whole slide images in
smaller patches, and classifies the patches based on the type of tissue. In order to perform our anal-
ysis, we automatically selected patches that contained urothelium tissue while excluding those that
consisted of muscle, stroma, damaged tissue, or blood.

In order to maintain the impartiality of our image selection process, we excluded the WSI that had been
punched. This measure was taken to eliminate any potential bias in our selection, ensuring that all
chosen images remained unaltered and representative of the entire cohort. Additionally, by avoiding
the inclusion of punched images, we aimed to prevent any chance of eliminating regions within the
tissue that may contain the highest grade or stage information.

4.2. Segmentation model
In order to segment the image patches, we employed the Stardist algorithm, which is explained more in
detail in Section 3.4. The images underwent initial preprocessing by converting them to black and white
scale. This conversion is essential in improving the contrast between different structures and objects in
the H&E stained images. As a result, segmentation becomes more precise as the varying intensities in
different regions are more apparent. By simplifying the color complexity of the H&E stained image, the
conversion to black and white reduces data dimensionality, consequently facilitating the identification
and segmentation of specific structures or objects based on intensity variations.

The ground truth for 200 H&E stained images have been created using Qupath, an open source soft-
ware for bioimage analysis. This step was essential as it provided us with a reliable benchmark against
which we could measure the accuracy of the segmentation results. By establishing a ground truth, we
were able to effectively determine the extent to which the segmentation algorithm correctly identified
and delineated the desired areas within the images. With these ground truth at hand, we run the pre-
trained model named 2D_versatile_he, developed by [49]. In a later stage, the convolutional neural
network (CNN) was retrained over the course of 400 epochs, utilizing 160 images and labels for train-
ing purposes. The performance of the retrained model was then evaluated on the remaining 20% of
the labeled images. The evaluation of segmentation performance is conducted based on various met-
rics, considering the Intersection over Union (IoU) threshold τ . This threshold determines the minimum
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overlap required between the ground truth and predicted boxes for a prediction to be considered a true
positive.

4.2.1. Nuclei features extraction
Once the images have been segmented, hundreds of millions of cell nuclei have been detected by the
algorithm in the whole image cohort. Therefore, features related to the morphology of the nuclei have
been extracted to gain information with prognostic value for our analysis. This process has been per-
formed using a popular image processing library named scikit-image [60]. The images are represented
as NumPy arrays, with 512 rows and 512 columns. Each value of the array represents a pixel in the
original image.

The algorithm works by creating bounding box (blue lines in Figure 4.2), that include any detected
object. Afterwards, information such as the area, perimeter, eccentricity or solidity of the object are
computed and stored in a dataframe. Hence, we gave the images we segmented using Stardist to the
model and a total number of 22 features have been computed for each detected nuclei. Additionally,
we kept track of the position of the nuclei inside the patch, and of the position of the patch inside the
whole slide image. In this way, we were able to trace back to the exact position of the indentified object
in the original image.

Figure 4.2: Example of features extraction
https://scikit-image.org/docs/stable/_images/sphx_glr_plot_regionprops_001.png

Nevertheless, the process of analyzing thousands of nuclei per patient presents a further challenge.
The abundance of data renders it impractical to utilize all the nuclei for classifying a patient’s clinical
outcome. To address this issue, we devised various strategies aimed at selecting a representative
subset of nuclei for each patient, enabling meaningful analysis. One approach involves computing the
average value of the features across all the nuclei for each patient. However, this method is not advis-
able due to its sensitivity to outliers and the potential bias introduced by artifacts. The average values
may not accurately represent the majority of cells, leading to skewed results and misinterpretations.
To overcome these limitations, we turned to an advanced clustering technique that has demonstrated
promising results in the field of biology. This methodology allows us to group nuclei based on their
similarity, capturing underlying patterns and facilitating the identification of representative clusters. By
selecting representative nuclei from these clusters, we created a more condensed and meaningful
dataset for each patient. Employing clustering techniques enhances our ability to identify distinct sub-
groups of cells with shared characteristics, potentially related to specific disease subtypes or clinical

https://scikit-image.org/docs/stable/_images/sphx_glr_plot_regionprops_001.png
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outcomes. This approach enables us to capture the heterogeneity within the patient cohort, while also
providing a more manageable dataset for subsequent analysis.

4.3. Clustering technique
After segmenting the image patches, we obtained a dataset for each patient, with each row representing
information about a single cell nucleus detected. However, our objective was to generate an integrated
dataset that combines clinicoapathological data with image-related features. Therefore, we needed to
aggregate the datasets to derive representative values for each patient. Hence, our approach was to
cluster the cells nuclei together in groups with similar characteristics and to count for each patient the
proportion of cells belonging to each different cluster. The clustering algorihtm chosen was FlowSOM,
a two-level clustering technique based on self-organising maps, as it showed promising results in the
analysis of cells markers [49]. The algorithm is presented in detail in Section 3.5.

Even if SOM can already be used to get a clustering, it gets advantageous to include more nodes
in the grid than the expected number of clusters. Furthermore, the expected number of clusters of
urothelium cells nuclei is unknown before-hand since this technique has never been used before. To
overcome this problem, the node centers of the clusters are clustered together in this step to create
meta-clusters. This second clustering approach is made by hierarchical clustering, as it provides de-
tailed information about which observations are most similar to each other. This approach operates
through multiple subsampling iterations of the points, performing hierarchical clustering for each sub-
sample. The final clustering is determined by assessing how frequently the same points are grouped
together or not across these iterations. The optimal number of meta-clusters is derived by the analysis
of the dendrogram, an unbiased diagram that shows the hierarchical relationship between objects. By
performing these steps, we were able to derive a final optimal number of meta-clusters that subdivided
our nuclei population in smaller groups.

4.4. AI models
An artificial neural network called neuro-fuzzy modelling has been developed as a result of our system-
atic review study. The algorithm is explained in detail in Section 3.2. In addition, five machine learning
models have been implemented, namely random forest, gradient boosting, support vector machine,
decision tree and extreme trees. These traditional techniques fall under the category of supervised
learning, where the data at hand comprises labeled instances, implying that each data point includes
both features and a corresponding label. The algorithms are presented in Section 3.3.

4.4.1. Neuro-fuzzy modelling
We considered Gaussian membership functions, as they reported the highest performances in [41].
The function has the standard Gaussian form:

N(x) =
1

σ
√
2π

e−
(x−µ)2

2σ2

where σ2 is the variance and µ is the mean. Both σ and µ are trainable parameters, randomly initialised.

To achieve the optimal final classification, a binary cross entropy loss function has been selected for the
neural network. This particular choice was made due to its ability to effectively handle binary classifica-
tion problems, ensuring accurate predictions. To ensure efficient optimization of the loss function, an
Adam optimizer with a learning parameter of α = 0.01 was employed. The Adam optimizer is renowned
for its capability to adaptively tune the learning rate during the training process, facilitating effective con-
vergence to an optimal solution. Moreover, to prevent overfitting, an L1 regularization parameter was
thoughtfully included in the objective function. This regularization technique aids in constraining the
neural network’s weights during the training process, enhancing the generalization in the test set. With
the L1 regularization parameter embedded in the objective function, the network is able to learn rep-
resentations from the data while minimizing the impact of noise or outliers. Additionally, to assess the
model’s performance and ensure its robustness, a 10-fold cross validation technique was performed.
This involved dividing the available dataset into ten different subsets or folds, with the training and
testing operations repeatedly conducted for each fold. This approach aids in obtaining a more reliable
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estimation of the model’s performance, reducing the likelihood of any biased assessment or accidental
inconsistencies.

4.4.2. Machine learning models
In our study, we conducted an extensive hyperparameter tuning search to optimize the performance
of our models. This process involved systematically exploring various parameters related to the con-
struction of the models. One of the crucial parameters we focused on was the number of estimators,
which refers to the number of trees in the ensemble. By fine-tuning this parameter, we aimed to find
the optimal balance between underfitting and overfitting. Increasing the number of estimators may en-
hance the model’s performance; however, too many estimators can lead to an overcomplicated model
that fails to generalize well to unseen data. Additionally, we optimized the maximum depth parameter,
which determines the maximum number of levels that a decision tree can possess. A deeper tree can
capture more intricate patterns in the data, but it may also learn from the noise in the data. Moreover,
we explored the maximum number of features per split, which defines the number of features consid-
ered when searching for the best split at each internal node. By experimenting with this parameter, we
aimed to control the tree’s diversity and avoid potential biases caused by specific features dominating
the splitting process.

Through this extensive hyperparameter tuning search, we aimed to optimize the performance of our
models by carefully selecting values for parameters such as the number of estimators, maximum depth,
minimum sample split, and maximum number of features per split. By making informed choices about
these parameters, we aimed to achieve models that accurately capture complex relationships in the
data while avoiding overfitting and improving generalization capabilities.

To conduct the variable importance analysis, we have employed a permutation importance algorithm.
In order to ensure the reliability and accuracy of our findings, we have opted for a substantial number of
permutations. Specifically, we have chosen a large value of K = 1000 permutations for each variable.
This high number of permutations allows for a comprehensive exploration of the possible variable com-
binations and their subsequent impacts on the analysis. Hence, it is possible to derive more accurate
and trustworthy variable importance analysis results.

4.4.3. Implementation
This study was implemented using the Python programming language, leveraging key libraries such
as TensorFlow and Scikit-learn. In addition, the NumPy and Pandas libraries were utilized to handle
numerical computations and data manipulation, respectively. The code developed for this study is
available for further analysis within Erasmus MC, facilitating future research.





5
Results

5.1. Dataset
The final analysis comprised a total of 900 patients after applying four exclusion criteria. For a visual
representation of the exclusion criteria and patient selection process, refer to Figure 5.1, which illus-
trates the CONSORT chart. This chart provides a clear overview of the steps taken to arrive at the final
cohort.

Figure 5.1: CONSORT chart of clinicopathological data cohort

A summary overview of the dataset, presented in Table 5.1, provides insights into the patient demo-
graphics and characteristics. The dataset was randomly partitioned into training and test sets using an
80-20% split ratio. The cohort was primarily composed of male individuals, with advanced age and a
high prevalence of smokers. It is worth noting that the median follow-up period for the patients included
in the dataset was 60 months. This duration of observation allows for a comprehensive evaluation
of patient outcomes, including disease progression, recurrence, and other relevant clinical endpoints.
Moreover, Table A.1 presents an overview of the training set. It can be noticed that the percentages
remain consistent even after the split into train and test subsets. This finding ensures an unbiased
selection process.
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Clinical Parameter Subgroup All BCG treatment Progression HG recurrence
Responders Failure Yes No Yes No

ALL 900 659 (73%) 241 (27%) 132 (15%) 768 (85%) 144 (16%) 756 (84%)
Male 723 (80%) 523 (72%) 200 (28%) 110 (15%) 613 (85%) 119 (16%) 604 (84%)Gender Female 177 (20%) 136 (77%) 41 (23%) 22 (12%) 155 (88%) 25 (14%) 152 (86%)

Age (years) Median (min-max) 72 (32-100) 72 (32-98) 73 (45-100) 72.5 (41-92) 72 (32-100) 73 (45-92) 72 (32-100)
Yes 552 (61%) 401 (73%) 151 (27%) 75 (14%) 477 (86%) 84 (15%) 468 (85%)Smoking No 348 (39%) 258 (74%) 90 (26%) 57 (16%) 291 (84%) 60 (17%) 288 (83%)

Size (cm) ≤ 3 832 (92%) 607 (73%) 225 (27%) 122 (15%) 710 (85%) 134 (16%) 698 (84%)
> 3 68 (8%) 52 (76%) 16 (24%) 10 (15%) 58 (85%) 10 (15%) 58 (85%)
Tis 96 (11%) 70 (73%) 26 (27%) 12 (13%) 84 (87%) 16 (17%) 80 (83%)
Ta 317 (35%) 255 (80%) 52 (20%) 45 (14%) 272 (86%) 36 (11%) 281 (89%)Staging
T1 487 (54%) 334 (69%) 153 (31%) 75 (15%) 412 (85%) 92 (19%) 395 (81%)

Grading

G1L 15 (2%) 13 (87%) 2 (13%) 0 (0%) 15 (100%) 1 (7%) 14 (93%)
G2L 40 (4%) 32 (80%) 8 (20%) 9 (23%) 31 (77%) 3 (8%) 37 (92%)
G2H 58 (6%) 46 (79%) 12 (21%) 13 (22%) 45 (78%) 5 (9%) 53 (91%)
G3H 787 (87%) 568 (72%) 219 (18%) 110 (14%) 677 (86%) 135 (17%) 652 (83%)
Yes 47 (5%) 31 (66%) 16 (34%) 21 (45%) 26 (55%) 7 (15%) 40 (85%)Concomitant CIS No 853 (95%) 628 (74%) 225 (26%) 111 (13%) 742 (87%) 137 (16%) 716 (84%)

History of cancer Yes 202 (22%) 157 (78%) 45 (22%) 27 (13%) 175 (87%) 29 (14%) 173 (86%)
No 698 (77%) 502 (72%) 196 (28%) 105 (15%) 593 (85%) 115 (16%) 583 (84%)

Single 382 (42%) 294 (75%) 88 (25%) 35 (17%) 347 (83%) 52 (14%) 330 (86%)Number of tumors Multiple 280 (31%) 194 (69%) 86 (31%) 29 (10%) 251 (90%) 58 (21%) 222 (79%)
Follow-up (months) Median (min-max) 60 (2-228) 72 (2-228) 60 (7-204) 48 (7-180) 72 (2-228) 48 (3-180) 72 (2-228)

Table 5.1: Dataset overview

Whole-slide images obtained from patients who were excluded based on clinical considerations were
omitted from the analysis. Finally, we also excluded images that exhibited punching artifacts. The
CONSORT chart of the exclusion criteria is presented in Figure 5.2.

Figure 5.2: CONSORT chart of WSI cohort

As a result, a total number of 581 whole slide images have been included. For each patient, one
or multiple slides were available. The final number of slides included correspond to 504 HR-NMIBC
patients.

5.2. Image segmentation
In order to analyze the gigapixel whole slide images, we employed a methodology inspired by the
technique described by [59]. This involved subdividing the large images into smaller patches that
specifically contained urothelium tissue. The resulting output consisted of thousands of small patches,
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each measuring 512 x 512 pixels, which were subsequently available for segmentation. To establish a
reference for evaluating the segmentation model, we created a ground truth dataset consisting of 200
images. This ground truth served as a benchmark against which we could assess the performance of
the segmentation model. An example of ground truth can be found in Figure 5.3.

Figure 5.3: Example of an image patch (left: image patch, right: ground truth created)

For this purpose, we utilized the pretrained model named 2D_versatile_he, developed by [49]. How-
ever, the initial results obtained from applying the pretrained model, presented in Figure B.1, were
not satisfactory for accurate segmentation. The model exhibited an accuracy level of approximately
60%. As a result, we made the decision to undertake retraining of the model using our own images
and corresponding ground truth data. This approach aimed to enhance the model’s performance. The
outcomes of this retraining process are presented in Figure 5.4, which showcases the improved perfor-
mance achieved by the CNN. By retraining the model using our own dataset and ground truth labels,
we were able to enhance the accuracy and segmentation performance.

Figure 5.4: Performances of nuclei segmentation with Stardist

The evaluation of segmentation performance is conducted based on various metrics, considering the
Intersection over Union (IoU) threshold τ . Through careful analysis, we determined that an optimal
value of τ = 0.46 yielded the optimal segmentation results. At this threshold, the segmentation exhibited
high performance metrics, along with a low number of false positives and false negatives. The F1 score,
a measure of the model’s accuracy, reached 87%, indicating the overall balance between precision and
recall. The precision was measured at 88%, while the recall stood at 85%. Therefore, we saved the
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weights and biases of the model. This enabled us to apply the trained algorithm to segment the entire
cohort of images, providing comprehensive and accurate segmentation across the dataset. As a visual
representation of the segmentation output, Figure 5.5 showcases an example of an image that has
been segmented using the retrained model.

Figure 5.5: Example of segmentation with Stardist (left: original image, right: segmented image)

The employed technique successfully facilitated the detection of the cells nuclei within the patches. To
avoid the detection of lymphocites and other immune cells, we set a minimum treshold for the area of
25µm2, as around 97.5% of the nuclei were found to be smaller than the treshold [61]. Following the
segmentation process, we computed a total of 22 features for each detected object. These features
encompassed a range of key properties, including area, perimeter, eccentricity, solidity, and various
others. Each of these features provided valuable insights into the morphology and characteristics of
the nuclei. To organize and capture the information pertaining to the nuclei morphology, we created
a dataframe for each image and each patient. This dataframe contained the computed features as
individual columns. The inclusion of multiple features provided a rich set of information, enabling a
detailed characterization of the nuclei properties within each image and patient.

5.3. Clustering
The underlying concept of our approach involves grouping nuclei with similar characteristics, enabling
us to analyze and interpret their collective behavior. To achieve this, we adopted the FlowSOM clus-
tering technique, which facilitated the aggregation of the millions of cell nuclei features that had been
extracted. Initially, we trained a self-organizing map (SOM) on the unlabeled data, resulting in the cre-
ation of a 10 x 10 grid of nodes. Each node within the SOM grid represented a distinct cluster, grouping
together nuclei that exhibited similar properties or feature patterns. This process allowed us to capture
and define the heterogeneity present within the dataset. Subsequently, we constructed a minimum
spanning tree (MST) on top of the SOM grid. The MST is a graph that connects the nodes of the
SOM grid, highlighting the relationships and similarities between different clusters. The resulting MST
graph provides a visual representation of the interconnections and structure of the clusters, enabling
us to better understand their associations and dependencies. Figure 5.6 illustrates the resulting MST
graph. The visualization displays each node of the original SOM grid. To provide further information, an
additional colored circle surrounds each node, representing the meta-cluster to which it belongs. The
angles represent the mean cluster values of each node in star charts.
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Figure 5.6: Minimum spanning tree

The objective of this particular step is to establish connections between nodes in the grid that exhibit
similarity in order to construct a tree-like structure. This structure is designed to minimize the distances
between the connected nodes, enhancing the representation of their relationships. Upon examination
of the resulting tree structure, it becomes apparent that the majority of nodes are concentrated in the
right portion of the tree. As one traverses towards the left on the tree, the number of nodes progres-
sively decreases. This observed trend signifies a potential clustering pattern or organization within the
data, with more closely related nodes clustered on the right side of the tree. The clustering of nodes in
the right region of the tree suggests the presence of groups that share similar characteristics or prop-
erties.

The last step of our technique involves the creation of meta-clusters based on the structure obtained
from the previous steps. Meta-clustering involves generating clusters from a diverse set of individual
clusterings, integrating the information obtained from various sources. To achieve this, we employ a
hierarchical clustering algorithm, which enables the formation of cohesive groups based on the relation-
ships identified within the data. Determining the appropriate number of clusters for the meta-clustering
step poses a challenge, as the expected number is unknown a priori. To address this, we implemented
an unbiased technique known as the dendrogram. The dendrogram is a graphical representation that
depicts the hierarchical relationships between objects, with the heights of the branches reflecting the
distances between the clusters. The dendrogram serves as a valuable tool for selecting the optimal
number of clusters in a data-driven manner. By visually analyzing the dendrogram, we can identify
distinct branches or levels where the distances between clusters exhibit significant changes. These
points of variation indicate potential divisions into separate meta-clusters. Figure 5.7 presents the den-
drogram diagram, providing a visual representation of the hierarchical relationship between the clusters.
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Figure 5.7: Dendrogram

Upon examination of the dendrogram, a crucial step in determining the optimal number of meta-clusters
is to identify the highest vertical gap that remains unobstructed by any horizontal line. In this particular
dendrogram, we observe such a vertical gap that ranges between y=0.63 and y=0.73. By counting the
number of vertical lines that cross this gap, we can deduce the optimal number of meta-clusters to be
ten. Specifically, we find that ten vertical lines intersect this vertical gap, indicating that this number of
clusters provides the most meaningful and distinct divisions within the dataset. This approach, based
on the identification of the highest unobstructed vertical gap, ensures an unbiased determination of the
optimal number of meta-clusters. By leveraging this method, we can establish the appropriate number
of clusters to accurately capture the underlying structure and heterogeneity within the dataset.

In Figure 5.8, we showcase the final distribution of cells among the ten distinct clusters obtained through
our analysis. To facilitate visualization, the y-axis is presented in a logarithmic scale. Each bar within
the plot represents the percentage of the total number of cells attributed to each respective cluster. A
noteworthy observation is that Cluster 1 encompasses the largest majority of cells, indicating a promi-
nent representation within the dataset. The second cluster comprises approximately 9% of the total
number of nuclei, signifying a significant but smaller proportion compared to Cluster 1. All the remaining
clusters, contain less than 1% of the total number of cells, highlighting their relatively smaller presence
within the dataset.
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Figure 5.8: Cells distribution among the clusters

Following the clustering analysis, we proceeded to calculate the percentage of cells assigned to each
cluster for every individual patient. This computation provided us with a quantitative measure of the
distribution of cells among the different clusters for each patient. These percentages, representing the
relative contribution of each cluster, served as new features for subsequent analysis. By incorporating
these features alongside the clinicopathological data, we aimed to create an integrated dataset that en-
compassed both cellular information and relevant clinical variables. This integrated dataset, combining
the clinicopathological data with the cluster centroid features, allowed us to perform a comprehensive
analysis that considered both the cellular composition and the clinical context.

5.3.1. Clusters analysis
In our study, we employed a clustering technique to partition the cohort of cell nuclei into ten distinct
clusters, aiming to achieve an optimal subdivision. This clustering analysis allowed us to uncover un-
derlying patterns and groupings within the dataset. Figure 5.9 visually presents a normalized heatmap,
showcasing the most relevant nuclei features for each cluster. In the heatmap, each row corresponds
to a different feature, while the clusters are represented as columns. The intensity of the color reflects
the magnitude of the feature value, with brighter colors indicating higher values. Upon closer examina-
tion, it becomes evident that clusters 8, 9, and 10 consistently exhibit the highest values across various
features. However, it is noteworthy that the eccentricity of the nuclei exhibits a reversed pattern. Sur-
prisingly, cluster 2 outperforms other clusters in terms of eccentricity, ranking first among them. This
finding highlights the distinctive nature of cluster 2 in terms of nuclei eccentricity, suggesting its potential
significance in capturing specific cellular characteristics.
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Figure 5.9: Heatmap of all the clusters

Figure 5.10 presents a boxplot depicting the distribution of nuclei area across the various clusters. Of
particular interest is cluster 9, which has shown great promise in our analysis. Notably, the boxplot
reveals that the nuclei within cluster 9 exhibit larger areas compared to almost all other clusters. This
observation suggests that cluster 9 contains a subgroup of cells characterized by larger nuclear sizes.
Examining the overall distribution, we observe that the majority of cells, predominantly grouped within
cluster 1, tend to have smaller nuclei areas compared to other clusters. In other words, the analysis
indicates that a significant portion of the cells present in the dataset are relatively small in size. Con-
sequently, the area of the nuclei emerges as one of the most distinguishing factors contributing to the
clustering process.

Figure 5.10: Boxplot of area
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An additional crucial feature to analyze is the eccentricity of the cells. Eccentricity measures the extent
to which a curve deviates from the circularity of the given shape. Values closer to zero indicate a more
circular object, while higher values signify a greater elongation of the object. Figure 5.11 displays the
distribution of this feature across the clusters in our cohort. Upon examination, it becomes apparent
that cluster 1, which is also regarded as one of the most promising clusters in terms of predictive per-
formance, exhibits higher eccentricity values within the interquartile distribution. This finding suggests
that the cells within this cluster possess a greater elongation compared to other cell types.

Figure 5.11: Boxplot of eccentricity

As a final step in our analysis, we sought to investigate whether there were any statistical differences in
the distributions of cells among clusters for different patients. Specifically, we divided the patient cohort
based on different endpoints (e.g., progressors versus non-progressors) and examined whether the
nuclei features exhibited any variations between these two groups. Surprisingly, this analysis did not
reveal any significant differences, suggesting that the types of cells within each cluster are generally
similar across different patients. To further explore potential distinctions among patients, we turned
our attention to the abundance of cell types within each group. We once again divided the patients
based on the endpoints and calculated the distribution of cell type abundances. Figure 5.12 provides
an example of the abundance distribution for cluster 10. The y-axis indicates the amount of cells. We
can observe that progressors tend to exhibit a slightly higher percentage of cells belonging to cluster
10 compared to non-progressors. However, it is important to note the presence of outliers and the
similarity in the distribution of cell abundances. These factors limit the strength of these findings and
indicate that further investigation is warranted to draw definitive conclusions.
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Figure 5.12: Boxplot of abundance for cluster 10

5.4. Machine learning models performance
To predict the binary endpoints of progression, BCG failure, and HG recurrence, we employed six dif-
ferent classifiers. These classifiers were designed to analyze the dataset and make predictions based
on distinct features and algorithms. In order to assess the performance of these models, we utilized
five commonly used statistical metrics that evaluate the models’ ability to accurately classify patients.
To establish a baseline for comparison, we initially conducted an analysis using only clinicopathological
data from a subset of 504 patients. This baseline analysis served as a reference point to gauge the
effectiveness of subsequent models. Our goal was to improve upon these baseline results using alter-
native approaches: utilizing image features alone, integrating image features with clinicopathological
data, and expanding the analysis to include the entire cohort of 900 patients. Comprehensive tables
displaying the performance metrics for all the models can be found in Tables B.1 to B.12. These tables
provide a detailed overview of the models’ performance, enabling a comprehensive comparison of their
respective abilities to accurately classify patients. Among the different classifiers employed, the ran-
dom forest model consistently demonstrated superior performance, exhibiting high discriminative ability
across all the evaluated metrics. This model showcased promising results in accurately predicting the
binary endpoints of progression, BCG failure, and HG recurrence. The robustness and effectiveness
of the random forest model make it a valuable tool for classification tasks within this dataset.
The prediction of BCG failure yields a baseline performance of approximately 70% across the consid-
ered metrics, as demonstrated in Table 5.2. Similarly, employing only image-related features produces
comparable results. However, notable enhancements can be observed when utilizing the integrated
dataset comprising clinicopathological data and image-related features as input. The analysis incorpo-
rating clinicopathological data for the entire cohort leads to a slight decrease in the metrics.
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Table 5.2: BCG failure

Model Method Accuracy F1 score AUC Sensitivity Specificity

RF Clinical data
(n=504)

0.70 0.72 0.70 0.77 0.63

RF Image features
(n=504)

0.69 0.71 0.69 0.75 0.65

RF Clinical data and
image features

(n=504)

0.77 0.77 0.77 0.80 0.73

RF Clinical data
(n=900)

0.66 0.68 0.66 0.71 0.61

Table 5.3 showcases the performance of the random forest model in predicting disease progression.
The initial baseline analysis exhibits similar performance to that of BCG failure. Nevertheless, it be-
comes evident that the inclusion of the integrated dataset significantly enhances the methods’ discrim-
inative power, resulting in metrics reaching scores of approximately 80%. Moreover, expanding the
study to include more patients improves model performance and yields discriminative power compara-
ble to that of the analysis conducted using the integrated dataset.

Table 5.3: Progression

Model Method Accuracy F1 score AUC Sensitivity Specificity

RF Clinical data
(n=504)

0.68 0.69 0.70 0.73 0.67

RF Image features
(n=504)

0.70 0.71 0.70 0.74 0.67

RF Clinical data and
image features

(n=504)

0.78 0.80 0.78 0.84 0.72

RF Clinical data
(n=900)

0.77 0.76 0.77 0.75 0.74

Lastly, Table 5.4 presents the metrics for the classifier in predicting high-grade recurrence. In this
instance, the models generally perform worse than the previous endpoints, with baseline values of
approximately 60%. However, the integration of image-related features with clinicopathological data
evidently improves the results. The integrated analysis demonstrates metrics of around 70% across all
methods. Furthermore, the inclusion of new patients slightly enhances the baseline models.



5.5. Variable importance 37

Table 5.4: HG recurrence

Model Method Accuracy F1 score AUC Sensitivity Specificity

RF Clinical data
(n=504)

0.61 0.62 0.61 0.63 0.58

RF Image features
(n=504)

0.60 0.60 0.60 0.62 0.59

RF Clinical data and
image features

(n=504)

0.71 0.72 0.71 0.74 0.68

RF Clinical data
(n=900)

0.63 0.66 0.63 0.71 0.54

5.5. Variable importance
After conducting an analysis of the classifiers, we employed a permutation importance method to gain
insights into the significance of various features in the prediction process. This technique involved
randomly shuffling the values within each column of the dataset a total of 1000 times, enabling us
to ascertain the relative contribution of each feature. By systematically permuting the values and ob-
serving the resulting impact on the predictive performance, we were able to identify the features that
played the most substantial role in the prediction task. This approach allowed us to assess the impor-
tance of each feature by measuring the changes in performance metrics following the shuffling process.

In the context of predicting BCG failure, Figure 5.14 provides a visual representation of the process
involved. The figure shows that the first cluster holds the highest level of relevance, followed closely by
cluster 10. Within these clusters, certain clinicopathological factors emerge as the most influential in
determining the outcome. Upon closer inspection, it becomes apparent that smoking and age exert the
most significant impact among the clinicopathological factors considered. These variables hold sub-
stantial importance in the prediction of BCG failure, potentially serving as key indicators or risk factors
associated with the outcome.
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Figure 5.13: Variable importance progression

The permutation importance for predicting progression is illustrated in Figure 5.13. An analysis of the
figure reveals that among the various clusters, cluster 4 emerges as the most influential in driving
the predictive outcome, showcasing its importance in this context. Following closely behind cluster 4,
the age of the patient stands out as another crucial factor that significantly impacts the prediction of
progression.

Figure 5.14: Variable importance BCG failure
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The results for the high-grade recurrence endpoint are showcased in Figure 5.15. Notably, cluster 10
emerges as the most decisive cluster in determining the likelihood of high-grade recurrence. Following
cluster 10, group number four exhibits noteworthy significance in the prediction process. This implies
that the features encompassed within this group contribute significantly to the accuracy of the high-
grade recurrence prediction model.

Figure 5.15: Variable importance HG recurrence
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Discussion and conclusions

Through our research, we have discovered that integrating clincopathological data with image-related
features enhances the performances of artificial intelligence techniques in predicting the clinical out-
come of HR-NMIBC. Our work has resulted in the development of a novel approach that effectively
combines the information from cells nuclei per patient, allowing for improved classification accuracy.
By combining clincopathological data with image-related features extracted from medical imaging, we
have been able to show the power of AI to more accurately predict the clinical outcome of HR-NMIBC.
This integrated analysis approach provides a comprehensive view of the disease, taking into account
both the macroscopic characteristics and the microscopic details observed in the cellular level. Our
research has led to the successful proposal of a methodology that aggregates the information obtained
from thousands of cell nuclei for each patient. This aggregation process transforms the raw data into a
format that can be effectively used by a classifier, a machine learning algorithm designed to categorize
and predict outcomes. By using this combined information, we improved the performance of AI tech-
niques in predicting the clinical outcome of HR-NMIBC.

The dataset overview (Table 5.1) reveals several imbalanced variables and potential biases that require
consideration during the analysis and interpretation of the findings. Firstly, there is a gender imbalance,
with a higher representation of males (80%) compared to females. This gender bias might impact the
generalizability of conclusions, as the dataset may not adequately represent the characteristics and
outcomes of both genders. The dataset also displays a difference in tumor size, with the majority of
cases (92%) having a size of 3 cm or less, potentially affecting the generalizability of results for larger
tumors. The majority of cases (87%) belong to the G3H grade, while G1L (2%), G2L (4%), and G2H
(6%) have lower representation. This finding poses a potential disproportion in grading levels that could
impact the analysis of grade-outcome relationships. Furthermore, also the endpoints showed to be im-
balanced. Around 73% of the cohort was in the group of BCG responders, whereas about 85% of the
patients did not show any recurrence or progression.

We achieved progress by retraining a convolutional neural network using our own image dataset. This
CNN model played a crucial role in our analysis and demonstrated remarkable performance in seg-
menting hematoxylin and eosin stained images. Our findings particularly highlighted the effectiveness
of a model based on star-convex polygons in accurately segmenting cell nuclei, specifically in the con-
text of urothelium cells.By retraining the CNN, we used its deep learning capabilities to extract valuable
insights from the H&E stained images. The model exhibited high accuracy in identifying and delineating
the boundaries of cell nuclei. This breakthrough in segmentation lays the foundation for subsequent
analyses and investigations in our study. The success of our retrained CNN model in segmenting H&E
stained images underscores its potential as a valuable tool in the field of histopathology and medical
image analysis.

In addition to our achievements in retraining a convolutional neural network and utilizing a star-convex
polygon model for cell nucleus segmentation, we also implemented an innovative clustering technique
called FlowSOM. This technique proved to be highly effective in grouping millions of cell nuclei based
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on their characteristics, and it demonstrated suitability for our specific research purposes. FlowSOM
enabled us to harness the power of clustering to organize and classify the vast number of cell nuclei
present in our dataset. By grouping together nuclei, we gained valuable insights into the heterogeneity
and diversity within the cellular population. This technique allowed us to leverage the information from
multiple nuclei within each patient, providing a more comprehensive representation of the underlying
biology. What sets our approach apart is the novel method we devised for quantifying the nuclei belong-
ing to each cluster for every patient. This counting approach, which had not been previously explored,
proved to be an effective strategy for our specific task. We obtained valuable information about the
cellular composition and heterogeneity within individual samples, by quantifying the distribution of nu-
clei across different clusters for each patient. The integration of FlowSOM into our analysis pipeline
represented a crucial step forward, empowering us to handle the complex and immense amount of cel-
lular data present in our study. By combining the segmentation accuracy of our retrained CNN model
with the clustering capabilities of FlowSOM, we were able to extract meaningful information about the
composition, organization, and characteristics of cell nuclei across a large cohort of patients.

During the final stage of our work, we implemented state-of-the-art AI models that exhibited relatively
high performance metrics. Our findings align with previous studies discussed in the systematic review,
further reinforcing their validity. Specifically, our technique achieved an accuracy rate of approximately
80% when assessed using various evaluation metrics. This robust performance serves as a strong
indicator of the effectiveness and reliability of our approach, corroborating the results presented in the
systematic review. The models, trained on our integrated dataset comprising clincopathological data,
and information extracted from clustered nuclei, provided valuable insights and demonstrated notable
predictive capabilities. Among the different algorithms tested, the random forest algorithm emerged
as the most suitable for the task at hand. Random forest’s ability to handle high-dimensional datasets,
capture non-linear relationships, and reduce overfitting contributed to its superiority in our study.The
success of our models not only highlights the effectiveness of our approach but also encourages further
exploration and refinement of AI methodologies for other medical domains.

Furthermore, we conducted a comprehensive variable importance analysis to gain insights into the
features that strongly influence the prediction outcomes. This analytical approach holds remarkable
significance in the medical field, as merely achieving high accuracy without understanding the under-
lying factors driving the model’s conclusions would render the results less meaningful. The variable
importance analysis provided valuable insights into the specific characteristics of cell clusters that have
the greatest impact on the prediction of clinical outcomes in HR-NMIBC. It can be noticed that Cluster 1,
4, and 10 stand out as the most important clusters, ranking first in predicting progression, BCG failure,
and HG recurrence, respectively. Additionally, Cluster 10 achieves the second position in the progres-
sion analysis, while age emerges as the second most influential variable for BCG failure, and Cluster
4 takes the second spot for HG recurrence prediction. Notably, our findings revealed that clusters con-
taining larger and more elongated cells exhibit a higher degree of relevance in determining the clinical
outcome. This observation suggests that cellular size and shape play a significant role in disease pro-
gression and response to treatment. Our findings emphasize the significance of cellular morphology
and highlight the potential relevance of cell size and shape as prognostic factors in HR-NMIBC. These
insights have the potential to guide further research and investigations, enabling a deeper understand-
ing of the disease mechanisms and facilitating the development of novel diagnostic and therapeutic
approaches.

While our study has made significant strides in advancing the prediction of clinical outcomes in high-
risk non-muscle invasive bladder cancer, it is crucial to acknowledge the limitations inherent in our re-
search. These limitations warrant careful consideration and highlight areas for further investigation and
improvement. Firstly, it is important to recognize that the study cohort used for this analysis consisted
exclusively of HR-NMIBC patients. Therefore, the generalizability of our findings to other cohorts of
NMIBC patients may be challenging. The specific characteristics and underlying biology of HR-NMIBC
patients may differ from those with different risk profiles. Therefore, caution should be exercised when
extrapolating our results to broader populations, emphasizing the need for additional studies encom-
passing diverse patient cohorts. Moreover, while the classifiers employed in our study demonstrated
notable performance, it is essential to acknowledge that perfection has not yet been attained. While
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our methods have shown suitability for the task at hand by providing valuable predictions and insights
into determining factors, it is important to recognize that the classifiers’ accuracy is not flawless. The
trade-off between providing valuable insights and achieving higher accuracy is an important considera-
tion. While our methods excel in providing interpretability and understanding of the predictive process,
they may sacrifice a fraction of accuracy when compared to alternative methods solely focused on
maximizing performance metrics.

In the pursuit of translating our methods into clinical applications, it is essential to delve deeper into the
underlying biology of the distinct clusters identified in our study. Gaining a comprehensive understand-
ing of the characteristics and functional implications of these clusters holds great potential in enhancing
the clinical utility of our findings. While we have shown the primary characteristics of the most promising
clusters, further investigation is needed to unravel their biological significance. Interestingly, the anal-
ysis of cells within subpopulations associated with different clinical endpoints did not reveal noticeable
differences among the groups. This finding suggests that the distinguishing factors contributing to diver-
gent clinical outcomes may not lie only within these subpopulations. The limited disparity observed in
the cellular composition among the groups warrants further exploration to uncover the factors that play
a more crucial role in discerning the differences between the clinical endpoints. Furthermore, exploring
the differences in cell abundance among the groups adds an additional layer of complexity to our anal-
ysis. While these discrepancies have been observed, the precise implications and underlying reasons
for such variations remain unclear. Understanding the factors that contribute to the variation in clinical
outcomes can provide valuable insights into the disease mechanisms and potential therapeutic targets.

Our study has culminated in the development of a comprehensive pipeline for predicting the clinical
outcome of high-risk non-muscle invasive bladder cancer. This pipeline encompasses multiple stages,
starting with the creation of an integrated dataset that combines clinicopathological features and image
analysis. This integrated dataset serves as the input for various classifiers, allowing us to evaluate
their performance. To assess the effectiveness of our approach, we conducted comparative analy-
ses using different datasets. This included datasets comprised solely of clinicopathological features or
image-related features. Remarkably, our findings consistently demonstrated that the integrated analy-
sis, incorporating both types of data, outperformed the individual feature-based analyses. This robust
performance highlights the value of combining diverse information sources for accurate clinical out-
come predictions in HR-NMIBC.

Moreover, through our investigation, we gained valuable insights into the inner workings of the predic-
tive models. Specifically, we discovered that clusters of cells characterized by larger size and greater
elongation appeared to have a more substantial influence on the predictions. This observation sug-
gests that these clusters hold key insights into the underlying biology and potential drivers of clinical
outcomes. However, further exploration is needed to explain the precise biological mechanisms at play
within these clusters, as they may reveal previously unknown factors that impact the clinical outcome.
Understanding the biological significance of these clusters can have profound implications for introduc-
ing our study into a clinical setting. By unraveling the unknown factors associated with specific cellular
clusters, we can enhance the interpretability and clinical relevance of our predictions. This deeper
understanding can guide clinicians in making informed decisions and aid in tailoring personalized treat-
ment strategies for HR-NMIBC patients.

In conclusion, our study presents a robust pipeline for predicting the clinical outcome of HR-NMIBC,
leveraging an integrated dataset and employing various classifiers. The integration of clinicopatholog-
ical features and image analysis proved to be superior to individual feature-based analyses. Addition-
ally, our investigation highlighted the importance of specific cellular clusters and their characteristics
in driving predictive outcomes. Further exploration of the underlying biology of these clusters holds
promise for uncovering novel factors and advancing the clinical applicability of our study in HR-NMIBC
management.
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Future research

In addition to the significant achievements made thus far, there are several avenues for further extend-
ing and enhancing this research. One possibility lies in expanding the scope of image analysis beyond
the geometrical features of individual nuclei that were previously explored. While our focus primarily
revolved around individual nuclei as distinct entities, there is potential in investigating the interactions
and relationships between nuclei that are in close proximity to one another. By delving into the analysis
of nuclear interactions, we can reveal hidden patterns and spatial distributions that might not be appar-
ent through the analysis of isolated nuclei alone. Exploring the collective behavior and organization
of nuclei within cellular clusters can provide valuable insights into the underlying biological processes.
Analyzing the spatial relationships between nuclei may reveal important information about cellular in-
teractions. These insights have the potential to deepen our understanding of the disease progression
mechanisms and shed light on critical factors that impact clinical outcomes in HR-NMIBC. To pursue
this avenue of research, advanced image analysis techniques, such as spatial statistics or graph the-
ory, can be employed. These methodologies enable the quantitative assessment of spatial patterns,
connectivity, and clustering of nuclei within tissue sections.

Expanding our research to incorporate the analysis of nuclear interactions alongside additional types
of data holds potential for advancing our understanding. In particular, the inclusion of mitotic figures in
the analysis can provide valuable insights into the proliferative activity and cellular dynamics within the
tumor microenvironment. Mitotic figures, representing cells in the process of cell division, are impor-
tant indicators of cellular proliferation and tumor aggressiveness. By incorporating the count of mitotic
figures into our analysis, we can gain a more comprehensive understanding of the cellular activity and
growth patterns within HR-NMIBC. Moreover, combining our data with spatial information and nuclear
interactions can further enhance our understanding of HR-NMIBC at a molecular level. By integrat-
ing diverse data types, we can unravel complex relationships between genomic alterations, spatial
heterogeneity, and nuclear interactions. Furthermore, it provides a foundation for the development of
personalized treatment strategies that target specific molecular alterations and cellular interactions. To
collect these data, advanced computational approaches are necessary. Deep learning models can be
employed to recognise and count the mitotic figures in a whole slide image.

While our current approach successfully employed clustering techniques to group cells based on shared
characteristics, it is worth considering other methodologies that can offer complementary perspectives.
For instance, multiple instance learning (MIL) presents a compelling alternative. MIL focuses on the
classification of sets, or bags, of instances rather than individual instances. In the context of HR-NMIBC,
MIL could be applied to classify sets of cells, capturing the inherent heterogeneity and interplay among
cells within a tissue sample. By taking into account the collective behavior of cells within a bag, MIL
can reveal important patterns and dynamics that might not be evident when analyzing cells in isola-
tion. Furthermore, attention-based methods represent another intriguing avenue to explore. Attention
mechanisms allow models to selectively focus on certain regions of interest within whole slide images.
By incorporating attention mechanisms into our analysis, we can identify the specific regions that have
the greatest influence on the predictions. This provides valuable interpretability and can guide patholo-
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gists and clinicians in understanding the salient features and regions that contribute to the HR-NMIBC
prediction. These approaches can provide insights into the spatial distribution of cellular clusters, and
highlight critical regions within whole slide images. By leveraging the power of these techniques, we
can gain a more comprehensive understanding of the complex spatial dynamics and heterogeneity
within HR-NMIBC tumors.

In summary, extending our research to include the analysis of nuclear interactions represents a promis-
ing avenue for further investigation. By exploring the spatial relationships and collective behavior of
nuclei within cellular clusters, we can uncover hidden patterns, gain insights into cellular dynamics. The
integration of nuclear interactions with additional data types, such as the count of mitotic figures, repre-
sents a powerful approach to enhance our understanding of HR-NMIBC. By incorporating these diverse
datasets, we can decipher the intricate interplay between genetic alterations, spatial organization, and
cellular dynamics, leading to a deeper comprehension of the disease’s molecular mechanisms. Lastly,
considering alternatives to the clustering techniques, such as multiple instance learning and attention-
based methods, can provide valuable insights into HR-NMIBC. These approaches enable us to capture
the collective behavior of cells within a tissue sample, identify critical regions within whole slide images,
and enhance our understanding of the spatial dynamics driving clinical outcomes.
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A
Appendix A

Clinical Parameter Subgroup All BCG treatment Progression HG recurrence
Responders Failure Yes No Yes No

ALL 720 525 (73%) 195 (27%) 100 (14%) 620 (86%) 110 (15%) 610 (85%)
Male 575 (80%) 418 (72%) 160 (28%) 88 (15%) 490 (85%) 95 (16%) 483 (84%)Gender Female 145 (20%) 107 (77%) 35 (23%) 12 (12%) 130 (88%) 15 (14%) 127 (86%)

Age (years) Median (min-max) 71 (31-98) 72 (32-98) 73 (45-98) 72.5 (41-92) 72 (31-98) 73 (45-92) 72 (32-98)
Yes 430 (60%) 320 (73%) 120 (27%) 60 (14%) 381 (86%) 63 (11%) 367 (89%)Smoking No 290 (40%) 206 (71%) 84 (29%) 45 (16%) 245 (84%) 48 (17%) 242 (83%)

Size (cm) ≤ 3 665 (92%) 485 (73%) 180 (27%) 97 (15%) 568 (85%) 107 (16%) 558 (84%)
> 3 54 (8%) 41 (76%) 14 (24%) 8 (15%) 46 (85%) 8 (15%) 46 (85%)
Tis 77 (11%) 56 (73%) 21 (27%) 10 (13%) 67 (87%) 13 (17%) 64 (83%)
Ta 253 (35%) 204 (81%) 39 (19%) 36 (14%) 217 (86%) 29 (12%) 224 (88%)Staging
T1 389 (54%) 267 (69%) 122 (31%) 60 (15%) 329 (85%) 73 (19%) 316 (81%)

Grading

G1L 12 (2%) 11 (92%) 1 (8%) 0 (0%) 12 (100%) 1 (7%) 11 (93%)
G2L 32 (4%) 25 (80%) 8 (20%) 8 (23%) 24 (77%) 2 (8%) 29 (92%)
G2H 46 (6%) 36 (79%) 10 (21%) 10 (22%) 36 (78%) 4 (9%) 42 (91%)
G3H 629 (87%) 454 (72%) 175 (18%) 88 (14%) 541 (86%) 108 (17%) 521 (83%)
Yes 37 (5%) 24 (66%) 13 (34%) 17 (45%) 20 (55%) 5 (15%) 32 (85%)Concomitant CIS No 682 (95%) 502 (74%) 180 (26%) 89 (13%) 593 (87%) 109 (16%) 573 (84%)

History of cancer Yes 161 (22%) 125 (78%) 36 (22%) 21 (13%) 140 (87%) 23 (14%) 138 (86%)
No 558 (77%) 402 (72%) 156 (28%) 84 (15%) 474 (85%) 92 (16%) 466 (84%)

Single 305 (42%) 235 (75%) 70 (25%) 28 (17%) 277 (83%) 41 (14%) 264 (86%)Number of tumors Multiple 224 (31%) 156 (70%) 68 (3%) 25 (11%) 199 (89%) 46 (21%) 178 (79%)
Follow-up (months) Median (min-max) 60 (2-215) 72 (2-210) 60 (7-215) 48 (7-180) 72 (2-215) 48 (3-215) 72 (2-215)

Table A.1: Training set overview
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Appendix B

Figure B.1: Pretrained segmentation model
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Clinicopathological data (n=504)

Table B.1: BCG failure

Model Method Accuracy F1 score AUC Sensitivity Specificity

NFM Clinical data
(n=504)

0.57 0.60 0.57 0.72 0.42

RF Clinical data
(n=504)

0.70 0.72 0.70 0.77 0.63

GB Clinical data
(n=504)

0.58 0.60 0.58 0.63 0.53

SVM Clinical data
(n=504)

0.58 0.62 0.58 0.67 0.50

DT Clinical data
(n=504)

0.57 0.59 0.57 0.63 0.50

ET Clinical data
(n=504)

0.62 0.65 0.62 0.70 0.53

Table B.2: Progression

Model Method Accuracy F1 score AUC Sensitivity Specificity

NFM Clinical data
(n=504)

0.63 0.63 0.63 0.64 0.62

RF Clinical data
(n=504)

0.68 0.69 0.70 0.73 0.67

GB Clinical data
(n=504)

0.71 0.73 0.71 0.72 0.72

SVM Clinical data
(n=504)

0.67 0.67 0.67 0.67 0.67

DT Clinical data
(n=504)

0.64 0.67 0.64 0.72 0.56

ET Clinical data
(n=504)

0.64 0.65 0.64 0.67 0.61
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Table B.3: HG recurrence

Model Method Accuracy F1 score AUC Sensitivity Specificity

NFM Clinical data
(n=504)

0.55 0.51 0.55 0.58 0.52

RF Clinical data
(n=504)

0.61 0.62 0.61 0.63 0.58

GB Clinical data
(n=504)

0.63 0.63 0.63 0.63 0.63

SVM Clinical data
(n=504)

0.55 0.54 0.55 0.53 0.58

DT Clinical data
(n=504)

0.61 0.63 0.61 0.68 0.53

ET Clinical data
(n=504)

0.37 0.37 0.37 0.37 0.37
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Image features

Table B.4: BCG failure

Model Method Accuracy F1 score AUC Sensitivity Specificity

NFM Image features
(n=504)

0.59 0.62 0.60 0.72 0.45

RF Image features
(n=504)

0.67 0.70 0.67 0.75 0.64

GB Image features
(n=504)

0.60 0.61 0.60 0.62 0.55

SVM Image features
(n=504)

0.59 0.61 0.59 0.68 0.53

DT Image features
(n=504)

0.55 0.56 0.55 0.62 0.53

ET Image features
(n=504)

0.64 0.67 0.64 0.69 0.57

Table B.5: Progression

Model Method Accuracy F1 score AUC Sensitivity Specificity

NFM Image features
(n=504)

0.65 0.67 0.65 0.64 0.62

RF Image features
(n=504)

0.70 0.71 0.70 0.74 0.67

GB Image features
(n=504)

0.69 0.70 0.69 0.70 0.72

SVM Image features
(n=504)

0.68 0.67 0.68 0.65 0.67

DT Image features
(n=504)

0.63 0.64 0.64 0.70 0.59

ET Image features
(n=504)

0.61 0.62 0.61 0.69 0.64
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Table B.6: HG recurrence

Model Method Accuracy F1 score AUC Sensitivity Specificity

NFM Image features
(n=504)

0.58 0.59 0.58 0.56 0.53

RF Image features
(n=504)

0.64 0.62 0.64 0.62 0.60

GB Image features
(n=504)

0.62 0.63 0.62 0.61 0.61

SVM Image features
(n=504)

0.58 0.56 0.58 0.55 0.59

DT Image features
(n=504)

0.60 0.61 0.60 0.66 0.54

ET Image features
(n=504)

0.45 0.48 0.45 0.51 0.49
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Clinicopathological data and image features

Table B.7: BCG failure

Model Method Accuracy F1 score AUC Sensitivity Specificity

NFM Clinical data and
image features

(n=504)

0.59 0.57 0.58 0.59 0.58

RF Clinical data and
image features

(n=504)

0.77 0.77 0.77 0.80 0.73

GB Clinical data and
image features

(n=504)

0.73 0.75 0.73 0.80 0.67

SVM Clinical data and
image features

(n=504)

0.62 0.63 0.62 0.67 0.57

DT Clinical data and
image features

(n=504)

0.57 0.59 0.57 0.63 0.50

ET Clinical data and
image features

(n=504)

0.65 0.68 0.65 0.73 0.57

Table B.8: Progression

Model Method Accuracy F1 score AUC Sensitivity Specificity

NFM Clinical data and
image features

(n=504)

0.59 0.57 0.58 0.59 0.58

RF Clinical data and
image features

(n=504)

0.78 0.80 0.78 0.84 0.72

GB Clinical data and
image features

(n=504)

0.73 0.75 0.73 0.74 0.77

SVM Clinical data and
image features

(n=504)

0.64 0.67 0.64 0.72 0.56

DT Clinical data and
image features

(n=504)

0.72 0.72 0.72 0.72 0.72

ET Clinical data and
image features

(n=504)

0.69 0.70 0.69 0.72 0.67
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Table B.9: HG recurrence

Model Method Accuracy F1 score AUC Sensitivity Specificity

NFM Clinical data and
image features

(n=504)

0.59 0.57 0.58 0.59 0.58

RF Clinical data and
image features

(n=504)

0.71 0.72 0.71 0.74 0.68

GB Clinical data and
image features

(n=504)

0.66 0.65 0.66 0.63 0.68

SVM Clinical data and
image features

(n=504)

0.63 0.63 0.63 0.63 0.63

DT Clinical data and
image features

(n=504)

0.58 0.58 0.58 0.58 0.58

ET Clinical data and
image features

(n=504)

0.53 0.50 0.53 0.47 0.58
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Clinicopathological data (n=900)

Table B.10: BCG failure

Model Method Accuracy F1 score AUC Sensitivity Specificity

NFM Clinical data
(n=900)

0.57 0.60 0.57 0.72 0.42

RF Clinical data
(n=900)

0.66 0.68 0.66 0.71 0.61

GB Clinical data
(n=900)

0.61 0.65 0.61 0.70 0.52

SVM Clinical data
(n=900)

0.52 0.53 0.52 0.53 0.52

DT Clinical data
(n=900)

0.61 0.62 0.61 0.61 0.61

ET Clinical data
(n=900)

0.60 0.61 0.60 0.64 0.56

Table B.11: Progression

Model Method Accuracy F1 score AUC Sensitivity Specificity

NFM Clinical data
(n=900)

0.63 0.63 0.63 0.64 0.62

RF Clinical data
(n=900)

0.77 0.76 0.77 0.75 0.74

GB Clinical data
(n=900)

0.75 0.76 0.75 0.77 0.72

SVM Clinical data
(n=900)

0.52 0.52 0.52 0.52 0.52

DT Clinical data
(n=900)

0.63 0.63 0.63 0.65 0.61

ET Clinical data
(n=900)

0.60 0.63 0.60 0.68 0.52
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Table B.12: HG recurrence

Model Method Accuracy F1 score AUC Sensitivity Specificity

NFM Clinical data
(n=900)

0.55 0.51 0.55 0.58 0.52

RF Clinical data
(n=900)

0.63 0.66 0.63 0.71 0.54

GB Clinical data
(n=900)

0.74 0.74 0.74 0.72 0.76

SVM Clinical data
(n=900)

0.49 0.54 0.49 0.60 0.55

DT Clinical data
(n=900)

0.63 0.66 0.63 0.71 0.54

ET Clinical data
(n=900)

0.60 0.63 0.60 0.69 0.51
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