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appreciated. Also TrafficQuest, a joint TU Delft, Rijkswaterstaat and TNO collaboration, are 
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financially, but also substantially through various encouraging conversations with its 
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It has been an absolute honour to be supervised by a superb team of experts, each in their own 
right, and with their own way of support, by my promotor Serge Hoogendoorn and my co-
promotors Henk Taale and Maaike Snelder. Maaike, as a freshly graduated doctor, having 
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see the brighter side of things, made our collaboration during the PhD enjoyable. Henk, you 
were very much the model application expert in my supervising team. Your vast practical 
experience as well as scientific insights were of great use during times when I struggled to get 
to grip with various aspects. Your critical reviewing of my scientific output was invaluable to 
improving the quality. Also sharing thoughts in relation to our mutual Father was an 
unexpected joy, which was not expected prior to starting out on this journey. Finally Serge, 
you are a crazy person! And I mean that in a very good way! When God created you, I think 
He must have had a lot of fun, and much of that light-hearted fun is so evident at just about 
every contact one has with you. Having you as a promotor has been a great privilege as you 
have a unique ability to look through a mountain of chaos and pick out the edges of something 
special hidden in the chaos. Those special things would often become my next challenge in 
the project, which I would rarely turn away from. Having a world leader as promotor also 
brings challenges, as your agenda is not one I would like to look after (respect, Priscilla!). But 
these are things that are quickly realised and which lead to a greater degree of ingenuity. 

Outside of those who directly influenced my work, were many who supported me in many 
other ways, not least my room-mates. Bernat, Xavi and Yaqing: you guys travelled 
(sometimes literally) with me in this journey and we have had a ball in the process. I think we 
can all agree that sanity is most definitely nowhere to be found in our room, and you would 
probably say especially behind my desk. Especially Bernat, you have been a friend beyond 
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what I can give you credit for here, thank you! The Transport & Planning department must be 
unique for so many reasons, but maybe one reason would be the crazy table tennis battles. 
There are too many to thank from the department, so let this be a thank you to you all! And 
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you have been a great encouragement throughout many years, even before I graduated for my 
Masters under your supervision. Thank you for your guidance and support!  

Being a part-time PhD student also means that I have colleagues at TNO. Many of you have 
been a great deal of help with data, thinking about modelling solutions and with other aspects 
of the research. All have been an encouragement throughout! Special thanks goes to Michiel 
Minderhoud and Taoufik Bakri for your technical assistance along the way. 

And of course I would not have ever started out on this work if I had not have had the support 
of my darling wife: Els! Your hard work at home has given me the space and allowed me to 
pursue this research work at the expense of some of your own aspirations. Maybe you 
understand more than I what it really means to be a team. Ian, Lisa and Abby: Daddy has 
finally finished playing with the cars in his computer! As I often ask you to, it is now time for 
me to tidy them up.  

It would not do Him justice for me to just thank God, for He is more than a support or 
encouragement. Life is so much more than all of us see and can comprehend and the cogs that 
make it work and give birth to us all are outside what we can comprehend. Father, yours is the 
glory above all and so much more than I can write in words. Completion of a PhD is a big 
step in the career of an academic, but in the wake of things it found its source in the curiosity 
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five years and all that has happened both in this research and outside of it. 
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have picked up along the way: Life is not what we make it, it is the way we choose to face the 
things that come our way. Our achievements should be enjoyed, but never rested upon as a 
guarantee to future glories. Achievements are by definition completed and in the past, and 
future achievements are tomorrows past. Real triumphs are only found in grace that will last 
for eternity. 

 

Simeon Calvert, May 2016 
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Chapter 1 

Introduction 

 

 

 

When congestion becomes a problem on a road or road network, there are generally three 
main solution areas available to tackle it: construction, pricing or traffic management. For a 
long time road authorities could reasonably keep up with increasing traffic demand through 
expansion of the road network. However, this is a finite solution as space and resources are 
limited. While pricing can often be politically difficult, traffic management became an 
increasingly preferred option towards the end of the twentieth century as an alternative to 
construction in many cases. Traffic management proves a more efficient alternative and 
focusses on influencing traffic flows such that the existing road and network capacity is more 
effectively utilised resulting in a reduction in congestion.  

The effectiveness of traffic management is dependent on the ability to influence traffic flow. As 
the term suggests, traffic can be considered as a flow, but unlike the flow of fluids, traffic 
consists of larger individual particles, namely the vehicles, which can be influenced. The 
particles portray a relatively large amount of stochastic behaviour, which is connected in part 
to human driving behaviour. The fluctuations that occur in traffic flow due to this stochastic 
behaviour have a large effect on the effectiveness of traffic management. The investigation of 
these fluctuations and their relevance to traffic management is the main subject of this thesis.   

In this chapter a basis is laid for the thesis, containing an introduction to the research topic, 
the objectives of the research and the relevance of the research. In section 1.1, the context is 
given as a backdrop for the research. In section 1.2, the research objectives and questions are 
stated as well as the scope of the research. The main scientific and practical societal 
contributions are given in section 1.3, followed by the research approach and an outline of 
the thesis in sections 1.4 and 1.5 respectively. 
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1.1 Research context 

It has long been known that the average distance travelled by individuals is linked to 
prosperity. As personal travel budgets increase, the willingness to travel longer distances for 
work and other motives increases, leading to an increase in travelled distance (Zahavi et al., 
1981). At the same time the worldwide population continues to grow, which in turn leads to 
an increase in potential travellers. The combined effect is a total net increase in the travel 
demand. As the growth of public transport and other non-car related travel remains relatively 
low compared to road travel, this means that the majority of the growth in travel is undertaken 
on roads. The growth in car and truck travel in the United States compared to the Gross 
Domestic Product (GDP) is shown in Figure 1.1 and demonstrates this principle. Also for the 
Netherlands such graphs can be constructed, as is shown for recent decades in Figure 1.2. 

 

Figure 1.1: Total car and truck Vehicle Miles Travelled (VMT) and Gross Domestic 
Product (GDP in billions) for 1936-2011 in the US (Ecola and Wachs, 2012) 

 

Figure 1.2: Total Vehicle Kilometres Travelled (VKT) by motorized vehicles in the 
Netherlands between 1995-2014 (data derived from CBS, Statistics Netherlands) 
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However the growth of road travel has also led to an increase in congestion as the expansion 
of road networks continuously lag behind the increase in travel demand.  A further difficulty 
in network and road expansion lies in scarcity, especially spatially and financially, but also 
increasingly due to environmental restrictions. For these reasons the application of traffic 
management has steadily increased in past decades. Traffic management involves the 
utilisation of existing road capacity through influencing traffic flows to improve overall 
network performance. Often network performance will be measured in the extent of delay in a 
network. Influencing traffic flow can be performed in many ways, but to be effective it must 
consider the inherent characteristics of traffic. 

Traffic flow comprises of the aggregated interaction of all vehicles on a specific section of 
road. General traffic flow theory has been derived that explains the macroscopic flow of 
traffic under varying traffic states, from free flow into congested traffic flow. As traffic flow 
is influenced by individual driver behaviour, this behaviour is also of importance. Human 
behaviour is typified by stochastic fluctuations on all sorts of levels. This behaviour also 
enters a drivers’ driving behaviour and influences traffic flow. Differences between drivers 
also introduce further stochastic variations into traffic flow. Therefore traffic exists of 
different behaviour from different drivers and varied behaviour in time from all drivers, not to 
mention differences in vehicle capabilities. It has previously been shown that stochastic 
heterogeneous traffic has the potential to lead to congestion at lower flow rates than the 
maximum flow and therefore increase total delays (Brilon and Zurlinden, 2003, Elefteriadou 
et al., 1995). This heterogeneity in traffic therefore also influences the effectiveness of traffic 
management, as traffic management explicitly aims to influence the flow of traffic. Often the 
effect of a traffic management measure will only be visible once a measure has been taken, by 
which time costs have been made and a decision has already been made how a measure is 
applied. Therefore, it is important that the effect of traffic management can be predicted in 
advance. Traffic models are often used to a-priori determine the effects of traffic management 
measures. However, herein lies a problem: most traffic models cannot or do not consider 
stochastics in traffic flow and its influence on traffic management measures and are therefore 
not capable to determine the real effects.  

In many traffic models, stochastic variations are ignored or assumed to be of limited 
importance to the outcome of simulations. In many cases reducing the input of a traffic model 
to average or representative values, rather than considering stochastic variations, can have 
detrimental effect on the simulation results. It may even lead to biased outcomes in relation to 
what may be found from empirical data (Calvert et al., 2012, Mahmassani et al., 2012, van 
Lint et al., 2012). An increase in this realisation has occurred in the past decades and has led 
to some pioneering research in this area (Brilon and Zurlinden, 2003, Elefteriadou and 
Lertworawanich, 2003). Traffic models that consider certain stochastic elements of traffic 
flow have also been developed. It is argued that the stochasticity in traffic cannot be reduced 
to a single representative value prior to traffic flow simulation. Results of simulations also 
cannot be expected to give the same outcome with stochastic input compared to a reduced 
representation of the input as a representative value. Instability in traffic, including network 
effects in congestion, lead to a non-linear propagation of stochastic variation, especially for 
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the more extreme cases. In turn greater traffic flows and congestion will lead to higher values 
for travel times and delays than can be derived from averaged or representative input values 
(Calvert et al., 2012). It is therefore imperative to explicitly consider stochastic variation in 
traffic flow modelling, when this variation is present in the considered scenarios and 
networks. Some traffic models have been developed in recent years to address this problem. 
However, most models have limitations when considering stochastic behaviour for traffic 
management applications. This is discussed later in this thesis in Chapter 2. 

To address the issue of the influence of stochastic variation in traffic flow for traffic 
management applications, a greater understanding is required on the influence that traffic flow 
stochastics have on the effectiveness of traffic management. Application of these insights in 
various modelling applications, allowing the effects of traffic measures to be a-priori 
determined, is also required to allow measures to be effectively evaluated and designed for 
optimal application on road networks.  

1.2 Research objectives and scope  

1.2.1 Research objectives  

The main objective of the research presented in this thesis is to give insight into the stochastic 
fluctuations and uncertainty in traffic flow for the application of traffic management measures 
and to propose tools that allow these effects to be analysed and subsequently modelled. 
Stochastic processes are considered as uncertainty, which describes day-to-day uncertainties 
between traffic flows, and fluctuations, which describe microscopic variability in the traffic 
flow. This main objective is broken down into three sub-objectives, which focus on: 

a) The analysis of uncertainty and fluctuations in traffic 

b) Modelling uncertainty and traffic fluctuations 

c) The development of visual aids for effective communication of uncertainty in traffic 

The research questions addressed in this thesis are derived from the sub-objectives. The first 
questions refer to the analysis of uncertainty and are formulated as: 

1. Which variables have a substantial influence on stochasticity in traffic flow? 

2. How can the distributions of the stochastic variables in traffic flow be quantified? 

There are a large number of variables that influence variability in traffic flow on various 
levels. On the highest level these influences can be considered on the level of influence on 
traffic demand and capacity. At the lowest level the influence is on individual driving 
behaviour. The first two research questions aim to summarise which variables have the 
greatest influence on traffic flow and the stochasticity thereof. Methodologies are sought that 
allow the uncertainty of variables to be quantified in the form of probability distributions. Key 
variables should be demonstrated in these methodologies for which distributions are derived 
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as generic distributions that may be applied in a scenario based macroscopic modelling 
approach.  

The following questions consider modelling of uncertainty and of stochastic fluctuations in 
traffic and are formulated as:  

3. What are currently the main issues for modelling stochastics in traffic flow? 

4. How can uncertainty scenarios in traffic be modelled effectively? 

5. How can stochastic fluctuations in traffic flow be modelled macroscopically? 

Stochastics in traffic flow are separated into uncertainty of traffic conditions, such as on a 
day-to-day scenario level, described here as macroscopic stochastics, and into stochastic 
fluctuations in traffic flow, such as between vehicles, and is described here as microscopic 
stochastics. Research questions 3 and 4 consider the main issues that exist when modelling 
uncertainty in traffic and consider possibilities to improve scenario-based uncertainty 
modelling in macroscopic models. Research question 5 addresses the question of modelling 
microscopic stochastic fluctuations in macroscopic traffic flow, in which vehicle interactions 
are present. Analysis and modelling of stochastics in traffic is however useless if one is not 
able to adequately visualise and communicate the outcomes. Therefore the final research 
question is formulated as: 

6. What are effective options to visualise and communicate uncertainty from 
probabilistic traffic models?  

This question addresses the main difficulties in visualising and communicating uncertainty 
results from stochastic traffic models. This considers options for effective visualisation and 
the cognitive processing of different visual cues and a person’s ability to process these cues to 
effectively make use of probabilistic model results. 

1.2.2 Research scope  

This thesis presents research on the stochastic effects on traffic flow for the analysis and 
modelling of traffic flow for traffic management applications. Although many of the analyses, 
modelling techniques and considerations presented in the thesis may be more widely 
applicable, the main considerations remain for their application in traffic management. A 
main difference with non-traffic management applications lies in the way that the application 
of traffic management affects traffic flow. Often traffic management is applied to influence 
traffic flow under extreme conditions and may often specifically target the extent of 
homogeneity in traffic flow. Both extreme conditions and homogeneity are directly 
predisposed to the effects of uncertainty and stochastic fluctuations in traffic flow. Therefore, 
most cases and examples used in the thesis also relate to the application of traffic 
management.  

While microscopic models are often applied to analyse local effects of traffic management, 
macroscopic models are far more effective in considering the network effects. However, 
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much less is known about the modelling capabilities and possibilities of macroscopic 
modelling for traffic management applications on a wider network scale. In this research, the 
focus is exclusively on macroscopic modelling with an exclusive consideration of 
unidirectional uninterrupted flow for motorway traffic. Although traffic management may be 
applicable for urban networks, its application is often different to that of motorway network 
applications. Furthermore, only single class traffic flows are considered. This is by choice to 
limit the span of the research and retain focus, while it is recognised that multi-class 
consideration of traffic flow is relevant for the considered subject and application. 

The term stochastic is extensively used in traffic modelling to describe different aspects of 
models. However, in many cases it does not refer explicitly to traffic flow itself, but rather to 
certain aspects that affect traffic flow, such as route choice method, equilibrium conditions or 
choice of scenario. In this research, stochastic refers directly to traffic flow influencing 
random factors. Two different levels of stochastic influence are considered: macroscopic and 
microscopic stochastics. Macroscopic stochastics are defined as uncertainties in a traffic 
system and can be viewed as day-to-day or time-to-time scenarios. An example of this is the 
uncertainty in traffic demand on a network for a specific day. Microscopic stochastics are 
defined as stochastic fluctuations in time dependant traffic flow, often due to instantaneous 
behaviour. The fluctuations in time-headway between two vehicles are an example of 
microscopic stochastics in traffic flow. 

Application for traffic management purposes obviously implies a practical implementation of 
measures and therefore the use of analysis techniques and models is considered likewise. The 
presented and developed models are explicitly considered with practical applications in mind. 
While many approaches and models exist that may be more elaborate and may produce better 
results, many of these are constructed purely theoretically and have drawbacks when it comes 
to application in practice. Therefore, only approaches that can easily be applied by 
practitioners are considered and demonstrated. A number of the presented and developed 
models make use of parameters for calibration and fine-tuning. It is not in the scope of this 
thesis to give refined parameters settings for each application of these methods. The models 
are demonstrated using applicable parameter settings for the considered cases, without 
detailed analysis of the considered parameter settings. The objective of the research is 
focussed rather on methodological approaches for practice in relation to traffic management.  

1.3 Thesis contributions 

1.3.1 Scientific contributions  

Science is broadly defined as: “The observation, identification, description, experimental 
investigation, and theoretical explanation of phenomena” (American Heritage, 2011). The 
main scientific contribution of this thesis is the advancement in the understanding of the role 
of uncertainty and stochastic fluctuations in traffic flow, especially in relation to traffic 
management. For each contribution, the corresponding research question is given in brackets. 
The contributions are further summarised as follows: 
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• Demonstration and argumentation of the necessity to consider traffic flow 
stochastically for evaluation of traffic management. (Question 3, 4 & 5) 

• Insight into the main traffic flow influencing stochastic variables and a quantification 
of these variables. (Question 1 & 2) 

• Identification of relevant modelling issues for modelling uncertainty in stochastic 
traffic flow in practice. (Question 3) 

• Advancing uncertainty modelling in traffic models. Performed through the 
demonstration of the advantages of Advanced Monte Carlo sampling in uncertainty 
modelling in traffic models, and the development of the scenario-based Core 
Probability Framework (CPF). (Question 4) 

• Development of a methodology to consider microscopic stochastic fluctuations in 
traffic flow in a first-order macroscopic model environment. The methodology 
considers individual vehicles characteristics in macroscopic flow modelled in a 
Lagrangian system also capturing the capacity drop and other traffic phenomena. 
(Question 5) 

• New methodology to evaluate the resilience level of road sections. The methodology 
is based in part on traffic heterogeneity as an important variable for traffic breakdown. 
(Question 4 & 5) 

• Development and proof of visualisation possibilities for communicating uncertainty 
from probabilistic traffic models. (Question 6) 

1.3.2 Practical contributions  

The practical societal contribution of this thesis is to aid the reduction of congestion and 
improve traffic throughput and reliability on crowded motorway networks. This is achieved 
through a number of different contributions given in this thesis, which are summarised as: 

• Development of a practical framework for demand and capacity estimation and 
generic base values for probabilistic capacity under different conditions. (Question 1 
& 2) 

• Highlighting the relevance of traffic management and widened scope of its 
application. It is demonstrated that traffic management can have a greater positive 
effect on traffic flow than previously realised. (Question 3, 4 & 5) 

• Development and demonstration of models to a-priori evaluate the effects of traffic 
management under different conditions. These models increase the accuracy and 
reliability of forecasts for the application of traffic management (Question 4 & 5) 

• Development of the Link Performance Indicator for Resilience (LPIR) to be applied as 
a quick-scan approach for network evaluation. (Question 4 & 5) 
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• Presentation of visualisations that allow the results from probabilistic traffic models to 
be easily communicated in practice. (Question 6) 

1.4 Research approach  

The approach followed in this research follows the same line as the presented objectives and 
focusses on answering the earlier presented research questions. The general flow diagram of 
the various parts of each of these areas presented in this research is shown in Figure 1.3.  

a) The analysis of uncertainty and fluctuations in traffic 

To derive patterns and distributions of traffic flow influencing variables and their stochastic 
nature, data processing methodologies must first be reviewed, refined and applied. These 
methodologies should explicitly consider and display the stochastic uncertainty in traffic. The 
methodologies allow input for stochastic models to be constructed along with a set of feasible 
traffic management measures, but also for independent data analysis.   

b) Modelling uncertainty and traffic fluctuations 

Identification of road sections requiring attention can be performed in different ways. 
Analysis on ways to quantify the vulnerability of road sections is performed with a focus on 
improving resilience and developing a methodology to indicate locations requiring attention 
based on heterogeneity of traffic flow. Modelling day-to-day uncertainty in traffic requires a 
different modelling approach to modelling fluctuations in traffic flow. Therefore, different 
approaches are sought to effectively model uncertainty on one hand, and the microscopic 
fluctuations between vehicles on the other hand. In both cases the ability for practical 
application must be considered.  

c) The development of visual aids for effective communication of uncertainty in traffic 

It is necessary that the results from the uncertainty models can be conversed to strategic and 
operational road managers, policy makers, and others requiring insight into the options of 
applying traffic management. Therefore, a cognitive visual analysis is performed to evaluate 
effective methods and visualisation options to aid this process. 
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Figure 1.3: Research approach  

1.5 Thesis outline  

The structure of this thesis comprises of six parts as shown in Figure 1.4. Part one sets out the 
current practice and necessity for considering stochastics in traffic flow modelling. The main 
content reflects the three objectives and their research questions stated in section 1.2.1, 
namely the data part, model part and visualisation part, and further include a section on the 
practical application in a comprehensive case study. Research questions 1 and 2 are answered 
in Chapter 3. In the model part, research question 3 is dealt with in Chapter 2, research 
question 4 is answered in Chapters 4 and 5, and research question 6 is answered in Chapter 6. 
The application part gives a demonstration of the methodologies in Chapters 7 and 8. Chapter 
9 answers research question 6. Each chapter is introduced separately on its own title page and, 
where applicable, the source publication(s) are given that make up the chapter. In the final 
part, the conclusions and recommendations flowing from this thesis are given. 
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Figure 1.4: Thesis outline 
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Chapter 2  

Current practice, necessity and important issues in 
macroscopic stochastic traffic flow modelling 

 

 

Since traffic modelling became a mainstream area of scientific research halfway through the 
last century, continuous developments have taken place in order to improve performance and 
eradicate shortcomings of models. Since the turn of the century an increase in research 
regarding stochasticity and probability in traffic modelling has occurred. The realisation that 
simple presumptions and basic stochastic elements are insufficient to give accurate modelling 
results has grown. 

The purpose of this chapter is to give a demonstration of the necessity to consider stochastics 
in traffic models and to highlight a number of issues that require further development. Firstly, 
a concise overview of the current state of the art in the area of macroscopic and stochastic 
modelling is given, as well as some of the shortcomings of these models (sections 2.1 and 2.2). 
The case for the necessity of stochastic modelling is then argued, and demonstrations are 
given and discussed, for two cases in which deterministic approaches are shown to be inferior 
compared to a stochastic approach (section 2.3) Challenges for further development of 
stochastic models are given in sections 2.4 and 2.5.  

 

 
This chapter is an edited version of the articles: 
Calvert, S. C., Taale, H., Snelder, M., & Hoogendoorn, S. P. (2012). Probability in traffic: a challenge 
for modelling. In DTA2012: 4th International Symposium on Dynamic Traffic Assignment, Martha's 
Vineyard, USA, 4-6 June 2012. 
 
Calvert, S. C., Taale, H., & Hoogendoorn, S. P. (2014). Introducing the Core Probability Framework 
and Discrete-Element Core Probability Model for efficient stochastic macroscopic modelling. In DTA 
2014: 5th International Symposium on Dynamic Traffic Assignment, Salerno, Italy, 17-19 June 2014. 
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2.1 Macroscopic traffic modelling in general 

This thesis focusses on stochastic variation in macroscopic models. This does not mean that 
stochastic behaviour is not and should not be present in microscopic models. However, this is 
much easier to achieve and is already mature. In macroscopic models, this is currently not the 
case and therefore the focus of the research is on macroscopic models. Before focusing the 
necessity of stochastic macroscopic models, it is necessary to first understand what 
macroscopic are and their current level of development. This is performed in this section.  

2.1.1 State-of-the-art macroscopic traffic flow models 

Various types of traffic models exist, each with their specific purposes and applications. A 
well accepted distinction is based on the level of detail and differentiates between 
macroscopic, mesoscopic and microscopic models (Hoogendoorn and Bovy, 2001). Another 
categorisation focuses on the deterministic level of the model. This indicates the extent to 
which a model incorporates variation in its calculations and distinguishes between 
deterministic and stochastic models (Hoogendoorn and Bovy, 2001). Within these categories 
further differentiation can be made, also between the categories further differentiation is 
possible.  

Macroscopic traffic models do not consider individual vehicles, but rather describe the flow 
from the collective behaviour of vehicles and are therefore more readily applied to larger 
networks. In essence the vast majority of macroscopic traffic models are deterministic. 
Deterministic traffic models presume that no stochastic variability is present in traffic, while 
stochastic traffic models do presume certain levels of variations. A distinction in macroscopic 
models is generally made between first order models and higher order models. Lighthill and 
Whitham (1955) were among the first to propose a first order approach based on fluid 
dynamics from the field of continuum mechanics. This group of models, known as LWR 
models, makes use of the law of conservation, combined with a fundamental relation between 
the main traffic quantities, density, volume and speed, and makes use of the numerical 
Godunov scheme to solve the model equations (Godunov, 1959, Lebacque, 1996b). This 
creates a nonlinear discrete time dynamical system which solves the partial differential 
equations from the LWR. Later Daganzo proposed an extension to the LWR-model in the 
form of the Cell Transmission Model (CTM) (Daganzo, 1994, Daganzo, 1995a). In this work, 
shockwaves are automatically incorporated in the applicable equations, which avoids the 
necessity of considering shockwaves as an external case.  

Higher order traffic models make use of multiple differential equations to describe traffic 
flow. One of the first higher order models to be proposed was by Payne (1971) in which the 
LWR-model was extended with a dynamic speed equation. This addition solved a number of 
difficulties with the original first order models, which occurred at the boundaries of traffic 
states. Such a difficulty is the inability to create start-stop waves, as a first order model 
presumes instantaneous speed correction from vehicles. Despite the improvements, higher 
order models initially received a fair amount of criticism, partly due to the explicit level of 
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complexity in solving them. And while methods have been developed to perform the task of 
solving the equations (Papageorgiou, 1998), the greater level of complexity makes completely 
understanding the mathematical properties of these models a rigorous task (Hoogendoorn and 
Bovy, 1998), which can lead to instability in their implementation (Daganzo, 1995a). 
However, further developments by Aw and Rascle (2000b) and Zhang (2002) eradicated 
many deficiencies, such as the violation of the anisotropic character of traffic (Lebacque et al., 
2007b), and opened the door for further developments. Aw and Rascle (2000a) proposed 
adjustments to the original definition by replacing the space derivative with a convective 
derivative. Zhang (2002) described this similarly and explicitly state that traffic flow moves 
with the velocity along the trajectory and is therefore described as a Lagrangian quantity. 

Lebacque et al. (2007b) applied the same rationale to generalise the ARZ models (Aw and 
Rascle, 2000a, Zhang, 2002). The ARZ models apply an invariant term to represent the 
relative speed of vehicles which is connected to these vehicles. Lebacque et al. (2007b) define 
this term as a general invariant that can also be related to global flow properties and therefore 
represent other characteristics of microscopic flow. The model is described as a generic 
second order model (GSOM) after the flexibility one has to define an invariant that can take 
on many different purposes. This approach has been applied in a number of consequential 
publications (Costeseque and Lebacque, 2014, Costeseque and Lebacque, 2015, Lebacque 
and Khoshyaran, 2013). One such application describes the invariant term as a stochastic 
driver attribute describing the random driver interactions of a driver with other drivers 
(Lebacque and Khoshyaran, 2013). Their Stochastic GSOM describes the stochastic 
behaviour as a Brownian process and white noise process and if further defined in Lagrangian 
coordinates. While the GSOM also allows a first order description to be formulated 
(Lebacque et al., 2007b, Lebacque and Khoshyaran, 2013), applications of the GSOM are 
generally not found in first order formulations.  

The majority of applied macroscopic traffic models make use of first order theory, or an 
adaptation thereof, especially for models applied in practice. Second order models are gaining 
in popularity and possibilities, but remain less established than first order models, mainly due 
to difficulties in practical application and complexity. Our main focus will lie with the first 
order approaches, but the work described in this chapter may in many cases also apply to 
second order models.  

Both macroscopic and microscopic models can be stochastic. Application of stochasticity in 
traffic models entails the inclusion of variability in the manner in which traffic flow is 
modelled. Contrary to deterministic models, in which one set situation is modelled, variables 
in stochastic models may vary due to stochastic effects. Although this adds complexity, it 
represents the real world to a better extent. Including stochasticity in macroscopic models, in 
which a wide range of variables are varied, is generally performed in two ways: by means of 
repetitive simulations, and secondly by including variation in the model core. Both of these 
methods are described and discussed in the following sections. The focus here is on stochastic 
traffic flow modelling, therefore stochastics in route and other type of choices are not 
discussed in this chapter.  
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2.2 Stochastic macroscopic traffic modelling  

In this section a concise overview of stochastic traffic flow models is presented that can be 
found in literature. A discussion is also given on the main application areas for these models 
and acts as a step-up to a demonstration of the necessity of stochastic models, which is 
described in section 2.3.  

2.2.1 State-of-the-art stochastic traffic flow models 

Since the 1990’s there has been a gradual increase in effort towards improving traffic flow 
modelling through the explicit inclusion of stochastic variation. Initially, focus was on Monte 
Carlo simulation and later the focus shifted more towards internalised stochastics. In Monte 
Carlo simulation various input values for the traffic variables are sampled and applied in 
simulation for a N number of simulations to approach a distribution of possible outcomes. 
Although Monte Carlo simulation has been widely applied, mainly due to its relative 
simplicity and effectiveness, the method has its drawbacks. Main concerns in traffic 
modelling in the past have been the computational load of the method (Chang et al., 1994, 
Chen et al., 2002, Sumalee et al., 2011) and the presence of correlation between input 
variables. The incorporation of variance reduction methods, such as Importance sampling or 
Latin Hypercube sampling, have helped to reduce the computational effort of such models as 
well as the use of more powerful computers (Calvert et al., 2014c, Hess et al., 2006, 
Jonnalagadda et al., 2001, van Lint et al., 2012). Furthermore, recent developments in 
marginal simulation approaches offer an alternative solution to a heavy computational load in 
Monte Carlo approaches (Corthout et al., 2011). In marginal simulation a significant overlap 
between traffic flow in successive simulation iterations is presumed. By only simulating the 
marginal difference in traffic flow, repetitive network loading with a full dynamic 
macroscopic model is not required. The marginal simulation method only requires a single 
full initial model simulation and thereafter simulates the marginal differences with a first-
order based kinematic model, leading to a gain in computational efficiency. Correlation 
between input variables may be considered prior to simulation at the sampling stage (Chen et 
al., 2002). Variables with dependencies may also have probabilities which rely on the values 
sampled from other variables. In this way, correlation between two or more variables is 
included and allows for a realistic simulation. However, calculating non-bias outcomes in 
situations in which correlations are more complex and, furthermore, have dependencies on 
variables in the model, becomes much more difficult (Chang et al., 1994). In many 
approaches the extent of bias is presumed to be limited and therefore little attention is spent 
on this difficulty. 

An analytical approach to probability in the model core, or simply one shot, stochastic traffic 
modelling approach has proven an extremely difficult undertaking. Clark and Watling (2005) 
proposed a method for travel time reliability based on day-to-day variations in the travel 
demand matrix. Their framework computes a total travel time distribution based on the 
multivariate moments of a link flow vector. This was successfully demonstrated, however the 
method only considered a single random variable, namely the traffic demand, and therefore 
has limited difficulties with correlation. Others propose a more numerical approach to 
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analytically incorporating stochasticity in the model core. Recent developments include 
Sumalee et al. (2011), who proposed a stochastic cell transmission model (S-CTM) which 
makes use of fives operational modes depending on the states of traffic flow. Each mode 
incorporates a set of stochastic conditions to describe probability in each mode. Others who 
proposed using multiple functions as dictated by the traffic state, include Muñoz et al. (2003) 
and Sun et al. (2003). A main reason for considering multiple traffic states is the avoidance of 
nonlinearity in the fundamental relation, which is difficult to quantify otherwise. More 
recently Jabari and Liu (2012) argued that presuming non-linearity, while being 
mathematically beneficial, may lead to inconsistency with the original deterministic 
dynamics. Therefore Jabari and Liu (2012) proposed to include stochasticity as a function of 
the uncertainty in the driver gap choice, represented by the random vehicle headway. In doing 
so, they argue that non-linearity is avoided in continuous time as all traffic dynamics may be 
derived from the longitudinal car following behaviour. Boel and Mihaylova (2006) similarly 
proposed an extension to the CTM with stochastic elements. Rather than reconstructing the 
CTM as piece-wise structure based on traffic states, they defined the sending and receiving 
functions from the CTM as random variables in which the dynamics of the average speed in 
each cell is stochastically varied. The purpose was to incorporate stochasticity in the heart of 
the model at link level, which may propagate through an entire network through cell 
interaction. However, as their approach only considers a single stochastic scenario at a time, 
repetitive simulations are required to compose a probability distribution of the outcomes. 

Stochasticity can also be included in (macroscopic) traffic models by means of a stochastic 
fundamental diagram. Li et al. (2009) make a strong argument that a simple, but effective 
manner of stochastic modelling is to make use of a stochastic fundamental diagram. Such a 
diagram is constructed through a flux function obtained from random elements observed from 
speed-density data. Kim and Zhang (2008) also previously described stochasticity in the 
fundamental diagram by defining the growth and delay of perturbations from random 
fluctuations in both the gap time and transitions between traffic states. In their work they 
closely examined fluctuations in car following to derive their defined gap time.  

Advances in approaches bringing probability to the core of a model have generally been 
performed as extensions of existing methods. This has the obvious advantage that sound 
theory may be further elaborated on. The extension of the cell transmission model (CTM) is 
therefore a logical one. While disadvantages of applying such non-linear approaches are 
brought forward (Jabari and Liu, 2012), the question remains to which extent this has a 
detrimental effect on the outcomes. Jabari and Liu (2012) argue that most models are 
nonlinear and therefore handle traffic propagation inconsistently, and that stochastic variables 
are often applied as mere white noise. Application of stochastic variables as a representation 
of an underlying function rather than white noise therefore should lead to a reduction in error, 
substantiating Jabari and Liu’s claims. While possibly guaranteeing consistency when 
avoiding nonlinearity, there may be an issue in relation to accuracy as nonlinear models have 
a greater ability to generalize and freedom to fit the complex dynamics of traffic flow 
(Vlahogianni et al., 2005). The case for linearity against nonlinearity is therefore a complex 
one in which nonlinear solutions continue to gain in strength, even if complexity issues 
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increase. Well posed approaches have been proposed, but still do not claim to satisfy all 
properties of traffic dynamics (Aw and Rascle, 2000b). 

Table 2.1 gives a concise overview of the main types of models, some example references and 
a summary of their strengths and weaknesses. The majority of the presented methods, while 
applying stochasticity, do this based on presumptions of random variables. In many cases, 
random distributions may be acceptable, however a number of random variables which 
presume a nominal distribution will show a persistent error when empirically challenged. 
These errors transpire from the difference between the nominal distributions and the 
underlying distributions, which can be obtained empirically (Knospe et al., 2004, Lin, 2001). 
To this extent the random variables are not pure stochastic, in the sense that they represent 
real empirical fluctuations, as the random variables do not always accurately correspond to 
empirically derived probabilities. A further major difficulty that is only partially addressed is 
that of dependence between random variables (Chen et al., 2002, Sumalee et al., 2011, van 
Lint et al., 2012). These correlations are often presumed non-existent for the ease of 
modelling (Sumalee et al., 2011), or are simplified by means of presumptions or 
transformations (Clark and Watling, 2005, Jabari and Liu, 2012). While some research does 
consider correlations between random variables, these alternative models are often restricted 
to less elaborate modelling approaches.  

Table 2.1: Classification of stochastic traffic flow models 

Class  Reference 

example 

Characteristics 

Monte Carlo 

 

With & without 

advanced sampling  

(Calvert et al., 

2014b) 

+ Simple 

+ Accurate and effective 

- Time & computationally heavy 

Marginal (Corthout et al., 

2014) 

+ Limited additional computational load 

- Dependent on a base run 

- Poorly effective for large changes 

- Interactions at network borders difficult to 

estimate 

First over model 

generalisations 

Stochastic element (Boel and Mihaylova, 

2006, Sumalee et al., 

2011) 

+ Based on sound and proven theory 

+ Easy application in practice 

- Loss of accuracy due to simplification of 

probability & correlations 

Fundamental 

diagram 

(Kim and Zhang, 

2008, Li et al., 2009, 

Muñoz et al., 2003) 

+ Based on sound and proven theory 

+ Simple & effective approach 

- Loss of accuracy due to simplification of 

probability & correlations 

Second order 

model 

 (Khoshyaran and 

Lebacque, 2009) 

+ Mathematically sound & correct 

+ High potential level of accuracy 

- Difficult to implement in practice 

- Calibration & validation of variables 

cumbersome 

Other analytical  (Clark and Watling, 

2005) 

+ Mathematically sound & correct 

- Difficult to implement in practice 

- Computationally heavy (in some cases) 

Some advances have been recently made in stochastic core modelling, as shown. The majority 
of these models are developed for very specific purposes with possibilities for larger scale 
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implementation. However the, sometimes complex, formulations may provide difficulty for 
implementation of methods in a complete macroscopic or mesoscopic framework. To the 
knowledge of the authors, no model has yet been developed that is capable of matching the 
accuracies of the computationally heavy repetitive simulation through a one-shot approach on 
a comprehensive network, and is able to be extensively applied in practice. In section 2.4, the 
main issues for stochastic macroscopic flow modelling are considered.  

2.2.2 Application range 

While the need for a greater element of probability and consideration of variability has been 
shown, this does not apply for all applications in which traffic models are required. In many 
cases, deterministic models will work just as well. It is therefore necessary to evaluate under 
which conditions variability should be considered, while considering potential drawbacks of 
including variation in traffic.  

In general, the main advantages of using deterministic models are the relatively short 
calculation time and the limited amount of input data required. The advantages of using 
stochastic models are an increased accuracy with consideration of numerous situations, as 
demonstrated in the experimental cases in the next section, and the possibility of giving 
results with a reliability score or sensitivity. It is easy to see that a stochastic model will 
always be preferred if it can be just as easily applied as a deterministic model, however in 
reality this is not the case. It is therefore necessary to review the goals and requirements of a 
model analysis before performing calculations. This is a step that is too often omitted in 
practice, mainly due to practical issues or understandable unawareness from the viewpoint of 
the user. Considering the aforementioned advantages of the models, a concise overview of 
conditions under which both model types should be used, is given in Table 2.2. 

Table 2.2: Application range for stochastic models versus deterministic models 

 

Stochastic modelling Deterministic modelling 

Applicable for… Applicable for… 

Variation in input variables Negligible variation in input variables 

Distribution of input variable is reliable and can 

be easily determined 

Distribution is unreliable and cannot be easily 

determined 

Variation in input variables has an amplified 

effect on model outcome 

Variation in input variables has a limited or linear 

effect on model outcome 

Congested network with high congestion 

volatility 

Uncongested network or congested with low 

congestion volatility 

Comprehensive overview of network 

performance 

General indication of network performance 

 

Variations in the input variables lead to a primary source of variation in the model results. 
When these variations are negligible or non-existent, there is no need to apply a stochastic 
approach and a deterministic approach suffices. However, for limited variations, the results 
from model runs may show greater discrepancy than for large input variations between the 
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stochastic and deterministic cases. This is shown in the next section. This is due to 
sensitivities in the vicinity of critical road sections in a network, which show congestion and 
therefore delay for a limited part of the possibility set, but are not sufficiently captured by the 
deterministic case. In turn, a greater error is found for the deterministic case. However when 
variations are large, extreme congestion or quiet traffic will often also be captured by the 
‘deterministic’ case to a large extent, which leads to a smaller error between the stochastic 
and deterministic cases. When the variation in input variables has a direct linear correlation 
with the outcome of a model, the model results will show a similar level of variation, as in 
both cases a similar ‘representative’ situation will result from both a distributed input and a 
mean or median input. In an uncongested network this will often be the case, as traffic can 
propagate at (near) desired speeds without too much disruption, resulting in a stable model 
output. In these scenarios, stochastic modelling may not show much difference to the 
deterministic case. Furthermore, it goes almost without saying that when probability 
distributions or functions cannot be accurately constructed, one should apply a known 
variable in deterministic model rather than applying inaccurate presumptions of a distribution 
function. Finally the main application of stochastic modelling should be to give an accurate 
and comprehensive overview of traffic on network under a wide variety of conditions. If one 
is merely interested in a general indication of network performance then a deterministic model 
again suffices.  

2.3 Need for stochastic models  

Often there is a specific and sometimes urgent need to use stochastic models. This is argued in 
many of the papers presented here thus far. The application of simple stochastic or 
deterministic models in some cases may be unintentionally deceiving policy-makers with 
biased results. However, it is not always apparent when stochastic models should be applied 
and what the extent is of errors made by applying non-stochastic models. Tampère and Viti 
(2010) remarked on this and included questions relating to the reliability of dynamic 
modelling and the lack of most current models to properly consider stochastic elements. van 
Lint et al. (2012) experimentally demonstrated the importance of not ignoring variations in 
traffic by showing biases in results that occurred by not considering stochastic variations. 
Many recent contributions propose elaborate analytical solutions for the application of 
probability in modelling. However, most remain incomplete from the point of view of 
practical widespread implementation. Tampère and Viti (2010) and Jabari and Liu (2012) also 
argue that randomness is often applied in an imperfect and incomplete fashion. This may be 
through merely adding stochastic ‘noise’ or presuming an inaccurate distribution, for 
example. For many of the proposed models this remains the case, which can lead to the 
misrepresentation of reality and wrong conclusions based on the outcome of such models.  

In the following paragraphs, two experimental cases are given to demonstrate area’s in which 
deterministic modelling has shortcomings and a stochastic approach is required. This gives a 
demonstration of the necessity to consider the stochastic character of traffic flow when 
modelling. 
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2.3.1 Experimental demonstrations 

To demonstrate potential situations in which modelling, without consideration of variation in 
traffic quantities, can lead to biased results, two small scale experimental cases are 
considered. These cases each have a focus on a specific contribution of stochastic modelling. 
The goal of the experiments is to show that considering variations as probabilities gives 
substantially different results than by considering a single deterministic run. In each case, the 
capacity of the road sections is varied according to an arbitrary, but probable distribution. 
Variations in capacity are applied to all road sections as a blanket factor, which may represent 
the reduction in operational capacity from i.e. weather conditions, luminance conditions, etc. 
The applied distributions are logarithmic functions and are shown in Figure 2.1. These 
distributions resemble the distribution of empirical observations. Different distributions are 
used to demonstrate the influence of the input distribution in the cases. To avoid the necessity 
to derive correlation between capacity and demand variation, only the capacity is varied, 
which is more than sufficient to give an indication of the effects of modelling traffic 
variability. In each case, use is made of the dynamic macroscopic traffic assignment model 
INDY, which is based on the link transmission model, as developed by Yperman (2007). 
Route choice in the applied version of INDY is path based, with path fractions derived 
iteratively until equilibrium over all OD-routes is achieved. For each simulation iteration, this 
equilibrium is recalculated to correspond to the new traffic conditions. This presumes that 
during the peak period drivers have a good knowledge of traffic conditions and are aware of 
irregularities in this daily pattern and can anticipate this (Peeta and Yu, 2005). This 
presumption is an imperfect simplification of reality. The other extreme would suggest that 
drivers have no prior knowledge of the network and changes in daily traffic flows, which is 
not realistic either, as drivers making work related trips should be presumed to have a greater 
knowledge of the traffic system. The true equilibrium state will most probably lie in between 
these two events, and has been discussed in a number of contributions in recent years (Gao et 
al., 2011, Guo et al., 2010, Ng and Waller, 2012). With a lack of certainty on the equilibrium 
state, the choice is made to presume a new equilibrium for each simulation based on driver 
knowledge of the traffic system. The model is applied to a section of the Amsterdam network, 
as shown in Figure 2.2.  

 

Figure 2.1: Capacity factor functions for model input: case 1 (left) and case 2 (right) 
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Figure 2.2: Network used for the experimental cases in INDY, representing the south 
ring of Amsterdam 
 

The outcomes of the experiments are analysed using the total experienced delay as 
performance indictor on the entire network compared to free-flow conditions, and are 
expressed in total vehicle hours. In the case studies, the averaged travel time over route AB 
(see Figure 2.2) is also analysed. Other result indicators may also be used, such as the travel 
time over other specified trajectories or the average network speed, among others. For the 
demonstration here, it is not of great importance which indicators are chosen, merely that the 
network can be evaluated. The mean average and the median of the distributed results are 
compared with that of a single model run for the median situation, which represents a 
deterministic model run. 

In general, the total experienced delay Tdelay is defined as: 
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where  veh   = vehicles 
  ttscen.veh  = travel time in the scenario 
  ttff.veh   = travel time in free flow 
 
In the macroscopic model, where vehicles are not modelled individually, the total experienced 
delay Tdelay is calculated by: 
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where  t  = time 
  qlink.t  = traffic flow on link at time t 
  l link  = length of link 
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  vlink.t   = mean cell speed on link at time interval t:t-1 
  vff.link   = cell speed on link in free-flow 
 
The averaged travel time over route AB is the average of all travel times during the simulation 
on the route, and is defined as: 
 ��)* =�∑ # $
�� )*%
�� )*.!'�
�� �� ,�

!��  

(2.3) 

 
where  TTAB  = travel time between origin A and destination B 
  l linkAB  = length of a link, between origin A and destination B 
  vlinkAB.t   = cell speed on link at time t 
  n  = number of time steps 

2.3.2 Case setup 

In the first experimental case a near-critical level of traffic flow is present on the network. 
This could represent a situation in a busy peak hour period on a well-designed network, which 
nicely meets the extreme level of demand. In the reference scenario, the capacities are set to 
the median value of all possible capacity values corresponding to the capacity distribution; 
this is the ‘representative’ situation. The stochastic scenario takes a sample from the capacity 
distribution (Figure 2.3a) and applies these values to all links in the network. This is iterated 
for 40 simulations and is performed for Latin hypercube and systematic sampling, to verify 
that the sampling method does not bias the tendency of the result. Both systematic and Latin 
hypercube sampling are both advanced sampling methods that systematically sample from 
ordered sub-selections. For more information on these methods see (Iman and Conover, 1980, 
McKay et al., 1979). These methods are chosen, as they represent the input distributions in the 
outcomes much better than for simple random sampling for a low number of samples (Black, 
2009, Iman and Conover, 1980, McKay et al., 1979). 

The second experimental case considers the event that the variability of the capacity is 
extensive. This may be the case in a period in which extreme weather is present in varying 
severity over an extended period of time. The capacity distribution as in Figure 2.3b is 
applied, which shows a greater variation in capacity value compared to case 1. Again for the 
reference scenario, the capacities are set to the median value of the all possible capacity 
values corresponding to the capacity distribution. The stochastic scenario takes a sample from 
the capacity distribution and applies it to the network, which is repeated for 40 iterations. This 
is also performed for Latin hypercube and systematic sampling. 

2.3.3 Results of experimental cases 

The results from the experimental cases are shown in the form of histograms, as well as the 
numerical values for each sampling method. The outcome of the median input value, which is 
used to represent the deterministic case, is also given.  
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Case 1 

The results of case 1 show that, depending on the sampled capacity value, a skewed 
distribution is produced with an average network delay of a little under 18000 vehicle hours in 
the network (Figure 2.3 and Table 2.3). This is considerably higher than the deterministic 
situation, modelled with the input median, which produced a total network delay little over 
9000 vehicle hours. In the stochastic case, the near-critical level of traffic flow on capacity 
will be breached in many cases in which the capacity is marginally below the critical level of 
traffic flow. And while this may not happen in the majority of cases, when it does, widespread 
congestion can occur in the network and a greater total network delay for vehicles is 
registered. The average capacity remains above that of the critical traffic demand. Because the 
‘representative’ situation, as modelled in a deterministic approach, does not trigger 
widespread congestion, the total network delay is significantly lower which gives a 
misleading outcome. When considering the travel times over route AB, a similar outcome is 
obtained (Figure 2.4 and Table 2.4). The deterministic value (18.2 minutes) lies very close to 
the left side of the distribution, while travel times well above these 18 minutes are recorded in 
many cases.  

 

Figure 2.3: Network delay for case 1. Sampled as systematic (a-left) and as Latin 
hypercube (b-right) sampling 

 

Table 2.3: Network delay of case 1 in vehicle hours 
 

Sampling method Median Network delay 

(vehicle hours) 

Average Network delay 

(vehicle hours) 

Latin Hypercube 12164 17990 

Systematic 12166 17986 

Median input 9113 9113 
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Figure 2.4: Averaged travel times on route AB (see Figure 2.2) for case 1. Sampled as 
systematic (left) and as Latin hypercube (right) sampling 

 

 

Table 2.4: Averages travel times for case 1 on route AB (see fig. 2) 
 

Sampling method Median Travel times 

(minutes) 

Average Travel times 

(minutes) 

Latin Hypercube 20.23 23.98 

Systematic 20.23 23.95 

Median input 18.16 18.16 

 

 

Case 2 

The results of case 2 show similar distributions to that of the first case. The average total 
network delay of the repetitive simulations is around 18,000 vehicle hours, while the 
deterministic run produces just over 12,000 vehicles hours (Figure 2.5 and Table 2.5). For this 
experiment a larger variation is applied to the input capacity variable. This results in a larger 
spread of values for the total network delay for the stochastic approach. The deterministic 
approach also shows a greater number total network delay due to a greater average capacity 
drop in the input, which allows the traffic demand to exceed capacity to a greater extent. As 
capacity in this case is low enough to become critical, the difference between the stochastic 
and deterministic outcomes is smaller, while the average stochastic outcomes are only slightly 
higher for case 2 than in case 1. This further shows the sensitivity of the deterministic 
approach to small changes in the input, while these are easily captured by the stochastic 
approach. 
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Figure 2.5: Network delay of case 2. Sampled as systematic (left) and as Latin hypercube 
(right) sampling 

 
 

Table 2.5: Network delay of case 2 in vehicle hours 

 

Sampling method Median Network delay 

(vehicle hours) 

Average Network delay 

(vehicle hours) 

Latin Hypercube 12136 17845 

Systematic 12164 18481 

Median input 12359 12359 

 

By considering a complete distribution of probable input values, a complete distribution of 
outcomes can be considered for the stochastic approach. In the model, a small deterioration in 
road capacity has an amplified effect on the experienced traffic delay, a characteristic that is 
not picked up by the deterministic approach. We have therefore demonstrated a major 
deficiency of deterministic and simple stochastic models that do not consider variable traffic 
flow. The inability to consider anything other than an average situation and the sensitively to 
variations in ‘real’ input variables, by presuming single values rather than distributions, leads 
to a considerable chance of model results giving unreliable and biased outcomes. 

2.4 Challenges for further development of stochastic models 
Although research in stochastic traffic flow modelling is gaining momentum, a number of 
significant challenges remain for the further development of stochastic macroscopic 
modelling. And while many of these challenges have been addressed individually or in part in 
research, a further challenge remains in bringing each part together to form a complete and 
operational stochastic model. In the previous chapter, the state of the art in relation to 
stochastic modelling of traffic variations is given. From the reviewed literature, a number of 
issues are described that have still to be satisfactorily solved, such that they can be included in 
a fully operational traffic model for practical application. These issues are summarised and 
described in this chapter. The main challenges discussed are: 
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1. Computational efficiency 

2. Correlations and spatiotemporal dependency 

3. Data gathering and processing  

4. Stochastic propagation of probability 

5. Generality of stochastic variation 

6. Driving behaviour in macroscopic traffic 

An additional challenge may be mentioned in the form of the implementation, however this 
affects each challenge individually, and does not explicitly affect the core workings of the 
model. The described issues give a basis for development of solutions in the rest of the thesis 
to address the main issues. Although six issues are mentioned, it remains too extensive to 
address each one completely within this thesis. However, when tackling a number of the 
challenges from the issues, attention is given to the complete set of issues to avoid a solution 
for one leading to the aggravation of another. In the rest of this chapter, each issue is 
described and is concluded through the formulation of a challenge for each issue. 

2.4.1 Computational efficiency  

Consideration of computational efficiency applies to the computational load of a model on the 
applied hardware, but also the speed at which calculations can be made as a consequence of 
the applied calculations. Macroscopic models in their application are almost always applied to 
larger networks and therefore demand computational power, which is severely compromised 
by including probability due to consideration of a larger number of scenarios or uncertainty. 
The computational load of models in general has been seen as a problem in the past (Chang et 
al., 1994, Chen et al., 2002, Sumalee et al., 2011). However, nowadays this problem is 
diminishing with the increase in computational power of hardware (Chang et al., 1994). 
Nevertheless the possibilities of increased computational power always seem to be tested to 
the limit as advancement of modelling techniques continually demand greater computational 
power (Bliemer and Taale, 2006). For both macroscopic stochastic methods mentioned in this 
thesis: repetitive simulations and one-shot analytical solutions, there are difficulties relating to 
scientific advancement in terms of the computational efficiency. 

As described in section 2.2, repetitive, or rather Monte Carlo, simulation techniques have 
increasingly applied greater computing power to tackle the lack of applied variables and the 
complexity of the variables functions (Chang et al., 1994). Greater numbers of random 
variables are considered in the input, and model, in an attempt to describe the traffic system to 
a more realistic extent. This however means that correlation between considered variables 
becomes of greater importance. This is because the effect of correlation becomes greater as 
one considers larger numbers of dependent events. Determining correlation functions is 
already difficult, however calculating them also leads to a greater demand of hardware 
resources. The other mentioned innovation in repetitive simulation, marginal simulation, 
offers an alternative that reduces the computational load, while still allowing a complete 
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course of Monte Carlo simulations (Corthout et al., 2011). By only simulating the marginal 
traffic flows, the spatiotemporal range that is simulated can be limited, such that a complete 
network and all traffic flow do not require resimulation, but only those differing from a 
previous simulation. Limitations of marginal simulation lie mainly in the approximation that 
is made regarding the affected network and traffic flows. Assumptions are made to the extent 
that the initial base simulation is affected and which parts of the network are activated for 
marginal simulation. The approach has proven to be efficient in various cases, however 
developments continue and generic proof of efficiency without significant loss of accuracy is 
still in the process of being unveiled. Nevertheless, this category of models has much 
potential and has already proven to have its uses (Corthout et al., 2009, Frederix et al., 2011). 

The development of one shot models, which largely does away with the necessity for 
repetitive simulations has a great potential to allow for stochastic simulation at a lesser 
computational cost. Such models as the S-CTM (Sumalee et al., 2011) and that of Jabari and 
Liu (2012) are at the forefront of these developments. A danger however is that a 
simplification of the stochastic input or propagation may be required to allow one shot models 
to be effective. In this, a simple rule that the more elaborate the solution, the greater the 
computational load, is evident.  

Recent developments should be applauded, but come in many cases with large drawbacks. 
The challenge for researchers in this field is therefore: not only to develop elegant solutions 
for stochastic modelling, but to do this in a manner that allows easy and efficient application 
in computational terms. Furthermore, with a greater efficiency, comes a larger network that 
can be calculated, shorter calculation times, and a greater robustness of the model. 

2.4.2 Correlations and spatiotemporal dependency 

When applying stochastic modelling, it is necessary to consider multiple random variables as 
both input and in the model itself, depending on the applied approach. In the simplest terms, 
one has at least the traffic demand and supply as input variables, however these may consist 
of many other variables, such as weather effects, general randomness in demand, and others. 
These all have some level of dependence which cannot be ignored (Chang et al., 1994). In 
deterministic modelling, one has only to consider single values, which relate directly to one 
another. Within random variables, not every permutation will be possible in conjunction with 
another from a separate random variable. A simple example of this is a high speed of 100 
km/h which will never occur simultaneously with a high traffic density of say 40 veh/hr/lane, 
while both may be present as part of the probability of their random variables. A limited 
number of solutions have been proposed to deal with correlations in (Berdica, 2002, Chang et 
al., 1994), however these and similar approaches are complex or may only deal with specific 
dependent relations. While offering some sort of solution, a difficulty remains and is 
connected to the challenges from the previous paragraph, in that the applicability of the 
methods in an operational model may be cumbersome due to their complexity. To this extent, 
there remains a challenge to develop a global approach to consider correlation between 
random variables in a manner that can be easily implemented and that does not substantially 
detract from the efficiency of the model.  
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Incorporation of spatial and temporal dependent fluctuations from different sources brings a 
further issue of correlation on a number of levels. On a temporal plane, it is clear that a 
stochastic element will affect traffic during a certain time frame, possibly with differing 
severity. A basic example is that of an accident that reduces road capacity. At the time an 
accident occurs, the capacity is affected differently than during the aftermath and the clean-
up, but nevertheless the capacity reduction is correlated in time, as a natural consequence of a 
chain of events. In the same way, there is also a spatial correlation. The capacity reduction 
affects the location of the accident, but due to congestion propagation, also affects upstream 
traffic flow. A further complexity in dependence comes from not only considering a single 
stochastic influence variable, such as the capacity, but also the traffic demand. In the case of 
an accident, drivers may reroute, shift departure time, etc. This does not only affect traffic 
flow in time, but also in space. Furthermore, correlation effects also exist between the traffic 
demand and road capacity in some instances. When considering a greater number of variables, 
the dependency relations explode.  

In many cases, some of these dependencies are presumed non-existent for ease of modelling 
(Clark and Watling, 2005, Sumalee et al., 2011). Especially for the interdependent 
correlations between variables this is readily the case, while spatiotemporal dependencies 
must be considered on some level to avoid disutility of a model. Even then, these correlations 
may be simplified by means of presumptions or transformations (Clark and Watling, 2005, 
Jabari and Liu, 2012). It should not immediately be presumed that a less than full 
consideration of dependency will have large detrimental effects on model outcomes, as there 
are cases in which this is clearly the case (Calvert et al., 2012), however the possibility thereof 
should always be considered. The challenge resulting from this issue is therefore, to develop 
models that sufficiently consider the main effects of correlations between variables, while 
allowing a model to not become overly loaded with too complex levels of internal 
dependency between variables.  

2.4.3 Data gathering and processing 

Probabilistic or stochastic models, by definition, work with a wide variety of possible values 
for the considered random variables. The outcomes of these models will often be given as a 
distribution, and the input will often encompass an even greater spread of data points. In some 
cases input for stochastic models will be explicitly applied from empirically collected data, 
and other cases will be applied from an empirically derived or presumed analytical function. 
In either case, there is a need for large amounts of data to form a generically valid distribution 
or to validate the presumed function. The specific type of data depends heavily on the manner 
in which an approach is applied. However, for approaches which try to include multiple 
variations of traffic influencing variables, such as weather conditions, gathering and 
processing the required data is not a trivial task. If we consider weather and even the effects 
of snow, it must be pointed out that a great number of permutations are possible. One can 
distinguish between snowfall and lying snow on the road surface, between the first snowfall 
of the year and snow two weeks later when drivers have already become accustomed to the 
conditions. Also various combinations of weather conditions can be considered, such as 
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strong winds, poor luminance, and low sunshine, all in combination with snow. Each situation 
needs consideration to be able to determine specific causation of events and correlations 
between the events. This requires years of data, and even then this may be insufficient. This 
challenge obviously applies for many other variables, besides the weather. And once 
sufficient data has been gathered, it still needs to be processed. The principal difficulty of this 
is processing the data in such a way that dependencies between variables are correctly 
reflected in the random variables, or as a correlation function.  

To address these issues, the application or development of concise methodologies is required, 
which will allow for an efficient and comprehensive data processing and result in accurate 
distributions. This therefore is also the challenge that is presented with this issue: to 
development and apply techniques that produce representative distributions based on 
empirical findings for application in models, without the need to rely heavily on heuristics and 
arbitrary assumptions.  

2.4.4 Stochastic propagation of probability 

In traffic flow models, it is commonplace for traffic to propagate through a link and network. 
However, upon including stochastic probability in traffic flow modelling, the probabilities of 
traffic values also propagate in time and space with traffic (Hoogendoorn et al., 2008, 
Lebacque et al., 2007a). For Monte Carlo simulation, this is not an issue, as each simulation is 
a single probability value and therefore no probability value is required to be considered. For 
one shot models there is a challenge to propagate probability information without 
compromising model accuracy or one of the other important issues, such as computational 
efficiency.   

In models, which apply stochastic effects through the fundamental diagram, traffic flow is 
presumed to propagate in an identical fashion to that of a regular flow model. In a stochastic 
fundamental diagram, probabilities are stochastically applied in the shape of the diagram. In 
the S-CTM, for example, median and standard deviations of traffic variables are propagated 
through time and space, dependent on the relevant traffic state. It is not uncommon to only 
consider a median and standard deviation, as this requires the least computational effort and 
still gives a good estimation of variational spread. However, more in-depth analysis is harder 
as the underlying distribution is not preserved. Furthermore, such an approach often presumes 
probability distributions to be symmetrical according to a presumed shape, which is not 
always the case. In such a case, biases are allowed, which may not accurately represent the 
underlying distribution. It should however be noted that these biases may be small compared 
to the overall error level.  

This issue is not one that will hinder the working of a model, but can have a substantial effect 
on the results produced by a model and therefore requires attention. The defined challenge for 
this issue is to construct a methodology that propagates the probabilities of variables with 
traffic flow, such that these probabilities or variations are maintained without losing their 
inherent descriptive power over the variables. 
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2.4.5 Generality of stochastic variation 

Generality of stochastic variation refers to the applicability of parametric distributions to 
represent the underlying empirical distributions. Inclusion of stochastic variation does not 
only demand solid and accurate modelling, but also realistic and correct model input. The 
level of stochastic input depends on which variables are considered stochastic. These may be 
the time headway (or gap time) between vehicles, capacity values, traffic demand values, or 
even ‘lower level’ variables, such as vehicle population or probability of accidents. 
Depending on how a model processes the stochastic variables, these may be offered to the 
model as a complete distribution, either of a specific form or empirical, or as a description of 
variations, such as median, standard deviation and possibly a shape parameter. The difficulty 
with this issue is that of generality. A set parametric shape of probable values for a set 
variable may not be valid for every location on a network or under certain other conditions. 
Furthermore, such variables may not pertain to a set distribution type. Often presumptions are 
made to how general distributions or variations are. In many instances, white noise may be 
applied to known representative values to imitate variation (Helbing et al., 2001, Jabari and 
Liu, 2012). The validity of such approaches is not often considered and is taken as a model 
assumption. However, there is also room for improvement, when applying stochastic variation 
to traffic flow models. In the case of stochastic fundamental diagrams, the difficulty of 
generality may also arise. In some cases allowing specific local data to influence the extent of 
stochastic variation can help solve this. 

It may be acceptable to presume parametric distributions in many cases, however in many 
more this may be an unwanted source of error. The challenge described in relation to this 
issue is therefore, to develop a method or framework to test the correctness of presumed 
distributions, but more so, to allow non-parametric distributions to be applied in a stochastic 
propagation model without undue side effects when this is required.  

2.4.6 Driving behaviour in macroscopic traffic 

Driving behaviour is at the heart of traffic flow and traffic flow theory. In many cases traffic 
flow is presumed deterministic, however driving behaviour is far from this and contains a 
great deal of stochastic fluctuations. These fluctuations are present for a single vehicle, in 
their desired speed, ability to maintain that speed, lateral positioning, acceleration capabilities 
and behaviour, for example. Fluctuations also exist between vehicles, such as car-following 
behaviour, lateral interactions, such as lane changes, etc. Each of these elements affects traffic 
flow. In a microscopic model, it is easy to include these aspects, when a suitable algorithm is 
present. In macroscopic modelling, these aspects are not explicitly considered as they are 
hidden in the macroscopic aggregation of traffic flow. However, it is known that these 
stochastic fluctuations do affect traffic flow and therefore also macroscopic traffic flow and 
should be considered in some way (Helbing et al., 2001).  

Traffic characteristics and states of traffic in a homogeneous traffic flow will often differ from 
largely heterogeneous traffic flows, such that capacity values and other road variables will 
differ for identical demands. Such stochastic fluctuations from driving behaviour are currently 



30 TRAIL Thesis series 

 

not included in macroscopic modelling and here lies the challenge: to include microscopic 
driving behaviour stochastics in macroscopic modelling such that the effect on traffic flow is 
well represented. 

2.5 Summary of issues 

It is of course the case that each issue influences the others in some way. This is a main 
reason why individual solutions for each issue do not necessarily yield an overall solution for 
all the issues. Figure 2.6 gives a high-level description of the dependencies between the issues 
discussed in this chapter. We derive that especially the manner of stochastic propagation of 
probability in traffic is a key issue. There is a strong influence from this issue to both the 
manner in which the spatiotemporal dependency is influenced and the extent to which 
stochastic variables can be dealt with generically. It may be that certain presumptions for 
dealing with uncertainty propagation may limit how stochastic variables are defined. 
Furthermore, each issue affects the computation time of a model and in most cases contributes 
to a lower computational efficiency. There are situations possible that may lead to shorter 
computational times, such when a process inherently or even implicitly allows for 
parallelisation. When setting out on tackling one of the issues, the effect on the others should 
not be ignored, moreover the effect should explicitly be considered for model usefulness.   

 

 

Figure 2.6: Interrelations between the main modelling issues (continuous and dashed 
lines indicates strong and weak relationships respectively)  

2.6 Conclusions  

In this chapter, the case for considering stochastic variation in macroscopic traffic modelling 
was argued. This begins with a description of current practices in traffic flow modelling, and 
more importantly, in stochastic traffic flow modelling. It is shown that currently two main 
avenues of models are utilised: repetitive Monte Carlo simulation, and the analytical 
consideration of probability in the core of a model. Current and recent research developments 
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on both of these approaches are discussed. While classically, the Monte Carlo approach has 
been applied, the advancement of various analytical approaches has increased, with a number 
extensions of deterministic models being proposed.  

Too often stochastic variation in models is not considered in practice, either for application or 
the necessity for development. Focussing on deterministic or simple stochastic models has the 
danger of closing ones eyes to inaccuracies caused by an incorrect choice of modelling 
approach. To demonstrate this, two experimental cases are given in which the application of a 
deterministic approach is shown to yield substantially biased results in comparison to a 
stochastic approach. While stochastic models can be seen as more ‘complete’ than 
deterministic models, their application is not recommended in every situation. A short 
investigation is therefore performed on the application range of stochastic models. 

There is a necessity, but also many challenges for the scientific and consultancy worlds to 
further the development and application of stochastic modelling in traffic analysis. A 
realisation must arise of the detrimental effects of blindly applying non-stochastic models 
where probability is rife. It is the joint responsibility of both worlds to address this and make 
further developments in this area of research possible.  

While the case for macroscopic traffic flow modelling is strong in theory, the application of 
such modelling approaches is only possible with sufficiently developed models. However, 
there are still certain challenges to be addressed in probabilistic and stochastic modelling 
before a widespread implementation is likely. These have been discussed in this chapter and 
are considered in the rest of thesis. It goes beyond the scope of this thesis to extensively and 
explicitly address all of the issues, however when addressing the main challenges and 
objective in this thesis, the described issues must be kept in mind.  
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Chapter 3 

Stochastic capacity and demand estimation  

 

In this chapter a methodological framework with a conceptual model for practical stochastic 
capacity estimation is presented and a quantification of motorway capacity variation is given. 
Furthermore, a methodology for stochastic demand estimation combined with stochastic 
capacity is also given. A quantification of the capacity is given in the form of a Weibull 
capacity estimation fit for each type-of-day scenario. Further consideration of the 
implications and applications of the framework are also given. 

One of the most influential external and commonly occurring influences on traffic flow is the 
weather. Weather conditions affect both traffic demand as well as road capacity. The capacity 
estimation framework is applied on weather as part of a holistic approach for simultaneous 
influence on both the demand and supply. Furthermore, a case is made to quantify such 
outcomes stochastically.  

The chapter starts by considering the three main variables considered in the chapter. Section 
3.2 gives a review of capacity definitions followed by a conceptual model for capacity 
variation in section 3.3. In sections 3.4 and 3.5 the methodologies for stochastic capacity 
estimation, and for a combined stochastic capacity-demand estimation are given. These 
methodologies are demonstrated in case studies in sections 3.6 and 3.7. Section 3.8 finally 
gives a discussion of the results, followed by the conclusions in section 3.9. 

 

 
This chapter is an edited version of the articles: 
Calvert, S. C., Taale, H., and Hoogendoorn, S. P. (2015) Quantification of motorway capacity 
variation: influence of day type specific variation and capacity drop. Journal of Advanced 
Transportation, doi: 10.1002/atr.1361. 
 
Calvert, S. C., & Snelder, M. (2016). Influence of Weather on Traffic Flow: an Extensive Stochastic 
Multi-effect Capacity and Demand Analysis. European Transport, 60(4), 2016 
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3.1 Introduction 

3.1.1 Capacity 

In traffic flow theory and modelling there are few variables that are as fundamental as road 
capacity. Road capacity is applied in modelling for the likes of infrastructure planning and the 
evaluation of traffic measures. The capacity of a road has a direct influence on the traffic state 
in reality as well as in models. It is therefore important that correct capacity values are applied 
when modelling traffic. There are however a number of challenges for the estimation of 
reliable capacity values. These are related to aspects such as capacity definitions, the 
stochastic nature of capacity, and traffic instability in the critical traffic states.  

The first aspect is the capacity definition. The various different definitions for road capacity 
all have a specific purpose, while each estimation method makes use of a different approach 
to detect and calculate capacity. Common capacity definitions relate to the traffic state, such 
as the undersaturated or breakdown capacity, discharge capacity, and nominal capacity. In 
section 3.2, a more detailed description is given of the capacity definitions and how their 
values can be calculated. It is obvious that applying the correct definition is paramount as well 
as consistently applying the same definition for comparison.  

Secondly, traffic flow and road capacity are strongly dependent on driver behaviour. Human 
behaviour is well known for pertaining a great deal of (unexplained) stochasticity, which 
understandably extends to traffic flow. It is therefore not reasonable to state that there is one 
definitive capacity for a specific section of road. Furthermore, road capacity is increasingly 
seen as stochastic with a probable value and a standard deviation around that value (Brilon et 
al., 2005, Calvert et al., 2012, Lorenz and Elefteriadou, 2000). This however is problematic in 
traffic models that make use of deterministic and fixed capacity values. Although these values 
will often give a good representation of the most probable capacity value, they do not 
consider the spread in capacity values and the resulting influence that this fluctuation in 
capacity values has on traffic flow. Taking these variations into account leads to results that 
are not linearly correlated to the outcomes of a deterministic traffic model (Calvert et al., 
2012, Mahmassani et al., 2012, van Lint et al., 2012).  

The third challenge of reliable capacity estimation is the uncertainty of traffic performance in 
unstable traffic near critical flow levels (Chen et al., 2013). As traffic is a stochastic system, 
the traffic states near to the traffic breakdown threshold cannot be easily defined (Weng and 
Yan, 2015). This makes it difficult to accurately determine current traffic states and can lead 
to unclear capacity estimations, as it becomes difficult to distinguish between pre-breakdown 
capacity and discharge capacity. (Bigazzi and Figliozzi, 2011, Tu et al., 2007). 

Uncertainty of road capacity in traffic flow has led to a growth in stochastic modelling. These 
models take (a part) of this uncertainty into account to improve accuracy and reliability of 
traffic simulations (Ryu et al., 2015). Many of these models make use of arbitrary stochastic 
variations in either or both the capacity and traffic demand (Tampère and Viti, 2010). In some 
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cases a distribution of capacity is considered, however in such a way that it does not always 
accurately resemble capacity variations in reality, and therefore may introduce additional 
variational errors. The availability of such distributions for specific circumstances is limited. 
Furthermore, a quantitative relationship between capacity variation and various contributing 
factors is yet unsubstantiated.  

3.1.2 Demand 

Traffic demand is arguably much more stochastic than road capacity. It is easily understood 
that the number of vehicles requiring use of infrastructure is subject to fluctuations, but all the 
more when the daily and inter-daily trends in demand are considered. Estimation of traffic 
demand is a vast area of research for which each subdomain has a specific purpose. For 
economical purposes, demand is often linked to elasticities and, given monetary value, 
compared to a wide range of variables (Graham and Glaister, 2004). A far more relevant area 
of research for this contribution is that of origin-destination (OD) estimation. Here, the goal is 
to link demand to an origin to give insight into local traffic demand. This is primarily 
performed in three ways: through large scale population surveys, through empirical 
observations of traffic flow, or through a combination of both (Bera and Rao, 2011). In this 
research, we are interested in local demand variations and less so in explicit OD-relations. 
Furthermore, the goal is to determine these local variations in demand patterns using vast 
amounts of traffic flow data, rather than population data. Therefore, methods that explicitly 
look at deriving demand from traffic flows are most suited. Within this category a distinction 
may be made between methods that consider the effects of congestion on demand estimations 
and those that do not consider congestion effects. In Bera and Rao (2011), among others, a 
detailed review of various OD-estimation methods is given.  

The discussion between congested and uncongested estimation is an important one. When 
deriving demand, one may expect that traffic flow resembles demand where congestion is not 
present, as traffic has the ability to reach a road section more or less unhindered. When 
congestion is present a few effects occur that introduce a bias to this reasoning. Firstly, traffic 
is delayed and is therefore dispersed over time so that traffic with identical demand in time 
arrive at a location at different times. A second effect is that traffic may reroute to avoid 
congestion leading to different travel times and also passing of other locations than expected 
without congestion. A third effect is that of departure time shifts. If some traffic is not bound 
to a set departure time, shifts in the departure time may occur as drivers attempt to reduce 
their travel times by avoiding congestion. So although demand estimation for one specific 
road section may seem trivial, there are external effects, such as congestion, that should not be 
ignored. These effects are taken into consideration in the developed method for the demand 
estimation in section 3.5 to reduce a possible bias.  

In previous research, it has been argued that the influence of relevant variables should be 
considered as stochastic (Lorenz and Elefteriadou, 2001, Van Stralen et al., 2015). In this 
chapter, a demonstration is given with an investigation using weather as the considered 
influence.  It is apparent from literature that each weather type is viewed for its influence on 
either capacity or on demand and rarely on the combination of both. Also, many studies show 
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single values, rather than stochastically as a distribution of values. This is a gap in literature 
that is not unimportant, as it is not just the demand or supply that influences traffic flow 
dynamics, but rather the combination thereof. Also, the stochastic character of both weather 
and traffic should not be presumed to be captured by single valued observations, but rather by 
the underlying distributions. This was considered previously in Van Stralen et al. (2015), 
however they estimated demand from a stated preference experiment and did not observe it, 
whereas here we introduce a methodology which extracts the influence of demand from data. 

3.1.3 Effect of weather on traffic 

In this chapter, a specific focus will be placed on the influence of the weather as an important 
variable. It is well known that weather influences many dynamic processes in traffic flow on 
multiple levels (Agarwal et al., 2005, Böcker et al., 2013). In operational and tactical analysis, 
as well as in the planning thereof, there may often be requirements to consider the influence 
that weather conditions have on traffic flow. Fluctuations in traffic flow on both an 
operational hour-to-hour as well as on a tactical day-to-day level need to be accurately 
considered. It has been shown that weather has an influence on both traffic demand and 
capacity and is therefore a key variable and one that should be closely considered. It is 
therefore important that strong methodologies exist that allow fluctuations in various weather 
effects to be determined for an entire traffic system and, furthermore, that a base 
quantification exists of the possible influences. In past decades, research has been performed 
on a number of separate weather conditions for their effects on both capacity as well as traffic 
demand, such as rainfall, snowfall, wind, temperature and mist (Böcker et al., 2013, Snelder 
and Calvert, 2016). Here, we will focus on the first four weather conditions. 

Precipitation, both in the form of rain and snow, has probably been most extensively 
researched out of all weather conditions. Research on the effects of rain on capacity is 
generally performed for large rain intensity intervals and is compared to dry weather 
conditions. Agarwal et al. (2005), Calvert and Snelder (2013a), Cools et al. (2010), Hranac et 
al. (2006), Smith et al. (2004) and van Stralen et al. (2014) are just some who have estimated 
capacity reduction due to rain and have found varying values in different regions varying in 
general from 4-30% capacity reduction depending on rain intensity. Dutch guidelines estimate 
the reduction to be 5% for moderate and 10% for heavy rainfall (Rijkswaterstaat, 2015). 
Changes in traffic demand due to rain have also been found, generally indicating a reduction 
in traffic demand in the region of 0-5% also depending on rain intensity in most cases (Chung 
et al., 2005, Hogema, 1996, Keay and Simmonds, 2005, Vukovic et al., 2013).  

The effect of snowfall on capacity reduction has been found to be in between 3-30% capacity 
reduction depending on the intensity (Agarwal et al., 2005, Hranac et al., 2006).  The effects 
on traffic demand of snowfall are somewhat more pronounced than for rain and have been 
found by a number of researchers to be anywhere up to 50% (Al Hassan and Barker, 1999, 
Hanbali and Kuemmel, 1993).  

Previous research into the effects of wind has widely remained inconclusive. In Kwon et al. 
(2013) no significant effects of wind were found on the capacity. Agarwal et al. (2005) also 
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found limited effects of 2% at most for above 32 kph. Other research has also shown the 
effects to be limited. No conclusive research was found on the demand effects of high winds. 
However, it should also be noted that local wind conditions can lead to substantial decreases 
in capacity, such as on bridges or along a coastline.  

The effects of cold temperatures were found to predominantly be present for the more 
extreme temperatures and only really for freezing temperatures. In Agarwal et al. (2005) 
values of 2% capacity were found for temperatures down to -20 degrees Celsius and up to 
10% for more extreme cold. Other research has confirmed the reduction for non-extreme 
temperatures to be limited or non-existent (Kwon et al., 2013).  

3.1.4 Focus and objectives 

In this chapter, the main contribution is the construction of a methodological framework with 
a conceptual model for practical stochastic capacity estimation and consideration of stochastic 
demand with its combined influence on traffic flow. In addition, insight is given into the 
extent of day-type specific variation in capacity values and a quantification of the combined 
stochastic effects of certain weather conditions on traffic flow. The application of stochastic 
approaches is not common in practice, while the necessity is greater than is realised. 
Therefore, the described methodology also gives practitioners tools to aid the application in 
practice. The relationship between the variations in the capacity distribution for a number of 
scenarios is investigated and this is quantified where a relationship is present. This is 
performed for the scenarios: workdays, weekend days, and holidays, of which capacity values 
have been previously proven to significantly differ (Cools et al., 2007, Hilbers et al., 2004, 
Thomas et al., 2008, Yeon et al., 2009). Also, the corresponding capacity drop is analysed. On 
top of this, a stochastic quantification of various weather effects on traffic is performed, 
considering the effects of both stochastic capacity and demand. 

This section is followed by a discussion on capacity definitions and the conceptual model for 
capacity variation (sections 3.2 and 3.3). The methodology for stochastic capacity is given in 
section 3.4, followed by the methodology for stochastic demand in section 3.5. The 
experimental cases and results for stochastic capacities (section 3.6) and for stochastic 
demand and capacities for weather conditions (section 3.7) are then given. Thereafter, the 
discussion and conclusions section conclude the chapter.  

3.2 Capacity Definitions 

Various definitions exist for the capacity of a road. Some of these are conflicting, while most 
refer to a specific traffic state (e.g. free flow or congestion) and are therefore complementary. 
It is important when applying capacity that the correct definition is chosen for the relevant 
purpose. Failure to do so may lead to incorrect capacity values and other undesired effects in 
data-analysis and especially in modelling. In general, capacity definitions can be arranged into 
two groups: design (or nominal) capacity, and operational capacity (Minderhoud et al., 
1997). The design capacity is the foreseen capacity that is considered for planning and road 
design purposes. The well-known definition of capacity from the Highway Capacity Manual 
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(2010) is considered as a design capacity. It defines the capacity of a freeway as the maximum 
flow rate that can reasonably be expected to traverse a uniform segment of road under 
prevailing roadway, traffic and control conditions. However, this is still a rather generic 
definition of capacity with a number of aspects that are open for interpretation.  For traffic 
operations the operational capacity, defined by Minderhoud et al. (1997) as “the actual flow 
values at which traffic breakdown occurs on a specific road under certain conditions”, is far 
more relevant. Operational capacity values are generally based on direct-empirical capacity 
methods with for dynamic traffic (Minderhoud et al., 1997, van Arem and van der Vlist, 
1992). In this chapter, only operational capacities are considered. In the rest of this section, 
the main definitions relating to operational capacity will be explained. A simple taxonomy of 
these definitions is given in Figure 3.1.  

 

Figure 3.1: Classification of capacity definitions 

3.2.1 Maximum versus stochastic capacity 

Traditionally capacity, referred to here as the maximum capacity, is defined as: 

 “the maximum traffic flow on a section of road under fluent traffic conditions”.  

This view of capacity considers capacity as a deterministic entity that has a single value for 
any given time. However, it has been argued in recent decades that a single value for the 
capacity does not exist and therefore a reference to multiple values for the capacity should be 
considered (Brilon et al., 2005, Lorenz and Elefteriadou, 2000, Lorenz and Elefteriadou, 
2001). As traffic is an extensively stochastic system, capacity as a result is also stochastic and 
has multiple values. However, certain capacity values will occur more frequently than others 
and therefore describing capacity as a probability function becomes an obvious choice. A 
definition of the operational capacity as a stochastic capacity is given by Lorenz and 
Elefteriadou (2000) as: 

“the rate of flow along a uniform freeway segment corresponding to the expected 
probability of breakdown deemed acceptable under prevailing traffic and roadway 
conditions in a specific direction”.  



Chapter 3 – Stochastic capacity and demand estimation 39 

 

Here, the reference to capacity as a dynamic entity with certain probable values is evident, as 
traffic breakdown can occur at different flow values under similar conditions.  

3.2.2 Breakdown versus discharge capacity 

Distinguishing between capacity as stochastic or maximum offers different approaches to 
describe capacity. However, it has been demonstrated that there are actually two capacity 
regimes that should be considered, and can be described in such a fashion, namely the 
breakdown capacity and the discharge capacity (Banks, 1991, Hall and Agyemang-Duah, 
1991). The breakdown capacity follows the traditional definition which states that the 
capacity of a freeway is: 

 “the maximum flow rate that can reasonably be expected to traverse a uniform 
segment of road under prevailing roadway, traffic and control conditions”.  

The term ‘reasonably’ here indicates that this will not always be the highest observed flow, 
even though that will often be presumed to be the case. Furthermore, the breakdown capacity 
will most often be observed on the transition from an undersaturated traffic state to an 
oversaturated state, or rather an uncongested to congested state. It should be noted that 
although there are various levels of saturation, there is a definitive oversaturated point in 
traffic flow, which can be observed when traffic flow no longer can increase and starts to 
decrease with additional demand. The discharge capacity, on the other hand, follows from the 
realisation that oversaturated traffic flow yields a reduced flow compared to undersaturated 
traffic flow. Therefore, the discharge capacity is defined as the: 

 “maximum flow rate that can reasonably be expected on a uniform segment of road in 
an oversaturated traffic state under prevailing roadway, traffic and control 
conditions”.  

A graphical demonstration of the capacity definitions is given in Figure 3.2 in a fundamental 
diagram. The fundamental diagram shows the relation between traffic flow and density in the 
traffic domain. Both the breakdown and the discharge capacity can be described as either 
stochastic or maximum depending on the method used to calculate and describe them. 

The difference between the capacity before breakdown and the discharge capacity on a road 
section is known as the capacity drop, referring to the fall in capacity frequently observed 
after traffic breakdown between observations in a critical undersaturated traffic state and an 
oversaturated traffic state. In many cases, the capacity before breakdown is taken as the 
maximum observed capacity. However, the breakdown capacity is also used as the maximum 
capacity and is dependent on an incidental observation that may increase for a longer 
observation time. The capacity drop is a phenomenon that can arise once congestion occurs on 
a road (Banks, 1991, Daganzo et al., 1999, Hall and Agyemang-Duah, 1991, Kerner and 
Rehborn, 1997, Kim and Coifman, 2013). The occurrence of the capacity drop is due to the so 
called hysteresis effect that is not explained here, but can be found in the suggested literature. 
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In summary, in this chapter a distinction is made in capacity definitions between: 

• Maximum Breakdown Capacity 

• Maximum Discharge Capacity 

• Stochastic Breakdown Capacity 

• Stochastic Discharge Capacity 
 
The main focus in this chapter is on stochastic capacity estimations for both breakdown and 
discharge capacity types. We will refer to the stochastic breakdown capacity when the 
capacity is derived using a stochastic or probabilistic capacity method and derived from 
stochastic data. We furthermore refer to the maximum breakdown capacity for a pre-
breakdown capacity indicating the traditional definition: the maximum flow which can 
reasonably be expected. Furthermore, the capacity drop will be referred to as the stochastic 
capacity drop when one determines it using the stochastic breakdown capacity as the initial 
capacity value. 

 

Figure 3.2: Graphical overview of capacity definitions 

3.3 Conceptual Model of Capacity Variation 

Variations in capacity stem directly from stochastic driver behaviour, not only from individual 
drivers, but also between drivers. Furthermore, a drivers’ behaviour can also vary in time and 
space. The mathematical description of capacity is directly linked to that of the traffic flow 
and is inversely proportionate to the average time headway of traffic. The capacity of a road is 
then the traffic flow for the smallest mean time headway before traffic flow breakdown, for 
the breakdown capacity, or after breakdown in case of the discharge capacity. From the 
relationship between the time headway and flow, it is evident that there is a direct relationship 
between driver behaviour and capacity. As the actions of a driver are variable, the ability of a 
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driver to traverse a road at a certain time headway to their predecessor is also variable. 
Moreover, this ability is also subject to the prevailing conditions of both the driver and the 
driving conditions. Therefore, one can clearly derive that the capacity of a road is also subject 
to an accumulation of these conditions. 

There are a number of known factors that directly or indirectly influence road capacity. For 
some of these factors, (exploratory) quantitative research has been performed, for others the 
quantitative relationship is less well researched. In Figure 3.3, an overview of the main known 
variables is given, including an indication of which variables influence each other.  

 

Figure 3.3: Overview of important capacity influencing variables and their relations 

Besides the variables shown in Figure 3.3, there are many more unknown variables that may 
have a (small) effect on capacity. Due to their limited influence, most variables can be ignored 
or summarised in a general stochastic variable. For most variables mentioned in the figure, 
literature exists that indicates the qualitative influence on road capacity and in some cases also 
small scale explorative quantification. Weather effects, road works and incidents in particular 
have been well studied for their capacity reduction influence, while others have to a lesser 
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extent. In this chapter, the focus lies on capacities on holiday days and particular days of the 
week and on the effects of weather. Apart from incidents and road works, which are filtered 
out in this research, these specific days are largely affected by the modal split, the driver and 
vehicle population, and, to a lesser extent, the presence of major events and certain weather 
conditions.  

Previous research has shown that capacity values for the days of the week can differ 
significantly (Cools et al., 2007, Yeon et al., 2009). Yeon et al. (2009) even demonstrated the 
possibility that capacity values may be different during a day and intra-day. However, their 
research also showed that the trends can be extremely location dependent, and that opposite 
trends can be found if one considers only a subset of the considered locations. Nevertheless, 
the research demonstrated the importance of considering different capacity values at different 
moments during a week. The research described in this chapter expands this analysis to 
include weekend days and designated holiday days. 

A further distinction in location can be made using bottleneck types. A large number of 
papers have investigated capacity values for specific bottleneck types (Boyles et al., 2011, 
Calvert and Minderhoud, 2012, Elefteriadou and Heaslip, 2008, Laval, 2006, Roess and 
Ulerio, 2009, Yeon et al., 2009). The bottleneck types are indicated in this research, but are 
not explicitly considered for their effect on capacity values due to the limited sample size per 
segment type. 

3.4 Methodology for stochastic capacity estimation 

Construction of probability distributions of the day-specific capacity is performed on the basis 
of extensive empirical analysis with data. The general methodology of data processing and 
capacity estimation follow the steps given in below. The methodology exists of two main 
processes: data processing and capacity estimation which are explained in more detail in 
section 3.4.1 and 3.4.2. These processes are repeated for each of the considered variables, 
such as demand and capacity at the highest level, to give an outcome for each variable in the 
form of two probability distributions, for which a distribution fit is made. The steps are as 
follows: 

Step 1.  Bottleneck selection 
Known freeway bottlenecks 

Step 2.  Traffic state detection 
Flowing, Breakdown and Congestion 

Step 3.  Data filtering 
Scenario based 

Step 4.  Capacity estimation 
Stochastic breakdown and discharge capacity 

Step 5.  Distribution fitting 
Distribution parameters 
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3.4.1 Data processing 

Data from 23 known bottleneck locations on the Dutch motorway network is gathered for a 
three year period. Flow and speed data, as well as lane availability data, is collected per 
minute at and near each location from induction loops. The data is filtered and checked for 
missing data and validity. The locations are selected from 11 different motorways throughout 
the Dutch motorway network and such that the locations are separated by major interchanges 
to avoid substantial interchange effects. 

The traffic states upstream and downstream of each bottleneck location are recorded at a 
location as close to the bottleneck as possible, generally at a distance of 100-300 meters. An 
aggregation level of  5-minute intervals is chosen to reliably capture traffic states without the 
period becoming too large. Three traffic states are defined in the labelling process: free flow 
traffic (F), breakdown conditions (B), and congested traffic (C). These are defined as (Brilon 
et al., 2005): 

Free flow traffic (F):  Traffic is in a free flow traffic state for speeds above 60 km/hr 
in the considered time interval t and remains in an uncongested traffic state in the 
following time interval t +1. 

Breakdown conditions (B): Traffic is in an uncongested traffic state in the considered 
time interval t, however it is in a congested state in the following time interval t +1. A 
congested state is assumed when traffic speed drops below 60 km/hr for the entire 
interval t. 

Congested traffic (C): Traffic is in a congested traffic state upstream of the active 
bottleneck in the considered time interval t, and remains in congested state in the 
following time interval t+1. Traffic flow downstream of the bottleneck is uncongested. 

A threshold of 60 km/hr is applied as traffic breakdown on motorways generally results in a 
prompt decrease in traffic speed from 70 km/hr to 50 km/hr from the undersaturated to 
oversaturated traffic state, therefore the chance of erroneous labelling is kept low by using the 
60 km/hr threshold. Furthermore, dynamic speed limits are applied in congestion of 50 km/h 
through Variable Message Signs (VMS). However, compliance is low and these speed 
restrictions are generally reactive to traffic conditions. 

For each location at every time interval, a large number of characteristics are recorded 
regarding the weather conditions (i.e. rain, snow, temperature, (natural) luminance), and the 
type of day (i.e. day-of-week, holiday, season, peak periods). Data is filtered corresponding to 
the scenarios using the labelling, which filters the relevant traffic data during the considered 
period. Details on the filtering and data labelling can be found in Calvert and Snelder (2013b). 
This results in a data set based on a collective variable for that specific scenario.  

3.4.2 Capacity estimation 

A number of capacity estimation methods exist, which make use of different assumptions and 
capture capacity values in different ways. For an overview of many of these methods, see 
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Minderhoud et al. (1997), and more recently on stochastic methods: Geistefeldt and Brilon 
(2009).  

In this research, a distribution of the capacity for each scenario and each bottleneck location is 
derived from the filtered data, for both stochastic breakdown and discharge capacity. This is 
performed for the stochastic breakdown capacity through application of the Product Limit 
Method (PLM) as described by Brilon et al. (2005) and recommended in the mentioned 
capacity estimation reviews. Traffic flow observations in free flow traffic (F) and of 
breakdown traffic (B) observations are used. Using data of non-breakdown events (F), as 
censored data, that are nevertheless greater than traffic flows that have led to a breakdown 
improves one’s ability to accurately determine a capacity distribution. The method makes use 
of a probability function which is used to estimate the probability of traffic breakdown, with 
the median being the presumed capacity with an uncertainty margin given by the shape of the 
distribution. Function F(q) is defined as the probability that a detected traffic flow value 
reaches a state of congestion. The method is described by two main equations: 

 -(�) = 1 − /012(�� ≤ �) (3.1) 
   

 

 -(�) = 1 −4 5	78 − 15	78	78 	 						9:�ℎ		�� ∈ {>} (3.2) 

 

Where 57�  = total number of observations with intensity	�� larger than the 

   congestion threshold intensity �� 
   B  = set of breakdown observations 

The distribution of the discharge capacity is determined from the discharge flow of traffic 
through the bottleneck during a congested traffic state (C) following a traffic breakdown. The 
discharge capacity is much simpler to calculate as this can be continuously observed in the 
bottleneck or at the outflow of the bottleneck location (Minderhoud et al., 1997): 

 @(�) = �				9:�ℎ		� ∈ {A} (3.3) 
 

Where   �   = traffic intensity  
  A  = set of congested observations 

The entire set of discharge flow observations are used to construct the probability distribution 
of the discharge capacity for that specific location. For the stochastic breakdown capacity, all 
uncongested data is also considered, but only uncongested data that exceeds the lowest 
breakdown observation is applied in the PLM. In previous research (Brilon et al., 2005, Brilon 
and Zurlinden, 2003), it was shown that the Weibull distribution gives a good fit to 
probabilistic capacity distributions on freeways. The Weibull distribution is similar to a 
Gaussian distribution in shape, but has a greater flexibility towards the tails of the 
distribution. This allows for a greater power to fit empirical data. Weibull distributions make 
use of a scale and a shape parameters, and are defined as: 
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 F(x) = 1 − eEFGHIJ for  x ≥ 0 
(3.4) 

 Where  α	  = shape parameter 

    β  = scale parameter 

To test the presumption that the Weibull distribution is suitable to fit the considered datasets, 
a goodness-of-fit test is carried out. There are different statistical tests available for the 
goodness-of-fit to a distribution. Jia et al. (2010) correctly argue that the Kolmogorov-
Smirnov (KS) test is best suited to test capacity distributions in such a way, as it quantifies a 
distance between the empirical distribution of the sample and the cumulative distribution of a 
reference distribution. More importantly, the KS test is distribution free and therefore makes 
no assumption with respect to the underlying distribution (Chakravarti and Laha, 1967, Jia et 
al., 2010). The KS test is also an exact test while some other commonly applied tests, such as 
the chi-squared-test, depend on an adequate sample size to validate approximations (Jia et al., 
2010, Ross, 2009). For details on the workings of the KS-test, the reader is referred to one of 
the many statistical textbooks on the subject, such as: Ross (2009). 

The KS-test is carried out on four distributions types: Normal, Weibull, Gamma and 
Lognormal distributions. These distributions types have been previously found to have the 
potential to show a good resemblance to fit empirical capacity data on various motorways 
(Brilon et al., 2005, Chow et al., 2009, Elefteriadou and Heaslip, 2008, Jia et al., 2010, 
Kondyli et al., 2013, Minderhoud et al., 1997). The capacity data from each location is fitted 
with each distribution type to produce a distribution, which is compared with the empirical 
distribution from the data. The resulting KS-test values are shown for each location for both 
the stochastic breakdown capacity and the discharge capacity in Table 3.1a & 3.1b. 

Table 3.1a-b: Kolmogorov-Smirnov goodness of fit tests for empirical capacity data 

K-S scores: Stochastic Breakdown Capacity 

 

K-S scores: Discharge Capacity 

  Distribution 

 

  Distribution 

Location Normal Weibull Gamma Lognormal 

 

Location Normal Weibull Gamma Lognormal 

1 0.127 0.079 0.133 0.139 

 

1 0.077 0.136 0.074 0.076 

2 0.097 0.071 0.102 0.107 

 

2 0.044 0.039 0.057 0.064 

3 0.264 0.262 0.269 0.271 

 

3 0.086 0.046 0.098 0.106 

4 0.123 0.078 0.129 0.131 

 

4 0.068 0.024 0.082 0.088 

5 0.152 0.165 0.148 0.144 

 

5 0.131 0.103 0.156 0.168 

6 0.135 0.155 0.138 0.144 

 

6 0.057 0.034 0.070 0.076 

7 0.080 0.027 0.094 0.100 

 

7 0.030 0.064 0.023 0.029 

8 0.063 0.028 0.069 0.074 

 

8 0.126 0.075 0.150 0.162 

9 0.166 0.154 0.172 0.178 

 

9 0.095 0.045 0.108 0.115 

10 0.081 0.046 0.092 0.097 

 

10 0.067 0.039 0.083 0.092 

11 0.098 0.099 0.106 0.112 

 

11 0.062 0.037 0.076 0.084 

12 0.192 0.177 0.197 0.201 

 

12 0.259 0.284 0.214 0.192 

13 0.101 0.091 0.107 0.112 

 

13 0.059 0.041 0.072 0.078 
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14 0.111 0.082 0.116 0.121 

 

14 0.292 0.314 0.248 0.226 

15 0.214 0.261 0.211 0.216 

 

15 0.048 0.033 0.060 0.067 

16 0.107 0.068 0.115 0.119 

 

16 0.049 0.055 0.060 0.066 

17 0.173 0.138 0.180 0.186 

 

17 0.097 0.047 0.110 0.117 

18 0.206 0.207 0.207 0.206 

 

18 0.034 0.043 0.049 0.056 

19 0.139 0.115 0.145 0.150 

 

19 0.041 0.032 0.053 0.058 

20 0.187 0.140 0.193 0.195 

 

20 0.023 0.051 0.036 0.043 

21 0.080 0.070 0.088 0.093 

 

21 0.087 0.036 0.098 0.103 

22 0.137 0.114 0.142 0.146 

 

22 0.050 0.047 0.063 0.070 

23 0.117 0.110 0.124 0.129 

 

23 0.097 0.055 0.118 0.130 

 

From the table, it is shown that the Weibull distribution was confirmed to fit well for most 
surveyed locations. While each road location is unique and has its own characteristics, the 
goodness-of-fit test shows that for the considered locations, the Weibull distribution is a valid 
distribution. An optimization of the Weibull parameters is performed using the root mean 
squared error (RMSE) as performance indicator for fitting, denoted by: 

 OPQR = S1,�(TU − TVU)W�
U��  (3.5) 

 Where  n  = number of estimated observations 

    TU  = observed capacity estimation at probability interval j 

    TVU     = Weibull fitted capacity estimation at probability interval j 
 

The RMSE is applied here as a simple and effective test of the consistency between the 
median values from the Weibull distribution, rather than for the goodness-of-fit test which has 
already been performed using the Kolmogorov-Smirnov test. For such an optimization of the 
parameters, such a test more than suffices. 

The entire procedure produces an empirical distribution and Weibull parameters which best fit 
the empirical distribution. This is performed for each scenario (see section 3.4.3) at each 
bottleneck location, and for both the stochastic breakdown capacity and discharge capacity. 
An explicit example of the PLM methodology can be found in (Brilon et al., 2005) and is 
therefore not given here. 

3.4.3 Day-specific capacity case scenarios 

The scenarios considered in this research are workdays, weekend days, and national holidays. 
The stochastic capacity drop in each scenario is also included in the analysis, for which the 
median (the 50th percentile) from the capacity distribution is applied. Workdays are defined 
as week days from Monday through Friday that do not fall in holiday weeks or on national 
holidays. Both Saturdays and Sundays are considered for weekend days. Holiday days are 
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defined as official national school holidays, which normally also correspond to a significant 
reduction in work traffic. Data is gathered and used for the years 2007-2009, due to 
availability and quality of the data from those years. 

3.5 Methodology for combined stochastic capacity-demand estimation  

3.5.1 Framework 

The applied methodology makes use of a combined approach using some existing 
methodological elements from both traffic theory and data analysis, while introducing some 
new methods. Figure 3.4 gives a complete overview of the main parts of the methodological 
framework. On one side, a comprehensive capacity estimation is performed using the adapted 
Product Limit Method in which 25 bottleneck locations are considered during a three year 
period and from which capacity estimations are made in the test case. The capacity 
estimations also include a stochastic estimation of the probability of various capacity values. 
On the other side, an estimation is made of traffic demand following a traffic cordon inflow 
approach. This approach records the inflow of all traffic into a specific network area during a 
set time period and derives the traffic demand therefrom. In this research, a 142 location 
cordon is applied and considered during a 4 year period. Both the capacity and demand parts 
are fed with detailed traffic data with minute-to-minute accuracy for both the traffic flow and 
speed. Furthermore, detailed hourly weather data is acquired for all periods indicating a wide 
range of weather conditions and their corresponding data. For capacity estimations, a further 
source of data is available in the form of minute-to-minute radar data with an accuracy of 
approximately 1 kilometre, allowing specific capacity estimation, as capacity is moment-in-
time observation. Finally, both the capacity and demand estimations are combined to give an 
estimation of the effect on traffic fluency. This is performed through a simple division of the 
change in capacity by the change in traffic demand, which means that if both variables change 
at the same rate, that the effect on traffic fluency will remain identical. The traffic fluency is 
given by: 

 �X =
���Y ���Y.Z	�[
\ \Z	�[ 	 (3.6) 

Here, �X is the traffic fluency, ���Y.Z	� is the reference capacity under average conditions, 

while ���Y is the capacity under the specified conditions. Similarly, \Z	�, is the reference 

traffic demand, while \ is the scenario demand. While a lower capacity value may reduce 
traffic flow, a reduction in demand can counteract the ability of traffic to flow fluently. 
Therefore, only a combination of both gives an accurate estimation on the actual effect on 
traffic fluency. Note that traffic fluency here denotes the level-of-service or ability of traffic to 
flow rather than a quantitative value of flow. In the following subsections, a more detailed 
description is given of the various parts of the methodology. 



48 TRAIL Thesis series 

 

 

Figure 3.4: Applied framework for stochastic demand-capacity estimation 

3.5.2 Capacity analysis 

In this research, a stochastic capacity estimation method is applied that allows probability 
distributions of capacity to be constructed which envelop the full range of possible capacity 
values. The applied method is based on the Product Limit Method (PLM) as described by 
Brilon et al. (2005) and adapted from Kaplan and Meier (1958). The method was already 
explained in section 3.4. 

3.5.3 Demand analysis  

Calculation of changes in the traffic demand is performed through empirical data analysis of a 
cordoned area of a motorway network in a region. Maintaining a cordon around the entire 
network reduces external issues that may bias the demand results as previously described. 
Such biases may occur from rerouting to other parts of the same network or from certain areas 
of the network reacting differently to other areas. Although the approach cannot entirely rule 
out small disturbances, the approach substantially decreases the chances thereof. An example 
of the cordon used in this chapter is given in Figure 3.5.  

The total daily demand is calculated for a desired time period: starting at time �� and ending at 
time �	. It may be relevant for example for research to just collect demand during the morning 
peak period, as this gives a good indication of the total demand on that day. It should be noted 
that the traffic demand is not identical to the observed flow, as traffic may be delayed either in 
the considered network or in the approach to the network. To reduce this effect so that the 
actual demand resembles the measured flow, the times ��	and �	 should be chosen such that 
no or very limited congestion exists on the network and especially on the cut-off points of the 
network. For no or limited congestion, it should be expected that most if not all traffic that 
demanded, has had the opportunity to enter the network. 
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Radar data for rain 
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Figure 3.5: Considered network for the data analysis 

The inflow into the network ��, is collected at each inflow location i, and time moment �, into 
the network at both cut-off points on motorways as well as motorway junctions (if one is 
considering only a motorway network). The sum of all locations at a single time step t, gives 
the total inflow into the network, however this is not yet the demand as congestion delays the 
arrival of traffic in time. However, summation over time, for which no congestion is longer 
present and in which delayed vehicles have the chance to pass the detectors, allows a reliable 
estimation to be made of the demand. For a scenario ^, on an arbitrary day _, the total 
demand \ ,�	in a time period, [��	, �	], is given by: 

 \ ,� =	����,!�
!a
!�!b  (3.7) 

On its own, the value of \ ,� does not have any significant meaning, as a network or scenario 

can be arbitrarily chosen. Therefore, a demand \ ,� is considered as part of a coherent 

scenario ̂  for which the main scenario characteristics are kept identical. Careful selection of 
the scenario characteristics is important to be able to make a fair comparison between various 
days of \ ,� within ^. A careful consideration of the main variables, such as the type of day 
(week, weekend, holiday, etc.) or of other important characteristics should be made. 
Availability of all selected detection locations should also be consistent for all days that are to 
be compared to avoid inconsistent measurements in the collected demand. Once multiple days 
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of a single scenario have been gathered, one may construct an empirical distribution of the 
observations of that scenario: 

 \ =	 c\ ,�, \ ,W, … , \ ,�e (3.8) 

Here, , denotes the number of observation days for the considered scenario. In most cases, it 
will be desired to compare scenarios to gain insight into the effects of certain characteristics 
on the traffic demand. Therefore, a reference scenario should be defined that is considered as 
a ‘neutral’ scenario. For example, in the analysis in the following sections, dry weather 
conditions are considered as a base scenario which against other, sometimes overlapping, 
scenarios are compared. Comparison between the considered scenario, \ , and the reference 
scenario, \ Z, is performed such that a ratio, r, between the scenarios is derived:  

 0 = fg_:h,(\ )fg_:h,(\ Z) (3.9) 

The calculated ratios are then applied for comparison between scenarios and as a strong 
indication of the effects that a scenario has compared to the reference scenario.  

3.5.4 Stochastic capacity and demand for weather 

In the previous sub-sections, the methodology for determination of the capacity and demand 
were presented. Here, the applied characteristics of the methodology in this research are 
given. This starts with the locations and data sources and is followed by the considered 
weather scenarios. 

Demand 

Quantification of traffic demand is performed for an enclosed area of the motorway network 
in the west and central areas of The Netherlands, which includes the cities of The Hague, 
Rotterdam and Utrecht (see Figure 3.5). The total area is approximately 1200 square 
kilometres in size. At the ‘cut-off’ points on the motorways and on motorway entrances1 and 
junctions along each motorway data is collected of the total inflow with a minute accuracy 
from loop-detectors. The vast majority of all junctions were able to be analysed and totalled 
142 locations in all. The data used for the demand calculations is taken from the years 2009-
2013 (for 2013 only until June). The demand values are collected for two different periods. 
The first considers the demand throughout the whole day between 5 AM and 10 PM. The 
second only considers the demand during the morning peak period between 6 AM and 10 
AM. A distinction is also made between the time of the day for which the weather 
classification is performed: either for just the morning or the entire day. This results in four 
demands per scenario: Day weather with morning or day demand, and morning weather with 
morning or day demand. A further filtering is applied to the collected data. A minimum of 20 

                                                        
1 Often the flow at entrances will need to be measured indirectly by subtracting the downstream flow 
from the upstream flow before the entrance location. 
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observations (days) are taken per scenario to sufficiently make an accurate estimate of the 
demand profile for that scenario.  

Capacity 

The capacity analysis is carried out in the same region of the Netherlands at known and 
proven bottleneck locations. In total, 30 bottleneck locations were initially selected from 
which capacity data could be accurately collected through the use of double loop-detectors 
according to the previously described methods. Of these 30 locations, a further five locations 
were later rejected as the data was not consistently able to produce a sufficient number of 
reliable capacity estimations, leaving 25 locations that produced reliable and accurate capacity 
estimations. These included 20 2-lane motorway sections and five 3-lane sections. The data 
used for the capacity estimations is taken from the years 2007-2009. It was not easily possible 
to extend to later years as the data collection algorithm had changed for the later years, which 
may give undesired discrepancies in the data between the years.  

Weather scenarios 

In this research, four main types of weather conditions are considered, namely rain, snow, 
temperature and wind. The focus is on each individual weather type separately, rather than a 
combination of various types in one scenario. This means that correlation is not explicitly 
considered between the results. An example is snowfall that is recorded for temperatures 
below 2 degrees Celsius. While the scenario snow will overlap with low temperatures, the 
opposite will not necessarily be the case. Rather than search for causality, these are accepted 
in this research. It is a subject of later research to look closer at the specific correlations. 

The previously described methods for capacity and demand estimation obviously must make 
use of data on weather and climatological conditions. For this, use is made of stationary 
weather stations administered by the Royal Netherlands Meteorological Institute (KNMI). 
The KNMI makes use of more than 30 high quality meteorological stations throughout The 
Netherlands which relay accurate and extensive hourly and daily data on wind, temperature, 
sunshine, radiation, precipitation, air pressure, visibility, humidity, and other categorical 
weather observations. The five weather stations in the considered area are shown in Figure 
3.5. For each category, maximum and average hourly and daily values are collected as well as 
descriptive information relating to these values. Detailed information on the exact 
measurement apparatus and techniques can be found in KNMI (2014).  

From the four weather conditions, ten scenarios are defined. In each scenario, the weather 
conditions are considered for the hours between 5 AM and 10 PM. This is also the period for 
which quantities are observed. For a day to be considered for a weather condition, the average 
value of that weather condition must be present for at least 3 hours during that day at, at least, 
three of the five weather stations. This last condition is almost always met due to the close 
proximity of the weather stations, and conditions are nearly identical on a day-to-day basis. 
As an example, if rain category 1.4-1.9 mm is considered, then this intensity must be found 
for at least 3 hours during the day.  For the demand data, only the weather during the morning 
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peak, the hours between 6 AM and 10 AM, are considered. For the morning demand, only a 
single hour average needs to fit the relevant weather condition category. Furthermore, only 
data is considered for weekdays and for non-holiday days to avoid pollution of the data with 
possible trends from these day types. Seasonal trends are implicitly allowed, also due to the 
fact that the scenarios are explicitly correlated to certain seasons. 

The scenarios are defined as: 

1. Dry (Reference scenario) 
2. Rain:  0-0.1 mm 
3. Rain:  0.2-1.3 mm  
4. Rain:  1.4-1.9 mm 
5. Rain:  >=2.0 mm 
6. Snow:  >0 mm 
7. Temperature:  <2C 
8. Temperature:  >=2C 
9. Wind:  <40 kph (<6 knots) 
10. Wind:  >=40 kph (>=6 knots) 

For clarity, the data processing steps for the weather conditions are reiterated: The prevailing 
weather conditions for each day are labelled against that day according to the above 
scenario’s and the described prerequisites. This is performed for both time windows: 6-10 
AM and 5AM-10PM. The demand analysis and capacity analysis are performed for each day, 
as described in the previous sections per day. For each scenario, the days that contain the 
relevant weather condition are viewed. The median of corresponding demand and capacity 
values over these days is taken and presented in section 3.6. 

It is reiterated that the category values are hourly totals for rain and snow, and hourly 
averages for temperature and wind. In relation to precipitation, this means that it is highly 
probable that higher values were found during that hour, but were averaged out. Therefore, we 
cannot speak of precipitation intensities, but rather of the quantity of precipitation. A 
conversion table is given in section 3.7.2 to allow global comparison of the results with other 
literature. It is presumed that travellers will perceive a day (or part of a day) to be of a certain 
weather category, rather than focus on a specific precipitation intensity at one single moment. 
This does not apply to the capacity estimates, as they are coupled to radar data that gives 
minute-to-minute and kilometre precise rain observations. This is necessary as the influence 
of precipitation cannot be averaged over an hour for capacity, as capacity observation is a 
‘moment-in-time’ observation. 

3.5.5 Capacity hypotheses 

In this chapter, the focus lies on the methodology for the quantification of the probability 
distribution of capacity values in operational day-specific traffic. Elefteriadou and 
Lertworawanich (2003) recommended that capacity distributions should be constructed to 
indicate the extent of variations in capacity values. They also recognised that these capacity 
distributions are subject to change under various conditions. Research has resulted in various 
capacity distributions for a number of variables. However, a generic value for day specific 



Chapter 3 – Stochastic capacity and demand estimation 53 

 

variation, based on a sufficiently large set of data, does not exist. Here, the aim is to also give 
a quantification of day-specific capacity variation for workdays, weekend days and holiday 
days and also to give distributions of the capacity drop for the situation on the Dutch 
motorway network. Four hypotheses are constructed and tested in relation to the capacity 
shifts between the considered scenarios. These hypotheses are: 

1. Mean capacity values on weekend days and holidays are lower than for workdays. 

2. On weekend days there is a lower mean capacity than on holiday days. 

3. The variation of the capacity, measured in standard deviation, is greater on weekend 
days and holidays than for workdays.  

4. There is no significant change in the capacity drop for weekend days and holiday days 
in relative terms in comparison to workdays. 

3.6 Results: Day-specific capacity variation 

The results of the data analysis for day-specific capacity variation are given by capacity type 
(stochastic breakdown or discharge) and are compared for capacity shifts between scenarios. 
A quantification of the capacity and the variations is given. The results are shown in three 
parts:  

1. Comparison of weekend and holiday capacity estimations versus workday capacity 
and standard deviations. Hypothesis 1, 2 and 3 are tested. 

2. Estimation of the variation in the stochastic capacity drop between the three scenarios. 
Hypothesis 4 is tested. 

3. Mean stochastic capacity and stochastic capacity drop values and the estimated 
Weibull distribution fit for the each scenario.  

The average values of the median capacity of each motorway location and standard deviation 
thereof, as well as both Weibull parameters and the stochastic capacity drop, are given in 
Appendix 3.A. This is performed for both the stochastic breakdown and the discharge 
capacity estimations for all three scenarios. The individual results are also given in Appendix 
3.A for the workday reference scenario.  

3.6.1 Day-type specific capacity estimation 

In this section, hypotheses 1 through 3 are tested and mean values are given for the estimated 
capacity over all considered locations. A comparison is also made between the considered 
scenarios: Workday traffic, Weekend traffic, and Holiday traffic. These are statistically tested 
for significance using Levene's test for equality and the t-test for equality of means with a 
95% confidence level. The hypothesis is tested for significant differences in the means of the 
workday, weekend day and holiday capacity values. The test is performed for each of the 
capacity types for the mean as well as the standard deviation of the results. The t-test 
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presumes normality, which is also presumed here between locations. As the samples are 
median values from different locations, the collective set of all samples should verge towards 
a normal distribution according to the central limit theorem and therefore confirm normality. 
The analysis of the capacity results are summarised for the stochastic breakdown and 
discharge capacity over all the observed locations and are given as follows: 

1. Distributions of workday traffic show a median capacity value for the stochastic 
breakdown and discharge capacity of 2260 and 1793 veh/hr/lane (-26%).  

2. The weekend traffic returns average capacity values of 2131 and 1622 veh/hr/lane      
(-31%). 

3. Holiday traffic results in average capacity values of 2265 and 1719 veh/hr/lane           
(-32%).  

All these values are reasonable values for Dutch motorways. For the sake of comparison, 
workday traffic is taken as a base against which the weekend and holiday traffic capacity 
values are compared. The distribution of the median stochastic breakdown capacity values 
from the PLM-analysis for the scenarios is shown in the boxplot in Figure 3.6a as well as for 
the standard deviation in Figure 3.6b. From Figure 3.6 hypothesis 1-3 can be answered: 

1. The mean stochastic breakdown capacity on weekend days is 4% lower compared to 
workdays, however the capacity on holidays is not significantly lower (with 95% 
confidence) compared to workdays.  

2. The mean stochastic breakdown capacity is found to be significantly lower on 
weekend days in comparison to holiday days. The difference is again in the range of 
4%. 

3. The variation of the capacity, measured in standard deviation, is found to be 
significantly lower for both weekend traffic and holiday traffic compared to workday 
traffic. The difference in the median standard deviation is circa 15% and 3.5% 
respectively.  

The results of the average median discharge capacity values and the average standard 
deviations are given in Figure 3.6c-d. The discharge capacity for weekend days is again lower 
than that of workdays. The reduction in the discharge capacity is approximately 8% compared 
to the discharge capacity during workdays. The discharge capacity for holidays is also lower 
in comparison to workdays by approximately 3-4%. The reduction in the standard deviation is 
less extreme for the discharge capacity on weekend days, while the standard deviation on 
holidays does not significantly change over all locations. These results are further discussed in 
the section 3.8. 
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Figure 3.6a-e: Capacity estimations in comparison to the workday scenario 

3.6.2 Capacity drop estimation 

Hypothesis 4 states that there will be no significant difference in the stochastic capacity drop 
between workday traffic and weekend and holiday traffic. The stochastic capacity drop over 
all 23 locations for the three scenarios is shown in the boxplot in Figure 3.6e. The median 
value for the stochastic capacity drop over each scenario is estimated at 20.5%, 24.9% and 
23.6% for workdays, weekend days, and holidays respectively. The difference between 
workdays and weekend days is shown to be a significant difference. As the discharge capacity 
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was shown to decrease by a greater amount than the breakdown capacity, this also indicated a 
widening between the capacity types and an increase in capacity drop. The spread of the 
observed values in each scenario is relatively similar in each scenario. It should be noted that 
correlation is present in the results. For example, a location with a lower capacity drop in one 
scenario may be expected to also have a relatively low value in another scenario. This has to 
do with the intrinsic characteristics of bottleneck locations.  

3.6.3 Generic capacity distribution estimation 

A goal of this chapter is to derive reliable distributions for capacity variations dependent on 
day-specific scenarios for both the stochastic breakdown and discharge capacities. The 
observed empirical capacity results are fitted using a Weibull distribution for the 20 two-lane 
motorway locations and are aggregated per scenario in Figure 3.7. Specific differences per 
location can be found in Appendix 3.A. From the figure, a number of conclusions can be 
drawn. Firstly, the stochastic capacity drop for each scenario can be clearly seen. This is the 
difference between the blue lines to the right and the red lines to left for each scenario. The 
stochastic breakdown capacity distributions, shown in blue to the right, show that the 
distribution for workday traffic and holiday traffic hardly deviate from one another, while the 
capacity distribution for weekend traffic is substantially lower. In a similar way, the 
differences in discharge capacity are obvious from the red distribution lines to the left. The 
distributions for the scenarios do show a good estimation of capacity variation for Dutch 
motorways and may later be proven by analysis with an ever larger dataset to be pretty 
generic. The corresponding parameter values for the Weibull distributions and median 
capacity values are given for completeness in Table 3.2. 

Table 3.2: Estimated capacity distribution Weibull parameters for two-lane motorways 

 Weibull parameter: α β Median Capacity 

Workdays Stochastic 

breakdown capacity 
14,9 4647 4520 

Discharge capacity 12,7 3699 3584 

Weekend days Stochastic 

breakdown capacity 
16,4 4396 4263 

Discharge capacity 12,4 3334 3244 

Holiday days Stochastic 

breakdown capacity 
16,0 4652 4530 

Discharge capacity 11,3 3564 3441 
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Figure 3.7: Overall capacity results as Weibull distributions 

3.7 Results: Stochastic capacity and demand for weather 

The results of the combined stochastic capacity and demand analysis for weather conditions 
are given in this section. First, the main results of the capacity and demand analysis are 
presented in section 3.7.1. A transformation of the results to intensity for precipitation is given 
in section 3.7.2 to allow comparison with literature. The final combined stochastic results of 
the analysis are given in section 3.7.3. 

3.7.1 Main results 

The results of the entire analysis are shown in Table 3.3 for both the capacity effects and all 
demand calculations. The capacity results are shown per lane and considered for 2-lane and 3-
lane motorways respectively, including the ratio compared to the reference scenario. The 
demand results are shown as a ratio compared to the reference scenario for each of the 
considered time window combinations for the demand. 

The results for the capacity show that for an increasing quantity of rainfall the capacity of 
both 2- and 3-lane motorways fall with increasing rates. For a limited rainfall of under 1.4 
mm in an hour, the drop in capacity is limited to less than 2%. However, for the two greater 
categories, the drop in capacity is greater at 4-6% and 7% respectively. At the same time, an 
increase in rainfall has an overall negative effect on the traffic demand. The effect for a wet 
day with less rainfall is nearly non-existent, while for higher rain quantities the drop in 
demand is around 4.5%. Interestingly, considering rainfall only during the morning peak 
period shows a greater drop in demand: approximately 1% and 4% for the lower rain 
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categories, while up to 9% reduction is found for the 1.4-1.9 mm category. For the largest rain 
category, insufficient data was available for the morning peak on the considered days to make 
an accurate prediction. It proved difficult to accurately determine the effect of snowfall using 
the available data with the described methodology. Locally, values could be derived, but a 
total trend from the dataset according to data-driven approach proved impossible due to a lack 
of snow observations. It was possible to derive an estimation of the effect on demand for days 
classed as ‘snowy’ in which a reduction in demand was found of 15-17%. For temperatures 
above 2 degrees Celsius, no real difference is found in capacity, as may be expected, however 
a slightly lower demand is found albeit only 1%. The demand for temperature below 2 
degrees does not drop, while the capacity is found to be nearly 7% lower for cold conditions. 
Although there is a small overlap with snow conditions, the vast majority of ‘cold’ 
observations are made under dry but cold weather conditions. The effect of windy weather on 
capacity is shown to be present but limited to 3-4%, while the demand on windy days is not 
found to substantially change. 

Table 3.3: Capacity and demand influence of weather conditions 

Scenario Capacity results Demand results 

 2-lane 

cap 

2-lane 

ratio 

3-lane 

cap 

3-lane 

ratio 

Day 

weather 

AM 

demand 

ratio 

Day 

weather 

Day 

demand 

 ratio 

AM 

weather 

AM 

demand 

ratio 

AM 

weather 

Day 

demand 

ratio 

Reference (Dry) 2291 1.000 2243 1.000 1.000 1.000 1.000 1.000 

Rain 0-0.1mm* 2287 0.998 2243 1.000 0.995 0.997 0.992 0.994 

Rain 0.2-1.3mm* 2258 0.986 2233 0.996 0.994 0.998 0.988 0.993 

Rain 1.4-1.9mm* 2153 0.940 2152 0.959 0.944 0.956 0.911 0.959 

Rain >=2.0mm* 2132 0.931 2079 0.927 0.941 0.956 - - 

Snow >0mm - - - - 0.838 0.852 - - 

Temp <2C 2139 0.934 2091 0.932 1.000 1.000 1.000 1.000 

Temp >=2C 2282 0.996 2237 0.997 0.989 0.987 0.989 0.987 

Wind <40kph 2282 0.996 2253 1.004 0.999 1.000 0.996 0.999 

Wind >40kph 2229 0.973 2153 0.960 0.999 1.000 0.999 1.000 

* The method collects the rainfall rather than rain intensity. A conversion can be made for 

comparison to other data (see section 3.7.2) 

3.7.2 Rainfall-intensity transformation 

To allow a comparison with other literature and data, a transformation can be made of the 
corresponding rainfall into the probable rain intensity which would be found in the same 
period. Note that this is rough transformation, but gives a general basis for order of magnitude 
comparisons. The corresponding values for rainfall versus rain intensity are found in Table 
3.4. 
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Table 3.4: Conversion table for rainfall versus rain intensity 

Rainfall (mm in an hour) Intensity (mm/h) 

Rain 0-0.1mm 0-0.5 mm/h 

Rain 0.2-1.3mm 0.5-5 mm/h 

Rain 1.4-1.9mm 5-7 mm/h 

Rain >=2.0mm >7 mm/h 

These are derived through consideration of two characteristics found in the data. These are the 
duration of rainfall in an hour, and the volatility of the rainfall (i.e. difference between the 
highest and lowest intensities). It was found that the volatility equates to a peak intensity in a 
range of 2-3 times the average rainfall when precipitation is actually falling. This hardly 
differs as a function of the total rainfall in an hour. Furthermore, a comparison was made 
between the duration of rainfall in an hour and the total rainfall in that hour. A duration 
correction factor is derived which indicates this relationship. For hours in which it rains for 
half the time, a factor of 2 is given, for an hour in which it only rains for a third of the time the 
correction factor is 3, etcetera. Figure 3.8 shows the relationship found from the rain data and 
the derived equation. Application of both a volatility factor of approximately 2.5 and a 
duration correction factor according to Figure 3.8, gives the estimated values for the 
corresponding rain intensities in Table 3.4. 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Rainfall duration correction factor 

3.7.3 Combined stochastic demand-capacity results 

For each of the scenarios, distributions of the results are constructed. The reference scenario is 
shown in Figure 3.9 as an example of the distributions. From the distributions, it becomes 
apparent that the spread in the capacity distributions for each scenario do not show any 
substantial differences between scenarios. This can be easily derived from the shape 
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parameter values (b-value) of the capacity Weibull distribution, which all in the range 
between 15-17. The distributions for the demand (on the left) are shown for the first 
considered demand window (Day weather with morning peak demand). The demand 
distributions are not significantly normally distributed. Maximum Likelihood analysis showed 
that the distributions best fitted a t-location scale distribution or a logistic distribution. The 
corresponding parameter values for the demand distributions are given in Appendix 3.B. 
While each scenario has a different median value, again the general shape of each distribution 
is within a similar range, which indicates that stochasticity of demand, regardless of the 
scenario, exists within a certain range.  

 

 

Figure 3.9: Capacity distributions (left) and demand distribution (right) for the 
reference scenario (dry) 

Although the effects of capacity changes and demand changes individually give an impression 
of the effect on traffic fluency, it is only when both are combined one can gain a true picture 
of the effect of a weather condition on traffic fluency and an indication of the level of service. 
If, for example, a scenario causes a reduction in capacity, but causes an even greater reduction 
to demand, traffic flow as a whole may benefit from this, while only considering capacity 
changes would suggest otherwise. Therefore, the combined capacity-demand results are 
shown in Table 3.5. This is done for the 2-lane motorway capacity estimations (although the 
difference between two or three lanes was near negligible). The ‘day weather condition’ and 
‘peak hour weather conditions with peak morning demand’ are taken as representative 
reference demand estimation periods.  

Despite what the individual capacity and demand results say, the combined effect on traffic 
shows a different trend. The effect of rainfall has a limited negative effect on traffic fluency 
which remains for all rain categories below 2%. The effect of cold temperatures on traffic 
fluency is indicated to be one of the more important factors. Behind this lingers a maintained 
traffic demand, while the capacity is estimated to be lower resulting in a negative effect on 
traffic fluency as whole. This may also explain to a large extend some of the seasonal effects 
that are often observed during the winter months. Furthermore, the effect of high winds also 
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shows an increased negative effect on traffic fluency, and that more so than rainfall, reaching 
a fall of 2.6%.  

Table 3.5: Combined effect of weather on traffic fluency 

Scenario Effect on traffic fluency (Capacity/Demand) 

2-lane capacity  

with Day weather &  

AM demand 

2-lane capacity  

with AM weather &  

AM demand 

Reference (Dry) 1.000 1.000 

Rain 0-0.1mm* 1.003 1.006 

Rain 0.2-1.3mm* 0.992 0.998 

Rain 1.4-1.9mm* 0.996 1.032 

Rain >=2.0mm* 0.989 - 

Snow >0 - - 

Temp <2C 0.934 0.934 

Temp >=2C 1.007 1.007 

Wind <40kph 0.997 1.000 

Wind >40kph 0.974 0.974 

* The method collects the rainfall rather than rain intensity. A conversion can be made for 

comparison to other data (see section 3.8.2) 

3.8 Discussion on stochastic capacity 

3.8.1 Capacity & Capacity drop values 

An analysis has been given showing the extent of day-specific stochastic capacity variation 
for workdays, weekend days and holiday days. The results shown confirm the hypotheses that 
there is a significant difference in capacity between these scenarios. Fair comparison of 
stochastic capacity against results in literature is difficult, especially for Dutch motorways, as 
this is one of the first publications to investigate them stochastically in The Netherlands. 
Comparison with maximum capacities is not a fair comparison as the capacities are derived in 
different ways; however they still give an indication of the order of magnitude and spread of 
capacity values. In previous research for the Dutch capacity handbook, CIA (Capaciteit-
Infrastructuur-Autosnelwegen), maximum breakdown capacity values were recommended of 
4300 veh/hr for a two-lane motorway irrespective of the type of day (Rijkswaterstaat, 2015). 
This recommendation was also made using capacity estimations. A wide range of capacity 
drop values were also found, ranging from 0-30%, with most being between 10-15% and an 
average value of approximately 15%. The lower value capacity drop derived from the CIA 
may be a consequence of the generic properties that the CIA handbook must consider and 
therefore may intentionally be a conservative estimate. Other research comparing capacity 
estimations found in the CIA also suggests this (Tu et al., 2010). The capacity drop values 
found are in a similar range to this research, however the gravity point is lower. From Tu et al. 
(2010) an even greater spread of capacity drop was found for The Netherlands, between 4-
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55%, with a mean value of 19%. Between locations substantial differences can be found in 
capacity values, likely caused by the infrastructural characteristics, such as geometry, type of 
asphalt, interweaving traffic flows, etc. This has also been found by the research mentioned 
here. However, a definitive trend is present, captured by the distribution of the capacity values 
from the different locations. For application in other regions or countries, there may be 
differences, related to driving behaviour and physical geographical differences. In any case, 
each location wherever it is, does have location specific characteristics. It should not be 
expected that mountainous roads or roads with unlimited speed limits will have identical 
(stochastic) capacity values for example. When traffic or infrastructure characteristics deviate, 
such as in these examples, the results in this chapter should not be too heavily relied on. 
However, as a general guide or starting-point for similar conditions, the estimates given here 
are expected to give a good indication prior to the estimation of local values.  

3.8.2 Distribution fit 

In Brilon et al. (2005), an attempt was made to estimate Weibull parameters to observations 
for three-lane freeways in Germany. The typical range found for the shape-parameter was 
between 9-15 with an average of 13. This is lower than the range found for workdays of 11-17 
and an average of 15 here. For these values, an indication is given of the spread of the 
stochastic capacity estimations, from the shape parameter. The differences between the results 
may be caused by the difference in traffic stability between three and two lane motorways, 
and may also be caused by the different traffic characteristics between The Netherlands and 
Germany. Further research is needed to give clarity on this issue. The authors are aware of 
other possible distributions, such as investigated in Jia et al. (2010), however the Weibull fit is 
deemed best suited to the Dutch traffic situation, which has a closer resemblance to German 
traffic as originally discussed by Brilon et al. (2005). The goodness-of-fit test performed, with 
the results shown in Table 3.1, backed up the assumption that the Weibull distribution is 
suitable for use in this analysis. 

3.8.3 Brief qualitative discussion 

A brief reflection is given on the results in relation to some of the causes behind the results. 
The goal of this research is not qualitative; therefore the discussion is speculative and based 
on the findings. 

- On weekend days, traffic is shown to have a higher probability of breakdown at lower 
flow values compared to workdays, but not necessarily with a greater probability 
spread.  

- Drivers on workdays, during peak periods when congestion usually occurs, are 
generally more experienced drivers, especially on the considered routes. This greater 
familiarity leads in theory to a greater efficiency in traffic flow and stability (Tu et al., 
2007).  

- It is presumed that there is no substantial difference between workday capacities, as 
the driver population is in general identical on most days. 
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- On weekend days a greater number of irregular trips are made, and also by drivers that 
may on average be less experienced. Without going too deep into the explanatory 
details behind this, this leads in theory to longer headways and a slightly less stable 
and efficient traffic flow. This is backed up by the results in this chapter.  

- Holiday traffic is harder to intuitively predict for stability, as the considered days are 
constructed out of a wide range of holidays on which different types of traffic may be 
present on the road. For example, a holiday day in the summer may have many drivers 
heading to resort locations, while Christmas day traffic on the other hand will have a 
completely different composition. This is maybe one of the reasons that the estimation 
of the breakdown capacity for these days does not show such a large difference to 
workdays. Nevertheless, the results do show some differences, especially for the 
discharge capacity. In congestion, the capacity of the road is significantly lower than 
for workdays. Characteristics such as the vehicle population may be possible causes. 
Vehicles performing holiday trips, may also be heavier loaded or even pulling a trailer 
or caravan. Furthermore, there may be less of a delay penalty for holiday traffic under 
congested conditions compared to workday traffic.  

While these thoughts give some possible explanations behind the results, they are not 
conclusive, and are not meant to be. Further qualitative research following on from these 
quantitative results may be a good continuation for this research area. 

3.8.4 Relevance and application of stochastic capacities  

The relevance and applicability of the results in this chapter is of interest especially in two 
main areas, namely for traffic flow modelling, and for capacity analysis and highway 
planning. The necessity to consider uncertainties in modelling was highlighted in the 
introduction. True stochastic traffic flow models are not common in practice, however 
uncertainty is often still applied through scenario modelling (multiple model runs with set 
values, i.e. a median and the standard deviation values) or Monte Carlo simulation. Results, in 
which stochastic capacity values are used, can be applied to give indications of the 
performance of the traffic system with various probabilities. Especially in the case of a 
stochastic model or Monte Carlo simulation, it is possible to construct a whole distribution for 
the model results for a network. These results then give an overview of the probability of 
certain values for the capacity uncertainty. It is of course also possible and recommended to 
include the traffic demand uncertainty in the same analysis. 

The use of stochastic capacities is also relevant for planning purposes. This can be viewed on 
two levels. Firstly, when planning new infrastructure, the desired level of service is directly 
connected to the capacity of a road. When considering a road with a large capacity 
distribution, a larger proportion of probability of congestion is present for traffic demand 
below the median capacity. A road authority can take this into consideration and may decide 
to plan for more capacity. The decisive conditions may vary for such a decision; therefore the 
use of different day-types becomes relevant. Secondly, changes to existing roads can be 
considered to solve flow problems by observing the distribution of the capacity. For example, 
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the application of various traffic management measures is often applied at bottleneck 
locations to increase homogeneous flow and thus reducing the probability that congestion 
occurs due to an instantaneous exceedance of capacity, such as on weaving sections. While 
stochastic capacities are not explanative for the cause of heterogeneity (large distribution 
spread), they can show the extent of heterogeneity and can be used to evaluate measures that 
are targeted at such bottlenecks.  

These application areas give an impression of how stochastic capacities may be applied. For 
each location it is recommended to determine the local capacity distribution, as these can vary 
per location. This can be performed with the presented framework in this chapter. However, if 
this is not possible, i.e. due to a lack of data or financial constraints, a similar location may be 
analysed or generic values from this research may be selected that represent the considered 
situation. The use of a generic value will not always be 100% accurate for every location, but 
will allow stochastic effects of capacities to be considered, which in most cases will assist in 
the accuracy of traffic flow analysis or road planning. In previous research, a discussion was 
also given of limitation for the application of stochastic capacities and demands, which is also 
valid for the methodology given in this contribution (Calvert et al., 2012). On networks with 
large variations in traffic demand and driver behaviour, the application of stochastic 
modelling is preferred. This is also the case for more integrate networks in which secondary 
congestion effects are more likely as well as for high levels of congestion. Consideration of 
stochastic variations in modelling also has limitations. On simpler networks, networks with 
little congestion or on which the extent of variations in road capacity and traffic demand 
cannot be easily determined, the use of a stochastic approach is not as necessary. As a 
stochastic approach requires more effort and is more time consuming it would be more 
desirable to perform deterministic modelling in these cases.  

3.9 Conclusions 

In this chapter, a methodological framework with a conceptual model for practical stochastic 
capacity estimation is presented. Furthermore, a methodology is presented that considers the 
combined effects of stochastic demand and capacity, expressed through the influence of 
weather on traffic fluency.  The first methodology, on stochastic capacities, makes use of a 
number of different analysis tools and is designed to give practitioners and researchers a 
concise and easy to follow approach for stochastic capacity estimation.  In addition, insight is 
given into the extent of day-type specific variation in capacity values. The analysis is 
performed for three different scenarios: for workday, weekend, and for holiday traffic. A 
stochastic estimation of road capacity for these scenarios for both the stochastic breakdown 
capacity and discharge capacity are made. These are produced using a Weibull distribution, 
which was shown to resemble the empirical data, based on a goodness-of-fit test and has 
previously been shown to yield good capacity probability fits. The analysis is performed using 
induction loop data from 23 locations on the Dutch motorway network. Extensive filtering for 
day specific characteristics and capacity estimation using the Product Limit Method was 
applied to reach empirical estimation results for the median and variation in the capacity for 
the considered scenarios.  
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The results indicate that there is a reduction in stochastic breakdown motorway road capacity 
on weekend days of 4% in comparison to workdays. Furthermore, a decrease of 8% is found 
for the discharge capacity in comparison to workdays. The analysis showed that the stochastic 
breakdown capacity on holidays is not significantly lower than on workdays, while the 
discharge capacity does drop 3% to 4%. An estimation is also made of the spread in stochastic 
capacity drop. This shows that the capacity drop grows, on average, on both weekend days 
and holiday days in comparison to workdays. For workdays an average stochastic capacity 
drop is found of 21% with a spread between 13% and 29%. For weekend days and holiday 
days this is 25% and 24%, with a similar spread around the average values. The results are in 
line with comparable research. 

The second methodology is applied to give quantitative insight into the combined stochastic 
effects of demand and capacity, and is applied for weather on traffic and to furthermore 
highlight the necessity of considering the effects simultaneously on both traffic supply and 
demand. The methodology allows both the capacity and demand to be calculated and 
combined to give an indication of the effects of weather on traffic. An extensive data-driven 
analysis is performed applying the described method in which the effects of rain, snow, 
temperature and wind are analysed for their influence on traffic. The analysis was performed 
for motorways in a large 1200 kilometre square area in the urbanised west of The 
Netherlands. The results show that increasing reductions of both capacity and demand are 
found for precipitation in the form of rainfall. Despite the reduction, the overall influence of 
rain on traffics ability to flow fluently is not substantially reduced. Insufficient data for the 
described approach meant that capacity estimation could not be made for snowfall, while a 
reduction in demand for snow was found of more than 15%. The influence of cold 
temperatures proved to be substantial on traffic fluency. Demand was found not to vary 
significantly, while capacity is reduced leading to a greater chance of a reduction in level-of-
service of roads. Similarly, high winds were found to also reduce the quality of traffic 
fluency, although at a lower level of approximately 2-3%. 

A further quantification of the stochastic distributions of the results is derived for each 
weather scenario. This showed that the distribution shape of each weather type does not 
significantly differ and was found to yield similar shape-parameters when fitted for a Weibull 
distribution. The shape of the demand distributions also showed a close resemblance and was 
found to adhere to a t-location-scale and logistic distributions. The resulting distributions may 
be used for a number of future purposes, such as application of uncertainty and sensitivity 
analysis both in data-analysis and modelling of traffic effects during weather to name two. 

It is concluded that the difference in types of day has a significant effect on road capacity and 
that this variation in capacity can quantitatively be derived, as demonstrated in this chapter. 
The derived distributions for the specific day types give both a quantification of the mean and 
the spread of the relevant capacities and are therefore applicable for use as input in stochastic 
traffic models. Applications for motorways or freeways in other countries and under other 
conditions may differ from the results found here. However, the same methodology as applied 
in this chapter can be easily applied to these other situations and locations to give local 
capacity estimations. Further research is recommended to gain a greater qualitative 
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explanation of how these differences in capacity occur, rather than just the quantification as 
shown here. In such a way, a greater causality may be given to certain variations found from 
the results. Further research following the quantification of weather effects lies primarily in 
quantification of correlated weather effects on traffic flow, such as a combination of rain and 
high winds for example. Further research also lies in quantification of other weather effects as 
well as the development of a refined methodology for widespread data analysis of the effects 
of snow of traffic flow for limited observations. 
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Appendix 3.A: Specific capacities per location 

Mean values Free-flow Capacity Discharge Capacity 

Median Stnd Dev Weib a Weib b Median Stnd Dev Weib a Weib b 

  Work Days 2 lanes: 2260 202 14.9 4647 1792 190 12.7 3699 

  3 lanes:   15.5 6796 11.6 5478 

  Weekend Days 2 lanes: 2131 174 16.4 4396 1622 168 12.4 3334 

  3 lanes:   18.4 6301 11.6 5082 

  Holidays 2 lanes: 2265 191 16.0 4652 1720 268 11.3 3564 

      3 lanes:     16.7 6819     10.8 5251 

All values Work Days           

  Lanes Bottleneck 

Type 

Free-flow Capacity Discharge Capacity Cap Drop 

Road   Median per lane Stnd Dev Weib a Weib b Median per lane Stnd Dev Weib a Weib b   

4-1 2 junction 4500 2250 400 14.9 4616 3550 1775 360 12.8 3657 21.1% 

4-2 2 junction 4340 2170 330 17.3 4438 3820 1910 400 12.7 3930 12.0% 

9-1 2 lane drop 4840 2420 360 18 4935 3900 1950 320 16.2 3994 19.4% 

9-2 2 junction 4920 2460 440 14.8 5041 3940 1970 390 13.1 4056 19.9% 

12-1 3 junction 7120 2373 600 15.7 7289 5540 1847 610 11.8 5719 22.2% 

15-1 2 junction 4220 2110 510 10.8 4365 3700 1850 370 13.2 3803 12.3% 

20-1 2 lane drop 4060 2030 470 11.3 4196 3210 1605 460 8.9 3343 20.9% 

20-2 3 

speed 

reduction / 

bend in road 6090 2030 490 16.5 6224 5260 1753 540 13 5407 13.6% 

27-1 2 junction 4000 2000 380 13.8 4109 3580 1790 340 14.1 3672 10.5% 

50-1 2 

weaving 

section 4230 2115 360 15.6 4333 3410 1705 400 11.1 3528 19.4% 

50-2 2 bridge 4170 2085 400 13.7 4280 3660 1830 370 13.1 3763 12.2% 

2-1 2 junction 4470 2235 440 13.5 4591 3520 1760 390 12 3628 21.3% 

2-2 2 bridge 4470 2235 370 15.8 4577 3380 1690 350 12.6 3480 24.4% 

27-1 2 

weaving 

section 5010 2505 360 18.2 5116 4040 2020 330 16.1 4133 19.4% 

27-2 2 bridge 5080 2540 520 12.8 5225 3460 1730 380 11.8 3571 31.9% 

27-3 2 

weaving 

section 4270 2135 300 19.2 4348 3160 1580 470 8.7 3292 26.0% 

27-4 2 bridge 4420 2210 370 16 4519 3580 1790 340 14 3671 19.0% 

27-5 2 junction 4370 2185 390 14.8 4476 3210 1605 390 10.8 3319 26.5% 

27-6 2 

weaving 

section 5030 2515 480 13.8 5136 3920 1960 410 12.4 4041 22.1% 

1-1 2 junction 4950 2475 510 12.7 5093 3490 1745 390 11.7 3602 29.5% 

1-2 2 junction 4580 2290 400 15.5 4685 3650 1825 310 15.7 3732 20.3% 

1-3 2 junction 4750 2375 390 16.3 4857 3660 1830 350 13.5 3764 22.9% 

16-1 3 junction 6700 2233 610 14.4 6874 5120 1707 670 9.9 5308 23.6% 
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Appendix 3.B: Demand distribution parameters 

 

Scenario Demand distribution fit: parameter values 

t-location-scale [mu-sigma-nu] Logistic [mu-sigma] 

Reference (Dry) [1.000 0.028 1.886] [0.996 0.030] 

Rain 0-1mm* [0.997 0.034 2.115] [0.996 0.034] 

Rain 2-13mm* [0.997 0.032 1.746] [0.996 0.037] 

Rain 14-19mm* [0.954 0.046 2.236] [0.948 0.043] 

Rain >=20mm* [0.957 0.035 1.815] [0.951 0.038] 

Snow >0 [0.849 0.051 2.663] [0.841 0.043] 

Temp <2C [1.000 0.031 2.249] [1.000 0.030] 

Temp >=2C [0.987 0.036 2.678] [0.982 0.030] 

Wind <40kph [0.999 0.0312 2.111] [0.998 0.031] 

Wind >40kph No best fit [0.993 0.041] 
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Chapter 4 

Advanced sampling methods in Monte Carlo 
simulation 

 
 
 
 
 
 
 
 
 
 
 
 

In an effort to improve performance and speed up stochastic calculation, advanced sampling 
techniques have been developed in the past century. These techniques are investigated in this 
chapter for their ability to reduce the computational load in traffic modelling with variable 
input values. A comparison is made between these techniques and that of Crude Monte Carlo 
simulation. The objective of the chapter is to demonstrate the efficiency of the methods for use 
in traffic modelling. This has not previously been demonstrated for traffic modelling, and 
their application is shown in several experimental cases.  

The applied techniques and applied methodology are discussed and explained in section 4.2. 
In section 4.3 case studies are presented, which are used to demonstrate the effectiveness of 
the advanced sampling techniques and for which the results are given in section 4.4. Section 
4.5 provides the conclusions of this chapter.  

 

 

This chapter is an edited version of the article: 
Calvert, S. C., Taale, H., Snelder, M., & Hoogendoorn, S. P. (2014). Application of advanced sampling 
for efficient probabilistic traffic modelling.Transportation Research Part C: Emerging Technologies, 49, 
pp. 87-102. 
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4.1 Introduction 

In traffic models, assumptions are made to simplify the complex decision processes and 
interactions that rule the dynamics of traffic and transport system. This is necessary as factors 
that influence traffic flow are extensive, and not every variable can be considered. It is 
commonplace in traffic modelling that equilibrium states are sought that give a good average 
representation of the dynamics of traffic. Traffic modelled as a deterministic system, meaning 
that there is no randomness involved in the development of future states, implies that 
assumptions are made to describe the randomness that exists. Examples of these assumptions 
are related to the demand and supply, the behaviour of drivers and the characteristics of 
vehicles. Each of these variables is a stochastic system which is often reduced to an average 
value in a deterministic representation (e.g. average demand, average supply, average desired 
speed, average maximum acceleration, etc.). However, it must be realized that traffic in 
reality is hardly ever ‘average’ (Ernst et al., 2012). Therefore, modelling traffic as if it were 
always in a deterministic state is not realistic and will lead, in many cases, to biased outcomes 
(Calvert et al., 2012, van Lint et al., 2012). Consideration of stochastic dynamics in traffic 
modelling allows for a much more realistic representation of the traffic system (Clark and 
Watling, 2005, van Lint et al., 2012). 

Modelling traffic flow with stochastic input is often performed in traffic models through one 
of two main methods: analytically or by replicative simulations through Monte Carlo 
simulation or a derivative thereof. Analytical approaches have seen an increased development 
in recent years, but remain largely complicated models, which are not readily applied in 
practice by practitioners unless incorporated in a simulation package (Davidson, 2011). 
Therefore, the approach using Monte Carlo simulation remains an attractive option, despite 
the requirement of a relatively high computational effort (Chang et al., 1994).  

Monte Carlo simulation has been widely applied in various sciences to help describe 
stochastic systems, as well as in the traffic domain in many applications, such as the 
construction of probabilistic models. The method was first conceived in the 1940’s 
(Metropolis and Ulam, 1949) and has since grown in popularity. For multivariate problems, 
the technique makes use of predefined probabilities for each of the input variables, indicating 
the probability of occurrence and the corresponding value (Ang and Tang, 2007). 

In traffic modelling, the Monte Carlo method has been applied in many ways. Its extent is 
such that a complete overview of all literature is not given here, but merely an indication of 
some recent publications. The method has been applied in traffic modelling in traffic 
assignment & route choice (Zhang et al., 2008), mode choice (Jonnalagadda et al., 2001), 
traffic propagation (Chang et al., 1994, Szeto et al., 2011), strategic scenario assessment 
(Salling and Leleur, 2011), sensitivity analyses, and reliability studies (Murray-Tuite and 
Mahmassani, 2004, Tampere et al., 2007b, van Lint et al., 2012).  

The application of Monte Carlo simulation in this contribution relates to sensitivity analysis, 
and, to a certain extent, reliability of traffic flow and networks. The Monte Carlo routine is 
often performed prior to traffic assignment and on input variables such as network capacities 
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and the traffic demand. Application of the routine for sensitivity analysis in such a manner is 
not uncommon. Examples of such applications are Chen et al. (2002) and Tampere et al. 
(2007b), who investigated reliability. In these studies link capacity is varied using Monte 
Carlo simulation. Szeto et al. (2011), Zhang et al. (2008) and van Lint et al. (2012) applied 
Monte Carlo simulation to vary multiple input variables. Taking van Lint et al. (2012) as an 
example, the values for network capacity and demand used in traffic simulation are 
constructed considering multiple influencing factors. These factors, such as weather effects, 
random traffic demand and incidents are applied as an adjustment factor over the base 
capacities and traffic demand. In a similar way, this is also applied in this chapter and is 
explained later on. 

4.2 Methodology for advanced sampling  

Inclusion of stochasticity in traffic modelling using stochastic input through Monte Carlo 
simulation can be performed according to the approach shown in Figure 4.1. This is also the 
approach applied in this study. The basis for the approach takes the base capacity values, or 
deterministic capacity values, from the defined network capacities and applies capacity 
reduction factors leading to the cumulative probability density function (CDF) of the capacity 
distributions. In a similar fashion, individual values from a CDF for the traffic demand are 
applied to a base set of traffic demands in the traffic network. From the resulting capacity and 
traffic demand CDF’s, a random sample is taken, one for both the capacity values and one for 
the traffic demand values. Depending on the applied Monte Carlo technique, these are either 
dependently or independently sampled. A simulation run is performed with the traffic model, 
resulting in a single output result. The process of sampling and modelling is repeated until a 
complete distribution of results is constructed. This approach neglects correlations which can 
exist between capacity and demand variations, but rather focusses on the performance of the 
sampling techniques in the traffic models. 

 

Figure 4.3: Approach to Monte Carlo simulation for stochastic input in traffic modelling 
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The various parts of this process are described in greater detail in the remainder of this 
section. The networks used in the test cases are described in the following section with the 
description of the case study setup. 

4.2.1 Traffic modelling 

The applied traffic model in this study is the dynamic macroscopic traffic model INDY 
(Bliemer et al., 2004). This model is used as it is strategic model and dynamic in time, and is a 
good representation of the type of model that may be used in practice by practitioners. INDY 
makes use of the Link Transmission Model (LTM) for dynamic traffic propagation, as 
described by (Yperman, 2007). The LTM is a macroscopic Dynamic Network Loading model 
which applies first order kinematic wave theory as described by Newell (1993). For further 
details of the LTM see (Tampère et al., 2011, Yperman, 2007). Route assignment in INDY is 
performed through a dynamic path based approach. Distribution of path flows is based on 
travel costs, predominantly determined by link travel times. An equilibrium state in route 
choice is solved in INDY using a simple iterative process, applying the method of successive 
averages. The routes are generated from a route set generation model described by Bliemer 
and Taale (2006). 

4.2.2 Application of stochastic variation 

Stochastic variation is applied using a probability distribution for the capacity and traffic 
demand respectively. These distributions give the probability of certain influence factors on 
the capacity and traffic demand. Multiplication of the sampled factor values from the 
distributions with the base values, either or both the capacity and traffic demand, results in the 
corresponding values used in each individual simulation. The sampled factor values are 
applied identically to all road sections and all zones respectively for a single iteration. The 
applied distributions in two of the three test cases in this study are derived from real traffic 
data from the A4 and A12 motorways in The Netherlands. At various locations, along the 2 to 
4 lane motorways, the relative variation in traffic flow for 28 Tuesdays and Thursdays in 2008 
are fused through weighted averaging to represent the local demand. The resulting 
distributions are shown in Figures 4.2a-b. Both distributions closely resemble distributions for 
most motorway locations and can be generically applied as the distributions are constructed as 
a relative factor rather than absolute capacity values. In the other test case, use is made of 
artificially constructed distributions, resembling real distributions in more extreme cases (i.e. 
with greater variations and less favourable values). The distributions are deliberately very 
different to those shown in Figure 4.2 to demonstrate the differences in outcome. These 
distributions are shown in Figure 4.3a-b. 
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Figure 4.2a-b: Cumulative Density Function derived from the A4 and A12 motorways 
and applied in test case 1 and 2 for a) the capacity and b) the traffic demand. 

          

Figure 4.3a-b: Cumulative Density Function factor (left) as applied in test case 3 for a) 
the capacity and b) the traffic demand. 

4.2.3 Sampling Methods  

To reduce the number of required sample iterations when performing Monte Carlo 
simulations, techniques are applied which reduce the estimation error in a sampling process. 
While reducing errors, these techniques must also maintain the shape of the original output 
distribution. In practice the estimation of the original distribution will always deviate from the 
true solution due to statistical fluctuations (Bekaert et al., 2000). The goal of variance 
reduction techniques is therefore not to improve the quality of the estimation, but rather to 
reach the same level of performance while requiring fewer samples.  

An increasing number of variance reduction techniques have been developed, each with a 
different approach, but also a certain degree of complexity for implementation and 
effectiveness. Previously, a number of these techniques have been applied in traffic modelling 
for various goals, as explained in the previous section. In Kroese et al. (2011), a qualitative 
analysis is given of the complexity and of the potential effectiveness over various variance 
reduction techniques. An overview of this is shown in Figure 4.4. There it can be seen that the 
range of effectiveness of different techniques can have a large variation and that for larger 
improvements the level of complexity to implement the technique will most likely increase. 
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The extent of the effectiveness depends heavily on the type of applied distributions, the 
number of considered variables, but also the set-up of the chosen technique.  

 

Figure 4.4: Complexity versus effectiveness of variance reduction techniques (from 
Kroese et al. (2011)) 

Two of the considered sampling techniques applied in this contribution are Importance 
sampling and Latin Hypercube sampling. To a certain extent, this choice is somewhat 
arbitrary, but is made from the viewpoint of potential effectiveness against complexity, and is 
further backed up by previous research (van Lint et al., 2012) in which these techniques are 
recommended for further investigation. In theory, Latin Hypercube Sampling is less complex, 
but more robust, while Importance Sampling is more complex and is potentially more 
powerful, but may also lead to a reduction in convergence, hence it is less robust. It is beyond 
the scope of this research to evaluate every technique, therefore the set will be limited to these 
two techniques.  

A third technique considered comes from the area of quasi-random Monte Carlo methods: 
Sobol quasi-random sequence. Where the previous methods are truly random, that is sampling 
without explicit selection, quasi-random sequences are constructed from well distributed 
selection by sequential functions. This should therefore allow for a much faster convergence 
to the true underlying distribution compared to the crude Monte Carlo method (Chi et al., 
2005). The comparison of random variance reduction methods with quasi-random sequences 
in practise is difficult because of convergence issues and does not definitively show one to 
consistently outperform the other (Berman, 1997, Dror et al., 2002). Besides the mentioned 
sampling techniques, simulations will also be applied for Crude Monte Carlo sampling as a 
reference for the two variance reduction techniques and the quasi-random MC method. 
Further details on sampling theory can be found in one of the many pieces of literature on the 
subject (Govindarajulu, 1999, Knottnerus, 2003, Kroese et al., 2011). 

Crude Monte Carlo Sampling 

In Monte Carlo procedures, it will often be the traditional Crude Monte Carlo (CMC) 
sampling that is applied. The technique is described as simple, because the randomly 
generated samples are directly taken without further processing from the considered 
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distribution. The technique of CMC sampling is straight forward and produces an estimation 
based on the generation of N samples H from a predefined distribution h: 

 i�, … , ij 	 ∈ ℎ (4.1) 

These are consequently applied in the CMC technique to gain an estimation Pk  of the original 
distribution h as follows: 

 Pk =	 1l�ℎ(i )j
 �� 	 (4.2) 

Importance Sampling 

Importance sampling (IS) is a technique used in Monte Carlo simulation that gives extra 
consideration to the outlying sections of a distribution which have a lower probability of 
being sampled, but have a relatively large influence on the output variable (Kroese et al., 
2011). By assigning the extremities of a distribution a greater probability than they originally 
have, creates a higher chance of extreme values being sampled and therefore the speed at 
which the output distribution is ‘complete’ is greater. There are multiple variations of IS, such 
as Minimum-Variance Density, Variance Minimization Method, Cross-Entropy Method and 
Sequential Importance Sampling (Cappé et al., 2007, Kroese et al., 2011, Smith et al., 1997). 
The technique of IS applied here is that of the Weighted Importance Sampling method 
(Bekaert et al., 2000). Weighted IS predicts the extent that the distribution of a set of samples 
deviates from the original source distribution by assigning weights to the samples 
corresponding to their probability and deviation from the source distribution. The sample 
weights denote the ratio between the source distribution and the estimator distribution. The 
estimator distribution is chosen, such that it increases the probability of extreme input values 
being selected, which have an amplified effect on the final model output. The technique is 
mathematically described as follows: 

Consider a random variable M for some real function with values H and probability density 
function f: 

 P = R�m(n) = 	om(n)X(n)_n	 (4.3) 

A transformation of M(x) is applied, by introducing an estimator distribution g(x) to get: 

 P = om(n) X(n)p(n)p(n)_n = Rqm(n) X(n)p(n)	 (4.4) 
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The estimation of M after sampling is therefore: 

 Pk = 1l�m(n)9(n)j
 ��  

(4.5) 

Where: 9(n) = X(n)p(n)  (4.6) 

in which w(x) is the weight known as the likelihood ratio estimator. Furthermore the 

expectation of the sample M, should reflect the distribution M; RsPkt = P. See Rubinstein 

(1981) for proof of this.  

Latin Hypercube Sampling 

Latin Hypercube sampling (LHS) is a stratified sampling technique that, other than general 
stratified sampling, ensures that the entire sample space for multiple input variables is 
sufficiently covered (Iman and Conover, 1980, McKay et al., 1979). The technique is an 
extension of quota sampling. The basic technique sees variables evenly sampled from the 
sample spaces, also known as a d-dimensional hypercube, in which each random variable is 
attributed a dimension. Combinations of the samples are randomly generated, such that a good 
spread of samples is achieved to form a single target function. This can be applied on any 
number of dimensions of variables, but is applied in this research in two dimensions.  

The definition of LHS is as follows: 

The input variables Xk are divided into N strata of equal probability  

 /(nu) = 1l 
(4.7) 

A single sample v .U is taken from each stratum j. These form the component Xk: 

 v = v .U         with k =1..K, j =1..N (4.8) 

For each input variable v , the components are matched at random to form a K-dimensional 
sample cube. Graphically, the technique for a two-dimensional cube for N = 200 samples, 
with K = 10 strata per dimension is shown in Figure 4.5. 
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Figure 4.5: Latin Hypercube sampling of a two-dimensional space for Capacity and 
traffic demand samples. N = 200 samples, with K = 10 strata per dimension. 

Figure 4.5 demonstrates the samples taken in one of the case scenarios described later in the 
chapter for the capacity and demand factors. Although not every joint stratum is evenly 
covered, the coverage over each stratum is well distributed, including the random spread 
within each stratum. The distribution over each individual marginal stratum is evenly 
distributed though. This results in a superior spread of samples in most spaces, especially for 
those with a limited number of samples (Iman and Conover, 1980, Larson et al., 2005, McKay 
et al., 1979, Minasny and McBratney, 2006). It further results in the capture of sampled input 
values that would otherwise have been insufficiently utilized, especially where their 
probability is relatively low.  

Sobol Quasi-random Sequence 

The Sobol Quasi-random Sequence (SQS) is a type of quasi-random number sequence 
(QRNS) (Sobol, 1967). QRNS are deemed to improve on random sampling by explicitly 
“sampling” the probability space more uniformly (Bratley and Fox, 1988, Joe and Kuo, 2003, 
Joe and Kuo, 2008a). Unlike true sampling methods, sequential numbers are predefined 
numbers that are not explicitly random, but due to their well distributed coverage in sequence 
of the considered set, can be considered as near-perfectly distributed random numbers and 
therefore a good converge is gained much faster than with crude Monte Carlo (Chi et al., 
2005). The choice to apply SQS here, rather than another QRNS is due to the combined 
advantage of simplicity and efficiency of the SQS (Chi et al., 2005). 
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SQS are constructed from a primitive polynomial using direction numbers. A primitive 
polynomial of some degree sj is chosen: 

 wU + h�,UwUE� + hW,UwUEW +⋯+ h�,Uw + 1 (4.9) 

where the coefficients a1,j , a2,j , . . . , asj −1,j are either 0 or 1. We define a sequence of positive 
integers {m1,j , m2,j , . . .} by the recurrence relation: 

 f ,U = 2h�,Uf E�,U ⊕2Wh�,Uf E�,U ⊕…	⊕ 2�UE�h�UE�,Uf E�U|�,U ⊕	2�Uf E�U,U ⊕	f E�U,U  
(4.10) 

Here ⊕ denotes the bitwise operator. The initial values m1,j , m2,j , . . . , msj ,j are restricted 
such that each mk,j , 1 ≤ k ≤ sj, must be odd and less than 2k. The direction numbers {v1,j, v2,j, . 
. .} are defined as: 

 % ,U = f ,U2  (4.11) 

Then xi,j, the j-th component of the i-th point in a Sobol sequence, is given by 

 w�,U = :�%�,U ⊕ :W%W,U ⊕…	 (4.12) 

where ik is the k-th digit from the right when i is written in binary i =  (. . . i3i2i1)2. For more 
details on the method, see (Joe and Kuo, 2003, Joe and Kuo, 2008b, Joe and Kuo, 2008a). 

4.3 Case Study for advanced sampling 

To demonstrate the effectiveness of the considered sampling techniques, three case studies are 
considered. Each case study considers a different network, and therefore different capacities 
and demands, and two different stochastic distributions are applied over the three cases. For 
each network, representative routes along which the travel-time variations are calculated are 
selected such that good route coverage is achieved and the main corridors are considered. The 
applied indicators are given in section 4.3.2 and the results of the cases are presented and 
discussed in section 4.4. 

4.3.1 Test networks 

The case studies consider convergence of the travel time over multiple routes and the overall 
delay times of three different motorway networks located in the Netherlands. For each of 
these variables, travel times and network delays, the rate of convergence is compared for the 
application of the two variance reduction techniques and the Sobol Quasi-random Sequence 
technique (SQS), and is further compared against the Crude Monte Carlo technique as a 
reference. For each case, 200 simulations are carried out with varying sample values from 
which the rate of convergence becomes evident. Each applied network has a different 
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structure, traffic volumes, degree of congestion and routing options. Furthermore, bottlenecks 
on each network exist in different forms such that each network represents a uniquely 
different scenario. The characteristics of each network, including the considered routes for 
travel time, are described in the following sub-sections. 

Rotterdam Ring network 

The motorway ring network around Rotterdam is shown in Figure 4.6. Inner city Rotterdam is 
situated to the centre of the ring, with suburbs to the outside of the ring. The network has been 
reduced to the main motorway stretches and their connections to the city. This allows for a 
purely motorway analysis of the effects of variations without inner-city route choice changes. 
The network coverage takes in an area of approximately 30 km by 20 km. The network exists 
of 37 zones, situated at the peripherals and motorway junctions, and 610 network links. The 
network and traffic demand are calibrated for the morning peak period from 6-10 AM. In this 
period congestion occurs at numerous points on the ring under normal circumstances. 

 

Figure 4.6: Rotterdam Ring Network for traffic simulations, showing routes E-F, G-H 
and I-J for travel time observations 

The Hague – Gouda network 

The Hague – Gouda network (Figure 4.7) is, similarly to that of the Rotterdam Ring, reduced 
to the main motorway and provincial roads. The main route from Gouda to The Hague is the 
route shown by K-L. There are alternative routes, but all at a greater travel time cost under 
free flow conditions. The network covers an area of approximately 30 km by 30 km and exists 
of 43 zones and 639 network links. The network and demand are calibrated for the morning 
peak period from 6-10 AM. In this period, congestion is often present on the route leading 
into The Hague towards location L. Along the other routes, M-N and O-K congestion is also 
present at certain locations during a normal morning peak period.  
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Figure 4.7: The Hague – Gouda Network for traffic simulations, showing routes K-L, M-
N, O-K and K-O for travel time observations 

Amsterdam South-East network 

The Amsterdam South-East network comprises of four main motorway stretches and the 
surrounding local roads to the south-eastern side of the city (Figure 4.8). The network covers 
an area of approximately 20 km by 15 km and consists of 72 zones and 624 links. The 
network and traffic demand are calibrated for the evening peak period between 4-8 PM in 
which the main traffic volume is situated on the ring (along point D) and out of the city 
towards the south and east.  

In this network, there are a number of route choices available for motorway traffic. 
Furthermore local roads are included in the network to give additional routing options. 

 

Figure 4.8: Amsterdam South-East Network for traffic simulations, showing route C-D 
for travel time observations 
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4.3.2 Performance Indicators 

Network Performance Indicators 

The output of the dynamic macroscopic traffic model is presented as the average travel time 
over the various routes and the total network delay per network, on which the capacity and the 
traffic demand are applied as variable input in the model. The average travel time is defined 
as the unweighted average of all realized travel times during the simulation on the route, and 
is defined as: 

 ��)* =�∑ ( $
�� .)*%
�� .)*.!)}
�� �� ,�
!��  

 

(4.13) 

Where   TTAB  = travel time between origin A and destination B 
   l linkAB  = length of a link, situated between origin A & destination B 
   vlinkAB.t   = cell speed on link at time t 
   n  = number of time steps 
   m  = number of links 
 
In general, the total network delay Tlost is defined as: 
 �
~�! = � (����	�.�	� − ����.�	�)�	���  

 
(4.14) 

 
Where   veh   = vehicles 
   ttscen.veh  = travel time in the scenario 
   ttff.veh   = travel time in free flow 
 
In a macroscopic model, where vehicles are not modelled individually, the total experienced 
delay Tlost is calculated by: 
 
 �
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�� .! � $
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(4.15) 

 
Where   t  = time 
   qlink.t  = traffic flow on link at time t 
   l link  = length of link 
   vlink.t   = cell speed on link at time t 
   vff.link   = cell speed on link in free-flow 
   n  = number of time steps 
   m  = number of links 
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Convergence Estimator 

Convergence of the network performance indicators for each Monte Carlo technique is 
performed using the estimated relative error (ER-Error). The ER-error is a method that is 
closely related to that of the root mean squared error (RMSE) and is often applied to 
determine the rate of convergence in simulations studies (Kroese et al., 2011). In many 
simulation studies, the true relative error cannot be determined, because the true state can 
either not be determined or does not exist. The ER-Error is therefore an estimator of the true 
relative error in such cases. It is also a method that is well suited for application in 
convergence testing (Anton, 2010). The ER-Error is defined as: 

 ROR(��) = ���√l	 (4.16) 

 
Where    �� = estimator of the standard deviation 
    �� = estimator of the unknown distribution X 
    N = number of samples 
 
From this the similarity with the RMSE can be seen, which is defined as: 
 
 RMSE = σ√N	 (4.17) 

4.4 Results 

4.4.1 Convergence of input samples 

Prior to the simulations with the traffic model, an analysis is performed on the samples taken 
as input for the model. This gives an initial indication of the convergence before the effects of 
the traffic network are included. In the traffic model, both the factors for the capacity values 
and the traffic demand are applied, such that performance indicators can be extracted from the 
model runs. Therefore, it is also necessary to combine the input factors for both variables 
when analysing the convergence of the input values. The capacity and traffic demand have an 
inversely proportional effect to each other, therefore the convergence of the input values is 
tested using the value of the capacity divided by the demand for each sample. In Figure 4.9a-b 
the combined division of the capacity factors by the demand factors is shown for each of the 
sampling techniques. The complete unsampled distribution is also plotted to show the 
deviation in the sampling process per technique. Note furthermore that the result of this 
division gives an indication of the effect on traffic demand and therefore possible congestion. 
For example, higher demand and lower capacity will obviously lead to congestion more 
rapidly, than the opposite case. This is captured in the applied measure. The applied 

transformation for the IS in case 1 and 2 is quadratic for the demand (p(n) = �(n)�|�.��W ) and a 

square root for the capacity (p(n) = �(n)�.�|�W ). For case 3, both the demand and capacity 

transformation is linear. The cumulative forms are visible in Figure 4.9a-b. From the figures it 
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is evident that the joint samples of the LHS and SQS techniques represent the true joint 
distribution to a better extent than CMC. Quantitatively the mean squared error of the CMC 
distribution is 2.1 times higher than that of LHS, and of a similar magnitude for SQS. 
Especially for values further from 1.0 the error in sampling is higher (1.0 indicates no change 
to the capacity-demand ratio). For the IS technique, it is difficult to state how the performance 
is prior to modelling, as IS makes use of a ‘dummy’ distribution or estimator distribution for 
sampling which is later corrected using the corresponding weights. For this reason, it cannot 
be compared to the other distribution in Figure 4.9a-b. It is nevertheless included to 
demonstrate the difference in approach and what this means for the applied distributions. The 
shape of the estimator distribution is also visible from the sample distribution of IS in Figure 
4.9a-b. 

 

Figure 4.9 a-b: Cumulative distribution function of the joint capacity factor/traffic 
demand factor, including the sample distributions, as applied in a) case 1 & 2: The 
Hague-Gouda and Rotterdam Ring and b) case 3: Amsterdam South-East 

The ER-error is calculated for the joint input samples, and is shown as a function of the 
sample size for convergence towards the original joint distribution. These results are shown in 
Tables 4.1 and 4.2. For the samples from case 1 and case 2, the rate of convergence of the 
combined input values is greater for both LHS and SQS than for the CMC. The results are 
shown for up to 100 iterations, as between 100-200 iterations further convergence was 
discovered to be marginal. The initial convergence of the IS technique is similar to that of 
CMC. For the combined input samples for case 3, the greater rate of convergence for both the 
LHS and SQS techniques in comparison to that of CMC is evident. The convergence of IS 
however is poor in comparison. For both sets of samples, the LHS and SQS techniques show 
a greater distribution of samples, which in turn leads to a greater rate of convergence. The 
difference in performance of the IS technique between the cases is most probably due to the 
application of the initial estimator distribution which is identical for both samples sets, while 
the initial distributions for the capacity and demand are different in both sets. To demonstrate 
the importance of a correct estimator distribution, the applied distribution is not further 
improved for the distributions used for the IS technique in case 3. This means that we expect 
IS to work well in case 1 and 2, but poorer in case 3. 
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Table 4.1: Estimated Relative error of the joint input samples, applied to case 1 and 2 

Iterations CMC LHS SQS IS 

10 0.0284 0.0095 0.0108 0.0244 
20 0.0146 0.0057 0.0056 0.0172 
50 0.0048 0.0037 0.0022 0.0072 
100 0.0030 0.0015 0.0006 0.0046 

  
Table 4.2: Estimated Relative error of the joint input samples, applied to case 3 
 

Iterations CMC LHS SQS IS 

10 0.0246 0.0082 0.0168 0.0756 
20 0.0122 0.0048 0.0044 0.0534 
50 0.0062 0.0022 0.0018 0.0286 
100 0.0056 0.0012 0.0004 0.0198 

4.4.2 Convergence of model results 

The sampled input values for the capacity and traffic demand are applied to the dynamic 
macroscopic traffic model, from which the travel time along the defined routes and the total 
network delay are captured for each of the three cases. Both indicators have an (unknown) 
real distribution to which the Monte Carlo results should converge with increasing iterations, 
N. The rate of convergence shown as the ER-error for the travel time and the total network 
delay are shown for each case. It should further be noted that the raw random samples applied 
on the distributions for the sampling techniques are identical for all three sampling techniques 
per case. Therefore, a fair comparison can be made without needing to consider random 
differences between techniques. The Sobol sequence samples are obviously not identical to 
the other techniques, but are applied identically over each case. The main difference between 
the techniques lies in the way the four techniques apply the samples to form input values for 
the model from the capacity and demand distributions.  

Case 1: The Hague – Gouda  

The rate of convergence of the ER-error of the total network delay for case 1 (The Hague – 
Gouda) is shown in Figure 4.10 and Table 4.3. The results of the delay values given by the 
LHS technique show a better convergence, which is a factor 2 better after 50 iterations and a 
factor 3 after 100 iterations. The SQS achieves similar results after 100 iterations, but appears 
to reach this level at a slower rate. The convergence of IS does not improve on that of CMC 
for the delay in case 1. 
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Figure 4.10: Convergence of the total network delay indicator case 1: The Hague – 
Gouda network 

Table 4.3: Estimated relative error of the total network delay case 1: The Hague - 
Gouda 

Iterations CMC LHS SQS IS 

10 0.1518 0.1312 0.1516 0.2225 
20 0.0746 0.0917 0.0512 0.1573 
50 0.0336 0.0152 0.0306 0.0525 
100 0.0206 0.0072 0.0064 0.0430 

Convergence of the ER-errors for the travel times on the defined routes in The Hague – 
Gouda network is shown in Table 4.4. On each of the routes the LHS technique shows a 
strong rate of convergence with error values varying per route, but generally in the order of 2 
times lower than CMC. Interestingly SQS performs substantially better on all the routes in 
comparison to LHS, except route O-K, despite the convergence in delay being similar 
between the two. In this case IS also performs poorer than CMC for the route travel time 
convergence. 

Table 4.4: Estimated relative error of the route travel times case 1: The Hague - Gouda 

Route Iterations CMC LHS SQS IS 

K-L 20 0.1030 0.0608 0.0348 0.1973 
 50 0.0196 0.0385 0.0084 0.1190 
 100 0.0322 0.0217 0.0038 0.0410 
M-N 20 0.0460 0.0222 0.0132 0.0748 
 50 0.0114 0.0105 0.0050 0.0493 
 100 0.0112 0.0057 0.0022 0.0183 
O-K 20 0.0342 0.0625 0.0306 0.1188 
 50 0.0218 0.0030 0.0128 0.0675 
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 100 0.0164 0.0045 0.0020 0.0393 
K-O 20 0.0600 0.0415 0.0286 0.1888 
 50 0.0200 0.0242 0.0094 0.0915 
 100 0.0114 0.0138 0.0050 0.0515 

Case 2: Rotterdam Ring 

In case 2 on the Rotterdam Ring network, the same input samples are applied as for case 1. 
However, as both networks are different, accompany different traffic dynamics and have 
different bottleneck locations and severity, the outcome of the delay from the network can 
also differ. The convergence of the ER-error of the delay values is shown in Figure 4.11 and 
Table 4.5. Both the LHS and SQS techniques show a swift convergence, in which SQS 
convergences at an exceptionally fast rate of ca. 3-4 times faster than CMC. The convergence 
of LHS is less impressive than SQS, but remains good compared to CMC. The IS technique 
convergences at a similar rate to CMC. Peaks in the graph for low sample numbers are a 
consequence of the cumulative character of the ER-error, which is more susceptible to 
extreme values for the lower sample iterations. 

 

Figure 4.11: Convergence of the total network delay indicator for case 2: Rotterdam  

Table 4.5: Estimated Relative error of the total network delay for case 2: Rotterdam  

Iterations CMC LHS SQS IS 

10 0.1414 0.0957 0.0670 0.1403 
20 0.0872 0.0713 0.0260 0.0993 
50 0.0378 0.0305 0.0132 0.0403 
100 0.0332 0.0200 0.0050 0.0303 

The convergence of the ER-errors for each of the defined routes in case 2 are given in Table 
4.6. The convergence of the travel times resembles that of the delay for LHS and SQS, in 
which both converge well and, especially the SQS, well outperforms CMC. Interestingly, IS 
also shows an improvement in convergence for all routes compared with CMC. This would 
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suggest that there is a large spread in the travel times, which IS, as well as the other 
techniques, are able to represent much better than CMC. 

Table 4.6: Estimated relative error of the route travel times for case 2: Rotterdam ring 

Route Iterations CMC LHS SQS IS 

E-F 20 0.0734 0.0573 0.0182 0.0695 
 50 0.0340 0.0285 0.0088 0.0323 
 100 0.0320 0.0195 0.0044 0.0285 
G-H 20 0.1898 0.1333 0.0290 0.1773 
 50 0.0820 0.0803 0.0106 0.1320 
 100 0.0790 0.0498 0.0040 0.0645 
I-J 20 0.1670 0.1097 0.0226 0.2090 
 50 0.0836 0.0743 0.0084 0.1235 
 100 0.0748 0.0477 0.0036 0.0323 

Case 3: Amsterdam South-East 

In case 3 for the Amsterdam South-East network, a different capacity and demand distribution 
is applied as to case 1 and case 2. From the convergence of the input value errors (Figure 
4.12), it may be expected that the performance should be similar to that of case 1 and 2. 
However, different network characteristics can lead to different outcomes. Especially the IS 
technique may perform worse than in case 1 and 2, as indicated from the input value errors. 
The results of the convergence in network delay are shown in Table 4.7. The convergence of 
the travel times on route C-D is given in Table 4.8. The LHS shows for the delay an initial 
convergence greater than CMC, while SQS easily outperforms the reference CMC. As 
expected, the IS technique performs very poorly and lacks well behind CMC. A similar result 
is found for the convergence of the travel times on route C-D, in which SQS shows excellent 
convergence, while LHS also performs well. 

 

Figure 4.12: Convergence of the total network delay indicator for case 3: Amsterdam 
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Table 4.7: Estimated relative error of the route travel times for case 3: Amsterdam 
South-East 

Iterations CMC LHS SQS IS 

10 0.1114 0.0370 0.0586 0.4868 
20 0.0916 0.0310 0.0154 0.3442 
50 0.0444 0.0302 0.0078 0.1489 
100 0.0102 0.0243 0.0030 0.0837 

Table 4.8: Estimated relative error of the route travel times for case 3: Amsterdam 
South-East 

Route Iterations CMC LHS SQS IS 

C-D 20 0.0908 0.0432 0.0108 0.2875 
 50 0.0576 0.0202 0.0056 0.1413 
 100 0.0474 0.0122 0.0028 0.0815 

4.4.3 Discussion of results 

The results demonstrate that variance reduction techniques can substantially improve 
convergence in stochastic and reliability modelling using Monte Carlo simulation for traffic 
modelling. This is evident in all three cases, in which either one or more of the techniques 
improved on the reference technique of Crude Monte Carlo (CMC), despite the differences 
between the three networks and the defined routes.  

Latin Hypercube Sampling (LHS) shows a good ability to improve convergence of the 
performance indicators from the traffic model for all considered scenarios. LHS is seen as a 
stable and reliable technique that is especially powerful for multiple variables, but here even 
with two variables (capacity and demand) showed its power. In each of the scenarios the 
improvements shown in the ER-error values are significant in comparison to CMC, and in 
many cases even with half the error or more for the same number of iterations. 

The Sobol Quasi-random Sequence (SQS) method is especially designed to sample such that a 
comprehensive coverage of values is achieved even from a relatively small number of 
iterations. This ability was clearly shown in each of the cases in which the method 
demonstrated error values multiple times lower than CMC, and often also compared to LHS, 
for the convergence of the network delay and travel time distributions. Of all the considered 
methods here, the SQS clearly performed the best over all cases. 

Importance Sampling (IS) is a technique that is especially applicable when stochastic 
distributions show a large degree of variation (Kroese et al., 2011, van Lint et al., 2012). The 
technique is however dependent on the applied estimator or ‘dummy’ distribution. This 
dependence is clearly seen in this research between the two differently applied sets of 
distributions with the same initial estimator distribution for IS. In case 1 and 2, the rate of 
convergence was similar to that of Crude Monte Carlo. For case 3, using a less distributed and 
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more symmetrical distribution, the IS technique performed worse in comparison to CMC. The 
overall performance of IS was poor, but in this we have also demonstrated the importance of 
applying an optimized estimator distribution. Various techniques exist to assist the choice and 
estimation of the estimator distribution, which are not dealt with here, but still require the 
necessary expertise and effort to apply correctly. Herein, the sensitivity of the technique also 
becomes evident. 

4.5 Conclusion 

Advances in Monte Carlo simulation techniques in past decades have led to a substantial 
potential for increased sampling efficiency. However, the development of variance reduction 
techniques has struggled to find its way into stochastic traffic modelling. In this chapter, it has 
been demonstrated that the incorporation of variation in traffic modelling through advanced 
variance reduction techniques in Monte Carlo simulation has the ability to substantially 
reduce computational load by improving convergence to a representative state. The ability to 
increase the rate of convergence using Latin Hypercube Sampling showed a decrease in the 
number of simulations required to achieve comparable error levels from that traditional Crude 
Monte Carlo simulation. Latin Hypercube Sampling is most effective for multiple input 
variables. In the considered cases, there were two stochastic variables which proved to be 
sufficient for this stratified technique to substantially improve convergence. Sobol Quasi-
random Sequences, just like Latin Hypercube Sampling, sample with an explicit spread from 
a set, however they also explicitly consider the consequential construction of the samples 
using an analytical sequence. This was clearly shown to be the most effective technique in the 
presented cases. For most indicators, the error level was a multifold smaller compared to 
Crude Monte Carlo and, in most cases, also compared to Latin Hypercube. 

Importance Sampling has a great potential to decrease computational load through capturing 
the extremities of a distribution, especially when the traffic system has an amplified effect on 
the outcome, as is often the case in congestion. The technique however is dependent on the 
applied estimator distribution. Application of an estimator method to optimize the estimator 
distribution is therefore essential. In this contribution, the importance of a reliable estimator 
function is shown from the difference between the cases. 

In this chapter, variance reduction techniques have clearly shown to be stable and consistently 
able to improve convergence of samples to a true distribution allowing for a reduction in 
computational load and to make stochastic and reliability analyses with Monte Carlo 
simulation in traffic modelling more applicable and efficient. Especially the application of a 
sequential technique, such as Sobol Quasi-random sequencing, has significant potential to 
allow faster Monte Carlo simulation in traffic modelling. Also other variance reduction 
techniques also yield good results, such as Latin Hypercube sampling, and likely others not 
explicitly considered in this contribution. 
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Chapter 5 

Core probability framework and modelling 

 
 
 

 

From previous chapters, it was made clear that it is imperative to explicitly consider 
stochastic variation in traffic flow modelling, when this variation is present in the considered 
scenarios and networks. In this chapter, a new stochastic macroscopic framework is 
introduced which, combined with the relevant dynamic network loading (DNL) models, 
tackles many challenges in macroscopic modelling and is developed with a view for easy and 
efficient application in practice.  

The Core Probability Framework (CPF) is a probabilistic framework for modelling multi-
dimensional variations in capacity and traffic demand in dynamic macroscopic traffic flow. 
The CPF extends a base model, such as the Cell Transmission Model (CTM), by considering 
each traffic variable as a stochastic variable denoted as a probability distribution of the 
chance of values for each traffic variable. The CPF is accompanied by the Discrete-Element 
Core Probability Model (DE-CPM) as an example of a possible DNL model. The DE-CPM is 
introduced as an internalisation of the Monte Carlo routine in the core of the traffic model.  

A description of the conceptual framework of the CPF and the application of the DE-CPM 
DNL model is given in sections 5.1-5.5. In sections 5.6, an explanation is given how the model 
addresses some of the issues mentioned in Chapter 2. Section 5.7 shows a demonstration case 
of the model in practice and the potential calculation time gains for two networks.  

 

 
This chapter is an edited version of the article: 
Calvert, S. C., Taale, H., & Hoogendoorn, S. P. (2014). Introducing the Core Probability Framework 
and Discrete-Element Core Probability Model for efficient stochastic macroscopic modelling. In DTA 
2014: 5th International Symposium on Dynamic Traffic Assignment, Salerno, Italy, 17-19 June 2014. 
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5.1  Core Probability Modelling 

In this section, the framework for the Core Probability modelling and the underlying 
assumptions are explained. The Core Probability Framework (CPF) extends an existing 
macroscopic traffic flow model to allow uncertainty scenarios in traffic to be internalised in 
the traffic flow model which it extends. Internalisation here refers to a single model execution 
in which uncertainty is considered, without multiple simulations. Monte Carlo simulation is a 
clear example of external stochastic influence to this extent. Initial application of the CPF 
makes use of the Cell Transmission Model (CTM) as base model. The basic premise entails 
replacing single traffic variables in time and space, such as the density, in a model with a 
distribution of that same traffic variable, also in space and time. The distribution, denoted as a 
vector, consists of predefined probabilities of various possible values of the considered traffic 
variable at a certain time and location, therefore transforming the traffic variables into 
stochastic variables. The general dynamics of the base model are kept the same as the 
deterministic version of the base model. In such a way, traffic is propagated through a link (or 
network) considering possible valid values of each traffic variable with a set probability, 
using already validated traffic flow dynamics from the base model. The input distributions are 
empirically determined for specific locations and/or scenarios or from generic empirical 
analysis (Calvert et al., 2014a, van Stralen et al., 2014). 

The framework allows different probabilistic models for propagation of the stochastic traffic 
flows to be developed and applied. In this chapter, we further present the Discrete-Element 
Core Probability Model as one option for use of the framework. A more detailed description 
of the framework and this model are given in the subsequent subsections. This begins with a 
short explanation of the applied base model (5.2). The concept of the CPF is given in 5.3 and 
is followed in section 5.4 by the description of the manner in which probability is included in 
the DE-CPM, how it is propagated, and how congestion and traffic states are dealt with. A 
simple numerical example is shown to conclude the section (5.5). 

5.2 Base model   

The Core Probability Framework makes use of a base model, which describes the manner in 
which traffic flow propagates, and considers stochastic probabilities in the core of a 
macroscopic traffic model. The base model applied here is the first order Cell Transmission 
Model (CTM)  (Daganzo, 1994, Daganzo, 1995a). The CTM describes traffic using a 
discretised form of the Lighthill-Whitham-Richards (LWR) model (Lighthill and Whitham, 
1955). The LWR model is governed by the law of conservation of vehicles equation (5.1), and 
the fundamental relation equation (5.2): 

 �^(w, �)�� + ��(w, �)�w = 0	 (5.1) 

 �(w, �) = ��(^(w, �))	 (5.2) 
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Here, �^(w, �)/�� denotes the change in density in time t; ��(w, �))/�w denotes the change of 
the same for the flow rate over space x, while �� is the fundamental relation between the 
density and flow, which is explained in more detail later on. 

In the CTM, the continuous model is used as a basis for the description of the flow 
propagation in discretized time and space. With respect to the spatial discretization, cells m 
are considered. In the CTM, the traffic flow at the interfaces between two cells, q,  is 
determined by a sending and receiving function, denoted here as the demand, D, and supply, 
S, which closely represent the available capacity in a cell and the desired traffic flow into a 
cell: 

 ���→����(^(w, �)) = min	(\}(^(w, �)), Q}|�(^(w, �)))	 (5.3) 

The demand function D is calculated by the largest flow or capacity of cell f in relation to 
equation (5.2), and the supply function S by the desired outflow from the previous cell  
according to the fundamental traffic characteristics of the preceding cell. The base model is 
applied in its discrete form for use in the Core Probability Framework and governs the main 
dynamics of traffic flow. 

5.3 Core Probability Framework 

The main premise of the Core Probability Framework (CPF) is the incorporation of 
uncertainty in the core of the model as probability distributions. While regular Monte Carlo 
simulation applies uncertainty through multiple simulation iterations, for the CPF these are 
internalised. This approach allows for a one shot simulation run and an increased efficiency in 
simulation. The uncertainty is applied in the form of (discrete) empirical probability 
distributions, which describe the variations in traffic variables in the model and are primarily 
applied as cumulative probability functions of the traffic demand at the origins and the 
capacity of each cell. A graphical description of the Core Probability Framework is shown in 
Figure 5.1b, alongside the general framework of a Monte Carlo routine as a comparison over 
a similar macroscopic traffic model for a simple three cell road stretch (Figure 5.1a). 

The CPF is in its self not a DNL, but rather the framework which states that distributions are 
explicitly propagated through time and space in combination with the dynamics of the base 
model. The Discrete-Element Core Probability Model (DE-CPM), in combination with the 
CTM, is given in this contribution as a possible DNL model that may be applied in the 
framework, which describes how the distributions of the stochastic traffic variables are 
propagated through the network. 

Figure 5.1 clearly shows the evasion of multiple simulations in the case of the CPF in 
comparison to a Monte Carlo routine over the same base model. In the rest of this section, the 
CPF is explained for the application of the DE-CPM. Other core probability models may also 
be applied to the CPF, but are not discussed in this chapter. 
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Figure 5.1a-b: Conceptual overview of the (a - above) Monte Carlo traffic simulation 
framework and (b - below) the Core Probability Framework 

5.4 Discrete-Element Core Probability Model 

5.4.1 Concept 

The Discrete-Element Core Probability Model (DE-CPM) is a DNL model that makes use of 
the Core Probability Framework to propagate traffic through a                                                                
link and network. The DE-CPM describes the traffic variables as a distribution, denoted as a 
vector, which consists of static probabilities of various possible values of the considered 
traffic variable at a certain time and location. For each variable at each time step, identical 
static probability elements are used in the distribution. Each discrete element in the 
distribution is explicitly kept from interaction with other elements as the flow distributions are 
propagated through the network. This approach basically creates an internalisation of the 
Monte Carlo routine, in which each discrete element or ‘scenario’ is kept separate. In such a 
way, traffic is propagated through a link (or network) considering possible valid values of 
each traffic variable with a set probability, using already validated traffic flow dynamics from 
the base model. 

DE-CPM/CTM 
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In the following paragraphs the Core Probability Framework is defined for application of the 
Discrete-Element CPM as network loading model. 

5.4.2 Inclusion of probability 

In classical first order models, each variable is represented by a single value for each point in 
time, �, and space, w. In the core-probability approach, a further variable is added, which 
represents the probability of the density occurring, and sequentially the traffic flow, �, and the 
speed, �. This further transforms the variables from a single value in time and space into a 
probability distribution in the same time and space, represented by their corresponding vector.  

Presuming static values for the probability elements avoids the necessity to explicitly define 
the probabilities of the values corresponding to the probabilities for each cell (m) in each time 
step (n). 

Initially in the continuation of the description, for the reason of clarity, a further presumption 
is made that each value in the probability vector has identical probability. This assumption 
also entails that the discrete probability values for each probability element are set for the 
entire simulation for all time steps (n), cells (m), and for each variable (k, q, v): 

 
 �:		 � =  W =	. . . = 	 �			∀(^, �, %) (5.4) 
 

Now let the random variable 5(w, �) denote the density on a cell [x, x+dx] and at time t. Let  �(w, �)  denote the accompanying probabilities. Such a relation is given as: 

 
 /(5(w, �) = ^) =  �(w, �)   (5.5) 
 

Note that the values of ^ are discrete and hence a discrete probability function can be used. 
However, such a notation indicates a variable probability as a function of given densities. The 
CPM presumes set probability elements, and therefore the random density variable 5(w, �) is 
defined as a function of set probabilities instead.   

So for example, 5(w, �), now written as vector u(w, �	; �), denotes all possible values of the 
density for a moment in time and a location, given the probabilities of these densities. The 
density vector can also be written as: 

 
 u(w, �	; �) = £^�(w, �)	9:�ℎ	 012h2:$:�T	 �.�^W(w, �)	9:�ℎ	 012h2:$:�T	 �.W…^�(w, �)	9:�ℎ	 012h2:$:�T	 �.� ¤   

 
(5.6) 
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This notation is similar to the one applied in Fuzzy Logic, in which a crisp number is denoted 
as having multiple possible values, each with their own probability  (Buckley, 2005). Here, 
the notation is borrowed from Fuzzy Logic Theory, while applying General Probability 
Theory, which states in this case that k is a stochastic variable, which has various values with 
predefined probabilities.  

From now on, we will only use the short form for the density vector, rather than the 
description on the right hand side of equation (5.6). The addition of the vector p includes all 
possible values of the appropriate variable with identical probabilities of each value in time 
and space, so that: 

 � =	 � +  W+	. . . +	 � = 1 (5.7) 
 

Here, : is further limited to a finite value, which is applied as an input parameter of the model. 
The equations for the conservation of vehicles equation (5.1) and the fundamental relation 
equation (5.2) now incorporate a further dimension for the probability in time and space, and 
become dependent on the probability of their value: 

 
 �u(w, �	; �)�� + ��(w, �	; �)�w = 0 

(5.8) 

   
 �(w, �	; �) = ��(u(w, �	; �)) (5.9) 

 

The conservation of vehicles therefore remains intact by definition, as each considered 
element in the probability distribution vector acts as an individual case of the CTM for which 
conservation has been proven (Daganzo, 1994). 

6.4.3 Application of stochastic demand, capacity and traffic propagation 

Stochastic traffic demand is applied in the model at the peripherals of a network on the 
inflowing cells. From there on, traffic may propagate applying equation (6.8) and equation 
(6.9) according to the dynamics of the base model. The initial traffic demand contains ¥�	times ¥� number of elements in the probability vector �, where ¥�	is the number of 
probability elements in the vector for the demand and ¥� is the number of probability elements 
for the capacity, such that each probability vector � is constructed of all possible 
combinations of  U� and  U��. The initial flow at the network origins is therefore: 

 
 �(w�, ��	; �) 	= {�Y�, �YW, … �Y(U�∙U�)}	 

 

     (6.10) 

where the probability vector � exists of ¥�	times ¥� elements. This multiplication is performed 
to accommodate sufficient elements in the discrete probability distribution for the outcomes 
of each combination of traffic demand and capacity. 
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The variation in the capacity of the network is applied for each cell corresponding to the 
probability of the capacity of that cell in a similar way to the traffic flow �. In a simplified 
case only bottleneck cells will have varied capacity values, with the other cells yielding 
identical capacity values for each element in �. The capacity contains ¥� probability elements 
for the capacity in both time and space, although for most cells, variation in the capacity has 
little to no influence where flow is sub-critical:  

 
 �¦h (wf, �,	; �) = §̈©̈

ª�¦h .1(w, �)	9:�ℎ	 012h2:$:�T	 ¦.1�¦h .2(w, �)	9:�ℎ	 012h2:$:�T	 ¦.2…�¦h .:(w, �)	9:�ℎ	 012h2:$:�T	 ¦.: «̈¬̈
­

 

 
(5.11) 

 

Once the traffic from the stochastic scenarios is on the network, the traffic propagates through 
the network dependent on the corresponding demand and following the dynamics as 
previously shown in equation (5.8) and equation (5.9).  

Spatiotemporal dependence is applied as a conditional probability at the entrance of a 
network, between the initial demand (applied to connector links to get initial densities) and 
capacity variables. Propagation of this dependence entails that each element in the probability 
vector of the density corresponds to the same place in the probability vector of the density of 
the following time step. This is described as the chain-rule, as graphically shown in Figures 
5.2 & 5.3, and is further described later in this paragraph and is given in equation (5.15). The 
chain-rule ensures an identical number of elements in the resulting probability vector for 
propagation through the network, and therefore avoids an explosion of marginal probability 
elements. Basically, this creates a set of values which can be seen as scenarios of unique 
traffic demand and capacity combinations.  

 

  

 

 

 

 

 

Figure 5.2: Traffic propagation in the DE-CPM 

  

���→����(u) �����→����(u) u(wf, �,	; �)  
 

with capacity �®¯�(w}, ��	; �) 
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Figure 5.3: Chain-rule for propagation of traffic variables as discrete elements of a 
distribution in the DE-CPM 

The process is explained as such: there is a traffic demand �(w�, ��) with a set of possible 
values, �Y, corresponding to certain probabilities: 

 
 �(w�, ��	;  ) = {�Y�, �YW, … �Y�}	 (5.12) 

 

Calculations in the model are performed using the density, therefore q is transformed using 
equation (5.2) to: 

 
 ^(w�, ��	;  ) = {^Y�, ^YW, … ^Y�} (5.13) 

 

In the following time step, there is a new � and ̂  at location w�, in line with traffic flow in 
and out of the cell and in keeping with the conservation of vehicles equation (5.1) : 

 
 ^(w�, �W	;  ) = {^Y�, ^YW, … ^Y�}	 (5.14) 

 

However, the position of each element in the (w�, �W	;  ) corresponds only to that of the 
element in the same position in the following time step in u(w�, �W	; �),	so that for each 
element, :, applies: 

 
 �(w�, �W	;  �) 	→  �(w�, ��	;  �)	  (5.15) 
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This strict ‘chain-rule’, that demands that for each location in consecutive time steps the same 
probability must apply, protects the validity of the initial conditional dependence between the 
capacity and traffic demand in both time and space. 

Although the CTM base model, and therefore also CPF / DE-CPM, calculates traffic using the 
density, it is often required to translate this to the traffic flow �(w, �	; �), for determination of 
the flux for example. This is performed using the fundamental relation shown in equation 
(5.2), in which each value of q is transformed using a deterministic fundamental diagram. The 
resulting values of �(w, �	; �) from u(w, �	; �)	maintain the same probabilities for each time 
step and cell in space. 

In the same way, the traffic flow on the subsequent cells is also calculated. The only 
difference is that the supply and demand refer to those of the following cells, wU. In such a 

way, one can speak of multiple scenarios in a single procedure, as each element of the 
marginal probabilities are considered individually for a single variable.  

5.4.4 Determination of Congestion   

The sending and receiving functions, or rather demand and supply, d and s, are in part 
determined by the traffic state. Traffic states are in turn determined by the density of traffic in 
a cell at a specific time. Under congestion, the demand function is equal to the capacity, and 
the supply function of the outgoing traffic flow: 

 
 °(w}, ��	; �) 	= �®¯�(w}E�, ��	; �) ±(w}, ��	; �) 		= �(w}, ��	; �)		 (5.16) 

(5.17) 

 

For uncongested states, the demand function is the incoming traffic flow, and the supply 
function is the available capacity: 

 
 °(w}, ��	; �) 		= �(w}E�, ��	; �) ±(w}, ��	; �) 	= �®¯�(w, �	; �) (5.18) 

(5.19) 

 

For the Core Probability Framework without capacity variation, congestion is determined by 
comparison between the probable density and the critical density of a cell: 

 
 ²³´µ(w, �	; �) = u(w, �	; �) ≥ ^�Z�!(w, �) (5.20) 

 

However, when capacity is also varied, the congestion equation states a distribution vector on 
either side of the operator: 

 
 ²³´µ(w, �	; �) = u(w, �	; �) ≥ u®¶·¸(w, �	; �)	 (5.21) 
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5.4.5 Network flow over nodes 

For modelling traffic in networks, it is imperative to consider traffic flow over the nodes. This 
is usually performed using a node model which deals with the manner in which traffic 
propagates at convergence and divergence points in a network, but also how other traffic 
waves, such as congestion may propagate in an upstream direction. This contribution does not 
aim at developing a stochastic node model, and therefore they will not be reviewed here. For 
an overview of the state-of-art of node models we refer to (Tampère et al., 2011). The 
inherent characteristics of the chain-rule, as used in the DE-CPM for the propagation of 
distributions as an internalisation on the Monte Carlo routine, determine that just about any 
arbitrary node model that is applicable for the base model may be applied in the CPF.  

This is demonstrated for the merge model as described by Daganzo (Daganzo, 1995a) for an 
uncongested flow. The merge model describes the maximised flow, Q, from two incoming 
links, i = 1,2, into a single outgoing link 3. As seen already from the CTM, sending flows 
perpetuate from the upstream links (see equation (5.3)). These flows are constrained by the 
maximum flows that may leave each link: S1, S2. Likewise, the receiving downstream link also 
has a maximum flow that it is capable of receiving: R3. Therefore, we can easily see that 
traffic flow is constrained by either the traffic demand from the inflowing links or the supply 
of capacity from the receiving link according to: 

 �: ≤ Q:							∀:	 ∈ {1	, 2} 
 � �::=1,2 ≤ O3 

(5.22) 
 

(5.23) 
 

Considering the constraints and convergence of the flow from equations (5.22) and (5.23), it 
becomes apparent that the flow into the receiving downstream link for uncongested 
circumstances is: 

 Q = min{ Q� + QW	; O»} (5.24) 

Extension of the node model for use in the DE-CPM extends equation (5.22) and equation 
(5.23) by considering each variable as a discrete stochastic variable in which the chain-rule is 
valid between the corresponding elements of the variables. Hence, equations (5.22-5.24) 
become: 

  �:(�1	; �) ≤ ¼:(�1	; �) 
 � �:(�1	; �):=1,2 ≤ ½(�1	; �) 
 ¾(��	; �) = min{ ¼�(��	; �) + ¼W	(��	; �); ½(��	; �)} 

 
(5.25) 

 
(5.26) 

 
 

(5.27) 
 

In equations (5.25-5.27), � indicates the entire distribution vector for which is valid p for ∀	  ∈ � according to the previously defined chain-rule for an arbitrary variable, f: X( �) 	→  
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f( �). Graphically, it is very easy to observe how the propagation of traffic in the DE-CPM 
does not require special attention for nodes beyond the introduced theory that is also 
applicable for stretches. Convergence and divergence of traffic flow at a node are again dealt 
with according to the dynamics of the base node modal, where each element from the 
stochastic variables is processed independently.  

 

Figure 5.4: Graphical representation of the DE-CPM for a node merge 

The same simple extension applies to other node models and the additional equations that 
describe the congested states in the node models for application in the DE-CPM. As the 
chain-rule explicitly keeps the individual elements of the discrete distribution separated for 
calculation, these act in the same fashion as the deterministic case for which the models are 
already developed.  

5.5 Simple numerical example (both capacity and demand varied) 

To demonstrate the manner in which the DE-CPM works, a simple numerical example is 
given as demonstration. A more elaborate demonstration is given in section 5.5. The traffic 
demand at the network peripherals is given as a flow with a set probability. In this example 
there is a 50% chance of two different inflow values, and there is 50% of two different 
capacity values. Therefore, there are 4 elements in the demand vector, because the size of �(w, �	; �) is equal to ¥�	times ¥� (see equation (5.10)): 

 �¿w�, ��, � = À0.250.250.250.25ÂÃ = À1900190022002200Â 
(5.28) 

 

 
The capacity values of the cell are also given in the,  ¥_	times ¥¦ number of elements, capacity 

flow vector: 
 �®¯�Åw1, �1, � = £0.250.250.250.25¤Æ = £2100230021002300¤ 

(5.29) 
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Note that the sequences for the values of the flow in the demand vector equation (5.28) are 
differently arranged over the ¥�	times ¥� elements in comparison to the capacity flow vector 
equation (5.29). 

This flow vector, �(w, �	; �), in equation (5.28) is transformed to a density vector,	u(w, �	; �), 
using the fundamental relation � = ��(^) in which the critical density is ̂�Z�! = 25. This 
gives: 

 u¿w�, ��, � = À0.250.250.250.25ÂÃ = £22202624¤ 
(5.30) 

 

 
The probability of congestion is calculated using equation (5.20): 
 

 ²³´µ¿w�, ��, � = À0.250.250.250.25ÂÃ = u(w, �	; �) ≥ ^�Z�!(w, �) = É£22202624¤ 	≥ 25Ê = À0010Â          (5.31) 

 
Therefore, based on equation (5.16) through equation (5.19), the demand D and supply S, can 
be calculated as: 
 

  Ë¿w�, ��, � = À0.250.250.250.25ÂÃ = À1900190022002200Â	    and    ¼¿w�, ��, � = À0.250.250.250.25ÂÃ = £2100230021002300¤         (5.32) 

 
The flux between two cells is defined and given as: 
 

            �w:→w:+1 Åw1, �1, � = £0.250.250.250.25¤Æ = minsË(u), ¼:+1(u)t =	£1900190021002200¤           (5.33) 

The density therefore in the current and following cells in the following time step, t2, is given 
by the previous density adjusted by the flux into and out of that cell, during the size of the 
time step, h. Here we presume an identical inflow into cell x1 for t2 as in t1: 

 

u¿w�, �W, � = À0.250.250.250.25ÂÃ = u(w�, ��	; �) + (���→�� − ���→��) ∙ ℎ = £22202624¤ + ¿À1900190022002200Â −
À1900190021002200ÂÃ ∙ ℎ    (5.34) 
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Similarly, the flow into the yet unoccupied cell x1 is calculated: 

u¿w�, �W, � = À0.250.250.250.25ÂÃ = u(w�, ��	; �) + (���→�� − ���→��) ∙ ℎ = À0000Â + ¿À1900190021002200Â −
À0000ÂÃ ∙ ℎ   (5.35) 

This same process repeats itself for each cell in each time step and so on. 

5.6 Addressing the main issues 

In Chapter 2, six important issues relating to stochastic traffic flow modelling were presented 
and described. Four of these issues are addressed in the development of the CPF and are 
explained here.   

For computational efficiency, the main challenge is to reduce computational load and in 
doing so, do it in a way that the model is not reduced in stochastic and modelling accuracy. 
Compared to a Monte Carlo simulation, the CPF does not require multiple repetitive 
simulations before arriving at a distribution, as the distribution of the traffic variables is 
explicit to the methodology. Therefore, the computational load will be lighter if a single (DE-) 
CPM simulation run is quicker than the sum of the required number of Monte Carlo 
simulations on the same base model. It is hypothesised that this is the case, as the DE-CPM 
has a single computational overhead for the entire distributions, while a Monte Carlo 
simulation has a computational overhead for each simulation iteration. Furthermore, a lower 
detail of discretisation is hypothesised to be required for the DE-CPM as the model calculates 
using distributions throughout. Simplification and reduction of distributions would lead to 
higher errors and therefore require more samples to attain the same level of accuracy. In 
section 5.7.2 a demonstration is given of the potential computational gains. Monte Carlo 
simulation makes use of less efficient random process of sampling, which reduces the 
completeness of a distribution and therefore requires a greater number of simulations to reach 
the same level of accuracy, therefore increasing the computational load. On a simple network 
or a corridor, the efficiency effect will be limited, however for larger networks and for a 
greater spread of variation the gains should be greater. It should be noted that Monte Carlo 
simulation allows for parallelisation, which can significantly improve computation time.  

Spatiotemporal dependency is catered for in the DE-CPM through the explicit consideration 
of correlations at the peripheral of the model and maintenance thereof in propagation through 
the chain-rule. For other DNL models in the CPF, the manner in which the dependency is 
dealt with may vary. Reduced to two dependant variables, the traffic demand and road 
capacity, correlations between possible values of both are explicitly considered in the 
distributions entering a network at the peripherals. Values in the initial distribution vector of 
the traffic demand entering the network correspond on an element-to-element bases to that of 
values of the capacity distribution vector at the same element location. By explicitly 
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maintaining this chain-rule throughout the traffic propagation, independency between traffic 
demand and capacity is maintained. Dependency in time for both the demand and capacity is 
also explicitly dealt with outside the model. Input values for certain elements in the 
distribution vectors follow those of the preceding time step and therefore already consider a 
logical and dependant propagation from the input vectors in time. Spatial dependency is dealt 
with in the same way as in the base model and therefore requires no further attention. 
Simplified, each element in a distribution vector may be seen as a single input value for a 
single Monte Carlo simulation, therefore it may also be considered as independent from other 
elements just as a single Monte Carlo iteration is from another Monte Carlo iteration. 

Stochastic propagation of probability in traffic flow is performed as described in section 
5.4 for the DE-CPM and is also touched upon in the previous issue on spatiotemporal 
dependency. Dealing of this issue is also DNL model dependent and not generic for the CPF. 
A complete distribution of possible values per traffic variable is present as a distribution in the 
form of a vector. This vector exists of more elements than is necessary, so to allow each 
possible value of that vector to correspond to the elements of other vectors and therefore to 
avoid correlation difficulties. As these distribution vectors are propagated in space and time, 
there is no need to reduce variables to a representation of the distribution using a set 
distribution type, median, standard deviation, shape parameter or such like. Although this may 
lead to a higher computational effort, it maintains a guaranteed accuracy of the propagation of 
the traffic variables and their probabilities, as the distributions remain intact in the process of 
propagation. Therefore, a greater accuracy can be achieved in comparison to methods that do 
transform distributions to characteristics of the distribution, mostly to some parametric form.  

For the CPF, the question of generality is one that is less relevant to the model itself, but 
rather to the quality of the data and distributions that it is fed with. As the CPF performs 
calculations using discrete distributions, a reduction of the input data may only happen in the 
case of rediscretisation for the sake of computational efficiency. Therefore, the necessity to 
apply accurate input distributions for the traffic demand and road capacity is applicable for 
the local circumstances or from a general distribution if the local situation is not known. 
Construction of generic input distributions for this purpose, taken from wide spread empirical 
analysis, makes it easy to apply the CPF without requiring extensive data analysis for each 
application of the model (Calvert et al., 2014a, van Stralen et al., 2014). Nevertheless, this 
issue is one that is less explicit to the model, as the quality of input data is relevant and 
independent to all models. However, the manner in which a model deals with accurate input is 
important. The CPF does not simplify input by moulding it to a parametric function, therefore 
maintaining high level of accuracy and avoiding additional unnecessary biases, contrary to 
many other models. The CPF makes use of empirical distributions which maintain the 
characteristics of each distribution as it propagates through a network.  
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5.7 Test cases DE-CPM 

In this section, a demonstration of the application and validity of the Discrete-Element Core 
Probability Model (DE-CPM) is performed in a number of test cases. The first test case aims 
to show that traffic propagation along a road section in the DE-CPM can accurately resemble 
traffic flow found from empirical observations. As the case is carried out on a single stretch, 
there is not much that can be said about the computational efficiency. This is considered in the 
following sub-section. A second test case is performed on two small test networks to 
demonstrate the application in networks and to further demonstrate potential computational 
gains of the framework and model. 

5.7.1 Traffic propagation on a single road section  

The test case is carried out for the A12 motorway in The Netherlands between Utrecht and 
The Hague (see Figure 5.5). On this motorway in 20092, a lane drop was present from four to 
three lanes, which acted as a structural bottleneck at location A. Daily congestion starting at 
this location near the town of Woerden would be present, especially during the evening peak 
period. A section of 11 kilometres is considered, of which 10 km upstream and 1 km 
downstream of the bottleneck. The DE-CPM is fed with data from 63 afternoon peak period 
observations of the traffic flow between 2 PM and 9 PM from 2009 as a representation of the 
probability of certain traffic flows appearing. The input for the model is taken exclusively 
from the most upstream location. Therefore, the validation is that of the stochastic traffic 
propagation. Each observation is considered as an equal probability of a real traffic demand 
for this location and is therefore given a 100/63 = 1.6% probability for the input at the inflow 
of the corridor. These traffic flows are fed into the network at the most upstream location. The 
traffic demand derived from data that is fed into the model  is given in Figure 5.6. 

 

Figure 5.5: Bottleneck location near Woerden at the considered road section on the A12 
used in the case study 

A comparison is made based on the ability of the model to accurately predict the propagation 
of the probabilities of traffic flow and corresponding traffic states between the outcome of the 
DE-CPM simulation and the empirical data. For this, the unfiltered traffic states in time and 
space are gathered on the entire corridor. The comparison focusses on the time of traffic 
breakdown, congestion duration, spill-back distance, and the specific speed values in time and 
space. This is shown for the median probability (most likely traffic situation) and a further 

                                                        
2 Since 2009, this location has been upgraded to four lanes along the entire stretch to eradicate the 
bottleneck.  
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demonstration of the results is given in the form of a 3D congestion probability plot. The 
results of the median probability are shown in the time-space Figure 5.7.   

 

Figure 5.6: Demand profile for the A12 with confidence bandwidths 

The initial results, shown in Figure 5.7, show the simulated median (50%) results from the 
model, with the median from the empirical data shown in Figure 5.8. The speed values are 
shown as these give a good indication of where congestion is present, how extreme 
congestion is and how traffic flow changes the time. Initially, the extent of congestion appears 
to be relatively well modelled. Nevertheless, there are certain deviations in comparison to the 
empirical data. The onset of congestion occurs approximately 10 minutes earlier in the 
simulation, while congestion lasts for 158 minutes compared to 190 minutes in the data. 
However, the spillback of congestion in both is of a similar magnitude and deviates no more 
than 200 meters over a distance of some 9 kilometres. The speed in the heavily congested area 
of traffic is lower in the empirical data compared to the model (ca. 30 kph versus 40 kph). 
This may also be a main reason why the duration of congestion differs, as traffic in the 
simulation may proceed at a slightly higher speed and therefore let congestion disperse 
earlier. Despite these minor deviations, this initial test case gives cause for optimism. A 
further fine-tuning of the model parameters when applied in practice may easily compensate 
for the observed differences.  
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Figure 5.7: Modelled speed diagram for the median probability in the A12 test case  

 

Figure 5.8: Empirical speed data for the median observation in the A12 test case 3 

The CPF allows a vast amount of data to be produced and presented as a probability 
distribution or in another forms as a direct consequence of the way the CPF works. As each 
traffic variable is considered as a distribution of possible values, each can therefore be 
calculated or shown as such at each time step and location. This is demonstrated in Figure 5.9 
in which the congestion probability at each location and for every time step is given. 
Congestion is defined as such when the critical density is exceeded, while the probability 
thereof indicates the frequency that congestion is expected to occur for an arbitrary location 

                                                        
3 The red horizontal line indicates a location at which a faulty detector is present. The speed at this 
location is returned as null. 
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and time along the corridor. It is possible to show more complex results in a greater number 
of dimensions, i.e. including the probability as a variable in a diagram, however this leads to 
difficulties in the interpretation of diagrams. Nevertheless, broad analyses are made much 
easier and more extensive with the results from the CPF. Significant computational gains are 
not found on a single corridor, but rather are expected for networks and for greater variations 
in stochastic variables. This is further looked at in the following sub-section. 

 

Figure 5.9: Modelled congestion probability in time and space for the A12 test case 

5.7.2 Network computational performance 

Performance of the DE-CPM for computational efficiency is tested on two simple networks. 
In comparison to the previously considered road stretch, variation in traffic flow can interact 
much more as it propagates through a network and will also include network effects. The 
considered networks are shown in Figure 5.10 and 5.11. Network 1 is a 5 link network with 
two origins and one destination, while network 2 is constructed from 7 bi-directional links 
with four origins and destinations. A comparison is made between the application of identical 
input distributions and capacity distributions in the DE-CPM against a CTM Monte Carlo 
simulation on the same networks in a MATLAB implementation. In both models the main 
CTM code is identical, naturally with the addition of the core probability components for the 
DE-CPM model. Furthermore, both models make use of exactly the same route model, which 
presumes static turning fractions and all other variables and parameters are kept identical in 
both cases.  
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Figure 5.10: Test network 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: Test network 2 

Input for the models is the network definition, which includes network characteristics and 
geometry, stochastic dynamic demand matrices, and stochastic capacity values. The demand 
and capacity distributions are kept to a limited number of discrete elements, which also act as 
the input for the DE-CPM and as each combination for the Monte Carlo routine. The input 
distributions therefore do not require further discretisation. Besides tests on two different 
networks, various ‘total number of time steps’ and various ‘number of discrete elements in the 
input distributions’ are applied, as shown in Table 5.1. For each scenario, at least five 
simulations are performed of which the average computation times are given in the last two 
columns of Table 5.1. The reason for multiple simulations is to be sure that there are no or 
limited variations caused by the computer. Although five simulations are performed for each 
scenario and model, the differences in calculation time for the five simulations in all cases on 
the same machine consequentially varied minimally, generally below 2%. 
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Table 5.1: Computational speed tests for the DE-CPM 
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Netw 1 7 2 1 2 6 200 10 4 40 25 1.1 

Netw 1 7 2 1 2 6 400 10 4 40 51 2.3 

Netw 1 7 2 1 2 6 200 5 4 20 13 1.0 

Netw 1 7 2 1 2 6 800 10 4 40 101 4.3 

Netw 1 7 2 1 2 6 800 5 4 20 51 3.9 

Netw 1 7 2 1 2 6 200 5 2 10 7.0 1.0 

Netw 1 7 2 1 2 6 400 5 2 10 13 2.0 

Netw 1 7 2 1 2 6 400 5 4 20 25 2.1 

Netw 1 7 2 1 2 6 800 5 2 10 26 3.8 

Netw 2 17 4 4 3 6 200 10 4 40 66 2.7 

Netw 2 17 4 4 3 6 400 10 4 40 131 5.5 

Netw 2 17 4 4 3 6 800 10 4 40 261 11 

Netw 2 17 4 4 3 6 200 5 4 20 33 2.6 

Netw 2 17 4 4 3 6 200 5 2 10 16 2.5 

 

The results of the computation time tests, as a function of the number of time steps and 
discrete elements from the distributions, show some interesting trends. A graphical 
representation of the results is shown in Figures 5.12 and 5.13 for the CTM Monte Carlo and 
DE-CPM respectively for network 1. The relationship between the number of time steps and 
the calculation time is approximately linear for both models and has its origin near to a time 
of zero. The relationship between the number of discrete elements and the calculation time is 
also approximately linear in both cases. However, there is a significant difference between the 
CTM Monte Carlo and DE-CPM for the incremental increase in relation to the number of 
discrete elements from the distributions. As may be expected, the CTM Monte Carlo model 
increases linearly with an origin near to time zero. This is expected as each Monte Carlo 
simulation makes exactly the same calculations for each combination of inputs, with each 
calculation taking approximately the same amount of time. The DE-CPM, however, requires a 
relatively shorter additional time to calculate additional number of discrete elements from the 
input (and here in the propagation). This is found for both networks and can be clearly 
observed in Figures 5.12 and 5.13. Also, it appears that the linear increase with the number of 
elements does not originate at zero seconds, which indicates some sort of small start-up time. 
Comparison between the two networks would indicate that the start-up time is dependent on 
the size of the network.  
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Figure 5.12: Calculation time CTM Monte Carlo for network 1 

 

 

Figure 5.13: Calculation time DE-CPM for network 1 

The consequence of this low coefficient for increasing number of discrete elements is that the 
DE-CPM is far more capable of efficiently dealing with traffic flows with large amounts of 
stochasticity in comparison to the compared Monte Carlo routine. This allows simulations to 
be carried out in which a greater detail of uncertainty may be incorporated at a marginal cost 
to the computational time.  

The used samples for the Monte Carlo simulation are identical to the input percentiles used in 
the DE-CPM, to ensure identical outcomes. Therefore, the results of the DE-CPM 
simulations, in terms of flow and density values in time and space, are identical to that of the 
Monte Carlo simulations. This is by definition, following the earlier described chain-rule that 
maintains each internalised scenario, as if it were a Monte Carlo simulation. Even when the 
Monte Carlo samples would be completely random, the only difference in results would be 
the result of different samples, rather than an inherent deviation in calculation method.  
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The computation times in absolute terms for the DE-CPM outperform those for the CTM 
Monte Carlo by a factor 5-20 depending on the size of the network and number of stochastic 
elements. The results from Table 5.1 show that for larger networks and for a greater number 
of discrete elements that the DE-CPM outperforms the Monte Carlo routine to a greater 
extent. This is in line with the expectations that this model shows its effectiveness best for 
larger networks and under greater levels of uncertainty. The possibility of parallelisation for 
Monte Carlo routines can reduce the computation time, however even compared to 
parallelisation such gains of 20 times or more for larger networks with the DE-CPM may even 
be competitive in comparison.  

5.8 Conclusions  

In this chapter, the Core Probability Framework (CPF) has been introduced with the 
application of the Discrete-Element Core Probability Model (DE-CPM) as a new DNL for 
dynamic macroscopic modelling of stochastic traffic flow. An initial validation case has been 
also been shown as well as an indication of the computational performance on networks. The 
CPF extends current deterministic traffic flow models by redefining traffic variables in the 
core of the model as distribution vectors of probable values for each traffic variable. In such a 
way stochastic variation in traffic is internalised in the model and does away with the 
necessity of repetitive Monte Carlo simulation. Furthermore, a greater degree of flexibility in 
analysis is obtained, as each individual traffic variable in time and space may be given as a 
function of their probability. Moreover, the underlying distribution of each traffic variable in 
space and time is preserved such that the introduction of distribution fitting errors is limited to 
a minimum. Important issues facing stochastic traffic flow modelling are given, and are 
identified as computational efficiency, spatiotemporal dependency, stochastic propagation of 
probability, and stochastic generality. The DE-CPM addresses each of these issues through 
element based calculation using the chain-rule and in doing so demonstrates the ability to 
advance developments in the area of stochastic traffic modelling. In particular, the CPF aims 
to further the possibilities for reliable, accurate, efficient, and most of all, practically 
applicable stochastic macroscopic traffic flow modelling. The outcome of the calculation time 
tests on simple networks compared to a CTM Monte Carlo model showed that the DE-CPM 
has great significant potential to reduce computation times, especially for larger networks and 
for greater stochasticity. This is mainly due to the small marginal computational costs 
incurred when increasing the level of uncertainty in the discrete model. With the DE-CPM 
DNL model, a first step within the framework is taken. Further expansions in the form of 
more advanced model developments within the framework are recommended for future work 
and focus on the propagation of the stochastic variables as distributions without the 
application of the chain-rule. These developments have the potential to deal with stochastics 
to a more efficient extent.  
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Chapter 6 

Micro-stochastic macroscopic modelling 

In this chapter, a new model to include stochastic vehicle specific behaviour and interaction, 
described as microscopic stochasticity, in traffic flow modelling is presented. The First Order 
Model with Stochastic Advection (FOMSA) is a first order macroscopic kinematic wave 
model in a platoon-based Lagrangian coordinate system. The use of Lagrangian coordinates 
allows characteristics of specific vehicles or vehicle-groups to propagate along with the 
traffic flow using a vehicle (group) specific invariant. The invariant reflects how vehicle 
specific characteristics propagate with the vehicles and influence the local behaviour on a 
macroscopic level and in interaction with other surrounding vehicles. The application of 
bounded acceleration and vehicle reaction time to improve accuracy and assist the 
generation of the capacity drop is also demonstrated in two cases. 

An introduction to the topic is given in section 6.1. The modelling principles applied in the 
approach are first explained in section 6.2. The developed approach is then described in 
section 6.3, including the assumptions made and the limitations. In section 6.4, a first 
experimental case is given to demonstrate the approach without explicit capacity drop, in 
which a further comparison is made with a non-stochastic reference case to demonstrate the 
necessity of considering stochastic driving behaviour in macroscopic modelling. Further 
experimental cases are given in section 6.5 for the incorporation of bounded acceleration and 
reaction to induce the capacity drop. Finally the conclusions are given in section 6.6.  
 
 
This chapter is an edited version of the articles: 
Calvert, S., Taale, H., Snelder, M., & Hoogendoorn, S. (2015). Vehicle Specific Behaviour in 
Macroscopic Traffic Modelling through Stochastic Advection Invariant. Transportation Research 
Procedia, 10, 71-81. 
 
Calvert, S. C., Snelder, M., Taale, H., Wageningen-Kessels, V., & Hoogendoorn, S. P. (2015). 
Bounded acceleration capacity drop in a Lagrangian formulation of the kinematic wave model with 
vehicle characteristics and unconstrained overtaking. In IEEE 18th International Conference on 
Intelligent Transportation Systems, Santa Catalina, Gran Canaria, 15-18 September 2015; IEEE. 
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6.1 Introduction  

Traffic is a highly dynamic and complex system, which encompasses human behaviour 
through the act of driving. Human driving behaviour is complex in itself and exists of a 
general behavioural aspects related to the general rules of driving, i.e. traversing a lane in a 
certain direction at a certain speed without collision, and of intrinsic behavioural aspects that 
can be driver specific (Fuller, 2005, Toledo, 2007). A general aggregation of this behaviour is 
seen as something that can be understood, observed and reproduced in macroscopic models. 
However, individual driver behaviour is somewhat harder to capture and reproduce. Efforts to 
capture and understand stochastic driver behaviour have been successful and have described 
many aspects of driving behaviour. In this chapter, the focus is on vehicle movement, but 
which is of course influenced by driver behaviour. In this respect, we will refer to vehicle-
driver-unit behaviour as driver-vehicle behaviour in which the effect of different vehicle 
capabilities is also considered. With an increase in microscopic modelling, and especially 
agent-based models, much stochastic behaviour of individual vehicles and interaction between 
vehicles has been included in modelling. This allows stochastic behaviour in longitudinal and 
lateral movements to be included by simply adding terms describing this to a vehicles 
behavioural algorithm (Arasan and Koshy, 2005, Mallikarjuna and Rao, 2009, Treiber et al., 
2006). However, in macroscopic traffic modelling each individual vehicle is generally 
considered to adhere to identical or similar behaviour. This is especially the case in 
deterministic modelling. Although this has a number of advantages and often seems to 
produce acceptable results for most purposes, interaction between vehicles is generally 
ignored. However, observations of traffic flows show that considering differences between 
vehicles and their stochastic behaviour is relevant and necessary, especially for constrained or 
critical traffic states (Kerner, 2013, Persaud et al., 1998, Polus and Pollatschek, 2002). This is 
also demonstrated later in section 6.4.  

Capturing such fluctuations in behaviour between vehicles in macroscopic traffic flow 
however, demands certain levels of disaggregation of the macroscopic flow, which is not 
traditionally inherent to such models. In this chapter, we aim to overcome this difficulty to 
allow stochastic behaviour from vehicles and between vehicles to be modelled in a first order 
macroscopic setting. This is achieved through the use of a Kinematic Wave Model, which 
considers the movement of vehicles according to first order traffic theory in a platoon-based 
Lagrangian coordinate system (Leclercq et al., 2007). Consideration of the stochastic 
behaviour of vehicles is included through the application of a vehicle specific invariant term 
that describes local stochastic characteristics of vehicles and drivers within and between 
individual vehicles or platoons. These characteristics implicitly describe aspects of driver 
behaviour such as desired time headway. The use of Lagrangian coordinates allows the 
vehicle specific invariant term to propagate along with the vehicles for which it is valid and 
thus avoids numerical diffusion of driver behaviour variables (Leclercq et al., 2007, van 
Wageningen-Kessels et al., 2009). This approach is unique to first order macroscopic models, 
and is generally found in the more elaborate second order models and is explained in the 
chapter. 
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The simplicity of first order models is a major advantage over second order models and 
therefore many extensions have been proposed to help capture more traffic dynamics while 
retaining much of the simplicity (Leclercq, 2007b). One such advancement is the introduction 
of techniques to include the capacity drop, such as bounded acceleration. Bounded 
acceleration was previously introduced by Lebacque (2003) and has been applied and further 
developed by various researchers (Lebacque, 2005, Leclercq, 2007a, Leclercq et al., 2011, 
van Lint et al., 2008). The approach is relatively simple, but effective, and involves bounding 
the accelerative ability of vehicles by preventing speeds that exceed a pre-set acceleration 
value as vehicles propagate. In the basic kinematic wave models, vehicles may accelerate at 
an unrealistic speed. By bounding this acceleration, a more realistic description of real traffic 
flow is given adhering to the physical capabilities of vehicles. The effect is especially visible 
for acceleration of vehicles from low speeds such as out of congestion. The use in Lagrangian 
coordinates is especially advantageous for use with bounded acceleration as the speed of 
traffic is the resultant from the fundamental equation used in the Lagrangian system, rather 
than traffic flow. The use of Lagrangian coordinates also allows a vehicle specific invariant 
term to propagate along with the vehicles for which it is valid and thus avoids numerical 
diffusion of driver behaviour variables (Leclercq et al., 2007, van Wageningen-Kessels et al., 
2009). 

This chapter offers a unique approach based on proven theories to include vehicle specific 
behaviour in first order macroscopic modelling, filling a void that has been previously solved 
for microscopic models, but that is still lacking in macroscopic models. A demonstration of 
inclusion of the capacity drop through bounded acceleration and driver reaction times in a 
Lagrangian formulation of the KWM with vehicle characteristics through an advection 
invariant is given. This explores the capability to reproduce the capacity drop in traffic with 
unconstrained overtaking.  

6.2  Modelling principles 

6.2.1 Kinematic Wave Model 

The kinematic wave model (KWM) captures the aggregated propagation of traffic flow 
described as the propagation of traffic waves and the adhering traffic characteristics. The 
concept of modelling  kinematic waves of traffic was first introduced by Lighthill and 
Whitham (1955) and by Richards (1956) and is therefore often referred to as the LWR model. 
Since the introduction of the KWM various extensions have been proposed, however the 
underlying theory as originally described remains intact. Construction of the kinematic waves 
is achieved through use of the fundamental relationship of traffic flow which is generally 
described by the relationship between the density Ì and the flow � of traffic. The model 
further relies on the conservation equation and initial boundary conditions.  The conservation 
equation and the fundamental relation are denoted by: 

 �!Ì + ��� = 0	 (6.1) 
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 � = �(Ì)	 (6.2) 

in which ρ is the traffic density in time t and q is the flow in space	w. �(Ì) denotes the form 
of the fundamental relation. As the KWM is a macroscopic model, it makes use of 
aggregation of individual vehicles and describes an aggregated flow. van Wageningen-
Kessels et al. (2014) point out that empirical density–flow plots usually show wide scatter, 
which is not captured by an aggregated flow. Macroscopic models presume some sort of 
equilibrium, which results in crisp steady state conditions in flow regimes. However, van 
Wageningen-Kessels et al. (2014) go on to point out that the scatter is a consequence of not 
all data representing such a steady state condition.  

6.2.2 Lagrangian Coordinates 

In traditional macroscopic modelling, Eulerian coordinates are usually applied which state 
that for a specific time and location, a flow, such as traffic, will pass with certain 
characteristics (Helbing and Treiber, 1999, van Wageningen-Kessels et al., 2009). In this 
case, it is the flow which moves in relation to the coordinate system. Lagrangian coordinates 
in contrast are not fixed in space, but are given the freedom to transform with the resulting 
flow. This can be described such that particles in the flow are explicitly considered in 
individual consecutive cells. Therefore, the coordinates follow the flow rather than the flow 
following the coordinates. A graphical demonstration is shown in Figure 6.1. The Eulerian 
formulation of the KWM was given in equations (6.3)-(6.4). When describing the KWM in 
Lagrangian coordinates the same equations are formulated slightly differently. The 
conservation equation is given as: 

 �!Ï + ��% = 0 (6.3) 

Here, Ï denotes the mean space headway of vehicles in a single cell. % denotes the mean 
speed of vehicles, while n is the vehicles number, which decreases in the driving direction. 
The fundamental relation in Lagrangian coordinates makes use of the speed v in relation to the 
density	Ì, which is derived from the mean headway spacing Ï: Ï = 1 Ì⁄ . The fundamental 
relation is denoted as: 

 % = Ñ(Ï) (6.4) 

The use of Lagrangian coordinates has been proven to lead to more accurate results as a result 
of a reduction in numerical diffusion that occurs in the transfer of flows between cells in 
Eulerian coordinates, but is almost non-existent in Lagrangian coordinates (Leclercq et al., 
2007, van Wageningen-Kessels et al., 2010, van Wageningen-Kessels et al., 2009).  
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Figure 6.1: Comparison of Eulerian (left) and Lagrangian (right) coordinates. The 
arrow represents the direction of traffic flow. 

Lagrangian coordinates were introduced to traffic flow from the domain of hydrodynamics 
(Makigami et al., 1971, Moskowitz, 1965). Jin et al. (2014) state that Lagrangian coordinates 
can be incorporated into continuum traffic flow modelling by either establishing moving 
boundary conditions for Euler formulations (Claudel and Bayen, 2010, Herrera and Bayen, 
2010) or by application of hydrodynamic flow (Leclercq et al., 2007). The latter has been the 
more forthcoming in relation to advancement and application and was shown by Leclercq et 
al. (2007) to be able to be derived by using a space function based on variational theory 
(Daganzo, 2005). More recently, Laval and Leclercq (2013) further applied the theory of 
Hamilton-Jacobi to KWM in which the theory is applied to three two-dimensional coordinate 
systems, which included Eulerian and Lagrangian systems and is continuing to be extended 
by a number of researchers (Jin et al., 2014). This however goes beyond the scope of this 
thesis in which the Lagrangian description as given in equations (6.3)-(6.4) is applied and 
which was also previously described (van Wageningen-Kessels et al., 2010, van Wageningen-
Kessels et al., 2009). 

6.2.3 Advection  

The difficulty following from problems in the aggregated representation of flows in 
macroscopic models has previously been widely acknowledged. These difficulties have not 
only been identified in the lack of stochastic behaviour and its consequence, but even more in 
the detailed introduction of vehicle attributes and driver behaviour, such as anticipation of 
drivers or the consideration of vehicle diversity. The main effort to describe such driver 
behaviour in a macroscopic model has been performed in second order macroscopic models. 
Application of between-vehicle stochastics has generally not been applied in first order 
macroscopic models. While first order models describe the conservation of vehicles according 
to equation (6.1), second order models also consist of a second differential equation that 
describes the velocity dynamics. There are different formulations present, Aw and Rascle 
(2000a) formulate it as: 
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 �!(% +  (Ì)) + %��(% +  (Ì)) = 0 (6.5) 

in which  (Ì) is a pressure term. Originally, second order models were criticised for resulting 
in some inacceptable behaviour, such as vehicles being able to move backwards (Daganzo, 
1995b). However, further developments resolved this issue. Aw and Rascle (2000a) proposed 
adjustments to the original definition by replacing the space derivative with a convective 
derivative. Zhang (2002) described this similarly and explicitly state that traffic flow moves 
with the velocity along the trajectory and therefore it becomes a Lagrangian quantity. 

Lebacque et al. (2007b) applied the same rationale to generalise the ARZ models (Aw and 
Rascle, 2000a, Zhang, 2002). The ARZ models apply an invariant term to represent the 
relative speed of vehicles which is connected to these vehicles. Lebacque et al. (2007b) define 
this term as a general invariant that can also be related to global flow properties and therefore 
represent other characteristics of microscopic flow. The model is described as a generic 
second order model (GSOM) after the flexibility one has to define an invariant that can take 
on many different purposes. The conservation of vehicles is as equation (6.5), while the 
conservation of the invariant term and description of the fundamental relation with invariant 
are given by: 

 �!(ÌÒ) + ��(Ì%Ò) = ÌÓ(Ò) Dynamics of a driver attribute (6.6) 

 % = Ñ(Ì, Ò) Fundamental relation (6.7) 

in which w is the position, Ò is the invariant term, and the Ñ is the fundamental relation. 

This approach has been applied in a number of successive publications (Costeseque and 
Lebacque, 2014, Costeseque and Lebacque, 2015, Lebacque and Khoshyaran, 2013). One 
such application describes the invariant term as a stochastic driver attribute describing the 
random driver interactions of a driver with other drivers (Lebacque and Khoshyaran, 2013). 
Their Stochastic Generic 2nd Order Model describes the stochastic behaviour as a Brownian 
process and white noise process and if further defined in Lagrangian coordinates. While the 
GSOM also allows a first order description to be formulated (Lebacque et al., 2007b, 
Lebacque and Khoshyaran, 2013), applications of the GSOM are generally not found in first 
order formulations. First order models on the other hand have advantages due to their relative 
computational efficiency in practice. 

6.2.4 Bounded Acceleration 

It has been claimed that application of bounded acceleration can make it possible to model the 
capacity drop in first order models (Laval, 2004, Srivastava and Geroliminis, 2013). The 
capacity drop is defined as the difference between the breakdown capacity and the discharge 
capacity on a section of road and can frequently be observed after traffic breakdown between 
observations in a critical undersaturated traffic state and an oversaturated traffic state. The 
occurrence of the capacity drop is generally attributed to the so called hysteresis effect 
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(Banks, 1991, Daganzo et al., 1999, Hall and Agyemang-Duah, 1991). The hysteresis effect 
occurs in part due to differing driving behaviour as vehicles enter and exit congested traffic 
states (Farrell, 1999) and is most commonly captured in macroscopic models in second order 
formulations. In these models, an additional equation is given that describes the dynamics of 
vehicle flow. There have also been attempts to include the capacity drop in first order models 
(Laval, 2004).  

Commonly, the capacity drop is included in first order models through an explicit reduction of 
the constrained flow around a bottleneck location. This however focusses on the effect rather 
than the cause. This furthermore leads to discrepancies in modelling boundaries due to 
assumptions that are made to allow flows to be constrained. Here, we further analyse the 
application of the capacity drop through a bounded acceleration of vehicles and through the 
introduction of driver reaction times. 

6.3 First order model with stochastic advection  

The formulation of the First Order Model with Stochastic Advection (FOMSA) is presented in 
this section. Firstly, the general formulation of FOMSA is presented along with the applied 
model discretisation. Section 6.3.3 describes the application of the vehicle specific invariant 
term in the model. Sections 6.3.4 and 6.3.4 give the description of the methods applied to 
capture the capacity drop: bounded acceleration, and the driver reaction time. 

6.3.1 Model formulation 

The first order model with stochastic advection (FOMSA) is a discrete first order macroscopic 
model based on the conservation of vehicles and adhering to the fundamental relation 
according to Lighthill and Whitham (1955) and Richards (1956) and given in equations (6.1)-
(6.2). However contrary to the KWM, the FOMSA makes use of a different definition of the 
fundamental relation defining it in terms of traffic speed, which is more in line with equation 
(6.7). The main difference is the inclusion of an additional invariant term Ò, which describes 
the stochastic nature of traffic. This term is also conserved in space and time. The model is 
described by: 

 �!Ì + ��(Ì%) = 0 Conservation of vehicles (6.8) 

 �!ÌÒ + ��(Ì%Ò) = 0 Conservation of invariant (6.9) 

 % = Ñ(Ì, Ò) Fundamental relation (6.10) 

Here the invariant, Ò, is the vehicle specific invariant, a term that denotes a vehicle dependent 
adjustment factor that directly influences the density Ì for each vehicle or group of vehicles 
depending on the level of discretisation. The vehicle specific invariant acts as a descriptive 
term that describes driving-style in relation to other vehicles, in variables such as the time 
headway. This is explained in more detail in section 6.3.3. 
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6.3.2 Model discretisation  

The Godunov scheme is a commonly applied approach for the discretisation of macroscopic 
models (Lebacque, 1996a). The FOMSA is defined in Lagrangian coordinates rather than the 
traditional Eulerian coordinates. van Wageningen-Kessels et al. (2009) previously described 
how the Godunov scheme in Lagrangian coordinates is reduced to an upwind scheme, 
independent of traffic state with conservation equation: 

 �!Ï + % FÏU(�)I − % FÏUE�(�)I∆, = 0 
(6.11) 

where ∆, is the vehicle group size and  ÏU(�) = Ï(¥∆,, �) is the space headway of the ¥∆,-th 
vehicle at time	t. van Wageningen-Kessels et al. (2009) and van Wageningen-Kessels et al. 
(2013) then define the Lagrangian formulation in time as an explicit semi-discretised scheme. 
As explicit time stepping is used, the semi-discretised scheme from equation (6.11) is made 
explicit for application and is given by (van Wageningen-Kessels et al., 2009): 

 ÏU, |� − ÏU, ∆� + %sÏU, t − %sÏUE�, t∆, = 0 
(6.12) 

where ∆� is the time step and ÏU,  is the space headway at the position of the ¥∆,-th vehicle 
group at time � = ^∆�. (van Wageningen-Kessels et al., 2013) also describe the scheme 
implicitly, that has an added advantage that it is relatively easy to solve as it only relies on 
traffic states in one direction and does not need to consider the propagation of traffic state 
changes with the flow as these are implicitly considered with the movement of vehicles, 
which follow the traffic flow. It is however the explicit scheme that is applied in this chapter 
as this is consistent with the applied extension of invariant advection. 

6.3.3 Vehicle specific invariant   

A main contribution of the FOMSA is the inclusion of driver-vehicle behaviour in relation to 
inter-vehicular interaction and behaviour. This is achieved through the vehicle specific 
invariant term. This term is derived from previous work by Lebacque et al. (2007b), who 
introduced a generic invariant term which allows numerous descriptive variables to be 
propagated with traffic flow in a second order macroscopic model. In the FOMSA, an 
invariant term is introduced as a first order Lagrangian model, which retains the relatively 
simplicity of first order modelling approaches. The vehicle specific invariant is a term that 
influences the density of traffic and is vehicle (group) specific and is applied in the 
fundamental equation. In traffic, different drivers harbour different driving behaviour and 
levels of aggressiveness. This can often be described by the desired headways maintained, 
which is what the influence of the density directly describes, as: 
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 Ï = 1Ì 
(6.13) 

Here, Ï is the space headway and Ì is the density of traffic. As adjustment of the density 
values would directly violate the law of traffic conservation, the invariant is applied to the 
deterministic critical density Ì�Z�!.� and jam density Ì}��.� in the fundamental relation % = Ñ(Ì, Ò): 
 Ì�Z�! = ÒÌ�Z�!.� (6.14) 

 Ì}�� = ÒÌ}��.� (6.15) 

Empirical analysis has shown that driver behaviour and therefore also vehicle-driver 
combination is also influenced by the traffic state, i.e. a driver may be less aggressive in 
congestion as this may have little advantage. This is accounted for by a traffic state term	X 
applied to the equation (6.14)-(6.15) that is dependent on an adjusted ratio of the current 
density and the critical density, such that the formulation becomes: 

 Ì�Z�! = Ò�(Õ(!),ÕÖ×8Ø,Õ�ÙÚ)Ì�Z�!.� (6.16) 

 Ì}�� = Ò�(Õ(!),ÕÖ×8Ø,Õ�ÙÚ)Ì}��.� (6.17) 

Differences between behaviour of vehicles and vehicle-groups may be presumed to be 
randomly distributed in space. For example, it is not likely to have all aggressive drivers 
followed by all conservative drivers. However, we hypothesise that drivers can also influence 
other drivers in the direct vicinity and that some clustering may occur. In this case, it cannot 
be presumed that the distribution of driver types (indicated by their vehicle specific invariant 
value) is perfectly random. This is considered in the model through the addition of a transition 
term �, that describes how the vehicle specific invariant is distributed over vehicles or vehicle 
groups in space: 

 Ò(,) = Ò(, − 1) Û−f:,(Ò(, − 1) − v, �) 			X10	Ò(, − 1) > v+f:,(v − Ò(, − 1), �) 			X10	Ò(, − 1) < v	 (6.18) 

 v~ß([1 − �, 1 + �]) (6.19) 

where Ò(,) is the value of the vehicle specific invariant, which is dependent on the value Ò(, − 1)	of the previous vehicle group , (note that a vehicle group may contain one single 
vehicle or multiple vehicles as a platoon). v is a random number between [1 − �, 1 + �] in 
which � is the stochastic boundary parameter which indicates the maximum extent of the 
stochastic influence. Parameter � is the transition parameter that indicates the maximum 
change in Ò between consecutive vehicle groups. Parameter � is in itself also dependant on the 
size of vehicle group sizes, if a vehicle group , is not equal to a single vehicle. The vehicle 
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specific invariant, Ò, is assigned to each vehicle or platoon at the entrance of a network 
according to equations (6.18)-(6.19). In this chapter, perfect values for � and � are not 
analysed. This is recommended for later research. 

6.3.4 Bounded Acceleration  

The first method applied to induce the capacity drop makes use of bounded acceleration. The 
concept of bounded acceleration involves a limitation of vehicle capabilities in a model, such 
that it resembles the capabilities of real traffic flow. The formulation applied here resembles 
that described in (Lebacque, 2003) with some adjustments. The KWM conservation equation 
given in equation (6.5) remains valid, while a limitation is given to the fundamental relation: 

 % = f:,	(Ñ(Ì, Ò), Ñ*)) (6.20) 

 Ñ*) = %!E� + h}��∆� (6.21) 

where  Ñ*) is the bounded speed for a vehicle (group) at a certain time and space; %!E� is the 
speed of the considered vehicle (group) in the previous time step; aãäå is the maximum 
acceleration allowed, while ∆� indicates the time step. 

The speed that is then applied to calculate the new location of the vehicle (group) in the 
numerical scheme in the Lagrangian formulation may therefore be limited when a vehicle 
(group) has the possibility to accelerate faster than the maximum acceleration rate, h}��. This 
approach therefore does not make changes to the numerical scheme, but rather the input of the 
vehicles speed into the scheme. 

6.3.5 Driver reaction time 

The second method applied to induce the capacity drop considers the reaction time of drivers 
before commencing an acceleration action in reaction to a predecessor. The capacity drop is 
induced here through the application of the Reaction Time (�Z) of drivers to downstream 
speed increases in combination with heterogeneous traffic. The reaction time of drivers in 
acceleration is a cause for the capacity drop (Kesting and Treiber, 2008). In a Lagrangian 
KWM, speeds %, are updated at each discrete time step. However, reaction times are generally 
much shorter than a time step. To include the �Z within a time step ∆�, and allow an update of 
the speed, %, and location w, an updated location of the following vehicle is calculated based 
on the location of a vehicle without reaction time, w∗. The principle is shown in Figure 6.2. 
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Figure 6.2: Method principle; modified vehicle location and spacing 

The location of the following vehicle at time step � + 1 is given by: 

 w!|�(�|�) = %!(�|�). �Z +	%!|�(�|�). (∆� − �Z) (6.22) 

where  w!|�(�|�) is the location of vehicle (group) (, + 1) at � + 1;	w!|�(�|�) is the speed of 

vehicle (group) (, + 1) at � + 1;	∆� is the time step and �Z is the reaction time 

For use in the model, this should be represented as the space headway, s, which	is	given	in	the	model	by:  
 s!(�) = w!(�) − w!(�|�) (6.23) 

Here, s!(�) is the space headway at time � for vehicle (,) and is updated with: 

 Ï!|�(�|�) = Ï!(�|�) − ∆�∆, F%!(�|�) − %!(�)I	 (6.24) 

where  ∆, is the vehicle group size. 

As the non-reaction time location at � + 1, w!|�∗(�|�), can easily be calculated, and the 

difference with updated location with reaction time, w!|�(�|�), is the space headway Ï!|�(�|�). The 

time-headway at � + 1 with reaction time can then be easily described by: 

 Ï!|�(�|�) = Ï!(�|�) − ∆� − �Z∆, F%!(�|�) − %!(�)I							X10			%!(�|�) > %!(�) (6.25) 

∆�	x						(n)	(n+1)	
t	 	 	 				t+1	 	 t	

Vehicle:	(n)	(n+1)*	(n+1)		

Tr	
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6.4 FOMSA experimental case 

6.4.1 Setup and results 

The first order model with stochastic advection is demonstrated in an experimental case. In 
the first case, this is performed without explicit capacity drop. The experimental case is setup 
for a single highway corridor of 11 kilometres on which two bottleneck locations are present. 
The first bottleneck is less severe and has a reduced capacity of 8% compared to the rest of 
the corridor, while the second bottleneck further downstream has a capacity reduction of 15%. 
Traffic flow into the corridor is maintained at a constant flow of 2000 veh/hr, which is 
sufficient to lead to congestion in deterministic traffic flow equivalent to a bottleneck with an 
11% capacity reduction. Therefore, in the deterministic case the first bottleneck will not be 
activated, while the second will always be activated. The applied time step ∆� is 5 seconds, 
while the values for the stochastic boundary parameter � and the transition parameter � are 
randomly assigned to vehicles to show their effects, but remain static in time for a single 
vehicle. � is varied in the range [0.1, 0.4], leading to a Ò value of [0.95:1.05, 0.6:1.4], and � is 
varied in the range [0.1, 0.3]. The occurrence of a traffic state influence, X, is ignored in this 
experimental case and will be examined in later research.  

Two simulation runs with different random values for the vehicle specific invariant are shown 
as an example in Figure 6.3. From this, it is clear that the effect of the behavioural term has a 
considerable influence on the occurrence of congestion, as in both cases the same traffic 
demand is applied, however the characteristics of each vehicle group is different. In Figure 
6.3a, both bottlenecks are activated while the case in Figure 6.3b shows that only the second 
more severe bottleneck is activated, which would indicate that in the second case the vehicles 
have a higher invariant value and therefore vehicle at closer proximity to each other. Note that 
for a deterministic simulation run, only the second bottleneck would have been activated.  
This therefore demonstrates that consideration of stochastic variations in driver-vehicle 
behaviour between vehicles can have a detrimental effect of traffic flow, as is also the case in 
real life. 
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Figure 6.3a-b:  Simulation results of the FOMSA model for a dual bottleneck case for 
two different random procedures with settings õ=0.2 and ö=0.1 

It is not the goal of this chapter to fine-tune the applied parameters. However, further 
simulations are performed to demonstrate the effects of changes to parameter values. In 
Figure 6.4 the value of β is held at 0.1, while the boundary parameter α is given a value of 
0.05 and 0.4 for Figure 6.4a and 6.4b respectively.  
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Figure 6.4a-b:  Simulation results of the FOMSA for a dual bottleneck case for two 
different random procedures with settings õ=0.05 (a) / 0.40 (b) and ö=0.1 

A low value of � means a low level of stochasticity in the assignment of vehicle specific 
invariant values and therefore means that the simulation result will be close to the 
deterministic case (Figure 6.3a). Performing multiple simulations with these values, showed 
very little difference between the outcomes. Each simulation also resulted in the second 
bottleneck being activated, while the first bottleneck was never activated. This is due to the 
boundary values for the vehicle specific invariant being out with of the required deviation to 
trigger the less severe bottleneck or to prevent the second bottleneck from being activated. 
The figure also shows little variation in the free flow densities. A high value for α on the other 
hand means a high level of stochasticity as seen in Figure 6.4b. As may be expected this leads 
to extensive congestion in comparison to a lower level of stochasticity. Both bottlenecks are 
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activated and congestion is widespread and propagates quickly. This was found for the 
majority of the simulations, while a lower number of simulations for �=0.4 also resulted in 
both bottlenecks not being triggered, which is possible when the random values for the 
vehicle specific invariant are consistently low. However, as the probability of the value 
remaining low is small, the case in which congestion occurs is greater.  

In Figure 6.5, a demonstration is given of the effect of changes to the transition parameter �. � is given a value of 0.3, while α retains the same value as in Figure 6.2 of 0.2. From Figure 
6.5, it is clear that an increased boundary for the transition of the vehicle specific invariant 
value between vehicle groups leads to greater changes between consecutive vehicles. This 
increases the randomness of traffic flow and reduces homogeneity. However, as the effect of a 
high invariant value at a moment in time can immediately be counteracted by an equally 
strong low value from the following vehicle, when congestion occurs at the first bottleneck it 
is often of limited severity and does not last for a long time. Therefore, the effect seen from 
multiple simulations is that congestion occurs more readily compared with the deterministic 
case, however the severity is similar to other values of �. 

 

Figure 6.5: Simulation results of the FOMSA for a dual bottleneck case for two different 
random procedures with settings õ=0.2 and ö=0.3 

6.4.2 Discussion 

The values applied in these simulations for � and � are estimates of realistic values, however 
are not explicitly based on empirical observations. Further research is recommended to 
determine which values are most suited for these parameters and also to confirm the 
hypothesis that these parameters are of influence to traffic flow in way described. Values for � and � can be derived from empirical observations of vehicle interaction. The boundary 
parameter � can be observed from the distribution of vehicle headways in traffic, for which � 
is the relative deviation from the average observed headway. Transition parameter � can be 
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derived from the change in headways of consecutive vehicles. Vehicles that are platooning are 
expected to yield similar values of �, therefore limiting the level of transaction �. Even in 
free flow without platooning, the hypothesis states that there may be a certain amount of 
correlation between following vehicles, due to space constraints and car-following behaviour.  

The test case has demonstrated the face validity of the model and has further shown that 
vehicle specific behaviour can lead to situations in which a bottleneck sometimes will be 
activated and at other times will not be activated under identical traffic flow. The difference is 
in the characteristics of individual vehicles or platoons, which leads to local anomalies in 
traffic flow and a local reduction of the critical density, which increases the chance of traffic 
breakdown. These effects are also seen in real life on roads and confirm the face validity of 
the approach. The value for the boundary parameter, �, is found to be important for the 
probability of traffic breakdown and the level of congestion severity. This is not surprising as 
a large reduction in the critical density leads by definition to a higher probability of traffic 
breakdown. Even with the probability of higher density values, once congestion occurs, 
capacity is reduced through the capacity drop and therefore has a greater detrimental effect on 
traffic flow. The value for transition parameter, �, on the other hand indicates regimes in 
traffic flow from behaviour and gives a quantity for the interaction between vehicles. A higher 
value indicates independent driver-vehicle behaviour, while a low value increases the 
presumed interaction effects. It further shows that a better distribution of vehicle and driver 
types (aggressive and conservative drivers) can lead to a reduction in congestion severity. 
However, there is some uncertainty of the validity of such a parameter. The term is included 
as a hypothetical effect that can explain some characteristics of traffic flow, but has still to be 
validated against empirical data. This is also a recommended for later research. 

6.5 Experimental case: capturing the capacity drop 

Two different approaches are applied to explicitly introduce the capacity drop in FOMSA. 
The first makes use of bounded acceleration, while the second considers a drivers’ reaction 
time when accelerating. Both approaches are considered in separate experimental cases, 
described in this section. Tests with the application of both approaches together did not show 
much difference to just applying a reaction time.  

6.5.1 Setup for bounded acceleration case 

The first experimental case is carried out for an 11 kilometre highway corridor with a single 
bottleneck location. The corridor is modelled in a first order kinematic wave model (KWM) in 
Lagrangian coordinates with three lanes, with the bottleneck set at a capacity reduction of 
20% compared to the rest of the road. The KWM and numerical scheme allow for 
unconstrained overtaking of vehicles in case of a predecessor catching up with another vehicle 
group. Traffic flow into the corridor is initially set at an increasing rate from 1000 up to 3000 
veh/hr/lane and retracts to 2000 veh/hr/lane at a set time. The driver specific characteristics of 
the traffic flow means that congestion may occur sooner for a vehicle specific invariant value 
lower than 1.0 and less readily for values above 1.0. The vehicle specific invariant is set rather 
liberally such that values between 0.8-1.2 are possible, with one scenario also allowing values 
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between 0.6-1.4. Furthermore, the value of Ò remains identical for each vehicle (group) and 
does not change in time of with traffic state. This simplification does not affect the 
demonstration of the bounded acceleration. Assignment of invariant values is carried out 
randomly, using the same random seed for all scenarios. The time step applied in the 
simulations is 2.0 seconds, while the maximum speed limit is set at 100 kph, which meets the 
CFL condition and eliminates any numerical diffusion issues. Different scenarios are 
modelled in which two variables are varied, namely the acceleration bound [m/s2] and the 
invariant value. The considered scenarios are given in Table 6.1. 

Table 6.1: Scenario variable values 

Scenario 
number 

Acceleration 
bound [m/s2] 

Invariant 
bounds 

0 (reference) n/a n/a (1.0) 
1 2.0 n/a (1.0) 
2 n/a 0.8-1.2 
3 2.0 0.8-1.2 
4 2.0 0.6-1.4 
5 1.0 n/a (1.0) 
6 1.0 0.8-1.2 
7 0.75 0.8-1.2 
8 0.5 0.8-1.2 

The results of the scenarios are given in the form of flow-density fundamental diagrams, 
which allows insight into the spread of traffic values. Selected trajectory-space-time plots are 
given for relevant scenarios and a final comparison of the different levels of bounded 
acceleration are shown in a cumulative flow diagram.  

6.5.2 Bounded Acceleration 

The introduction of vehicle specific invariant values was previously introduced to increase 
realism in modelling, especially aiding stochastic breakdown. Here, bounded acceleration is 
added to the model. In Figure 6.6, the density/trajectory plots are given of selected scenarios 
in which the consequence of various values of the varied variables is shown. The selection is 
made taking into consideration that the outcome of scenarios 0, 1 and 5 were nearly identical, 
as were scenarios 2, 3 and 6, which were also similar.  

The reference scenario 0 shows traffic flow increasing until at a certain point congestion is 
triggered. Each vehicle group homogenously transverses with the presiding flow and density 
values without fluctuations in flow. In scenario 2 and 4, the invariant is randomly applied 
(with an identical random seed for both for comparisons sake). The difference between 
vehicle groups is obvious and also makes is easy for one to see the trajectories of traffic, 
especially when a vehicle group reaches a congested road section. More importantly, higher 
bandwidths for the invariant show greater degrees of congestion. This can be seen between 
scenario 4, 2 and 0. In scenario 2 and 8, the same invariant values are applied, however with 
different bounded acceleration. In scenario 8, an extreme and unrealistic value of 0.5 m/s2 is 
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applied. This leads to a much denser congestion and longer congestion. However, when 
applying a value of 1.0 m/s2 to the same case (not shown), little difference was found in the 
degree of congestion compared to a value of 2.0 m/s2.  

 
Scenario 0 (reference) 

 
Scenario 2 

 
Scenario 4 

 
Scenario 8 

Figure 6.6: Trajectory-space-time diagrams for scenario 0, 2, 4 and 8 

The fundamental diagrams for each scenario are shown in Figure 6.7. These are captured at a 
location directly downstream of the bottleneck. This gives further insight into the spread of 
traffic flow values and the extent of congestion. A first obvious observation is the spread in 
points on the congested arm for scenarios with invariant values (scenarios 2, 3, 4, 6, 7 and 8). 
As the invariant is setup to allow ‘more aggressive’ vehicle groups to drive at a smaller time 
headway (larger density), a higher flow rate can be achieved for identical speeds, while for 
‘less aggressive’ vehicles the opposite is the case. This can be further noted from the greater 
spread for scenario 4 with the higher invariant bounds. The resulting fundamental diagrams 
represent the ‘cloud’ seen from empirical representations more realistically than the straight 
lines seen form scenarios 0, 1 and 5 without the invariant, resembling synchronized flow 
found by Kerner (2000). Another observation from Figure 6.7 is the severity of congestion, 
which is represented by the resulting densities. In the case of a broader invariant value, 
congestion is found to be slightly more severe, while for very low acceleration bounds an 
even higher density is found. 
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Scenario 0 (reference) 

 
Scenario 1 

 
Scenario 2 

 
Scenario 3 

 
Scenario 4 

 
Scenario 5 

 
Scenario 6 

 
Scenario 8 

Figure 6.7:  Fundamental diagram, from the bottleneck location 
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Bounded acceleration (BA) is tested in the first experimental case in four scenarios (3, 6, 7 
and 8) for which the acceleration is bounded at 2.0, 1.0, 0.75, and 0.5 m/s2. A realistic value 
for road vehicles lies between 1.0 and 2.0 m/s2, and therefore the values below 1.0 are more 
demonstrative rather than realistic. From Figures 6.6 and 6.7, the effect of BA on the traffic 
throughput in congestion remained very limited for the two scenarios with 2.0 and 1.0. This is 
further demonstrated in Figure 6.8, in which the cumulative number of vehicle groups that 
pass the bottleneck location are shown in time. A lower number of vehicles indicates that 
capacity is relatively low and therefore a greater capacity drop is present. Only a very 
marginal difference is found between an acceleration bound of 2.0 and 1.0 m/s2. In the 
hypothetical case that the BA is set to 0.75 m/s2  and 0.5 m/s2 an increasingly lower 
throughput is found in the flow.   

 

Figure 6.8:  Cumulative throughput at the bottleneck location 

From these results, it can be concluded that the application of bounded acceleration in a 
driver-specifically modelled flow with unconstrained overtaking does not lead to a substantial 
capacity drop for realistic values of BA. A drop in throughput is found for more extreme 
values, which does indicate that BA does directly contribute to some extent, however this is 
not large enough to be able to contribute the drop to BA of individual vehicle (groups). 
Therefore, a further hypothesis is constructed that the interaction of vehicle characteristics in 
a constrained manner is more important to reproducing the capacity drop from bounded 
acceleration. This is therefore also recommended as further research. A further improvement 
may be achieved by also including driver reaction times when exiting congestion. This is 
considered in the second experimental case in this section. 

6.5.3 Reaction time 

In the second experimental case, the effect of a drivers’ reaction time in acceleration, �Z, is 
shown on the same 11 kilometre single bottleneck corridor. In this case, the traffic demand is 
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increased to above the bottleneck capacity and later decreased to show the effect of the 
capacity drop. �Z values of 0, 0.5, 1.0 & 1.5  seconds are applied. Traffic heterogeneity is set 
at 0, 10% & 20% deviation for the vehicle specific invariant, I, for time headways. An 
identical capacity profile and demand profile is applied in each case. The applied time step is 
3 seconds with a vehicle group size of 31/3 vehicles. The capacity drop is measured using 
flows downstream of the bottleneck with a 5 minute moving average aggregation. 
Aggregation is required for the heterogeneous cases.  Figure 6.9 shows the trajectories of a 
reference case without �Z and in homogenous traffic (left), and on the right a case with �Z=1.0 
and I =[0.8;1.2]. The capacity drop for the considered �Z and heterogeneity values are shown 
in Table 6.2. The capacity drop values are given against the highest flow pre-breakdown for 
each scenario, and in brackets compared to the reference case with no heterogeneity or 
reaction time, as in heterogeneous traffic flow, lower capacity values are found. Note that �Z=1.5 may not be a realistic value, however does give insight into the effectiveness of the 
method in extreme cases.  

Figure 6.9: Trajectories and densities of the reference case (left) and case with I=10%, ÷ø=1.0s (right) 

 

Table 6.2: Capacity drop results per case 

Traffic 

heterogeneity I 

Reaction time ù¶  

0 sec 0.5 sec 1.0 sec 1.5 sec 

0% 0%  9% (14%)  23% (27%) 40% (43%) 

10% 0% 9% (14%) 24% (30%) 41% (46%) 

20% 0% 6% (16%) 24% (32%) 41% (49%) 

The results shown in Table 6.2 show that higher reaction times give increasingly higher 
capacity drop values, as is expected, and therefore the ability of the proposed method to 
capture the capacity drop is successfully demonstrated. Increased heterogeneity in traffic flow 
does not show an increase in capacity drop compared to the capacity of the same scenario. 
However, increased heterogeneity did result in lower capacities. If the discharge capacity is 
compared to the homogeneous case, then a higher capacity drop is found for higher rates of 
heterogeneity.  
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6.6 Conclusions  

Capturing micro-stochastic driving behaviour in a macroscopic model is important to 
accurately describe traffic flow phenomena on a macroscopic level. A first order stochastic 
macroscopic model formulation is introduced in this chapter that makes use of first order 
traffic flow theory in conjunction with an additional invariant term, the vehicle specific 
invariant, that describes the heterogeneous effect of driver-vehicle behaviour and the level of 
aggressiveness of drivers and represents the vehicle specific change to a deterministic density 
value. This is performed in the Lagrangian coordinate system, which allows the invariant term 
to propagate along with the vehicles for which it is valid and thus avoids numerical diffusion 
of driver-vehicle behaviour variables. The use of Lagrangian coordinates have previously 
been shown to lead also to more accurate numerical results. The vehicle specific invariant is 
defined as an adaptation of a deterministic density as a function of two further parameters: �, 
which represent a stochastic boundary parameter that describes the limitations in variance 
between vehicles, and a transition parameter � that describes the interaction between driver-
vehicle behaviour and gives a quantity of the change in the vehicle specific invariant in time. 
The described model offers the advantages of including driver-vehicle behaviour with an 
increased accuracy due to reduced diffusion effects, while doing this in a first order setting 
and therefore avoiding some of the complexity involved in second order model that are often 
applied to incorporate driver-vehicle behaviour in macroscopic modelling.  

The model is demonstrated in an experimental case on a corridor with two bottlenecks 
present. The case demonstrates the face validity of the model and offers insight into the 
effects of different values for the model parameters. A further calibration of the model 
parameters based on empirical data is recommended as further research, as well as 
investigating the effects of other types of bottlenecks.  

The capacity drop is applied in an extension of the model and is demonstrated. This is 
achieved through two different approaches: bounded acceleration and driver reaction times. 
The investigation of bounded acceleration found that the application in the model under 
constrained conditions has a limited contribution to a capacity drop. Only under low 
acceleration bounds was there a substantial capacity drop visible. This leads to the conclusion 
that the capacity drop is not merely a consequence of a restriction in the acceleration ability of 
vehicles on an individual basis, when vehicles are unconstrained by surrounding vehicles and 
are easily able to overtake one another. Additional approaches may include greater vehicle 
interaction and reaction times. In the second approach, the effect of reactions times is 
analysed. This approach successfully captured capacity drops for increasing reaction times. It 
also showed that the influence of heterogeneous traffic, through use of the invariant term, 
leads to lower capacities, while the capacity drop compared to a deterministic scenario is not 
increased. However, the capacity drop under heterogeneous traffic is greater as the base 
capacity is lower.  
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Chapter 7 

Stochastic evaluation and identification of road 
resilience levels 

Major and minor disturbances can have a considerable impact on the performance of road 
networks. In this respect, resilience is considered as the ability of a road section to resist and 
to recover from disturbances in traffic flow. In this chapter an indicator is presented, the Link 
Performance Index for Resilience (LPIR), which evaluates the resilience level of individual 
road sections in relation to a wider road network based on traffic flow stochastics. The 
indicator can be used to detect the least resilient road sections and to analyse which 
underlying road and traffic characteristics cause this non-resilience. The method adds to 
related concepts like robustness and vulnerability by also considering recovery from 
congestion events explicitly and by focussing on everyday operational traffic situations rather 
than just on disasters or major events.  

This chapter starts with an introduction to the topic of resilience in traffic networks. In 
section 7.2, a detailed look is taken at performance concepts commonly used in traffic and 
related fields and considers their various definitions. This is followed in section 7.3 by an 
overview of commonly applied components and indicators corresponding to the described 
performance concepts. The proposed LPIR methodology is described in section 7.4, followed 
by a demonstration of the methodology in an experimental case in section 7.5. The chapter 
concludes with the overall conclusions and discussions in section 7.6. 

 

 
This chapter is an edited version of the article: 
Calvert, S. C., & Snelder, M. (2015). A Methodology for Road Traffic Resilience Analysis and Review 
of Related Concepts. In INSTR 2015: 6th International Symposium on Transportation Network 
Reliability, Nara, Japan, 2-3 August 2015. 
 
Calvert, S. C., & Snelder, M. (2016). A Methodology for Road Traffic Resilience Analysis and Review 
of Related Concepts. Submitted for publication in Transportmetrica part A: special issue on reliability & 
resilience 
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7.1 Introduction 

While it is clear that major calamities and disasters can have a considerable effect on traffic 
and transport systems, there is awareness that more minor disturbances in traffic and transport 
systems can also play an important part in reducing the efficiency of such systems. A large 
number of effects have been proven to influence driving behaviour and with that the ability of 
traffic to maintain certain speeds, and also a certain serviceability, which in turn depletes 
traffic flow locally, but also on a network level. The effect of weather is probably one of the 
variables most commonly researched for its effect on road capacity and speed reduction 
(Calvert and Snelder, 2016, Hranac et al., 2006, Snelder and Calvert, 2016). Precipitation as 
rain as well as snow, wind, temperature and mist have all been considered (Agarwal et al., 
2005, Calvert and Snelder, 2016, Cools et al., 2010, Maze et al., 2006). Also the influence of 
the local infrastructure can have an effect on traffic flow, where poor road surfaces, 
(incorrect) road geometry, different speed regimes, etcetera, can often lead to disturbances in 
traffic flow. Locations on a road network where interweaving traffic occurs are well known 
for their pertinent ability to disrupt smooth traffic flow and often with an unknown and erratic 
uncertainty of their time of occurrence (Calvert and Minderhoud, 2012, Sarvi, 2013, Shawky 
and Nakamura, 2007). Obviously stochastic driver behaviour, sometimes in combination with 
vehicle population, is often recognised for its stochastic characteristics and with that its 
disturbance of homogeneous traffic flow (Wagner, 2012, Wu, 2013). However, fluctuations 
between drivers and within one’s own driving behaviour can be instable and difficult to 
quantify. Furthermore, the effects of driving behaviour are often combined and exacerbated 
together with other local disturbances. A number of other variables can also be identified. 

Disturbances do not only affect local road sections, but by definition also (complete) 
networks. While local effects of disturbances are often considered, it is actually the network 
effects that are more profound and important to recognise as this is where the greatest delays 
occur. The two should not be considered entirely separately as local disturbances influence 
network flow and network flows in turn influence local conditions. However, the causes 
behind network disturbances are most often found in a local disturbance. While disturbances 
will often not be the core cause of congestion, they will often be a catalyst to hasten the onset 
of congestion. Network performance in relation to disturbances has been researched on a 
number of different levels. Reliability, robustness, vulnerability, accessibility and resilience 
are just some concepts that can be considered of a network. Especially reliability and 
vulnerability of networks has attracted much attention in recent decades, often in relation to 
travel-times and the ability to maintain a level-of-service. In the following sections, we will 
consider the differences and overlap between these concepts and give the applicable 
definitions. This is performed to clarify the distinction between the concepts. However, it is 
the concept of resilience with a close focus on traffic flow that is the main focus of this 
chapter. The reason for focussing on resilience is argued in section 7.2.4.  

The focus on resilience is not commonly made in traffic flow analysis. In case of disturbances 
on roads, traffic flow will often be adversely affected, also commonly leading to congestion. 
Many measures of disturbances on the traffic consider either the probability of disturbances or 
the consequence of the disturbance, or both. However, in many cases small disturbances may 
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not lead to congestion, while the balance between congestion and no congestion may be 
small. Furthermore, once congestion occurs traffic flow deteriorates, the duration before 
traffic returns to its original level-of-service is important to be able to quantify how 
widespread the adverse effect of the disturbance becomes. In both cases, road sections and 
networks recover from disturbances and have a direct relation to the overall performance of 
the network. The ability to recover from a disturbance is often referred to as resilience. 
Resilience research is not common within the traffic flow domain, and is found more readily 
in other transport domains, such as supply-chain management and logical operations (Chen 
and Miller-Hooks, 2012, Cox et al., 2011, Ishfaq, 2012).    

In this chapter, a methodology is presented, the Link Performance Index for Resilience 
(LPIR), which evaluates the resilience level of individual road sections in relation to a wider 
road network. In such a way, the ability of a road section to deal with traffic disturbances can 
be quantified. The proposed methodology is constructed with an application to detect poorly 
resilient road sections. A main contribution of the methodology is the consideration of both 
resistance and recovery from a traffic heterogeneous point of view.  

These road sections are considered for their ability to avoid traffic breakdown, however if 
congestion occurs also their ability to recover from a disturbance to normal operations. 
Limited ability to facilitate local disturbances and recover can lead to a greater traffic 
disruption more so than sections that do have the ability to more easily recover. Herein we 
aim to fill the gap in knowledge in relation to resilience for road traffic networks, and do this 
much more from a traffic flow perspective rather than a general network perspective. 

The significance of this chapter is twofold: The method allows for identification of road 
sections which are susceptible to traffic breakdown. These locations therefore require more 
attention as also stochastic fluctuations can cause these locations to show weakness. 
Furthermore, the method allows for analysis of the consequences of network locations with 
volatile traffic flow. This involves characteristics of the road infrastructure, such as surface 
conditions or curvature, and vehicle characteristics, such as traffic composition. This can lead 
to a greater understanding of the variables that most affect resilience and possibly approaches 
that can lead to a limitation of stochasticity and improved resilience.  

7.2  Performance concepts and definitions 

When considering the performance of traffic flow on a road or in a network there are a 
number of performance concepts that need to be considered. It is important to be clear on the 
precise definition of each concept, as these vary slightly between scientific domains and even 
within domains. This concise overview of concepts is given to clarify the difference in 
definitions and describe why the focus in this chapter is on resilience. Here we will first 
consider the main concepts and highlight important and recent contributions. This is followed 
by the considered definitions in this chapter and the relationship between the concepts. The 
four concepts considered here are: reliability, vulnerability, robustness and resilience. 



138 TRAIL Thesis series 

 

7.2.1 Reliability 

The Reliability concept is well established in traffic and network analysis on a number of 
levels. In general, one of the most accepted definitions of reliability is given by Wakabayashi 
and Ilda (1992) as “the probability that a system or a unit will perform its purpose adequately 
for the period of time intended under the operating conditions encountered.” From this 
definition it is clear that reliability is concerned with the performance of a system, in our case 
a road or network, while it still satisfactorily functions. It is however important to note here 
that the study of reliability focusses on probability of this. Berdica (2002) even goes as far as 
to state that “reliability studies are generally concerned with probabilities only”. This gives a 
very definitive explanation of what reliability studies aims to achieve. However, it is argued 
that such a technical definition does not consider perception of users (Nicholson, 2007, 
Nicholson et al., 2003). It is important to identify expectations of users as they will only 
evaluate a system as reliable if their expectations are met (Nicholson et al., 2003). For this it 
is also important to realise that both the frequency and the consequence of a disturbance are 
relevant in an individual’s evaluation process. Jenelius et al. (2006) make a further distinction 
by stating that from an individual’s perspective a system can be seen as a binary decision: it is 
either reliable or not, while from an aggregate point of view some users will find a system 
reliable, while others will not. This also underlines a strong subjective aspect of reliability 
analysis. A wide range of reliability measures have been developed in the past decades. These 
differ on one hand for their application area and in their approach to reliability analysis and 
often consider slightly different definitions of reliability. One may consider capacity 
reliability (Chen et al., 1999, Chen et al., 2002, Church and Scaparra, 2007), connectivity or 
terminal reliability (Bell and Iida, 1997, Chen et al., 2007, Grubesic et al., 2007, O’Kelly and 
Kim, 2007, Wakabayashi and Ilda, 1992), and travel time or cost reliability (Bell and 
Schmöcker, 2002, Bell, 1999, Carrion and Levinson, 2012, Chen et al., 2003, Tu et al., 2012),  
most of which can be applied to either individual road sections or on network level. Other 
classes of reliability to be identified are also behavioural reliability (Clark and Watling, 2005, 
Lo and Tung, 2003, Mirchandani and Soroush, 1987, Yin and Ieda, 2001) and Potential 
reliability (Bell, 2000, Bell and Cassir, 2002, Berdica, 2002, Clark and Watling, 2005).  

7.2.2 Vulnerability 

When discussing reliability, one is considering the proper working of a system. Vulnerability 
on the other hand considers the improper working of a system. However, it may not entirely 
be seen as the opposite of reliability. To expand, a well-regarded definition of vulnerability in 
a road transportation system is that “vulnerability is a susceptibility to incidents that can 
result in considerable reductions in road network serviceability” (Berdica, 2002). Husdal 
(2004) goes on to state that serviceability then describes the possibility to use a system during 
a given period. Susceptibility in this definition on the other hand indicates a probability of an 
occurrence. Hence, vulnerability may be considered a two-component concept in which 
probability and consequence are the two main attributes, in short: probability of susceptibility, 
with a consequence for the serviceability. A similar view is also argued by Jenelius et al. 
(2006), in which some disadvantages of this approach, as also mentioned by Sarewitz et al. 
(2003), are mentioned. The main disadvantage being that estimation of probabilities of 
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uncertain events is very difficult as some events are too rare to accurately derive from 
empirical data. However, when considering more regular disturbances in traffic flow, this 
difficulty dissipates somewhat. In another definition of vulnerability by Taylor and D’este 
(2003) only the consequence of an incident is considered, while the probability of a 
disturbance is ignored or presumed unquantifiable.  

7.2.3 Robustness 

Robustness is a concept that has more recently been developed for road traffic networks. A 
general definition of robustness is the “the ability of a system to resist change without 
adapting its initial stable configuration” (Wieland and Wallenburg, 2012). For road 
networks, a definition of robustness is given by Snelder et al. (2012) as “the extent to which, 
under pre-specified circumstances, a network is able to maintain the function for which it was 
originally designed”. Both Snelder et al. (2012) and Berdica (2002) state that robustness is an 
interchangeable opposite of vulnerability in relation to road networks. However, this is only 
true up to the point that vulnerability must place a greater emphasis on probability as it 
considers the occurrence of disturbances, while robustness considers the prevention of 
detrimental effects of disturbances. It is possible to only consider the effects of a disturbance, 
but more often than not one will also want to know its rate of recurrence. A robust network 
has the capability to compensate for disruptions on network links with relative ease and with 
only a small deterioration of performance Sullivan et al. (2010). Therefore, a major difference 
compared to reliability is that robustness considers how a network can maintain its function 
while suffering a disturbance and therefore focusses more on the effects of a disturbance, 
while reliability is more concerned with the probability of a disturbance. Following from the 
definition, a robust network can allow a decline in performance as long its function is 
maintained, and while probability is not the main focus, the term ‘extent to which’ indicates a 
clear possibility to quantify robustness (Snelder et al., 2012).  

7.2.4 Resilience 

The final concept to be considered here for road and network performance is resilience. 
Resilience is a concept that has been recognised a number of times within the traffic domain 
to be of possible relevance without much research being performed (Berdica, 2002, 
Nicholson, 2007). In other transportation domains, resilience is more recognised, such as in 
the transport related areas of logistics and supply-chain management (Chen and Miller-Hooks, 
2012, Cox et al., 2011, Ishfaq, 2012). Chen and Miller-Hooks (2012) define a resilient 
network as a network that is able to recover from disruptions. This ability depends on the 
network structure and activities that can be undertaken to preserve or restore service in the 
event of a disaster or other disruption. Goldberg (1975) states that two main attributes are 
relevant for resilience, namely the level of disturbance and the speed at which the system can 
recover from the disturbance. Berdica (2002) further states that resilience could be described 
as the capability of reaching a new state of equilibrium, however in the case of traffic flow, a 
new equilibrium state may resemble or equate to the original undisturbed state. Bankes (2010) 
states that it is tempting to define robustness and resilience synonymously. However, he goes 
on to say that robustness can be generally understood as the ability to withstand or survive 
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external shocks; to be stable in spite of uncertainty. Resiliency involves the ability of a system 
to recover from disturbances. Recovery implies a failure of robustness on a shorter time scale 
than that at which the system is judged to be resilient. This means that a system may be 
deemed as not being robust, whilst it may be considered resilient.  

In this research, the choice is made to focus on the concept of resilience. Much has previously 
been performed on robustness and reliability; however the concept of resilience, as defined 
here, also includes the recovery of the traffic system. In stochastic traffic flow, there is an 
increased probability of traffic flow breakdown and loss of function of a traffic system. It is 
also hypothesised that the recovery of traffic flow is hindered by heterogeneity in traffic. 
Therefore, the focus should lie on a concept that includes both. In this research, we therefore 
focus on and define resilience as “the ability of a system to cope with disturbances and 
recover after a loss of function”. Here, the term ‘to cope with’ indicates that to measure 
resilience does not require a state of ‘functional failure’ to be measured and can be evaluated 
when still properly functioning. ‘Loss of function’ refers to a reduction in performance of the 
system. In the case of traffic network, a commonly applied performance indictor is the ‘level 
of service’. Similarly, the onset of congestion constitutes a main loss of function, with higher 
density and lower speed values indicating an increase in functional loss. A system that can 
easily cope with a disturbance may be deemed more resilient than a system that only just 
manages to cope, as a different more extreme disturbance may cause the latter to lose function 
in any case. However, when a system experiences functional loss, it may still be deemed 
resilient, albeit to a lesser extent, if it is able to promptly recover.  

7.2.5 Overview 

Form the various descriptions, it should be apparent that although there are varying 
definitions for the described concepts, there is a general level of consensus on their meaning. 
The main characteristics of the concepts are given in Table 7.1 to more easily distinguish 
between the application areas of the concepts. Figure 7.1, taken from  (Wang et al., 2014), 
gives a good overview of the interdependent relations between the aforementioned concepts. 

Table 7.1: Overview of performance concepts and their definitions 

 Reliability Vulnerability Robustness Resilience 

Description    Probability of 
serviceability 

Susceptibility of 
serviceability loss 

Ability to maintain 
serviceability 

Ability to maintain 
and recover 
serviceability 

Disturbance 
relevance Probability of 

occurrence of… 
Not withstand the 
effects of… 

Withstand the effects 
of… 

Withstand and if 
necessary recover 
from… 

Probability 
relevance 

Main focus – Indicates 
proximity to perfect 
performance 

Facilitating – Indicate 
chance of function loss 

Facilitating – Indicate 
chance of function loss 

Facilitating – indicate 
recovery ability 

Effect relevance N/A 
Quantification of 
effects 

Quantification of 
effects 

Quantification of 
effects 

General 
application Both locally & on 

network 

Mainly on network 
level, but also locally 
applicable 

Mainly on network 
level, but also locally 
applicable 

Mainly local, but also 
applicable on network 
level 
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Figure 7.1: Relationships between main concepts (taken from Wang et al. (2014)) 

7.3 Performance components and indicators 

In section 7.2, main concepts were described, which are related to resilience. While the focus 
is on resilience, there is much overlap between the concepts and therefore various components 
from the other closely related concepts can be valuable for resilience. In this section, 
components and indicators from robustness, vulnerability and other resilience approaches are 
reviewed. 

7.3.1 Robustness and vulnerability 

From the previous section, is should be obvious that resilience is much closer related to 
robustness and vulnerability than to reliability. There is a sufficient similarity for it to be 
useful to review components of both robustness and vulnerability before looking at the 
relevant components for resilience. Both robustness and vulnerability will be considered 
together as they are near enough each other opposites and therefore will generally make use of 
the same components and indicators.  

When reviewing literature, it becomes quickly apparent that there are a wide range of 
definitions and descriptions for the same attributes. Here we will try to use the most generic 
terminology, but will often refer to authors’ own definitions of components.  
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Different approaches are found to classify vulnerability and robustness. On the one hand, 
accessibility and network efficiency are applied as main indicators in which the network 
geometry is seen as a more important factor (Chen and Miller-Hooks, 2012, Jenelius et al., 
2006, Taylor and D’Este, 2007). On the other hand, some apply an approach which considers 
the importance or criticality of links to be focal point (Scott et al., 2006). Jenelius et al. (2006) 
make a distinction between exposure and criticality on a network level. The exposure 
indicator covers the position of links and the connectivity of links on a network, while the 
criticality gives an indication of how important or critical a link is. Srinivasan (2002) states 
that there are four types of factors: deterministic, quantitative time-varying, qualitative 
measures and random factors. These factors describe various attributes that may be classified 
in four categories: network characteristics, traffic flow, threats and neighbourhood attributes 
(El-Rashidy and Grant-Muller, 2014, Srinivasan, 2002). Within these categories, a similar 
trend is found with different descriptions; Networks and infrastructure characteristics account 
for the supply characteristics of network links, traffic flow basically entails the demand on a 
network, while threats identifies weaknesses in a network and neighbourhood attributes the 
connectivity or accessibility of network links. Snelder et al. (2012) consider robustness more 
as an umbrella concept, which includes resilience among other parts. However, here we will 
refer to robustness as a single concept which overlaps, but does not enclose resilience. 

Table 7.2: Components used in performance concepts 

Traffic dynamics & demand Disturbances/Threats Network Characteristics 

Travel time (ratio) 12 

- Speed of movement 1 

(=traffic volume x average 
speed) 
 

Traffic speed (ratio) 2 

 

Delay (ratio) 12 

- Incl. relative delay rate 1 

 

Distance covered 2 

 

Traffic demand (ratio) 2 

 

Volume capacity ratio 2345 

- Volume capacity ratio for low 
capacity links 4 

- Increase in volume versus 
capacity (for low capacity links) 
4 

- Arrival rate at end of queue 36 

 

Accessibility 12 

- Arrival rate for a set period 34 

Effect of disturbance 234 

- Number of effected vehicles 2 

 
Spare capacity 24 

 
Congested travel (density) 1 

- Number of vehicles in 
congestion times congestion 
length 1 
 
Duration of disturbance effect 1 

 
Distance of disturbance effect 1 

 
Probability and effect 234 

 
(for low capacity links) 4 

Redundancy 2 
- Alternative routes 245 

 
Connectivity 2 

 
Link capacity 
 
Node degree 2 

 
Distance 2 

- distribution of distance 
 
Node centrality 2 

 
Node coreness 2 

 
Compartmentalisation 245 

- i.e distance between ramps or 
junctions 

1
(Berdica, 2002)  

2
(Snelder et al., 2012)  

3
(Knoop et al., 2012)  

4
(Tampere et al., 2007a)  

5
(Li, 2008)  

6
(Tamminga et al., 2005) 
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Much available literature primarily considers the components for an overall ‘vulnerability’ or 
‘robustness’ indicator. These individual components are discussed making use of the 
categories given by (Srinivasan, 2002) in which network characteristics and neighbourhood 
attributes are considered as a single category. A complete overview of a number of found 
components is shown per category in Table 7.2 in which the relevant references are also 
given.  

The traffic dynamics category includes a wide range of traffic related indicators. Comparable 
components are grouped for clarity, such as travel time and (average) speed, as these are 
convertible through distance. Many components are similar, but are defined such that it gives 
an additional quantification. For example, travel time is considered, but may also be adjusted 
to indicate the ‘speed of movement’, which is a multiplication of the average speed with the 
traffic volume. For most traffic dynamics components, both the component itself and the ratio 
of the component compared to a base or reference value are suggested. The advantage of 
using ratio’s is that it easily allows for normalisation, which can be a preferred approach as 
attributes are on a closed interval and can be more easily compared, either with or without 
weighting (El-Rashidy and Grant-Muller, 2014). The disturbances category includes 
suggestions for a quantification of the effect of disturbances on traffic flow, such as 
quantification of the number of affected vehicles, of congested travel, and of the distance or 
duration of a disturbance. The probability of a disturbance or threat is also an attribute to be 
considered. The network characteristics category mainly considers the attributes related to the 
physical infrastructure and the way the various network links are connected. When specifying 
specific characteristics for vulnerability and robustness, not a great deal of attributes were 
found in literature for the physical road characteristics. It maybe that these are not considered 
relevant or, probably more likely, that they are the underlying variables linked to other 
attributes. For example, a poor road surface may lead to lower speeds and therefore a higher 
travel time, both of which have already been considered.    

There are a wide range of existing performance indicators for both robustness and 
vulnerability. To give an indication of some of these indicators, a short overview is given in 
Table 7.3 with a description of the indicator. 

Table 7.3: Some recently applied performance indicators for robustness and 
vulnerability 

Described  Indicator Applied to… Description 
Snelder et al. 
(2012) 

Delay Robustness Delay encountered under pre-defined disturbances 
(incidents). Delay on specific links, routes, or (sub)networks 
indicates the robustness level. 

- Volume to 
Capacity (V/C) 

Robustness & 
Vulnerability 

Ratio between the traffic volume and available capacity 

- Gamma index Robustness & 
Vulnerability 

Connectivity index indicating how well a network is 
connected. A value of 1 indicates a completely connected 
network. 

Scott et al. 
(2006) 

Network 
Robustness Index 
(NRI) 

Robustness Change in total travel time over a given interval resulting 
from the re-assignment of traffic in the system when a 
specific link is removed from the network. Measures how 
critical a given link is to the overall network. 
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Sullivan et al. 
(2010) 

Network Trip 
Robustness (NTR) 

Robustness Applies an ‘importance’ factor to the NRI of routes based on 
the demand over specific links. NTR is calculated as the 
summation of NRI over all links and dividing that by the 
total trip demand in the network. 

El-Rashidy 
and Grant-
Muller (2014) 

Link & Network 
Vulnerability 
Index (LVI & 
NVI) 

Vulnerability Makes use of weighted multiple attributes. The applied 
attributes are: 
1. Link traffic flow in relation to link capacity  
2. Impact of link flow compared to capacity  
3. Inverse of time for congestion to reach upstream 

junction  
4. Link capacity compared to maximum link capacity in 

the network 
5. Link length 
6. Importance of link: number of time that a link is on the 

shortest path between OD pairs  

Jenelius et al. 
(2006) 

Importance & 
Exposure 

Vulnerability Importance calculated as the consequence of a link closure 
for travel cost and for unsatisfied demand. Exposure is the 
accessibility dependant on the expected increase in travel 
cost. Both include arbitrary weighing of link reflecting a 
links position in a network. 

    

7.3.2 Resilience 

While resilience is sometimes mentioned in relation to traffic flow and networks, research 
into descriptive methods is limited. Some authors describe resilience from an organisational 
and economical perspective (Bruneau et al., 2003, Nicholson, 2007, Reggiani et al., 2002, 
Rose, 2009), while resilience is discussed more explicitly in other domains. Within road 
network research, there is also an area of research that involves resilience in case of disasters 
(Faturechi and Miller-Hooks, 2014). In these works, the focus tends to be more on decision 
frameworks, and therefore we will not focus on this area of research here. A few suggestions 
for more generic attributes in resilience are given here based on some of these other transport 
related domains. These are merely meant as an indication from other disciplines, rather than 
an exhausted review of resilience in the whole transportation domain.  

In their review of transport security, Reggiani (2013) cite four dimensions for resilience: 
robustness, redundancy, resourcefulness and rapidity (Bruneau et al., 2003). Robustness 
demonstrates the need to consider the avoidance of serviceability for a disturbance as part of 
resilience as a whole, where redundancy of unused capacity may be addressed. However, 
when serviceability is affected, resourcefulness and rapidity become relevant. 
Resourcefulness relates to stabilising measures, either from within a system itself or 
externally applied (such as traffic management in traffic). Rapidity relates to the importance 
of a rapid return to an acceptable level of service. It is further stipulated that the main aspects 
to consider should aim to reduce probability of failures, the consequences from failures, and 
the time to recovery. 

In intermodal freight transport, Chen and Miller-Hooks (2012) present a resilience indicator. 
The main premise applied considers the “the level of effort (cost, time, resources) required to 
return the network to normal functionality (or a fixed portion thereof)”.  Here the main focus 
is on the recovery process and the ability to achieve a return to required level of functionality 
or serviceability. From this, it is also clear that a complete return to the same level of 
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serviceability is not required, but rather a pre-defined acceptable level of serviceability. The 
occurrence of (major) disturbances is considered as an unknown random effect that occurs, 
therefore less attention is spent on prevention of a disturbance leading to a loss in 
serviceability. Some variables applied are: 

- Recovery activities 
- Change in capacity after implementation of recovery activities 
- Travel time (incl. Maximum travel time) 
- Time to implement recovery activities (incl. Maximum implementation time) 
- Cost of recovery (incl. Maximum allowable cost) 
- Network connectivity 

In other research on transportation network, (Murray-Tuite, 2006) describes a simulation 
approach for resilience in which a system optimum approach is compared to a user 
equilibrium approach. In her research, she identifies ten main dimensions to be considered for 
resilience: 

- Redundancy 
- Diversity  
- Efficiency 
- Autonomous components 
- Strength 
- Collaboration 
- Adaptability 
- Mobility 
- Safety 
- Ability to recover quickly 

Some of these attributes are more relevant for transportation networks rather than traffic 
networks, such as collaboration or autonomous process components. However, other 
attributes and the general premise give a good insight into the type of attributes that should be 
considered.  

7.4 Methodology for resilience analysis 

Many of the previously described measures and components are keyed very much towards 
network performance even if many calculate local road section performance to obtain a 
network score. As defined in a previous section, a main application area here for resilience is 
very much on the performance of local road sections. This is due to the stochastic breakdown 
effects that materialise on a microscopic level locally rather than for a whole wider network. 
As traffic management is mainly applied to a local area, it is most relevant to focus on this 
local level for the level of traffic homogeneity.  In this research, there is a greater emphasis on 
the determinants of certain attributes, rather than only on the resulting effects. A previous 
example of a poor road surface is an example of such a determinant, while a lower speed for 
that road section is the resulting effect. As we define resilience as “the ability of a system to 
cope with disturbances and recover after a loss of function”, it may be seen as an extension of 
robustness/vulnerability as it considers the ability of a system to cope with disturbances. It 
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does however differ in the sense that it also considers the recovery process explicitly and as 
an important part of the concept. Moreover, the focus in this chapter is more on traffic flow 
rather than network infrastructure.  

We start by stating therefore that resilience exists out of two main parts: resistance and 
recovery, as is found in the majority of the cited literature. The resistance part incorporates 
the extent to which a road section or network is robust and can resist functional loss under 
stress and is comparable to robustness. The recovery part of resilience is what sets the concept 
apart from robustness/vulnerability and describes the ability of a road section to return to an 
acceptable level-of-service. 

7.4.1 Resistance 

We define the ability of the traffic system to resist a disturbance (resistance) as “the ability to 
avoid going into a state of congestion”. To this extent, we quantify this as the ability of a road 
section to maintain a density lower than the critical density: ̂ < ^�Z�!. Writing this as an 
index which represents stability below a value of 1, gives: 

 :,_gw = 	 ^^�Z�! (7.1) 

The density and the critical density can be derived from a number of other components. In 
traffic flow, in relation to the influence of disturbances, we have identified the following 
components for the density and the critical density in an uncongested flow, which are 
explained in the rest of this sub-section: 

Table 7.4: LPIR Resistance components 

Density   k Critical Density   kcrit 
q flow ���Y road capacity 

v speed g road characteristics ú7  volatility of flow h traffic characteristics 

 ú��Y volatility of capacity 

 f temporal capacity reductions 
 (i.e. incidents) 

 

In traffic flow theory, the fundamental relation is given by: ̂ = � %[ . While the flow of traffic 
can be aggregated to set value, �, in reality traffic flow is stochastic with a certain bandwidth, � ± ú7 . Here ú7  is the traffic volatility, defined by:  

For � − ú7 , traffic will remain in an uncongested state if � is also uncongested, however for � + ú7 , traffic may enter a congested state if the flow is near to capacity. This is therefore 

 ú7 = 12 (�}�� − �}��) (7.2) 
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critical and therefore the density is reformulated using the fundamental relation and equation 
(7.2) to give: 

 ^ = 	� + ú7%  (7.3) 

In a similar way, the critical density can also be reformulated to indicate the critical state to 
resist congestion as: 

 ^�Z�! =	���Y(p, ℎ). X + ú��Y%�Z�!  (7.4) 

Here, three notable differences can be seen compared to equation (7.2). The flow and speed 
variables are now the critical capacity values, rather than the current traffic state values. 
Furthermore, the capacity is also dependant on the variables	(p, ℎ), which indicate the 
influence of road and traffic characteristics. Thirdly, there may be temporal capacity reduction 
to be considered, which is indicated by X. Substitution of the components from equation (7.3) 
and equation (7.4) into equation (7.1) gives the derived resistance equation: 

 OgÏ:Ï�h,¦g = 	 ü� + ú7% ý
ü���Y(p, ℎ). X + ú��Y%�Z�! ý (7.5) 

The equation is valid for a set time interval, T. The dependence on time is excluded from the 
equation for readability. Here we see in the numerator the density given by the ‘volatile flow’ 

divided by the speeds, which follows from the fundamental relation of traffic flow: ̂ = � %[ . 
The volatility of traffic flow describes the traffic flow increased with a measure of volatility, 
describing the stochastic behaviour of the flow in a predefined period, for the time interval, T, 
for example 15 minutes. The volatility is an indication of the bandwidth of traffic flow in this 
time window and is therefore defined by: 

Note that (� + ú) does not need to correspond with a maximum value of q in the considered 
time period, as the gravity of the values may be skewed higher or lower. Fluctuations in the 
speed can also be included in this volatility factor, however are expected to follow the 
fluctuations in the flow and are therefore not required. In the denominator, the critical density 
is given, which also incorporates the fundamental relation. The speed is the critical speed by 
definition, and is dependent on the road and traffic characteristics. The critical flow is 
described as the capacity reduced by a temporal capacity reduction factor and also includes a 
volatility component. It is given as a function of the road and traffic characteristics. The 
volatility for the capacity is collected for an entire period and is not time dependant as the 
flow volatility. The volatility of the capacity is given here as: 

 ú��Y = 12 s���Y.}�� − ���Y.}��t (7.6) 
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The road characteristics component represents the influence of the infrastructure and depends 
on variables, such as the maximum speed limit, number of lanes, lane width, gradient, 
curvature, road surface, and etcetera. The traffic characteristics represent variables such as 
vehicle types and characteristics, vehicle dimensions, driver types, etcetera. A further 
quantification of these components is not given here, but is rather recommended for later 
research. 

7.4.2 Recovery 

Corresponding to the definition given of the resistance part, the recovery part is defined as 
“the ability to come out of a state of congestion”. This is quantified as the ability of a road 
section to regain a density lower than the critical density from its current state: ^ > ^�Z�!. This 
index allows use of the same equation (7.1). The main additional components identified as 
relevant for determination of the recovery are given as: 

Table 7.5: LPIR recovery components 

Recovery components  
∆q flow change, ��� − �~þ! ��� inflow ��� capacity drop (absolute) �~þ! outflow %	7(�)  speed, derived from fundamental  

             diagram 

 

 

The recovery equation is derived in a similar fashion to the resistance equations, making use 
of the fundamental relation and a further expansion of the underlying variables, but in this 
case for a congested traffic state. The two main traffic variables that influence the recovery of 
a road section are found to be the resulting capacity drop in a section and the difference 
between the in- and outflow of traffic into a road section. From equation (7.5), it is clear that a 
higher capacity drop will reduce the ability to recover, as well as a higher inflow compared to 
the outflow. The density in congestion makes use of the congested speed, which is dependent 
on the traffic flow and can be calculated from the fundamental diagram to give %	7(�). The 

applied fundamental diagram is given in equation (7.10). To recover from congestion, traffic 
inflow must reduce if capacity does not increase. This is derived for a single road section 
through the change in flow:	��� − �~þ!. Combined these variables together with the 
fundamental relation give: 

 ^ = 	� + ��%	7(�)  (7.7) 

The critical density in congestion is similar to equation (7.4) from the pre-congested state. 
There is however one important difference, that when congestion occurs a capacity drop often 
also occurs. This is added to the equation, while the volatility of the capacity is less 
interesting as traffic breakdown has already occurred. Therefore, the equation for the critical 
density becomes: 
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 ^�Z�! =	���Y(p, ℎ). X − ���%�Z�!  (7.8) 

Substitution of equation (7.7) and equation (7.8) in equation (7.1) results in the recovery 
equation is given by: 

 Og¦1%g0T = 	 �� + ��%	7(�)�
����Y(p, ℎ). X − ���%�Z�! � (7.9) 

Again, the equation is valid for a set time interval for which the dependence on time is 
excluded from the equation for readability. Here,	%	7(�), further represents the speed derived 

from the fundamental diagram with input: �. Written in full, this corresponds to: 

%	7(�),= 	 �
�^�Z�! + (1 − ����Y − ���). ( Û�} − ^�Z�!)� (7.10) 

where ̂ U�} is the jam density and ^�Z�! is the critical density.  

7.4.3 General Link Performance Indicator for Resilience 

As we define resilience in traffic flow as the combination of both resistance and recovery, the 
combination of the previously described equations results in the Link Performance Indicator 
for Resilience (LPIR) and is given by: 

 

�/ÒO = 1��
�
��

ü� + ú7% ý
ü���Y(p, ℎ)X + ú��Y%�Z�! ý 1 � Ö×8Ø +

�� + ��%	7(�)�
����Y(p, ℎ)X − ���%�Z�! � 1 � Ö×8Ø	


�	�

!�� 	 (7.11) 

Combining both parts is allowed as it gives the entire range of possible density values, from 
uncongested to congested density values. Note that each variable is valid for a set time 
interval. For readability, the notation of the dependence on t has been omitted from the 
equation. The total LPIR score per road section is the average over all time intervals for the 
considered period.  

The LPIR can be applied to any road section to give an indication of the relative resilience of 
that road section compared to other road sections. Focus on local homogeneity means that 
network connectivity is deliberately avoided to allow the index to describe the local 
vulnerability. Obviously local traffic conditions are influenced by network effects, however 
the index is not greatly sensitive to this as the evaluation of a road section considers local flow 
and local capacities. A value of LPIR =< 1 indicates that a road section is able to resist a 
significant drop in level-of-service and therefore remain uncongested and by definition must 
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be considered resilient as well as robust. However, a road section that does suffer a drop in 
level-of-service, but can recover promptly should also be considered resilient as resilience 
considers the ability to recover from a disturbance or loss of service. However, in the latter 
case, the road section may not be considered robust, as a failure event occurred. One cannot 
state that a value above LPIR > 1 is always non-resilient. Normalisation of the LPIR may be 
applied, as this may make comparison between values from different road sections easier. 
However, this has the drawback that the quantitative interpretation of the index is lost and is 
not performed in the experimental case. 

7.4.4 Stochastic Link Performance Indicator for Resilience 

The presented description of the LPIR given in equation (7.11) is a deterministic score for 
resilience. However, increasingly the importance of explicitly considering stochastic 
fluctuations in traffic is being seen as relevant and often necessary. Therefore, a stochastic 
representation of the LPIR is also relevant. Incidentally, it is not that difficult to transform 
LPIR for a stochastic representation.  The variables representing the flow from the original 
LPIR should be described as random variables rather than deterministic and must be further 
condensed, resulting in: 

 

�/ÒO = 1��Å 
�%�
����Y(p, ℎ)X%�Z�! � 1 � Ö×8Ø +

�� + ��%	7(�)�
����Y(p, ℎ)X − ���%�Z�! � 1 � Ö×8ØÆ	

�

!�� 	 (7.12) 

Note that the main changes relate to the representation of q, which is now the random variable 
q. Furthermore the volatility variables become obsolete in a stochastic version, as they were 
used as a measure of variability, which is now incorporated in the random variables of the 
flows and capacities. It is also possible to represent the incident reduction factor as a random 
variable, as well as the speed and critical speed. However, it is chosen not to do that here and 
consider stochasticity only from the flow and capacity variables.  

7.4.5 Considerations and component sensitivity 

The presented methodology differs in its approach to many other methods that have 
previously been presented for similar measures, mainly in the area of robustness. The first 
main difference is the focus on specific road sections, rather than on a network performance. 
The second one is the explicit consideration of traffic flow dynamics, where many other 
methods consider more static descriptive variables.  

In relation to consideration of local road sections, an implicit consideration of the influence of 
other bottlenecks and connectivity to the rest of the network is present: downstream 
congestion that reaches an arbitrary road section will affect the LPIR score of that section in 
conjunction with the severity of the congestion. However, the opposite does not apply. That is 
the network effect of congestion caused by a considered road section on the rest of the 
network. This is a drawback when one wishes to expand the method to be used to calculate a 



Chapter 7 – Stochastic evaluation and identification of road resilience levels 151 

 

network index. In relation to consideration of traffic flow dynamics, this method aims to seek 
out the core reasons behind resilience or the lack of, and offers the possibility to connect the 
resilience score to the causes. At the highest level, this is only calculated from traffic data, 
while further adding detail to the p and ℎ terms, denoting road and traffic characteristics, 
allows explicit causality to be derived. This is not performed in this chapter though.  

The variables applied in the method have been tested for their sensitivity, while a few other 
variables that were considered have been shown not to be of great relevance. The choice of 
the time interval, T, has been analysed for its effect on the results. The time interval is mainly 
relevant for the volatility variables (ú), including the delta flow variable (��). The outcome 
of the analysis shows that the absolute value of LPIR does shift slightly, but in relative terms 
there is a limited effect. In any case, this is not sufficiently large enough to influence the 
analysis of the road sections. When delta flow is not included, the LPIR shows a higher 
sensitivity for higher T values (T=15), while for lower T-values (i.e. T=2), the exclusion of 
delta flow does not influence the LPIR score. As the influence of delta flow requires a higher 
T-value and the relative difference is not large between T-values, a value of 15 minutes is 
viewed as a suitable value, as this allows variation in flows to be considered in LPIR. The 
analysis of this variable is shown in Appendix A. Besides the �� and T variables, a further 
volatility term for congested traffic was considered as well as a volatility value for the speed 
and critical speed. Congested traffic is more stable than uncongested traffic and the �� term 
already includes the relevant variations in recovery, such that the inclusion of a volatility term 
for the recovery does not have a large effect. Including a volatility terms for the speed and 
critical speeds in the resistance equation also did not possibly influence the scores. The traffic 
speeds were found to include too much noise to be included as they made the results messy, 
while the flow volatility already captured many of the fluctuations, but in a more stable 
manner. The critical speed was found to be rather stable for most locations and between 
different breakdown events (consistently between 70-75 km/hr) and therefore added little to 
the overall method. Therefore these additional volatility variables were not applied. 

7.5 Experimental study results 

In this section, the LPIR is demonstrated in an experimental case study for a part of a heavily 
congested network north of the city of Rotterdam. Demonstration of the validity of the 
method is achieved through comparison with other indices related to robustness and recovery 
and with a comparison with the qualitative causes and effects of regular congestion on the 
considered network.  

7.5.1 Setup and network 

A demonstration of the Link Performance Indicator for Resilience (LPIR) is given making use 
of a real network. The purpose of the demonstration is to show the applicability of the method 
using existing and accessible traffic data. The demonstration also acts as an indicative 
validation of the methodology.  
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This is achieved by comparison with two simple measures for both robustness and resilience, 
namely the time to recovery and the total delay time. The time to recovery, TR, per road 
section is defined as: 

�O = ∑ ��Z	�~�	Z� l X10	l ≥ 10 (7.13) 

Here, ��Z	�~�	Z is the recovery time of a single congestion event, ,, defined as the time from 
the start of congestion to the end of congestion. l is the number of congestion events per road 
section, while a minimum number of 10 congestion events is required to give an estimate.  

The total delay time, TD, per road section, is defined as: 

�\ =� %gℎ(�)%�Z		 − %~��(�)
!�	
!��  (7.14) 

Here, %gℎ(�) is the number of vehicles on a road section in a time interval, %�Z		 is the free-

flow speed, which corresponds to the maximum speed limit, and %~�� is the observed average 
speed of all vehicles during the time period. In total there are a number of time periods. 

 

Figure 7.2: Considered network of the A13 and A20 motorways  

The considered network exists of two interconnecting motorway stretches to the north of the 
city of Rotterdam in The Netherlands (see Figure 7.2). The motorways are the A13 and the 
A20 motorways and vary in width between two to four lanes and include several junctions 
and interchanges. The network is regularly congested in the peak periods with known 
bottlenecks at multiple locations. The total distance of the roads is approximately 55 
kilometres long. 
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The data used for the considered network is taken from an extensive collection of induction 
loops at a distance of approximately 300-500 metres. The induction loops relay one minute 
aggregated data on the traffic flow and the speed of traffic. 

7.5.2 LPIR calculation 

The Link Performance Indicator for Resilience (LPIR) is calculated for the network shown in 
Figure 7.2. This is performed using an aggregation time interval of 15 minutes, as argued in 
section 7.4.5. Data for the entire year of 2009 is used in the experiment. Road sections are 
defined as the section of road between two correct working loop detectors. In this test case the 
jam density of traffic is assumed as 130 vehicles per kilometre per lane. Incidents are not 
explicitly considered, meaning that the incident reduction term is unused and has a value of 1. 
Capacity values are pragmatically estimated from data by taking the 99.9th percentile value 
for each road section. At bottleneck locations, this will resemble the real capacity, while at 
non-bottleneck locations the value will be less important as traffic flow will either remain 
uncongested (captured by the traffic speed) or will be influenced by an external bottleneck 
with a lower capacity value.  

 

Figure 7.3: LPIR score per road section 

The primary LPIR results of the experiment are shown in Figure 7.3 on the considered 
network. Values are shown to generally vary between 0-1.4, with one section in particular 
reaching a LPIR value of 2.0. Road sections with higher values are sections that should be 
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viewed in more detail and are the sections that should be most readily considered for 
improvement to improve the traffic throughout and in turn the network performance, even if 
the network performance is not directly calculated. In Figure 7.3, road sections that appear 
with a red colour or darker are the least resilient. These are road sections that have a LPIR 
score equal to or above 1.2, with orange indicating values around 1.0, and yellow and green 
indicating values below 1.0, which are deemed to be road sections that have a lesser priority 
in comparison to the higher scoring road sections.  

Using the results from the LPIR analysis, a priority list can be constructed which indicates 
which road sections should be addressed with which urgency by road authorities. This list is 
given in Table 7.6, with the numbered sections shown in Figure 7.3. A manual check based on 
expert judgement is performed to give an indication of the possible reasons of each section 
belonging to the list and the causality of the low resilience score. Causality can be added to 
the analysis by making use of the traffic characteristics and road characteristics terms from 
equation (7.11). This would exist of adding data from further relevant variables, such as data 
on the road surface, infrastructure geometry, traffic composition, and many more. This more 
detailed analysis is not performed here, therefore causality is left to expert judgement.  

 

Table 7.6: Least resilient road sections from the A13-A20 analysis 

Section nr 
(see Fig. 3) 

LPIR 
value 

Location 
description 

Section type Estimation of problem  
(expert judgement) 

1 2.0 A20L Terbregseplein  Joining flows after interchange 
2 1.9 A20R Centrum  Section with 

onramp 
Narrow lanes, gradient and 
inflowing traffic on short onramp 

3 1.7 A20L 
Kleinpolderpolein 

Weaving section Weaving section 

4 1.6 A13R Delft-Zuid Onramp Joining flow with a bend in the 
road 

5 1.4 A20R 
Kleinpolderplein 

Weaving section Weaving traffic at interchange 
split 

6 1.4 A20L Centrum Off-ramp Short uphill off-ramp 

 

A deeper analysis of the results is shown in Figure 7.4 for the A20 motorway in the 
westbound direction. The figure shows the traffic speeds during an arbitrary work week along 
with the LPIR scores.  
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Figure 7.4: Comparison between speeds (left) and LPIR values (right) on the A20R  

From Figure 7.4, it quickly becomes apparent that the LPIR score does not simply replicate 
traffic speeds, but rather focusses on the main areas in which congestion occurs. Moreover, 
the method also aims to gives an indication of the ability of a road section to recover from 
disturbances. Road sections which suffer congestion, and are especially the cause of 
congestion, and cannot readily recover receive higher index scores, representing this. This can 
be derived at a number of places from Figure 7.4. The congestion in the middle of the road 
(around section nr 60) is more severe and lasts longer and even leads to secondary congestion 
upstream. In comparison, the congestion observed at the bottom of the figure (near section 
100) occurs regularly during a week, but is less severe and has a tendency in a number of 
cases to lead to limited spillback and to dissolve faster. This is represented in the LPIR score, 
which is close to 1.0, therefore indicating a road section that may need attention, but has a 
limited negative effect. 

7.5.3  Comparison with other measures 

In many disciplines, the resilience of a system is measured by the required recovery time. The 
recovery time is then a measure for the recovery. Although recovery is only seen as part of the 
resilience definition here, a comparison with the LPIR score can be insightful. In Figure 7.5, 
the average recovery times are shown for a road section to exit congestion. It is expected that 
a number of locations that have a long recovery time are part of the higher LPIR locations. 
However, there are also a few that do not score high on the LPIR. One such example is that at 
the coordinates [9.8; 4.42]. Alternatively, some locations with relatively low recovery times, 
are shown to have relatively high LPIR scores, even if they are not among the highest LPIR 
scores. These effects are down to the combined effect of both recovery and resistance in the 
LPIR. If one of these aspects is low, then the overall LPIR will also be relatively low. This 

Speeds  LPIR 



156 TRAIL Thesis series 

 

shows that the LPIR is a typical impact index. Despite some difference, the majority of the 
least resilient road sections are also amongst the road sections with the highest recovery times. 
The ability of the index to react to both weakly resistant and road section with weak recovery 
is a particular strength of the index and an important contribution. 

Another measure used to compare the LPIR results is the network delay, for which the results 
are shown in Figure 7.6 per kilometre distance. The total network delay is a measure that can 
be used to indicate robustness and therefore mainly reflects the resistance part of traffic flow. 
The total network delay includes a further element compared to the LPIR and the recovery 
time, which is the total flow. This acts as a sort of weight for negative effects of congestion 
and indicates also a combined effect of the number of vehicles affected and the length of a 
delay. However, the indicator focusses on the effect of traffic breakdown and not on the 
causality, which is a more important part of the LPIR. To that extent, the locations shown are 
slightly different to the LPIR. The presence of congestion in the LPIR does not necessarily 
lead to the highest LPIR score. And although the network delay does indicate where most 
delays are recorded, it fails to pinpoint the main weaknesses in the network. 

 

 

Figure 7.5: Average yearly recovery times per road section [hrs] 
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Figure 7.6: Total network delay in 2009 per road section [hours/km] 

7.6 Conclusions and discussion 

In this chapter, the Link Performance Index for Resilience (LPIR) is presented as a new 
methodology to evaluate the resilience level of road sections in relation to the surrounding 
network, where resilience was defined as “the ability of a system to cope with disturbances 
and recover after a loss of function”.  The methodology offers a powerful tool that allows 
road authorities and alike to perform analyses of their road network and identify the weak 
links, which may demand the higher priority when considering investment. The focus of the 
methodology is on resilience and is therefore wider than robustness, as it also considers the 
ability of road sections to recover from disturbances as well as the classical robustness itself. 
To this extent, a distinction is made between a resistance part and a recovery part as part of 
the entire methodology. Contrary to many other works, the basis for the methodology does 
not focus on the network as a whole or as a generic description of the network and its parts 
against a certain measure. Rather, the resilience is calculated in relation to the traffic flow 
characteristics at a flow level and the ability of road sections to maintain their predefined 
purpose to serve vehicles without overly experiencing congestion. The focus on homogenous 
and volatile traffic flows also leads many of the considered components to relate closely to 
traffic flow characteristics.  

Prior to the explanation of the method, an extensive literature review was performed to set the 
scene for the LPIR, but also to indicate where most efforts have been performed in the past. 
This showed that much has been done and is being done in reliability and vulnerability and 
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increasingly in robustness analysis. Resilience is found in many transportation related 
disciplines, such as transport networks, freight movements and logistics, but it not explicitly 
commonplace in traffic flow analysis. This is where the niche and the main contribution of the 
LPIR method lies. The relevance of resilience analysis in traffic flow stems from the 
importance of road section not only to resist degradation of function, but to also recover 
promptly as a consequence of traffic flow stability.  

The effectiveness and validity of the methodology is demonstrated in an experimental case for 
a small network of two interconnecting motorways to the north of the city of Rotterdam in 
The Netherlands. This showed that the LPIR is able to detect weak and poorly resilient 
locations by calculating the relative resilient value of individual road sections. For the road 
sections with the highest LPIR value a manual causality is given as a further demonstration of 
how a road authority may be able to use the results to determine poorly resilient road sections. 
The calculated LPIR values are further compared with the results of two other measures for 
resilience and robustness, namely the ‘recovery time’ and ‘total delay’. Many locations that 
performed poorly in the LPIR were also highlighted in the other measures, however there 
were also important differences that further showed the strength of focussing on resilience. 
The recovery time merely shows locations that can quickly recover from a congestion event 
after a disturbance, while the occurrence rate is not considered and therefore says little about 
the overall impact during a longer period. On the other hand, the total delay experienced on a 
road section does give an overall indication of the negative effect of congestion on a road 
section. In comparison to the LPIR, this lacks as it does not sufficiently take into 
consideration where bottlenecks are present and therefore the road sections which are the 
cause of congestion. Congestion on a road section for a bottleneck further downstream is 
unfairly penalised due to the weakness of another road section.  Although one may argue that 
this is also a part of resilience, it does not accurately contribute to the purpose of identification 
of the main problem areas for disturbed traffic flow and recovery from congestion and 
therefore a lack of resilience. We therefore argue that the analysis of the resilience offers a 
deeper insight into the way road sections are judged for weakness and that resilience analysis 
offers a complementary tool to robustness. This is especially the case when the analysis 
concentrates on the influence of disturbances on traffic flow at the level of traffic rather than 
at a higher abstraction level.  

The LPIR methodology also allows for a deeper analysis of the casualty of a poorly resilient 
road section. This is performed through additional data analysis. This part of the LPIR was 
not further elaborated on in this chapter and was also not part of the experimental case. The 
consideration of incidents was also not part of the considered case. Both of these elements are 
given as recommendations for further research. Especially the analysis of resilience causality 
is an interesting area that can be a strong addition to the presented method, as it does not only 
return road sections that require attention, but also gives a strong indication of the reasons 
behind the lack of resilience allowing a road authority to act more precisely.  
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Appendix 7.A: Sensitivity of the time interval parameter T 

The parameter for the time interval, T, is relevant for the considered period in which the 
volatility and extreme values of the flow are measured. There is however no required value, 
therefore an analysis of appropriate values is carried out to test the influence of different 
values. This is also combined with a test of the necessity of the delta flow variable, which 
indicates the difference between the incoming and outgoing flows on a congested road 
section.  

An upper bound is set of 15 minutes for T, as a higher value would lead to a less 
representative observation of the traffic states. It might even be suggested that 15 minutes is 
already too high, however such a value is not an uncommon aggregation level in traffic flow 
theory and modelling. Figure 7.7 shows LPIR values for the A20R (westbound) for three T-
values: 2, 5, and 15 minutes. From the figure, each result shows that the locations of higher 
values correspond between T-values, which is not surprising. Higher T-values show a higher 
LPIR score. This is also not surprising as longer time intervals allow a larger range of flows to 
be observed, which in turn will lead to a higher LPIR. Further analysis shows that the scores 
between the three tested values are relatively similar. Therefore, for relative comparison there 
is little difference. As the LPIR is applied as a relative index between road sections, we 
conclude that there is not a strong preference for the choice of T value based on its own 
sensitivity alone  

    

Figure 7.7: (left) Comparison between time interval values, from left to right: 5 mins, 15 
mins, 2 mins 

Figure 7.8: (right) Comparison between time interval values and the application of delta 
flow, from left to right: T=15 mins with ��, 15 mins without ��, 2 mins with ��, and 
2mins without �� 
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In Figure 7.8, the effect of the delta flow variable is considered together with different T-
values: 2 and 15 minutes. This comparison shows that the value of T does matter for the 
results of LPIR when delta flow is included. This can be seen in the difference between the 
first and second result, with or without the use of the delta flow term. However, when T = 2, 
there is no difference between the LPIR scores with or without delta flow, which can be seen 
from the third and fourth column in Figure 7.8. This makes sense as there are only two 
observations for T = 2, and therefore the maximum and minimum value will always be one of 
those values.  

The results of this analysis show that the main differences are absolute shifts, rather than 
relative shifts in the scores. Nevertheless the use of T =15 while retaining the delta flow term 
gives more pronounced results, as the absolute values are higher. A more pronounced result 
makes it easier to distinguish between roads sections and therefore a preference is made to use 
a T = 15, with the delta flow term. This also gives more observations to make an estimate of 
the volatility, which is limited by a smaller T-value. While stating this, we recognise that the 
use of a lower T-value would not necessarily be an incorrect approach.  
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This chapter gives a demonstration of the applicability and usefulness of the developed 
methodologies in a comprehensive case study. In the case study, the application of traffic 
management to improve traffic flow is analysed. Section 8.1 describes the applied framework 
and its steps. The considered network is presented in section 8.2. Execution of the framework 
steps are performed from section 8.3, concluding with the assessment of the results of the case 
in sections 8.6 and 8.7.  

 

 
This chapter is an edited version of the article: 
Calvert, S. C., Taale, H., Snelder, M., & Hoogendoorn, S. P. (2016). Improving traffic management 
through consideration of uncertainty and stochastics in traffic flow. Submitted for publication in Case-
studies in Transport policy. 
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8.1 Framework 

To integrally demonstrate the developed tools described in this thesis, a comprehensive case 
study is performed in which the complete chain of tools, to analyse and apply traffic 
management in an uncertain traffic system, is shown. Additionally, a second goal is defined to 
demonstrate the necessity of considering traffic as stochastic for traffic management. The case 
is carried out on a network with the aim to derive weakly resilient locations, offer traffic 
management solutions for these locations and predict the positive effect that the traffic 
management measures are expected to have. These three steps are described in greater detail 
in this section. In section 8.7, we will also demonstrate the necessity of considering 
uncertainties and traffic flow fluctuations when estimating the future effects of specific traffic 
management measures.  

Step 1: Network resilience scan 

The first step involves a resilience scan of the considered network using the Link Performance 
Indicator for Resilience (LPIR). The LPIR was previously described in Chapter 8, where more 
details are given on the indicator.  

As resilience is defined in traffic flow as the combination of both resistance and recovery (see 
section 8.4), both elements are combined in the Link Performance Indicator for Resilience 
(LPIR), given by: 

 

�/ÒO = 1��
�
��

ü� + ú7% ý
ü���Y(p, ℎ)X + ú��Y%�Z�! ý 1 � Ö×8Ø +

�� + ��%	7(�)�
����Y(p, ℎ)X − ���%�Z�! � 1 � Ö×8Ø	


�	�

!�� 	 (8.1) 

Here, for each time interval �, � is the traffic flow, % the traffic speed, %�Z�! the critical speed 
just before traffic breakdown, ^ the traffic density, ���Y the estimated capacity, X a temporal 

reduction factor for the capacity (i.e. due to incidents) and ��� the estimated capacity drop. ú7  and ú��Y are volatility variables that give an indication of the extent of homogeneity for 

the traffic flow and capacity respectively. p and ℎ represent the road and traffic characteristics 
and influence the capacity. In Chapter 7, a more extensive explanation of the build-up of the 
equation is given. 

Recall that each variable is valid for a set time interval [t , t+dt). For readability, the notation 
of the dependence on t has been omitted from the equation. The total LPIR score per road 
section is the average over all time intervals for the considered period. In this case, the 
considered period is a complete year of data for the A20 and A13 motorways in the year 
2009, due to availability. The data is taken from an extensive collection of induction loops at 
a distance of approximately 300-500 metres. The induction loops relay one minute aggregated 
data on the traffic flow and the speed of traffic. 
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The LPIR gives an indication of the relative resilience of that road section compared to other 
road sections. A value of �/ÒO ≤ 1 indicates that a road section is able to resist a significant 
drop in level-of-service and therefore remain uncongested and by definition must be 
considered resilient as well as robust, as seen in Chapter 7. However, a road section that does 
suffer a drop in level-of-service, but can recover promptly should also be considered resilient 
as resilience considers the ability to recover from a disturbance or loss of service. However in 
the latter case, the road section may not be considered robust, as a failure event occurred.  

Step 2: Design of set of Traffic management measures 

In the first decade of the 21st century a coherent framework was developed in The Netherlands 
for the deployment and decision making processes surrounding traffic management (In Dutch: 
‘Gebiedsgericht benutten’). The framework is applied as the basis on which the majority of 
integral traffic management decisions are taken (Rijkswaterstaat, 2003). In the framework, 
depicted in Figure 8.1, a distinction is made between services and measures for the 
application of traffic management. Services relate to the network wide objective that is being 
sought through traffic management for an identified problem. A service is in general a 
description of actions intended to achieve the desired effect for certain traffic flows, locations, 
or roads (e.g. limit the flow of incoming traffic, increase the capacity at the bottleneck). On 
the other hand measures relate to the physical application of an action that directly influences 
the traffic system. In general, measures are derived from services, where the measures are the 
actions that achieve the objectives set out in the services. The services categories are defined 
as: influencing throughput, redistribution of traffic flow, influencing demand, influencing 
capacity, and general network-services. In the past decade, a number of additional services 
and measures may be added to the list, such as personalised in-car travel information and 
cooperative ITS.  

Although the traffic management framework gives a good overall indication of the majority of 
possible measures, new options have been developed since its finalisation which is very 
relevant to the considered case. One aspect that is considered is that of network wide 
integrated traffic management. Although there are many ways such an approach can be 
defined and implemented, we will focus here on the definitions and approach as described in 
(Hoogendoorn et al., 2015, Hoogendoorn et al., 2014, Landman et al., 2010). In this approach 
four main principles are applied: 

• Spare capacity in the network is optimally utilised given the prevailing traffic 
conditions 

• Capacity drop is prevented for as long a time as possible 

• Traffic flows in the network should not be unnecessarily hindered (secondary 
congestion) 

• A bottleneck should be resolved at the level at which it manifests. 
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Figure 8.1: ‘Gebiedsgericht benutten’ (GGB) traffic management strategy framework 
(Rijkswaterstaat, 2003) 

These principles are applied in practice on a network such that multiple bottlenecks can be 
tackled without a solution at one location leading to secondary problems at another and also 
allowing multiple correlated bottlenecks to be simultaneously addressed. In most instances, 
the measures that can be applied exist in the previously described framework; however the 
setup and application of the measures are controlled such that each one considers the setup of 
the other measures and such each measure does not work individually, but rather as part of an 
integrated system.  

In this case, a service solution will be defined for each identified location from which one or 
more traffic management measures can be selected. The selected measures will then be 
analysed for their effectiveness as described in the following step.  

Step 3: Evaluation of measures  

Forecasting of the effect of traffic management measures for each carriageway is carried out 
using simulation models in which the stochastic character of traffic flow is considered on 
different levels. Two models are applied for this purpose: INDY-MonteCarlo and FOMSA. 
INDY-MonteCarlo is a dynamic macroscopic traffic model based on the LTM and enriched 
with advanced Monte Carlo sampling algorithms for uncertainty modelling, as described in 
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Chapter 4. INDY-MonteCarlo is suited for use with uncertainty analysis and network 
scenarios. The considered scenario and uncertainties are given in the following subsection.  

The FOMSA model is a Lagrangian based dynamic semi-macroscopic model based on first 
order traffic flow theory with additional invariant terms to consider stochastic driver 
behaviour. The use of Lagrangian coordinates allows vehicles and vehicle-groups to be 
individually followed and be assigned specific characteristics. This model is described in 
Chapter 6 of this thesis. For specific locations and traffic management measures, a more 
detailed analysis of the traffic flow may be required. An analysis on the level of vehicles and 
vehicle interaction can give insight into the level of effectiveness of traffic management 
measures. This may be the case where there are multiple interacting traffic flows that cannot 
as easily be captured in a regular macroscopic model. In such a case, the FOMSA model is 
suited and can be applied using a single vehicle platoon (therefore microscopically) or on a 
platoon basis.  

8.2 Case study network 

The case study is performed for the A20 motorway, which forms the North Ring of Rotterdam 
motorway network. The network of greater Rotterdam is shown in Figure 8.2. The network 
covers the city of Rotterdam including surrounding cities and towns, such as Delft, Dordrecht 
and Zoetermeer and includes the major motorways and interconnecting roads down to a local 
level.  

 

Figure 8.2: Road network for Greater Rotterdam with the considered A20 motorway 
highlighted 
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The objective of the study is to evaluate the traffic operations on and throughput of the A20 
motorway on the north ring of Rotterdam (see Figure 8.2) and consider traffic management 
improvements to improve traffic flow conditions on that corridor and the surrounding 
network. The A20 on the North Ring of Rotterdam has a number of bottleneck locations with 
spillback often reaching other bottleneck locations. There are a lot of intertwining traffic 
flows, both local and national. The congestion problems on the road have been a major 
concern for a while and continue to form a challenge, especially as there is very little space to 
expand the infrastructure to increase capacity. Therefore traffic management potentially has 
an important role to play. 

8.3 Network scan for weakness 

The first step of the approach entails scanning the network for weak elements. To this end, the 
Link Performance Indicator for Resilience (LPIR) is calculated for the network shown in 
Figure 8.2. This is performed using an aggregation time interval of 15 minutes. Data for the 
entire year of 2009 is used in the experiment. Road sections are defined as the section of road 
between two correct working loop detectors. In this case the critical density of traffic is 
assumed as 25 vehicles per kilometre per lane. Incidents are not explicitly considered, 
meaning that the incident reduction term is unused and has a value of 1. Upper bounds for the 
traffic flow are pragmatically estimated from data by taking the 99.9th percentile value of the 
flows for each road section. At bottleneck locations this will resemble the real capacity minus 
outliers, while at non-bottleneck locations the value will be less important as traffic flow will 
either remain uncongested (captured by the traffic speed) or will be influenced by an external 
bottleneck with a lower capacity value.  

The LPIR results of the experiment are shown in Figure 8.3 on the considered network. 
Values generally vary between 0.0-1.4, with one section in particular reaching a LPIR value 
of 2.0. Road sections with higher values are sections that should be viewed in more detail and 
are the sections that should be most readily considered for improvement with traffic 
management to improve the traffic throughout and in turn the network performance. In Figure 
8.3, road sections that appear with a red colour or darker are the least resilient. These are road 
sections that have a LPIR score equal to or above 1.2, with orange indicating values around 
1.0, and yellow and green indicating values below 1.0, which are deemed to be road sections 
that have a lesser priority in comparison to the higher scoring road sections.  

Using the results from the LPIR analysis a priority list can be drawn up that indicates which 
road sections should be addressed with priority by road authorities. This list is given in Table 
8.1, with the numbered sections shown in Figure 8.3. A plausibility check based on expert 
judgement is performed to give an indication of the possible reasons of each section 
belonging to the list and the causality of the low resilience score. Causality can be added to 
the analysis by making use of the traffic characteristics and road characteristics terms from 
equation (8.1). Data is added from other relevant variables, such as data on the road surface, 
infrastructure geometry, traffic composition, and many more. This more detailed analysis is 
not performed in this contribution, therefore causality is left to expert judgement.  
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Table 8.1: Locations with the highest LPIR values 

Section nr 
(see Fig. 8.3) 

LPIR 
value 

Location description Section type Initial estimation of problem  
 

1 2.0 A20L Terbregseplein  Joining flows after interchange 
and lane drop 

2 1.9 A20R Centrum  Section with 
onramp 

Narrow lanes, gradient and 
inflowing traffic on short 
onramp 

3 1.7 A20L Kleinpolderplein Weaving section Weaving section 
4 1.4 A20R Kleinpolderplein Weaving section Weaving traffic at interchange 

split 
5 1.4 A20L Crooswijk Weaving section Weaving section 

 

 

Figure 8.3: Network and results of the LPIR analysis 

8.4 Design of traffic management solutions 

In the second step of the proposed framework, traffic management solutions are constructed 
for selected locations. The quick-scan resilience analysis of the network returned a number of 
locations that are found to be the least resilient. These locations have been prioritised as 
shown in Table 8.1. An initial estimation of the reasons behind the lack of resilience is also 
given for each location. Using this analysis, a selection of feasible traffic management 
measures can be drawn up to tackle the problem locations.  

Two sub-cases are considered to allow both modelling techniques to be demonstrated. On the 
westbound carriageway (A20L) the FOMSA model is applied, as this corridor shows multiple 
interacting bottlenecks, which can be suitably analysed by this model. On this stretch, it is ill 
advised to consider a single location as the occurrence of multiple bottlenecks do not stand 
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alone, rather a coordinated traffic management approach is required.  On the eastbound 
carriageway (A20R) advanced sampling Monte Carlo is applied using the INDY-MonteCarlo 
model. The second sub-case considers location 2 from Figure 8.3 at which will be referred to 
as location A20R31. The results from the LPIR analysis into the resilience of the motorway 
are considered to a focus on especially weak areas on the carriageways.  

8.4.1 Sub-case 1: Westbound carriageway of the A20 Ring Rotterdam 

The westbound carriageway of the A20 Ring Rotterdam has a long standing problem during 
peak periods due to multiple bottleneck locations. There is very limited space available for the 
realisation of extra capacity and many traffic management measures thus far have not 
eradicated the expansive congestion problems.  

Location: A20L from Terbregseplein interchange to Kleinpolderplein interchange 

Problem: Multiple bottlenecks in succession:   
- Merging flows after an interchange (Terbregseplein interchange)  
- Inflow of HGV onto main highway together with bend on road  
- Busy on-ramp (Crooswijk) 
- Two weaving sections in quick succession (Crooswijk-Rotterdam Centrum-A13).  

Solution*: Coordinated traffic management with multiple solutions. 
- Facilitate merging  
- Maximize bottleneck capacity 
- Limit traffic flow 

Possible measures:  
- (Dynamic) Lane drop prior to merge 
- Lane drop on the outside lane instead of inside lane 
- Prevent left lane changes in merge area 
- Lane choice advice 
- Ramp-metering 

Solution approach scenario 1: 
- Dynamic lane drop prior to merge location. (Terbregseplein interchange)  

The first scenario considers the reduction of traffic flow into the motorway corridor. Due to 
congestion at the merging section at Terbregseplein, vehicle interaction can lead to congestion 
for both inflowing traffic flows (see Figure 8.4). This combined with the lane drop leads to an 
increased reduction of the local capacity. By moving the lane drop upstream before the merge, 
removes the necessity to merge over all lanes and means that any congestion resulting from 
the lane drop only affects one of the incoming flows. However, applying the lane drop 
upstream will lead to a reduced utilisation of capacity, as the flow with the lane drop can no 
longer make use of any spare capacity on the two lanes from the other inflowing carriageway. 
It is unclear to what extent this plays a major role. This measure is focussed on reducing the 
inflow of vehicles into the problem area and thus reducing the chance of secondary 
congestion on the Rotterdam Ring. 
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Figure 8.4: Terbregseplein motorway merge considered in scenario 1 of sub-case 1 

Solution approach scenario2: 

- Construction of the considered A16-A13 bypass extension 

While creating extra capacity on the A20 is not possible, for a number of decades there have 
been plans to build a bypass extension to the A16 motorway, which would reduce the size of 
the traffic flow on the A20 (see Figure 8.5). This is not really a traffic management option, 
but is considered as it has long been seen as a viable and attractive option. However, it should 
be noted that it comes at a far greater monetary expense. The construction of the bypass 
diverts traffic from the A16 and A20 that have their destination north of Rotterdam away from 
the city ring road and therefore reduces the pressure on the North Ring (A20). 

 

Figure 8.5: Planned A16/A13 bypass considered in scenario 2 of sub-case 1 
(Rijkswaterstaat, 2015) 

Solution approach scenario 3: 

- Ramp-metering (Crooswijk on-ramp) 
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The third considered scenario involves focussing on the most significant downstream 
bottleneck location on the carriageway. As congestion moves in an upstream direction, the 
most downstream bottlenecks are of most significance as spillback will influence the greatest 
area. The on-ramp and weaving section at Crooswijk (location 5 in Figure 8.3) is one of the 
most downstream bottlenecks on the corridor. The inflow of traffic at this onramp is high 
during peak periods and has a disruptive effect on the main carriageway. Therefore ramp-
metering is applied on the on-ramp to reduce the inflow and level of disruption on the main 
carriageway and therefore lead to a lower level of congestion and upstream spillback into 
other bottleneck locations.  

This scenario also requires network traffic management for the secondary roads that connect 
to the on-ramps. This additional secondary buffering is required as there is limited space 
available on the on-ramp for buffering and additional spillback onto the urban roads is 
undesired. The secondary buffering limits traffic throughput to the onramp on urban roads and 
therefore prevents the onset of additional congestion at the start of the on-ramp. This 
methodology has been previously described by (Hoogendoorn et al., 2015, Hoogendoorn et 
al., 2014). However the secondary network traffic management is not modelled in the case 
and is presumed possible. 

8.4.2 Sub-case 2: Eastbound carriageway of the A20 Ring Rotterdam 

Similarly to the westbound carriageway, the eastbound carriageway also has extensive 
congestion problems with few options for capacity expansion. However, there is one clear 
bottleneck location at which the majority of congestion occurs. This allows a more focussed 
approach to the problem. Another difficulty that is not tackled here, but is of relevance, is 
regular spillback from connecting motorways. However, we will focus on congestion 
occurring from the A20 itself in this sub-case. 

Location: A20R Centrum (A20R31) 

Problem: Narrow lanes, gradient and inflowing traffic on short onramp 
- Busy onramp with short merge distance onto a carriageway on a gradient with narrow 

lanes. 
Solution*: Restrict flow / Buffer traffic 
Possible measures:  

- NB: Keep your lane is already in operation! 
- Ramp-metering 
- Traffic buffering at subsequent upstream intersection on secondary network 

Solution approach: 
- Ramp-metering (Redesigned with coordinated traffic controls for secondary roads) 

A ramp-metering installation is already present at the onramp, but not in use, partially due to 
the spillback onto the secondary road network and partially due to the limited effectiveness. 
The proposed measure will make use of the ramp-metering installation with an increased 
buffer-area. As the buffer area will still be insufficient and it is infeasible to allow traffic to 
buffer on the upstream roundabout, coordinated traffic control is proposed from traffic onto 
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the roundabout for the directions heading to the onramp (Hoogendoorn et al., 2015, 
Hoogendoorn et al., 2014). The exact control setup will not be considered in the case, 
however the effect on the roundabout will. The effect of ramp-metering should delay the on-
set of congestion, which has a positive effect through a reduction of the duration of the 
capacity drop and the reduction in secondary effects from the spillback from congestion on 
the motorway network. The effect of a reduced capacity-drop duration is estimated at 2% 
during the entire peak period on the upstream bottleneck link (Zhang and Levinson, 2003). 

 

Figure 8.6: Rotterdam Centrum onramp considered in sub-case 2 

8.5 Model set-up and scenarios 

In this step, we will discuss the (experimental) set-up of the two models that will be used for 
the respective subcases. Also, the applied distributions and scenario application is discussed 
in this section. The correct choice and set-up of appropriate modelling tools is essential for the 
correct assessment of the measures that have been put forward in section 8.4. For subcase 1, 
we have opted to use FOMSA to model the interaction between bottlenecks, as the model 
considers microscopic fluctuations in traffic and therefore allows interactions between 
bottlenecks to be visible as trajectories are followed. For subcase 2, we elect to make use of  
INDY-MonteCarlo because of its ability to consider scenario based uncertainties that are 
present on the A20R at the considered bottleneck location. 

8.5.1 FOMSA model setup (sub-case 1) 

The first sub-case considers the westbound A20L carriageway over a distance of 11.6 km 
from the onramp at Capelle to the Giessenbrug bridge. The Lagrangian model is setup with 
the correct number of lanes for each road section, including the presence of peak hour lanes. 
Onramps and off-ramps are not considered in the number of lanes, unless they are weaving 
sections, as vehicles will ‘appear’ or ‘disappear’ from the carriageway at these sections in the 
model. At on-ramp locations vehicles are forcibility added to the road and the surrounding 
vehicles on the carriageway have the opportunity to adjust their speed and headway to 
accommodate the new vehicle.  
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The basic setup of the traffic demand is derived from traffic data collected from the motorway 
at the relevant in- and outflow locations. During calibration of the model these values were 
adjusted in a conservative manner to create an accurate congestion pattern for the morning 
peak period, which is the dominant peak period. At locations on the carriageway where 
further capacity reductions are present, an additional capacity reduction is applied, which 
directly influences flow through the fundamental diagram. An example of this is at a location 
prior to the Crooswijk onramp where there is a sharp bend in the carriageway together with a 
gradient.  

The applied fundamental diagram has a nominal jam density of 140 veh/km and a critical 
density of 25 veh/km. The maximum speed limit is 100 km/hr, the critical speed is set at 85 
km/hr and the minimal spacing at standstill is 7.5 m. A time-step of 0.5s is applied to comply 
with the number of lanes and traffic density and the vehicle group size is 2 vehicles per group. 
A forced capacity drop value is applied of 10% for congestion, while the advection invariant 
is set at a value of 0.2 and the maximum acceleration bound is 1.0 m/s2.  

The simulation is carried out for a time period of 60 minutes, in which the traffic flow is 
gradually increased up to the desired level and maintained for 15 minutes after which it is 
reduced to a lower level to allow congestion to dissipate. This is sufficiently long to 
demonstrate the build-up and dissipation of congestion. A short increase and decrease is 
chosen as a controlled way to demonstrate the effects of congestion and the performance of 
the motorway stretch. Use of real demand profile data proved complicated and overly time-
consuming for the sake of the required demonstration and was not chosen. As different 
random sampling of the vehicle characteristics can lead to different results, a single identical 
sample is taken which is applied identically to each scenario for the sake of comparison.  

8.5.2 INDY-MonteCarlo model setup (sub-case 2) 

The applied network for sub-case 2 is shown in Figure 8.2. The network consists of 8200 
links and 285 zones and is calibrated for an afternoon peak period between 2-8 PM. The 
network is derived from the Dutch national model and therefore has accredited speed and 
capacity values. The assignment model is INDY, which is a dynamic macroscopic model, 
which makes use of the Link Transmission Model (Yperman, 2007). The network is 
calibrated for the evening peak period, which is the dominant period for the carriageway. The 
model is run with time steps of 10 seconds.  

The applied Monte Carlo routine makes use of Sobol numbers on the two input variables: 
demand and capacity, to construct a well distributed set of samples. Sobol quasi-random 
numbers were previously shown to give a good distribution of samples and 20 samples proved 
also sufficient to obtain and good distribution. Identical sample values are applied for both the 
reference and traffic management scenario for sake of comparison. The sampled distributions 
are shown later in this sub-section.  
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8.5.3 Scenarios and boundary conditions 

Scenarios and stochastic fluctuations in traffic flows are considered in the analysis. Scenarios 
are defined as uncertainties on a day-to-day level or even on a greater time horizon, such as 
over multiple years. Scenarios reflect the possibility of a set of conditions being present for a 
longer period of time during a day, such as weather conditions, the present of an incident or 
road works, the day of the week, the presence of a major event and so on. Fluctuations are 
defined as inherent stochastic changes dynamically during a relatively short time period. Such 
fluctuations are often difficult to exactly predict in advance and are often the consequence of 
local conditions combined with external influences from the current scenario or scenarios.  

The main uncertainties can be reduced to variations of the traffic demand (on a day-to-day 
basis and for scenarios) and variations in capacities as demonstrated in Chapter 3 of this 
thesis. Figure 8.7 gives an overview of how capacity and demand variations are influenced by 
scenarios and fluctuations in the traffic system. When considering day-to-day uncertainties, 
external temporal conditions play an important role, such weather effects, day of the week, 
etc. For stochastic fluctuations between vehicles, behavioural aspects are far more important, 
such as time-headways and level of aggressiveness. Traffic demand and infrastructure 
characteristics have a substantial effect on both uncertainty and fluctuations. 

 

Figure 8.7: Relationship between uncertainty and fluctuations in traffic demand and 
capacity 

In sub-case 2, a choice is made in relation to the scenarios to be considered for each location. 
The scenarios determine the demand profile for traffic and the base capacity levels for the 
network. For example, if a scenario is considered for a weekend day in wet weather, the 
traffic demand distribution will represent a set of feasible demand for a weekend day and the 
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road capacity will represent a distribution of empirically obtained capacity values in wet 
weather. Dynamic in-day fluctuations of the traffic demand and actual capacity fluctuations 
are applied to the demand profiles and capacity values for sub-case 1. Doing this completes 
the distributions to be applied in the model analysis.  

The goal of this case study is to evaluate the effect of traffic management on the A20, 
primarily during regular peak periods and demonstrate the applied models. For this reason, the 
scenarios and the applied distributions are taken from non-holiday days. The demand 
distributions give an indication of the level of demand and the spread of the demand. A 
relative demand distribution is derived for each day of the week separately. These are relative 
distributions as the model already harbours absolute values which have been pre-calibrated 
for the applied network. The level of demand is derived through the selection and analysis of 
a set of five locations spread out across the network at a major motorway on which no or little 
congestion is present. The presence of congestion prohibits an accurate demand estimation, as 
capacity is exceeded and therefore the measured levels do not resemble the true demand. The 
selected locations at which the demand is measured are given in Figure 8.8.The following 
assumptions are made for the data-processing to construct the distribution: 

- Only week days are considered, outside of the holiday periods 

- Capacity and demand data is captured for the month September through November 
2014 as this is a coherent and continuous period with only a single holiday week. 

- Both carriageways are analysed separately.  

- Capacity variation is only applied locally to the considered bottleneck location which 
is being analysed.  

- Global capacity variations are not applied. 

Demand distributions are applied to all Origin-Destination pairings equally as a generic 
indication of business.  

 

Figure 8.8: Locations used to determine the demand distribution 
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The distributions for the demand are shown in Figure 8.9 and have been smoothed to 15-
minute intervals for effective use in the model analysis. 

 

Figure 8.9 Traffic demand distributions 

Capacity scenarios and distributions 

Two types of capacity distributions can be applied: local capacity distributions that affect a 
single link, or global distributions that influence the entire network. Global capacity variation 
may be used for situations such as weather conditions that affect a whole (sub)network in a 
similar way. In this case, only local capacity variation is applied and in particular for the 
bottleneck locations that are specifically considered. The capacity distributions are derived 
using an adapted Product Limit Method, described in Calvert et al (2015). The method is not 
expanded on here, as it is already explained in Chapter 3. As driving behaviour is a major 
factor that influences capacity, a distinction is also made for the day of the week for the two 
bottleneck locations. The distributions for the local capacity variation are shown in Figure 
8.10. 

 

Figure 8.10 local capacity distribution 
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Traffic flow stochastics 

While uncertainties relate to scenarios, within scenario traffic flow remains a stochastic 
process with fluctuations that are often caused by differences between drivers. These 
fluctuations can lead to premature congestion and therefore an incomplete utilisation of 
capacity. Stochastic fluctuations are analysed for the two locations and a demonstration is 
given of improvements in homogeneity of traffic through the application of the proposed 
traffic measures. 

The initial parameter values are derived using the available data from the above distributions 
for the median day and calibration of the FOMSA model to represent the level of congestion. 
New parameter values are derived for the new situation with traffic management measure by 
sampling traffic stochasticity at a nearby reference location which has similar characteristics 
to the new situations. The parameter values are derived through comparison with the initial 
calibrated parameters prior to simulation.  

Network adjustments 

Implementation of the scenarios in the models requires adjustments of the network and to the 
traffic flows on the network. These adjustments are given in Table 8.2. 

Table 8.2: Model adjustments per scenario 

Scenario Network/Flow changes 
Sub-case 1: Westbound (FOMSA)  

- Scenario 1 (lane drop) 
 

Inflow reduced from 2+2 lanes to 2+1 lanes. Inflow rate from  
3100 -> 2200 veh/hr on reduced road. 

- Scenario 2 (bypass) Inflow from A16 to A20L reduced from 3100 - > 1000 veh/hr 

- Scenario 3 (ramp-metering) 
 

Outflow from A20L to A16/A13 increased from 4100 -> 5100 veh/hr 
Inflow on on-ramp decreased from 1000 -> 500 veh/hr 

Sub-case 2: Eastbound (INDY-
MonteCarlo) 

Capacity on-ramp reduced from 2052 -> 900 veh/hr 
Capacity weaving section increased from 5888->6006 veh/hr (+2%) 

 

The first sub-case contains three scenarios, which influence two different locations. Scenario 
1 and 2 are applied to the Terbregseplein interchange (see Figure 8.3, location 1). Scenario 1 
reduces the inflow onto the Rotterdam ring through a lane drop prior to the lane merge and 
therefore aims to reduce secondary spillback and reduce traffic volume on the ring at the cost 
of possibly more congestion entering the ring from the east. Scenario 2 applies a planned 
bypass of the entire A20L north ring. This results in a major reduction in the traffic volume on 
the A20L. Scenario 3 applies ramp-metering at the Crooswijk on-ramp (Figure 8.3, location 
5) to specifically target an important bottleneck. Scenarios 1-3 are implemented in the 
FOMSA model. The scenario for sub-case 2 also targets an on-ramp in the A20R direction 
eastbound. Implemented in INDY-MonteCarlo, the adjustments for the scenario involve a 
reduction of the inflow onto the main carriageway from the on-ramp located at the Centrum 
junction (Figure 8.3, location 2). A capacity increase of 2% is presumed on the main 
carriageway due to a reduction in weaving movements (Zhang and Levinson, 2003). 
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8.6 Analysis and assessment of measures 

The goal of the case is to demonstrate the effectiveness of the developed models in a real case 
for traffic analysis and effectiveness of traffic management. Additionally, a further 
demonstration of the necessity of considering stochasticity in traffic flow for these analyses is 
sought. The latter goal is demonstrated in section 8.7 and the prior is addressed in this section. 
The traffic management scenarios are aimed at reducing congestion on the A20 motorway and 
increasing throughput. With this in mind, the total delay and travel time, as well as congestion 
length are considered as three relevant performance indicators. As both models are setup for 
different types of analysis, the applied indicators differ and are applied as follows: 

Sub-case 1:  Congestion length and spillback: 
 
 ��~�q =	max	(��~�q.	�� − ��~�q.�!�Z!) (8.2) 

   
Travel time 

 �� = ∑�*,�,! − �),�,!l�	�,�,!  (8.3) 

 

The congestion length, L, is the largest distance from the start of congestion to the end of 
congestion or at a specific time. The travel time, TT, considers the average actual travel time 
of all vehicles between a two locations, A and B. 

The results of the second analysis allow for a more in-depth qualitative analysis. This is 
carried out for the effects of congestion spillback over the various bottleneck locations for the 
three scenarios in this sub-case.  

Sub-case 2:  Total (network) delay: 
  
 �\ =� %gℎ(�)%�Z		 − %~��(�)

!�	
!��  (8.4) 

 
Average peak travel time: 

  ���/������� = ∑∑�>,:,�−��,:,�l%gℎ,:,�max	(�) 	X10	� = 1. .4 (8.5) 

The total delay, TD, indicates the delay experienced by all vehicles during a specified time 
period, t=0..e,  in relation to free-flow traffic conditions denoted by the speed, %�Z		. The 

average peak travel time, ���/��������, considers the actual travel time for all vehicles during the 
main nominal peak period,	� = 1. .4. 
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8.6.1 Sub-case 1 (FOMSA) 

The first sub-case considers three different scenarios to improve traffic flow on the westbound 
carriageway (A20L). The resulting trajectory plot of the reference is given in Figure 8.11a. 
Additionally the traffic speed diagrams for the three scenarios are given in Figure 8.12a-d. 
Comparison of the levels of congestion is made in relation to the reference scenario, shown in 
Figure 8.12a, for which no additional traffic management measures are taken. The numbers 
shown in Figure 8.12a represent the two locations where the traffic measures are applied, 
while in the scenario figures in the locations are given with an arrow. In the reference 
scenario, congestion occurs relatively early at the Crooswijk onramp (location 1 in Figure 
8.11) and propagates upstream. At Terbregseplein interchange (location 2) congestion also 
occurs and is later exacerbated by the spillback from Crooswijk.  

In scenario 1 (Figure 8.12b), the lane drop at Terbregseplein is moved upstream to before the 
merge with inflowing traffic from the adjoining motorway (A16). This has three 
consequences for the congestion pattern. Firstly, the downstream activation of the Crooswijk 
bottleneck is avoided due to a reduction in the traffic flow that passes the merge point. The 
second consequence is that no congestion propagates upstream towards the A16 from the 
merge point, as congestion is triggered prior to the merge point. The third consequence is an 
increase in the severity of congestion on the upstream flow from the A20. However, Figure 
8.12b shows that the congestion remains limited due to the available upstream capacity to 
temporarily buffer the traffic. 

Figure 8.11: FOMSA model results given as trajectories the reference scenario 

Scenario 2 (Figure 8.12c) considers the presence of the A16/A13-bypass, substantially 
reducing the traffic flow onto the A20L. From Figure 8.11c it is clear that this has a large 
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effect on the occurrence of congestion on the road. At all potential bottleneck locations, traffic 
flow is sufficiently reduced to prevent congestion occurring.  

Scenario 3 (Figure 8.12d) focusses on the reduction of congestion at Crooswijk through ramp-
metering. Inflowing traffic is reduced to 500 vehicles per hour at the onramp. This leads to a 
delay in the onset of congestion at the onramp and also leads to less severe congestion and a 
slower spread of congestion to upstream bottleneck locations. This also has a positive effect 
on the congestion that occurs at Terbregseplein, as can been seen in comparison to the 
reference. Further analysis of the bottleneck at Crooswijk showed that a reduction to 
approximately 200 vehicles per hour would be required to prevent congestion occurring at the 
on-ramp. 

a) Reference scenario b) Scenario 1 (lane drop)  
 
 
 
 
 

c) Scenario 2 (bypass) d) Scenario 3 (ramp-metering) 

Figure 8.12: FOMSA model results given as the speeds for all scenarios of sub-case 1 

A further analysis of the results of the scenarios is given by the developments of travel times 
and is shown in Figure 8.13. These are the actual travel times of vehicles that entered the 
motorway at the most upstream location and exited 11.5 km later at the most downstream 
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location, which is not the case for all vehicles. The reference scenario shows an increasing 
travel time until the traffic demand is reduced and only a slight decrease in travel time once 
the inflow demand is reduced. This is due to the extensive congestion that occurs. The line for 
the reference scenario also finishes earlier as vehicles with later starting times spend too long 
in congestion to be able to exit the motorway stretch before the end of the 60 minute 
simulation. Scenario 1 (lane drop prior to merge) and Scenario 3 (ramp-metering) both show 
similar travel time patterns. For the higher inflow rate, the travel time gradually grows as 
congestion increases, however at a much lower rate than the reference. Once the traffic inflow 
is reduced, congestion starts to dissipate and travel times quickly drops towards the free-flow 
travel time, which is approximately 6.5 minutes. Scenario 2 (Bypass) shows a slight increase 
in the travel time to 7 minutes when traffic is heavier, however as no congestion occurs, the 
travel-time remains low throughout. 

 

Figure 8.13: Travel-times in the sub-case 1 scenario’s 

8.6.2 Sub-case 2 (INDY-Monte Carlo) 

The results of the total delay time of the 20 Monte Carlo simulations for the reference (blue) 
and scenario (red) are given in Figure 8.14. The results are in sorted ascendingly to give an 
indication of the distribution of the delay. The yellow bars show the percentage difference 
between the two. From this, it is clear that there is an exponential distribution of the delay 
probability for the network. This means that in some extreme cases very high delays are 
present for certain traffic conditions, while in most cases there is some sort of an average 
delay, which corresponds to the extent of the traffic conditions. In the Monte Carlo 
simulations, two variables are applied, namely the global demand and the local capacity. 
Figure 8.15a-b shows the sampled demand and capacity factors respectively in comparison to 
the total delay time. The figures show that the effect of the traffic demand is much greater on 
the total delay than the change in capacity value. There is a very definitive increase for the 
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demand samples, while the capacity samples shows a wider distribution with a small tendency 
for a higher total delay for lower capacity values, as may be expected. An explanation for this 
can be found in part by the fact that the demand factor is applied globally to the entire 
network, while the capacity factor is only applied to the analysed bottleneck location.  

 

 

Figure 8.14. Total network delay for sub-case 2 

 

  

Figure 8.15 a-b. Total network delay versus demand sample for sub-case 2 

The yellow bars in Figure 8.14 indicate the percentage difference between the reference 
scenario and considered scenario of the network delay. From this, the effectiveness of the 
traffic management measure is indicated. The results show that the traffic management 
measure is effective with an improvement in the total delay of 2-12% for the majority of the 
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samples, with a median improvement of 3.7%. The trend of the reduction in absolute terms is 
uniform over all samples, which results in a declining relative improvement for higher total 
delays. This can be expected as ramp-metering has a set bandwidth in which it is effective. 
Once traffic flow exceeds the upper bounds, congestion will occur and the improvement on 
traffic flow reaches its optimum.  

The distribution of the travel times along the A20R motorway is given in Figure 8.16 for the 
reference (scenario) and scenario (red).  The distribution of the travel times shows a much 
greater linearity than the delay time. This is due to the measurement of the travel time on the 
A20R only, while the total delay is calculated over the entire network. Therefore, secondary 
delays, as a consequence of congestion on the A20R, are captured by the total delay time, 
which works exponentially for greater degrees of congestion at the considered bottleneck 
location.  

The effect of the traffic management measure for the improvement in travel time is found to 
be in the range of 6-11% with a median value of 7.5%. The improvement in travel time along 
the considered road stretch is also more linear in relative terms, but does decrease slightly for 
the higher travel time samples.  

 

Figure 8.16. Average peak travel times for sub-case 2 

In summary, the application of ramp-metering as a the traffic management measure for the 
Rotterdam-Centrum on-ramp is effective in reducing the network delay on the Rotterdam 
Ring (3.7%) and reducing the travel time on the A20R motorway (7.5%) and may be 
considered for implementation. The practical implementation of additional buffering and 
coordinated traffic signals on the connecting urban and provincial roads is not considered 
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however. This should be reviewed before the ramp-metering can be applied to prevent 
secondary problems on the local road network. 

8.7 Assessing the influence of stochastic characteristics 

As part of step 3, consideration of the influence of variations in traffic flow is given to address 
the second goal of this case. The models in this case are designed and applied to consider 
uncertainty and stochastic variations in traffic flow on different scales. The INDY-
MonteCarlo model considers uncertainty in traffic flow and capacity values on a day-to-day 
level in which each individual day a different pattern is visible. The FOMSA model focusses 
on inter-vehicle stochastics in which each vehicle or vehicle group shows different behaviour 
and therein influences traffic flow. In this section, the relevance of considering these 
stochastics is demonstrated by offering the alternative approach in which a deterministic 
approach is applied. When considering the real stochastic variations, one is considering the 
effects that are also present in reality on roads. Consideration of a non-existence average case 
as a deterministic calculation deviates from the real values which would be found in practice, 
which is shown in the next paragraphs.  

8.7.1 Sub-case 1 (FOMSA) 

The first sub-case, carried out with the FOMSA model, considers stochastic behaviour 
between vehicles, rather than their macroscopic day-to-day influence. Two parameters are 
adjusted to show their influence in the model, namely the advection invariant, which describes 
the following times, and the bounded acceleration rate. The case with no invariant value and 
no acceleration bound is shown Figure 8.17a. Figure 8.17b shows the same reference scenario 
with an invariant value of 0.4 and a bounded acceleration of 0.5 m/s2. Interestingly, the 
‘stochastic’ case yields less congestion than the ‘deterministic’ case. Analysis of the results 
shows that this is mainly due to the ability of merging traffic to accommodate inflowing 
vehicles better when natural gaps are present, such as in the stochastic case. When all vehicles 
drive with identical gaps, inflowing vehicles force additional gaps when merging, which lead 
to a reduction of capacity. In numbers, there is little difference between both cases on the 
upstream bottleneck, however on the downstream bottleneck congestion in the deterministic 
case takes 904 seconds to reach the second upstream bottleneck. In the stochastic, case this is 
1143seconds, which is 26% longer. This causes the congestion spillback in the stochastic case 
to reach more than 200 metres further upstream than the deterministic case before stabilising 
and slowly dissipating. The effect on the travel time is found to be less than 1% during the 
congestion build-up. The influence of only considering the bounded acceleration is limited, as 
has been shown in previous research (Calvert et al., 2015). The individual characteristics of 
vehicles, when decelerating and accelerating, is not considered here and may change the 
outcome of the results as it can be hypothesised that it may lead to a quicker onset of 
congestion due to greater heterogeneity in the traffic flow at bottlenecks. Furthermore, there 
may also be additional capacity drops effects which are limited here.  
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a) Reference: without invariant & without BA 
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b) Reference: with invariant (0.4) & with BA (0.5ms
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Figure 8.17a-b: Sub-case 1 comparison for modelling a) deterministically  b) 
stochastically 

8.7.2 Sub-case 2 (INDY-MonteCarlo) 

A single INDY-MonteCarlo simulation is run for the median input values of the traffic 
demand and road capacity. This is the deterministic case and is performed for both the 
reference scenario and the traffic management scenario. The results of the deterministic runs 
are compared with the stochastic case in Figure 8.18. Here the deterministic results are given 
with dashed lines for both the reference and scenario for the total delay. The stochastic case 
here shows a reduction in total delay due to the traffic management measure to be 3.7%, while 
the reduction in the deterministic case is only 1.2%. From the results it is very clear that the 
deterministic case underestimates the improvements, which is due to the inability of an 
‘average’ input value to consider the entire distribution of all possible values. This is 
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especially the case for the more extreme ends of the distribution. This result is not a surprise 
and has been previously found in other examples (see Chapter 2 of this thesis). Nevertheless, 
it once again demonstrates the importance to consider stochastic elements of traffic flow, 
especially when applying measures that are aimed at addressing extreme delays in traffic. 

 

Figure 8.18: Comparison between stochastic and deterministic modelling for sub-case 2 

8.8 Conclusions  

In this case study, the entire chain for the application of stochastic effects in traffic modelling 
to aid the application of traffic management has been demonstrated. This was performed for 
the A20 motorway, the northern part of the Rotterdam Ring Road. The Link Performance 
Indicator for Resilience was first applied as a quick-scan method to indicate weak sections of 
a road network requiring attention. Weak sections on the network were identified and their 
sources were identified as possible locations to apply traffic flow improving traffic 
management measures. The application and selection of traffic management measures was 
applied in part using the ‘Gebiedsgericht benutten’ (GGB) methodology, developed by 
Rijkswaterstaat in The Netherlands for the application of traffic management. In two subcases 
a set of measures were selected. The first sub-case focussed on the eastbound A20L motorway 
using the FOMSA model to analyse the knock-on effects of individual vehicle behaviour on 
multiple interrelated bottleneck locations. The second sub-case focussed on the westbound 
A20R using the INDY-MonteCarlo model to consider day-today stochastic variations in the 
local capacity and global demand. The analysis in both cases is not related, but shows the 
application of the different models and why one model is more suited to one case, while 
another may be suited to another. 

Ramp-metering at a critical location (Rotterdam Centrum onramp) on the westbound (A20R) 
carriageway was shown to be effective in reducing delays by 2-12% depending on the day. 
On the eastbound (A20L) carriageway, ramp-metering at the Crooswijk onramp was found to 
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have a positive effect on the reduction and delay of congestion. The most effective measures 
on this carriageway were found to be related to the reduction in traffic flow onto the North 
Ring. A change to the configuration of Terbregseplein merge between A20 and A16 traffic 
flows, showed that congestion on the A20L can be nearly eliminated by moving the lane drop 
prior to the merge. The construction of the A13/A16 bypass of the A20 Ring North was also 
considered and showed that such a measure would eradicate congestion as it would divert a 
sufficiently high amount of traffic from the A20L. However, it comes at a much greater 
financial cost and it not strictly a traffic management measure. 

In the application of the case, the models showed they are able to perform well and 
demonstrated their value for their specific purposes and their ability to a priori evaluate 
potential traffic management measures for sensitive road sections and carriageways. The 
importance of consideration of the stochastic influence of traffic is further demonstrated for 
both day-to-day variations as well as intraday and inter-vehicle stochastics for the outcome of 
studies. Failure to consider the stochastic effects would of have resulted in a bias of 26% for 
the speed of congestion spillback in sub-case 1 and of 200% for the delay in the second sub-
case. A further recommendation is made in relation to the GGB methodology. The 
methodology remains extremely effective and relevant, however is in need of updating, 
especially in relation to the possibilities of floating devices and social media. The increase in 
possibilities for communication and traffic flow guidance has further developed in past 
decades and should be further included in a revised version of the GGB methodology.  
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Chapter 9 

Visualisation of uncertainty in probabilistic traff ic 
models for policy and operations 
 

 

 

 

 

This chapter investigates different methods to visualise uncertainty in static graphical 
representations of probabilistic traffic model predictions on road networks. Throughout the 
chapter, probabilistic may be seen as synonymous with stochastic. Although various 
graphical cues may be used to represent uncertainty, it is not a-priori clear which of them are 
most suited for this purpose, since their legibility, intelligibility and the degree to which they 
interfere with other graphical elements in a representation differ widely. Several graphical 
uncertainty representations were therefore developed and analysed in expert sessions. A 
selection of the initial set of uncertainty visualisations has further been evaluated in a 
cognitive alternative task-switching experiment. This chapter also presents an overview of 
possible graphic uncertainty representations and the considerations involved when applying 
them to uncertainty in traffic model visualisations. 

The first section gives a description of the main challenge which is tackled in this chapter. 
Section 9.2 looks at the main elements to be considered in visualisation of traffic flows in 
models. In section 9.3, a number of visualisations are presented, followed by the results of a 
cognitive experiment for a selection of the developed visualisations in section 9.4. The results 
are discussed in section 9.5 and conclusions are drawn in section 9.6. 

 

 
This chapter is an edited version of the article: 
Calvert, S. C., Rypkema, J., Holleman, B., Azulay, D., & de Jong, A. (2015). Visualisation of 
uncertainty in probabilistic traffic models for policy and operations. Transportation, 1-29. DOI: 
10.1007/s11116-015-9673-3 
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9.1 Introduction 

Developments in road traffic modelling have led to a greater consideration of various 
uncertainties, which are present in traffic systems. These models, referred to here as 
probabilistic traffic models, consider uncertainties and stochastic fluctuations in traffic flows, 
which are of importance to accurately represent traffic flow and determine correct 
performance indicator values (Calvert et al., 2012). While the focus has traditionally been on 
the development of probabilistic traffic models, the representation of their output and, 
particularly the uncertainty therein, has grown in importance. In contrast to interactive 
visualisations, that allow a wide range of interactions, the static representation of the output of 
probabilistic traffic models is much more challenging since this requires that all information is 
contained in a single figure. In this chapter, the focus is on feasible options to represent the 
results of probabilistic traffic models which contain uncertainty data in road networks. A 
selection of five of these visualisations is tested in an experiment. This considers 
visualisations for printed communication and includes a description of the needs and 
shortcomings of existing traffic model visualisations for this objective and.  

9.1.1 Probabilistic traffic models 

In traffic modelling, a number of distinctions can be made between models. A primary 
distinction is on the level of detail: microscopic models consider the movements of individual 
vehicles, while macroscopic models consider the aggregated movement of all vehicles on a 
specific road section. Some models are dynamic, which indicates that they make use of a time 
component, while static models are not time dependent. But it is primarily at the level of 
determinism where probabilistic traffic models are defined. Deterministic traffic models make 
use of uniformity in traffic behaviour and do not consider stochastic variations in the traffic 
flow. Stochastic traffic propagation models consider fluctuations in traffic flows, while 
probabilistic models explicitly consider a quantification of fluctuations in terms of uncertainty 
or probability. This is typically reflected in probabilities of accuracy or of calculated and 
displayed values. While there are many different possibilities for probabilistic modelling, a 
flow of traffic for a specific road section may for example include either a feasible probability 
distribution of the traffic flow or in a simplified approach show a confidence bandwidth of 
certain standard deviations or percentiles.  

Traditionally probabilities of uncertainty are applied in modelling through the use of Monte 
Carlo simulation (Calvert et al., 2014b). Multiple simulations are performed with random 
input values taken from distributions of the underlying the considered variables, which also 
result in a distribution of results. However, such an approach is usually not applied unless 
there is a specific need to consider uncertainty, since the associated computation times are 
greater. Even as probabilistic models continue to develop and no longer have to (entirely) rely 
on Monte Carlo simulation, their application is still limited often due to monetary or time 
constraints (Binder and Heermann, 2010, Calvert et al., 2014b). Hence there is a need to 
develop new ways to visualise their results (Batterman et al., 2014).  
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9.1.2 Difficulties in probabilistic traffic model visualisation 

Results from traffic models are typically reported by projecting the informative variables onto 
a road network. In general, this approach allows up to two variables to be represented. 
Normally this is performed for a single moment in time, as transforming a time dimension 
into a spatial dimension is not feasible for a static visual representation. The use of colours is 
most commonly applied to identify the value of different variables projected onto a network. 
These may indicate one of many different variables, from the speed of traffic, traffic flow, 
delays, but also other variables, such as environmental variables for example. When a second 
variable is applied on a single one-dimensional network link, this is often performed by 
adding a further spatial dimension to the one-dimensional network link. Network links are 
constructed using vectors to describe their geographical location. A network link vector may 
remain unchanged, while additional spatial dimensions orthogonally can vary in size 
representing different values for the considered variable.  

In traffic modelling, it is uncommon for a third variable to be depicted in a single figure. 
However, when one considers the uncertainty of one of two variables, it may be desirable to 
include an additional visual cue to represent this variable. This however not only offers 
challenges in designing such a cue, but more so in designing one that is comprehensible. This 
means that the visualisation should be intuitive and should fit in the current methods of 
visualisation, such that a complete interpretation can be achieved without so called switching 
difficulties.  

9.2 Visualisation considerations 

9.2.1 Common visualisations 

When considering visualisation of traffic models we will focus mainly on the macroscopic 
class of models, as these models are aggregate and are therefore more easily applicable for 
use with probabilistic visualisation. Even probabilistic results of microscopic models must be 
aggregated, as one cannot consider the distributions of all vehicles simultaneously, which may 
be performed in a similar visual surrounding to macroscopic models. As described in the 
introduction, macroscopic models will tend to make use of up to two dimensions for 
visualisation of results. It is common for these dimensions to depict the variables speed and 
traffic flow. In Figure 9.1 an example is given of the OmniTRANS model package 
(OmniTRANS, 2015), which depicts traffic flow as the thickness of a line and the speed as 
the colour of that line. In this chapter, this approach is taken as the basis for expansion into 
probabilistic visualisations, as it is the most commonly applied method.  

Although it is not commonplace, it is not unheard of for more than two quantitative 
dimensions to be applied on a network. However, many cases in which more dimensions are 
added tend to be purpose-built for a specific type of variable and typically not for uncertainty. 
There is also a trend to externalise probability results outside of the network representation. 
This gives a great deal of flexibility as there is no need to maintain a close link to a network. 
However, this poses two difficulties; the first being that a large area is required to visualise 
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the uncertainty of a whole network externally, unless a user is only interested in a specific 
location. The second difficulty is that the physical connection between the visualisation and 
network is lost. Furthermore, there may be issues involving interference between a larger 
number of visual cues in a visualisation. Therefore such approaches, although useful, are not 
considered as ideal for static reporting of probabilistic traffic model results. Later in section 
9.5 it is shown that this approach can be useful for dynamic interaction. 

 

 

Figure 9.1: A regular macroscopic traffic model visualisation (OmniTRANS (2015)) 

When a network is considered, and the proximity of the graphical representation to the 
network is relaxed, additional visual cues have been known to be applied beyond the strict 
network locations. For example, characteristics of a network link may be shown at a (small) 
distance relative to the physical location of a network link. This is especially the case in 
environmental representations of additional variables for road networks. An example is given 
in Figure 9.2 for air pollution as a consequence of road traffic (Batterman et al., 2014). In 
Figure 9.2, three variables are applied by representing traffic flow by the line type, vehicle 
classification volumes by the size of a circle and the volume of the classification types by 
colour of the circle. This example demonstrates some difficulties of combing multiple 
variables. Overlapping visual cues make some information difficult or even impossible to 
interpret, and the limited interval scale also limits the precision.  

Anwar et al. (2014) use luminance to highlight locations where road traffic incidents have 
occurred (see Figure 9.3). Often such visual cues are applied to attract visual attention of 
users. The colour of a circle indicates the type of traffic incident, while the network lines 
denote traffic states. In many cases, the visualisation of uncertainty in printed reporting is 
given as an additional variable. This is applied for each road section on a network. However, a 
continuous representation demands a different approach from an incidental one. 
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Figure 9.2: Exposure metrics for traffic-related air pollutants (adapted from Batterman 
et al. (2014)) 

  

Figure 9.3: Incident frequency displayed in 
a luminance cue  (Anwar et al., 2014) 

Figure 9.4: Uncertainty in traffic 
visualisation by spatial colour extension 
(Bender et al., 2005) 

Continuous representation of traffic state uncertainty on a network scale is demonstrated by  
Bender et al. (2005) (see Figure 9.4). This makes use of a double line for road sections, with 
the inner coloured line indicating the traffic state and the outer grey-scaled line indicating the 
certainty of the traffic state. While this solution can clearly be applied continuously over an 
entire network and will also work for a ratio-scale, it remains a two dimensional solution and 
therefore lacks flexibility to add additional variables. Most current traffic models consider 
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speed and traffic flow through link colour and line width, while here the width of the line is 
more difficult to vary due to the presence of a double line. Nevertheless, this solution is one of 
few proposed and applied solutions that gets close to offering a solution to adding probability 
to the existing visualisation of traffic model results on a traffic network. 

From these examples, it is apparent that there are challenges for the visualisation of 
uncertainty in traffic modelling. The main challenges relate to: dimensionality and clarity, 
visual perception and cognitive processing: 

1. Dimensionality and clarity convey the ability to present the desired variables in a clear 
an intuitive manner. In this research that refers to the application in a traffic network. 
There are limitations to the application of certain types of visual cues and the number 
of dimensions. These limitations have been shown in part in the previous examples.  

2. In relation to visual perception: A visualisation must be able to be easily interpreted. 
Overloading happens when too many visual cues are applied. Overloading, as seen in 
Figure 9.2, solves the first challenge, but makes certain variables difficult or nearly 
impossible to extract. This is especially the case when the visualisations of different 
variables need to be compared: such as the uncertainty of another variable.  

3. Cognitive processing of probabilistic visualisations does not only relate to a correct 
perception of results, as in the second challenge, but also means that visualisations 
should be able to be processed in an efficient manner. This relates to the way results 
can be used by a user to draw conclusions and give an interpretation of the results with 
as little difficulty as possible.  

The mentioned challenges are simultaneously addressed in the development of possible 
options for the visualisation of probabilistic traffic model results.  

9.2.2 Classification of graphical variables for uncertainty 

Information visualisation is defined as “the act or process of interpreting in visual terms or of 
putting information in visual form” (Theis, 2011) and involves symbolization and 
comprehension. It also offers tools to explore and analyse data sets and therefore facilitates 
the discovery and extraction of relevant information through graphical means. Furthermore, 
the application of uncertainty visualisation can help minimize the effects of uncertainty on 
analysis and decision making (Thomson et al., 2005), but is not straightforward. A 
visualisation is graphically perfect when it gives the viewer the greatest number of ideas in the 
shortest time (Tufte and Graves-Morris, 1983). However, different types of data require 
different representations of uncertainty and specific visualisation techniques are usually 
designed with a specific data-dimensionality in mind (Sanyal et al., 2009). As data 
dimensionality increases, the amount of visual cues available for displaying uncertainty 
becomes limited (Potter et al., 2012, Sanyal et al., 2009) which leads to an increased difficulty 
in quantifying, representing and understanding it (Thomson et al., 2005). 
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While cognitive theory contains a large body of work related to human visual attention, 
empirical research on the attentional aspects of uncertainty visualisation is limited 
(MacEachren et al., 2012). A main challenge is that interference may arise between different 
visual channels under certain circumstances when they are utilised in the same display 
(Acevedo and Laidlaw, 2006, Carswell and Wickens, 1990, MacEachren et al., 2012). Bertin 
(1974) compiled a classification system in which he assesses visual variables according to the 
characteristics of selectiveness, associativeness, orderedness, quantitativeness and length. 
Selectiveness indicates whether a variable facilitates immediate perceptual group perception. 
Associativeness indicates the way in which a variable is grouped perceptually. Orderedness 
indicates the natural perceptual ordering of the variable. Quantitativeness indicates whether a 
variable facilitates quantitative comparisons. And finally, length indicates the number of 
distinct value-levels a variable can assume (Zuk and Carpendale, 2006, Tufte and Graves-
Morris, 1983).  

In this research, the main focus is on the quantitativeness variable, since we are dealing with 
numeric values. According to Bertin, there are seven distinct classes of visual variables: 
position, size, shape, value, colour, orientation, and texture. Another applicable categorization 
of visual attributes is presented by Ware (2012), in which colour, orientation, size, contrast 
and motion or blinking are stronger cues, while effects such as line curvature are weaker. 
Wolfe and Horowitz (2004) consider ’undoubted attributes’ to be those features supported by 
a wide body of literature, such as colour, motion, orientation and size (including length and 
spatial frequency). Luminance onset (flicker), luminance polarity, vernier offset, stereoscopic 
depth and tilt, pictorial depth cues, shape, line termination, closure, topological status and 
curvature also belong to this category. A summary of the regarded cues is given in Table 9.1. 
There is a wide range of categorizations possible, while it is also important to recognise that 
while some visual cues stand out better than others, combinations must be considered for 
application to different variables in a single visualisation. The main feasible combinations 
from the cited literature are space and colour, stereoscopic depth and colour, stereoscopic 
depth and motion, luminance polarity and shape, convexity/concavity and colour (shape from 
shading), and finally motion and shape (Ware, 2012).  

Table 9.1: Summary of applicable visual cues 

Position Orientation Luminance polarity Line termination 
Size Texture Vernier offset Topological status 
Shape Contrast Stereoscopic depth Curvature 
Value Motion Stereoscopic tilt  
Colour Blinking Depth (pictorial)  

Since uncertainty estimations in traffic model output are inherently numeric, graphical cues 
should be able to convey absolute magnitudes and to enable relative comparisons with other 
uncertainty estimations. Furthermore, traffic model visualisations are generally displayed on a 
background of road-networks, presenting additional sources of potential visual interference. 
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9.2.3 Task-switching 

Commonly, analysis of visual representations is performed through task-switching (Monsell, 
2003), as is also the case in this research. Consideration of both visual attention and 
combinations of different visual features leads to analysis of a user’s ability to actively switch 
between different visual cues. This is studied in the area of Task-switching (Monsell, 2003). 
When subjects switch between tasks that have different cognitive requirements, such as 
switching between naming a digit and then reporting if it is even or odd, they incur a 
switching cost. Subjects generally take longer and show higher error rates when responding 
on switch-trials, in which they switch from a different kind of task, than on non-switch-trials, 
where the current task is identical to the previous one (Monsell, 2003). The task-switching 
paradigm relies on the concept of the task-set: the configuration of cognitive resources in 
preparation for the execution of a specific task (Monsell, 2003). For each task, there is a 
preparation effect and a residual cost. The preparation effect is a reduction in effort of an 
upcoming switch task due to advance knowledge. Residual costs are the additional effort 
required at a task-switch, possibly quantified as a time-delay. Residual costs may indicate that 
some parts of the reconfiguration process cannot be completed until after a stimulus has been 
presented (Rogers and Monsell, 1995).  

The task-switching paradigm provides a framework in which response times and accuracy can 
systematically be measured in users for visual cue dimensions. Higher switch costs will in this 
case be indicative of more interference between the uncertainty dimension and the other cue 
dimensions. This is an indication that the cue dimensions are not pre-attentively processed 
well together. This therefore allows different combinations of visual cues to be tested for pre-
attentive processing, to test the ability of a user to efficiently interpret the displayed results.   

9.3 Multi-dimensional probabilistic visualisation 

The construction of a set of feasible visualisations is carried out through an approach that 
consists of multiple expert sessions and is followed by a visual experiment in which a selected 
number of graphical representations are preliminary tested as described in section 9.4. Based 
on literature of uncertainty visualisation and on brainstorm sessions with both cognitive and 
traffic experts, a collection of initial options for visualising uncertainty are constructed within 
the boundaries of a traffic network and as a continuation of existing traffic model 
visualisation. The goal of the expert sessions was to construct a range of visualisations that 
include representations of traffic speeds, traffic flow and uncertainty variables.  

The traffic speeds and traffic flow correspond with the traditional traffic model results, while 
the uncertainty variable is a new visual cue that gives an indication of the uncertainty, or 
rather probability, of the value of one of the traffic variables for each road section. It is also 
possible to seek an additional uncertainty variable, which may be referred to as the impact 
variable. This variable is a more flexible variable that allows either an incidental indication or 
a continuous spatial indication of a certain quantity. This may be the probability of incidents 
at specific locations, a metric for evaluation traffic signals, or merely the 
uncertainty/probability estimation of the second traffic variable. 
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The initial set of graphical representations are separated into different categories and all make 
use of the existing basis of macroscopic models as a requisite as described earlier. The applied 
categories are symbols, colour, texture and spatial dimension (3D) and are shown in Figure 
9.5. A qualitative comparison can be made using specific attributes. An example of suitable 
attributes may be taken from Ravden and Johnson (1989), who present a checklist of 
attributes for which visual cues should be evaluated. The considered attributes are: visual 
clarity, consistency, compatibility, informative feedback, explicitness, appropriate 
functionality, flexibility and control, error prevention and correction, user guidance and 
support. Partially based on these attributes, five graphical representations are chosen to be 
applied in the experiment: boxplot, line style, texture pattern, blur and saturation/opacity. 
Note that blur is not present in Figure 9.5, as it is not easily visible on the presented scale and 
can be seen in Figure 9.7. 
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Figure 9.5: Graphical representations for uncertainty and impact 

9.4 Task-switching experiment 

9.4.1 Experimental design and set-up 

As interpretation of visual cues is a task that involves subconscious processing of information 
to interpret data and make decisions, an experiment in which a select number of graphical 
representations from the original expert session is performed. The experiment is designed to 
test the pre-attentive processing of a visualisations presented together with other (possibly 
interfering) cues. This indicates how well a user can interpret the model results, and tests the 
ability of a user to perform task-switches. This further gives an indication of a user’s ability to 
process different types of information in conjunction, i.e. consider the uncertainty of a traffic 
variable as well as its value.  

The experiment is a forced choice bi-alternative task-switching experiment using multiple 
stimulus blocks. This entails that participants were shown two visualisations beside each other 
(see Figure 9.6). Each visualisation has three visual cues and contains information on traffic 
speed, traffic flow and an uncertainty value. In all visualisations, the traffic speed was 
represented by the colour and the traffic flow was represented by the height. The third visual 
cue changed from block to block and represented the level of uncertainty. A participant is 
asked to state, in as shortest time as possible, if the quantity of a certain queried variable is 
‘equal’ or ‘non-equal’. The quantity for which the participant must make an estimate for was 
given in text above the visualisations and is one of: speed, flow or uncertainty.  
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Queried variable to be estimated  
(here INTENSITEIT indicates the 
Traffic intensity, or rather the Traffic 
flow) 
 

Visual cue for uncertainty  
(here this is a boxplot)  

 
Visual cues for speed and traffic flow 
(Colour is always speed, height is 
always traffic flow) 

Figure 9.6: An example of a single trial in the visual experiment  

Participants were requested to complete 10 consecutive blocks consisting of 16 trials. The 
entire experiment took the average participant approximately 10 minutes. In each trial, a 
participant is given a single choice between two different visualisations for which a choice 
has to be made. The participants made their choice by pressing one of two keyboard keys, 
with the keys representing ‘equal’ or ‘not equal’. Prior to the start of the experiment, 
examples were given of the uncertainty cues and a training block containing 16 trials was 
completed by the participant to ensure the participant understood the procedure. Each 
uncertainty cue was applied for two entire blocks of trials. The order of the 10 blocks in 
relation to the applied uncertainty cue was randomised for each participant in an attempt to 
minimize carry-over and learning effects. This means that the order of the uncertainty cue was 
different for each participant and that for a single participant each block contained an 
unknown and randomised uncertainty cue, with the restriction that an uncertainty cue was not 
applied in more than two blocks. Task-switching was randomly applied. Non task-switch 
blocks had identical queries for consecutive trials. The visualisation types for the uncertainty 
variable changed between trial blocks and was either blur, line-style, saturation, boxplot or 
texture pattern (see Figure 9.7). For each trial in each of the 10 blocks, the time-to-answer and 
the correctness of an answer was recorded by the computer. 

     

Figure 9.7: Graphical representations tested in the experiment: blur, texture pattern, 
saturation/opacity, boxplot, and line style 
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Participants 

In total 48 participants took part and completed the trial. Invited participants for the 
experiment were a combination of traffic experts and non-traffic experts. Traffic related 
participants were specifically selected and approached by email to participate in the 
experiment. Other participants were attracted by a general advertisement, mainly made among 
students. On one hand, traffic experts were invited to judge the graphical representations as 
potential users in traffic models. On the other hand, the graphical representations should be 
generic enough that one’s profession should not make a difference. Of all participants, 49% 
had a professional background in a traffic or transport related area, while the rest were not 
professionally involved in traffic related subjects. The ages of participants were: 34% 18-25 
yo, 32% 26-31 yo, 12% 32-40 yo, 8% 41-50 yo, and 14% were 51+ years old. 63% had 
completed a university education, with 16% having completed a higher college education and 
22% having high school as their highest completed form of education. Participants performed 
the experiment on computers using a web-based application that controls the experiment and 
collects the required information and results. Participants are first instructed in a few screens 
on what is expected of them and are asked to give feedback if they understand. Then they 
commence with the example trials before starting the experiment in earnest. A separate 
analysis of the results from both groups of participants (traffic and non-traffic related) did not 
show any significant or substantial differences, which allows both groups to be analysed 
together.  

9.4.2 Measures 

Pre-attentive processing is tested by making use of the time required for a user to react to a 
visual cue and correctly give feedback in relation to that cue. Task-switching is tested in a 
similar way, by recording the time required to react to a visual cue in a correct manner for the 
case that a visual cue is changed compared with the previous cue. The results of the 
experiment are analysed using the following indicators: 

Effectiveness is tested by means of the percentage of correctly (PC) answered trials. 
This gives an indication of effectiveness as the ability of a person to correctly 
distinguish between different scores of the same variable. 

Efficiency of a visual cue is tested using the response time (RT), which is the time 
required to give a correct answer. This gives an indication of efficiency as a user’s 
ability to promptly analyse, interpret and react to the visual cue of a variable. 

Inverse Efficiency Score (IES) is a combined metric in order to simultaneously assess 
the two measures: effectiveness and efficiency. The International Standards 
Organisation (ISO) define efficiency as reflecting the amount of resources required, 
such as time, to complete a task, and effectiveness as reflecting the extent to which a 
process can be completed without error. Therefore, effectiveness is mirrored by 
accuracy, and that efficiency is mirrored by response time. The Inverse Efficiency 
Scores (Bruyer and Brysbaert, 2011) is defined as: 
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 ÒRQ(,) = 	O�(,)/A(,) (9.1) 

Here, RT is response time and PC is proportion of correct answers, both of a specific trial n. 
This means that better scores are given by lower IES outcomes. In addition to the experiment, 
a few questions in the survey query participants on the visual cues in which participants can 
also explicitly state their preference for a visual cue to represent the uncertainty variable. 
Participants are also asked to give a score for each graphical representation in a range of 1-5 
for its ability to convey uncertainty information. In this survey, general information regarding 
a participant’s education, age, experience and area of work was also asked.  

9.5 Results 

9.5.1 Effectiveness 

The accuracy of the answers given in the task-switching experiment indicates how well visual 
cues can be analysed in a short time. It is necessary to note again that participants were 
requested to respond as quickly as possible, which may have reduced the accuracy levels. The 
results of the effectiveness are given in Table 9.2 and are separated into switch and non-
switch trial accuracies.  

Table 9.2: Effectiveness results of the visual experiment [percentage score] 

 
 

method Mean Std. 
Error 

1. Non-switch trial 

1. Blur 0.88 0.33 
2. Texture 0.76 0.43 
3. Saturation 0.81 0.39 
4. Boxplot 0.94 0.23 

5. Line style 0.88 0.32 

   

2. Switch trial 

1. Blur 0.84 0.37 

2. Texture 0.88 0.32 

3. Saturation 0.88 0.33 

4. Boxplot 0.93 0.26 

5. Line style 0.85 0.35 

 

The effectiveness results show that the boxplot is most often correctly estimated for switch 
and non-switch trials with a combined accuracy of approximately 94%. Blur and line style 
score similarly for both accuracies. The saturation and texture were both found to yield 
relatively low accuracies. Their accuracies for the non-switch trials were significantly lower 
than for switch trials for both.  
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9.5.2 Efficiency 

The efficiency scores, which are measured by the reaction time to correctly give an answer, 
are given in Table 9.3 with the values being the average values over all relevant trails in 
milliseconds. Outliers are removed for which the reaction time was lower than 300 ms or 
higher than 8000 ms. The lower boundary indicates the reactive ability of a participant that 
will never be below 300 ms. The higher bound is selected as a reasonable value in which most 
participants easily make a choice. There were 81 low-end outliers and 109 high-end outliers 
from the 7680 trials. The efficiency score reflects the ability of a participant to correctly 
interpret the shown graphical representations within a given time frame. 

Table 9.3 Efficiency results of the visual experiment [reaction time in seconds] 

Switch type method Mean Std. 
Error 

95% Confidence Interval 

Lower 
Bound 

Upper 
Bound 

1. Non-switch trial 

1. Blur 3447 1635 864 6006 
2. Texture 2644 1787 968 6145 
3. Saturation 3457 1730 870 6282 
4. Boxplot 1956 1082 889 4384 
5. Line style 2009 1118 925 4129 
     

2. Switch trial 
(to uncertainty) 

1. Blur 2927 1308 1425 5526 

2. Texture 2644 1318 1076 5674 

3. Saturation 2694 1486 1063 5965 

4. Boxplot 2683 1489 1168 5959 

5. Line style 2459 1146 1248 4731 

 

The reaction times for switch trials are found to be similar for all graphical representations 
with all values found to be around 2500-2900 ms and not significantly different. The boxplot 
and line style were found to yield the lowest reaction times and therefore the highest 
efficiency, which are significantly better than the other graphical representations. The blur, 
texture and saturation scored worse when considering both the switch and non-switch trials. 

9.5.3 Inverse Efficiency 

While the efficiency of a graphical representation for a visual cue is measured by the reaction 
time, it is a requisite that the accuracy of a cue is maintained. If a participant reacts to a visual 
cue effectively, but does so with a high inaccuracy, then that graphical representation cannot 
be considered efficient. Therefore, the Inverse Efficiency Score (IES) is applied for which the 
results of all trials are given in Table 9.4. 
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Table 9.4:  Inverse Efficiency (IES) score for the visual task-switching experiment 

Switch type method Mean Std. 
Error 

95% Confidence Interval 

Lower 
Bound 

Upper 
Bound 

1. Non-switch trial 

1. Blur 3921 1720 983 5864 
2. Texture 3478 1934 1273 5983 
3. Saturation 4268 1846 1074 5943 
4. Boxplot 2072 1148 941 4335 
5. Line style 2275 1233 1048 4044 
     

2. Switch trial  
(to uncertainty) 

1. Blur 3480 1455 1695 4751 

2. Texture 3002 1421 1222 4837 

3. Saturation 3078 1589 1215 5547 

4. Boxplot 2891 1455 1258 5503 

5. Line style 2884 1581 1463 5500 

For the switch trial, the IES is similar for all visualisations, with values roughly between 
2900-3400. The boxplot is found to score the best when both accuracy and effectiveness are 
simultaneously considered in the IES, closely followed by the Line style. Blur also scores 
reasonably well, in part due to a high level of effectiveness. The ability of participants to 
interpret the saturation and texture cues appears to be relatively poor.  

9.5.4 Task-switching 

For the previous indicators, all task-switching combinations were combined as an overall 
indication of the effectiveness and efficiency of each graphical representation. Here we 
investigate the different task-switching combinations in more detail. A task switch means that 
different variables need to be assessed on two consecutive trials. For three variables, six 
different task-switches are possible. The scores for task-switches between each of three 
variables are shown in Figure 9.8. The variable to which was switched was found to be 
relevant, while the previous variable was less relevant, therefore we can suffice with showing 
the switches to the three variables. 

The segregation of the results gives some further insights into the overall performance of the 
graphical representations. The accuracy for switches to both traffic flow and traffic speed was 
relatively high, at approximately 90-95% and 85-90% with no difference between switch or 
non-switch trials. Two interesting observations can be made for the boxplot and texture 
representations. The boxplot scores higher for non-switches than other for the speed cue, 
while slightly worse for the traffic flow. It may be that the colour cue, indicating speed, is not 
affected by the boxplot, while it does interfere with one’s estimate of the magnitude of the 
traffic flow cue. Texture scores poorly for non-switch trials for the traffic flow. It is not 
entirely clear why this is, but it could be caused by cognitive overload in combination with the 
perception of the magnitude of a cue. 
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Figure 9.8: Detailed task-switching results 

A switch to the uncertainty cue shows a much greater disparity in scores. Both the texture and 
saturation accuracy scores are well below the scores for the other visual representations at just 
below or above 70% correct for non-switch trials. Blur scores especially poor for switch trial 
to the uncertainty cue, while better for non-switch trials, which indicates that this visualisation 
requires more effort from a user to adjust to than to the other representations. The efficiency 
score for texture, saturation and blur, also show that users need more time to interpret these 
graphical representations while achieving less accuracy, especially for the non-switch trials. 
This suggests a certain negative adaptation to these graphical representations. 

9.5.5 Questionnaire 

Participants were asked to rank each graphical representation from 1-5, with 5 being the best 
score, for its ability to convey uncertainty information. The results are shown in Figure 9.9. 
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Figure 9.9: Assessment survey scores (5 is the best score)   

The boxplot appeared to be easy to interpret with nearly half of the participants giving it the 
highest score and less than 15% giving it one of the two lowest scores. Line style also scored 
favourably with nearly 60% giving it one of the top two scores. Participants reacted varied to 
texture, with an average overall score of 3.2. Blur was given a generally poor assessment with 
over half of the participants giving it one of the lowest two scores. Finally, saturation received 
by far the lowest scores, with an average of 1.8 and some 57% giving it a score of 1.  

Comparison of the results of the questionnaire with those from the experiment shows an 
incredible amount of similarity in the relative scores between the analysed graphical 
representations. From both, it is clear that the boxplot scored best, while line style also 
performs well. At the other end of the scale both saturation and texture both scored poorly in 
both the experiment as well as in the survey. In the following section, these results, as well as 
the outcome of the expert sessions, are discussed and clarified, where possible.    

9.5 Discussion  

Visualising additional dimensions for the uncertainty of the results of probabilistic traffic 
models is not straightforward and no one solution can be said to be best for all circumstances. 
The results of the experiment clearly showed that the boxplot performed best among the five 
tested graphical representations for the uncertainty cue, both objectively (in terms of 
processing efficiency and accuracy) and subjectively (through positive assessments). Line 
style also scored well, even though its performance was rated slightly lower than that of the 
boxplot. Both of these cues have the advantage that interaction with the cues of other 
displayed variables, the traffic flow (height) and speed (colour), is limited: neither cue distorts 
the colour of a network link. The effect on the traffic flow cue seemed also to be limited. 
Although the individual task-switching results may suggest that the boxplot shows a slight 
interference with the traffic flow, it was not enough to substantially reduce its score. 
Comments made by participants indicated that a conflict occurred for saturation and texture 
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with the colour cue representing the speed. This was especially the case for saturation, which 
can also easily be seen in the low accuracy obtained for uncertainty estimations from this cue. 
But also for texture, participants struggled to accurately and promptly distinguish between 
different levels of texture intensity. Both of these graphical representations are therefore less 
useful in their current form, because of their limited ability to convey quantitative information 
and because they interact with the speed cue. Participants also found it difficult to distinguish 
different gradations of blur, however this representation did not suffer from interference with 
the other graphical representations to the same extent. 

The results of this study clearly show that the appropriateness of a given uncertainty 
visualisation depends on the condition in which it is deployed. We identified three important 
issues that should be considered before selecting a graphical cue to represent uncertainty in 
traffic flow model outputs: 

Avoid interaction between graphical dimensions. Both the results of the experiment and the 
outcome of accompanying questionnaire indicated that graphical cues are more difficult to 
process when they are used in conjunction (i.e. when they occupy the same physical space, 
e.g. a combination of saturation and colour).  

Use visualisations that allow explicit comparison or quantification. The experts judged that 
certain graphical representations can be used to indicate a scenario, but are less suited for 
comparison of their underlying values. Blur is a good example of this. Participants had 
difficulties in judging the extent of the blur. On the other hand, the boxplot proved to be easier 
to interpret, possibly due to its crisp scale. There are certain categories of visual 
representations that are less suited for explicit comparison or quantification, and this should 
be considered if this is seen as a requirement for the visual cue, as is the case here for 
uncertainty.  

Avoid visual clutter. In the introduction on model visualisations, this was already mentioned 
and is again confirmed in this study. Also when combining different visual cues in a single 
visualisation, one must be careful not to overload the visualisation and therein limit the clarity 
and ability of a user to promptly interpret a visualisation. It is suggested that certain 
combinations of visual cues and graphical representations do not mix well in this regard. This 
is especially the case when multiple cues attract the attention of a user and even prohibit the 
view of other graphical representations and the underlying network or background.  

While these considerations are mainly relevant to static visualisations, they should not entirely 
be ignored for interactive dynamic visualisations. However, in an interactive visualisation 
there are more options available to select various cues and therefore to limit the number of 
cues shown at once. This does not only limit the information load, but also allows certain 
explicit and easily comprehendible graphical representations to be used alternatively.  

While the proposed graphical representations in the previous sections are designed with static 
reporting in mind, there are also a number of additional possibilities when the considered 
visualisations are placed in an interactive framework. There are increasingly more interactive 
environments becoming available for hands-on interaction with model results and data. An 
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example of a platform using some of the visualisations from this research is the 
CommonSense platform (TNO, 2014), shown in Figure 9.10. The three visualisation options 
shown in Figure 9.10 give some insight into the way static visual cues may be deployed in a 
dynamic interactive environment where the specific purpose of the overall visualisation 
dictates which type of visualisation is most suitable.  
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Figure 9.10: Graphical representation examples for dynamic interactive visualisations of 
probabilistic traffic flow 
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9.6 Conclusions 

In conclusion, this chapter presents a number of candidate graphical representations that can 
be applied to represent uncertainty in traffic model visualisations. Although the focus was on 
uncertainty visualisations, the graphical representations may also be applied to represent other 
dimensions. The applicability and quality of these representations was initially assessed 
through a series of expert workshops. In a follow-up visual cognitive experiment, a selection 
of the graphical representations was further evaluated. It appeared that certain graphical 
representations performed better than others (a boxplot and a line style representation 
outperformed the other representations). An additional finding was that participants were able 
to assess graphical representations relatively accurately. This was found by comparing the 
(objective) results of the experiment with the (subjective) preferences reported in response to 
an accompanying questionnaire. It appears that the actual choice of a graphical uncertainty 
representation strongly depends on the desired type, speed and level of information disclosure 
and is therefore model and scenario dependant. Further analysis showed that three main 
considerations should be taken into account when designing model visualisations. It is 
important (1) to avoid interference between the visual cues on different dimensions, (2) to 
apply cues that allow explicit comparison or quantification where required, and (3) to be 
aware of the detrimental effects of clutter or overloading visualisations with too much 
information. It is evident that no single graphical representation will serve to represent 
uncertainty in all different traffic model visualisations. A set of feasible candidates are 
presented together with some essential issues that need to be considered when deploying 
uncertainty representations to traffic model visualisation.  
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The research presented in this thesis has been performed with the motivation to improve the 
understanding and analysis of the stochastic effects of traffic flow with respect to the 
application and impact of traffic management. Three main areas are highlighted and 
considered, namely the analysis of uncertainty and fluctuations in traffic, modelling of 
uncertainty and fluctuations to a-priori evaluate traffic management measures and the 
visualisation and communication of uncertainty in traffic. The main conclusions and 
recommendations of the presented research are given in this chapter, as well as some 
practical implications of the research results. 

The chapter starts with the main findings and conclusions of the research in section 10.1 and 
is followed by the practical implications of the results for application in section 10.2. Section 
10.3 offers some recommendations for further research following the developments made in 
the presented research in this thesis. 
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10.1 Main findings and conclusions 

The main findings and conclusions of this thesis are presented in this section. This is 
performed using the same structure as applied to present the research objectives in the 
introduction chapter, which considers the topics of analysis, modelling and visualisation. The 
modelling section 10.1.2 is split into three parts, focussing on: background, the models, and 
practice. In each sub-section, the main relevance of the specific topic is firstly highlighted, 
and then the main findings are given followed by the conclusions found in this thesis. 

10.1.1 The analysis of uncertainty and fluctuations in traffic 

Analysis of stochastic characteristics of the variables that influence traffic flow is necessary in 
order to understand and model uncertainty and fluctuations. These variables lead to a greater 
understanding of the extent of the stochastics and can act as input for models. Both demand 
and capacity are directly affected by such variables. Demand fluctuations strongly depend on 
the local network and scenario. Capacity fluctuations do too; however they tend to be more 
generic and less easy to quantify in model calibration. Therefore, the main focus for analysis 
was on capacities.   

In Chapter 3, two methodological frameworks were presented for stochastic analysis of 
traffic; one based on stochastic capacity and the other on combined stochastic demand and 
capacity. In Chapter 3, both research questions (questions 1 and 2) regarding the analysis of 
uncertainty are addressed. The first methodological framework is a conceptual model for 
practical stochastic capacity estimation that allows the stochastic nature of capacities to be 
captured and quantified. The methodology is designed to give practitioners and researchers a 
concise and easy to follow approach for stochastic capacity estimation. The stochastic 
capacity estimation part of the framework is based on the adapted Product Limit Method 
(PLM) by Brilon et al. (2005) to quantify capacity as a distribution. This approach was found 
to be robust, but also effective as it uses both pre-breakdown, as well as breakdown 
observations, of traffic to construct a probability distribution of capacity. Furthermore, the 
approach can easily be applied under different scenarios to construct capacity distributions for 
different conditions, such as for incidents, with different weather conditions, or for major 
events. A quantification of day-type specific variation in capacity values was given in the 
form of a Weibull capacity estimation fit for each type-of-day scenario. In the case, weekdays, 
weekend days and holiday days were considered and served as a demonstration of the applied 
methodology and gave a generic capacity distribution applicable for The Netherlands 
motorway network. In addition to the framework, an extensive overview of capacity 
influencing variables was described and presented in a diagram. This showed that variables 
can be categorised as exogenous, endogenous or temporal.  

The second methodological framework, also presented in Chapter 3, considered the joint 
stochastic effect of demand and capacity on traffic flow. The methodology applied the same 
capacity approach as the first method and derived demand distributions through an empirical 
process of cordoned observations. This was performed for the influence of the endogenous 
variable environmental effects in the form of weather conditions, as one of the most 
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influential external and commonly occurring variables on traffic flow. Weather conditions 
affect both traffic demand as well as road capacity. The capacity estimation framework was 
applied on weather as part of a holistic approach for simultaneous influence on both the 
demand and supply in an extensive data-driven analysis for the effects of rain, snow, 
temperature and wind for their influence on traffic. The results showed that for increasing 
precipitation in the form of rainfall, both the capacity and demand decreased. Despite the 
reduction, the overall influence of rain on traffics ability to flow fluently was not substantially 
reduced, due to the interaction between the demand and capacity. Insufficient data for the 
described approach meant that capacity estimation could not be made for snowfall, while a 
reduction in demand for snow was found of more than 15%. The influence of cold 
temperatures proved to be substantial on traffic fluency. Demand was found not to vary 
significantly, while capacity decreased leading to a greater chance of a reduction in level-of-
service of roads. Similarly, high winds were found to also reduce the quality of traffic 
fluency, although at a lower level of approximately 2-3%. For each weather scenario, 
stochastic distributions were derived. These showed that the distribution shape of each 
weather type does not significantly differ and was found to yield similar shape-parameters 
when fitted for a Weibull distribution. The shape of the demand distributions also showed a 
close resemblance to each other and was found to adhere to a t-location-scale and logistic 
distributions. From the case study, we conclude that the methodology can be applied to give 
estimation of the effects of varied demand and capacity variables in a single analysis. The 
resulting distributions may be useful for a number of future purposes, such as application of 
uncertainty and sensitivity analysis both in data-analysis and modelling of traffic effects 
during weather to name just two. 

10.1.2 Modelling uncertainty and traffic fluctuations: the background 

Before being able to construct new approaches to answer the research questions, it was first 
necessary to understand what the current state of the art is in macroscopic and stochastic 
modelling. Furthermore, insight was also required on the necessity of considering traffic 
stochastically, which without there is no need to seek methods to analyse and model it. Both 
the necessity and the background of stochastic macroscopic modelling were presented in 
Chapter 2. It was found that two main avenues of models are utilised: repetitive Monte Carlo 
simulation and the analytical consideration of probability in the core of a model. While 
classically, the Monte Carlo approach has been applied, the advancement of various analytical 
approaches has increased, with a number of extensions of deterministic models being 
proposed. It was found that too often stochastic variation in models is insufficiently 
considered in practice, either for application or the necessity for development. Models that did 
include stochastic elements, did so with various successes, but often succumb to one of the 
two following shortcomings: too high complexity or computational effort for easy application 
in practice, or oversimplification, resulting in inaccuracies and a limited consideration of the 
real stochastic effects in traffic flow. To demonstrate the necessity of considering uncertainty 
in traffic modelling, two experimental cases were given in Chapter 2, in which the application 
of a deterministic approach was shown to yield substantially biased results in comparison to a 
stochastic approach. A further deliberation concluded that stochastic models can be seen as 
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more accurate than deterministic models, as they represent reality better, however their 
application is not recommended where there is little congestion, little variability in variables 
or when a general indication of network performance is sought. In most other cases, stochastic 
variability in traffic should be considered. Is was argued that there is a clear necessity, but 
also many challenges for the scientific and consultancy communities to further develop and 
apply stochastic modelling in traffic analysis. It is the joint responsibility of both communities 
to address this and make further developments in this area of research possible and realise that 
blindly applying non-stochastic models where probability is rife can have detrimental effects. 

Research question 3, the first research question in relation to modelling stochastics, addressed 
the main issues that still exist. In Chapter 2, the main issues to modelling stochastics, derived 
from the literature research, were presented as: Computational efficiency, Correlations and 
spatiotemporal dependency, Data gathering and processing, Stochastic propagation of 
probability, Generality of stochastic variation, and Driving behaviour in macroscopic traffic. 
For each issue, a challenge was formulated to tackle it. In Chapter 2, it was derived that 
especially the manner of stochastic propagation of probability in traffic is a key issue. There is 
a strong influence from this issue to both the manner in which the spatiotemporal dependency 
is influenced and the extent to which stochastic variables can be dealt with generically. It may 
be that certain presumptions for dealing with uncertainty propagation may limit how 
stochastic variables are defined. Furthermore, each issue was found to affect the computation 
time of a model and in most cases contributes to a lower computational efficiency. During the 
development of the modelling approaches in this thesis, the described issues were taken into 
account as much as possible, while it was beyond the scope of the thesis to extensively and 
explicitly address all of the issues individually. 

10.1.3 Modelling uncertainty and traffic fluctuations: the models 

Two levels of modelling stochastics are considered in this thesis: uncertainty is considered in 
macroscopic stochastics, which describes day-to-day uncertainties between traffic flows in 
scenarios, and fluctuations is considered in microscopic stochastics, which describes 
microscopic variability in the traffic flow between vehicles. This distinction is necessary as 
both have inherently different consequences and require different modelling approaches, even 
if the source of the stochasticity is the same.  

Two types of uncertainty modelling were presented in this thesis and reflect the main 
modelling approaches found in Chapter 2: Monte Carlo modelling and ‘one shot’ analytical 
modelling. These approaches give an answer to research question 4: How can uncertainty 
scenarios in traffic be modelled effectively? The first type considered the application of 
Advanced Monte Carlo simulation to include uncertainty (Chapter 4). These are Monte Carlo 
techniques that make use of algorithms to spread samples for simulation and therefore require 
fewer samples to give a representative distribution. These techniques were investigated for 
their ability to reduce the computational load. A comparison was made in several 
experimental cases between these techniques and that of regular Monte Carlo simulation. 
Three approaches were analysed: Latin Hypercube Sampling, Importance Sampling, and 
Sobol Quasi-random Sequencing. The techniques were clearly shown to be stable and 
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consistently able to improve the convergence of samples to a true distribution allowing for a 
reduction in computational load and to make stochastic and reliability analyses with Monte 
Carlo simulation in traffic modelling more applicable and efficient. This had not previously 
been demonstrated for traffic modelling. Sobol Quasi-random Sequences was clearly shown 
to be the most effective technique in the presented cases. The technique samples with an 
explicit spread from a set, however it also explicitly considers the consequential construction 
of the samples using an analytical sequence. For most indicators, the error level was a 
multifold smaller compared to Crude Monte Carlo. Latin Hypercube Sampling was most 
effective for multiple input variables. In the considered cases, two stochastic variables were 
considered, which proved to be sufficient for this stratified technique to substantially improve 
convergence, however not as well as the Sobol technique. Importance Sampling has a great 
potential to decrease computational load through capturing the extremities of a distribution, 
especially when the traffic system has an amplified effect on the outcome, as is often the case 
in congestion. The technique however is dependent on the applied estimator distribution, and 
did not perform as well in the presented cases. Application of an estimator method to optimize 
the estimator distribution is therefore essential. In this thesis, the importance of a reliable 
estimator function was demonstrated for Importance Sampling. Quasi-random sequencing is 
concluded to be most effective in general, due to a good spread in samples and a robust and 
simple application. However, other techniques may be applied and may be more effective 
depending on the specific application and variables considered.  

The second type of uncertainty modelling considered a new modelling framework: the Core 
Probability Framework (Chapter 5). The Core Probability Framework (CPF) is a probabilistic 
framework for modelling multi-dimensional variations in capacity and traffic demand in 
dynamic macroscopic traffic flow. The CPF makes use of a propagation model, the Discrete-
Element Core Probability Model (DE-CPM) that extends a base model, such as the Cell 
Transmission Model (CTM), by considering each traffic variable as a stochastic variable 
denoted as a probability distribution of the chance of values for each traffic variable. The CPF 
and DE-CPM extend current deterministic traffic flow models by redefining traffic variables 
in the core of the model as discrete distribution vectors of probable values for each traffic 
variable. Each discrete element in the distribution represents a single plausible scenario. In 
such a way, stochastic variation in traffic is internalised in the model and does away with the 
necessity of repetitive Monte Carlo simulation. Furthermore, a greater degree of flexibility in 
analysis is obtained, as each individual traffic variable in time and space may be given as a 
function of their probability. Moreover, the underlying distribution of each traffic variable in 
space and time is preserved such that the introduction of distribution fitting errors is limited to 
a minimum. Important issues facing stochastic traffic flow modelling: computational 
efficiency, spatiotemporal dependency, stochastic propagation of probability, and stochastic 
generality, were shown to be tackled by the CPF. The outcome of the calculation time tests on 
simple networks, compared to a CTM Monte Carlo model, showed that the DE-CPM has 
great potential to reduce computation times, in most cases by a factor 5-20, especially for 
larger networks and for greater levels of stochasticity. This is mainly due to the small 
marginal computational costs incurred when increasing the level of uncertainty in the discrete 
model. The DE-CPM addresses the other mentioned issues through the element based 
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calculation using the so-called chain-rule, which requires the dependencies between variables 
to be dealt with externally and then explicitly maintains distributions of scenarios in the 
propagation of traffic through a network. We therefore conclude that the CPF and DE-CPM 
offer an alternative approach that tackles many existing issues in modelling uncertainty in 
traffic.  

Modelling of fluctuations in traffic flow is presented in Chapter 6. There, a microscopic 
stochastic method to include stochastic vehicle specific behaviour and interaction was 
presented, which addresses research question 5: How can stochastic fluctuations in traffic 
flow be modelled macroscopically? The First Order Model with Stochastic Advection 
(FOMSA) is presented as a first order macroscopic kinematic wave model in a platoon-based 
Lagrangian coordinate system. Capturing micro-stochastic driving behaviour in a 
macroscopic model is important to accurately describe traffic flow phenomena on a 
macroscopic level. The proposed model makes use of first order traffic flow theory in 
conjunction with an additional invariant term, the vehicle specific invariant, which describes 
the heterogeneous effect of vehicle behaviour and the level of aggressiveness of drivers and 
represents the vehicle specific change to a deterministic density value. The use of Lagrangian 
coordinates was shown to allow characteristics of specific vehicles or vehicle-groups to 
propagate along with the traffic flow using the vehicle specific invariant and had previously 
been shown to lead also to more accurate results. The described model offers the advantages 
of including vehicle behaviour with an increased accuracy due to reduced diffusion effects, 
while doing this in a first order setting and therefore avoiding some of the complexity 
involved in second order model that are often applied to incorporate vehicle behaviour in 
macroscopic modelling. The model was demonstrated in an experimental case on a corridor 
with two bottlenecks present. The case demonstrated the face validity of the model and 
offered insight into the effects of different values for the model parameters. To include the 
effects of the capacity drop, further analysis was performed through two different approaches: 
bounded acceleration and driver reaction times. The investigation of bounded acceleration 
found that the application in the model under constrained conditions has a limited contribution 
to a capacity drop. Only under low acceleration bounds was there a substantial capacity drop 
visible. This led to the conclusion that the capacity drop is not merely a consequence of a 
restriction in the acceleration ability of vehicles on an individual basis. In the second 
approach, the effect of reactions times for accelerating vehicles out of congestion was 
analysed and successfully captured capacity drops for increasing reaction times. It also 
showed that the influence of heterogeneous traffic, through use of the invariant term, leads to 
lower capacities, while the capacity drop compared to a deterministic scenario is not 
increased.  

10.1.4 Modelling uncertainty and traffic fluctuations: in practice 

Putting the developed models into practice for traffic management requires a mandate for the 
necessity of traffic management at a location or area. While the locations of some problems 
are obvious, others are less so, especially in complex networks with highly heterogeneous 
traffic flow. In Chapter 7, a methodology is presented that evaluates the resilience level of 
road sections based on traffic flow stochastics. The methodology applies the Link 
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Performance Index for Resilience (LPIR), which evaluates the resilience level of individual 
road sections in relation to the wider road network. The focus of the methodology is on 
resilience and is therefore wider than robustness, as it also considers the ability of road 
sections to recover from disturbances as well as the classical robustness itself.  Resilience is 
found in many transportation related disciplines, such as transport networks, freight 
movements and logistics, but it not explicitly commonplace in traffic flow analysis, while 
reliability and vulnerability and increasingly in robustness analysis are. Also when 
considering the effect of stochastics in traffic flow for performance, resilience is considered 
most relevant. A distinction was made between a resistance part and a recovery part as part of 
the entire methodology with a focus on homogenous and volatile traffic, which plays an 
important role in resilience. The resilience was calculated in relation to the traffic flow 
characteristics at a flow level and the ability of road sections to maintain their predefined 
purpose to serve vehicles without overly experiencing congestion. The method explicitly 
aimed at capturing the level of traffic heterogeneity. The effectiveness and validity of the 
methodology was demonstrated in an experimental case for a small network of two 
interconnecting motorways. This demonstrated the LPIRs ability to detect weakly resilient 
locations by calculating the relative resilient value of individual road sections. The calculated 
LPIR values were compared with the results of two other measures for resilience and 
robustness, namely the ‘recovery time’ and ‘total delay’. Many locations that performed 
poorly in the LPIR were also highlighted in the other measures, however there were also 
important differences that further showed the strength of focussing on resilience. It was 
therefore concluded that the analysis of the resilience offers a deeper insight into the way road 
sections are judged for weakness compared to current approaches and that resilience analysis 
offers a complementary tool to robustness. This is especially the case when the analysis 
concentrates on the influence of disturbances on traffic flow at the level of traffic rather than 
at a higher abstraction level. The LPIR methodology also allows for a deeper analysis of the 
casualty of a poorly resilient road section. This can be performed through additional data 
analysis.  

In Chapter 8, a demonstration of the entire model suite is given in a comprehensive case study 
for a real network and problem case. The case study was performed for the application of 
stochastic effects in traffic modelling to aid the application of traffic management. In this, the 
LPIR, Advanced Monte Carlo simulation, and FOMSA models were all applied. The 
application and selection of traffic management measures was applied in part using the Dutch 
‘Gebiedsgericht benutten’ (GGB) methodology for the application of traffic management. In 
the case, the models showed they are able to perform well and demonstrated their value for 
their specific purposes and their ability to a-priori evaluate potential traffic management 
measures for sensitive road sections and carriageways. The importance of consideration of the 
stochastic influence of traffic was further demonstrated for both day-to-day variations as well 
as intraday and inter-vehicle stochastics for the outcome of studies. Failure to consider the 
stochastic effects would of have resulted in a bias of 26% for the speed of congestion 
spillback in the first sub-case and of 200% for the delay in the second sub-case.  
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10.1.5 Visual aids for effective communication of uncertainty in traffic 

The sixth and final research question referred to the visualisation of uncertainty in traffic and 
asks: What are effective options to visualise and communicate uncertainty from probabilistic 
traffic models? An answer to this question was given in Chapter 9 of this thesis. Here, the 
results are given of an investigation into different methods to visualise uncertainty in static 
representations of macroscopic stochastic traffic model predictions on road networks. Several 
graphical uncertainty representations were developed and analysed in expert sessions. 
Following this, a selection of the initial set of uncertainty visualisations was evaluated in a 
cognitive alternative task-switching experiment. A conclusion from this was that the actual 
choice of a graphical uncertainty representation strongly depends on the desired type, speed 
and level of information disclosure and is therefore model and scenario dependant. 
Nevertheless, it was possible to find appropriate representations and it was shown that boxplot 
and line-style representations of uncertainty were generally favourable additions to current 
macroscopic model visualisations. An additional finding from the experiment was that 
participants were able to assess graphical representations relatively accurately. Further 
analysis on designing model visualisations showed that three main considerations should be 
taken into account. Firstly, it is important to avoid interference between the visual cues on 
different dimensions, secondly, to apply cues that allow explicit comparison or quantification 
where required, and thirdly, to be aware of the detrimental effects of clutter or overloading 
visualisations with too much information. The chapter concluded with a presentation of a set 
of feasible candidate visualisation for uncertainty in traffic model visualisation. 

10.2 Practical implications 

The research presented here is performed to aid the analysis and implementation of traffic 
management in practice. To that extent, the results of the research have evidential practical 
implications. The main practical implications for practice are discussed in this section. 

10.2.1 Data analysis implications 

The presented data analysis frameworks allow stochastic capacity and demand estimations to 
be made. The practical implementations from these frameworks are described as: 

• Application of the frameworks in practice allows capacities to be estimated with 
greater detail and above all stochastically. Increased accuracy of capacity estimation 
can aid model application as more accurate capacity values should lead to more 
accurate predictions and easier calibration of models.  

• Analysis of traffic networks and systems can be performed while taking the joint 
effects of capacity and demand variation into account. This is important, as the joint 
effects will often lead to unexpected, but more realistic results, as was shown with the 
precipitation case in Chapter 3. Such approaches can be applied for network broad 
analyses of traffic flow, such as for the analysis of existing traffic management 
measures, expansion of a network, or merely for an accurate analysis of the 
performance of a network. 
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• The performed cases in this thesis also have practical relevance. The stochastic 
capacity distributions found for the capacity for different day-types, and for the 
different weather types can be applied straight into models or in analyses requiring this 
type of data. 

10.2.2 Modelling implications 

In this thesis, three different modelling approaches and a network evaluation approach were 
presented. These all have separate practical implications as well as a combined relevance: 

• The combination of the resilience methodology and both types of modelling 
approaches, for uncertainty and fluctuations, gives a complete procedure for analysing 
and a-priori evaluating the application of traffic management on a road network (see 
Figure 10.1). Their combined application can be applied by road authorities to 
improve traffic flow and network performance through analysis of roads and the 
evaluation and application of traffic management measures. 

• Prior to the application of traffic management, it is useful to first evaluate the possible 
gains. As variations in traffic play an important part in this effectiveness, the 
application of Advanced Monte-Carlo simulations or the Core Probability Framework 
to estimate the effectiveness allows road authorities to more accurately apply traffic 
management measures than using models that do not consider uncertainty. This 
greatly improves their ability to come to an appropriate decision for action. 

• Consideration of uncertainty in traffic modelling is not only relevant for traffic 
management, but for all forms of traffic modelling that considers the performance of a 
traffic network and considers different scenarios. For example, Cost Benefit Analyses 
often requires analysis of networks for differing scenarios, in which the presence of 
uncertainty is rife and is therefore suitable to apply one of the developed approaches. 

• Besides uncertainty, also fluctuations in traffic flow between vehicles plays a role. 
Capturing and modelling these fluctuations with FOMSA allows analysis on a 
microscopic stochastic level to be performed of traffic flow, however using a 
macroscopic model. This allows stochastic dynamics in traffic flow to be modelled 
without the necessity of multiple simulations with differ seeds and also in a much 
shorter computation time. The model especially has potential for practical applications 
for multiple interacting disturbances in traffic flow and for the analysis of traffic flow 
phenomenon on networks, such as congestion shockwaves.  
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Figure 10.1: Analysis procedure for a-priori measure evaluation 

10.2.3 Communication implications 

Analysis and modelling with stochasticity is one thing, but being able to communicate the 
results of these processes is another, which is important if the approaches are to have practical 
value. 

• The presented research on visualisation for uncertainty modelling of traffic gives 
tangible options to visualise the extent of uncertainty in static reports. This allows the 
results of uncertainty analysis to be presented to road authorities, managers and other 
decisions makers when making a case for specific measures.  

• A number of considerations for communicating uncertainty are given in Chapter 9. 
These have practical implications for the consideration of communication techniques 
when attempting to communicate results of uncertain events or scenarios. Often the 
way results are presented plays just as large a role as the content of the results, 
therefore careful consideration of how they are presented can have a large influence on 
the outcome of a process. 

10.3 Recommendations for future research 

While certain questions have been answered and new insights gained on various aspects on 
the stochastic effects of traffic on traffic management, this research has also led to new 
questions and paths of thought that did not fit in the scope or time constraints of the research. 
These are presented in this section as recommendations for future research. The 
recommendations are again presented following the structure of the research objectives of this 
thesis. 

10.3.1 The analysis of uncertainty and fluctuations in traffic 

The main recommendations for analysis of uncertainty in the variables that influence traffic 
flow relate to the relationships between vehicles. While methodologies exist and analyses 
have been performed to give insights into single or a few variables, there is a need to consider 
the wider interdependencies of variables for their influence on traffic flow. This is also the 
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case in reference to the uncertainties and fluctuations in these variables; how do these 
stochastic elements influence each other and finally the traffic system? 

10.3.2 Modelling uncertainty and traffic fluctuations 

In this thesis, a set of issues related to stochastic macroscopic traffic modelling were given. 
While solutions and improvements were given to tackle a number of them, further advances 
are still required and are recommended. Especially the issues: correlations and 
spatiotemporal dependency, stochastic propagation of probability, and driving behaviour in 
macroscopic traffic, still require further attention.  

The possibilities of advanced Monte Carlo sampling were reviewed. However, there is still a 
need to further review which technique is most suited under which conditions. It may be that 
Quasi-random sequences are found to be most effective in all situations, however this has still 
to be investigated and further research on specific application of various techniques is 
therefore recommended.  

The other uncertainty approach, the Core Probability Framework (CPF), introduced a novel 
approach to consider uncertainty in macroscopic models. The application of the Discrete-
Element Core Probability Model (DE-CPM) showed promise, but is only one example of 
possible execution of the framework. Further research into extensions, additional models and 
more integrate approaches for the CPF is recommended with the hope that computation time 
may be further decreased and more complex modelling problems with more extensive 
consideration of uncertainty can be tackled.  

The FOMSA model demonstrated a good ability to consider microscopic fluctuation in 
macroscopic traffic flow. Two expansions for future research are recommended. The first 
relates to a greater understanding and description of microscopic traffic dynamics in 
macroscopic modelling. Traffic flow dynamics can be complex, even on a microscopic scale. 
Scaling up to a macroscopic level can be even more challenging and will require further 
research to include more elements that are already known in microscopic modelling. Also, the 
changing dynamics of traffic flow with different vehicle populations and possibilities form a 
challenge, such as consideration of increased vehicle automation. The second challenge refers 
more directly to FOMSA. At the moment, the model is designed for motorway corridors. 
Expansion of the model to be efficiently applicable for (complex) networks and for urban 
networks is recommended. This is in theory very possible, but requires careful 
implementation and consideration of a number of other traffic aspects, such as interweaving 
traffic and intersections.  

The Link Performance Indicator for Resilience (LPIR) was presented as an approach to 
evaluate resilience levels and identify hot spots for traffic management application. In the 
framework of the approach, a description was given of an additional aspect of the LPIR that 
allows causality of resilience weakness to be derived from data analysis. This was not further 
expanded on in this research and is left as a recommendation for further research. The 
analysis of resilience causality is an interesting area that can be a strong addition to the 
presented method, as it does not only return road sections that require attention, but also gives 
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a strong indication of the reasons behind the lack of resilience allowing a road authority to act 
more precisely. 

Finally, the comprehensive case study applied the models and used the GGB methodology for 
traffic management measure selection. The methodology was found to be extremely effective 
and relevant, however is in need of updating, especially in relation to the possibilities of 
floating devices, social media, and cooperative and automated driving. The increase in 
possibilities for communication and traffic flow guidance has further developed in past 
decades. Therefore, a recommendation is made to revise the current methodologies to include 
traffic fluctuations and the latest developments in traffic modelling.  

10.3.3 Visual aids for effective communication of uncertainty in traffic 

In this thesis, existing visualisation options were viewed for communication of uncertainty. It 
was beyond the scope of the thesis to design new visual cues for uncertainty representation for 
macroscopic models; however this is an interesting and maybe important area that should be 
considered. Making use of the main considerations for designs, it is recommended that new 
designs are made that comply with the findings presented in this research and can further aid 
the communication of uncertainty in traffic modelling. Furthermore, the focus in this research 
was on static reporting of model results. However, increasingly interactive platforms and 
methods of communication are advancing and it is therefore also recommended that a similar 
study is performed into the effectiveness of the visualisation of uncertainty for such platforms 
of communication.  
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Summary  

When congestion becomes a problem on a road or road network, there are generally three 
main solution areas available to tackle it: construction, pricing or traffic management. Traffic 
management became an increasingly preferred option towards the end of the twentieth 
century as an alternative to construction in many cases. Traffic management proves a more 
efficient alternative and focusses on influencing traffic flows such that the existing road and 
network capacity is more effectively utilised resulting in a reduction in congestion. The 
effectiveness of traffic management is dependent on the ability to influence traffic flow. 
However, traffic contains a relatively large amount of stochastic behaviour, which is 
connected to human driving behaviour. The fluctuations that occur in traffic flow due to this 
stochastic behaviour have a large effect on the effectiveness of traffic management. 
Furthermore, uncertainty between time dependant scenarios has also shown to have a large 
influence on the outcome of the analysis of traffic management measures. In the past, little 
attention has been paid to these effects. Therefore, the main objective of this thesis is to give 
insight into the stochastic fluctuations and uncertainty in traffic flow for the application of 
traffic management measures and to propose tools that allow these effects to be analysed and 
subsequently modelled in aggregated macroscopic flows. In doing this, the necessity to 
consider uncertainty and fluctuations for traffic management is also demonstrated. Stochastic 
processes are considered as uncertainty, which describes day-to-day uncertainties between 
traffic flows, and fluctuations, which describes microscopic variability in the traffic flow. 
Three main areas are focussed on: the analysis of variations in traffic, modelling fluctuations 
and uncertainty in traffic, and the visual communication of uncertainty from traffic models. 

Analysis 

Analysis of stochastic characteristics of the variables that influence traffic flow is necessary in 
order to understand and model uncertainty and fluctuations. Both traffic demand and capacity 
are directly affected by such variables. Two methodological frameworks are presented for 
stochastic analysis of traffic; one based on stochastic capacity and the other on combined 
stochastic demand and capacity. The first methodological framework is a conceptual model 
for practical stochastic capacity estimation that allows the stochastic nature of capacities to be 
captured and quantified based on the adapted Product Limit Method (PLM) and quantified as 
a distribution. The second framework considers the joint stochastic effect of demand and 
capacity on traffic flow. The methodology applied the same capacity approach as the first 
framework and derived demand distributions through an empirical process of cordoned 
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observations. Considering demand and capacity together is found to give a deeper and holistic 
understanding of the effect of variation on the traffic flow system. 

Models 

The developed models consider the distinction between uncertainty and fluctuations, which is 
necessary as both have inherently different consequences and require different modelling 
approaches, even if the source of the stochasticity is the same. Two types of uncertainty 
modelling are presented in this thesis: Monte Carlo modelling and ‘one shot’ analytical 
modelling. The first type considers the application of Advanced Monte Carlo simulation to 
include uncertainty, which makes use of algorithms to spread samples of variables and 
requires fewer samples to give a representative distribution. These techniques were 
investigated for their ability to reduce the computational load in uncertainty scenario 
modelling. Three approaches were analysed: Latin Hypercube Sampling, Importance 
Sampling, and Sobol Quasi-random Sequencing. The techniques were shown to be stable and 
consistently able to improve the convergence to a true distribution allowing for a reduction in 
computational load and to make Monte Carlo simulation in traffic modelling more applicable 
and efficient. These techniques had not previously been demonstrated for traffic modelling. 
Of the analysed techniques, Sobol Quasi-random Sequences are shown to be the most 
effective.  

The second type of uncertainty modelling considered a new modelling framework: The Core 
Probability Framework (CPF), which is a probabilistic framework for modelling multi-
dimensional variations in capacity and traffic demand in dynamic macroscopic traffic flow. 
The CPF makes use of a propagation model, the Discrete-Element Core Probability Model 
(DE-CPM) that extends a base model, such as the Cell Transmission Model (CTM), by 
considering each traffic variable as a stochastic variable denoted as a probability distribution 
of the chance of values for each traffic variable. The CPF and DE-CPM extend current 
deterministic traffic flow models by redefining traffic variables in the core of the model as 
discrete distribution vectors of probable values for each traffic variable. Important issues 
facing stochastic traffic flow modelling: computational efficiency, spatiotemporal 
dependency, stochastic propagation of probability, and stochastic generality, were shown to 
be tackled by the CPF. The outcome of the calculation time tests on simple networks, 
compared to a CTM Monte Carlo model, showed that the DE-CPM has great potential to 
reduce computation times, especially for larger networks and for greater levels of 
stochasticity.  

Modelling of fluctuations in traffic flow is considered in the developed First Order Model 
with Stochastic Advection (FOMSA). This is a first order macroscopic kinematic wave model 
in a platoon-based Lagrangian coordinate system. Capturing micro-stochastic driving 
behaviour in a macroscopic model is important to accurately describe traffic flow phenomena 
on a macroscopic level. The proposed model makes use of first order traffic flow theory in 
conjunction with an additional invariant term, the vehicle specific invariant, which describes 
the heterogeneous effect of vehicle behaviour and the level of aggressiveness of drivers and 
represents the vehicle specific change to a deterministic density value. To include the effects 
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of the capacity drop, further analysis was performed through two different approaches: 
bounded acceleration and driver reaction times. The model offers the advantages of including 
vehicle behaviour with an increased accuracy due to reduced diffusion effects, while doing 
this in a first order setting and therefore avoiding some of the complexity involved in second 
order model that are often applied to incorporate vehicle behaviour in macroscopic modelling.  

To detect road sections requiring attention to improve throughput, a methodology is presented 
that evaluates the resilience level of road sections based on traffic flow stochastics. The 
methodology applies the developed Link Performance Index for Resilience (LPIR), which 
evaluates the resilience level of individual road sections in relation to a wider road network. 
The focus of the methodology is on resilience and makes a distinction between a resistance 
part and a recovery part as part of the entire methodology with a focus on homogenous and 
volatile traffic. The resilience is calculated in relation to the traffic flow characteristics at a 
flow level and the ability of road sections to maintain their predefined purpose to serve 
vehicles without overly experiencing congestion. The method is explicitly aimed at capturing 
the level of traffic heterogeneity. A demonstration of the entire model suite is given in a 
comprehensive case study for a real network and problem case of the A20 North ring road of 
Rotterdam and was performed for the application of stochastic effects in traffic modelling to 
aid the application of traffic management. In this, the LPIR, Advanced Monte Carlo 
simulation, and FOMSA models were all applied. The models showed they are able to 
perform well and demonstrated their value for their specific purposes and their ability to a-
priori evaluate potential traffic management measures for vulnerable road sections and 
carriageways. The importance of consideration of the stochastic influence of traffic was 
further demonstrated in the case for both day-to-day variations as well as intraday and inter-
vehicle stochastics for the outcome of studies.  

Visual communication 

Communication of results based on uncertainty also requires attention and is considered. This 
is performed through an investigation of different methods to visualise uncertainty in traffic 
for static representations of macroscopic stochastic traffic model predictions on road 
networks. Several graphical uncertainty representations were analysed in a cognitive 
alternative task-switching experiment. Although the actual choice of a graphical uncertainty 
representation strongly depends on the desired type, speed and level of information disclosure 
it was possible to find appropriate representations and it was shown that boxplot and line-style 
representations of uncertainty were generally favourable additions to current macroscopic 
model visualisations. Further analysis on designing model visualisations showed that three 
main considerations should be taken into account. Firstly, it is important to avoid interference 
between the visual cues on different dimensions, secondly, to apply cues that allow explicit 
comparison or quantification where required, and thirdly, to be aware of the detrimental 
effects of clutter or overloading visualisations with too much information. 
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Implications 

This research has strong implications for theory, but all the more for practice. The developed 
frameworks and methodologies allow the effects of traffic management, but also for other 
traffic analyses, to be evaluated to a much greater degree of accuracy prior to implementation, 
much more than what is current practice. Correct a-priori analysis should allow more 
extensive and specifically tuned measures to be analysed and applied to further utilise road 
capacity, improve traffic flow and ultimately reduce delays and congestion. It is therefore 
highly recommended that uncertainty and fluctuations in traffic are considered when planning 
for traffic management. 
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Samenvatting 

Als congestie een probleem wordt op een weg of in een verkeersnetwerk zijn er in het 
algemeen drie belangrijke oplossingsrichtingen: weguitbreidingen, beprijzen of 
verkeersmanagement. Aan het einde van de twintigste eeuw begon verkeersmanagement in 
toenemende mate de voorkeur te krijgen boven weguitbreiding, omdat verkeersmanagement 
vaak een efficiëntere optie bleek te zijn. Verkeersmanagement richt zich op het beïnvloeden 
van verkeersstromen om de bestaande infrastructuur beter te benutten, wat vaak resulteert in 
minder filevorming. De effectiviteit van verkeersmanagement is afhankelijk van het 
vermogen om verkeer te beïnvloeden. Verkeer bevat echter een grote mate van stochasticiteit 
afkomstig van menselijk rijgedrag. De fluctuatie in het verkeer als gevolg van dit 
stochastische rijgedrag heeft een groot effect op de effectiviteit van 
verkeersmanagementmaatregelen. In het verleden werd hier weinig aandacht aan besteed.  

Het hoofddoel van deze dissertatie is het geven van inzicht in stochastische fluctuaties en 
onzekerheden in verkeersstromen om de effectiviteit van verkeersmanagement te vergroten. 
Nieuwe methodieken worden geïntroduceerd om deze effecten in geaggregeerde 
macroscopische verkeersstomen te analyseren en te modelleren. Hierbij wordt de noodzaak 
om rekening te houden met onzekerheid en fluctuaties ook aangetoond. Twee stochastische 
processen worden onderscheiden: onzekerheden beschrijven dag-specifieke variaties tussen 
verkeerstromen en fluctuaties beschrijven microscopische variaties in verkeer. Deze 
dissertatie bestaat uit drie onderdelen: analyse van variaties in verkeer, het modelleren van 
fluctuaties en onzekerheden in verkeer, en visuele communicatie van onzekerheid in 
verkeersmodellen.  

Analyse 

Analyse van de stochastische karakteristieken van variabelen, die invloed hebben op 
verkeersstromen, is noodzakelijk om onzekerheden en fluctuaties in modellen te begrijpen. De 
verkeersvraag en de wegcapaciteit worden beïnvloed door dergelijke variabelen. Twee 
methodologische raamwerken zijn gepresenteerd voor de stochastische analyse van verkeer. 
Het eerste methodologische raamwerk betreft een conceptuele model voor het schatten van 
stochastische capaciteiten in praktijk. De stochastische eigenschappen van  capaciteiten 
worden geschat met behulp van een aangepaste Product Limit Method (PLM) en 
gekwantificeerd als een verdeling. Het tweede raamwerk betreft het gezamenlijke effect van 
vraag en capaciteit op verkeersstromen. Deze methodologie gebruik dezelfde 
capaciteitsaanpak als de eerste methodologie en voegt afgeleide vraagverdelingen hieraan toe 
door een empirisch proces van afgebakende vraagwaarnemingen. Het gezamenlijk bekijken 
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van vraag en capaciteit blijkt een dieper en universeler begrip mogelijk te maken van het 
effect van variatie op verkeerssystemen. 

Modellen 

Voor het modelleren van onzekerheid en verkeersfluctuaties zijn verschillende 
modelaanpakken ontwikkeld. Dit is noodzakelijk gebleken omdat beide vormen van variaties 
inherent verschillend zijn, zelfs al is de bron van stochasticiteit hetzelfde. Twee type 
onzekerheidsmodellen zijn beschouwd: Monte Carlo modellen en ‘one shot’ analytische 
modellen. Voor de modellering van verkeersfluctuaties is een nieuw model ontwikkeld.  

Advanced Monte Carlo simulatiemodellen trekken herhaaldelijk invoervariabelen uit 
kansverdelingen en voeren met die variabelen een simulatie uit. Door gebruik te maken van 
algoritmes om lotingen beter te spreiden is een kleinere steekproefomvang vereist om een 
representatieve verdeling op te bouwen. Drie lotingstechnieken zijn beoordeeld op hun 
vermogen om de benodigde rekentijd te reduceren: Latin Hypercube Sampling, Importance 
Sampling, en Sobol Quasi-random Getallen. De technieken bleken stabiel en consistent in 
staat om convergentie naar de werkelijke verdeling te vergroten, en daarmee de benodigde 
rekentijd te reduceren en de toepasbaarheid en efficiëntie van Monte Carlo simulatie te 
vergroten. De technieken zijn niet eerder gebruikt voor verkeersmodellering. Sobol Quasi-
random Getallen bleek het meest effectief te zijn. 

In deze dissertatie is daarnaast een nieuw analytisch raamwerk ontwikkeld waarmee via één 
(‘one-shot’) modelrun onzekerheid kan worden gemodelleerd: het ‘Core Probability 
Framework’ (CPF).  Het CPF is een probabilistisch raamwerk voor het modelleren van multi-
dimensionele variaties in capaciteit en verkeersvraag in een dynamische macroscopische 
verkeersstroom. Het CPF maakt gebruik van een nieuw propagatiemodel: het ‘Discrete-
Element Core Probability Model’  (DE-CPM). Het DE-CPM maakt gebruik van een bestaand 
basismodel, zoals het Cell Transmission Model (CTM) en beschouwt elke verkeersvariabel 
als een kansverdeling. Het CPF en DE-CPM bouwen voort op bestaande deterministische 
verkeersstroommodellen door de variabelen in de kern van het model te definiëren als 
vectoren van waarschijnlijke waarden voor elke invoervariabele. Het CPF pakt belangrijke 
uitdagingen voor stochastische verkeersmodellering aan, zoals rekentijd, ruimtelijke 
afhankelijkheid, stochastische propagatie van verdelingen en stochastische geldigheid. Uit 
rekentijdexperimenten op simpele netwerken is gebleken dat het DE-CPM in vergelijking met 
CTM Monte Carlo in staat is rekentijden (fors) te reduceren. Voor grotere netwerken en een 
groter mate van stochasticiteit bleek de rekentijd besparing nog groter te zijn. 

Voor het modelleren van verkeersfluctuaties in verkeer is het ‘First Order Model with 
Stochastic Advection’ (FOMSA) ontwikkeld. Dit is een eerste orde macroscopische 
kinematische golf model in een Lagrangiaans coördinatenstelsel. Om verkeersfenomenen 
nauwkeurig te beschrijven op macroscopisch niveau is het van belang om micro-stochastisch 
rijgedrag aan macroscopische modellen toe te voegen. Het voorgestelde model maakt gebruik 
van eerste order verkeersstroomtheorie in combinatie met een extra invariant term, de 
voertuig specifieke invariant, om de heterogeniteit van rijgedrag in verkeer en een mate van 
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agressiviteit van bestuurders te beschrijven door de deterministische dichtheid van het verkeer 
aan te passen. De capaciteitsval is op twee manieren meegenomen: via acceleratiebeperking 
en door rekening te houden met reactietijden van bestuurders. Het model maakt het mogelijk 
om rijgedrag mee te nemen samen met een verhoogde mate van nauwkeurigheid door een 
afname van de diffusie-effecten in het model. Dit wordt bovendien gedaan in een eerste orde 
macroscopische beschrijving, waardoor tweede orde processen worden vermeden, die vaak 
leiden tot extra complexiteit.  

Tot slot is een methode ontwikkeld voor het identificeren van wegvakken waar de 
doorstroming naar verwachting het meest kan worden verbeterd door inzet van 
verkeersmanagement of andere maatregelen. Deze methode evalueert de mate van veerkracht 
van een wegvak ten opzichte van het omliggende netwerk via de ontwikkelde Link 
Performance Index for Resilience (LPIR) toe. De focus van de methode richt zich op 
veerkracht en maakt onderscheid tussen een weerstandsdeel en een hersteldeel met een focus 
op de homogeniteit en volatiliteit van het verkeer. De weerstand is berekend op basis van de 
verkeersstroomkarakteristieken en het vermogen van wegvakken om hun gespecificeerde 
afwikkelingsniveau te faciliteren zonder overtallig filevorming. De methode richt zich explicit 
op het afleiden van de verkeersheterogeniteit.  

In een uitgebreide case-studie voor het verkeersnetwerk van de A20 ring Rotterdam Noord 
zijn de effecten van verschillende verkeersmanagementmaatregelen berekend. Hierin zijn de 
LPIR, Advanced Monte Carlo simulatie, en FOMSA ingezet. De case-studie heeft aangetoond 
dat de modellen goed werken. Tevens is de meerwaarde van de afzonderlijke modellen 
aangetoond om de potentie van verkeersmanagement a-priori te evalueren. Het belang van het 
beschouwen van stochasticiteit werd hierin verder aangetoond voor zowel het aspect 
onzekerheid als voor verkeersfluctuaties tussen voertuigen.  

Visuele communicatie van onzekerheid 

Communicatie van resultaten van onzekerheden vergt ook aandacht. Meerdere grafische 
weergaves van onzekerheid in verkeer zijn geanalyseerd met een zogenaamd cognitief ‘task-
switching’ experiment voor een statische weergave van resultaten van een macroscopische 
verkeersmodel.  De keuze voor een weergavevorm voor onzekerheid hangt af van de 
gewenste de snelheid en het niveau en type van informatie-uitwisseling. Over het algemeen is 
de ‘boxplot’ en ‘lijnstijl’ het meest geschikt gebleken om onzekerheden in verkeer te 
communiceren. Verdere analyse van ontwerpaspecten voor modelvisualisaties lieten een 
drietal aandachtpunten zien. Ten eerste dient interferentie tussen ‘visual cues’ van 
verschillende dimensies te worden vermeden. Ten tweede moeten ‘visual cues’ toegepast 
worden die een bepaalde mate van kwantificatie toestaan. En ten derde moet worden gewaakt 
om niet te veel informatie in een visualisatie op te nemen.  

Implicaties 

De ontwikkelde raamwerken en methodieken maken het mogelijk om de effecten van 
verkeersmanagement, maar ook andere verkeerkundige maatregelen, vooraf met een hoger 
mate van nauwkeurigheid te evalueren. Hierdoor kunnen verkeersmanagementmaatregelen 
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extensiever en doelgerichter worden ingezet waardoor wegen beter kunnen worden benut, en 
minder reistijdverlies en congestie ontstaat. Daarom wordt het sterk aanbevolen om 
onzekerheden en verkeersfluctuaties mee te nemen wanneer nieuwe verkeersmanagement 
maatregelen worden gepland.  
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