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Preface

The opportunity to perform this research wouldrévé been possible without the support of
both sponsors: TNO and TrafficQuest. As a TNO ewygxol have had the pleasure of
undertaking projects with both a strong researatterd as well as being very practical. The
chance to undertake a more theoretical researgbcprim the form of a PhD is extremely

appreciated. Also TrafficQuest, a joint TU DelfijiRwaterstaat and TNO collaboration, are
due many thanks as joint-sponsors of the resedralfficQuest not only supported the work

financially, but also substantially through varioemcouraging conversations with its

members.

It has been an absolute honour to be supervisedsiperb team of experts, each in their own
right, and with their own way of support, by my protor Serge Hoogendoorn and my co-
promotors Henk Taale and Maaike Snelder. Maaikea &®shly graduated doctor, having
also completed your PhD as a ‘part-timer’ from TNOur practical insights initially were of
great help as | got started. Later on your knowdedfynetwork analysis and of traffic flow
and network disturbances proved significant insaggl my progression. Also your ability to
see the brighter side of things, made our collammraduring the PhD enjoyable. Henk, you
were very much the model application expert in mpesvising team. Your vast practical
experience as well as scientific insights werereguse during times when | struggled to get
to grip with various aspects. Your critical reviegiof my scientific output was invaluable to
improving the quality. Also sharing thoughts inate@n to our mutual Father was an
unexpected joy, which was not expected prior tatisg out on this journey. Finally Serge,
you are a crazy person! And | mean that in a vexydgway! When God created you, | think
He must have had a lot of fun, and much of thditilgearted fun is so evident at just about
every contact one has with you. Having you as anptor has been a great privilege as you
have a unique ability to look through a mountairchdios and pick out the edges of something
special hidden in the chaos. Those special thinggldvoften become my next challenge in
the project, which | would rarely turn away fromawing a world leader as promotor also
brings challenges, as your agenda is not one |dhvdé to look after (respect, Priscilla!). But
these are things that are quickly realised and wleiad to a greater degree of ingenuity.

Outside of those who directly influenced my worlkeres many who supported me in many
other ways, not least my room-mates. Bernat, Xawl &aqing: you guys travelled

(sometimes literally) with me in this journey ane Wwave had a ball in the process. | think we
can all agree that sanity is most definitely nowhter be found in our room, and you would
probably say especially behind my desk. Especiaélynat, you have been a friend beyond
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what | can give you credit for here, thank you! Tiransport & Planning department must be
unique for so many reasons, but maybe one reasoidvib@ the crazy table tennis battles.
There are too many to thank from the departmentetsthis be a thank you to you all' And
finally a special word for Hans van Lint. Hans, ywaren't directly involved in my PhD, but
you have been a great encouragement throughout yeamg, even before | graduated for my
Masters under your supervision. Thank you for yguidance and support!

Being a part-time PhD student also means that ¢ ltalleagues at TNO. Many of you have
been a great deal of help with data, thinking almooatlelling solutions and with other aspects
of the research. All have been an encouragemeomtighout! Special thanks goes to Michiel
Minderhoud and Taoufik Bakri for your technical issmnce along the way.

And of course | would not have ever started outreswork if | had not have had the support
of my darling wife: Els! Your hard work at home hgisen me the space and allowed me to
pursue this research work at the expense of somgowf own aspirations. Maybe you
understand more than | what it really means to beam. lan, Lisa and Abby: Daddy has
finally finished playing with the cars in his compt As | often ask you to, it is now time for
me to tidy them up.

It would not do Him justice for me to just thank @;dor He is more than a support or
encouragement. Life is so much more than all faesand can comprehend and the cogs that
make it work and give birth to us all are outsideatwve can comprehend. Father, yours is the
glory above all and so much more than | can wrtevords. Completion of a PhD is a big
step in the career of an academic, but in the wikbkings it found its source in the curiosity
and drive You gave me. From an eternal perspedtigeesn’'t mean anything, other than to
be part of the path You have set out for me anavehchosen to accept. This path goes
beyond this research, my work, my studies and myg effort and intelligence, but all these
things are woven into the journey that | am grdtedbe on. For those who ask how | know
you exist, | can only say that | just know from ey You in my heart and knowing Your
Spirit within me. This is not something that can peven by clever arguments or
mathematical equations. But for now | can only o#aleep heartfelt thank you for these past
five years and all that has happened both in #ssarch and outside of it.

| have learnt many things since starting out wiitis research, so here is a piece of wisdom |
have picked up along the way: Life is not what wakmit, it is the way we choose to face the
things that come our way. Our achievements shoeleérjoyed, but never rested upon as a
guarantee to future glories. Achievements are Winitien completed and in the past, and
future achievements are tomorrows past. Real triargye only found in grace that will last
for eternity.

Simeon Calvert, May 2016
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Chapter 1

Introduction

When congestion becomes a problem on a road or measlork, there are generally three
main solution areas available to tackle it: consttion, pricing or traffic management. For a
long time road authorities could reasonably keepuigh increasing traffic demand through
expansion of the road network. However, this imigef solution as space and resources are
limited. While pricing can often be politically fidult, traffic management became an
increasingly preferred option towards the end @& tiwentieth century as an alternative to
construction in many cases. Traffic managementgg@more efficient alternative and
focusses on influencing traffic flows such thatekisting road and network capacity is more
effectively utilised resulting in a reduction innggestion.

The effectiveness of traffic management is depemahetime ability to influence traffic flow. As
the term suggests, traffic can be considered #3va but unlike the flow of fluids, traffic
consists of larger individual particles, namely thehicles, which can be influenced. The
particles portray a relatively large amount of shastic behaviour, which is connected in part
to human driving behaviour. The fluctuations thetur in traffic flow due to this stochastic
behaviour have a large effect on the effectivenésmffic management. The investigation of
these fluctuations and their relevance to traff@magement is the main subject of this thesis.

In this chapter a basis is laid for the thesis, teamng an introduction to the research topic,
the objectives of the research and the relevantkeofesearch. In section 1.1, the context is
given as a backdrop for the research. In secti@ the research objectives and questions are
stated as well as the scope of the research. The sceentific and practical societal
contributions are given in section 1.3, followedthg research approach and an outline of
the thesis in sections 1.4 and 1.5 respectively.
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1.1 Research context

It has long been known that the average distanaeelted by individuals is linked to
prosperity. As personal travel budgets increasewitlingness to travel longer distances for
work and other motives increases, leading to arease in travelled distance (Zahavi et al.,
1981). At the same time the worldwide populationtowes to grow, which in turn leads to
an increase in potential travellers. The combinieceis a total net increase in the travel
demand. As the growth of public transport and otlar-car related travel remains relatively
low compared to road travel, this means that thmty of the growth in travel is undertaken
on roads. The growth in car and truck travel in thated States compared to the Gross
Domestic Product (GDP) is shown in Figure 1.1 aechanstrates this principle. Also for the
Netherlands such graphs can be constructed, aswmsor recent decades in Figure 1.2.
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Figure 1.1: Total car and truck Vehicle Miles Travdled (VMT) and Gross Domestic
Product (GDP in billions) for 1936-2011 in the USKcola and Wachs, 2012)
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Figure 1.2: Total Vehicle Kilometres Travelled (VKT) by motorized vehicles in the
Netherlands between 1995-2014 (data derived from (B Statistics Netherlands)
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However the growth of road travel has also ledrtongrease in congestion as the expansion
of road networks continuously lag behind the inseeen travel demand. A further difficulty
in network and road expansion lies in scarcity,eesgly spatially and financially, but also
increasingly due to environmental restrictions. Hugse reasons the application of traffic
management has steadily increased in past decddafic management involves the
utilisation of existing road capacity through irghcing traffic flows to improve overall
network performance. Often network performance kellmeasured in the extent of delay in a
network. Influencing traffic flow can be performadmany ways, but to be effective it must
consider the inherent characteristics of traffic.

Traffic flow comprises of the aggregated interactaf all vehicles on a specific section of
road. General traffic flow theory has been derividt explains the macroscopic flow of
traffic under varying traffic states, from freewildnto congested traffic flow. As traffic flow

is influenced by individual driver behaviour, tHighaviour is also of importance. Human
behaviour is typified by stochastic fluctuations alh sorts of levels. This behaviour also
enters a drivers’ driving behaviour and influentesfic flow. Differences between drivers
also introduce further stochastic variations intaffic flow. Therefore traffic exists of
different behaviour from different drivers and \etibehaviour in time from all drivers, not to
mention differences in vehicle capabilities. It ha®viously been shown that stochastic
heterogeneous traffic has the potential to leaddegestion at lower flow rates than the
maximum flow and therefore increase total delaysi¢B and Zurlinden, 2003, Elefteriadou
et al., 1995). This heterogeneity in traffic therefalso influences the effectiveness of traffic
management, as traffic management explicitly amnsfluence the flow of traffic. Often the
effect of a traffic management measure will onlywistble once a measure has been taken, by
which time costs have been made and a decisioralheady been made how a measure is
applied. Therefore, it is important that the effetttraffic management can be predicted in
advance. Traffic models are often used to a-pdetermine the effects of traffic management
measures. However, herein lies a problem: mostidrafodels cannot or do not consider
stochastics in traffic flow and its influence oaffic management measures and are therefore
not capable to determine the real effects.

In many traffic models, stochastic variations agmored or assumed to be of limited
importance to the outcome of simulations. In maases reducing the input of a traffic model
to average or representative values, rather thasigering stochastic variations, can have
detrimental effect on the simulation results. Itynegen lead to biased outcomes in relation to
what may be found from empirical data (Calvert let 2012, Mahmassani et al., 2012, van
Lint et al., 2012). An increase in this realisatlas occurred in the past decades and has led
to some pioneering research in this area (Brilod Zarlinden, 2003, Elefteriadou and
Lertworawanich, 2003). Traffic models that considertain stochastic elements of traffic
flow have also been developed. It is argued thatstbchasticity in traffic cannot be reduced
to a single representative value prior to traffmw simulation. Results of simulations also
cannot be expected to give the same outcome watthastic input compared to a reduced
representation of the input as a representativeevdhstability in traffic, including network
effects in congestion, lead to a non-linear propageof stochastic variation, especially for
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the more extreme cases. In turn greater traffiwsland congestion will lead to higher values
for travel times and delays than can be derivethfaweraged or representative input values
(Calvert et al., 2012). It is therefore imperatieeexplicitly consider stochastic variation in
traffic flow modelling, when this variation is pes# in the considered scenarios and
networks. Some traffic models have been developaedent years to address this problem.
However, most models have limitations when considestochastic behaviour for traffic
management applications. This is discussed latirisrthesis in Chapter 2.

To address the issue of the influence of stochasitation in traffic flow for traffic
management applications, a greater understandiegjisred on the influence that traffic flow
stochastics have on the effectiveness of traffinagament. Application of these insights in
various modelling applications, allowing the effeabf traffic measures to be a-priori
determined, is also required to allow measureset@ffectively evaluated and designed for
optimal application on road networks.

1.2 Research objectives and scope

1.2.1 Research objectives

The main objective of the research presented sthasis is to give insight into the stochastic
fluctuations and uncertainty in traffic flow fordgtapplication of traffic management measures
and to propose tools that allow these effects tcabalysed and subsequently modelled.
Stochastic processes are considerednagrtainty which describes day-to-day uncertainties
betweentraffic flows, andfluctuations which describe microscopic variability the traffic
flow. This main objective is broken down into thaé-objectives, which focus on:

a) The analysis of uncertainty and fluctuations irfica
b) Modelling uncertainty and traffic fluctuations
c) The development of visual aids for effective commation of uncertainty in traffic

The research questions addressed in this thesideareed from the sub-objectives. The first
guestions refer to the analysis of uncertainty amedformulated as:

1. Which variables have a substantial influence owrlsasticity in traffic flow?
2. How can the distributions of the stochastic varesbin traffic flow be quantified?

There are a large number of variables that infleewariability in traffic flow on various
levels. On the highest level these influences camrdnsidered on the level of influence on
traffic demand and capacity. At the lowest levet timfluence is on individual driving
behaviour. The first two research questions ainmsummarise which variables have the
greatest influence on traffic flow and the stocluétgtthereof. Methodologies are sought that
allow the uncertainty of variables to be quantifiedhe form of probability distributions. Key
variables should be demonstrated in these methg@sidor which distributions are derived
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as generic distributions that may be applied incanario based macroscopic modelling
approach.

The following questions consider modelling of utaerty and of stochastic fluctuations in
traffic and are formulated as:

3. What are currently the main issues for modelliragkastics in traffic flow?
4. How can uncertainty scenarios in traffic be modkdfectively?
5. How can stochastic fluctuations in traffic flow l@delled macroscopically?

Stochastics in traffic flow are separated into utaety of traffic conditions, such as on a
day-to-day scenario level, described here as mempas stochastics, and into stochastic
fluctuations in traffic flow, such as between véés; and is described here as microscopic
stochastics. Research questions 3 and 4 considendin issues that exist when modelling
uncertainty in traffic and consider possibilitiee tmprove scenario-based uncertainty
modelling in macroscopic models. Research que&iaddresses the question of modelling
microscopic stochastic fluctuations in macroscapffic flow, in which vehicle interactions
are present. Analysis and modelling of stochastigsaffic is however useless if one is not
able to adequately visualise and communicate theomes. Therefore the final research
question is formulated as:

6. What are effective options to visualise and compaiaiuncertainty from
probabilistic traffic models?

This question addresses the main difficulties isuglising and communicating uncertainty
results from stochastic traffic models. This coessdoptions for effective visualisation and
the cognitive processing of different visual cued a person’s ability to process these cues to
effectively make use of probabilistic model results

1.2.2 Research scope

This thesis presents research on the stochastctefbn traffic flow for the analysis and
modelling of traffic flow for traffic management gipcations. Although many of the analyses,
modelling techniques and considerations presentedhé thesis may be more widely
applicable, the main considerations remain forrtlagplication in traffic management. A
main difference with non-traffic management applaras lies in the way that the application
of traffic management affects traffic flow. Ofteraffic management is applied to influence
traffic flow under extreme conditions and may oftspecifically target the extent of
homogeneity in traffic flow. Both extreme condit®onand homogeneity are directly
predisposed to the effects of uncertainty and ststoh fluctuations in traffic flow. Therefore,

most cases and examples used in the thesis alate red the application of traffic

management.

While microscopic models are often applied to asallocal effects of traffic management,
macroscopic models are far more effective in cared the network effects. However,
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much less is known about the modelling capabilittesl possibilities of macroscopic

modelling for traffic management applications owider network scale. In this research, the
focus is exclusively on macroscopic modelling widn exclusive consideration of

unidirectional uninterrupted flow for motorway thiaf Although traffic management may be

applicable for urban networks, its application feeo different to that of motorway network

applications. Furthermore, only single class tcafftows are considered. This is by choice to
limit the span of the research and retain focusilewh is recognised that multi-class

consideration of traffic flow is relevant for therwidered subject and application.

The term stochastic is extensively used in traffiedelling to describe different aspects of
models. However, in many cases it does not refpli@tty to traffic flow itself, but rather to
certain aspects that affect traffic flow, such @ste choice method, equilibrium conditions or
choice of scenario. In this research, stochastiersedirectly to traffic flow influencing
random factors. Two different levels of stochastituence are considered: macroscopic and
microscopic stochastics. Macroscopic stochasties dafined as uncertainties in a traffic
system and can be viewed as day-to-day or time¥te-scenarios. An example of this is the
uncertainty in traffic demand on a network for @@fic day. Microscopic stochastics are
defined as stochastic fluctuations in time depentaffic flow, often due to instantaneous
behaviour. The fluctuations in time-headway betwé@o vehicles are an example of
microscopic stochastics in traffic flow.

Application for traffic management purposes obvipusiplies a practical implementation of
measures and therefore the use of analysis teas@ud models is considered likewise. The
presented and developed models are explicitly densd with practical applications in mind.
While many approaches and models exist that maydre elaborate and may produce better
results, many of these are constructed purely #tigaily and have drawbacks when it comes
to application in practice. Therefore, only apptex that can easily be applied by
practitioners are considered and demonstrated. rAbeu of the presented and developed
models make use of parameters for calibration aretttining. It is not in the scope of this
thesis to give refined parameters settings for egglication of these methods. The models
are demonstrated using applicable parameter settiog the considered cases, without
detailed analysis of the considered parameterngsttiThe objective of the research is
focussed rather on methodological approaches #mtipe in relation to traffic management.

1.3 Thesis contributions

1.3.1 Scientific contributions

Science is broadly defined as: “The observatioenification, description, experimental
investigation, and theoretical explanation of pheapa” (American Heritage, 2011). The
main scientific contribution of this thesis is tadvancement in the understanding of the role
of uncertainty and stochastic fluctuations in iafflow, especially in relation to traffic
management. For each contribution, the correspgn@isearch question is given in brackets.
The contributions are further summarised as follows
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» Demonstration and argumentation of the necessitptsider traffic flow
stochastically for evaluation of traffic managemé@uestion 3, 4 & 5)

* Insight into the main traffic flow influencing stieastic variables and a quantification
of these variablegQuestion 1 & 2)

« |dentification of relevant modelling issues for netlothg uncertainty in stochastic
traffic flow in practice (Question 3)

* Advancing uncertainty modelling in traffic modeferformed through the
demonstration of the advantages of Advanced MoatoGampling in uncertainty
modelling in traffic models, and the developmenthef scenario-based Core
Probability Framework (CPF|Question 4)

« Development of a methodology to consider microscsfpchastic fluctuations in
traffic flow in a first-order macroscopic model @@nment. The methodology
considers individual vehicles characteristics ircrnacopic flow modelled in a
Lagrangian system also capturing the capacity drapother traffic phenomena.
(Question 5)

* New methodology to evaluate the resilience leveball sections. The methodology
is based in part on traffic heterogeneity as aromant variable for traffic breakdown.
(Question 4 & 5)

» Development and proof of visualisation possibifitter communicating uncertainty
from probabilistic traffic modelgQuestion 6)

1.3.2 Practical contributions

The practical societal contribution of this themssto aid the reduction of congestion and
improve traffic throughput and reliability on croed motorway networks. This is achieved
through a number of different contributions givarthis thesis, which are summarised as:

» Development of a practical framework for demand eayolcity estimation and
generic base values for probabilistic capacity unliféerent conditions(Question 1
& 2)

» Highlighting the relevance of traffic managemend andened scope of its
application. It is demonstrated that traffic mamagat can have a greater positive
effect on traffic flow than previously realisg@Question 3, 4 & 5)

» Development and demonstration of models to a-peggiuate the effects of traffic
management under different conditions. These madetease the accuracy and
reliability of forecasts for the application of fiia managemenfQuestion 4 & 5)

» Development of the Link Performance Indicator fasiience (LPIR) to be applied as
a quick-scan approach for network evaluati@uestion 4 & 5)
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« Presentation of visualisations that allow the rssiubm probabilistic traffic models to
be easily communicated in practi¢®uestion 6)

1.4 Research approach

The approach followed in this research follows shene line as the presented objectives and
focusses on answering the earlier presented rdésgagstions. The general flow diagram of
the various parts of each of these areas presantbis research is shown in Figure 1.3.

a) The analysis of uncertainty and fluctuations ifffica

To derive patterns and distributions of trafficWlanfluencing variables and their stochastic
nature, data processing methodologies must firstebewed, refined and applied. These
methodologies should explicitly consider and digplee stochastic uncertainty in traffic. The
methodologies allow input for stochastic modelbeaconstructed along with a set of feasible
traffic management measures, but also for indepardiga analysis.

b) Modelling uncertainty and traffic fluctuations

Identification of road sections requiring attentican be performed in different ways.
Analysis on ways to quantify the vulnerability @fad sections is performed with a focus on
improving resilience and developing a methodolagyntlicate locations requiring attention
based on heterogeneity of traffic flow. Modellingyeto-day uncertainty in traffic requires a
different modelling approach to modelling fluctwets in traffic flow. Therefore, different
approaches are sought to effectively model unggytain one hand, and the microscopic
fluctuations between vehicles on the other handbdth cases the ability for practical
application must be considered.

c) The development of visual aids for effective commation of uncertainty in traffic

It is necessary that the results from the uncdstaimodels can be conversed to strategic and
operational road managers, policy makers, and stheguiring insight into the options of
applying traffic management. Therefore, a cognitiisual analysis is performed to evaluate
effective methods and visualisation options tothid process.
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VISUALISATION of results

for reporting and interaction

Figure 1.3: Research approach

1.5 Thesis outline

The structure of this thesis comprises of six pastshown in Figure 1.4. Part one sets out the
current practice and necessity for consideringhgtstics in traffic flow modelling. The main
content reflects the three objectives and thegaesh questions stated in section 1.2.1,
namely the data part, model part and visualisgiam, and further include a section on the
practical application in a comprehensive case stRégearch questions 1 and 2 are answered
in Chapter 3. In the model part, research que&isndealt with in Chapter 2, research
guestion 4 is answered in Chapters 4 and 5, aeanels question 6 is answered in Chapter 6.
The application part gives a demonstration of tle¢hmdologies in Chapters 7 and 8. Chapter
9 answers research question 6. Each chapter agluded separately on its own title page and,
where applicable, the source publication(s) aremgithat make up the chapter. In the final
part, the conclusions and recommendations flowmiamfthis thesis are given.
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Introduction and research setting

Chapter 1
Introduction

Chapter 2
Current practice, necessity and important issues in macroscopic
stochastic traffic flow modelling

Identifying stochasticity — Data part

Chapter 3
Stochastic capacity and demand estimation

Modelling stochasticity - Model part

Chapter 4
Advanced sampling methods in Monte Carlo simulation

Chapter 5
Core probability framework and modelling

Chapter 6
Microscopic stochastic macroscopic modelling

Evaluation of infrastructure - Application part

Chapter 7
Stochastic evaluation and identification of road resilience levels

Chapter 8
Comprehensive case study

Communication of stochasticity - Communication part

Chapter 9
Visualisation of uncertainty in probabilistic traffic model
for policy and operations

Conclusion

Chapter 10
Conclusions and recommendations

Figure 1.4: Thesis outline



Chapter 2

Current practice, necessity and important issues in
macroscopic stochastic traffic flow modelling

Since traffic modelling became a mainstream aresc@ntific research halfway through the
last century, continuous developments have takasreph order to improve performance and
eradicate shortcomings of models. Since the tuthetentury an increase in research
regarding stochasticity and probability in traffiicodelling has occurred. The realisation that
simple presumptions and basic stochastic elemeatmaufficient to give accurate modelling
results has grown.

The purpose of this chapter is to give a demonstmatf the necessity to consider stochastics
in traffic models and to highlight a number of issuhat require further development. Firstly,
a concise overview of the current state of theimihe area of macroscopic and stochastic
modelling is given, as well as some of the shoriegsnof these models (sections 2.1 and 2.2).
The case for the necessity of stochastic modeiingpen argued, and demonstrations are
given and discussed, for two cases in which detestié approaches are shown to be inferior
compared to a stochastic approach (section 2.3)llehges for further development of
stochastic models are given in sections 2.4 and 2.5

This chapter is an edited version of the articles:

Calvert, S. C., Taale, H., Snelder, M., & Hoogendoorn, S. P. (2012). Probability in traffic: a challenge
for modelling. In DTA2012: 4th International Symposium on Dynamic Traffic Assignment, Martha's
Vineyard, USA, 4-6 June 2012.

Calvert, S. C., Taale, H., & Hoogendoorn, S. P. (2014). Introducing the Core Probability Framework
and Discrete-Element Core Probability Model for efficient stochastic macroscopic modelling. In DTA
2014: 5th International Symposium on Dynamic Traffic Assignment, Salerno, Italy, 17-19 June 2014.

11
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2.1 Macroscopic traffic modelling in general

This thesis focusses on stochastic variation inroas@opic models. This does not mean that
stochastic behaviour is not and should not be ptesemicroscopic models. However, this is

much easier to achieve and is already mature. braseopic models, this is currently not the

case and therefore the focus of the research mamroscopic models. Before focusing the
necessity of stochastic macroscopic models, it eésessary to first understand what

macroscopic are and their current level of develepmThis is performed in this section.

2.1.1 State-of-the-art macroscopic traffic flow modls

Various types of traffic models exist, each witleithspecific purposes and applications. A
well accepted distinction is based on the level dettail and differentiates between
macroscopic, mesoscopic and microscopic models detodoorn and Bovy, 2001). Another
categorisation focuses on the deterministic le¥ethe model. This indicates the extent to
which a model incorporates variation in its caltiolas and distinguishes between
deterministic and stochastic models (HoogendoochBovy, 2001). Within these categories
further differentiation can be made, also betwdss ¢ategories further differentiation is
possible.

Macroscopic traffic models do not consider indiatluehicles, but rather describe the flow
from the collective behaviour of vehicles and dreréfore more readily applied to larger
networks. In essence the vast majority of macrasctpffic models are deterministic.
Deterministic traffic models presume that no steticavariability is present in traffic, while
stochastic traffic models do presume certain leg€lgriations. A distinction in macroscopic
models is generally made between first order modets higher order models. Lighthill and
Whitham (1955) were among the first to propose rat forder approach based on fluid
dynamics from the field of continuum mechanics.sThroup of models, known as LWR
models, makes use of the law of conservation, coetbwith a fundamental relation between
the main traffic quantities, density, volume andcesh and makes use of the numerical
Godunov scheme to solve the model equations (Gaqubh@b9, Lebacque, 1996b). This
creates a nonlinear discrete time dynamical sysidnth solves the partial differential
equations from the LWR. Later Daganzo proposed>dansion to the LWR-model in the
form of the Cell Transmission Model (CTM) (Dagan2894, Daganzo, 1995a). In this work,
shockwaves are automatically incorporated in thpliegble equations, which avoids the
necessity of considering shockwaves as an exteasal.

Higher order traffic models make use of multipléfetential equations to describe traffic
flow. One of the first higher order models to begwsed was by Payne (1971) in which the
LWR-model was extended with a dynamic speed egualibis addition solved a number of
difficulties with the original first order modelsyhich occurred at the boundaries of traffic
states. Such a difficulty is the inability to creattart-stop waves, as a first order model
presumes instantaneous speed correction from eshi€lespite the improvements, higher
order models initially received a fair amount oiticsm, partly due to the explicit level of
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complexity in solving them. And while methods hdwesen developed to perform the task of
solving the equations (Papageorgiou, 1998), thatgrdevel of complexity makes completely
understanding the mathematical properties of thesgels a rigorous task (Hoogendoorn and
Bovy, 1998), which can lead to instability in themplementation (Daganzo, 1995a).
However, further developments by Aw and Rascle (®)Gand Zhang (2002) eradicated
many deficiencies, such as the violation of theainopic character of traffic (Lebacque et al.,
2007b), and opened the door for further developmeftv and Rascle (2000a) proposed
adjustments to the original definition by replacitige space derivative with a convective
derivative. Zhang (2002) described this similanhd a&xplicitly state that traffic flow moves
with the velocity along the trajectory and is thiere described as a Lagrangian quantity.

Lebacque et al. (2007b) applied the same ratiomabeneralise the ARZ models (Aw and
Rascle, 2000a, Zhang, 2002). The ARZ models applyngariant term to represent the
relative speed of vehicles which is connected és¢hvehicles. Lebacque et al. (2007b) define
this term as a general invariant that can alseelaed to global flow properties and therefore
represent other characteristics of microscopic fldlwe model is described as a generic
second order model (GSOM) after the flexibility dmes to define an invariant that can take
on many different purposes. This approach has lpphed in a number of consequential
publications (Costeseque and Lebacque, 2014, Gogtesand Lebacque, 2015, Lebacque
and Khoshyaran, 2013). One such application destribe invariant term as a stochastic
driver attribute describing the random driver iatgions of a driver with other drivers
(Lebacque and Khoshyaran, 2013). Their Stochast®0OK8 describes the stochastic
behaviour as a Brownian process and white noiseegroand if further defined in Lagrangian
coordinates. While the GSOM also allows a first esrdlescription to be formulated
(Lebacque et al., 2007b, Lebacque and Khoshya@h3)2 applications of the GSOM are
generally not found in first order formulations.

The majority of applied macroscopic traffic modetske use of first order theory, or an
adaptation thereof, especially for models applregractice. Second order models are gaining
in popularity and possibilities, but remain lestabBshed than first order models, mainly due
to difficulties in practical application and compiy. Our main focus will lie with the first
order approaches, but the work described in théggtEr may in many cases also apply to
second order models.

Both macroscopic and microscopic models can behasiic. Application of stochasticity in
traffic models entails the inclusion of variabiliip the manner in which traffic flow is
modelled. Contrary to deterministic models, in whane set situation is modelled, variables
in stochastic models may vary due to stochastiecedf Although this adds complexity, it
represents the real world to a better extent. tholy stochasticity in macroscopic models, in
which a wide range of variables are varied, is gaheperformed in two ways: by means of
repetitive simulations, and secondly by includiragiation in the model core. Both of these
methods are described and discussed in the folgpaagtions. The focus here is on stochastic
traffic flow modelling, therefore stochastics inute and other type of choices are not
discussed in this chapter.
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2.2  Stochastic macroscopic traffic modelling

In this section a concise overview of stochastdfitr flow models is presented that can be
found in literature. A discussion is also giventba main application areas for these models
and acts as a step-up to a demonstration of thessiyg of stochastic models, which is

described in section 2.3.

2.2.1 State-of-the-art stochastic traffic flow modis

Since the 1990’s there has been a gradual incieaskort towards improving traffic flow
modelling through the explicit inclusion of stochawariation. Initially, focus was on Monte
Carlo simulation and later the focus shifted mawards internalised stochastics. In Monte
Carlo simulation various input values for the ti@f¢ariables are sampled and applied in
simulation for aN number of simulations to approach a distributiérpossible outcomes.
Although Monte Carlo simulation has been widely legaghy mainly due to its relative
simplicity and effectiveness, the method has itawthacks. Main concerns in traffic
modelling in the past have been the computatiomed lof the method (Chang et al., 1994,
Chen et al., 2002, Sumalee et al., 2011) and tlesepce of correlation between input
variables. The incorporation of variance reductieethods, such as Importance sampling or
Latin Hypercube sampling, have helped to reducectimputational effort of such models as
well as the use of more powerful computers (Cahetrtal., 2014c, Hess et al., 2006,
Jonnalagadda et al.,, 2001, van Lint et al., 20R2ixthermore, recent developments in
marginal simulation approaches offer an alternagivl@tion to a heavy computational load in
Monte Carlo approaches (Corthout et al., 2011)mérginal simulation a significant overlap
between traffic flow in successive simulation iteyas is presumed. By only simulating the
marginal difference in traffic flow, repetitive matrk loading with a full dynamic
macroscopic model is not required. The marginalutaton method only requires a single
full initial model simulation and thereafter simida the marginal differences with a first-
order based kinematic model, leading to a gain amputational efficiency. Correlation
between input variables may be considered pri@irtmlation at the sampling stage (Chen et
al., 2002). Variables with dependencies may alse lpaobabilities which rely on the values
sampled from other variables. In this way, coriefatbetween two or more variables is
included and allows for a realistic simulation. Hewer, calculating non-bias outcomes in
situations in which correlations are more compler,aurthermore, have dependencies on
variables in the model, becomes much more diffiq@hang et al., 1994). In many
approaches the extent of bias is presumed to betinrand therefore little attention is spent
on this difficulty.

An analytical approach to probability in the modete, or simply one shot, stochastic traffic
modelling approach has proven an extremely diffiaanidertaking. Clark and Watling (2005)
proposed a method for travel time reliability based day-to-day variations in the travel
demand matrix. Their framework computes a totavdraime distribution based on the
multivariate moments of a link flow vector. This svauccessfully demonstrated, however the
method only considered a single random variableyatya the traffic demand, and therefore
has limited difficulties with correlation. Othersopose a more numerical approach to
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analytically incorporating stochasticity in the nebdcore. Recent developments include
Sumalee et al. (2011), who proposed a stochasllicraasmission model (S-CTM) which
makes use of fives operational modes dependingherstates of traffic flow. Each mode
incorporates a set of stochastic conditions to ri@sgrobability in each mode. Others who
proposed using multiple functions as dictated leytthffic state, include Mufioz et al. (2003)
and Sun et al. (2003). A main reason for considemualtiple traffic states is the avoidance of
nonlinearity in the fundamental relation, which dgficult to quantify otherwise. More
recently Jabari and Liu (2012) argued that presgmimon-linearity, while being
mathematically beneficial, may lead to inconsisyenwith the original deterministic
dynamics. Therefore Jabari and Liu (2012) propdeedclude stochasticity as a function of
the uncertainty in the driver gap choice, represgily the random vehicle headway. In doing
so, they argue that non-linearity is avoided intowous time as all traffic dynamics may be
derived from the longitudinal car following behawto Boel and Mihaylova (2006) similarly
proposed an extension to the CTM with stochasemehts. Rather than reconstructing the
CTM as piece-wise structure based on traffic stdtesy defined the sending and receiving
functions from the CTM as random variables in whicl dynamics of the average speed in
each cell is stochastically varied. The purpose todaacorporate stochasticity in the heart of
the model at link level, which may propagate thiougn entire network through cell
interaction. However, as their approach only cosrsich single stochastic scenario at a time,
repetitive simulations are required to composeodalility distribution of the outcomes.

Stochasticity can also be included in (macroscopaffic models by means of a stochastic
fundamental diagram. Li et al. (2009) make a strargument that a simple, but effective
manner of stochastic modelling is to make use sfoahastic fundamental diagram. Such a
diagram is constructed through a flux function ot#d from random elements observed from
speed-density data. Kim and Zhang (2008) also pusly described stochasticity in the
fundamental diagram by defining the growth and yletd perturbations from random
fluctuations in both the gap time and transitiomsween traffic states. In their work they
closely examined fluctuations in car following terive their defined gap time.

Advances in approaches bringing probability to tdoee of a model have generally been
performed as extensions of existing methods. This the obvious advantage that sound
theory may be further elaborated on. The extensfahe cell transmission model (CTM) is

therefore a logical one. While disadvantages oflyapgp such non-linear approaches are
brought forward (Jabari and Liu, 2012), the questiemains to which extent this has a
detrimental effect on the outcomes. Jabari and (2012) argue that most models are
nonlinear and therefore handle traffic propagatmmonsistently, and that stochastic variables
are often applied as mere white noise. Applicabbstochastic variables as a representation
of an underlying function rather than white noiserefore should lead to a reduction in error,
substantiating Jabari and Liu's claims. While pblgsiguaranteeing consistency when
avoiding nonlinearity, there may be an issue iatreh to accuracy as nonlinear models have
a greater ability to generalize and freedom tottié complex dynamics of traffic flow

(Vlahogianni et al., 2005). The case for lineaatyainst nonlinearity is therefore a complex
one in which nonlinear solutions continue to gainsirength, even if complexity issues
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increase. Well posed approaches have been propbsedtill do not claim to satisfy all
properties of traffic dynamics (Aw and Rascle, 2000

Table 2.1 gives a concise overview of the main $ygflenodels, some example references and
a summary of their strengths and weaknesses. Thaitpaf the presented methods, while
applying stochasticity, do this based on presumgtiof random variables. In many cases,
random distributions may be acceptable, howevemmber of random variables which
presume a nominal distribution will show a persisterror when empirically challenged.
These errors transpire from the difference betw#®n nominal distributions and the
underlying distributions, which can be obtained &oglly (Knospe et al., 2004, Lin, 2001).
To this extent the random variables are not puvehststic, in the sense that they represent
real empirical fluctuations, as the random varialde not always accurately correspond to
empirically derived probabilities. A further majdifficulty that is only partially addressed is
that of dependence between random variables (Chah, 2002, Sumalee et al., 2011, van
Lint et al.,, 2012). These correlations are ofteespmed non-existent for the ease of
modelling (Sumalee et al., 2011), or are simplifibg means of presumptions or
transformations (Clark and Watling, 2005, Jabad am, 2012). While some research does
consider correlations between random variablesetladternative models are often restricted
to less elaborate modelling approaches.

Table 2.1: Classification of stochastic traffic flav models

Class

Reference
example

Characteristics

Monte Carlo

With & without
advanced sampling

(Calvert et al.,
2014b)

+ Simple
+ Accurate and effective
- Time & computationally heavy

Marginal

(Corthout et al.,
2014)

+ Limited additional computational load

- Dependent on a base run

- Poorly effective for large changes

- Interactions at network borders difficult to
estimate

First over model | Stochastic element | (Boel and Mihaylova, | + Based on sound and proven theory
generalisations 2006, Sumalee et al., | + Easy application in practice
2011) - Loss of accuracy due to simplification of
probability & correlations
Fundamental (Kim and Zhang, | + Based on sound and proven theory
diagram 2008, Li et al., 2009, | + Simple & effective approach
Mufioz et al., 2003) - Loss of accuracy due to simplification of
probability & correlations
Second order (Khoshyaran and | + Mathematically sound & correct
model Lebacque, 2009) + High potential level of accuracy
- Difficult to implement in practice
- Calibration & validation of variables
cumbersome
Other analytical (Clark and Watling, | + Mathematically sound & correct

2005)

- Difficult to implement in practice
- Computationally heavy (in some cases)

Some advances have been recently made in stochastiecnodelling, as shown. The majority
of these models are developed for very specifippses with possibilities for larger scale
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implementation. However the, sometimes complexntdations may provide difficulty for
implementation of methods in a complete macroscapienesoscopic framework. To the
knowledge of the authors, no model has yet beerldped that is capable of matching the
accuracies of the computationally heavy repetisiveulation through a one-shot approach on
a comprehensive network, and is able to be extelysapplied in practice. In section 2.4, the
main issues for stochastic macroscopic flow moxglare considered.

2.2.2 Application range

While the need for a greater element of probabdityl consideration of variability has been
shown, this does not apply for all applicationsminich traffic models are required. In many
cases, deterministic models will work just as witlis therefore necessary to evaluate under
which conditions variability should be consideradhile considering potential drawbacks of
including variation in traffic.

In general, the main advantages of using detertiini®odels are the relatively short
calculation time and the limited amount of inputadaequired. The advantages of using
stochastic models are an increased accuracy witkideration of numerous situations, as
demonstrated in the experimental cases in the sestion, and the possibility of giving
results with a reliability score or sensitivity. it easy to see that a stochastic model will
always be preferred if it can be just as easilyliadpas a deterministic model, however in
reality this is not the case. It is therefore neaegto review the goals and requirements of a
model analysis before performing calculations. TiBisa step that is too often omitted in
practice, mainly due to practical issues or undedtble unawareness from the viewpoint of
the user. Considering the aforementioned advantafyéise models, a concise overview of
conditions under which both model types should $etuis given in Table 2.2.

Table 2.2: Application range for stochastic modelsersus deterministic models

Stochastic modelling Deterministic modelling
Applicable for... Applicable for...
Variation in input variables Negligible variation in input variables
Distribution of input variable is reliable and can | Distribution is unreliable and cannot be easily
be easily determined determined
Variation in input variables has an amplified Variation in input variables has a limited or linear
effect on model outcome effect on model outcome
Congested network with high congestion Uncongested network or congested with low
volatility congestion volatility
Comprehensive overview of network General indication of network performance
performance

Variations in the input variables lead to a primaource of variation in the model results.
When these variations are negligible or non-extstdrere is no need to apply a stochastic
approach and a deterministic approach suffices. é¥ew for limited variations, the results
from model runs may show greater discrepancy tlardafge input variations between the
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stochastic and deterministic cases. This is showrthe next section. This is due to
sensitivities in the vicinity of critical road sems in a network, which show congestion and
therefore delay for a limited part of the possipiket, but are not sufficiently captured by the
deterministic case. In turn, a greater error intbtor the deterministic case. However when
variations are large, extreme congestion or quadti¢ will often also be captured by the
‘deterministic’ case to a large extent, which le&mlsa smaller error between the stochastic
and deterministic cases. When the variation in tiryauwiables has a direct linear correlation
with the outcome of a model, the model results alilbw a similar level of variation, as in
both cases a similar ‘representative’ situation vasult from both a distributed input and a
mean or median input. In an uncongested netwosk\lili often be the case, as traffic can
propagate at (near) desired speeds without too rdischption, resulting in a stable model
output. In these scenarios, stochastic modellingy mat show much difference to the
deterministic case. Furthermore, it goes almosthout saying that when probability
distributions or functions cannot be accurately starcted, one should apply a known
variable in deterministic model rather than apgiyinaccurate presumptions of a distribution
function. Finally the main application of stochastnodelling should be to give an accurate
and comprehensive overview of traffic on networklema wide variety of conditions. If one
is merely interested in a general indication ofamek performance then a deterministic model
again suffices.

2.3 Need for stochastic models

Often there is a specific and sometimes urgent teade stochastic models. This is argued in
many of the papers presented here thus far. Thdicappn of simple stochastic or
deterministic models in some cases may be uniateaity deceiving policy-makers with
biased results. However, it is not always appandr@n stochastic models should be applied
and what the extent is of errors made by applyiog-stochastic models. Tampére and Viti
(2010) remarked on this and included questionstinglato the reliability of dynamic
modelling and the lack of most current models topprly consider stochastic elements. van
Lint et al. (2012) experimentally demonstrated itin@ortance of not ignoring variations in
traffic by showing biases in results that occurbgdnot considering stochastic variations.
Many recent contributions propose elaborate arllytsolutions for the application of
probability in modelling. However, most remain ingolete from the point of view of
practical widespread implementation. Tampere and(2010) and Jabari and Liu (2012) also
argue that randomness is often applied in an irepednd incomplete fashion. This may be
through merely adding stochastic ‘noise’ or preswygnian inaccurate distribution, for
example. For many of the proposed models this mesnthe case, which can lead to the
misrepresentation of reality and wrong conclusioased on the outcome of such models.

In the following paragraphs, two experimental caaesgiven to demonstrate area’s in which
deterministic modelling has shortcomings and ahststic approach is required. This gives a
demonstration of the necessity to consider thehststec character of traffic flow when
modelling.
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2.3.1 Experimental demonstrations

To demonstrate potential situations in which madg]lwithout consideration of variation in
traffic quantities, can lead to biased results, tamall scale experimental cases are
considered. These cases each have a focus onificspaatribution of stochastic modelling.
The goal of the experiments is to show that comsidevariations as probabilities gives
substantially different results than by considerngingle deterministic run. In each case, the
capacity of the road sections is varied accordm@n arbitrary, but probable distribution.
Variations in capacity are applied to all road ge as a blanket factor, which may represent
the reduction in operational capacity from i.e. thea conditions, luminance conditions, etc.
The applied distributions are logarithmic functioasd are shown in Figure 2.1. These
distributions resemble the distribution of empiriodservations. Different distributions are
used to demonstrate the influence of the inputiligion in the cases. To avoid the necessity
to derive correlation between capacity and demaariation, only the capacity is varied,
which is more than sufficient to give an indicatioh the effects of modelling traffic
variability. In each case, use is made of the dyoamacroscopic traffic assignment model
INDY, which is based on the link transmission moded developed by Yperman (2007).
Route choice in the applied version of INDY is pdtthsed, with path fractions derived
iteratively until equilibrium over all OD-routes &hieved. For each simulation iteration, this
equilibrium is recalculated to correspond to thevrieffic conditions. This presumes that
during the peak period drivers have a good knowdealgtraffic conditions and are aware of
irregularities in this daily pattern and can amate this (Peeta and Yu, 2005). This
presumption is an imperfect simplification of réaliThe other extreme would suggest that
drivers have no prior knowledge of the network ahdnges in daily traffic flows, which is
not realistic either, as drivers making work retateps should be presumed to have a greater
knowledge of the traffic system. The true equililbni state will most probably lie in between
these two events, and has been discussed in a nombentributions in recent years (Gao et
al., 2011, Guo et al., 2010, Ng and Waller, 20¥Rith a lack of certainty on the equilibrium
state, the choice is made to presume a new eduitibfor each simulation based on driver
knowledge of the traffic system. The model is agublio a section of the Amsterdam network,
as shown in Figure 2.2.
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Figure 2.1: Capacity factor functions for model input: case 1 (left) and case 2 (right)
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Figure 2.2: Network used for the experimental casas INDY, representing the south
ring of Amsterdam

The outcomes of the experiments are analysed uliegtotal experienced delayas
performance indictor on the entire network compatedfree-flow conditions, and are
expressed in total vehicle hours. In the case ssydheaveraged travel timever route AB
(see Figure 2.2) is also analysed. Other resuitators may also be used, such as the travel
time over other specified trajectories or the ageraetwork speed, among others. For the
demonstration here, it is not of great importantdctv indicators are chosen, merely that the
network can be evaluated. The mean average anchédén of the distributed results are
compared with that of a single model run for thediae situation, which represents a
deterministic model run.

In general, theéotal experienced delaygyelayis defined as:
(2.1)

oo
Tdelay = Z (ttscenven — ttff.veh)
veh=1

where veh = vehicles
ttscen.veh = travel time in the scenario
tts veh = travel time in free flow

In the macroscopic model, where vehicles are natethed individually, theotal experienced
delayTgelayis calculated by:

Tdelay - Z Z (qlink.t : ( Lini - lll—nk>> (2-2)

Viink.t  Vfflink

t=1link=1
where t =time
Ollink.t = traffic flow on link at time t

liink = length of link
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Viink t = mean cell speed on link at time interval t:t-1
Vit Jink = cell speed on link in free-flow

The averaged travel time over route AB is the ayeia all travel times during the simulation
on the route, and is defined as:

o4} l [ 2
n Zlinkzl (vl‘mkAB ) ( 3)
TTAB — 2 linkAB.t
n
t=1
where TTas = travel time between origin A and destination B

linkaB = length of a link, between origin A and destioatB
VinkAB.t = cell speed on link at time t
n = number of time steps

2.3.2 Case setup

In the first experimental case a near-critical levetraffic flow is present on the network.
This could represent a situation in a busy peak petiod on a well-designed network, which
nicely meets the extreme level of demand. In tlereace scenario, the capacities are set to
the median value of all possible capacity valuesesponding to the capacity distribution;
this is the ‘representative’ situation. The stoticascenario takes a sample from the capacity
distribution (Figure 2.3a) and applies these vatoesll links in the network. This is iterated
for 40 simulations and is performed for Latin hypdre and systematic sampling, to verify
that the sampling method does not bias the tendehttye result. Both systematic and Latin
hypercube sampling are both advanced sampling methimat systematically sample from
ordered sub-selections. For more information osd¢hmaethods see (Iman and Conover, 1980,
McKay et al., 1979). These methods are chosermegsrepresent the input distributions in the
outcomes much better than for simple random saigtina low number of samples (Black,
2009, Iman and Conover, 1980, McKay et al., 1979).

The second experimental case considers the evantthile variability of the capacity is
extensive. This may be the case in a period in veidreme weather is present in varying
severity over an extended period of time. The c#palistribution as in Figure 2.3b is
applied, which shows a greater variation in cagagtiue compared to case 1. Again for the
reference scenario, the capacities are set to #diam value of the all possible capacity
values corresponding to the capacity distributiime stochastic scenario takes a sample from
the capacity distribution and applies it to thenak, which is repeated for 40 iterations. This
is also performed for Latin hypercube and systemstimpling.

2.3.3 Results of experimental cases

The results from the experimental cases are shawhe form of histograms, as well as the
numerical values for each sampling method. Theamécof the median input value, which is
used to represent the deterministic case, is asmg
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Case 1

The results of case 1 show that, depending on #mepked capacity value, a skewed
distribution is produced with an average networdagef a little under 18000 vehicle hours in
the network (Figure 2.3 and Table 2.3). This isstd@rably higher than the deterministic
situation, modelled with the input median, whicloguiced a total network delay little over
9000 vehicle hours. In the stochastic case, the-crédecal level of traffic flow on capacity
will be breached in many cases in which the capasimarginally below the critical level of
traffic flow. And while this may not happen in thegjority of cases, when it does, widespread
congestion can occur in the network and a greait tnhetwork delay for vehicles is
registered. The average capacity remains abovethlae critical traffic demand. Because the
‘representative’ situation, as modelled in a deterstic approach, does not trigger
widespread congestion, the total network delay ignificantly lower which gives a
misleading outcome. When considering the traveesimaver route AB, a similar outcome is
obtained (Figure 2.4 and Table 2.4). The deterricniglue (18.2 minutes) lies very close to
the left side of the distribution, while travel swell above these 18 minutes are recorded in

many cases.

Histogram of network delay (Systemtic sampling) Histogram of network delay (Latin hypercube sampling)
T T T T T T

Frequency
Frequency

Network delay (vehicle hours) x 10* Network delay (vehicle hours) x 10°

Figure 2.3: Network delay for case 1. Sampled asstgmatic (a-left) and as Latin
hypercube (b-right) sampling

Table 2.3: Network delay of case 1 in vehicle hours

Sampling method Median Network delay | Average Network delay

(vehicle hours) (vehicle hours)
Latin Hypercube 12164 17990
Systematic 12166 17986

Median input 9113 9113
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Histogram of travel times (Latin hypercube sampling) Histogram of travel times (Systematic sampling)
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Figure 2.4: Averaged travel times on route AB (seEigure 2.2) for case 1. Sampled as
systematic (left) and as Latin hypercube (right) sapling

Table 2.4: Averages travel times for case 1 on roaitAB (see fig. 2)

Sampling method Median Travel times Average Travel times
(minutes) (minutes)

Latin Hypercube 20.23 23.98

Systematic 20.23 23.95

Median input 18.16 18.16

Case 2

The results of case 2 show similar distributionghat of the first case. The average total
network delay of the repetitive simulations is ardul8,000 vehicle hours, while the

deterministic run produces just over 12,000 vekitleurs (Figure 2.5 and Table 2.5). For this
experiment a larger variation is applied to theuinpapacity variable. This results in a larger
spread of values for the total network delay fag #tochastic approach. The deterministic
approach also shows a greater number total netdeldyy due to a greater average capacity
drop in the input, which allows the traffic demaiodexceed capacity to a greater extent. As
capacity in this case is low enough to becomecatitithe difference between the stochastic
and deterministic outcomes is smaller, while therage stochastic outcomes are only slightly
higher for case 2 than in case 1. This further shole sensitivity of the deterministic

approach to small changes in the input, while theseeasily captured by the stochastic

approach.
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Histogram of network delay (Systematic sampling) Histogram of network delay (Latin Hypercube sampling)
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Figure 2.5: Network delay of case 2. Sampled as sgmatic (left) and as Latin hypercube
(right) sampling

Table 2.5: Network delay of case 2 in vehicle hours

Sampling method Median Network delay | Average Network delay
(vehicle hours) (vehicle hours)

Latin Hypercube 12136 17845

Systematic 12164 18481

Median input 12359 12359

By considering a complete distribution of probablput values, a complete distribution of

outcomes can be considered for the stochastic apiprén the model, a small deterioration in
road capacity has an amplified effect on the expered traffic delay, a characteristic that is
not picked up by the deterministic approach. Weeh#wrefore demonstrated a major
deficiency of deterministic and simple stochastiedels that do not consider variable traffic

flow. The inability to consider anything other than average situation and the sensitively to
variations in ‘real’ input variables, by presumisiggle values rather than distributions, leads
to a considerable chance of model results givinmgliable and biased outcomes.

2.4 Challenges for further development of stochastimodels

Although research in stochastic traffic flow modwll is gaining momentum, a number of
significant challenges remain for the further depehent of stochastic macroscopic
modelling. And while many of these challenges haeen addressed individually or in part in
research, a further challenge remains in bringiachepart together to form a complete and
operational stochastic model. In the previous draphe state of the art in relation to
stochastic modelling of traffic variations is givdfrom the reviewed literature, a number of
issues are described that have still to be sat@icsolved, such that they can be included in
a fully operational traffic model for practical dgation. These issues are summarised and
described in this chapter. The main challengesudsed are:
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1. Computational efficiency

2. Correlations and spatiotemporal dependency
3. Data gathering and processing

4. Stochastic propagation of probability

5. Generality of stochastic variation

6. Driving behaviour in macroscopic traffic

An additional challenge may be mentioned in thenfaf the implementation, however this
affects each challenge individually, and does nqilieitly affect the core workings of the
model. The described issues give a basis for dpreat of solutions in the rest of the thesis
to address the main issues. Although six issuesramtioned, it remains too extensive to
address each one completely within this thesis. é¥@ny when tackling a number of the
challenges from the issues, attention is givernéocomplete set of issues to avoid a solution
for one leading to the aggravation of another. Ha test of this chapter, each issue is
described and is concluded through the formuladiosm challenge for each issue.

2.4.1 Computational efficiency

Consideration of computational efficiency appliegshe computational load of a model on the
applied hardware, but also the speed at which lzions can be made as a consequence of
the applied calculations. Macroscopic models irnrtagplication are almost always applied to
larger networks and therefore demand computatipoaler, which is severely compromised
by including probability due to consideration ofaager number of scenarios or uncertainty.
The computational load of models in general has Iseen as a problem in the past (Chang et
al.,, 1994, Chen et al., 2002, Sumalee et al., 20dbwever, nowadays this problem is
diminishing with the increase in computational poveé hardware (Chang et al., 1994).
Nevertheless the possibilities of increased contjuutal power always seem to be tested to
the limit as advancement of modelling techniquestioaally demand greater computational
power (Bliemer and Taale, 2006). For both macrogcsiochastic methods mentioned in this
thesis: repetitive simulations and one-shot anady/solutions, there are difficulties relating to
scientific advancement in terms of the computatieffeciency.

As described in section 2.2, repetitive, or rathemte Carlo, simulation techniques have
increasingly applied greater computing power t&leathe lack of applied variables and the
complexity of the variables functions (Chang et 4994). Greater numbers of random
variables are considered in the input, and modeiniattempt to describe the traffic system to
a more realistic extent. This however means thatetagion between considered variables
becomes of greater importance. This is becausefthet of correlation becomes greater as
one considers larger numbers of dependent evergtermining correlation functions is

already difficult, however calculating them als@ads to a greater demand of hardware
resources. The other mentioned innovation in répetisimulation, marginal simulation,

offers an alternative that reduces the computatitoed, while still allowing a complete



26 TRAIL Thesis series

course of Monte Carlo simulations (Corthout et 2011). By only simulating the marginal
traffic flows, the spatiotemporal range that is wiated can be limited, such that a complete
network and all traffic flow do not require resiratibn, but only those differing from a
previous simulation. Limitations of marginal simuuden lie mainly in the approximation that
is made regarding the affected network and trdlifivs. Assumptions are made to the extent
that the initial base simulation is affected andolhparts of the network are activated for
marginal simulation. The approach has proven toetheient in various cases, however
developments continue and generic proof of efficyewithout significant loss of accuracy is
still in the process of being unveiled. Neverthglethis category of models has much
potential and has already proven to have its uSeglfout et al., 2009, Frederix et al., 2011).

The development of one shot models, which largedgsdaway with the necessity for

repetitive simulations has a great potential t@valifor stochastic simulation at a lesser
computational cost. Such models as the S-CTM (Seenet al., 2011) and that of Jabari and
Liu (2012) are at the forefront of these developteerA danger however is that a

simplification of the stochastic input or propagatmay be required to allow one shot models
to be effective. In this, a simple rule that therenelaborate the solution, the greater the
computational load, is evident.

Recent developments should be applauded, but comeany cases with large drawbacks.
The challenge for researchers in this field is ¢fee: not only to develop elegant solutions
for stochastic modelling, but to do this in a manthat allows easy and efficient application
in computational terms. Furthermore, with a greaféiciency, comes a larger network that
can be calculated, shorter calculation times, agiekater robustness of the model.

2.4.2 Correlations and spatiotemporal dependency

When applying stochastic modelling, it is necessargonsider multiple random variables as
both input and in the model itself, depending am &pplied approach. In the simplest terms,
one has at least the traffic demand and suppiyn@s variables, however these may consist
of many other variables, such as weather effeetseig@l randomness in demand, and others.
These all have some level of dependence which tamnagnored (Chang et al., 1994). In
deterministic modelling, one has only to considagle values, which relate directly to one
another. Within random variables, not every peritnaiawill be possible in conjunction with
another from a separate random variable. A simpéangle of this is a high speed of 100
km/h which will never occur simultaneously with @l traffic density of say 40 veh/hr/lane,
while both may be present as part of the probabdit their random variables. A limited
number of solutions have been proposed to deal suitrelations in (Berdica, 2002, Chang et
al., 1994), however these and similar approaches@mplex or may only deal with specific
dependent relations. While offering some sort olutsan, a difficulty remains and is
connected to the challenges from the previous paphg in that the applicability of the
methods in an operational model may be cumbersaradaltheir complexity. To this extent,
there remains a challenge to develop a global @gprdo consider correlation between
random variables in a manner that can be easilyeimgnted and that does not substantially
detract from the efficiency of the model.
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Incorporation of spatial and temporal dependenttdiations from different sources brings a
further issue of correlation on a number of levéds a temporal plane, it is clear that a
stochastic element will affect traffic during a teén time frame, possibly with differing
severity. A basic example is that of an accideat tleduces road capacity. At the time an
accident occurs, the capacity is affected diffdyetitan during the aftermath and the clean-
up, but nevertheless the capacity reduction isetated in time, as a natural consequence of a
chain of events. In the same way, there is alspadiad correlation. The capacity reduction
affects the location of the accident, but due togestion propagation, also affects upstream
traffic flow. A further complexity in dependencemses from not only considering a single
stochastic influence variable, such as the capdaitiyalso the traffic demand. In the case of
an accident, drivers may reroute, shift departure tetc. This does not only affect traffic
flow in time, but also in space. Furthermore, clatren effects also exist between the traffic
demand and road capacity in some instances. Whesidawing a greater number of variables,
the dependency relations explode.

In many cases, some of these dependencies aran@eswn-existent for ease of modelling
(Clark and Watling, 2005, Sumalee et al.,, 2011)pdemlly for the interdependent
correlations between variables this is readily tlase, while spatiotemporal dependencies
must be considered on some level to avoid disptlita model. Even then, these correlations
may be simplified by means of presumptions or fiamnsations (Clark and Watling, 2005,
Jabari and Liu, 2012). It should not immediately peesumed that a less than full
consideration of dependency will have large detntakeeffects on model outcomes, as there
are cases in which this is clearly the case (Caéteal., 2012), however the possibility thereof
should always be considered. The challenge reguitom this issue is therefore, to develop
models that sufficiently consider the main effecfscorrelations between variables, while
allowing a model to not become overly loaded witho tcomplex levels of internal
dependency between variables.

2.4.3 Data gathering and processing

Probabilistic or stochastic models, by definitigrk with a wide variety of possible values
for the considered random variables. The outconfieBese models will often be given as a
distribution, and the input will often encompasseaen greater spread of data points. In some
cases input for stochastic models will be explcéapplied from empirically collected data,
and other cases will be applied from an empiricdlyived or presumed analytical function.
In either case, there is a need for large amourdata to form a generically valid distribution
or to validate the presumed function. The spetyjie of data depends heavily on the manner
in which an approach is applied. However, for apphes which try to include multiple
variations of traffic influencing variables, sucts aveather conditions, gathering and
processing the required data is not a trivial téfskie consider weather and even the effects
of snow, it must be pointed out that a great nunddgnermutations are possible. One can
distinguish between snowfall and lying snow on thad surface, between the first snowfall
of the year and snow two weeks later when drivereehalready become accustomed to the
conditions. Also various combinations of weathendibons can be considered, such as
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strong winds, poor luminance, and low sunshineinatbmbination with snow. Each situation
needs consideration to be able to determine spec#usation of events and correlations
between the events. This requires years of datheaen then this may be insufficient. This
challenge obviously applies for many other varigpleesides the weather. And once
sufficient data has been gathered, it still needsetprocessed. The principal difficulty of this
is processing the data in such a way that depereertetween variables are correctly
reflected in the random variables, or as a coimidtinction.

To address these issues, the application or developof concise methodologies is required,
which will allow for an efficient and comprehensidata processing and result in accurate
distributions. This therefore is also the challerthat is presented with this issue: to

development and apply techniques that produce septative distributions based on

empirical findings for application in models, withtdhe need to rely heavily on heuristics and
arbitrary assumptions.

2.4.4 Stochastic propagation of probability

In traffic flow models, it is commonplace for trafto propagate through a link and network.
However, upon including stochastic probability iaftic flow modelling, the probabilities of
traffic values also propagate in time and spacéh wiaffic (Hoogendoorn et al., 2008,
Lebacque et al., 2007a). For Monte Carlo simulatibis is not an issue, as each simulation is
a single probability value and therefore no proligbialue is required to be considered. For
one shot models there is a challenge to propagatdapility information without
compromising model accuracy or one of the otherorgmt issues, such as computational
efficiency.

In models, which apply stochastic effects throulgd tundamental diagram, traffic flow is
presumed to propagate in an identical fashion &b ¢l a regular flow model. In a stochastic
fundamental diagram, probabilities are stochagdyiagplied in the shape of the diagram. In
the S-CTM, for example, median and standard deriatof traffic variables are propagated
through time and space, dependent on the relevaffit tstate. It is not uncommon to only
consider a median and standard deviation, as ¢ljsines the least computational effort and
still gives a good estimation of variational spreddwever, more in-depth analysis is harder
as the underlying distribution is not preservedtfarmore, such an approach often presumes
probability distributions to be symmetrical accoglito a presumed shape, which is not
always the case. In such a case, biases are allawach may not accurately represent the
underlying distribution. It should however be nothdt these biases may be small compared
to the overall error level.

This issue is not one that will hinder the workirfga model, but can have a substantial effect
on the results produced by a model and therefapaines attention. The defined challenge for
this issue is to construct a methodology that pyapes the probabilities of variables with
traffic flow, such that these probabilities or \aions are maintained without losing their
inherent descriptive power over the variables.



Chapter 2 — Current practice, necessity and impbissaues in macroscopic stochastic traffic flowdelting 29

2.4.5 Generality of stochastic variation

Generality of stochastic variation refers to thelegability of parametric distributions to
represent the underlying empirical distributionscliision of stochastic variation does not
only demand solid and accurate modelling, but aésdistic and correct model input. The
level of stochastic input depends on which variglaee considered stochastic. These may be
the time headway (or gap time) between vehiclegaddy values, traffic demand values, or
even ‘lower level variables, such as vehicle pagioh or probability of accidents.
Depending on how a model processes the stochamtiables, these may be offered to the
model as a complete distribution, either of a dpetdrm or empirical, or as a description of
variations, such as median, standard deviationpasdibly a shape parameter. The difficulty
with this issue is that of generality. A set partineshape of probable values for a set
variable may not be valid for every location onedwork or under certain other conditions.
Furthermore, such variables may not pertain ta ais&ribution type. Often presumptions are
made to how general distributions or variations &memany instances, white noise may be
applied to known representative values to imitatgation (Helbing et al., 2001, Jabari and
Liu, 2012). The validity of such approaches is often considered and is taken as a model
assumption. However, there is also room for impnoset, when applying stochastic variation
to traffic flow models. In the case of stochastimdamental diagrams, the difficulty of
generality may also arise. In some cases allowpegific local data to influence the extent of
stochastic variation can help solve this.

It may be acceptable to presume parametric digiobsi in many cases, however in many
more this may be an unwanted source of error. Fadlenge described in relation to this
issue is therefore, to develop a method or framkwortest the correctness of presumed
distributions, but more so, to allow non-parametiigtributions to be applied in a stochastic
propagation model without undue side effects wihenis required.

2.4.6 Driving behaviour in macroscopic traffic

Driving behaviour is at the heart of traffic floma traffic flow theory. In many cases traffic
flow is presumed deterministic, however driving &ebur is far from this and contains a
great deal of stochastic fluctuations. These flattuns are present for a single vehicle, in
their desired speed, ability to maintain that spés@ral positioning, acceleration capabilities
and behaviour, for example. Fluctuations also dxettveen vehicles, such as car-following
behaviour, lateral interactions, such as lane cbsyngtc. Each of these elements affects traffic
flow. In a microscopic model, it is easy to incluthese aspects, when a suitable algorithm is
present. In macroscopic modelling, these aspeetsat explicitly considered as they are
hidden in the macroscopic aggregation of traffiowfl However, it is known that these
stochastic fluctuations do affect traffic flow atiterefore also macroscopic traffic flow and
should be considered in some way (Helbing et GD,12.

Traffic characteristics and states of traffic ih@mogeneous traffic flow will often differ from
largely heterogeneous traffic flows, such that cépavalues and other road variables will
differ for identical demands. Such stochastic fthations from driving behaviour are currently
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not included in macroscopic modelling and here tles challenge: to include microscopic
driving behaviour stochastics in macroscopic maaglsuch that the effect on traffic flow is
well represented.

2.5 Summary of issues

It is of course the case that each issue influetivesothers in some way. This is a main
reason why individual solutions for each issue dbnecessarily yield an overall solution for
all the issues. Figure 2.6 gives a high-level dpson of the dependencies between the issues
discussed in this chapter. We derive that espgdiaéé manner of stochastic propagation of
probability in traffic is a key issue. There is taoag influence from this issue to both the
manner in which the spatiotemporal dependency flsieénced and the extent to which
stochastic variables can be dealt with genericdllynay be that certain presumptions for
dealing with uncertainty propagation may limit hostochastic variables are defined.
Furthermore, each issue affects the computatioa tifra model and in most cases contributes
to a lower computational efficiency. There are aitons possible that may lead to shorter
computational times, such when a process inhereatlyeven implicitly allows for
parallelisation. When setting out on tackling ofiehe issues, the effect on the others should
not be ignored, moreover the effect should exjitie considered for model usefulness.

Driving behaviour
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Figure 2.6: Interrelations between the main modelhg issues (continuous and dashed
lines indicates strong and weak relationships respavely)

2.6 Conclusions

In this chapter, the case for considering stocbagtiiation in macroscopic traffic modelling
was argued. This begins with a description of arpgactices in traffic flow modelling, and
more importantly, in stochastic traffic flow modedi. It is shown that currently two main
avenues of models are utilised: repetitive MontelcCaimulation, and the analytical
consideration of probability in the core of a mod&lirrent and recent research developments
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on both of these approaches are discussed. Whissichlly, the Monte Carlo approach has
been applied, the advancement of various analydigptoaches has increased, with a number
extensions of deterministic models being proposed.

Too often stochastic variation in models is notsidered in practice, either for application or
the necessity for development. Focussing on detestid or simple stochastic models has the
danger of closing ones eyes to inaccuracies cabgedn incorrect choice of modelling

approach. To demonstrate this, two experimentascage given in which the application of a
deterministic approach is shown to yield substégtiniased results in comparison to a
stochastic approach. While stochastic models canséen as more ‘complete’ than
deterministic models, their application is not maceended in every situation. A short
investigation is therefore performed on the apgilicarange of stochastic models.

There is a necessity, but also many challengeshirscientific and consultancy worlds to
further the development and application of stodbastodelling in traffic analysis. A
realisation must arise of the detrimental effedtdblindly applying non-stochastic models
where probability is rife. It is the joint respobiity of both worlds to address this and make
further developments in this area of research ptessi

While the case for macroscopic traffic flow modadjiis strong in theory, the application of
such modelling approaches is only possible witHigehtly developed models. However,
there are still certain challenges to be addres&sgorobabilistic and stochastic modelling
before a widespread implementation is likely. Thiegee been discussed in this chapter and
are considered in the rest of thesis. It goes beéyba scope of this thesis to extensively and
explicitly address all of the issues, however wragtdressing the main challenges and
objective in this thesis, the described issues e gept in mind.
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Chapter 3

Stochastic capacity and demand estimation

In this chapter a methodological framework withanceptual model for practical stochastic
capacity estimation is presented and a quantifaabf motorway capacity variation is given.
Furthermore, a methodology for stochastic demanimasion combined with stochastic
capacity is also given. A quantification of the aejpy is given in the form of a Weibull
capacity estimation fit for each type-of-day scémarFurther consideration of the
implications and applications of the framework atso given.

One of the most influential external and commomlguaring influences on traffic flow is the

weather. Weather conditions affect both traffic dathas well as road capacity. The capacity
estimation framework is applied on weather as dra holistic approach for simultaneous

influence on both the demand and supply. Furtheemar case is made to quantify such
outcomes stochastically.

The chapter starts by considering the three manmbées considered in the chapter. Section
3.2 gives a review of capacity definitions followley a conceptual model for capacity
variation in section 3.3. In sections 3.4 and $i® methodologies for stochastic capacity
estimation, and for a combined stochastic capadéyiand estimation are given. These
methodologies are demonstrated in case studiegdtiosis 3.6 and 3.7. Section 3.8 finally
gives a discussion of the results, followed byctheclusions in section 3.9.

This chapter is an edited version of the articles:

Calvert, S. C., Taale, H., and Hoogendoorn, S. P. (2015) Quantification of motorway capacity
variation: influence of day type specific variation and capacity drop. Journal of Advanced
Transportation, doi: 10.1002/atr.1361.

Calvert, S. C., & Snelder, M. (2016). Influence of Weather on Traffic Flow: an Extensive Stochastic
Multi-effect Capacity and Demand Analysis. European Transport, 60(4), 2016
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3.1 Introduction

3.1.1 Capacity

In traffic flow theory and modelling there are fesariables that are as fundamental as road
capacity. Road capacity is applied in modellingtha likes of infrastructure planning and the
evaluation of traffic measures. The capacity abadrhas a direct influence on the traffic state
in reality as well as in models. It is thereforgmntant that correct capacity values are applied
when modelling traffic. There are however a numbgichallenges for the estimation of
reliable capacity values. These are related to cdspsuch ascapacity definitions the
stochastic nature of capacjtgndtraffic instability in the critical traffic states.

The first aspect is the capacity definition. Theimas different definitions for road capacity
all have a specific purpose, while each estimati@thod makes use of a different approach
to detect and calculate capacity. Common capaéitiitions relate to the traffic state, such
as the undersaturated or breakdown capacity, digehzapacity, and nominal capacity. In
section 3.2, a more detailed description is givénhe capacity definitions and how their
values can be calculated. It is obvious that apglyhe correct definition is paramount as well
as consistently applying the same definition fanparison.

Secondly, traffic flow and road capacity are stigmdgpendent on driver behaviour. Human
behaviour is well known for pertaining a great de&l(unexplained)stochasticity which
understandably extends to traffic flow. It is tHere not reasonable to state that there is one
definitive capacity for a specific section of rod&turthermore, road capacity is increasingly
seen as stochastic with a probable value and datmleviation around that value (Brilon et
al., 2005, Calvert et al., 2012, Lorenz and Eléitkou, 2000). This however is problematic in
traffic models that make use of deterministic amdd capacity values. Although these values
will often give a good representation of the mosbbable capacity value, they do not
consider the spread in capacity values and thdtirggunfluence that this fluctuation in
capacity values has on traffic flow. Taking theseiations into account leads to results that
are not linearly correlated to the outcomes of temenistic traffic model (Calvert et al.,
2012, Mahmassani et al., 2012, van Lint et al. 2201

The third challenge of reliable capacity estimat®ithe uncertainty of traffic performance in

unstable traffic near critical flow levels (Chenadt 2013). As traffic is a stochastic system,
the traffic states near to the traffic breakdowreshold cannot be easily defined (Weng and
Yan, 2015). This makes it difficult to accuratelgtermine current traffic states and can lead
to unclear capacity estimations, as it becomescdlffto distinguish between pre-breakdown
capacity and discharge capacity. (Bigazzi and &2gii, 2011, Tu et al., 2007).

Uncertainty of road capacity in traffic flow haslleo a growth in stochastic modelling. These
models take (a part) of this uncertainty into actdi® improve accuracy and reliability of

traffic simulations (Ryu et al., 2015). Many of #eemodels make use of arbitrary stochastic
variations in either or both the capacity and tcafiemand (Tampére and Viti, 2010). In some
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cases a distribution of capacity is considered,dw@r in such a way that it does not always
accurately resemble capacity variations in realitygd therefore may introduce additional
variational errors. The availability of such dibtrtions for specific circumstances is limited.

Furthermore, a quantitative relationship betweguacay variation and various contributing

factors is yet unsubstantiated.

3.1.2 Demand

Traffic demand is arguably much more stochastio tleead capacity. It is easily understood
that the number of vehicles requiring use of inthtature is subject to fluctuations, but all the
more when the daily and inter-daily trends in dethare considered. Estimation of traffic
demand is a vast area of research for which eabtoseain has a specific purpose. For
economical purposes, demand is often linked totieiass and, given monetary value,
compared to a wide range of variables (Graham dawstér, 2004). A far more relevant area
of research for this contribution is that of origlastination (OD) estimation. Here, the goal is
to link demand to an origin to give insight intoc#éb traffic demand. This is primarily
performed in three ways: through large scale pajulasurveys, through empirical
observations of traffic flow, or through a combinatof both (Bera and Rao, 2011). In this
research, we are interested in local demand vamnistand less so in explicit OD-relations.
Furthermore, the goal is to determine these loeaiations in demand patterns using vast
amounts of traffic flow data, rather than populataata. Therefore, methods that explicitly
look at deriving demand from traffic flows are masited. Within this category a distinction
may be made between methods that consider thestiecongestion on demand estimations
and those that do not consider congestion efféctBera and Rao (2011), among others, a
detailed review of various OD-estimation methodgiven.

The discussion between congested and uncongediethtsn is an important one. When
deriving demand, one may expect that traffic fl@sembles demand where congestion is not
present, as traffic has the ability to reach a readtion more or less unhindered. When
congestion is present a few effects occur thabdhtce a bias to this reasoning. Firstly, traffic
is delayed and is therefore dispersed over timthabtraffic with identical demand in time
arrive at a location at different times. A secorffiéa is that traffic may reroute to avoid
congestion leading to different travel times argbgdassing of other locations than expected
without congestion. A third effect is that of defopae time shifts. If some traffic is not bound
to a set departure time, shifts in the departure tmay occur as drivers attempt to reduce
their travel times by avoiding congestion. So alifio demand estimation for one specific
road section may seem trivial, there are exterfiets, such as congestion, that should not be
ignored. These effects are taken into consideratiadhe developed method for the demand
estimation in section 3.5 to reduce a possible bias

In previous research, it has been argued thatrtth@ence of relevant variables should be
considered as stochastic (Lorenz and Elefteria@00;], Van Stralen et al., 2015). In this
chapter, a demonstration is given with an invesitbgausing weather as the considered
influence. It is apparent from literature thatleaeeather type is viewed for its influence on
either capacity or on demand and rarely on the ¢aatibn of both. Also, many studies show
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single values, rather than stochastically as ailbligion of values. This is a gap in literature
that is not unimportant, as it is not just the dedchar supply that influences traffic flow
dynamics, but rather the combination thereof. Atbe, stochastic character of both weather
and traffic should not be presumed to be captuyesirgle valued observations, but rather by
the underlying distributions. This was consideredvipusly in Van Stralen et al. (2015),
however they estimated demand from a stated preferexperiment and did not observe it,
whereas here we introduce a methodology which etstthe influence of demand from data.

3.1.3 Effect of weather on traffic

In this chapter, a specific focus will be placedtia influence of the weather as an important
variable. It is well known that weather influengaany dynamic processes in traffic flow on
multiple levels (Agarwal et al., 2005, Bocker et 2013). In operational and tactical analysis,
as well as in the planning thereof, there may olierrequirements to consider the influence
that weather conditions have on traffic flow. Flations in traffic flow on both an
operational hour-to-hour as well as on a tacticay-thb-day level need to be accurately
considered. It has been shown that weather hasfarence on both traffic demand and
capacity and is therefore a key variable and o should be closely considered. It is
therefore important that strong methodologies ekiat allow fluctuations in various weather
effects to be determined for an entire traffic egstand, furthermore, that a base
quantification exists of the possible influencesphst decades, research has been performed
on a number of separate weather conditions for #feacts on both capacity as well as traffic
demand, such as rainfall, snowfall, wind, tempesfand mist (Bocker et al., 2013, Snelder
and Calvert, 2016). Here, we will focus on thetfiour weather conditions.

Precipitation, both in the form of rain and snowgshprobably been most extensively
researched out of all weather conditions. Researclihe effects of rain on capacity is
generally performed for large rain intensity iness and is compared to dry weather
conditions. Agarwal et al. (2005), Calvert and 8erel(2013a), Cools et al. (2010), Hranac et
al. (2006), Smith et al. (2004) and van Straleale(2014) are just some who have estimated
capacity reduction due to rain and have found waryialues in different regions varying in
general from 4-30% capacity reduction dependingaomintensity. Dutch guidelines estimate
the reduction to be 5% for moderate and 10% fovyeainfall (Rijkswaterstaat, 2015).
Changes in traffic demand due to rain have also beend, generally indicating a reduction
in traffic demand in the region of 0-5% also depegan rain intensity in most cases (Chung
et al., 2005, Hogema, 1996, Keay and Simmonds, ,200kovic et al., 2013).

The effect of snowfall on capacity reduction hasrb#®und to be in between 3-30% capacity
reduction depending on the intensity (Agarwal et 2005, Hranac et al., 2006). The effects
on traffic demand of snowfall are somewhat morenpumced than for rain and have been
found by a number of researchers to be anywher® &®% (Al Hassan and Barker, 1999,
Hanbali and Kuemmel, 1993).

Previous research into the effects of wind has lyidemained inconclusive. In Kwon et al.
(2013) no significant effects of wind were found thve capacity. Agarwal et al. (2005) also
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found limited effects of 2% at most for above 3hk@ther research has also shown the
effects to be limited. No conclusive research wasiél on the demand effects of high winds.

However, it should also be noted that local windditons can lead to substantial decreases
in capacity, such as on bridges or along a coastlin

The effects of cold temperatures were found to gmadantly be present for the more
extreme temperatures and only really for freeziigperatures. In Agarwal et al. (2005)
values of 2% capacity were found for temperatu@sdto -20 degrees Celsius and up to
10% for more extreme cold. Other research has moell the reduction for non-extreme
temperatures to be limited or non-existent (Kwoalgt2013).

3.1.4 Focus and objectives

In this chapter, the main contribution is the cangion of a methodological framework with
a conceptual model for practical stochastic capastimation and consideration of stochastic
demand with its combined influence on traffic floi. addition, insight is given into the
extent of day-type specific variation in capacigiues and a quantification of the combined
stochastic effects of certain weather conditiondraffic flow. The application of stochastic
approaches is not common in practice, while theessty is greater than is realised.
Therefore, the described methodology also givestipianers tools to aid the application in
practice. The relationship between the variationthe capacity distribution for a number of
scenarios is investigated and this is quantifiedereha relationship is present. This is
performed for the scenarios: workdays, weekend,days holidays, of which capacity values
have been previously proven to significantly diff€ools et al., 2007, Hilbers et al., 2004,
Thomas et al., 2008, Yeon et al., 2009). Also,atreesponding capacity drop is analysed. On
top of this, a stochastic quantification of varioweather effects on traffic is performed,
considering the effects of both stochastic capaity demand.

This section is followed by a discussion on capagéfinitions and the conceptual model for
capacity variation (sections 3.2 and 3.3). The wadlogy for stochastic capacity is given in
section 3.4, followed by the methodology for statlta demand in section 3.5. The
experimental cases and results for stochastic d&sacsection 3.6) and for stochastic
demand and capacities for weather conditions @®@i7) are then given. Thereafter, the
discussion and conclusions section conclude thpteha

3.2 Capacity Definitions

Various definitions exist for the capacity of ado&ome of these are conflicting, while most
refer to a specific traffic state (e.g. free flowamngestion) and are therefore complementary.
It is important when applying capacity that thereot definition is chosen for the relevant
purpose. Failure to do so may lead to incorrectacigy values and other undesired effects in
data-analysis and especially in modelling. In gah@apacity definitions can be arranged into
two groups:design (or nominal) capacityand operational capacity(Minderhoud et al.,
1997). The design capacity is the foreseen capd#uitlyis considered for planning and road
design purposes. The well-known definition of cafyatom the Highway Capacity Manual
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(2010) is considered as a design capacity. It defthe capacity of a freeway as the maximum
flow rate that can reasonably be expected to tsaver uniform segment of road under
prevailing roadway, traffic and control conditioridowever, this is still a rather generic
definition of capacity with a number of aspectstthge open for interpretation. For traffic
operations the operational capacity, defined byddrhoud et al. (1997) as “the actual flow
values at which traffic breakdown occurs on a dpeobad under certain conditions”, is far
more relevantOperational capacitywalues are generally based on direct-empiricahCidyp
methods with for dynamic traffic (Minderhoud et,al997, van Arem and van der Vlist,
1992). In this chapter, only operational capacities considered. In the rest of this section,
the main definitions relating to operational capawill be explained. A simple taxonomy of
these definitions is given in Figure 3.1.

Road Capacity
Design Capacity Operational Capacity
Maximum / Stochastic /
Deterministic Probabilistic
1 \\\ . ,a’—:

V ¢>< v
Breakdown 7. ’_A Discharge

Figure 3.1: Classification of capacity definitions

3.2.1 Maximum versus stochastic capacity

Traditionally capacity, referred to here as th@ximum capacityis defined as:

“the maximum traffic flow on a section of road endluent traffic conditions”.

This view of capacity considers capacity as a datestic entity that has a single value for
any given time. However, it has been argued innedecades that a single value for the
capacity does not exist and therefore a referemceultiple values for the capacity should be
considered (Brilon et al.,, 2005, Lorenz and Eledtdou, 2000, Lorenz and Elefteriadou,
2001). As traffic is an extensively stochastic egst capacity as a result is also stochastic and
has multiple values. However, certain capacity @alwill occur more frequently than others
and therefore describing capacity as a probabilityction becomes an obvious choice. A
definition of the operational capacity ass#ochastic capacityis given by Lorenz and
Elefteriadou (2000) as:

“the rate of flow along a uniform freeway segmemntresponding to the expected
probability of breakdown deemed acceptable undevaiting traffic and roadway
conditions in a specific direction”.
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Here, the reference to capacity as a dynamic ewtity certain probable values is evident, as
traffic breakdown can occur at different flow vaduender similar conditions.

3.2.2 Breakdown versus discharge capacity

Distinguishing between capacity as stochastic oximam offers different approaches to
describe capacity. However, it has been demondtriduat there are actually two capacity
regimes that should be considered, and can beilbdedcin such a fashion, namely the
breakdown capacity and the discharge capacity (8ahR91, Hall and Agyemang-Duah,
1991). The breakdown capacity follows the tradilomlefinition which states that the
capacity of a freeway is:

“the maximum flow rate that can reasonably be elgedo traverse a uniform
segment of road under prevailing roadway, traffiacontrol conditions”.

The term ‘reasonably’ here indicates that this wok always be the highest observed flow,
even though that will often be presumed to be #secFurthermore, the breakdown capacity
will most often be observed on the transition fram undersaturated traffic state to an
oversaturated state, or rather an uncongested rigested state. It should be noted that
although there are various levels of saturatioerehs a definitive oversaturated point in
traffic flow, which can be observed when traffiol no longer can increase and starts to
decrease with additional demand. Thecharge capacityon the other hand, follows from the
realisation that oversaturated traffic flow yieldseduced flow compared to undersaturated
traffic flow. Therefore, thelischarge capacitys defined as the:

“maximum flow rate that can reasonably be expecte@ uniform segment of road in
an oversaturated traffic state under prevailing deay, traffic and control
conditions”.

A graphical demonstration of the capacity defimtas given in Figure 3.2 in a fundamental
diagram. The fundamental diagram shows the reldt@ween traffic flow and density in the
traffic domain. Both the breakdown and the dischatgpacity can be described as either
stochastic or maximum depending on the method tesedlculate and describe them.

The difference between the capacity before breakdamd the discharge capacity on a road
section is known as theapacity drop referring to the fall in capacity frequently obsed
after traffic breakdown between observations irriical undersaturated traffic state and an
oversaturated traffic state. In many cases, thaagpbefore breakdown is taken as the
maximum observed capacity. However, the breakdapacity is also used as the maximum
capacity and is dependent on an incidental obdervahat may increase for a longer
observation time. The capacity drop is a phenoménaincan arise once congestion occurs on
a road (Banks, 1991, Daganzo et al.,, 1999, Hall Aggemang-Duah, 1991, Kerner and
Rehborn, 1997, Kim and Coifman, 2013). The occurent the capacity drop is due to the so
called hysteresis effect that is not explained Hemécan be found in the suggested literature.
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In summary, in this chapter a distinction is maudeapacity definitions between:

e Maximum Breakdown Capacity
* Maximum Discharge Capacity
» Stochastic Breakdown Capacity
» Stochastic Discharge Capacity

The main focus in this chapter is on stochasti@ceyp estimations for both breakdown and
discharge capacity types. We will refer to stechastic breakdown capacighen the
capacity is derived using a stochastic or probstizlicapacity method and derived from
stochastic data. We furthermore refer tortteximum breakdown capaciiyr a pre-
breakdown capacity indicating the traditional deiom: the maximum flow which can
reasonably be expectdelrthermore, the capacity drop will be referredsahestochastic
capacitydrop when one determines it using sitechastic breakdown capacyg the initial
capacity value.
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Figure 3.2: Graphical overview of capacity definitons

3.3 Conceptual Model of Capacity Variation

Variations in capacity stem directly from stochastiiver behaviour, not only from individual
drivers, but also between drivers. Furthermorerjseds’ behaviour can also vary in time and
space. The mathematical description of capacitirectly linked to that of the traffic flow
and is inversely proportionate to the average tiegdway of traffic. The capacity of a road is
then the traffic flow for the smallest mean timeatheay before traffic flow breakdown, for
the breakdown capacity, or after breakdown in cafs¢éhe discharge capacity. From the
relationship between the time headway and flovs, @vident that there is a direct relationship
between driver behaviour and capacity. As the astaf a driver are variable, the ability of a
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driver to traverse a road at a certain time headtwatheir predecessor is also variable.
Moreover, this ability is also subject to the prég conditions of both the driver and the
driving conditions. Therefore, one can clearly derhat the capacity of a road is also subject
to an accumulation of these conditions.

There are a number of known factors that directlyndirectly influence road capacity. For
some of these factors, (exploratory) quantitatesearch has been performed, for others the
guantitative relationship is less well researchedrigure 3.3, an overview of the main known
variables is given, including an indication of wiizariables influence each other.

[ CAPACITY ]

. population
ﬁ population
. |
Incidents 1 ‘
(i.e. Accidents) S R .SpeC|a|.Days
B (i.e. Holidavs)

Road Works
Day of Week
Week of Year

TEMPORAL

Events

Environmental effects
(i.e. weather)

ENDOGENOUS Randomness of

driver actions
*(linked to all)

Focus area -

Strong relationship
Weak relationship -

Figure 3.3: Overview of important capacity influeneng variables and their relations

Besides the variables shown in Figure 3.3, thezenaany more unknown variables that may
have a (small) effect on capacity. Due to theiitieh influence, most variables can be ignored
or summarised in a general stochastic variable.nkast variables mentioned in the figure,
literature exists that indicates the qualitativiuience on road capacity and in some cases also
small scale explorative quantification. Weatheeet$, road works and incidents in particular
have been well studied for their capacity reduciidiuence, while others have to a lesser
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extent. In this chapter, the focus lies on capexitin holiday days and particular days of the
week and on the effects of weather. Apart fromdanis and road works, which are filtered
out in this research, these specific days are l\aaféected by the modal split, the driver and
vehicle population, and, to a lesser extent, tlesgmce of major events and certain weather
conditions.

Previous research has shown that capacity valueght days of the week can differ
significantly (Cools et al., 2007, Yeon et al., 2D0Yeon et al. (2009) even demonstrated the
possibility that capacity values may be differeatidg a day and intra-day. However, their
research also showed that the trends can be exyréoeation dependent, and that opposite
trends can be found if one considers only a subiseite considered locations. Nevertheless,
the research demonstrated the importance of canmsideifferent capacity values at different
moments during a week. The research describedisnctiapter expands this analysis to
include weekend days and designated holiday days.

A further distinction in location can be made usimgttieneck types. A large number of
papers have investigated capacity values for dpeodttleneck types (Boyles et al., 2011,
Calvert and Minderhoud, 2012, Elefteriadou and Hga2008, Laval, 2006, Roess and
Ulerio, 2009, Yeon et al., 2009). The bottlenegkety are indicated in this research, but are
not explicitly considered for their effect on cappwalues due to the limited sample size per
segment type.

3.4 Methodology for stochastic capacity estimation

Construction of probability distributions of theydspecific capacity is performed on the basis
of extensive empirical analysis with data. The gaehmethodology of data processing and
capacity estimation follow the steps given in beldwe methodology exists of two main

processes. data processing and capacity estimafiich are explained in more detail in

section 3.4.1 and 3.4.2. These processes are eeptat each of the considered variables,
such as demand and capacity at the highest levgiyé an outcome for each variable in the
form of two probability distributions, for which distribution fit is made. The steps are as
follows:

Step 1.Bottleneck selection
Known freeway bottlenecks
Step 2. Traffic state detection
Flowing, Breakdown and Congestion
Step 3. Data filtering
Scenario based
Step 4. Capacity estimation
Stochastic breakdown and discharge capacity
Step 5. Distribution fitting
Distribution parameters
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3.4.1 Data processing

Data from 23 known bottleneck locations on the Dutwotorway network is gathered for a
three year period. Flow and speed data, as welaras availability data, is collected per
minute at and near each location from inductiomp$odrhe data is filtered and checked for
missing data and validity. The locations are sekdtom 11 different motorways throughout
the Dutch motorway network and such that the locatiare separated by major interchanges
to avoid substantial interchange effects.

The traffic states upstream and downstream of d&mttieneck location are recorded at a
location as close to the bottleneck as possibleeigdly at a distance of 100-300 meters. An
aggregation level of 5-minute intervals is chosereliably capture traffic states without the
period becoming too large. Three traffic statesdmined in the labelling processee flow
traffic (F), breakdown condition§B), andcongested traffi¢C). These are defined as (Brilon
et al., 2005):

Free flow traffic(F): Traffic is in a free flow traffic state f@peeds above 60 km/hr
in the considered time interval t and remains inuaoongested traffic state in the
following time interval t +1.

Breakdown conditiongB): Traffic is in an uncongested traffic statetlve considered
time interval t, however it is in a congested statthe following time interval t +1. A
congested state is assumed when traffic speed direlpsy 60 km/hr for the entire
interval t.

Congested traffiqC): Traffic is in a congested traffic state upatn of the active
bottleneck in the considered time interval t, apthains in congested state in the
following time interval t+1. Traffic flow downstreaof the bottleneck is uncongested.

A threshold of 60 km/hr is applied as traffic brdakvn on motorways generally results in a
prompt decrease in traffic speed from 70 km/hr @ kbn/hr from the undersaturated to
oversaturated traffic state, therefore the cham@roneous labelling is kept low by using the
60 km/hr threshold. Furthermore, dynamic speedtdirare applied in congestion of 50 km/h
through Variable Message Signs (VMS). However, danpe is low and these speed
restrictions are generally reactive to traffic ciioas.

For each location at every time interval, a larganher of characteristics are recorded
regarding the weather conditions (i.e. rain, snmperature, (natural) luminance), and the
type of day (i.e. day-of-week, holiday, seasonkgezriods). Data is filtered corresponding to
the scenarios using the labelling, which filters tiklevant traffic data during the considered
period. Details on the filtering and data labellsan be found in Calvert and Snelder (2013b).
This results in a data set based on a collectiviela for that specific scenario.

3.4.2 Capacity estimation

A number of capacity estimation methods exist, Whiake use of different assumptions and
capture capacity values in different ways. For aargew of many of these methods, see
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Minderhoud et al. (1997), and more recently on lsistic methods: Geistefeldt and Brilon
(2009).

In this research, a distribution of the capacitydach scenario and each bottleneck location is
derived from the filtered data, for both stochastieakdown and discharge capacity. This is
performed for the stochastic breakdown capacitpubh application of the Product Limit
Method (PLM) as described by Brilon et al. (200%daecommended in the mentioned
capacity estimation reviews. Traffic flow obsereas in free flow traffic (F) and of
breakdown traffic (B) observations are used. Usiiata of non-breakdown events (F), as
censored datathat are nevertheless greater than traffic floneg have led to a breakdown
improves one’s ability to accurately determine pagaty distribution. The method makes use
of a probability function which is used to estim#te probability of traffic breakdown, with
the median being the presumed capacity with anrtaingy margin given by the shape of the
distribution. FunctionF(q) is defined as the probability that a detectedfitréffow value
reaches a state of congestion. The method is Beslcby two main equations:

F(q) =1—-Prob(q. < q) (3.1)
K, -1 3.2
F(q)=1—1_[ —__  with q; € {B} (3.2)
a K
Where Kqi = total number of observations with intensjfylarger than the
congestion threshold intensity
B = set of breakdown observations

The distribution of the discharge capacity is deieed from the discharge flow of traffic
through the bottleneck during a congested tratites(C) following a traffic breakdown. The
discharge capacity is much simpler to calculat¢hés can be continuously observed in the
bottleneck or at the outflow of the bottleneck liaa (Minderhoud et al., 1997):

G(q) =q with q € {C} (3.3)
Where q = traffic intensity
C = set of congested observations

The entire set of discharge flow observations aeduo construct the probability distribution
of the discharge capacity for that specific loaatiBor the stochastic breakdown capacity, all
uncongested data is also considered, but only wested data that exceeds the lowest
breakdown observation is applied in the PLM. Invpras research (Brilon et al., 2005, Brilon
and Zurlinden, 2003), it was shown that the Weikdiktribution gives a good fit to
probabilistic capacity distributions on freewaysheTWeibull distribution is similar to a
Gaussian distribution in shape, but has a gredeedbility towards the tails of the
distribution. This allows for a greater power todmpirical data. Weibull distributions make
use of a scale and a shape parameters, and anedlef:
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(5 3.4

F(X)=1—e(3) for x>0 (3.4)
Where a = shape parameter
B = scale parameter

To test the presumption that the Weibull distribatis suitable to fit the considered datasets,
a goodness-of-fit test is carried out. There afferint statistical tests available for the
goodness-of-fit to a distribution. Jia et al. (2DXorrectly argue that the Kolmogorov-
Smirnov (KS) test is best suited to test capadsyributions in such a way, as it quantifies a
distance between the empirical distribution of shenple and the cumulative distribution of a
reference distribution. More importantly, the KSttes distribution free and therefore makes
no assumption with respect to the underlying distion (Chakravarti and Laha, 1967, Jia et
al., 2010). The KS test is also an exact test wdolae other commonly applied tests, such as
the chi-squared-test, depend on an adequate samplé validate approximations (Jia et al.,
2010, Ross, 2009). For details on the workinghefKS-test, the reader is referred to one of
the many statistical textbooks on the subject, sischiRoss (2009).

The KS-test is carried out on four distributiongdyg: Normal, Weibull, Gammaand
Lognormal distributions. These distributions types have bpesviously found to have the
potential to show a good resemblance to fit emglir@@apacity data on various motorways
(Brilon et al., 2005, Chow et al., 2009, Eleftenadand Heaslip, 2008, Jia et al., 2010,
Kondyli et al., 2013, Minderhoud et al., 1997). Tdapacity data from each location is fitted
with each distribution type to produce a distribati which is compared with the empirical
distribution from the data. The resulting KS-teatues are shown for each location for both
the stochastic breakdown capacity and the dischaapacity in Table 3.1a & 3.1b.

Table 3.1a-b: Kolmogorov-Smirnov goodness of fit ts for empirical capacity data

K-S scores: Stochastic Breakdown Capacity K-S scores: Discharge Capacity
Distribution Distribution

Location Normal Weibull Gamma Lognormal Location Normal Weibull Gamma Lognormal
1 0.127 | 0.079 | 0.133 0.139 1 0.077 | 0.136| 0.074 0.076
2 0.097 | 0.071 | 0.102 0.107 2 0.044 | 0.039 | 0.057 0.064
3 0.264 | 0.262 | 0.269 0.271 3 0.086 | 0.046 | 0.098 0.106
4 0.123 | 0.078 | 0.129 0.131 4 0.068 | 0.024 | 0.082 0.088
5 0.152 | 0.165 | 0.148 0.144 5 0.131 | 0.103 | 0.156 0.168
6 0.135 | 0.155| 0.138 0.144 6 0.057 | 0.034 | 0.070 0.076
7 0.080 | 0.027 | 0.094 0.100 7 0.030 | 0.064 | 0.023 0.029
8 0.063 | 0.028 | 0.069 0.074 8 0.126 | 0.075 | 0.150 0.162
9 0.166 | 0.154 | 0.172 0.178 9 0.095 | 0.045 | 0.108 0.115
10 0.081 | 0.046 | 0.092 0.097 10 0.067 | 0.039 | 0.083 0.092
11 0.098 | 0.099 | 0.106 0.112 11 0.062 | 0.037 | 0.076 0.084
12 0.192 | 0.177 | 0.197 0.201 12 0.259 | 0.284 | 0.214 0.192
13 0.101 | 0.091 | 0.107 0.112 13 0.059 | 0.041 | 0.072 0.078
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14 0.111 | 0.082 | 0.116 0.121 14 0.292 | 0.314 | 0.248 0.226
15 0.214 | 0.261 | 0.211 0.216 15 0.048 | 0.033 | 0.060 0.067
16 0.107 | 0.068 | 0.115 0.119 16 0.049 | 0.055 | 0.060 0.066
17 0.173 | 0.138 | 0.180 0.186 17 0.097 | 0.047 | 0.110 0.117
18 0.206 | 0.207 | 0.207 0.206 18 0.034 | 0.043 | 0.049 0.056
19 0.139 | 0.115| 0.145 0.150 19 0.041 | 0.032 | 0.053 0.058
20 0.187 | 0.140 | 0.193 0.195 20 0.023 | 0.051| 0.036 0.043
21 0.080 | 0.070 | 0.088 0.093 21 0.087 | 0.036 | 0.098 0.103
22 0.137 | 0.114 | 0.142 0.146 22 0.050 | 0.047 | 0.063 0.070
23 0.117 | 0.110 | 0.124 0.129 23 0.097 | 0.055| 0.118 0.130

From the table, it is shown that the Weibull disttion was confirmed to fit well for most
surveyed locations. While each road location ijuaeiand has its own characteristics, the
goodness-of-fit test shows that for the considéoedtions, the Weibull distribution is a valid
distribution. An optimization of the Weibull paratees is performed using the root mean
squared error (RMSE) as performance indicatorifong, denoted by:

n
1
RMSE = ;Z(y,- — 9,2 (3.5)
j=1
Where n = number of estimated observations
Vi = observed capacity estimation at probabilitginal |
V; = Weibull fitted capacity estimation at probey interval |

The RMSE is applied here as a simple and effedige of the consistency between the
median values from the Weibull distribution, rattiean for the goodness-of-fit test which has
already been performed using the Kolmogorov-Sminest. For such an optimization of the
parameters, such a test more than suffices.

The entire procedure produces an empirical digiobuand Weibull parameters which best fit
the empirical distribution. This is performed foach scenario (see section 3.4.3) at each
bottleneck location, and for both the stochastieakdown capacity and discharge capacity.
An explicit example of the PLM methodology can loerrfd in (Brilon et al., 2005) and is
therefore not given here.

3.4.3 Day-specific capacity case scenarios

The scenarios considered in this researclwar&days, weekend dayadnational holidays.
The stochastic capacity drom each scenario is also included in the analysiswhich the
median (the 50th percentile) from the capacityrthistion is applied. Workdays are defined
as week days from Monday through Friday that dofalbtin holiday weeks or on national
holidays. Both Saturdays and Sundays are consideredeekend days. Holiday days are
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defined as official national school holidays, whiobrmally also correspond to a significant
reduction in work traffic. Data is gathered and duder the years 2007-2009, due to
availability and quality of the data from those rgea

3.5 Methodology for combined stochastic capacity-aeand estimation

3.5.1 Framework

The applied methodology makes use of a combinedroapp using some existing
methodological elements from both traffic theory atata analysis, while introducing some
new methods. Figure 3.4 gives a complete overvietihe main parts of the methodological
framework. On one side, a comprehensive capadityason is performed using the adapted
Product Limit Method in which 25 bottleneck locaitsoare considered during a three year
period and from which capacity estimations are madethe test case. The capacity
estimations also include a stochastic estimatioth@fprobability of various capacity values.
On the other side, an estimation is made of trafémand following a traffic cordon inflow
approach. This approach records the inflow ofralific into a specific network area during a
set time period and derives the traffic demandetfnem. In this research, a 142 location
cordon is applied and considered during a 4 yeaogeBoth the capacity and demand parts
are fed with detailed traffic data with minute-tananrte accuracy for both the traffic flow and
speed. Furthermore, detailed hourly weather das&qgsiired for all periods indicating a wide
range of weather conditions and their correspondet@. For capacity estimations, a further
source of data is available in the form of minuextinute radar data with an accuracy of
approximately 1 kilometre, allowing specific caggaestimation, as capacity is moment-in-
time observation. Finally, both the capacity anthded estimations are combined to give an
estimation of the effect on traffic fluency. Thgsperformed through a simple division of the
change in capacity by the change in traffic demard¢ch means that if both variables change
at the same rate, that the effect on traffic flyewdl remain identical. The traffic fluency is
given by:

q
Cap/QCap.ref
/ Dref

Here, qf is the traffic fluencyg.qyrcr is the reference capacity under average condijtions
while g4, is the capacity under the specified conditionsnilarly, D,., is the reference
traffic demand, whileD is the scenario demand. While a lower capacity eathay reduce
traffic flow, a reduction in demand can countertdet ability of traffic to flow fluently.
Therefore, only a combination of both gives an aataiestimation on the actual effect on
traffic fluency. Note that traffic fluency here deas the level-of-service or ability of traffic to
flow rather than a quantitative value of flow. Imetfollowing subsections, a more detailed
description is given of the various parts of thehmndology.
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Figure 3.4: Applied framework for stochastic demandcapacity estimation

3.5.2 Capacity analysis

In this research, a stochastic capacity estimati@thod is applied that allows probability
distributions of capacity to be constructed whiclvedop the full range of possible capacity
values. The applied method is based on the Prddout Method (PLM) as described by
Brilon et al. (2005) and adapted from Kaplan andev¢1958). The method was already
explained in section 3.4.

3.5.3 Demand analysis

Calculation of changes in the traffic demand idqgraned through empirical data analysis of a
cordoned area of a motorway network in a regioninkdiing a cordon around the entire
network reduces external issues that may bias émeadd results as previously described.
Such biases may occur from rerouting to other pHrtee same network or from certain areas
of the network reacting differently to other areAkhough the approach cannot entirely rule
out small disturbances, the approach substantigityeases the chances thereof. An example
of the cordon used in this chapter is given in FegdL5.

The total daily demand is calculated for a desime@ period: starting at timg and ending at
timet,. It may be relevant for example for research s gollect demand during the morning
peak period, as this gives a good indication ofttit@ demand on that day. It should be noted
that the traffic demand is not identical to theeed flow, as traffic may be delayed either in
the considered network or in the approach to thevar&. To reduce this effect so that the
actual demand resembles the measured flow, thes tipgnd t, should be chosen such that
no or very limited congestion exists on the netwamkl especially on the cut-off points of the
network. For no or limited congestion, it should égected that most if not all traffic that
demanded, has had the opportunity to enter theamketw
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Figure 3.5: Considered network for the data analys

The inflow into the networly;, is collected at each inflow locatidnand time moment, into

the network at both cut-off points on motorwayswasdl as motorway junctions (if one is
considering only a motorway network). The sum oladations at a single time stépgives

the total inflow into the network, however thisnist yet the demand as congestion delays the
arrival of traffic in time. However, summation ovi@me, for which no congestion is longer
present and in which delayed vehicles have theaghtmpass the detectors, allows a reliable
estimation to be made of the demand. For a scemarion an arbitrary dayl, the total
demandD,, 4 in a time period|¢;, t.], is given by:

Dya = Z z qit (3.7)

On its own, the value dJ, ; does not have any significant meaning, as a n&tmwoscenario
can be arbitrarily chosen. Therefore, a dem@ng is considered as part of a coherent
scenariok for which the main scenario characteristics angt k#entical. Careful selection of
the scenario characteristics is important to be &bimake a fair comparison between various
days ofDy, 4 within k. A careful consideration of the main variablestsas the type of day
(week, weekend, holiday, etc.) or of other impadrtaharacteristics should be made.
Availability of all selected detection locationsosiid also be consistent for all days that are to
be compared to avoid inconsistent measuremenkeindllected demand. Once multiple days
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of a single scenario have been gathered, one mastract an empirical distribution of the
observations of that scenario:

Dk = {Dk,lka,ZJ ---;Dk,n} (38)

Here,n denotes the number of observation days for theidered scenario. In most cases, it
will be desired to compare scenarios to gain irtsigto the effects of certain characteristics
on the traffic demand. Therefore, a reference saeshould be defined that is considered as
a ‘neutral’ scenario. For example, in the analysighe following sections, dry weather
conditions are considered as a base scenario vdgamst other, sometimes overlapping,
scenarios are compared. Comparison between thédeoed scenaria),, and the reference
scenarioDy,, is performed such that a ratio, r, between tleaagos is derived:

_ median(Dy) (3.9)
~ median(Dy,) '

The calculated ratios are then applied for comparisetween scenarios and as a strong
indication of the effects that a scenario has caeth#o the reference scenario.

3.5.4 Stochastic capacity and demand for weather

In the previous sub-sections, the methodology &iemnination of the capacity and demand
were presented. Here, the applied characteristicheo methodology in this research are
given. This starts with the locations and data sesirand is followed by the considered
weather scenarios.

Demand

Quantification of traffic demand is performed for enclosed area of the motorway network
in the west and central areas of The Netherlandischamincludes the cities of The Hague,
Rotterdam and Utrecht (see Figure 3.5). The totah as approximately 1200 square
kilometres in size. At the ‘cut-off’ points on timeotorways and on motorway entrancaad
junctions along each motorway data is collectedheftotal inflow with a minute accuracy
from loop-detectors. The vast majority of all junas were able to be analysed and totalled
142 locations in all. The data used for the demaaidulations is taken from the years 2009-
2013 (for 2013 only until June). The demand valaes collected for two different periods.
The first considers the demand throughout the whale between 5 AM and 10 PM. The
second only considers the demand during the morpeak period between 6 AM and 10
AM. A distinction is also made between the time tbeé day for which the weather
classification is performed: either for just thermmag or the entire day. This results in four
demands per scenario: Day weather with morningagradémand, and morning weather with
morning or day demand. A further filtering is ajgglito the collected data. A minimum of 20

1 Often the flow at entrances will need to be measured indirectly by subtracting the downstream flow
from the upstream flow before the entrance location.
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observations (days) are taken per scenario tocgeritily make an accurate estimate of the
demand profile for that scenario.

Capacity

The capacity analysis is carried out in the sanggoreof the Netherlands at known and
proven bottleneck locations. In total, 30 bottldndocations were initially selected from
which capacity data could be accurately collectedugh the use of double loop-detectors
according to the previously described methods.h@$¢ 30 locations, a further five locations
were later rejected as the data was not consigtabte to produce a sufficient number of
reliable capacity estimations, leaving 25 locatitve produced reliable and accurate capacity
estimations. These included 20 2-lane motorwayi@extand five 3-lane sections. The data
used for the capacity estimations is taken fromytreas 2007-2009. It was not easily possible
to extend to later years as the data collectioardlgn had changed for the later years, which
may give undesired discrepancies in the data betteeyears.

Weather scenarios

In this research, four main types of weather coowit are considered, namaigin, snow,
temperatureandwind. The focus is on each individual weather type s#ply, rather than a
combination of various types in one scenario. Th&ans that correlation is not explicitly
considered between the results. An example is sabwfat is recorded for temperatures
below 2 degrees Celsius. While the scenario snolowerlap with low temperatures, the
opposite will not necessarily be the case. Rath@n search for causality, these are accepted
in this research. It is a subject of later rese&wdbok closer at the specific correlations.

The previously described methods for capacity asmahd estimation obviously must make
use of data on weather and climatological condstidfor this, use is made of stationary
weather stations administered by the Royal NethddaMVeteorological Institute (KNMI).
The KNMI makes use of more than 30 high quality enedlogical stations throughout The
Netherlands which relay accurate and extensivelyi@nd daily data on wind, temperature,
sunshine, radiation, precipitation, air pressunsjbility, humidity, and other categorical
weather observations. The five weather stationthénconsidered area are shown in Figure
3.5. For each category, maximum and average handydaily values are collected as well as
descriptive information relating to these valuesetdiled information on the exact
measurement apparatus and techniques can be folddMI (2014).

From the four weather conditions, ten scenariosdafened. In each scenario, the weather
conditions are considered for the hours betweemM5aAd 10 PM. This is also the period for

which gquantities are observed. For a day to beidered for a weather condition, the average
value of that weather condition must be presenafdeast 3 hours during that day at, at least,
three of the five weather stations. This last cbodiis almost always met due to the close
proximity of the weather stations, and conditions aearly identical on a day-to-day basis.
As an example, if rain category 1.4-1.9 mm is cded, then this intensity must be found
for at least 3 hours during the day. For the dafhrdata, only the weather during the morning
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peak, the hours between 6 AM and 10 AM, are comstid-or the morning demand, only a
single hour average needs to fit the relevant vezatbndition category. Furthermore, only
data is considered for weekdays and for non-holatays to avoid pollution of the data with
possible trends from these day types. Seasonaldrare implicitly allowed, also due to the
fact that the scenarios are explicitly correlateddrtain seasons.

The scenarios are defined as:

Dry (Reference scenario)
Rain: 0-0.1 mm

Rain: 0.2-1.3 mm

Rain: 1.4-1.9 mm

Rain: >=2.0 mm

Snow: >0 mm
Temperature: <2C
Temperature: >=2C

. Wind: <40 kph (<6 knots)
10. Wind: >=40 kph (>=6 knots)

For clarity, the data processing steps for the exatonditions are reiterated: The prevailing
weather conditions for each day are labelled againat day according to the above
scenario’s and the described prerequisites. Thigerformed for both time windows: 6-10
AM and 5AM-10PM. The demand analysis and capaciglysis are performed for each day,
as described in the previous sections per day.eBoh scenario, the days that contain the
relevant weather condition are viewed. The medianooresponding demand and capacity
values over these days is taken and presentedtiors8.6.

CoNoOrWNE

It is reiterated that the category values are lyotwtals for rain and snow, and hourly
averages for temperature and wind. In relation rexipitation, this means that it is highly
probable that higher values were found during ttioair, but were averaged out. Therefore, we
cannot speak of precipitation intensities, but eatlof the quantity of precipitation. A
conversion table is given in section 3.7.2 to allghabal comparison of the results with other
literature. It is presumed that travellers will pgre a day (or part of a day) to be of a certain
weather category, rather than focus on a speaiéicipitation intensity at one single moment.
This does not apply to the capacity estimateshag are coupled to radar data that gives
minute-to-minute and kilometre precise rain obseows. This is necessary as the influence
of precipitation cannot be averaged over an hourcépacity, as capacity observation is a
‘moment-in-time’ observation.

3.5.5 Capacity hypotheses

In this chapter, the focus lies on the methodoltmythe quantification of the probability
distribution of capacity values in operational dgecific traffic. Elefteriadou and
Lertworawanich (2003) recommended that capacityridigions should be constructed to
indicate the extent of variations in capacity valu€hey also recognised that these capacity
distributions are subject to change under variamslitions. Research has resulted in various
capacity distributions for a number of variableswéver, a generic value for day specific
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variation, based on a sufficiently large set ofagdaies not exist. Here, the aim is to also give
a quantification of day-specific capacity variatitor workdays, weekend days and holiday
days and also to give distributions of the capacitgp for the situation on the Dutch
motorway network. Four hypotheses are constructetitasted in relation to the capacity
shifts between the considered scenarios. Theselmsges are:

1. Mean capacity values on weekend days and holidaylaer than for workdays.
2. On weekend days there is a lower mean capacitydhdroliday days.

3. The variation of the capacity, measured in standaxdation, is greater on weekend
days and holidays than for workdays.

4. There is no significant change in the capacity dospweekend days and holiday days
in relative terms in comparison to workdays.

3.6 Results: Day-specific capacity variation

The results of the data analysis for day-spec#igacity variation are given by capacity type
(stochastic breakdown or discharge) and are corddarecapacity shifts between scenarios.
A quantification of the capacity and the variatioasgiven. The results are shown in three
parts:

1. Comparison of weekend and holiday capacity estomatversus workday capacity
and standard deviations. Hypothesis 1, 2 and &ated.

2. Estimation of the variation in the stochastic catyadrop between the three scenarios.
Hypothesis 4 is tested.

3. Mean stochastic capacity and stochastic capaaiy dalues and the estimated
Weibull distribution fit for the each scenario.

The average values of the median capacity of eastbrmay location and standard deviation
thereof, as well as both Weibull parameters andstbehastic capacity drop, are given in
Appendix 3.A. This is performed for both the stostia breakdown and the discharge
capacity estimations for all three scenarios. Tiigvidual results are also given in Appendix
3.A for the workday reference scenario.

3.6.1 Day-type specific capacity estimation

In this section, hypotheses 1 through 3 are temteldmean values are given for the estimated
capacity over all considered locations. A comparig also made between the considered
scenariosWorkday traffic, Weekend traffiand Holiday traffic These are statistically tested
for significance using Levene's test for equalibg dhe t-test for equality of means with a
95% confidence level. The hypothesis is testedsigmificant differences in the means of the
workday, weekend day and holiday capacity valudése fest is performed for each of the
capacity types for the mean as well as the standakdation of the results. The t-test
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presumes normality, which is also presumed herevdmt locations. As the samples are
median values from different locations, the colieeset of all samples should verge towards
a normal distribution according to the central tithieorem and therefore confirm normality.

The analysis of the capacity results are summarfsedthe stochastic breakdown and

discharge capacity over all the observed locatantsare given as follows:

1. Distributions ofworkdaytraffic show a median capacity value for the stmtic
breakdown and discharge capacity of 2260 and 1é8wvlane (-26%).

2. Theweekendraffic returns average capacity values of 2134 H822 veh/hr/lane
(-31%).

3. Holiday traffic results in average capacity values of 2868 1719 veh/hr/lane
(-32%).

All these values are reasonable values for Dutchom@ys. For the sake of comparison,
workday traffic is taken as a base against whiah wieekend and holiday traffic capacity
values are compared. The distribution of the meditamchastic breakdown capacity values
from the PLM-analysis for the scenarios is showthi boxplot in Figure 3.6a as well as for
the standard deviation in Figure 3.6b. From Figliehypothesis 1-3 can be answered:

1. The mean stochastic breakdown capacity on weekayslid 4% lower compared to
workdays, however the capacity on holidays is mgtiBcantly lower (with 95%
confidence) compared to workdays.

2. The mean stochastic breakdown capacity is fourmktsignificantly lower on

weekend days in comparison to holiday days. THerdifice is again in the range of
4%.

3. The variation of the capacity, measured in standaxdation, is found to be
significantly lower for both weekend traffic andliday traffic compared to workday
traffic. The difference in the median standard dgwen is circa 15% and 3.5%
respectively.

The results of the average median discharge cgpaeiues and the average standard
deviations are given in Figure 3.6c-d. The dischargpacity for weekend days is again lower
than that of workdays. The reduction in the disgharapacity is approximately 8% compared
to the discharge capacity during workdays. Thehdisge capacity for holidays is also lower
in comparison to workdays by approximately 3-4%e Téduction in the standard deviation is
less extreme for the discharge capacity on weekkzyd, while the standard deviation on
holidays does not significantly change over albkians. These results are further discussed in
the section 3.8.
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Figure 3.6a-e: Capacity estimations in comparisorotthe workday scenario

3.6.2 Capacity drop estimation

Hypothesis 4 states that there will be no signifiadifference in the stochastic capacity drop
between workday traffic and weekend and holidaffitraThe stochastic capacity drop over
all 23 locations for the three scenarios is showithe boxplot in Figure 3.6e. The median
value for the stochastic capacity drop over ea@nato is estimated at 20.5%, 24.9% and
23.6% for workdays, weekend days, and holidays e@sgely. The difference between
workdays and weekend days is shown to be a signffidifference. As the discharge capacity
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was shown to decrease by a greater amount thasrélh&down capacity, this also indicated a
widening between the capacity types and an increasmapacity drop. The spread of the

observed values in each scenario is relativelylamm each scenario. It should be noted that
correlation is present in the results. For examgplecation with a lower capacity drop in one

scenario may be expected to also have a relatiselyalue in another scenario. This has to
do with the intrinsic characteristics of bottlendg&ations.

3.6.3 Generic capacity distribution estimation

A goal of this chapter is to derive reliable distiions for capacity variations dependent on
day-specific scenarios for both the stochastic ktean and discharge capacities. The
observed empirical capacity results are fitted gisinVeibull distribution for the 20 two-lane
motorway locations and are aggregated per scemafagure 3.7. Specific differences per
location can be found in Appendix 3.A. From theufigg a number of conclusions can be
drawn. Firstly, the stochastic capacity drop focleacenario can be clearly seen. This is the
difference between the blue lines to the right dredred lines to left for each scenario. The
stochastic breakdown capacity distributions, shawnblue to the right, show that the
distribution for workday traffic and holiday tradfhardly deviate from one another, while the
capacity distribution for weekend traffic is subgtally lower. In a similar way, the
differences in discharge capacity are obvious ftbenred distribution lines to the left. The
distributions for the scenarios do show a goodneion of capacity variation for Dutch
motorways and may later be proven by analysis &ithever larger dataset to be pretty
generic. The corresponding parameter values for Wrebull distributions and median
capacity values are given for completeness in Talde

Table 3.2: Estimated capacity distribution Weibullparameters for two-lane motorways

Weibull parameter: o B Median Capacity
Workdays Stochastic
. 14,9 4647 4520
breakdown capacity
Discharge capacity 12,7 3699 3584
Weekend days Stochastic
) 16,4 4396 4263
breakdown capacity
Discharge capacity 12,4 3334 3244
Holiday days Stochastic
. 16,0 4652 4530
breakdown capacity
Discharge capacity 11,3 3564 3441
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Figure 3.7: Overall capacity results as Weibull digibutions

3.7 Results: Stochastic capacity and demand for wireer

The results of the combined stochastic capacitydermand analysis for weather conditions
are given in this section. First, the main reswoltsthe capacity and demand analysis are
presented in section 3.7.1. A transformation ofrédseilts to intensity for precipitation is given
in section 3.7.2 to allow comparison with liter&uimhe final combined stochastic results of
the analysis are given in section 3.7.3.

3.7.1 Main results

The results of the entire analysis are shown inNer818 for both the capacity effects and all
demand calculations. The capacity results are shpmwvtane and considered for 2-lane and 3-
lane motorways respectively, including the rationpared to the reference scenario. The
demand results are shown as a ratio compared toefeeence scenario for each of the
considered time window combinations for the demand.

The results for the capacity show that for an iasmeg quantity of rainfall the capacity of
both 2- and 3-lane motorways fall with increasiages. For a limited rainfall of under 1.4
mm in an hour, the drop in capacity is limited égd than 2%. However, for the two greater
categories, the drop in capacity is greater at 4a8% 7% respectively. At the same time, an
increase in rainfall has an overall negative eftacthe traffic demand. The effect for a wet
day with less rainfall is nearly non-existent, wehilor higher rain quantities the drop in
demand is around 4.5%. Interestingly, consideriaigfall only during the morning peak
period shows a greater drop in demand: approximat& and 4% for the lower rain
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categories, while up to 9% reduction is found far 1.4-1.9 mm category. For the largest rain
category, insufficient data was available for thermmg peak on the considered days to make
an accurate prediction. It proved difficult to acately determine the effect of snowfall using
the available data with the described methodoldaggally, values could be derived, but a
total trend from the dataset according to dataedri@pproach proved impossible due to a lack
of snow observations. It was possible to derivestimation of the effect on demand for days
classed as ‘snowy’ in which a reduction in demaras found of 15-17%. For temperatures
above 2 degrees Celsius, no real difference isdfaumapacity, as may be expected, however
a slightly lower demand is found albeit only 1%.eTdemand for temperature below 2
degrees does not drop, while the capacity is fdorae nearly 7% lower for cold conditions.
Although there is a small overlap with snow cormmis, the vast majority of ‘cold’
observations are made under dry but cold weathatittons. The effect of windy weather on
capacity is shown to be present but limited to 3-4#ile the demand on windy days is not
found to substantially change.

Table 3.3: Capacity and demand influence of weatheronditions

Scenario Capacity results Demand results
2-lane | 2-lane | 3-lane | 3-lane Day Day AM AM
cap ratio cap ratio | weather | weather | weather | weather

AM Day AM Day
demand | demand | demand | demand
ratio ratio ratio ratio

Reference (Dry) 2291 1.000 2243 1.000 1.000 1.000 1.000 1.000

Rain 0-0.1mm* 2287 0.998 2243 1.000 0.995 0.997 0.992 0.994

Rain 0.2-1.3mm*| 2258 0.986 2233 0.996 0.994 0.998 0.988 0.993

Rain 1.4-1.9mm*| 2153 0.940 2152 0.959 0.944 0.956 0.911 0.959

Rain >=2.0mm* 2132 0.931 2079 0.927 0.941 0.956 - -

Snow >0mm = = = = 0.838 0.852 = =

Temp <2C 2139 0.934 2091 0.932 1.000 1.000 1.000 1.000
Temp >=2C 2282 0.996 2237 0.997 0.989 0.987 0.989 0.987
Wind <40kph 2282 0.996 2253 1.004 0.999 1.000 0.996 0.999
Wind >40kph 2229 0.973 2153 0.960 0.999 1.000 0.999 1.000

* The method collects the rainfall rather than rain intensity. A conversion can be made for
comparison to other data (see section 3.7.2)

3.7.2 Rainfall-intensity transformation

To allow a comparison with other literature andaga transformation can be made of the
corresponding rainfall into the probable rain isiéyn which would be found in the same

period. Note that this is rough transformation, gires a general basis for order of magnitude
comparisons. The corresponding values for raindatsus rain intensity are found in Table

3.4.
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Table 3.4: Conversion table for rainfall versus ram intensity

Rainfall (mm in an hour) Intensity (mm/h)
Rain 0-0.1mm 0-0.5 mm/h
Rain 0.2-1.3mm 0.5-5 mm/h
Rain 1.4-1.9mm 5-7 mm/h
Rain >=2.0mm >7 mm/h

These are derived through consideration of twoarttaristics found in the data. These are the
duration of rainfall in an hour, and the volatiliof the rainfall (i.e. difference between the
highest and lowest intensities). It was found thatvolatility equates to a peak intensity in a
range of 2-3 times the average rainfall when prtipn is actually falling. This hardly
differs as a function of the total rainfall in aour. Furthermore, a comparison was made
between the duration of rainfall in an hour and tb&l rainfall in that hour. A duration
correction factor is derived which indicates thegationship. For hours in which it rains for
half the time, a factor of 2 is given, for an hauwhich it only rains for a third of the time the
correction factor is 3, etcetera. Figure 3.8 shtivesrelationship found from the rain data and
the derived equation. Application of both a volgtilfactor of approximately 2.5 and a
duration correction factor according to Figure 3dlves the estimated values for the
corresponding rain intensities in Table 3.4.
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Figure 3.8: Rainfall duration correction factor

3.7.3 Combined stochastic demand-capacity results

For each of the scenarios, distributions of thaltesre constructed. The reference scenario is
shown in Figure 3.9 as an example of the distrdm#ti From the distributions, it becomes
apparent that the spread in the capacity distobstifor each scenario do not show any
substantial differences between scenarios. This lmaneasily derived from the shape
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parameter values (b-value) of the capacity Weildigitribution, which all in the range
between 15-17. The distributions for the demand f{lom left) are shown for the first
considered demand window (Day weather with mornpepk demand). The demand
distributions are not significantly normally distated. Maximum Likelihood analysis showed
that the distributions best fitted a t-locationlscdistribution or a logistic distribution. The
corresponding parameter values for the demandildisons are given in Appendix 3.B
While each scenario has a different median valgainathe general shape of each distribution
is within a similar range, which indicates thatcstasticity of demand, regardless of the
scenario, exists within a certain range.

Dry (reference) capacity distributions Dry (reference) demand observations
T T T T T 1 T T T T T
2LANE:
09r median: 4582 09r
per lane: 2291
0.8 whl a: 4697 0.8
07 wbl b: 15.1 07
3-LANE:
0.6 median: 6730 06
per lane: 2243

wbl a: 6892
wbl b: 15.7
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Figure 3.9: Capacity distributions (left) and demanl distribution (right) for the
reference scenario (dry)

Although the effects of capacity changes and dencaadges individually give an impression
of the effect on traffic fluency, it is only whemth are combined one can gain a true picture
of the effect of a weather condition on trafficdhcy and an indication of the level of service.
If, for example, a scenario causes a reductiorapacity, but causes an even greater reduction
to demand, traffic flow as a whole may benefit fréms, while only considering capacity
changes would suggest otherwise. Therefore, thebitmu capacity-demand results are
shown in Table 3.5. This is done for the 2-laneaneay capacity estimations (although the
difference between two or three lanes was neaigielgl). The ‘day weather condition’ and
‘peak hour weather conditions with peak morning dedi are taken as representative
reference demand estimation periods.

Despite what the individual capacity and demandltesay, the combined effect on traffic
shows a different trend. The effect of rainfall lraBmited negative effect on traffic fluency
which remains for all rain categories below 2%. Hfiect of cold temperatures on traffic
fluency is indicated to be one of the more impdrfantors. Behind this lingers a maintained
traffic demand, while the capacity is estimated&olower resulting in a negative effect on
traffic fluency as whole. This may also explainattarge extend some of the seasonal effects
that are often observed during the winter monthsthiermore, the effect of high winds also
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shows an increased negative effect on traffic tyeand that more so than rainfall, reaching
a fall of 2.6%.

Table 3.5: Combined effect of weather on traffic fhency

Scenario Effect on traffic fluency (Capacity/Demangl
2-lane capacity 2-lane capacity
with Day weather & with AM weather &
AM demand AM demand
Reference (Dry) 1.000 1.000
Rain 0-0.1mm?* 1.003 1.006
Rain 0.2-1.3mm* 0.992 0.998
Rain 1.4-1.9mm* 0.996 1.032
Rain >=2.0mm* 0.989 -
Snow >0 - -
Temp <2C 0.934 0.934
Temp >=2C 1.007 1.007
Wind <40kph 0.997 1.000
Wind >40kph 0.974 0.974

* The method collects the rainfall rather than rain intensity. A conversion can be made for
comparison to other data (see section 3.8.2)

3.8 Discussion on stochastic capacity

3.8.1 Capacity & Capacity drop values

An analysis has been given showing the extent gfspacific stochastic capacity variation
for workdays, weekend days and holiday days. Thelt®shown confirm the hypotheses that
there is a significant difference in capacity bedwehese scenarios. Fair comparison of
stochastic capacity against results in literatardifficult, especially for Dutch motorways, as
this is one of the first publications to investgahem stochastically in The Netherlands.
Comparison with maximum capacities is not a famparison as the capacities are derived in
different ways; however they still give an indicattiof the order of magnitude and spread of
capacity values. In previous research for the Dutapacity handbook, CIA (Capaciteit-
Infrastructuur-Autosnelwegen), maximum breakdowpacity values were recommended of
4300 veh/hr for a two-lane motorway irrespectivale type of day (Rijkswaterstaat, 2015).
This recommendation was also made using capadiyasons. A wide range of capacity
drop values were also found, ranging from 0-30%hwmost being between 10-15% and an
average value of approximately 15%. The lower valapacity drop derived from the CIA
may be a consequence of the generic propertiesthbaClA handbook must consider and
therefore may intentionally be a conservative esttm Other research comparing capacity
estimations found in the CIA also suggests this €T@al., 2010). The capacity drop values
found are in a similar range to this research, h@wéhe gravity point is lower. From Tu et al.
(2010) an even greater spread of capacity dropfawasd for The Netherlands, between 4-
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55%, with a mean value of 19%. Between locatiorsstntial differences can be found in
capacity values, likely caused by the infrastrualteharacteristics, such as geometry, type of
asphalt, interweaving traffic flows, etc. This h@so been found by the research mentioned
here. However, a definitive trend is present, cagatoy the distribution of the capacity values
from the different locations. For application inhet regions or countries, there may be
differences, related to driving behaviour and ptgisgeographical differences. In any case,
each location wherever it is, does have locatioecsic characteristics. It should not be
expected that mountainous roads or roads with utelthnspeed limits will have identical
(stochastic) capacity values for example. Wheriitraf infrastructure characteristics deviate,
such as in these examples, the results in thistehapould not be too heavily relied on.
However, as a general guide or starting-point fisrilar conditions, the estimates given here
are expected to give a good indication prior todsigmation of local values.

3.8.2 Distribution fit

In Brilon et al. (2005), an attempt was made tanegte Weibull parameters to observations
for three-lane freeways in Germany. The typicalgeafound for the shape-parameter was
between 9-15 with an average of 13. This is lowantthe range found for workdays of 11-17
and an average of 15 here. For these values, acafiwh is given of the spread of the
stochastic capacity estimations, from the shaparpeter. The differences between the results
may be caused by the difference in traffic stapitietween three and two lane motorways,
and may also be caused by the different trafficattaristics between The Netherlands and
Germany. Further research is needed to give clantyhis issue. The authors are aware of
other possible distributions, such as investigateha et al. (2010), however the Weibull fit is
deemed best suited to the Dutch traffic situatiwhich has a closer resemblance to German
traffic as originally discussed by Brilon et al0O(5). The goodness-of-fit test performed, with
the results shown in Table 3.1, backed up the gsSomthat the Weibull distribution is
suitable for use in this analysis.

3.8.3 Brief qualitative discussion

A brief reflection is given on the results in rédat to some of the causes behind the results.
The goal of this research is not qualitative; thanesthe discussion is speculative and based
on the findings.

- On weekend days, traffic is shown to have a highebability of breakdown at lower
flow values compared to workdays, but not necelgsarih a greater probability
spread.

- Drivers on workdays, during peak periods when cetige usually occurs, are
generally more experienced drivers, especiallyhencbnsidered routes. This greater
familiarity leads in theory to a greater efficienoytraffic flow and stability (Tu et al.,
2007).

- ltis presumed that there is no substantial diffeecbetween workday capacities, as
the driver population is in general identical onstnadays.
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- On weekend days a greater number of irregular &nipsmade, and also by drivers that
may on average be less experienced. Without goimgl¢ep into the explanatory
details behind this, this leads in theory to longeadways and a slightly less stable
and efficient traffic flow. This is backed up byethesults in this chapter.

- Holiday traffic is harder to intuitively predict fetability, as the considered days are
constructed out of a wide range of holidays on Whiitferent types of traffic may be
present on the road. For example, a holiday ddlyarsummer may have many drivers
heading to resort locations, while Christmas daffitr on the other hand will have a
completely different composition. This is maybe of¢he reasons that the estimation
of the breakdown capacity for these days doeshmt such a large difference to
workdays. Nevertheless, the results do show sofferehices, especially for the
discharge capacity. In congestion, the capacith@foad is significantly lower than
for workdays. Characteristics such as the vehiofgufation may be possible causes.
Vehicles performing holiday trips, may also be healoaded or even pulling a trailer
or caravan. Furthermore, there may be less ofaygednalty for holiday traffic under
congested conditions compared to workday traffic.

While these thoughts give some possible explanatioehind the results, they are not
conclusive, and are not meant to be. Further g research following on from these
quantitative results may be a good continuatiortlir research area.

3.8.4 Relevance and application of stochastic captes

The relevance and applicability of the resultshis tchapter is of interest especially in two
main areas, namely for traffic flow modelling, amok capacity analysis and highway
planning. The necessity to consider uncertaintiesmiodelling was highlighted in the
introduction. True stochastic traffic flow modelseanot common in practice, however
uncertainty is often still applied through scenamodelling (multiple model runs with set
values, i.e. a median and the standard deviatitrespor Monte Carlo simulation. Results, in
which stochastic capacity values are used, can pgmied to give indications of the
performance of the traffic system with various p@bitties. Especially in the case of a
stochastic model or Monte Carlo simulation, it ésgible to construct a whole distribution for
the model results for a network. These results tiga an overview of the probability of
certain values for the capacity uncertainty. lbisourse also possible and recommended to
include the traffic demand uncertainty in the samalysis.

The use of stochastic capacities is also relevamplanning purposes. This can be viewed on
two levels. Firstly, when planning new infrastruetuthe desired level of service is directly
connected to the capacity of a road. When consigea road with a large capacity

distribution, a larger proportion of probability ebngestion is present for traffic demand
below the median capacity. A road authority caretdks into consideration and may decide
to plan for more capacity. The decisive conditiorsy vary for such a decision; therefore the
use of different day-types becomes relevant. Sdgpmthanges to existing roads can be
considered to solve flow problems by observingdistribution of the capacity. For example,
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the application of various traffic management measuis often applied at bottleneck
locations to increase homogeneous flow and thuacied the probability that congestion
occurs due to an instantaneous exceedance of tgpaath as on weaving sections. While
stochastic capacities are not explanative for these of heterogeneity (large distribution
spread), they can show the extent of heterogeaeilycan be used to evaluate measures that
are targeted at such bottlenecks.

These application areas give an impression of toghastic capacities may be applied. For
each location it is recommended to determine thal lcapacity distribution, as these can vary
per location. This can be performed with the presstframework in this chapter. However, if
this is not possible, i.e. due to a lack of datér@ancial constraints, a similar location may be
analysed or generic values from this research neagetected that represent the considered
situation. The use of a generic value will not afevhe 100% accurate for every location, but
will allow stochastic effects of capacities to lmnsidered, which in most cases will assist in
the accuracy of traffic flow analysis or road plaogn In previous research, a discussion was
also given of limitation for the application of st@stic capacities and demands, which is also
valid for the methodology given in this contributi¢Calvert et al., 2012). On networks with
large variations in traffic demand and driver bebax, the application of stochastic
modelling is preferred. This is also the case farenntegrate networks in which secondary
congestion effects are more likely as well as fighHevels of congestion. Consideration of
stochastic variations in modelling also has linmas. On simpler networks, networks with
little congestion or on which the extent of vawas in road capacity and traffic demand
cannot be easily determined, the use of a stochagiproach is not as necessary. As a
stochastic approach requires more effort and isentone consuming it would be more
desirable to perform deterministic modelling indbeases.

3.9 Conclusions

In this chapter, a methodological framework witbhamceptual model for practical stochastic
capacity estimation is presented. Furthermore, thodelogy is presented that considers the
combined effects of stochastic demand and capaekpressed through the influence of
weather on traffic fluency. The first methodologyy stochastic capacities, makes use of a
number of different analysis tools and is desigt®djive practitioners and researchers a
concise and easy to follow approach for stoch&stpacity estimation. In addition, insight is
given into the extent of day-type specific variation capacity values. The analysis is
performed for three different scenarios: for wonkdeaveekend, and for holiday traffic. A
stochastic estimation of road capacity for thesmnados for both the stochastic breakdown
capacity and discharge capacity are made. Thespradeiced using a Weibull distribution,
which was shown to resemble the empirical datagdas a goodness-of-fit test and has
previously been shown to yield good capacity prdligliits. The analysis is performed using
induction loop data from 23 locations on the Dutabtorway network. Extensive filtering for
day specific characteristics and capacity estimatising the Product Limit Method was
applied to reach empirical estimation results fer tnedian and variation in the capacity for
the considered scenarios.
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The results indicate that there is a reductionactsastic breakdown motorway road capacity
on weekend days of 4% in comparison to workdaysthEumore, a decrease of 8% is found
for the discharge capacity in comparison to workddye analysis showed that the stochastic
breakdown capacity on holidays is not significanlbyver than on workdays, while the
discharge capacity does drop 3% to 4%. An estimasi@lso made of the spread in stochastic
capacity drop. This shows that the capacity dragwgr on average, on both weekend days
and holiday days in comparison to workdays. Forkaays an average stochastic capacity
drop is found of 21% with a spread between 13% 28%b. For weekend days and holiday
days this is 25% and 24%, with a similar spreadiagiahe average values. The results are in
line with comparable research.

The second methodology is applied to give quantgansight into the combined stochastic
effects of demand and capacity, and is appliedweather on traffic and to furthermore
highlight the necessity of considering the effesitaultaneously on both traffic supply and
demand. The methodology allows both the capacity damand to be calculated and
combined to give an indication of the effects ofatirer on traffic. An extensive data-driven
analysis is performed applying the described metimavhich the effects of rain, snow,
temperature and wind are analysed for their infb@eon traffic. The analysis was performed
for motorways in a large 1200 kilometre square ameathe urbanised west of The
Netherlands. The results show that increasing tezhg of both capacity and demand are
found for precipitation in the form of rainfall. Bgite the reduction, the overall influence of
rain on traffics ability to flow fluently is not sstantially reduced. Insufficient data for the
described approach meant that capacity estimatoidaot be made for snowfall, while a
reduction in demand for snow was found of more tH#&%. The influence of cold
temperatures proved to be substantial on trafierfty. Demand was found not to vary
significantly, while capacity is reduced leadingatgreater chance of a reduction in level-of-
service of roads. Similarly, high winds were foutal also reduce the quality of traffic
fluency, although at a lower level of approximat2{g%.

A further quantification of the stochastic distrilmns of the results is derived for each
weather scenario. This showed that the distribusbape of each weather type does not
significantly differ and was found to yield similahape-parameters when fitted for a Weibull
distribution. The shape of the demand distributials® showed a close resemblance and was
found to adhere to a t-location-scale and logiditstributions. The resulting distributions may
be used for a number of future purposes, such plicapon of uncertainty and sensitivity
analysis both in data-analysis and modelling dfir@ffects during weather to name two.

It is concluded that the difference in types of tiag a significant effect on road capacity and
that this variation in capacity can quantitatively derived, as demonstrated in this chapter.
The derived distributions for the specific day tymgve both a quantification of the mean and
the spread of the relevant capacities and areftrerapplicable for use as input in stochastic
traffic models. Applications for motorways or fre@yg in other countries and under other
conditions may differ from the results found het#ewever, the same methodology as applied
in this chapter can be easily applied to theserositeations and locations to give local

capacity estimations. Further research is recometentb gain a greater qualitative
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explanation of how these differences in capacityuocrather than just the quantification as
shown here. In such a way, a greater causality Imeagiven to certain variations found from
the results. Further research following the quardifon of weather effects lies primarily in
guantification of correlated weather effects offficdlow, such as a combination of rain and
high winds for example. Further research alsoifigguantification of other weather effects as
well as the development of a refined methodologymlespread data analysis of the effects
of snow of traffic flow for limited observations.
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Appendix 3.A: Specific capacities per location
Mean values Free-flow Capacity Discharge Capacity
Median Stnd Dev Weib a Weib b Median Stnd Dev Weib a Weib b
Work Days 2 lanes: | 2260 202 149 4647 1792 190 12.7 3699
3 lanes: 15.5 6796 11.6 5478
Weekend Days 2 lanes: | 2131 174 16.4 4396 1622 168 12.4 3334
3 lanes: 184 6301 11.6 5082
Holidays 2 lanes: | 2265 191 16.0 4652 1720 268 11.3 3564
3 lanes: 16.7 6819 10.8 5251
All values Work Days
Lanes | Bottleneck Free-flow Capacity Discharge Capacity Cap Drop
Road Type Median per lane Stnd Dev Weib a Weib b Median per lane Stnd Dev Weib a Weib b
4-1 2 junction 4500 2250 400 149 4616 | 3550 1775 360 12.8 3657 | 21.1%
4-2 2 junction 4340 2170 330 17.3 4438 | 3820 1910 400 12.7 3930 | 12.0%
9-1 2 lane drop 4840 2420 360 18 4935 | 3900 1950 320 16.2 3994 | 19.4%
9-2 2 junction 4920 2460 440 14.8 5041 | 3940 1970 390 13.1 4056 | 19.9%
12-1 3 junction 7120 2373 600 15.7 7289 | 5540 1847 610 11.8 5719 | 22.2%
15-1 2 junction 4220 2110 510 10.8 4365 | 3700 1850 370 13.2 3803 | 12.3%
20-1 2 lane drop 4060 2030 470 11.3 4196 | 3210 1605 460 89 3343 | 20.9%
speed
reduction /
20-2 3 bend in road 6090 2030 490 16.5 6224 | 5260 1753 540 13 5407 | 13.6%
27-1 2 junction 4000 2000 380 13.8 4109 | 3580 1790 340 14.1 3672 | 10.5%
weaving
50-1 2 section 4230 2115 360 15.6 4333 | 3410 1705 400 11.1 3528 | 19.4%
50-2 2 bridge 4170 2085 400 13.7 4280 | 3660 1830 370 13.1 3763 | 12.2%
2-1 2 junction 4470 2235 440 13.5 4591 | 3520 1760 390 12 3628 | 21.3%
2-2 2 bridge 4470 2235 370 15.8 4577 | 3380 1690 350 12.6 3480 | 24.4%
weaving
27-1 2 section 5010 2505 360 18.2 5116 | 4040 2020 330 16.1 4133 | 19.4%
27-2 2 bridge 5080 2540 520 12.8 5225 | 3460 1730 380 11.8 3571 | 31.9%
weaving
27-3 2 section 4270 2135 300 19.2 4348 | 3160 1580 470 8.7 3292 | 26.0%
27-4 2 bridge 4420 2210 370 16 4519 | 3580 1790 340 14 3671 | 19.0%
27-5 2 junction 4370 2185 390 14.8 4476 | 3210 1605 390 10.8 3319 | 26.5%
weaving
27-6 2 section 5030 2515 480 13.8 5136 | 3920 1960 410 124 4041 | 22.1%
1-1 2 junction 4950 2475 510 12.7 5093 | 3490 1745 390 11.7 3602 | 29.5%
1-2 2 junction 4580 2290 400 15.5 4685 | 3650 1825 310 15.7 3732 | 20.3%
1-3 2 junction 4750 2375 390 16.3 4857 | 3660 1830 350 13.5 3764 | 22.9%
16-1 3 junction 6700 2233 610 144 6874 | 5120 1707 670 9.9 5308 | 23.6%
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Appendix 3.B: Demand distribution parameters

Scenario Demand distribution fit: parameter values
t-location-scale [mu-sigma-nu] Logistic [mu-sigma]

Reference (Dry) [1.000 0.028 1.886] [0.996 0.030]
Rain 0-1mm* [0.997 0.034 2.115] [0.996 0.034]
Rain 2-13mm* [0.997 0.032 1.746] [0.996 0.037]
Rain 14-19mm* [0.954 0.046 2.236] [0.948 0.043]
Rain >=20mm?* [0.957 0.035 1.815] [0.951 0.038]
Snow >0 [0.849 0.051 2.663] [0.841 0.043]
Temp <2C [1.000 0.031 2.249] [1.000 0.030]
Temp >=2C [0.987 0.036 2.678] [0.982 0.030]
wind <40kph [0.999 0.0312 2.111] [0.998 0.031]
Wind >40kph No best fit [0.993 0.041]




Chapter 4

Advanced sampling methods in Monte Carlo
simulation

In an effort to improve performance and speed oplsistic calculation, advanced sampling
techniques have been developed in the past certhege techniques are investigated in this
chapter for their ability to reduce the computatbmoad in traffic modelling with variable
input values. A comparison is made between thedmitpues and that of Crude Monte Carlo
simulation. The objective of the chapter is to destiate the efficiency of the methods for use
in traffic modelling. This has not previously begemonstrated for traffic modelling, and
their application is shown in several experimermases.

The applied techniques and applied methodologydaseussed and explained in section 4.2.
In section 4.3 case studies are presented, whiehuaed to demonstrate the effectiveness of
the advanced sampling techniques and for whichrélalts are given in section 4.4. Section
4.5 provides the conclusions of this chapter.

This chapter is an edited version of the article:

Calvert, S. C., Taale, H., Snelder, M., & Hoogendoorn, S. P. (2014). Application of advanced sampling
for efficient probabilistic traffic modelling. Transportation Research Part C: Emerging Technologies, 49,
pp. 87-102.
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4.1 Introduction

In traffic models, assumptions are made to simplifg complex decision processes and
interactions that rule the dynamics of traffic drahsport system. This is necessary as factors
that influence traffic flow are extensive, and restery variable can be considered. It is
commonplace in traffic modelling that equilibriutates are sought that give a good average
representation of the dynamics of traffic. Traffiodelled as a deterministic system, meaning
that there is no randomness involved in the devety of future states, implies that
assumptions are made to describe the randomnessxibes. Examples of these assumptions
are related to the demand and supply, the behawbulrivers and the characteristics of
vehicles. Each of these variables is a stochagsitesn which is often reduced to an average
value in a deterministic representation (e.g. ayei@emand, average supply, average desired
speed, average maximum acceleration, etc.). Howewenust be realized that traffic in
reality is hardly ever ‘average’ (Ernst et al., 2D1Therefore, modelling traffic as if it were
always in a deterministic state is not realistid all lead, in many cases, to biased outcomes
(Calvert et al., 2012, van Lint et al., 2012). ddesation of stochastic dynamics in traffic
modelling allows for a much more realistic repreagan of the traffic system (Clark and
Watling, 2005, van Lint et al., 2012).

Modelling traffic flow with stochastic input is @it performed in traffic models through one
of two main methods: analytically or by replicatigmulations through Monte Carlo
simulation or a derivative thereof. Analytical apaches have seen an increased development
in recent years, but remain largely complicated emdwhich are not readily applied in
practice by practitioners unless incorporated isimulation package (Davidson, 2011).
Therefore, the approach using Monte Carlo simutateEmains an attractive option, despite
the requirement of a relatively high computatiogffbrt (Chang et al., 1994).

Monte Carlo simulation has been widely applied i@rious sciences to help describe
stochastic systems, as well as in the traffic doamai many applications, such as the
construction of probabilistic models. The methodswirst conceived in the 1940’s
(Metropolis and Ulam, 1949) and has since growpapularity. For multivariate problems,
the techniqgue makes use of predefined probabiliiesach of the input variables, indicating
the probability of occurrence and the correspondalge (Ang and Tang, 2007).

In traffic modelling, the Monte Carlo method hasiepplied in many ways. Its extent is
such that a complete overview of all literaturen@g given here, but merely an indication of
some recent publications. The method has beeneabphi traffic modelling in traffic
assignment & route choice (Zhang et al., 2008), encloice (Jonnalagadda et al., 2001),
traffic propagation (Chang et al., 1994, Szeto let 2011), strategic scenario assessment
(Salling and Leleur, 2011), sensitivity analysesd aeliability studies (Murray-Tuite and
Mahmassani, 2004, Tampere et al., 2007b, van Lialt,€2012).

The application of Monte Carlo simulation in thisnéribution relates to sensitivity analysis,
and, to a certain extent, reliability of traffioW and networks. The Monte Carlo routine is
often performed prior to traffic assignment andirgput variables such as network capacities
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and the traffic demand. Application of the routfoe sensitivity analysis in such a manner is
not uncommon. Examples of such applications arenGHeal. (2002) and Tampere et al.
(2007b), who investigated reliability. In these diés link capacity is varied using Monte
Carlo simulation. Szeto et al. (2011), Zhang e{(2008) and van Lint et al. (2012) applied
Monte Carlo simulation to vary multiple input vébias. Taking van Lint et al. (2012) as an
example, the values for network capacity and demased in traffic simulation are
constructed considering multiple influencing fastofhese factors, such as weather effects,
random traffic demand and incidents are appliedamsadjustment factor over the base
capacities and traffic demand. In a similar ways tils also applied in this chapter and is
explained later on.

4.2 Methodology for advanced sampling

Inclusion of stochasticity in traffic modelling ag stochastic input through Monte Carlo
simulation can be performed according to the apgrahown in Figure 4.1. This is also the
approach applied in this study. The basis for {hgr@ach takes the base capacity values, or
deterministic capacity values, from the definedwuek capacities and applies capacity
reduction factors leading to the cumulative prolighdensity function (CDF) of the capacity
distributions. In a similar fashion, individual vals from a CDF for the traffic demand are
applied to a base set of traffic demands in thiéidraetwork. From the resulting capacity and
traffic demand CDF’s, a random sample is taken,fonéoth the capacity values and one for
the traffic demand values. Depending on the appMedte Carlo technique, these are either
dependently or independently sampled. A simulationis performed with the traffic model,
resulting in a single output result. The processasfipling and modelling is repeated until a
complete distribution of results is constructedisTdpproach neglects correlations which can
exist between capacity and demand variations, dther focusses on the performance of the
sampling techniques in the traffic models.

Traffic Network Variation distributions
for Capacity & Demand

Base capacity &
initial demand

Capacity & Demand
distributions

Y

Sample Controller

Sample of capacity & demand
v

Traffic Model

A 4

Sample result

\ 4

Result distribution(s)

Figure 4.3: Approach to Monte Carlo simulation for stochastic input in traffic modelling
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The various parts of this process are describedréater detail in the remainder of this
section. The networks used in the test cases a&ided in the following section with the
description of the case study setup.

4.2.1 Traffic modelling

The applied traffic model in this study is the dyna macroscopic traffic model INDY
(Bliemer et al., 2004). This model is used as #tiategic model and dynamic in time, and is a
good representation of the type of model that mawyded in practice by practitioners. INDY
makes use of the Link Transmission Model (LTM) fdynamic traffic propagation, as
described by (Yperman, 2007). The LTM is a macrpsc®ynamic Network Loading model
which applies first order kinematic wave theorydaescribed by Newell (1993). For further
details of the LTM see (Tampére et al., 2011, Y@ern2007). Route assignment in INDY is
performed through a dynamic path based approaditrilition of path flows is based on
travel costs, predominantly determined by link é&latirmes. An equilibrium state in route
choice is solved in INDY using a simple iterativ@gess, applying the method of successive
averages. The routes are generated from a routgesetation model described by Bliemer
and Taale (2006).

4.2.2 Application of stochastic variation

Stochastic variation is applied using a probabititgtribution for the capacity and traffic
demand respectively. These distributions give ttobability of certain influence factors on
the capacity and traffic demand. Multiplication tife sampled factor values from the
distributions with the base values, either or libthcapacity and traffic demand, results in the
corresponding values used in each individual sitrarla The sampled factor values are
applied identically to all road sections and alhes respectively for a single iteration. The
applied distributions in two of the three test casethis study are derived from real traffic
data from the A4 and A12 motorways in The Nethatamt various locations, along the 2 to
4 lane motorways, the relative variation in traffmw for 28 Tuesdays and Thursdays in 2008
are fused through weighted averaging to represhat lbcal demand. The resulting
distributions are shown in Figures 4.2a-b. Botlritistions closely resemble distributions for
most motorway locations and can be genericallyiaggals the distributions are constructed as
a relative factor rather than absolute capacityesl In the other test case, use is made of
artificially constructed distributions, resemblirggl distributions in more extreme cases (i.e.
with greater variations and less favourable valug&Be distributions are deliberately very
different to those shown in Figure 4.2 to demonstihe differences in outcome. These
distributions are shown in Figure 4.3a-b.
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and applied in test case 1 and 2 for a) the capagiand b) the traffic demand.

1 T T T T T T T T T 1

o o o o o
3 o ~ © ©
T T
o o o o o
2 =) ~ © ©

o
~
T
o
>

o
w
T

Cumulative Probability

Cumulative Probability

I
N

o

[N
o
e

o
o

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.9 ) ‘1 1‘.1 1.‘2 1.‘3 1‘.4 15
Capacity factor Demand factor

o

Figure 4.3a-b: Cumulative Density Function factor [eft) as applied in test case 3 for a)
the capacity and b) the traffic demand.

4.2.3 Sampling Methods

To reduce the number of required sample iteratisieen performing Monte Carlo
simulations, techniques are applied which redueeeitimation error in a sampling process.
While reducing errors, these techniques must alamtain the shape of the original output
distribution. In practice the estimation of thegomal distribution will always deviate from the
true solution due to statistical fluctuations (Betaet al., 2000). The goal of variance
reduction techniques is therefore not to improwe dality of the estimation, but rather to
reach the same level of performance while requif@wger samples.

An increasing number of variance reduction techesghave been developed, each with a
different approach, but also a certain degree ahplexity for implementation and
effectiveness. Previously, a number of these tegles have been applied in traffic modelling
for various goals, as explained in the previougieecin Kroese et al. (2011), a qualitative
analysis is given of the complexity and of the patd effectiveness over various variance
reduction techniques. An overview of this is shawirigure 4.4. There it can be seen that the
range of effectiveness of different techniques lbawe a large variation and that for larger
improvements the level of complexity to implemem technique will most likely increase.
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The extent of the effectiveness depends heavilythentype of applied distributions, the
number of considered variables, but also the setftipe chosen technique.

complexity
A
y splitting

importance sampling

i conditional MC

1 control variable

p———— quasi Monte Carlo
+—— stratified, latin hypercube

H—— antithetic

»

- >
improvement over
crude Monte Carlo

Figure 4.4: Complexity versus effectiveness of vamnce reduction techniques (from
Kroese et al. (2011))

Two of the considered sampling techniques appliedhis contribution are Importance
sampling and Latin Hypercube sampling. To a cergtent, this choice is somewhat
arbitrary, but is made from the viewpoint of potahéffectiveness against complexity, and is
further backed up by previous research (van Lirdlet2012) in which these techniques are
recommended for further investigation. In theorgtih Hypercube Sampling is less complex,
but more robust, while Importance Sampling is moogplex and is potentially more
powerful, but may also lead to a reduction in cogeace, hence it is less robust. It is beyond
the scope of this research to evaluate every tqabniherefore the set will be limited to these
two techniques.

A third technique considered comes from the areguafsi-random Monte Carlo methods:

Sobol quasi-random sequence. Where the previousoaetre truly random, that is sampling
without explicit selection, quasi-random sequenaes constructed from well distributed

selection by sequential functions. This shoulddfae allow for a much faster convergence
to the true underlying distribution compared to tnade Monte Carlo method (Chi et al.,

2005). The comparison of random variance reduanethods with quasi-random sequences
in practise is difficult because of convergenceiessand does not definitively show one to
consistently outperform the other (Berman, 1997rkat al., 2002). Besides the mentioned
sampling techniques, simulations will also be agaplior Crude Monte Carlo sampling as a
reference for the two variance reduction technigaed the quasi-random MC method.

Further details on sampling theory can be foundnie of the many pieces of literature on the
subject (Govindarajulu, 1999, Knottnerus, 2003,dsmet al., 2011).

Crude Monte Carlo Sampling

In Monte Carlo procedures, it will often be theditnal Crude Monte Carlo (CMC)
sampling that is applied. The technique is desdribs simple, because the randomly
generated samples are directly taken without furthecessing from the considered
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distribution. The technique of CMC sampling is gjhd forward and produces an estimation
based on the generationdsampledd from a predefined distributiom

Hy .. Hy €h (4.1)

These are consequently applied in the CMC techriiguggin an estimatioM of the original
distribution h as follows:

N (4.2)

Importance Sampling

Importance sampling (IS) is a technique used in tddbarlo simulation that gives extra
consideration to the outlying sections of a disttitn which have a lower probability of
being sampled, but have a relatively large infleeona the output variable (Kroese et al.,
2011). By assigning the extremities of a distribnta greater probability than they originally
have, creates a higher chance of extreme valueg Isampled and therefore the speed at
which the output distribution is ‘complete’ is gtea There are multiple variations of IS, such
as Minimum-Variance Density, Variance Minimization ked, Cross-Entropy Method and
Sequential Importance Samplii@appé et al., 2007, Kroese et al., 2011, Smitl.et997).
The technique of IS applied here is that of the gifiesd Importance Sampling method
(Bekaert et al., 2000). Weighted IS predicts theemixthat the distribution of a set of samples
deviates from the original source distribution bgsigning weights to the samples
corresponding to their probability and deviatioonfr the source distribution. The sample
weights denote the ratio between the source digiob and the estimator distribution. The
estimator distribution is chosen, such that it @ases the probability of extreme input values
being selected, which have an amplified effect loa final model output. The technique is
mathematically described as follows:

Consider a random variabM for some real function with valué$ and probability density
functionf:

M = EH(x) = f H (20 f (x)dx (4.3)

A transformation oM(x) is applied, by introducing an estimator distribatg(x) to get:

M= [ 10 L2 gy = o 2 @9
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The estimation oM after sampling is therefore:

N (4.5)
= %;H(x)w(x)

Where: _fx) (4.6)
YO =@

in which w(x) is the weight known as the likelihood ratio estiona Furthermore the
expectation of the sampl#/, should reflect the distributiohl; E(M) = M. See Rubinstein
(1981) for proof of this.

Latin Hypercube Sampling

Latin Hypercube sampling (LHS) is a stratified séimgptechnique that, other than general
stratified sampling, ensures that the entire sangplace for multiple input variables is
sufficiently covered (Iman and Conover, 1980, McKatyal., 1979). The technique is an
extension of quota sampling. The basic techniqus smriables evenly sampled from the
sample spaces, also known as a d-dimensional hyperan which each random variable is
attributed a dimension. Combinations of the samatesandomly generated, such that a good
spread of samples is achieved to form a singlestatghction. This can be applied on any
number of dimensions of variables, but is applrethis research in two dimensions.

The definition of LHS is as follows:

The input variableXy are divided intd\ strata of equal probability

1 4.7)
P(xy) = N
A single sampl€, ; is taken from each stratumThese form the component Xk:

For each input variabl&,, the components are matched at random to foKrdanensional
sample cube. Graphically, the technique for a timoethisional cube foN = 200 samples,
with K = 10 strata per dimension is shown in Figure 4.5.



Chapter 4 — Advanced sampling methods in MontedCGarhulation 77

Latin Hypercube Sampling
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Figure 4.5: Latin Hypercube sampling of a two-dimesional space for Capacity and
traffic demand samples.N = 200 samples, withK = 10 strata per dimension.

Figure 4.5 demonstrates the samples taken in otlgecfase scenarios described later in the
chapter for the capacity and demand factors. Alghonot every joint stratum is evenly
covered, the coverage over each stratum is weltilolised, including the random spread
within each stratum. The distribution over eachivitbal marginal stratum is evenly
distributed though. This results in a superior adref samples in most spaces, especially for
those with a limited number of samples (Iman anddver, 1980, Larson et al., 2005, McKay
et al., 1979, Minasny and McBratney, 2006). Ithertresults in the capture of sampled input
values that would otherwise have been insufficienttilized, especially where their
probability is relatively low.

Sobol Quasi-random Sequence

The Sobol Quasi-random Sequence (SQS) is a typgquasi-random number sequence
(QRNS) (Sobol, 1967). QRNS are deemed to improveamuom sampling by explicitly
“sampling” the probability space more uniformly @8ey and Fox, 1988, Joe and Kuo, 2003,
Joe and Kuo, 2008a). Unlike true sampling methad@sjuential numbers are predefined
numbers that are not explicitly random, but duéhtar well distributed coverage in sequence
of the considered set, can be considered as neé@cthe distributed random numbers and
therefore a good converge is gained much faster with crude Monte Carlo (Chi et al.,
2005). The choice to apply SQS here, rather thathen QRNS is due to the combined
advantage of simplicity and efficiency of the S@i(et al., 2005).
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SQS are constructed from a primitive polynomialngsdirection numbers. A primitive
polynomial of some degree sj is chosen:

x) a0t vay TP+t ag e+ 1 (4.9)
where the coefficienta,,; , &, , . . . , @ -1,; are either 0 or 1. We define a sequence of pesitiv
integers{my;, my;, . . .}by the recurrence relation:

mk,j = 2a1,]-mk_1,j @ 22a1,jmk_1,]- @ @ 25j—1asj_1,]-mk_sj+1’]- @ (410)

¥
259my_sj i @ my_g;;

Here ®© denotes the bitwise operator. The inivalues m; , my;, . . . , ng j are restricted
such that each; , 1< k<5, must be odd and less thah 2he direction numberss{;, v, .
. .} are defined as:

_ My (4.11)

Thenxj, thej-th component of thieth point in a Sobol sequence, is given by
Xij = i1V1,; D v, D ... (4.12)

whereiy is thek-th digit from the right whem is written in binaryi = (. . .isi2l1)2. For more
details on the method, see (Joe and Kuo, 2003 1dd&uo, 2008b, Joe and Kuo, 2008a).

4.3 Case Study for advanced sampling

To demonstrate the effectiveness of the consideaetpling techniques, three case studies are
considered. Each case study considers a differstmtank, and therefore different capacities
and demands, and two different stochastic distobstare applied over the three cases. For
each network, representative routes along whichrineel-time variations are calculated are
selected such that good route coverage is achevedhe main corridors are considered. The
applied indicators are given in section 4.3.2 dmal results of the cases are presented and
discussed in section 4.4.

4.3.1 Test networks

The case studies consider convergence of the ttiavelover multiple routes and the overall
delay times of three different motorway networksal®d in the Netherlands. For each of
these variables, travel times and network deldys rate of convergence is compared for the
application of the two variance reduction techngjaed the Sobol Quasi-random Sequence
technique (SQS), and is further compared agairestGtude Monte Carlo technique as a
reference. For each case, 200 simulations areedaouit with varying sample values from
which the rate of convergence becomes evident. Eguglied network has a different
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structure, traffic volumes, degree of congestiod @uting options. Furthermore, bottlenecks
on each network exist in different forms such teach network represents a uniquely
different scenario. The characteristics of eachwagk, including the considered routes for
travel time, are described in the following subtEes.

Rotterdam Ring network

The motorway ring network around Rotterdam is shawigure 4.6. Inner city Rotterdam is
situated to the centre of the ring, with suburbthooutside of the ring. The network has been
reduced to the main motorway stretches and theinections to the city. This allows for a
purely motorway analysis of the effects of variaiavithout inner-city route choice changes.
The network coverage takes in an area of approein&0 km by 20 km. The network exists
of 37 zones, situated at the peripherals and matpjunctions, and 610 network links. The
network and traffic demand are calibrated for themmg peak period from 6-10 AM. In this
period congestion occurs at numerous points onitigeunder normal circumstances.

F

/l E

Figure 4.6: Rotterdam Ring Network for traffic simulations, showing routes E-F, G-H
and I-J for travel time observations

The Hague — Gouda network

The Hague — Gouda network (Figure 4.7) is, sinyléolthat of the Rotterdam Ring, reduced
to the main motorway and provincial roads. The nrairte from Gouda to The Hague is the
route shown by K-L. There are alternative routed, dll at a greater travel time cost under
free flow conditions. The network covers an areapgroximately 30 km by 30 km and exists
of 43 zones and 639 network links. The network dechand are calibrated for the morning
peak period from 6-10 AM. In this period, congestis often present on the route leading
into The Hague towards location L. Along the otrartes, M-N and O-K congestion is also
present at certain locations during a normal ma@pi@ak period.
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Figure 4.7: The Hague — Gouda Network for traffic snulations, showing routes K-L, M-
N, O-K and K-O for travel time observations

Amsterdam South-East network

The Amsterdam South-East network comprises of foain motorway stretches and the
surrounding local roads to the south-eastern dideeocity (Figure 4.8). The network covers
an area of approximately 20 km by 15 km and comsiét72 zones and 624 links. The
network and traffic demand are calibrated for thenéng peak period between 4-8 PM in
which the main traffic volume is situated on thegri(along point D) and out of the city
towards the south and east.

In this network, there are a number of route clwiewailable for motorway traffic.
Furthermore local roads are included in the netviorgive additional routing options.

Figure 4.8: Amsterdam South-East Network for traffic simulations, showing route C-D
for travel time observations
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4.3.2 Performance Indicators

Network Performance Indicators

The output of the dynamic macroscopic traffic modgbresented as the average travel time
over the various routes and the total network dpEynetwork, on which the capacity and the
traffic demand are applied as variable input inriedel. The average travel time is defined
as the unweighted average of all realized traveési during the simulation on the route, and
is defined as:

noym  linkap
_ = M link.AB.t
TTae = Z n (4.13)
t=1
Where TTas = travel time between origih and destinatioB

linkaB = length of a link, situated between oridir& destinationB
VinkAB.t = cell speed on link at tinte
n = number of time steps
m = number of links

In general, the total network delay Tlost is defires:

Tiost = Z (ttscenven — ttff.veh) (4.14)
veh>0
Where veh = vehicles
ttscen.ven = travel time in the scenario
tts veh = travel time in free flow

In a macroscopic model, where vehicles are not trextiendividually, thetotal experienced
delay Tost is calculated by:

n m
_ llink llink
Tlost - Z Z <qlink.t <vlinkt - vfflink)) (415)
t=1 link=1 ’ :
Where t =time
Qlink.t = traffic flow on link at timet
liink = length of link
Viink.t = cell speed on link at tinte
Vit link = cell speed on link in free-flow
n = number of time steps

m = number of links
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Convergence Estimator

Convergence of the network performance indicatanrs ach Monte Carlo technique is
performed using thestimated relative erro(ER-Error). The ER-error is a method that is
closely related to that of the root mean squaredrgfRMSE) and is often applied to
determine the rate of convergence in simulationslies (Kroese et al.,, 2011). In many
simulation studies, the true relative error canbpetdetermined, because the true state can
either not be determined or does not exist. ThelE&Rr is therefore an estimator of ttrae
relative error in such cases. It is also a method that is weltedufor application in
convergence testing (Anton, 2010). The ER-Erralened as:

_ o 4.16

ERE(Y) = —— (4.16)
YVN

= estimator of the standard deviation

= estimator of the unknown distributioh

= number of samples

Where

Z <9

From this the similarity with the RMSE can be seghich is defined as:

=1

4.4 Results

4.4.1 Convergence of input samples

Prior to the simulations with the traffic model, amalysis is performed on the samples taken
as input for the model. This gives an initial iration of the convergence before the effects of
the traffic network are included. In the traffic ded, both the factors for the capacity values
and the traffic demand are applied, such that pedoace indicators can be extracted from the
model runs. Therefore, it is also necessary to @oenthe input factors for both variables
when analysing the convergence of the input vallibes.capacity and traffic demand have an
inversely proportional effect to each other, therefthe convergence of the input values is
tested using the value of the capacity dividedigydemand for each sample. In Figure 4.9a-b
the combined division of the capacity factors by tlemand factors is shown for each of the
sampling techniques. The complete unsampled distoib is also plotted to show the
deviation in the sampling process per techniquete Narthermore that the result of this
division gives an indication of the effect on trafflemand and therefore possible congestion.
For example, higher demand and lower capacity waliviously lead to congestion more

rapidly, than the opposite case. This is captumedthie applied measure. The applied
f(x)?+1.89

transformation for the IS in case 1 and 2 is quadfar the demandg(x) = >

) and a

square root for the capacity(x) = %ﬁﬂ). For case 3, both the demand and capacity

transformation is linear. The cumulative forms aggble in Figure 4.9a-b. From the figures it
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is evident that the joint samples of the LHS andSS@chniques represent the true joint
distribution to a better extent than CMC. Quanitry the mean squared error of the CMC
distribution is 2.1 times higher than that of LH&)d of a similar magnitude for SQS.
Especially for values further from 1.0 the erroisampling is higher (1.0 indicates no change
to the capacity-demand ratio). For the IS technigue difficult to state how the performance
Is prior to modelling, as IS makes use of a ‘dumuhgtribution or estimator distribution for
sampling which is later corrected using the comesing weights. For this reason, it cannot
be compared to the other distribution in Figurea49 It is nevertheless included to
demonstrate the difference in approach and whatntl@ans for the applied distributions. The
shape of the estimator distribution is also visiioten the sample distribution of IS in Figure
4.9a-b.

Random Capacity/Demand factors Random Capacity/Demand factors

Original distribution

[ | === Crude MC

Latin Hypercube
Importance Sampling
0.7k *  Sobol sequence
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Figure 4.9 a-b: Cumulative distribution function of the joint capacity factor/traffic
demand factor, including the sample distributionsas applied in a) case 1 & 2: The
Hague-Gouda and Rotterdam Ring and b) case 3: Amstam South-East

The ER-error is calculated for the joint input sdesp and is shown as a function of the
sample size for convergence towards the originat gistribution. These results are shown in
Tables 4.1 and 4.2. For the samples from case Icasel 2, the rate of convergence of the
combined input values is greater for both LHS a@Shan for the CMC. The results are
shown for up to 100 iterations, as between 100-Refations further convergence was
discovered to be marginal. The initial convergentehe IS technique is similar to that of
CMC. For the combined input samples for case 3gtkater rate of convergence for both the
LHS and SQS techniques in comparison to that of M€vident. The convergence of IS
however is poor in comparison. For both sets ofdas) the LHS and SQS techniques show
a greater distribution of samples, which in turade to a greater rate of convergence. The
difference in performance of the IS technique betwthe cases is most probably due to the
application of the initial estimator distributiorhigh is identical for both samples sets, while
the initial distributions for the capacity and derdare different in both sets. To demonstrate
the importance of a correct estimator distributitim applied distribution is not further
improved for the distributions used for the IS teique in case 3. This means that we expect
IS to work well in case 1 and 2, but poorer in case
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Table 4.1: Estimated Relative error of the joint irput samples, applied to case 1 and 2

Iterations CMC LHS SQS IS

10 0.0284 0.0095 0.0108 0.0244
20 0.0146  0.0057 0.0056 0.0172
50 0.0048 0.0037 0.0022 0.0072
100 0.0030 0.0015 0.0006 0.0046

Table 4.2: Estimated Relative error of the joint irput samples, applied to case 3

Iterations CMC LHS SQS IS

10 0.0246 0.0082 0.0168 0.0756
20 0.0122 0.0048 0.0044 0.0534
50 0.0062 0.0022 0.0018 0.0286
100 0.0056 0.0012 0.0004 0.0198

4.4.2 Convergence of model results

The sampled input values for the capacity anditrafemand are applied to the dynamic
macroscopic traffic model, from which the travehé along the defined routes and the total
network delay are captured for each of the thremsaBoth indicators have an (unknown)
real distribution to which the Monte Carlo resudtsould converge with increasing iterations,
N. The rate of convergence shown as the ER-ermothi® travel time and the total network
delay are shown for each case. It should furtherdied that the raw random samples applied
on the distributions for the sampling techniquesidentical for all three sampling techniques
per case. Therefore, a fair comparison can be matlt®ut needing to consider random
differences between techniques. The Sobol sequesoples are obviously not identical to
the other techniques, but are applied identicaligr@ach case. The main difference between
the techniques lies in the way the four technicagsdy the samples to form input values for
the model from the capacity and demand distribstion

Case 1: The Hague — Gouda

The rate of convergence of the ER-error of thel togdwork delay for case 1 (The Hague —
Gouda) is shown in Figure 4.10 and Table 4.3. Hselts of the delay values given by the
LHS technique show a better convergence, whichfés@r 2 better after 50 iterations and a
factor 3 after 100 iterations. The SQS achievedlaimesults after 100 iterations, but appears
to reach this level at a slower rate. The convargai IS does not improve on that of CMC
for the delay in case 1.
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Figure 4.10: Convergence of the total network delayndicator case 1: The Hague —
Gouda network

Table 4.3: Estimated relative error of the total néwork delay case 1: The Hague -
Gouda

Iterations CMC LHS SQS IS

10 0.1518 0.1312 0.1516 0.2225
20 0.0746  0.0917 0.0512 0.1573
50 0.0336  0.0152 0.0306 0.0525
100 0.0206  0.0072 0.0064 0.0430

Convergence of the ER-errors for the travel timastite defined routes in The Hague —
Gouda network is shown in Table 4.4. On each ofrthees the LHS technique shows a
strong rate of convergence with error values varyiar route, but generally in the order of 2
times lower than CMC. Interestingly SQS performbstantially better on all the routes in
comparison to LHS, except route O-K, despite thaveogence in delay being similar
between the two. In this case IS also performs grotiran CMC for the route travel time
convergence.

Table 4.4: Estimated relative error of the route tavel times case 1: The Hague - Gouda

Route Iterations CMC  LHS SQS IS

K-L 20 0.1030 0.06080.0348 0.1973
50 0.0196 0.03850.0084 0.1190
100 0.0322 0.02170.0038 0.0410
M-N 20 0.0460 0.02220.0132 0.0748
50 0.0114 0.01050.0050 0.0493
100 0.0112 0.00570.0022 0.0183
O-K 20 0.0342 0.06250.0306 0.1188

50 0.0218 0.00300.0128 0.0675
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100 0.0164 0.00450.0020 0.0393
K-O 20 0.0600 0.04150.0286 0.1888
50 0.0200 0.02420.0094 0.0915
100 0.0114 0.01380.0050 0.0515

Case 2: Rotterdam Ring

In case 2 on the Rotterdam Ring network, the sampetisamples are applied as for case 1.
However, as both networks are different, accompdifferent traffic dynamics and have
different bottleneck locations and severity, thécome of the delay from the network can
also differ. The convergence of the ER-error ofdietay values is shown in Figure 4.11 and
Table 4.5. Both the LHS and SQS techniques showviti sonvergence, in which SQS
convergences at an exceptionally fast rate of ¢ati@es faster than CMC. The convergence
of LHS is less impressive than SQS, but remainglgmmpared to CMC. The IS technique
convergences at a similar rate to CMC. Peaks ingtaph for low sample numbers are a
consequence of the cumulative character of the iEd;ewhich is more susceptible to
extreme values for the lower sample iterations.

, Estimated relative error
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Figure 4.11: Convergence of the total network delaindicator for case 2: Rotterdam

Table 4.5: Estimated Relative error of the total nevork delay for case 2: Rotterdam

Iterations CMC LHS SQS IS

10 0.1414 0.0957 0.0670 0.1403
20 0.0872 0.0713 0.0260 0.0993
50 0.0378 0.0305 0.0132 0.0403
100 0.0332 0.0200 0.0050 0.0303

The convergence of the ER-errors for each of tHmelt routes in case 2 are given in Table
4.6. The convergence of the travel times resemtbiasof the delay for LHS and SQS, in
which both converge well and, especially the SQS&) sutperforms CMC. Interestingly, 1S
also shows an improvement in convergence for aite® compared with CMC. This would
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suggest that there is a large spread in the traneds, which IS, as well as the other
techniques, are able to represent much betterGM@.

Table 4.6: Estimated relative error of the route tiavel times for case 2: Rotterdam ring

Route Iterations CMC  LHS SQS IS

E-F 20 0.0734 0.05730.0182 0.0695
50 0.0340 0.02850.0088 0.0323
100 0.0320 0.01950.0044 0.0285
G-H 20 0.1898 0.13330.0290 0.1773
50 0.0820 0.08030.0106 0.1320
100 0.0790 0.04980.0040 0.0645
I-J 20 0.1670 0.10970.0226 0.2090
50 0.0836 0.07430.0084 0.1235
100 0.0748 0.04770.0036 0.0323

Case 3: Amsterdam South-East

In case 3 for the Amsterdam South-East networkiferent capacity and demand distribution
Is applied as to case 1 and case 2. From the ageves of the input value errors (Figure
4.12), it may be expected that the performance ldhbe similar to that of case 1 and 2.
However, different network characteristics can leadlifferent outcomes. Especially the IS
technique may perform worse than in case 1 and Mdicated from the input value errors.
The results of the convergence in network delaysamvn in Table 4.7. The convergence of
the travel times on route C-D is given in Table.lBe LHS shows for the delay an initial

convergence greater than CMC, while SQS easily estdpns the reference CMC. As

expected, the IS technique performs very poorlylankis well behind CMC. A similar result

is found for the convergence of the travel timegaute C-D, in which SQS shows excellent
convergence, while LHS also performs well.

Estimated relative error
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Figure 4.12: Convergence of the total network delayndicator for case 3: Amsterdam
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Table 4.7: Estimated relative error of the route tavel times for case 3: Amsterdam
South-East

Iterations CMC LHS SQS IS

10 0.1114 0.0370 0.0586 0.4868
20 0.0916 0.0310 0.0154 0.3442
50 0.0444 0.0302 0.0078 0.1489
100 0.0102 0.0243 0.0030 0.0837

Table 4.8: Estimated relative error of the route tavel times for case 3: Amsterdam
South-East

Route Iterations CMC  LHS SQS IS

C-D 20 0.0908 0.04320.0108 0.2875
50 0.0576 0.02020.0056 0.1413
100 0.0474 0.01220.0028 0.0815

4.4.3 Discussion of results

The results demonstrate that variance reductiomniqunes can substantially improve
convergence in stochastic and reliability modelluging Monte Carlo simulation for traffic
modelling. This is evident in all three cases, inick either one or more of the techniques
improved on the reference technique of Crude M@ddo (CMC), despite the differences
between the three networks and the defined routes.

Latin Hypercube Sampling (LHS) shows a good abitityimprove convergence of the
performance indicators from the traffic model fdra@nsidered scenarios. LHS is seen as a
stable and reliable technique that is especiallygrtul for multiple variables, but here even
with two variables (capacity and demand) showeddwer. In each of the scenarios the
improvements shown in the ER-error values are Sagmt in comparison to CMC, and in
many cases even with half the error or more forstimae number of iterations.

The Sobol Quasi-random Sequence (SQS) methodesieip designed to sample such that a
comprehensive coverage of values is achieved ek@n f relatively small number of
iterations. This ability was clearly shown in eaoh the cases in which the method
demonstrated error values multiple times lower tGMC, and often also compared to LHS,
for the convergence of the network delay and tréive¢ distributions. Of all the considered
methods here, the SQS clearly performed the bestalvcases.

Importance Sampling (IS) is a technique that iseemly applicable when stochastic
distributions show a large degree of variation @s® et al., 2011, van Lint et al., 2012). The
technique is however dependent on the applied a&iimor ‘dummy’ distribution. This
dependence is clearly seen in this research betweenwo differently applied sets of
distributions with the same initial estimator distition for I1S. In case 1 and 2, the rate of
convergence was similar to that of Crude Monte & &br case 3, using a less distributed and
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more symmetrical distribution, the IS techniquef@ened worse in comparison to CMC. The
overall performance of IS was poor, but in thisheee also demonstrated the importance of
applying an optimized estimator distribution. Varsatechniques exist to assist the choice and
estimation of the estimator distribution, which aw@t dealt with here, but still require the
necessary expertise and effort to apply corretbrein, the sensitivity of the technique also
becomes evident.

45 Conclusion

Advances in Monte Carlo simulation techniques istpdecades have led to a substantial
potential for increased sampling efficiency. Howevke development of variance reduction
techniques has struggled to find its way into sastic traffic modelling. In this chapter, it has
been demonstrated that the incorporation of vamatn traffic modelling through advanced
variance reduction techniques in Monte Carlo sitnutahas the ability to substantially
reduce computational load by improving convergeioca representative state. The ability to
increase the rate of convergence using Latin HypmrSampling showed a decrease in the
number of simulations required to achieve comparabior levels from that traditional Crude
Monte Carlo simulation. Latin Hypercube Samplingnst effective for multiple input
variables. In the considered cases, there werestachastic variables which proved to be
sufficient for this stratified technique to subgtally improve convergence. Sobol Quasi-
random Sequences, just like Latin Hypercube Sampsample with an explicit spread from
a set, however they also explicitly consider theseguential construction of the samples
using an analytical sequence. This was clearly shovbe the most effective technique in the
presented cases. For most indicators, the err@l las a multifold smaller compared to
Crude Monte Carlo and, in most cases, also comparkdtin Hypercube.

Importance Sampling has a great potential to deereamputational load through capturing
the extremities of a distribution, especially whba traffic system has an amplified effect on
the outcome, as is often the case in congestioa.tdthnique however is dependent on the
applied estimator distribution. Application of astienator method to optimize the estimator
distribution is therefore essential. In this cdmition, the importance of a reliable estimator
function is shown from the difference between thses.

In this chapter, variance reduction techniques lude@ly shown to be stable and consistently
able to improve convergence of samples to a trsgilolition allowing for a reduction in
computational load and to make stochastic and hiétya analyses with Monte Carlo
simulation in traffic modelling more applicable aefficient. Especially the application of a
sequential technique, such as Sobol Quasi-rand@ueseing, has significant potential to
allow faster Monte Carlo simulation in traffic mdldey. Also other variance reduction
techniques also yield good results, such as Latipeltube sampling, and likely others not
explicitly considered in this contribution.
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Chapter 5

Core probability framework and modelling

From previous chapters, it was made clear thatsitimperative to explicitly consider

stochastic variation in traffic flow modelling, wié¢his variation is present in the considered
scenarios and networks. In this chapter, a new h&istic macroscopic framework is

introduced which, combined with the relevant dymametwork loading (DNL) models,

tackles many challenges in macroscopic modellindjiardeveloped with a view for easy and
efficient application in practice.

The Core Probability Framework (CPF) is a probasiic framework for modelling multi-
dimensional variations in capacity and traffic demdain dynamic macroscopic traffic flow.
The CPF extends a base model, such as the Celbiiasion Model (CTM), by considering
each traffic variable as a stochastic variable diembas a probability distribution of the
chance of values for each traffic variable. The GRRccompanied by the Discrete-Element
Core Probability Model (DE-CPM) as an example giassible DNL model. The DE-CPM is
introduced as an internalisation of the Monte Camdaitine in the core of the traffic model.

A description of the conceptual framework of the=Gidd the application of the DE-CPM
DNL model is given in sections 5.1-5.5. In sectioils an explanation is given how the model
addresses some of the issues mentioned in ChapBarcfion 5.7 shows a demonstration case
of the model in practice and the potential calcidattime gains for two networks.

This chapter is an edited version of the article:

Calvert, S. C., Taale, H., & Hoogendoorn, S. P. (2014). Introducing the Core Probability Framework
and Discrete-Element Core Probability Model for efficient stochastic macroscopic modelling. In DTA
2014: 5th International Symposium on Dynamic Traffic Assignment, Salerno, Italy, 17-19 June 2014.
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5.1 Core Probability Modelling

In this section, the framework for the Core Probgbimodelling and the underlying
assumptions are explained. The Core ProbabilitynEreork (CPF) extends an existing
macroscopic traffic flow model to allow uncertairggenarios in traffic to bmternalisedin

the traffic flow model which it extends. Internai®n here refers to a single model execution
in which uncertainty is considered, without mukigimulations. Monte Carlo simulation is a
clear example of external stochastic influencehis extent. Initial application of the CPF
makes use of the Cell Transmission Model (CTM) asebmodel. The basic premise entails
replacing single traffic variables in time and spasuch as the density, in a model with a
distribution of that same traffic variable, alsosjpace and time. The distribution, denoted as a
vector, consists of predefined probabilities ofi@as possible values of the considered traffic
variable at a certain time and location, therefoensforming the traffic variables into
stochastic variables. The general dynamics of thse bmodel are kept the same as the
deterministic version of the base model. In sugray, traffic is propagated through a link (or
network) considering possible valid values of eaetific variable with a set probability,
using already validated traffic flow dynamics frahe base model. The input distributions are
empirically determined for specific locations anmdArenarios or from generic empirical
analysis (Calvert et al., 2014a, van Stralen egall4).

The framework allows different probabilistic modébs propagation of the stochastic traffic
flows to be developed and applied. In this chapier further present the Discrete-Element
Core Probability Model as one option for use of fitkenework. A more detailed description
of the framework and this model are given in thesgguent subsections. This begins with a
short explanation of the applied base model (5:.B& concept of the CPF is given in 5.3 and
is followed in section 5.4 by the description of thnanner in which probability is included in
the DE-CPM, how it is propagated, and how congassiod traffic states are dealt with. A
simple numerical example is shown to conclude #otien (5.5).

5.2 Base model

The Core Probability Framework makes use of a basdel, which describes the manner in
which traffic flow propagates, and considers ststicaprobabilities in the core of a
macroscopic traffic model. The base model applieck his the first order Cell Transmission
Model (CTM) (Daganzo, 1994, Daganzo, 1995a). THEMCdescribes traffic using a
discretised form of the Lighthill-Whitham-Richar@sWR) model (Lighthill and Whitham,
1955). The LWR model is governed by the law of esunation of vehicles equation (5.1), and
the fundamental relation equation (5.2):

ok(x,t) dq(x,t
(%, )+ q(x, )=o (5.1)
ot dx

q(x,t) = Qg(k(x, 1)) (5.2)



Chapter 5 — Core probability framework and modgllin 93

Here,dk(x,t)/0t denotes the change in density in titnéq(x, t))/dx denotes the change of
the same for the flow rate over spagewhile Q is the fundamental relation between the
density and flow, which is explained in more delatiér on.

In the CTM, the continuous model is used as a bamisthe description of the flow
propagation in discretized time and space. Witlpegesto the spatial discretization, ceits
are considered. In the CTM, the traffic flow at timerfaces between two cellg, is
determined by a sending and receiving functionotigh here as the demarial, and supply,
S, which closely represent the available capacitg icell and the desired traffic flow into a
cell:

gFm %1 (k(x, £)) = min(Dp (K(X, £)), Smar (K (%, £))) (5.3)

The demand functioD is calculated by the largest flow or capacity efl e in relation to
equation (5.2), and the supply functi@®by the desired outflow from the previous cell
according to the fundamental traffic charactersso€ the preceding cell. The base model is
applied in its discrete form for use in the Corelfability Framework and governs the main
dynamics of traffic flow.

5.3 Core Probability Framework

The main premise of the Core Probability Framew¢d®F) is the incorporation of
uncertainty in the core of the model as probabilitstributions. While regular Monte Carlo
simulation applies uncertainty through multiple siation iterations, for the CPF these are
internalised. This approach allows foore shosimulation run and an increased efficiency in
simulation. The uncertainty is applied in the forof (discrete) empirical probability
distributions, which describe the variations irfftcavariables in the model and are primarily
applied as cumulative probability functions of ttraffic demand at the origins and the
capacity of each cell. A graphical descriptiontué Core Probability Framework is shown in
Figure 5.1b, alongside the general framework ofantd Carlo routine as a comparison over
a similar macroscopic traffic model for a simplesth cell road stretch (Figure 5.1a).

The CPF is in its self not a DNL, but rather thenfiework which states that distributions are
explicitly propagated through time and space in lootion with the dynamics of the base
model. The Discrete-Element Core Probability Mo@2E-CPM), in combination with the
CTM, is given in this contribution as a possible IDKodel that may be applied in the
framework, which describes how the distributionstieé stochastic traffic variables are
propagated through the network.

Figure 5.1 clearly shows the evasion of multiplewdations in the case of the CPF in
comparison to a Monte Carlo routine over the saaselmodel. In the rest of this section, the
CPF is explained for the application of the DE-CRMher core probability models may also
be applied to the CPF, but are not discussed sictimpter.
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Figure 5.1a-b: Conceptual overview of the (a - ab@) Monte Carlo traffic simulation
framework and (b - below) the Core Probability Framework

5.4 Discrete-Element Core Probability Model

5.4.1 Concept

The Discrete-Element Core Probability Model (DE-OFBa DNL model that makes use of
the Core Probability Framework to propagate trafficthrough a
link and network. The DE-CPM describes the traffaciables as a distribution, denoted as a
vector, which consists of static probabilities @rieus possible values of the considered
traffic variable at a certain time and locationr leach variable at each time step, identical
static probability elements are used in the diatidn. Each discrete element in the
distribution is explicitly kept from interaction thi other elements as the flow distributions are
propagated through the network. This approach blgicreates an internalisation of the
Monte Carlo routine, in which each discrete elenmriscenario’ is kept separate. In such a
way, traffic is propagated through a link (or netkjoconsidering possible valid values of
each traffic variable with a set probability, usisgeady validated traffic flow dynamics from
the base model.
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In the following paragraphs the Core ProbabilitarRework is defined for application of the
Discrete-Element CPM as network loading model.

5.4.2 Inclusion of probability

In classical first order models, each variablesjgresented by a single value for each point in
time, t, and spacex. In the core-probability approach, a further Valeais added, which
represents the probability of the density occurrangd sequentially the traffic flog, and the
speed,v. This further transforms the variables from a En¢galue in time and space into a
probability distribution in the same time and spaepresented by their corresponding vector.

Presuming static values for the probability eleraemtoids the necessity to explicitly define
the probabilities of the values corresponding ®plobabilities for each celinj in each time

step ().

Initially in the continuation of the descriptiorgrfthe reason of clarity, a further presumption
is made that each value in the probability vectas kdentical probability. This assumption
also entails that the discrete probability values dach probability element are set for the
entire simulation for all time steps)( cells (), and for each variablé,(q, V:

pP:pr=p2=...=p; V(kq,v) (54)

Now let the random variablg(x,t) denote the density on a cetl k+dx] and at time. Let
pi(x,t) denote the accompanying probabilities. Suchaiosl is given as:

P(K(x,t) = k) =p;i(x,t) (5.5)

Note that the values df are discrete and hence a discrete probabilitytfomacan be used.
However, such a notation indicates a variable griibaas a function of given densities. The
CPM presumes set probability elements, and therdfoe random density variabddx, t) is
defined as a function of set probabilities instead.

So for exampleK (x, t), now written as vectok(x,t ; p), denotes all possible values of the
density for a moment in time and a location, giviea probabilities of these densities. The
density vector can also be written as:

ki (x,t) with probability pg 1

k(x,t;p) = k,(x,t) with probability pg » (5.6)

k;(x,t) with probability py ;
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This notation is similar to the one applied in Rukbgic, in which a crisp number is denoted
as having multiple possible values, each with themn probability (Buckley, 2005). Here,
the notation is borrowed from Fuzzy Logic Theoryhile applying General Probability
Theory, which states in this case that k is a ststit variable, which has various values with
predefined probabilities.

From now on, we will only use the short form foretllensity vector, rather than the
description on the right hand side of equation)(5T&e addition of the vectqgr includes all
possible values of the appropriate variable wittnieccal probabilities of each value in time
and space, so that:

Here,i is further limited to a finite value, which is diggl as an input parameter of the model.
The equations for the conservation of vehicles #gug5.1) and the fundamental relation
equation (5.2) now incorporate a further dimendamrthe probability in time and space, and
become dependent on the probability of their value:

ok(x,t;p)  0q(x,t;p) _ (5.8)
gt Tt oax 0
q(x,t;p) = Qe(k(x,t;p)) (5.9)

The conservation of vehicles therefore remainscintay definition, as each considered
element in the probability distribution vector aatsan individual case of the CTM for which
conservation has been proven (Daganzo, 1994).

6.4.3 Application of stochastic demand, capacity ahtraffic propagation

Stochastic traffic demand is applied in the modeth@ peripherals of a network on the
inflowing cells. From there on, traffic may propégapplying equation (6.8) and equation
(6.9) according to the dynamics of the base modkk initial traffic demand contains
jqtimes j. number of elements in the probability vectr where j; is the number of
probability elements in the vector for the demand ja is the number of probability elements
for the capacity, such that each probability vecporis constructed of all possible
combinations op;; andpj.4. The initial flow at the network origins is theoeé:

q(XOJ iy ;p) = {qpli szl Qp(jd-jc)} (6-10)

where the probability vectgr exists ofj,; timesj. elements. This multiplication is performed
to accommodate sufficient elements in the discpetdability distribution for the outcomes
of each combination of traffic demand and capacity.
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The variation in the capacity of the network is leggp for each cell corresponding to the
probability of the capacity of that cell in a siarilway to the traffic flowg. In a simplified
case only bottleneck cells will have varied capaeialues, with the other cells yielding
identical capacity values for each elemenpinThe capacity contairys probability elements
for the capacity in both time and space, althowaghniost cells, variation in the capacity has
little to no influence where flow is sub-critical:

(qcap_l(x, t) with probability p,_ )

' Li 511
G yqp Cims t 3 P) = ! pqp2 (X t) wWith probability p , (5.11)

qcap.i(x, t) Withnz.?robability 12 J

Once the traffic from the stochastic scenariomish@ network, the traffic propagates through
the network dependent on the corresponding demart fallowing the dynamics as
previously shown in equation (5.8) and equatiof)(5.

Spatiotemporal dependence is applied as a conditiprobability at the entrance of a
network, between the initial demand (applied tonsmtor links to get initial densities) and
capacity variables. Propagation of this dependentails that each element in the probability
vector of the density corresponds to the same platiee probability vector of the density of
the following time step. This is described as ¢hain-rule as graphically shown in Figures
5.2 & 5.3, and is further described later in thasggraph and is given in equation (5.15). The
chain-rule ensures an identical number of elements in theltheg probability vector for
propagation through the network, and therefore gs/a@in explosion of marginal probability
elements. Basically, this creates a set of valuegtwcan be seen as scenarios of unique
traffic demand and capacity combinations.

qu_’xm+1 (k) k(xm: tn : p) qu+1_’xm+2 (k)

—

with capacity qcqp (Xm, tn ;D) >

Figure 5.2: Traffic propagation in the DE-CPM
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—

Figure 5.3: Chain-rule for propagation of traffic variables as discrete elements of a
distribution in the DE-CPM

The process is explained as such: there is adrdéfmandg(x;,t;) with a set of possible
values,q,, corresponding to certain probabilities:

q(x1,t1;0) = {Qp1, Ap2s -+ Api} (5.12)

Calculations in the model are performed using taesdy, thereforey is transformed using
equation (5.2) to:

k(xl, tl ,p) = {kp1’ kpz, kpi} (513)

In the following time step, there is a newandk at locationx;, in line with traffic flow in
and out of the cell and in keeping with the conagon of vehicles equation (5.1) :

k(xl, tz ;p) = {kpl' kpz, e kpl} (514)

However, the position of each element in {hg,t,;p) corresponds only to that of the
element in the same position in the following tisep ink(x,,t,;p),so that for each
element;, applies:

q(x1,t2;01) = q(xq,t;50:) (5.15)
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This strict‘chain-rule’, that demands that for each location in conseeuiae steps the same
probability must apply, protects the validity oetmitial conditional dependence between the
capacity and traffic demand in both time and space.

Although the CTM base model, and therefore also CPE-CPM, calculates traffic using the
density, it is often required to translate thighe traffic flowq(x,t ; p), for determination of
the flux for exampleThis is performed using the fundamental relatiboven in equation
(5.2), in which each value ofis transformed using a deterministic fundamen&m. The
resulting values ofj(x, t; p) from k(x,t ; p) maintain the same probabilities for each time
step and cell in space.

In the same way, the traffic flow on the subsequegits is also calculated. The only
difference is that the supply and demand refehuse of the following cellsy;. In such a

way, one can speak of multiple scenarios in a siqgbcedure, as each element of the
marginal probabilities are considered individuddly a single variable.

5.4.4 Determination of Congestion

The sending and receiving functions, or rather demand supplyd ands, are in part
determined by the traffic state. Traffic statesiargurn determined by the density of traffic in
a cell at a specific time. Under congestion, thenaled function is equal to the capacity, and
the supply function of the outgoing traffic flow:

Aty ;p) = Acap (Xm-1,tn ;D) (5.16)
SO tn;p) = qQm, ty ;D) (5.17)

For uncongested states, the demand function isndwming traffic flow, and the supply
function is the available capacity:

dXm tn;P) =q(tpm_1,tn ;D) (5.18)
S tnsp) = qcap(xl t;p) (5.19)

For the Core Probability Framework without capaeigyiation, congestion is determined by
comparison between the probable density and thieatrilensity of a cell:

Cong(x,t;p) = k(x,t;p) = kerir(x, 1) (5.20)

However, when capacity is also varied, the congastuation states a distribution vector on
either side of the operator:

Cong(x,t;p) = k(x,t;p) = Keyie(x, T p) (5.21)
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5.4.5 Network flow over nodes

For modelling traffic in networks, it is imperative consider traffic flow over the nodes. This
is usually performed using a node model which dedth the manner in which traffic
propagates at convergence and divergence poinésnatwork, but also how other traffic
waves, such as congestion may propagate in areapstlirection. This contribution does not
aim at developing a stochastic node model, anctbe they will not be reviewed here. For
an overview of the state-of-art of node models wkemrto (Tampere et al., 2011). The
inherent characteristics of the chain-rule, as usethe DE-CPM for the propagation of
distributions as an internalisation on the Montel@eoutine, determine that just about any
arbitrary node model that is applicable for theebamdel may be applied in the CPF.

This is demonstrated for the merge model as dextiily Daganzo (Daganzo, 1995a) for an
uncongested flow. The merge model describes thamised flow, Q, from two incoming
links, i = 1,2, into a single outgoing link 3. As seen alreadynfrthe CTM, sending flows
perpetuate from the upstream links (see equatid@))(5These flows are constrained by the
maximum flows that may leave each lir8¢; S Likewise, the receiving downstream link also
has a maximum flow that it is capable of receiviRg: Therefore, we can easily see that
traffic flow is constrained by either the traffiemhand from the inflowing links or the supply
of capacity from the receiving link according to:

q,<S; Vie{l,2} (5.22)

S a<hs (523)

Considering the constraints and convergence ofltle from equations (5.22) and (5.23), it
becomes apparent that the flow into the receivimyvrtream link for uncongested
circumstances is:

Q = min{S; + S,; R} (5.24)

Extension of the node model for use in the DE-CBi{&mds equation (5.22) and equation
(5.23) by considering each variable as a discteishastic variable in which the chain-rule is
valid between the corresponding elements of theablas. Hence, equations (5.22-5.24)
become:

q,(t1;p) < Si(t1;p) (5.25)
z q,(t1;p) < R(t; ;D) (5.26)
i=1,2
Q(t1;p) = min{Sy(t; ;) + S, (t1;p); R(t1 ;P)} (527)

In equations (5.25-5.27p indicates the entire distribution vector for whishvalid p for
V p € p according to the previously defined chain-rule d&or arbitrary variablef; f(p;,) —
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f(p;). Graphically, it is very easy to observe how thepagation of traffic in the DE-CPM
does not require special attention for nodes beythad introduced theory that is also
applicable for stretches. Convergence and diverenhdtraffic flow at a node are again dealt
with according to the dynamics of the base node ahodhere each element from the
stochastic variables is processed independently.

qi(x,; p) q:(x; p)
P > P
: 7 :
z Z 20—
D /
P>
Ps
q>(x; p)

Figure 5.4: Graphical representation of the DE-CPMfor a node merge

The same simple extension applies to other nodeelmahd the additional equations that
describe the congested states in the node modelapfdication in the DE-CPM. As the
chain-rule explicitly keeps the individual elemenfsthe discrete distribution separated for
calculation, these act in the same fashion as ¢berministic case for which the models are
already developed.

5.5 Simple numerical example (both capacity and deamd varied)

To demonstrate the manner in which the DE-CPM wogsimple numerical example is
given as demonstration. A more elaborate demorstré given in section 5.5. The traffic
demand at the network peripherals is given asw With a set probability. In this example
there is a 50% chance of two different inflow valuand there is 50% of two different
capacity values. Therefore, there are 4 elementeandemand vector, because the size of
q(x,t;p) is equal tg,; timesj,. (see equation (5.10)):

0.25 1900
_Jo.25( ) _ ) 1900 (5.28)

q\ XutuP =3925( | = 12200

0.25 2200

The capacity values of the cell are also givem@) § , timesj_ number of elements, capacity
flow vector:

0.25 2100 29)
_Jozs(\_]2300 5.
Deap | 80P =025 | = Y2100

0.25 2300
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Note that the sequences for the values of the ffothe demand vector equation (5.28) are
differently arranged over thg timesj,. elements in comparison to the capacity flow vector

equation (5.29).

This flow vector,q(x,t ; p), in equation (5.28) is transformed to a densitgteek(x,t ; p),
using the fundamental relatian= Qz(k) in which the critical density i%&.,;; = 25. This
gives:

0.25 22

. 20 (5.30)
k{ xut,p = 8.32 26

0.25 24

The probability of congestion is calculated usiggaion (5.20):

0.25 22 0
. 20

Cong| x1,t,p =10 50 ¢ | = kG t:P) = kerie(x,) = {504 = 25 =19 (5.31)
0.25 24 0

Therefore, based on equation (5.16) through equé&bid 9), the demand and supplh\§, can
be calculated as:

0.25 1900 0.25 2100
0.25 1900 0.25 2300

Dl xutuP=94025(]=12200( 29 S{*tP=9025(|= 2100 (5.32)
0.25 2200 0.25 2300

The flux between two cells is defined and given as:

0.25 1900
gy, ty,p = 0224 | = min(D(k), S, (k) = {1990 (5.33)
0.25 2200

The density therefore in the current and followagdjs in the following time stefs, is given

by the previous density adjusted by the flux intal @ut of that cell, during the size of the

time steph. Here we presume an identical inflow into celfor t; as int;:

0.25 22 1900
_Jo.25( ) _ , Xo=%1 _ X1o%2Y . — )20 1900 ( _
k| x,t,p= 0.25 = k(xy, t;;p) +(@*°7"r —q*17*2) - h = 26 + 2200
0.25 24 2200
1900
%288 ‘h (5.34)

2200
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Similarly, the flow into the yet unoccupied cgilis calculated:

0.25 0 1900
k{xy,t,p= 8:%2 = k(x, t1;p) +(@*°7"r —q*17*2) - h = 8 + %288 B
0.25 0 2200
0
0],
of |k (5.35)

0
This same process repeats itself for each cetam éme step and so on.

5.6 Addressing the main issues

In Chapter 2, six important issues relating to Isastic traffic flow modelling were presented
and described. Four of these issues are addressen idevelopment of the CPF and are
explained here.

For computational efficiency, the main challenge is to reduce computationatl laad in
doing so, do it in a way that the model is not Etlin stochastic and modelling accuracy.
Compared to a Monte Carlo simulation, the CPF doet require multiple repetitive
simulations before arriving at a distribution, d&® tdistribution of the traffic variables is
explicit to the methodology. Therefore, the compatel load will be lighter if a single (DE-)
CPM simulation run is quicker than the sum of teeguired number of Monte Carlo
simulations on the same base model. It is hypakdstihat this is the case, as the DE-CPM
has a single computational overhead for the erdiggributions, while a Monte Carlo
simulation has a computational overhead for eactulsition iteration. Furthermore, a lower
detail of discretisation is hypothesised to be neglfor the DE-CPM as the model calculates
using distributions throughout. Simplification aneduction of distributions would lead to
higher errors and therefore require more sampleattin the same level of accuracy. In
section 5.7.2 a demonstration is given of the gakromputational gains. Monte Carlo
simulation makes use of less efficient random mwecef sampling, which reduces the
completeness of a distribution and therefore regudr greater number of simulations to reach
the same level of accuracy, therefore increasiegctimputational load. On a simple network
or a corridor, the efficiency effect will be limde however for larger networks and for a
greater spread of variation the gains should batgrelt should be noted that Monte Carlo
simulation allows for parallelisation, which cagrsificantly improve computation time.

Spatiotemporal dependencys catered for in the DE-CPM through the explathsideration

of correlations at the peripheral of the model arantenance thereof in propagation through
the chain-rule. For other DNL models in the CPF thanner in which the dependency is
dealt with may vary. Reduced to two dependant bbb the traffic demand and road
capacity, correlations between possible values ath bare explicitly considered in the
distributions entering a network at the periphersslues in the initial distribution vector of
the traffic demand entering the network correspoma@n element-to-element bases to that of
values of the capacity distribution vector at theme element location. By explicitly
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maintaining this chain-rule throughout the traffimpagation, independency between traffic
demand and capacity is maintained. Dependencyne for both the demand and capacity is
also explicitly dealt with outside the model. Inpualues for certain elements in the
distribution vectors follow those of the precedimge step and therefore already consider a
logical and dependant propagation from the inpotars in time. Spatial dependency is dealt
with in the same way as in the base model and ftveregequires no further attention.
Simplified, each element in a distribution vectoayrbe seen as a single input value for a
single Monte Carlo simulation, therefore it mayoalte considered as independent from other
elements just as a single Monte Carlo iteratidnos another Monte Carlo iteration.

Stochastic propagation of probability in traffic flow is performed as described in senti
5.4 for the DE-CPM and is also touched upon in pinevious issue on spatiotemporal
dependency. Dealing of this issue is also DNL maldglendent and not generic for the CPF.
A complete distribution of possible values perftcafariable is present as a distribution in the
form of a vector. This vector exists of more eletsetan is necessary, so to allow each
possible value of that vector to correspond todleenents of other vectors and therefore to
avoid correlation difficulties. As these distribti vectors are propagated in space and time,
there is no need to reduce variables to a reprasemtof the distribution using a set
distribution type, median, standard deviation, ghagrameter or such like. Although this may
lead to a higher computational effort, it maintaegnguaranteed accuracy of the propagation of
the traffic variables and their probabilities, Be tistributions remain intact in the process of
propagation. Therefore, a greater accuracy carchieaed in comparison to methods that do
transform distributions to characteristics of th&ribution, mostly to some parametric form.

For the CPF, the question génerality is one that is less relevant to the model itdmlf,
rather to the quality of the data and distributidihat it is fed with. As the CPF performs
calculations using discrete distributions, a reduncof the input data may only happen in the
case of rediscretisation for the sake of computati@fficiency. Therefore, the necessity to
apply accurate input distributions for the traffiemand and road capacity is applicable for
the local circumstances or from a general distrdouif the local situation is not known.
Construction of generic input distributions forglpurpose, taken from wide spread empirical
analysis, makes it easy to apply the CPF withogtireng extensive data analysis for each
application of the model (Calvert et al., 2014an \&tralen et al., 2014). Nevertheless, this
issue is one that is less explicit to the modelthes quality of input data is relevant and
independent to all models. However, the mannerhirthiva model deals with accurate input is
important. The CPF does not simplify input by mawnddit to a parametric function, therefore
maintaining high level of accuracy and avoiding iaddal unnecessary biases, contrary to
many other models. The CPF makes use of empiricsfiltitions which maintain the
characteristics of each distribution as it propagahrough a network.
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5.7 Test cases DE-CPM

In this section, a demonstration of the applicatmal validity of the Discrete-Element Core
Probability Model (DE-CPM) is performed in a numieértest cases. The first test case aims
to show that traffic propagation along a road secin the DE-CPM can accurately resemble
traffic flow found from empirical observations. Alse case is carried out on a single stretch,
there is not much that can be said about the caatipoal efficiency. This is considered in the
following sub-section. A second test case is peréat on two small test networks to
demonstrate the application in networks and tah&rridemonstrate potential computational
gains of the framework and model.

5.7.1 Traffic propagation on a single road section

The test case is carried out for the A12 motorwayhe Netherlands between Utrecht and
The Hague (see Figure 5.5). On this motorway ir9208 lane drop was present from four to
three lanes, which acted as a structural bottlem¢dkication A. Daily congestion starting at
this location near the town of Woerden would besprg, especially during the evening peak
period. A section of 11 kilometres is considerefl,which 10 km upstream and 1 km
downstream of the bottleneck. The DE-CPM is fechvdiata from 63 afternoon peak period
observations of the traffic flow between 2 PM anBM from 2009 as a representation of the
probability of certain traffic flows appearing. Thput for the model is taken exclusively
from the most upstream location. Therefore, theda#ibn is that of the stochastic traffic
propagation. Each observation is considered agjaal @robability of a real traffic demand
for this location and is therefore given a 100/68.6% probability for the input at the inflow
of the corridor. These traffic flows are fed inteetnetwork at the most upstream location. The
traffic demand derived from data that is fed irite model is given in Figure 5.6.

Figure 5.5: Bottleneck location near Woerden at theonsidered road section on the A12
used in the case study

A comparison is made based on the ability of thelehto accurately predict the propagation
of the probabilities of traffic flow and correspang traffic states between the outcome of the
DE-CPM simulation and the empirical data. For thieg unfiltered traffic states in time and
space are gathered on the entire corridor. The adsgn focusses on the time of traffic
breakdown, congestion duration, spill-back distaacel the specific speed values in time and
space. This is shown for the median probability gtrikkely traffic situation) and a further

2 Since 2009, this location has been upgraded to four lanes along the entire stretch to eradicate the
bottleneck.
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demonstration of the results is given in the forfirad3D congestion probability plot. The
results of the median probability are shown intthee-space Figure 5.7.
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Figure 5.6: Demand profile for the A12 with confidexce bandwidths

The initial results, shown in Figure 5.7, show #umulated median (50%) results from the
model, with the median from the empirical data shaw Figure 5.8. The speed values are
shown as these give a good indication of where estimn is present, how extreme
congestion is and how traffic flow changes the tidially, the extent of congestion appears
to be relatively well modelled. Nevertheless, thare certain deviations in comparison to the
empirical data. The onset of congestion occurs agmately 10 minutes earlier in the
simulation, while congestion lasts for 158 minutesnpared to 190 minutes in the data.
However, the spillback of congestion in both isacdimilar magnitude and deviates no more
than 200 meters over a distance of some 9 kilomeTige speed in the heavily congested area
of traffic is lower in the empirical data comparedthe model (ca. 30 kph versus 40 kph).
This may also be a main reason why the duratioonigestion differs, as traffic in the
simulation may proceed at a slightly higher spead therefore let congestion disperse
earlier. Despite these minor deviations, this ahitest case gives cause for optimism. A
further fine-tuning of the model parameters whepliag in practice may easily compensate
for the observed differences.
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Figure 5.7: Modelled speed diagram for the mediannpbability in the A12 test case
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Figure 5.8: Empirical speed data for the median okexvation in the A12 test case 3

The CPF allows a vast amount of data to be prodwetl presented as a probability
distribution or in another forms as a direct consege of the way the CPF works. As each
traffic variable is considered as a distribution mdssible values, each can therefore be
calculated or shown as such at each time stepamadidn. This is demonstrated in Figure 5.9
in which the congestion probability at each loagatiand for every time step is given.
Congestion is defined as such when the criticakifigns exceeded, while the probability
thereof indicates the frequency that congestioexgected to occur for an arbitrary location

3 The red horizontal line indicates a location at which a faulty detector is present. The speed at this
location is returned as null.
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and time along the corridor. It is possible to shmare complex results in a greater number
of dimensions, i.e. including the probability asaiable in a diagram, however this leads to
difficulties in the interpretation of diagrams. MNetheless, broad analyses are made much
easier and more extensive with the results fromQRE. Significant computational gains are
not found on a single corridor, but rather are elgx for networks and for greater variations
in stochastic variables. This is further lookedhahe following sub-section.

DE-CPM A12 scenario - congestion probability(%))

N

(]

o
!

Congestion Probability
18]
? ?
© .‘; .‘";

120 180

240

Time (mins)

1
300 Location (kms)

Figure 5.9: Modelled congestion probability in timeand space for the A12 test case

5.7.2 Network computational performance

Performance of the DE-CPM for computational effimg is tested on two simple networks.
In comparison to the previously considered roaetatr; variation in traffic flow can interact
much more as it propagates through a network atidaisio include network effects. The
considered networks are shown in Figure 5.10 ahdl. Network 1 is a 5 link network with
two origins and one destination, while network Zastructed from 7 bi-directional links
with four origins and destinations. A comparisomiade between the application of identical
input distributions and capacity distributions hetDE-CPM against a CTM Monte Carlo
simulation on the same networks in a MATLAB implertaion. In both models the main
CTM code is identical, naturally with the additiohthe core probability components for the
DE-CPM model. Furthermore, both models make usexattly the same route model, which
presumes static turning fractions and all otheraldes and parameters are kept identical in
both cases.
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Figure 5.10: Test network 1

Origin / Dest Origin / Dest
2 \ 3
Origin / Dest 1 / \ Origin / Dest 4

Figure 5.11: Test network 2

Input for the models is theetwork definition which includes network characteristics and
geometry,stochastic dynamic demand matricaadstochastic capacity value$he demand
and capacity distributions are kept to a limitedniver of discrete elements, which also act as
the input for the DE-CPM and as each combinatiantlie Monte Carlo routine. The input
distributions therefore do not require further desisation. Besides tests on two different
networks, various ‘total number of time steps’ aadous ‘number of discrete elements in the
input distributions’ are applied, as shown in Tabld. For each scenario, at least five
simulations are performed of which the average agatn times are given in the last two
columns of Table 5.1. The reason for multiple satiohs is to be sure that there are no or
limited variations caused by the computer. Althofigk simulations are performed for each
scenario and model, the differences in calculdiiime for the five simulations in all cases on
the same machine consequentially varied minimghyerally below 2%.
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Table 5.1: Computational speed tests for the DE-CPM

® L @ 2
— = Q < c () =
x S . 8,87 |8 go/ 82228 |
5 2|5 |8 |8< 297  3E/cB83:=527F
g 35|65 | |28 ol g|lab 8h3s 2822
= = | E = 10T 5§95 Q |0
= - % = = A c S = N
2 - ® a
Netw 1 7 2 1 2 6 200 10 4 40 25 1.1
Netw 1 7 2 1 2 6 400 10 4 40 51 2.3
Netw 1 7 2 1 2 6 200 5 4 20 13 1.0
Netw 1 7 2 1 2 6 800 10 4 40 101 4.3
Netw 1 7 2 1 2 6 800 5 4 20 51 3.9
Netw 1 7 2 1 2 6 200 5 2 10 7.0 1.0
Netw 1 7 2 1 2 6 400 5 2 10 13 2.0
Netw 1 7 2 1 2 6 400 5 4 20 25 2.1
Netw 1 7 2 1 2 6 800 5 2 10 26 3.8
Netw 2 17 4 4 3 6 200 10 4 40 66 2.7
Netw 2 17 4 4 3 6 400 10 4 40 131 5.5
Netw 2 17 4 4 3 6 800 10 4 40 261 11
Netw 2 17 4 4 3 6 200 5 4 20 33 2.6
Netw 2 17 4 4 3 6 200 2 10 16 2.5

The results of the computation time tests, as atiom of the number of time steps and
discrete elements from the distributions, show someresting trends. A graphical
representation of the results is shown in Figur&® and 5.13 for the CTM Monte Carlo and
DE-CPM respectively for network 1. The relationshgtween the number of time steps and
the calculation time is approximately linear fotlbbanodels and has its origin near to a time
of zero. The relationship between the number afrdie elements and the calculation time is
also approximately linear in both cases. Howevard is a significant difference between the
CTM Monte Carlo and DE-CPM for the incremental e&se in relation to the number of
discrete elements from the distributions. As mayekeected, the CTM Monte Carlo model
increases linearly with an origin near to time z€fbis is expected as each Monte Carlo
simulation makes exactly the same calculationseeh combination of inputs, with each
calculation taking approximately the same amourtinoé. The DE-CPM, however, requires a
relatively shorter additional time to calculate gidthal number of discrete elements from the
input (and here in the propagation). This is fodod both networks and can be clearly
observed in Figures 5.12 and 5.13. Also, it app#eatsthe linear increase with the number of
elements does not originate at zero seconds, whétbates some sort of small start-up time.
Comparison between the two networks would indithée the start-up time is dependent on
the size of the network.
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Figure 5.12: Calculation time CTM Monte Carlo for network 1
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Figure 5.13: Calculation time DE-CPM for network 1

The consequence of this low coefficient for incnegsiumber of discrete elements is that the
DE-CPM is far more capable of efficiently dealinghwtraffic flows with large amounts of
stochasticity in comparison to the compared Mora€dcCroutine. This allows simulations to
be carried out in which a greater detail of unaetyamay be incorporated at a marginal cost
to the computational time.

The used samples for the Monte Carlo simulationdeetical to the input percentiles used in
the DE-CPM, to ensure identical outcomes. Therefdhee results of the DE-CPM
simulations, in terms of flow and density valuegime and space, are identical to that of the
Monte Carlo simulations. This is by definition, lfahing the earlier described chain-rule that
maintains each internalised scenario, as if it veeMonte Carlo simulation. Even when the
Monte Carlo samples would be completely random,ahlg difference in results would be
the result of different samples, rather than aeiieht deviation in calculation method.
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The computation times in absolute terms for the @EM outperform those for the CTM
Monte Carlo by a factor 5-20 depending on the sizhe network and number of stochastic
elements. The results from Table 5.1 show thataigyer networks and for a greater number
of discrete elements that the DE-CPM outperfornes Monte Carlo routine to a greater
extent. This is in line with the expectations tttas model shows its effectiveness best for
larger networks and under greater levels of untcgytaThe possibility of parallelisation for
Monte Carlo routines can reduce the computationetirhowever even compared to
parallelisation such gains of 20 times or morddoger networks with the DE-CPM may even
be competitive in comparison.

5.8 Conclusions

In this chapter, the Core Probability Framework EChas been introduced with the
application of the Discrete-Element Core Probabiltodel (DE-CPM) as a new DNL for
dynamic macroscopic modelling of stochastic traftibev. An initial validation case has been
also been shown as well as an indication of theptdational performance on networks. The
CPF extends current deterministic traffic flow misdey redefining traffic variables in the
core of the model as distribution vectors of prdbatalues for each traffic variable. In such a
way stochastic variation in traffic is internaliséd the model and does away with the
necessity of repetitive Monte Carlo simulation. tharmore, a greater degree of flexibility in
analysis is obtained, as each individual trafficialale in time and space may be given as a
function of their probability. Moreover, the undenlg distribution of each traffic variable in
space and time is preserved such that the intrmfuof distribution fitting errors is limited to
a minimum. Important issues facing stochastic itaffow modelling are given, and are
identified ascomputational efficiengyspatiotemporal dependencstochastic propagation of
probability, andstochastic generalityThe DE-CPM addresses each of these issues through
element based calculation using the chain-rule iandoing so demonstrates the ability to
advance developments in the area of stochastitctrabdelling. In particular, the CPF aims
to further the possibilities for reliable, accuraefficient, and most of all, practically
applicable stochastic macroscopic traffic flow mbdg. The outcome of the calculation time
tests on simple networks compared to a CTM MontdoGaodel showed that the DE-CPM
has great significant potential to reduce compaoratimes, especially for larger networks and
for greater stochasticity. This is mainly due te temall marginal computational costs
incurred when increasing the level of uncertaimtythe discrete model. With the DE-CPM
DNL model, a first step within the framework is ésk Further expansions in the form of
more advanced model developments within the framlewee recommended for future work
and focus on the propagation of the stochasticablas as distributions without the
application of the chain-rule. These developmeatgeththe potential to deal with stochastics
to a more efficient extent.



Chapter 6

Micro-stochastic macroscopic modelling

In this chapter, a new model to include stochagtigicle specific behaviour and interaction,
described as microscopic stochasticity, in trafteev modelling is presented. The First Order
Model with Stochastic Advection (FOMSA) is a finster macroscopic kinematic wave
model in a platoon-based Lagrangian coordinateaystThe use of Lagrangian coordinates
allows characteristics of specific vehicles or \wddgroups to propagate along with the
traffic flow using a vehicle (group) specific inlamt. The invariant reflects how vehicle
specific characteristics propagate with the vetsadad influence the local behaviour on a
macroscopic level and in interaction with otherrewnding vehicles. The application of
bounded acceleration and vehicle reaction timeniprove accuracy and assist the
generation of the capacity drop is also demonsttatetwo cases.

An introduction to the topic is given in sectiod.6T' he modelling principles applied in the
approach are first explained in section 6.2. Thealeped approach is then described in
section 6.3, including the assumptions made andirthi&tions. In section 6.4, a first
experimental case is given to demonstrate the ambravithout explicit capacity drop, in
which a further comparison is made with a non-séstic reference case to demonstrate the
necessity of considering stochastic driving behavin macroscopic modelling. Further
experimental cases are given in section 6.5 foirtherporation of bounded acceleration and
reaction to induce the capacity drop. Finally thenclusions are given in section 6.6.

This chapter is an edited version of the articles:

Calvert, S., Taale, H., Snelder, M., & Hoogendoorn, S. (2015). Vehicle Specific Behaviour in
Macroscopic Traffic Modelling through Stochastic Advection Invariant. Transportation Research
Procedia, 10, 71-81.

Calvert, S. C., Snelder, M., Taale, H., Wageningen-Kessels, V., & Hoogendoorn, S. P. (2015).
Bounded acceleration capacity drop in a Lagrangian formulation of the kinematic wave model with
vehicle characteristics and unconstrained overtaking. In IEEE 18th International Conference on
Intelligent Transportation Systems, Santa Catalina, Gran Canaria, 15-18 September 2015; IEEE.
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6.1 Introduction

Traffic is a highly dynamic and complex system, ethiencompasses human behaviour
through the act of driving. Human driving behaviasircomplex in itself and exists of a
general behavioural aspects related to the gendesd of driving, i.e. traversing a lane in a
certain direction at a certain speed without collisand of intrinsic behavioural aspects that
can be driver specific (Fuller, 2005, Toledo, 200¥eneral aggregation of this behaviour is
seen as something that can be understood, obsaneeteproduced in macroscopic models.
However, individual driver behaviour is somewhatdeas to capture and reproduce. Efforts to
capture and understand stochastic driver behaviaue been successful and have described
many aspects of driving behaviour. In this chaptiee, focus is on vehicle movement, but
which is of course influenced by driver behavior this respect, we will refer to vehicle-
driver-unit behaviour as driver-vehicle behavioarwhich the effect of different vehicle
capabilities is also considered. With an increasenicroscopic modelling, and especially
agent-based models, much stochastic behavioudofidtual vehicles and interaction between
vehicles has been included in modelling. This all@tochastic behaviour in longitudinal and
lateral movements to be included by simply addiagns describing this to a vehicles
behavioural algorithm (Arasan and Koshy, 2005, Mafjuna and Rao, 2009, Treiber et al.,
2006). However, in macroscopic traffic modellingcleaindividual vehicle is generally
considered to adhere to identical or similar betavi This is especially the case in
deterministic modelling. Although this has a numinéradvantages and often seems to
produce acceptable results for most purposes,aition between vehicles is generally
ignored. However, observations of traffic flows shthat considering differences between
vehicles and their stochastic behaviour is releasuit necessary, especially for constrained or
critical traffic states (Kerner, 2013, Persaudlgtl®98, Polus and Pollatschek, 2002). This is
also demonstrated later in section 6.4.

Capturing such fluctuations in behaviour betweetictes in macroscopic traffic flow

however, demands certain levels of disaggregatfoth® macroscopic flow, which is not
traditionally inherent to such models. In this dleapwe aim to overcome this difficulty to

allow stochastic behaviour from vehicles and betweshicles to be modelled in a first order
macroscopic setting. This is achieved through the of a Kinematic Wave Model, which
considers the movement of vehicles according &1 brder traffic theory in a platoon-based
Lagrangian coordinate system (Leclercq et al., 20@obnsideration of the stochastic
behaviour of vehicles is included through the aggilon of a vehicle specific invariant term
that describes local stochastic characteristicwvedficles and drivers within and between
individual vehicles or platoons. These charactessimplicitly describe aspects of driver
behaviour such as desired time headway. The useagfangian coordinates allows the
vehicle specific invariant term to propagate alovith the vehicles for which it is valid and

thus avoids numerical diffusion of driver behaviotariables (Leclercq et al., 2007, van
Wageningen-Kessels et al., 2009). This approadadhigue to first order macroscopic models,
and is generally found in the more elaborate seaoddr models and is explained in the
chapter.
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The simplicity of first order models is a major adtage over second order models and
therefore many extensions have been proposed podapture more traffic dynamics while
retaining much of the simplicity (Leclercq, 20078ne such advancement is the introduction
of techniques to include the capacity drop, such basinded acceleration. Bounded
acceleration was previously introduced by Lebaq@®®3) and has been applied and further
developed by various researchers (Lebacque, 208&8eidcq, 2007a, Leclercq et al., 2011,
van Lint et al., 2008). The approach is relativa@lyple, but effective, and involves bounding
the accelerative ability of vehicles by preventsppeds that exceed a pre-set acceleration
value as vehicles propagate. In the basic kinenvediee models, vehicles may accelerate at
an unrealistic speed. By bounding this acceleraomore realistic description of real traffic
flow is given adhering to the physical capabilitedsvehicles. The effect is especially visible
for acceleration of vehicles from low speeds st of congestion. The use in Lagrangian
coordinates is especially advantageous for use kailnded acceleration as the speed of
traffic is the resultant from the fundamental egquatused in the Lagrangian system, rather
than traffic flow. The use of Lagrangian coordirsagdso allows a vehicle specific invariant
term to propagate along with the vehicles for whicks valid and thus avoids numerical
diffusion of driver behaviour variables (Leclerdgag, 2007, van Wageningen-Kessels et al.,
2009).

This chapter offers a unique approach based oneprtiveories to include vehicle specific
behaviour in first order macroscopic modellingirity a void that has been previously solved
for microscopic models, but that is still lacking macroscopic models. A demonstration of
inclusion of the capacity drop through bounded kra&on and driver reaction times in a
Lagrangian formulation of the KWM with vehicle clateristics through an advection
invariant is given. This explores the capabilityréproduce the capacity drop in traffic with
unconstrained overtaking.

6.2  Modelling principles

6.2.1 Kinematic Wave Model

The kinematic wave model (KWM) captures the aggetjgpropagation of traffic flow
described as the propagation of traffic waves dred a@dhering traffic characteristics. The
concept of modelling kinematic waves of traffic svéirst introduced by Lighthill and
Whitham (1955) and by Richards (1956) and is tloeeebften referred to as the LWR model.
Since the introduction of the KWM various extensidmve been proposed, however the
underlying theory as originally described remaimsdt. Construction of the kinematic waves
is achieved through use of the fundamental relatigm of traffic flow which is generally
described by the relationship between the densignd the flowq of traffic. The model
further relies on the conservation equation anghinboundary conditions. The conservation
equation and the fundamental relation are denoged b

0ip+0,q=0 (6.1)
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q=1Q(p) (6.2)

in which p is the traffic density in timeé andq is the flow in space. Q(p) denotes the form

of the fundamental relation. As the KWM is a macogsc model, it makes use of
aggregation of individual vehicles and describesaggregated flow. van Wageningen-
Kessels et al. (2014) point out that empirical dgrfow plots usually show wide scatter,
which is not captured by an aggregated flow. Mamwp& models presume some sort of
equilibrium, which results in crisp steady statenditons in flow regimes. However, van
Wageningen-Kessels et al. (2014) go on to pointtioatt the scatter is a consequence of not
all data representing such a steady state condition

6.2.2 Lagrangian Coordinates

In traditional macroscopic modelling, Eulerian atioates are usually applied which state
that for a specific time and location, a flow, sueb traffic, will pass with certain
characteristics (Helbing and Treiber, 1999, van ¥aggen-Kessels et al., 2009). In this
case, it is the flow which moves in relation to tteordinate system. Lagrangian coordinates
in contrast are not fixed in space, but are givenfteedom to transform with the resulting
flow. This can be described such that particlesha flow are explicitly considered in
individual consecutive cells. Therefore, the cooaties follow the flow rather than the flow
following the coordinates. A graphical demonstnatie shown in Figure 6.1. The Eulerian
formulation of the KWM was given in equations (6(8)4). When describing the KWM in
Lagrangian coordinates the same equations are fateu slightly differently. The
conservation equation is given as:

0;s+0,v=0 (6.3)

Here, s denotes the mean space headway of vehicles inglestell. v denotes the mean
speed of vehicles, while is the vehicles number, which decreases in thengridirection.
The fundamental relation in Lagrangian coordinate&es use of the speedh relation to the
densityp, which is derived from the mean headway spasing = 1/p. The fundamental
relation is denoted as:

v="V(s) (6.4)

The use of Lagrangian coordinates has been pravirad to more accurate results as a result
of a reduction in numerical diffusion that occunsthe transfer of flows between cells in
Eulerian coordinates, but is almost non-existenLagrangian coordinates (Leclercq et al.,
2007, van Wageningen-Kessels et al., 2010, van Wiagen-Kessels et al., 2009).
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— : —

dn

dt t dt t

Figure 6.1: Comparison of Eulerian (left) and Lagrangian (right) coordinates. The
arrow represents the direction of traffic flow.

Lagrangian coordinates were introduced to trafioevffrom the domain of hydrodynamics
(Makigami et al., 1971, Moskowitz, 1965). Jin et(@014) state that Lagrangian coordinates
can be incorporated into continuum traffic flow refisthg by either establishing moving
boundary conditions for Euler formulations (Claudeld Bayen, 2010, Herrera and Bayen,
2010) or by application of hydrodynamic flow (Lede et al., 2007). The latter has been the
more forthcoming in relation to advancement andiegfion and was shown by Leclercq et
al. (2007) to be able to be derived by using a egaaction based on variational theory
(Daganzo, 2005). More recently, Laval and Leclef2§13) further applied the theory of
Hamilton-Jacobi to KWM in which the theory is amgglito three two-dimensional coordinate
systems, which included Eulerian and Lagrangiamesys and is continuing to be extended
by a number of researchers (Jin et al., 2014). Thhigever goes beyond the scope of this
thesis in which the Lagrangian description as givemquations (6.3)-(6.4) is applied and
which was also previously described (van Wagenifi{essels et al., 2010, van Wageningen-
Kessels et al., 2009).

6.2.3 Advection

The difficulty following from problems in the aggated representation of flows in
macroscopic models has previously been widely asledged. These difficulties have not
only been identified in the lack of stochastic bebar and its consequence, but even more in
the detailed introduction of vehicle attributes afrdver behaviour, such as anticipation of
drivers or the consideration of vehicle diversifthe main effort to describe such driver
behaviour in a macroscopic model has been perfoimedcond order macroscopic models.
Application of between-vehicle stochastics has gahe not been applied in first order
macroscopic models. While first order models dégcthe conservation of vehicles according
to equation (6.1), second order models also comsist second differential equation that
describes the velocity dynamics. There are diffefermulations present, Aw and Rascle
(2000a) formulate it as:
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0:(v+p(p)) +vi,(v+p(p) =0 (6.5)

in whichp(p) is a pressure term. Originally, second order n®dere criticised for resulting
in some inacceptable behaviour, such as vehiclew) lable to move backwards (Daganzo,
1995b). However, further developments resolvedisigse. Aw and Rascle (2000a) proposed
adjustments to the original definition by replacitige space derivative with a convective
derivative. Zhang (2002) described this similanhd axplicitly state that traffic flow moves
with the velocity along the trajectory and therefdrbecomes a Lagrangian quantity.

Lebacque et al. (2007b) applied the same ratiomabeneralise the ARZ models (Aw and
Rascle, 2000a, Zhang, 2002). The ARZ models applyngariant term to represent the
relative speed of vehicles which is connected és¢hvehicles. Lebacque et al. (2007b) define
this term as a general invariant that can alseelaed to global flow properties and therefore
represent other characteristics of microscopic fldlwe model is described as a generic
second order model (GSOM) after the flexibility dmes to define an invariant that can take
on many different purposes. The conservation oficked is as equation (6.5), while the
conservation of the invariant term and descriptbrthe fundamental relation with invariant
are given by:

d:(pI) + 0, (pvI) = pe(I) Dynamics of a driver attribute (6.6)
v=V(pI) Fundamental relation (6.7)

in which x is the position] is the invariant term, and theis the fundamental relation.

This approach has been applied in a number of sss@e publications (Costeseque and
Lebacque, 2014, Costeseque and Lebacque, 2015¢cdieband Khoshyaran, 2013). One
such application describes the invariant term a&toahastic driver attribute describing the
random driver interactions of a driver with otheivdrs (Lebacque and Khoshyaran, 2013).
Their Stochastic Generic 2nd Order Model descrthesstochastic behaviour as a Brownian
process and white noise process and if furthemddfin Lagrangian coordinates. While the
GSOM also allows a first order description to benfolated (Lebacque et al.,, 2007b,
Lebacque and Khoshyaran, 2013), applications of38&M are generally not found in first
order formulations. First order models on the otind have advantages due to their relative
computational efficiency in practice.

6.2.4 Bounded Acceleration

It has been claimed that application of bounde@lacation can make it possible to model the
capacity drop in first order models (Laval, 2004iv&tava and Geroliminis, 2013). The

capacity drop is defined as the difference betwberbreakdown capacity and the discharge
capacity on a section of road and can frequentlghserved after traffic breakdown between
observations in a critical undersaturated traftettes and an oversaturated traffic state. The
occurrence of the capacity drop is generally aited to the so called hysteresis effect



Chapter 6 — Micro-stochastic macroscopic modelling 119

(Banks, 1991, Daganzo et al., 1999, Hall and Agyegriauah, 1991). The hysteresis effect
occurs in part due to differing driving behaviowr \aehicles enter and exit congested traffic
states (Farrell, 1999) and is most commonly cagturenacroscopic models in second order
formulations. In these models, an additional equais given that describes the dynamics of
vehicle flow. There have also been attempts taiohelthe capacity drop in first order models
(Laval, 2004).

Commonly, the capacity drop is included in firsi@r models through an explicit reduction of

the constrained flow around a bottleneck locatifims however focusses on the effect rather
than the cause. This furthermore leads to disc@esnn modelling boundaries due to

assumptions that are made to allow flows to be tcaimed. Here, we further analyse the
application of the capacity drop through a boundeceleration of vehicles and through the
introduction of driver reaction times.

6.3 First order model with stochastic advection

The formulation of the First Order Model with Staskic Advection (FOMSA) is presented in
this section. Firstly, the general formulation @MSA is presented along with the applied
model discretisation. Section 6.3.3 describes ti@i@tion of the vehicle specific invariant
term in the model. Sections 6.3.4 and 6.3.4 giwedbscription of the methods applied to
capture the capacity drop: bounded acceleratiahftandriver reaction time.

6.3.1 Model formulation

The first order model with stochastic advection KF&A) is a discrete first order macroscopic
model based on the conservation of vehicles anceradh to the fundamental relation
according to Lighthill and Whitham (1955) and Riake(1956) and given in equations (6.1)-
(6.2). However contrary to the KWM, the FOMSA makese of a different definition of the
fundamental relation defining it in terms of trafBpeed, which is more in line with equation
(6.7). The main difference is the inclusion of aditional invariant terni, which describes
the stochastic nature of traffic. This term is atemserved in space and time. The model is
described by:

0ip + 0,(pv) =0 Conservation of vehicles (6.8)
d:pl + 0, (pvl) =0 Conservation of invariant (6.9)
v=V(p,I) Fundamental relation (6.10)

Here the invariant], is the vehicle specific invariant, a term thabakes a vehicle dependent

adjustment factor that directly influences the dgns for each vehicle or group of vehicles

depending on the level of discretisation. The viehgpecific invariant acts as a descriptive
term that describes driving-style in relation thest vehicles, in variables such as the time
headway. This is explained in more detail in sec6@.3.
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6.3.2 Model discretisation

The Godunov scheme is a commonly applied approacthé discretisation of macroscopic
models (Lebacque, 1996a). The FOMSA is definedagrangian coordinates rather than the
traditional Eulerian coordinates. van Wageningesdets et al. (2009) previously described
how the Godunov scheme in Lagrangian coordinatesedsiced to an upwind scheme,
independent of traffic state with conservation digue

05 + v (sj(t)) —v (sj_l(t)) .\ (6.11)
An

whereAn is the vehicle group size ansf (t) = s(jAn, t) is the space headway of tjn-th
vehicle at time. van Wageningen-Kessels et al. (2009) and van Wagen-Kessels et al.
(2013) then define the Lagrangian formulation mdias an explicit semi-discretised scheme.
As explicit time stepping is used, the semi-digsegt scheme from equation (6.11) is made
explicit for application and is given by (van Wagegen-Kessels et al., 2009):

Gik+1 _ ik s v(sI*) — v(sI1k) . (6.12)
At An B

whereAt is the time step ans¥’* is the space headway at the position ofjthe-th vehicle
group at timet = kAt. (van Wageningen-Kessels et al., 2013) also desdhe scheme
implicitly, that has an added advantage that ielatively easy to solve as it only relies on
traffic states in one direction and does not needansider the propagation of traffic state
changes with the flow as these are implicitly cdased with the movement of vehicles,
which follow the traffic flow. It is however the phcit scheme that is applied in this chapter
as this is consistent with the applied extensiomedriant advection.

6.3.3 Vehicle specific invariant

A main contribution of the FOMSA is the inclusiohdriver-vehicle behaviour in relation to
inter-vehicular interaction and behaviour. This ashieved through the vehicle specific
invariant term. This term is derived from previowsrk by Lebacque et al. (2007b), who
introduced a generic invariant term which allowsmewous descriptive variables to be
propagated with traffic flow in a second order noacopic model. In the FOMSA, an
invariant term is introduced as a first order Lagjian model, which retains the relatively
simplicity of first order modelling approaches. Tiehicle specific invariant is a term that
influences the density of traffic and is vehicleroigp) specific and is applied in the
fundamental equation. In traffic, different drivemnarbour different driving behaviour and
levels of aggressiveness. This can often be destidy the desired headways maintained,
which is what the influence of the density direatBscribes, as:
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6.13
L1 (6.13)
p

Here, s is the space headway apdis the density of traffic. As adjustment of thensligy
values would directly violate the law of traffic mservation, the invariant is applied to the
deterministic critical density..;+o and jam densityp,.xo IN the fundamental relation

v=V(p,I):
Pcrit = IPcrito (6-14)

Pmax = IPmax.0 (6-15)

Empirical analysis has shown that driver behaviamd therefore also vehicle-driver
combination is also influenced by the traffic state. a driver may be less aggressive in
congestion as this may have little advantage. heccounted for by a traffic state tefm
applied to the equation (6.14)-(6.15) that is dejeam on an adjusted ratio of the current
density and the critical density, such that thenf@ation becomes:

Perit = If(p(t)'pcrit,Pmax)pcn.t.O (616)

Pmax = 1/ (p(®).pcrit,Pmax) Prmas.0 (6.17)
Differences between behaviour of vehicles and Velgooups may be presumed to be
randomly distributed in space. For example, it & likely to have all aggressive drivers
followed by all conservative drivers. However, wgbthesise that drivers can also influence
other drivers in the direct vicinity and that soolestering may occur. In this case, it cannot
be presumed that the distribution of driver typesdi¢ated by their vehicle specific invariant
value) is perfectly random. This is consideredhim inodel through the addition of a transition
term g, that describes how the vehicle specific invariardistributed over vehicles or vehicle
groups in space:

_ —min(Iln—1)—X,B) forln—1)>X (6.18)
) =1 -1 {+min(X —I(n—1),B) forlln—1)<X

X~U([1-a,1+al) (6.19)

whereI(n) is the value of the vehicle specific invariant,iethis dependent on the value
I(n — 1) of the previous vehicle group (note that a vehicle group may contain one single
vehicle or multiple vehicles as a platooX)is a random number betwegh— «a,1 + a] in
which a is the stochastic boundary parameter which indéicétte maximum extent of the
stochastic influence. Paramet@ris the transition parameter that indicates the imam
change in between consecutive vehicle groups. Parangeterin itself also dependant on the
size of vehicle group sizes, if a vehicle groujs not equal to a single vehicle. The vehicle
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specific invariant,I, is assigned to each vehicle or platoon at thearoé of a network
according to equations (6.18)-(6.19). In this cbapperfect values for and g are not
analysed. This is recommended for later research.

6.3.4 Bounded Acceleration

The first method applied to induce the capacitypdrakes use of bounded acceleration. The
concept of bounded acceleration involves a linotatf vehicle capabilities in a model, such

that it resembles the capabilities of real traffoav. The formulation applied here resembles

that described in (Lebacque, 2003) with some adhjests. The KWM conservation equation

given in equation (6.5) remains valid, while a Eation is given to the fundamental relation:

v=min(V(p,1),Vg,) (6.20)
VBA = vt_l + amaxAt (621)

where Vg, is the bounded speed for a vehicle (group) attaicetime and spacey,_, is the
speed of the considered vehicle (group) in the ipusvtime stepan.x IS the maximum
acceleration allowed, whil&t indicates the time step.

The speed that is then applied to calculate the loeation of the vehicle (group) in the
numerical scheme in the Lagrangian formulation rtterefore be limited when a vehicle
(group) has the possibility to accelerate fastanttine maximum acceleration ratg,,,. This
approach therefore does not make changes to therraainscheme, but rather the input of the
vehicles speed into the scheme.

6.3.5 Driver reaction time

The second method applied to induce the capaotty donsiders the reaction time of drivers
before commencing an acceleration action in readtboa predecessor. The capacity drop is
induced here through the application of the Reacfione (,) of drivers to downstream
speed increases in combination with heterogene@iict The reaction time of drivers in
acceleration is a cause for the capacity drgfesting and Treiber, 2008). In a Lagrangian
KWM, speedw, are updated at each discrete time step. Howesattion times are generally
much shorter than a time step. To includeTthevithin a time stef@t, and allow an update of
the speedy, and locationx, an updated location of the following vehicle idcaéated based
on the location of a vehicle without reaction timé, The principle is shown in Figure 6.2.
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Figure 6.2: Method principle; modified vehicle locdion and spacing

The location of the following vehicle at time steg 1 is given by:

1 1 1
xt(T{ ) = vt(n+ ).Tr + vt(ff ), (At —T,) (6.22)

where xt(ﬂl) is the location of vehicle (groupjn + 1) at ¢+ 1; xt(ﬂl) is the speed of

vehicle (group)n + 1) att + 1; At is the time step arf. is the reaction time

For use in the model, this should be represented tlas space headway,
s, which is given in the model by:

s = XM _ @+ D) (6.23)

Here,sE") Is the space headway at tim#or vehicle(n) and is updated with:

At (6.24)
(n+1) _ _(n+1) (n+1) m)
Sev1 - T St _E(Ut U )
where An is the vehicle group size.
As the non-reaction time location at+ 1, x:fi“), can easily be calculated, and the

difference with updated location with reaction timéﬂl), is the space headwaﬂi’l). The

time-headway at + 1 with reaction time can then be easily described by

At — T, 6.25
(n+1) _ _(n+1) _ r (oD _ Vt(n)) for vt(n+1) S ”t(n) (6.25)

St+1 - T St An (t
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6.4 FOMSA experimental case

6.4.1 Setup and results

The first order model with stochastic advectiordénonstrated in an experimental case. In
the first case, this is performed without explaapacity drop. The experimental case is setup
for a single highway corridor of 11 kilometres ohiah two bottleneck locations are present.
The first bottleneck is less severe and has a eztluapacity of 8% compared to the rest of
the corridor, while the second bottleneck furthewdstream has a capacity reduction of 15%.
Traffic flow into the corridor is maintained at anstant flow of 2000 veh/hr, which is
sufficient to lead to congestion in deterministaffic flow equivalent to a bottleneck with an
11% capacity reduction. Therefore, in the deterstinicase the first bottleneck will not be
activated, while the second will always be actidatEhe applied time steft is 5 seconds,
while the values for the stochastic boundary patante and the transition parametgrare
randomly assigned to vehicles to show their effelste remain static in time for a single
vehicle.« is varied in the range [0.1, 0.4], leading tb\alue of [0.95:1.05, 0.6:1.4], aiftis
varied in the range [0.1, 0.3]. The occurrence th#Hic state influencef, is ignored in this
experimental case and will be examined in latezassh.

Two simulation runs with different random values tioe vehicle specific invariant are shown
as an example in Figure 6.3. From this, it is cteat the effect of the behavioural term has a
considerable influence on the occurrence of comgesas in both cases the same traffic
demand is applied, however the characteristicsaoh evehicle group is different. In Figure
6.3a, both bottlenecks are activated while the aasegure 6.3b shows that only the second
more severe bottleneck is activated, which woutticate that in the second case the vehicles
have a higher invariant value and therefore velatidoser proximity to each other. Note that
for a deterministic simulation run, only the secdmattleneck would have been activated.
This therefore demonstrates that consideration to€hastic variations in driver-vehicle
behaviour between vehicles can have a detrimefiedtef traffic flow, as is also the case in
real life.



Chapter 6 — Micro-stochastic macroscopic modelling

125

position x (

Figure 6.3a-b: Simulation results of the FOMSA modl for a dual
two different random procedures with settingsa=0.2 andf=0.1

Density (vehvm) (Lagrangian coordinates)

9300
1%

1500419

A

N
Saeinistnises

Wi

0
i
i)

it
Ai510000
i

f

i)
‘H
1"
/

iy
o
gt

1
i)

1944
1914

Hih

14481
s
g
fisigieuinibeg
H

Density (velvm) (Lagrangian coordinates)

A

A
18I0
AL
AT
i

fi0iiaagians
’,'L,’L, ()
AT
A
gttty
piginie

v

T 0.15
gty

s
Ay
19120913080

AT

suitigteitty

S Rnisints
W

0.1

bottleneck case for

It is not the goal of this chapter to fine-tune thpplied parameters. However, further
simulations are performed to demonstrate the effe¢tchanges to parameter values. In
Figure 6.4 the value g is held at 0.1, while the boundary parametes given a value of

0.05 and 0.4 for Figure 6.4a and 6.4b respectively.
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activated and congestion is widespread and propsgatiickly. This was found for the
majority of the simulations, while a lower numbédrsaimulations fora=0.4 also resulted in

both bottlenecks not being triggered, which is pgmeswhen the random values for the
vehicle specific invariant are consistently low. wéver, as the probability of the value
remaining low is small, the case in which congestiocurs is greater.

In Figure 6.5, a demonstration is given of the @ffe#f changes to the transition parameier

B is given a value of 0.3, while retains the same value as in Figure 6.2 of 0. @nHfigure
6.5, it is clear that an increased boundary fortthasition of the vehicle specific invariant
value between vehicle groups leads to greater @sabgtween consecutive vehicles. This
increases the randomness of traffic flow and reslloenogeneity. However, as the effect of a
high invariant value at a moment in time can imraggy be counteracted by an equally
strong low value from the following vehicle, wheongestion occurs at the first bottleneck it
is often of limited severity and does not last dolong time. Therefore, the effect seen from
multiple simulations is that congestion occurs m@adily compared with the deterministic
case, however the severity is similar to other esloff.

x 10" Density (veh/m) (Lagian coordinates)
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Figure 6.5: Simulation results of the FOMSA for a dial bottleneck case for two different
random procedures with settingsa=0.2 andf=0.3

6.4.2 Discussion

The values applied in these simulationsdaandg are estimates of realistic values, however
are not explicitly based on empirical observatioRsrther research is recommended to
determine which values are most suited for thesanpeters and also to confirm the
hypothesis that these parameters are of influemt¢eaffic flow in way described. Values for
a and B can be derived from empirical observations of ekehinteraction. The boundary
parameter can be observed from the distribution of vehiadadways in traffic, for whick

is the relative deviation from the average obsetveadway. Transition parameigrcan be
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derived from the change in headways of consecwtWécles. Vehicles that are platooning are
expected to yield similar values af therefore limiting the level of transactigh Even in
free flow without platooning, the hypothesis statleat there may be a certain amount of
correlation between following vehicles, due to speanstraints and car-following behaviour.

The test case has demonstrated the face validitheoimodel and has further shown that
vehicle specific behaviour can lead to situatiomsnvhich a bottleneck sometimes will be
activated and at other times will not be activatader identical traffic flow. The difference is
in the characteristics of individual vehicles oatpbns, which leads to local anomalies in
traffic flow and a local reduction of the criticdénsity, which increases the chance of traffic
breakdown. These effects are also seen in reabiifeoads and confirm the face validity of
the approach. The value for the boundary parameters found to be important for the
probability of traffic breakdown and the level angestion severity. This is not surprising as
a large reduction in the critical density leadsd&finition to a higher probability of traffic
breakdown. Even with the probability of higher dgns/alues, once congestion occurs,
capacity is reduced through the capacity drop hedefore has a greater detrimental effect on
traffic flow. The value for transition parametgt, on the other hand indicates regimes in
traffic flow from behaviour and gives a quantity tbe interaction between vehicles. A higher
value indicates independent driver-vehicle behayiomhile a low value increases the
presumed interaction effects. It further shows thdetter distribution of vehicle and driver
types (aggressive and conservative drivers) cath teaa reduction in congestion severity.
However, there is some uncertainty of the validitysuch a parameter. The term is included
as a hypothetical effect that can explain someatharistics of traffic flow, but has still to be
validated against empirical data. This is alsocamemended for later research.

6.5 Experimental case: capturing the capacity drop

Two different approaches are applied to explicitliroduce the capacity drop in FOMSA.
The first makes use of bounded acceleration, wthidgesecond considers a drivers’ reaction
time when accelerating. Both approaches are camgldan separate experimental cases,
described in this section. Tests with the applocatf both approaches together did not show
much difference to just applying a reaction time.

6.5.1 Setup for bounded acceleration case

The first experimental case is carried out for arkilometre highway corridor with a single
bottleneck location. The corridor is modelled ifirat order kinematic wave model (KWM) in
Lagrangian coordinates with three lanes, with tbtldneck set at a capacity reduction of
20% compared to the rest of the road. The KWM andherical scheme allow for
unconstrained overtaking of vehicles in case afea@cessor catching up with another vehicle
group. Traffic flow into the corridor is initiallget at an increasing rate from 1000 up to 3000
veh/hr/lane and retracts to 2000 veh/hr/lane &t éirme. The driver specific characteristics of
the traffic flow means that congestion may occlworsw for a vehicle specific invariant value
lower than 1.0 and less readily for values aboQe The vehicle specific invariant is set rather
liberally such that values between 0.8-1.2 areiptesswith one scenario also allowing values
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between 0.6-1.4. Furthermore, the valud oémains identical for each vehicle (group) and
does not change in time of with traffic state. Tlsisnplification does not affect the
demonstration of the bounded acceleration. Assigmroé invariant values is carried out
randomly, using the same random seed for all smenalhe time step applied in the
simulations is 2.0 seconds, while the maximum spieatis set at 100 kph, which meets the
CFL condition and eliminates any numerical diffusisssues. Different scenarios are
modelled in which two variables are varied, namtély acceleration bound [rifsand the
invariant value. The considered scenarios are givaiable 6.1.

Table 6.1: Scenario variable values

Scenario Acceleration Invariant
number bound [m/§] bounds
0 (reference) n/a n/a (1.0)
1 2.0 n/a (1.0)
2 n/a 0.8-1.2
3 2.0 0.8-1.2
4 2.0 0.6-1.4
5 1.0 n/a (1.0)
6 1.0 0.8-1.2
7 0.75 0.8-1.2
8 0.5 0.8-1.2

The results of the scenarios are given in the fofnilow-density fundamental diagrams,
which allows insight into the spread of traffic wak. Selected trajectory-space-time plots are
given for relevant scenarios and a final comparisérthe different levels of bounded
acceleration are shown in a cumulative flow diagram

6.5.2 Bounded Acceleration

The introduction of vehicle specific invariant vatuwas previously introduced to increase
realism in modelling, especially aiding stochastieakdown. Here, bounded acceleration is
added to the model. In Figure 6.6, the density@ttary plots are given of selected scenarios
in which the consequence of various values of #iréed variables is shown. The selection is
made taking into consideration that the outcomsceharios 0, 1 and 5 were nearly identical,
as were scenarios 2, 3 and 6, which were alsoaimil

The reference scenario 0 shows traffic flow incirggantil at a certain point congestion is

triggered. Each vehicle group homogenously trars@gewith the presiding flow and density

values without fluctuations in flow. In scenaricad 4, the invariant is randomly applied

(with an identical random seed for both for comgams sake). The difference between
vehicle groups is obvious and also makes is easyrie to see the trajectories of traffic,

especially when a vehicle group reaches a congessetisection. More importantly, higher

bandwidths for the invariant show greater degrdesongestion. This can be seen between
scenario 4, 2 and 0. In scenario 2 and 8, the savagiant values are applied, however with

different bounded acceleration. In scenario 8, xreme and unrealistic value of 0.5 fi&s
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applied. This leads to a much denser congestionlamger congestion. However, when
applying a value of 1.0 nf/o the same case (not shown), little difference feasd in the
degree of congestion compared to a value of 2.6 m/s

Density (vefvim] (Lagrangian coordinates)

Space 2>
Space =

Time =
Scenario 2

Density (veh/m) (Lagrang

Time =2

Scenario 8

Scenario 4

Figure 6.6: Trajectory-space-time diagrams for sceario 0, 2, 4 and 8

The fundamental diagrams for each scenario areshoWwigure 6.7. These are captured at a
location directly downstream of the bottleneck. sThives further insight into the spread of
traffic flow values and the extent of congestionfirst obvious observation is the spread in
points on the congested arm for scenarios withriamivalues (scenarios 2, 3, 4, 6, 7 and 8).
As the invariant is setup to allow ‘more aggressighicle groups to drive at a smaller time
headway (larger density), a higher flow rate camablieved for identical speeds, while for
‘less aggressive’ vehicles the opposite is the.cBles can be further noted from the greater
spread for scenario 4 with the higher invariantrmsu The resulting fundamental diagrams
represent the ‘cloud’ seen from empirical represtons more realistically than the straight
lines seen form scenarios 0, 1 and 5 without thariant, resembling synchronized flow
found by Kerner (2000). Another observation frongufe 6.7 is the severity of congestion,
which is represented by the resulting densitiesthim case of a broader invariant value,
congestion is found to be slightly more severe,levfor very low acceleration bounds an
even higher density is found.
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Figure 6.7: Fundamental diagram, from the bottlenek location
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Bounded acceleration (BA) is tested in the firspemimental case in four scenarios (3, 6, 7
and 8) for which the acceleration is bounded af 2.0, 0.75, and 0.5 nf/sA realistic value
for road vehicles lies between 1.0 and 2.0°ndad therefore the values below 1.0 are more
demonstrative rather than realistic. From Figurésahd 6.7, the effect of BA on the traffic
throughput in congestion remained very limitedtfoe two scenarios with 2.0 and 1.0. This is
further demonstrated in Figure 6.8, in which thenalative number of vehicle groups that
pass the bottleneck location are shown in timeover number of vehicles indicates that
capacity is relatively low and therefore a greatapacity drop is present. Only a very
marginal difference is found between an accelematound of 2.0 and 1.0 ni/sin the
hypothetical case that the BA is set to 0.75°m/and 0.5 m/ an increasingly lower
throughput is found in the flow.

150
——no BA (scen0) /j
1.0 m/s2 (scenb)
—0.75 m/s2 (scen7)
——0.5m/s2 (scend)

50+

cumulative passages at
bottleneck location [veh groups]

0 | | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500

time
Figure 6.8: Cumulative throughput at the bottlene& location

From these results, it can be concluded that thpicaption of bounded acceleration in a
driver-specifically modelled flow with unconstrathevertaking does not lead to a substantial
capacity drop for realistic values of BA. A drop tilroughput is found for more extreme
values, which does indicate that BA does directlgtdbute to some extent, however this is
not large enough to be able to contribute the dmBA of individual vehicle (groups).
Therefore, a further hypothesis is constructed tinatinteraction of vehicle characteristics in
a constrained manner is more important to reproduthe capacity drop from bounded
acceleration. This is therefore also recommendddréiser research. A further improvement
may be achieved by also including driver reactiones when exiting congestion. This is
considered in the second experimental case irséuson.

6.5.3 Reaction time

In the second experimental case, the effect ofiaeid reaction time in acceleratiof,, is
shown on the same 11 kilometre single bottleneckidmr. In this case, the traffic demand is
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identical capacity profile and demand profile iplag in each case. The applied time step is
3 seconds with a vehicle group size of;¥ehicles. The capacity drop is measured using
flows downstream of the bottleneck with a 5 minuteving average aggregation.

Aggregation is required for the heterogeneous caseégure 6.9 shows the trajectories of a

increased to above the bottleneck capacity and Geereased to show the effect of the
reference case withol@if and in homogenous traffic (left), and on the rigldase witlf,

capacity dropT,. values of 0, 0.5, 1.0 & 1.5 seconds are appliedific heterogeneity is set

at 0, 10% & 20% deviation for the vehicle speciimwvariant, |, for time headways. An
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=1.0

andl =[0.8;1.2]. The capacity drop for the considefedand heterogeneity values are shown
in Table 6.2. The capacity drop values are givesiresg the highest flow pre-breakdown for

each scenario, and in brackets compared to theerefe case with no heterogeneity or
reaction time, as in heterogeneous traffic flowydo capacity values are found. Note that

1.5 may not be a realistic value, however does gisght into the effectiveness of the

method in extreme cases.

T,=

i

10%,

Figure 6.9: Trajectories and densities of the refe@nce case (left) and case with |

1.0s (right)

T.=

Reaction timd’,.

1.5sec
40% (43%)
41% (46%)
41% (49%)

1.0 sec
23% (27%)
24% (30%)
24% (32%)

0.5 sec
9% (14%)
9% (14%)
6% (16%)

0 sec

0%
0%
0%

Table 6.2: Capacity drop results per case

Traffic
heterogeneity |

0%
10%

20%

capture the capacity drop is successfully dematestrdncreased heterogeneity in traffic flow
does not show an increase in capacity drop compardide capacity of the same scenario.

However, increased heterogeneity did result in foeapacities. If the discharge capacity is
compared to the homogeneous case, then a highacityadrop is found for higher rates of

The results shown in Table 6.2 show that highecti@a times give increasingly higher
heterogeneity.

capacity drop values, as is expected, and therdf@eability of the proposed method to
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6.6 Conclusions

Capturing micro-stochastic driving behaviour in aamscopic model is important to
accurately describe traffic flow phenomena on arosopic level. A first order stochastic
macroscopic model formulation is introduced in tbisapter that makes use of first order
traffic flow theory in conjunction with an additiah invariant term, the vehicle specific
invariant, that describes the heterogeneous effedtiver-vehicle behaviour and the level of
aggressiveness of drivers and represents the eetpelcific change to a deterministic density
value. This is performed in the Lagrangian coorgirgystem, which allows the invariant term
to propagate along with the vehicles for whictsivalid and thus avoids numerical diffusion
of driver-vehicle behaviour variables. The use afgtangian coordinates have previously
been shown to lead also to more accurate numeasalts. The vehicle specific invariant is
defined as an adaptation of a deterministic derastg function of two further parametess:
which represent a stochastic boundary parametérdinscribes the limitations in variance
between vehicles, and a transition parampgténat describes the interaction between driver-
vehicle behaviour and gives a quantity of the cleanghe vehicle specific invariant in time.
The described model offers the advantages of imududriver-vehicle behaviour with an
increased accuracy due to reduced diffusion effendtile doing this in a first order setting
and therefore avoiding some of the complexity imedl in second order model that are often
applied to incorporate driver-vehicle behaviounmacroscopic modelling.

The model is demonstrated in an experimental casea aorridor with two bottlenecks
present. The case demonstrates the face validithhedfmodel and offers insight into the
effects of different values for the model parangetek further calibration of the model
parameters based on empirical data is recommendedurther research, as well as
investigating the effects of other types of bowieks.

The capacity drop is applied in an extension of medel and is demonstrated. This is
achieved through two different approaches: bouratetleration and driver reaction times.
The investigation of bounded acceleration found tha application in the model under

constrained conditions has a limited contributian & capacity drop. Only under low

acceleration bounds was there a substantial cgp#ap visible. This leads to the conclusion
that the capacity drop is not merely a consequehegaestriction in the acceleration ability of

vehicles on an individual basis, when vehicleswareonstrained by surrounding vehicles and
are easily able to overtake one another. Additi@amgdroaches may include greater vehicle
interaction and reaction times. In the second aqgrp the effect of reactions times is
analysed. This approach successfully captured dgplops for increasing reaction times. It

also showed that the influence of heterogeneodscirghrough use of the invariant term,

leads to lower capacities, while the capacity drompared to a deterministic scenario is not
increased. However, the capacity drop under heteregus traffic is greater as the base
capacity is lower.



Chapter 7

Stochastic evaluation and identification of road
resilience levels

Major and minor disturbances can have a considexabipact on the performance of road
networks. In this respect, resilience is consideasdhe ability of a road section to resist and
to recover from disturbances in traffic flow. Indfthapter an indicator is presented, the Link
Performance Index for Resilience (LPIR), which eatds the resilience level of individual

road sections in relation to a wider road networ&sbd on traffic flow stochastics. The
indicator can be used to detect the least resilievad sections and to analyse which
underlying road and traffic characteristics caudest non-resilience. The method adds to
related concepts like robustness and vulnerabibiy also considering recovery from

congestion events explicitly and by focussing @nyelay operational traffic situations rather

than just on disasters or major events.

This chapter starts with an introduction to the itopf resilience in traffic networks. In
section 7.2, a detailed look is taken at perforneganoncepts commonly used in traffic and
related fields and considers their various defoms. This is followed in section 7.3 by an
overview of commonly applied components and indisatorresponding to the described
performance concepts. The proposed LPIR methodagodgscribed in section 7.4, followed
by a demonstration of the methodology in an expartal case in section 7.5. The chapter
concludes with the overall conclusions and dis@rssin section 7.6.

This chapter is an edited version of the article:

Calvert, S. C., & Snelder, M. (2015). A Methodology for Road Traffic Resilience Analysis and Review
of Related Concepts. In INSTR 2015: 6th International Symposium on Transportation Network
Reliability, Nara, Japan, 2-3 August 2015.

Calvert, S. C., & Snelder, M. (2016). A Methodology for Road Traffic Resilience Analysis and Review
of Related Concepts. Submitted for publication in Transportmetrica part A: special issue on reliability &
resilience
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7.1 Introduction

While it is clear that major calamities and disesiean have a considerable effect on traffic
and transport systems, there is awareness thatmioog disturbances in traffic and transport
systems can also play an important part in reduttiegefficiency of such systems. A large
number of effects have been proven to influencarmyibehaviour and with that the ability of
traffic to maintain certain speeds, and also aagerserviceability, which in turn depletes
traffic flow locally, but also on a network levdlhe effect of weather is probably one of the
variables most commonly researched for its effettr@ad capacity and speed reduction
(Calvert and Snelder, 2016, Hranac et al., 200@]d&n and Calvert, 2016). Precipitation as
rain as well as snow, wind, temperature and miselal been considered (Agarwal et al.,
2005, Calvert and Snelder, 2016, Cools et al., 20Md¥e et al., 2006). Also the influence of
the local infrastructure can have an effect onfitraflow, where poor road surfaces,
(incorrect) road geometry, different speed regineésgtera, can often lead to disturbances in
traffic flow. Locations on a road network whereemnteaving traffic occurs are well known
for their pertinent ability to disrupt smooth tiafflow and often with an unknown and erratic
uncertainty of their time of occurrence (Calverdaviinderhoud, 2012, Sarvi, 2013, Shawky
and Nakamura, 2007). Obviously stochastic drivérav@ur, sometimes in combination with
vehicle population, is often recognised for itschtmstic characteristics and with that its
disturbance of homogeneous traffic flow (Wagnerl20Wu, 2013). However, fluctuations
between drivers and within one’s own driving bebavican be instable and difficult to
guantify. Furthermore, the effects of driving beloav are often combined and exacerbated
together with other local disturbances. A numbeotbEr variables can also be identified.

Disturbances do not only affect local road sectionst by definition also (complete)
networks. While local effects of disturbances diteroconsidered, it is actually the network
effects that are more profound and important togadse as this is where the greatest delays
occur. The two should not be considered entirepassely as local disturbances influence
network flow and network flows in turn influenceckd conditions. However, the causes
behind network disturbances are most often found limcal disturbance. While disturbances
will often not be the core cause of congestiony thiél often be a catalyst to hasten the onset
of congestion. Network performance in relation tstutbances has been researched on a
number of different levels. Reliability, robustngssinerability, accessibility and resilience
are just some concepts that can be considered étaork. Especially reliability and
vulnerability of networks has attracted much aitenin recent decades, often in relation to
travel-times and the ability to maintain a levelsafvice. In the following sections, we will
consider the differences and overlap between tleseepts and give the applicable
definitions. This is performed to clarify the digttion between the concepts. However, it is
the concept of resilience with a close focus offfitrdlow that is the main focus of this
chapter. The reason for focussing on resilieneggsed in section 7.2.4.

The focus onmesilienceis not commonly made in traffic flow analysis.dase of disturbances

on roads, traffic flow will often be adversely affed, also commonly leading to congestion.
Many measures of disturbances on the traffic cansther the probability of disturbances or
the consequence of the disturbance, or both. Howevenany cases small disturbances may
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not lead to congestion, while the balance betwemmgestion and no congestion may be
small. Furthermore, once congestion occurs trdffiev deteriorates, the duration before
traffic returns to its original level-of-service isnportant to be able to quantify how
widespread the adverse effect of the disturbancerbes. In both cases, road sections and
networks recover from disturbances and have atdietation to the overall performance of
the network. The ability to recover from a disturba is often referred to as resilience.
Resilience research is not common within the edtbw domain, and is found more readily
in other transport domains, such as supply-chainag@ment and logical operations (Chen
and Miller-Hooks, 2012, Cox et al., 2011, Ishfag12).

In this chapter, a methodology is presented, the lFPerformance Index for Resilience
(LPIR), which evaluates the resilience level ofiudiial road sections in relation to a wider
road network. In such a way, the ability of a readtion to deal with traffic disturbances can
be quantified. The proposed methodology is consttuwith an application to detect poorly
resilient road sections. A main contribution of thethodology is the consideration of both
resistance and recovery from a traffic heteroges@mint of view.

These road sections are considered for their phtitavoid traffic breakdown, however if

congestion occurs also their ability to recovernfra disturbance to normal operations.
Limited ability to facilitate local disturbances canmecover can lead to a greater traffic
disruption more so than sections that do have Kil@yato more easily recover. Herein we

aim to fill the gap in knowledge in relation to ifesce for road traffic networks, and do this
much more from a traffic flow perspective ratheartta general network perspective.

The significance of this chapter is twofold: Thethwal allows for identification of road
sections which are susceptible to traffic breakdoWmese locations therefore require more
attention as also stochastic fluctuations can cabhese locations to show weakness.
Furthermore, the method allows for analysis of ¢dbeasequences of network locations with
volatile traffic flow. This involves characterissioof the road infrastructure, such as surface
conditions or curvature, and vehicle charactesststich as traffic composition. This can lead
to a greater understanding of the variables that mfbect resilience and possibly approaches
that can lead to a limitation of stochasticity amgroved resilience.

7.2 Performance concepts and definitions

When considering the performance of traffic flow arroad or in a network there are a
number of performance concepts that need to badmmesl. It is important to be clear on the
precise definition of each concept, as these Viaghitsy between scientific domains and even
within domains. This concise overview of concepsgiven to clarify the difference in
definitions and describe why the focus in this ¢baps on resilience. Here we will first
consider the main concepts and highlight imporgana recent contributions. This is followed
by the considered definitions in this chapter dmel rielationship between the concepts. The
four concepts considered here agiability, vulnerability, robustnesandresilience.
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7.2.1 Reliability

The Reliability concept is well established in traffic and netwarkalysis on a number of
levels. In general, one of the most accepted difits of reliability is given by Wakabayashi
and llda (1992) a4he probability that a system or a unit will perfa its purpose adequately
for the period of time intended under the operatsanditions encountered.From this
definition it is clear that reliability is concemheavith the performance of a system, in our case
a road or network, while it still satisfactorilyrfations. It is however important to note here
that the study of reliability focusses on probapidf this. Berdica (2002) even goes as far as
to state that “reliability studies are generallycerned with probabilities only”. This gives a
very definitive explanation of what reliability sties aims to achieve. However, it is argued
that such a technical definition does not consiperception of users (Nicholson, 2007,
Nicholson et al., 2003). It is important to ideptéxpectations of users as they will only
evaluate a system as reliable if their expectatamesmet (Nicholson et al., 2003). For this it
is also important to realise that both the freqyeswed the consequence of a disturbance are
relevant in an individual's evaluation process.eliess et al. (2006) make a further distinction
by stating that from an individual's perspectiveyatem can be seen as a binary decision: it is
either reliable or not, while from an aggregatenpaif view some users will find a system
reliable, while others will not. This also undedsa strong subjective aspect of reliability
analysis. A wide range of reliability measures hagen developed in the past decades. These
differ on one hand for their application area amdheir approach to reliability analysis and
often consider slightly different definitions of liebility. One may consider capacity
reliability (Chen et al., 1999, Chen et al., 20@Ghurch and Scaparra, 2007), connectivity or
terminal reliability (Bell and lida, 1997, Chenadt, 2007, Grubesic et al., 2007, O’Kelly and
Kim, 2007, Wakabayashi and llda, 1992), and trausle or cost reliability (Bell and
Schmadcker, 2002, Bell, 1999, Carrion and Levingiri,2, Chen et al., 2003, Tu et al., 2012),
most of which can be applied to either individuahd sections or on network level. Other
classes of reliability to be identified are alsdvé@oural reliability (Clark and Watling, 2005,
Lo and Tung, 2003, Mirchandani and Soroush, 198nh, ahd leda, 2001) and Potential
reliability (Bell, 2000, Bell and Cassir, 2002, Bera, 2002, Clark and Watling, 2005).

7.2.2 Vulnerability

When discussing reliability, one is considering pineper working of a system. Vulnerability
on the other hand considers the improper working system. However, it may not entirely
be seen as the opposite of reliability. To expandgll-regarded definition of vulnerability in
a road transportation system is thatiinerability is a susceptibility to incidents th&an
result in considerable reductions in road netwosviceability” (Berdica, 2002). Husdal
(2004) goes on to state that serviceability thestdiees the possibility to use a system during
a given period. Susceptibility in this definition the other hand indicates a probability of an
occurrence. Hence, vulnerability may be considesetivo-component concept in which
probability and consequence are the two main ates) in short: probability of susceptibility,
with a consequence for the serviceability. A similiéew is also argued by Jenelius et al.
(2006), in which some disadvantages of this apgroas also mentioned by Sarewitz et al.
(2003), are mentioned. The main disadvantage b#iag estimation of probabilities of
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uncertain events is very difficult as some events @0 rare to accurately derive from
empirical data. However, when considering more lagdisturbances in traffic flow, this
difficulty dissipates somewhat. In another defomtiof vulnerability by Taylor and D’este
(2003) only the consequence of an incident is cmmed, while the probability of a
disturbance is ignored or presumed unquantifiable.

7.2.3 Robustness

Robustness is a concept that has more recently deerioped for road traffic networks. A
general definition of robustness is thihe ability of a system to resist change without
adapting its initial stable configuration”(Wieland and Wallenburg, 2012). For road
networks, a definition of robustness is given bgl8er et al. (2012) dthe extent to which,
under pre-specified circumstances, a network ig ablmaintain the function for which it was
originally designed”.Both Snelder et al. (2012) and Berdica (2002edfia4t robustness is an
interchangeable opposite of vulnerability in redatito road networks. However, this is only
true up to the point that vulnerability must plagegreater emphasis on probability as it
considers the occurrence of disturbances, whilaustiess considers the prevention of
detrimental effects of disturbances. It is possiblenly consider the effects of a disturbance,
but more often than not one will also want to knitsvrate of recurrence. A robust network
has the capability to compensate for disruptionsemvork links with relative ease and with
only a small deterioration of performance Sulliveral. (2010). Therefore, a major difference
compared to reliability is that robustness consdesw a network can maintain its function
while suffering a disturbance and therefore focsigs®re on the effects of a disturbance,
while reliability is more concerned with the probep of a disturbance. Following from the
definition, a robust network can allow a decline parformance as long its function is
maintained, and while probability is not the maveus, the tern'extent to whichindicates a
clear possibility to quantify robustness (Sneldealg 2012).

7.2.4 Resilience

The final concept to be considered here for road aetwork performance is resilience.
Resiliencas a concept that has been recognised a numbenes within the traffic domain

to be of possible relevance without much researeimgb performed (Berdica, 2002,
Nicholson, 2007). In other transportation domanesjlience is more recognised, such as in
the transport related areas of logistics and suppiyn management (Chen and Miller-Hooks,
2012, Cox et al., 2011, Ishfag, 2012). Chen andeMHooks (2012) define a resilient
network as a network that is able riecover from disruptionsThis ability depends on the
network structure and activities that can be umdtert to preserve or restore service in the
event of a disaster or other disruption. Goldberg76) states that two main attributes are
relevant for resilience, namely the level of dibance and the speed at which the system can
recover from the disturbance. Berdica (2002) furtates that resilience could be described
as the capability of reaching a new state of dguilm, however in the case of traffic flow, a
new equilibrium state may resemble or equate totlggnal undisturbed state. Bankes (2010)
states that it is tempting to define robustnessrasiience synonymously. However, he goes
on to say that robustness can be generally underss the ability to withstand or survive
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external shocks; to be stable in spite of uncestaResiliency involves the ability of a system
to recover from disturbances. Recovery impliesilara of robustness on a shorter time scale
than that at which the system is judged to beiessil This means that a system may be
deemed as not being robust, whilst it may be cemstiresilient.

In this research, the choice is made to focus erctimcept of resilience. Much has previously
been performed on robustness and reliability; h@vekie concept of resilience, as defined
here, also includes the recovery of the traffictexys In stochastic traffic flow, there is an
increased probability of traffic flow breakdown alods of function of a traffic system. It is
also hypothesised that the recovery of traffic flmvhindered by heterogeneity in traffic.
Therefore, the focus should lie on a concept theludes both. In this research, we therefore
focus on and define resilience dke ability of a system to cope with disturbancesd
recover after a loss of function'Here, the term ‘to cope with’ indicates that toas@re
resilience does not require a state of ‘functidadlire’ to be measured and can be evaluated
when still properly functioning. ‘Loss of functioméfers to a reduction in performance of the
system. In the case of traffic network, a commapplied performance indictor is the ‘level
of service’. Similarly, the onset of congestion sttuites a main loss of function, with higher
density and lower speed values indicating an irs&rea functional loss. A system that can
easily cope with a disturbance may be deemed nemident than a system that only just
manages to cope, as a different more extreme dastae may cause the latter to lose function
in any case. However, when a system experiencedidmal loss, it may still be deemed
resilient, albeit to a lesser extent, if it is atdgoromptly recover.

7.2.5 Overview

Form the various descriptions, it should be apgatbat although there are varying
definitions for the described concepts, there geaeral level of consensus on their meaning.
The main characteristics of the concepts are gimehable 7.1 to more easily distinguish
between the application areas of the concepts.r&igil, taken from (Wang et al., 2014),
gives a good overview of the interdependent retatizetween the aforementioned concepts.

Table 7.1: Overview of performance concepts and tlredefinitions

Reliability Vulnerability Robustness Resilience

Description Probability of Susceptibility of Ability to maintain | AAPility to maintain
: - : - . . and recover
serviceability serviceability loss serviceability . .
serviceability

Disturbance i i
relevance Probability of Not withstand the Withstand the effects x\gf:gsg:;rd ?ng'\]:er

occurrence of... effects of... of... f y

rom...

Probability Mr?)')?lrf]?f utso— ‘Ier:?elc(::?tes Facilitating — Indicate | Facilitating — Indicate | Facilitating — indicate
relevance p ytop chance of function loss| chance of function los{ recovery ability

performance
Effect relevance Quantification of Quantification of Quantification of

N/A

effects effects effects
General Mainly on network Mainly on network Mainly local, but also
o Both locally & on .

application level, but also locally | level, but also locally | applicable on network

network . .

applicable applicable level




Chapter 7 — Stochastic evaluation and identificatibroad resilience levels 141

Vulnerability Risk Reliability
Hazards identification
f—JH Probability evaluation
P>0 P=0 of hazard happening
2
Transportation network
Probability evaluation pficomponents degradatioj
Components degraded i bt comp ¢
—_— o — — — ] bl —— — >
Critical/weak complnents/locations r_J% !
identification
- — —mifigon P>0——0—¢ P=0 :@
. i | Consequence assessment
Abnormal service Normal service |4 —) o — . — bl — — — P
Consequence evaluatioh A - o
of major damage I
P — ‘ Major damage ‘ | Slight damage ‘ I&)

@ Flexibility: ability of transportation network to maintain its normal service after components degraded.
® Robustness: ability of transportation network to maintain its normal service after hazard events happen on it.

© Resilience: capability of resisting and recovering from abnormal service to normal service.

— — — P Research focuses of different related terms P: probability of the events happening

Figure 7.1: Relationships between main concepts gan from Wang et al. (2014))

7.3 Performance components and indicators

In section 7.2, main concepts were described, warehrelated to resilience. While the focus
is on resilience, there is much overlap betweerctimeepts and therefore various components
from the other closely related concepts can be aldéu for resilience. In this section,
components and indicators from robustness, vulilgyadnd other resilience approaches are
reviewed.

7.3.1 Robustness and vulnerability

From the previous section, is should be obvious thailience is much closer related to
robustness and vulnerability than to reliabilityhefe is a sufficient similarity for it to be
useful to review components of both robustness \anderability before looking at the
relevant components for resilience. Both robustreass vulnerability will be considered
together as they are near enough each other oppasitl therefore will generally make use of
the same components and indicators.

When reviewing literature, it becomes quickly amparthat there are a wide range of
definitions and descriptions for the same attributéere we will try to use the most generic
terminology, but will often refer to authors’ owefchitions of components.
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Different approaches are found to classify vulnditgband robustness. On the one hand,
accessibility and network efficiency are appliedmaain indicators in which the network
geometry is seen as a more important factor (CimeinMiller-Hooks, 2012, Jenelius et al.,
2006, Taylor and D’Este, 2007). On the other haotd)e apply an approach which considers
the importance or criticality of links to be fogadint (Scott et al., 2006). Jenelius et al. (2006)
make a distinction between exposure and criticatity a network level. The exposure
indicator covers the position of links and the ceetivity of links on a network, while the
criticality gives an indication of how important oritical a link is. Srinivasan (2002) states
that there are four types of factoeterministic, quantitative time-varying, qualitzadi
measuresandrandom factorsThese factors describe various attributes that lneaglassified

in four categoriesnetwork characteristics, traffic flow, threaamdneighbourhood attributes
(ElI-Rashidy and Grant-Muller, 2014, Srinivasan, 200/Nithin these categories, a similar
trend is found with different descriptions; Netwsr&nd infrastructure characteristics account
for the supply characteristics of network linksffic flow basically entails the demand on a
network, while threats identifies weaknesses iretavark and neighbourhood attributes the
connectivity or accessibility of network links. Saer et al. (2012) consider robustness more
as an umbrella concept, which includes resiliemoeray other parts. However, here we will
refer to robustness as a single concept which apgrbut does not enclose resilience.

Table 7.2: Components used in performance concepts

Traffic dynamics & demand Disturbances/Threats Network Characteristics
Travel time (ratio) ** Effect of disturbance** Redundancy?
- Speed of movement - Number of effected vehiclés - Alternative route$®
(=traffic volume x average
speed) Spare capacity** Connectivity ?
Traffic speed (ratio) Congested travel (density) Link capacity
Delay (ratio) *? - Numbgr of.vehlcles in . 2
- Incl. relative delay rate® congeftlon times congestion Node degre
length
Distance covered Distance”

1

Duration of disturbance effect - distribution of distance

Traffic demand (ratio)

Volume capacity ratio 24 Distance of disturbance effect = Node centrality *

- Volume capacity ratio for low
capacity links *

- Increase in volume versus o . . os
capacity (for low capacity links) (for low capacity links) Compartmentalisation
4

- i.e distance between ramps or
junctions

234

Probability and effect Node corenes$

- Arrival rate at end of queue®®

Accessibility *2
- Arrival rate for a set period **

!(Berdica, 2002) *(Snelder et al., 2012) 3(Knoop et al., 2012) *(Tampere et al., 2007a) >(Li, 2008)
®(Tamminga et al., 2005)
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Much available literature primarily considers thmmponents for an overall ‘vulnerability’ or

‘robustness’ indicator. These individual componearge discussed making use of the
categories given by (Srinivasan, 2002) in whichmoek characteristics and neighbourhood
attributes are considered as a single categoryorAptete overview of a number of found
components is shown per category in Table 7.2 iichvithe relevant references are also
given.

Thetraffic dynamics categorincludes a wide range of traffic related indicataComparable
components are grouped for clarity, such as trawet and (average) speed, as these are
convertible through distance. Many components andas, but are defined such that it gives
an additional quantification. For example, trawele is considered, but may also be adjusted
to indicate the ‘speed of movement’, which is atiplitation of the average speed with the
traffic volume. For most traffic dynamics comporgrioth the component itself and the ratio
of the component compared to a base or referenice \aae suggested. The advantage of
using ratio’s is that it easily allows for normalin, which can be a preferred approach as
attributes are on a closed interval and can be raasdy compared, either with or without
weighting (El-Rashidy and Grant-Muller, 2014). Tlksturbances categoryincludes
suggestions for a quantification of the effect o$turbances on traffic flow, such as
quantification of the number of affected vehiclescongested travel, and of the distance or
duration of a disturbance. The probability of atutisance or threat is also an attribute to be
considered. Thaetwork characteristics categorgainly considers the attributes related to the
physical infrastructure and the way the variousvoek links are connected. When specifying
specific characteristics for vulnerability and retness, not a great deal of attributes were
found in literature for the physical road charastes. It maybe that these are not considered
relevant or, probably more likely, that they are thnderlying variables linked to other
attributes. For example, a poor road surface may te lower speeds and therefore a higher
travel time, both of which have already been casrgd.

There are a wide range of existing performance catdrs for both robustness and
vulnerability. To give an indication of some of sieeindicators, a short overview is given in
Table 7.3 with a description of the indicator.

Table 7.3: Some recently applied performance indidars for robustness and
vulnerability

Described Indicator Applied to...  Description
Snelder et al. Delay Robusthess Delay encountered under pre-defined disturbances
(incidents). Delay on specific links, routes, arigretworks
(2012) indicates the robustness level.
- Volume to Robustness & Ratio between the traffic volume and available cipa
Capacity (V/C) Vulnerability
o Gamma index Robustness & Connectivity index indicating how well a network is
| bili connected. A value of 1 indicates a completely eotet
Vulnerability o
Scott et al. Network Robustnhess Change in total travel time over a given intenasluiting

from the re-assignment of traffic in the system whe
(2006) Robustness Index specific link is removed from the network. Measunes/

(NRI) critical a given link is to the overall network.
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Sullivan et al. Network Trip Robustnhess Applies an ‘importance’ factor to the NRI of routessed on
9 the demand over specific links. NTR is calculatedhe
(2010) Robustness (NTR, summation of NRI over all links and dividing that the
total trip demand in the network.
EI-Rashidy Link & Network VuInerabiIity Makes use of weighted multiple attributes. The igobpl
. attributes are:
and Grant- Vulnerablllty 1. Link traffic flow in relation to link capacity
Muller (2014) Index (LVI & 2. Impact of link flow compared to capacity
3. Inverse of time for congestion to reach upstream
NVI)
junction

4.  Link capacity compared to maximum link capacity in
the network
5. Link length
6. Importance of link: number of time that a link is the
shortest path between OD pairs
Jenelius et al. Importance & Vulnerability — Importance calculated as the consequence of liiskire
for travel cost and for unsatisfied demand. Expessithe
(2006) Exposure accessibility dependant on the expected increasavel
cost. Both include arbitrary weighing of link refteng a
links position in a network.

7.3.2 Resilience

While resilience is sometimes mentioned in relatiortraffic flow and networks, research
into descriptive methods is limited. Some authascdbe resilience from an organisational
and economical perspective (Bruneau et al., 2008hd\son, 2007, Reggiani et al., 2002,
Rose, 2009), while resilience is discussed mordiatty in other domains. Within road
network research, there is also an area of resélaattinvolves resilience in case of disasters
(Faturechi and Miller-Hooks, 2014). In these worttee focus tends to be more on decision
frameworks, and therefore we will not focus on #isa of research here. A few suggestions
for more generic attributes in resilience are gitiene based on some of these other transport
related domains. These are merely meant as aratrahicfrom other disciplines, rather than
an exhausted review of resilience in the wholegpartation domain.

In their review of transport security, Reggiani 13D cite four dimensions for resilience:
robustness, redundancy, resourcefulnassl rapidity (Bruneau et al., 2003). Robustness
demonstrates the need to consider the avoidansereiceability for a disturbance as part of
resilience as a whole, where redundancy of unusgaaity may be addressed. However,
when serviceability is affected, resourcefulnessd amapidity become relevant.
Resourcefulness relates to stabilising measurdbereifrom within a system itself or
externally applied (such as traffic managementaiffit). Rapidity relates to the importance
of a rapid return to an acceptable level of services further stipulated that the main aspects
to consider should aino reduce probability of failures, the consequenitem failures,and
the time to recovery

In intermodal freight transport, Chen and Millerdks (2012) present a resilience indicator.
The main premise applied considers the “the letelffort (cost, time, resources) required to
return the network to normal functionality (or add portion thereof)”. Here the main focus
is on the recovery process and the ability to agheereturn to required level of functionality
or serviceability. From this, it is also clear themtcomplete return to the same level of
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serviceability is not required, but rather a préirdel acceptable level of serviceability. The
occurrence of (major) disturbances is consideredraanknown random effect that occurs,
therefore less attention is spent on preventionaoflisturbance leading to a loss in
serviceability. Some variables applied are:

- Recovery activities

- Change in capacity after implementation of recoamtjvities

- Travel time (incl. Maximum travel time)

- Time to implement recovery activities (incl. Maximimplementation time)
- Cost of recovery (incl. Maximum allowable cost)

- Network connectivity

In other research on transportation network, (Mwitaite, 2006) describes a simulation

approach for resilience in which a system optimuppreach is compared to a user

equilibrium approach. In her research, she idergifen main dimensions to be considered for
resilience:

- Redundancy

- Diversity

- Efficiency

- Autonomous components
- Strength

- Collaboration

- Adaptability

- Mobility

- Safety

- Ability to recover quickly

Some of these attributes are more relevant forspamation networks rather than traffic
networks, such as collaboration or autonomous pgsceomponents. However, other
attributes and the general premise give a goodhhsnto the type of attributes that should be
considered.

7.4 Methodology for resilience analysis

Many of the previously described measures and coemis are keyed very much towards
network performance even if many calculate locadrsection performance to obtain a
network score. As defined in a previous sectiomaén application area here for resilience is
very much on the performance of local road sectidhss is due to the stochastic breakdown
effects that materialise on a microscopic levebllycrather than for a whole wider network.
As traffic management is mainly applied to a loasda, it is most relevant to focus on this
local level for the level of traffic homogeneitin this research, there is a greater emphasis on
the determinants of certain attributes, rather tbaly on the resulting effects. A previous
example of a poor road surface is an example df sudeterminant, while a lower speed for
that road section is the resulting effect. As wéngeresilience asthe ability of a system to
cope with disturbances and recover after a lossintion”, it may be seen as an extension of
robustness/vulnerability as it considers the abiht a system to cope with disturbances. It
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does however differ in the sense that it also d@isithe recovery process explicitly and as
an important part of the concept. Moreover, thau$om this chapter is more on traffic flow
rather than network infrastructure.

We start by stating therefore that resilience exmiit of two main partstesistanceand
recovery as is found in the majority of the cited liten@uTheresistancepart incorporates
the extent to which a road section or network isush and can resist functional loss under
stress and is comparable to robustness.rébaverypart of resilience is what sets the concept
apart from robustness/vulnerability and descrilbesatbility of a road section to return to an
acceptable level-of-service.

7.4.1 Resistance

We define the ability of the traffic system to stsa disturbance (resistance)‘tee ability to
avoid going into a state of congestiofMo this extent, we quantify this as the abilityaofoad
section to maintain a density lower than the altidensity:k < k.,;;. Writing this as an
index which represents stability below a value afites:

k

(7.1)
kcrit

index =

The density and the critical density can be derifrech a number of other components. In
traffic flow, in relation to the influence of dishances, we have identified the following
components for the density and the critical densityan uncongested flow, which are
explained in the rest of this sub-section:

Table 7.4: LPIR Resistance components

Density k Critical Density kcrit

q flow decap  road capacity

% speed g road characteristics
P volatility of flow h traffic characteristics

PP volatility of capacity
f temporal capacity reductions
(i.e. incidents)

In traffic flow theory, the fundamental relationgsren by:k = q/v. While the flow of traffic
can be aggregated to set valgein reality traffic flow is stochastic with a cam bandwidth,

q £ . Herey? is the traffic volatility, defined by:

1
l/)q = E (qmax - Qmin) (7.2)

Forq —y?, traffic will remain in an uncongested statey ifs also uncongested, however for
q +y?, traffic may enter a congested state if the fleswéar to capacity. This is therefore
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critical and therefore the density is reformulatesihg the fundamental relation and equation
(7.2) to give:

q+y° (7.3)

v

k =

In a similar way, the critical density can alsorkéormulated to indicate the critical state to
resist congestion as:

 Geap(@ h).f + T (7.4)

kcrit -

Verit
Here, three notable differences can be seen conhparequation (7.2). The flow and speed
variables are now the critical capacity valuesheatthan the current traffic state values.
Furthermore, the capacity is also dependant onvHréables(g, h), which indicate the
influence of road and traffic characteristics. @hjr there may be temporal capacity reduction
to be considered, which is indicated faySubstitution of the components from equation)(7.3
and equation (7.4) into equation (7.1) givesdbaved resistance equation

]

v

Resistance = (7.5)

qcap(g; h)f + lpcap
Ucrit
The equation is valid for a set time intervRl,The dependence on time is excluded from the
equation for readability. Here we see in the numoerde density given by the ‘volatile flow’

divided by the speeds, which follows from the fuméatal relation of traffic flowk = q/v_
The volatility of traffic flow describes the traffiflow increased with a measure of volatility,
describing the stochastic behaviour of the flova ipredefined period, for the time interval, T,
for example 15 minutes. The volatility is an indioa of the bandwidth of traffic flow in this
time window and is therefore defined by:

Note that(q + y) does not need to correspond with a maximum valwgio the considered
time period, as the gravity of the values may bensd higher or lower. Fluctuations in the
speed can also be included in this volatility facteowever are expected to follow the
fluctuations in the flow and are therefore not lieegh In the denominator, the critical density
is given, which also incorporates the fundamerghdtion. The speed is the critical speed by
definition, and is dependent on the road and traffharacteristics. The critical flow is
described as the capacity reduced by a temporakagpeduction factor and also includes a
volatility component. It is given as a function thfe road and traffic characteristics. The
volatility for the capacity is collected for an gatperiod and is not time dependant as the
flow volatility. The volatility of the capacity igiven here as:

1
l/)cap = E (qcap.max - qcap.min) (7.6)
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The road characteristics component representftuemnce of the infrastructure and depends
on variables, such as the maximum speed limit, mundd lanes, lane width, gradient,
curvature, road surface, and etcetera. The trafimracteristics represent variables such as
vehicle types and characteristics, vehicle dimerssiadriver types, etcetera. A further
guantification of these components is not giverehéwut is rather recommended for later
research.

7.4.2 Recovery

Corresponding to the definition given of the remise part, the recovery part is defined as
“the ability to come out of a state of congestiofthis is quantified as the ability of a road
section to regain a density lower than the critaeisity from its current state:> k.,.;;. This
index allows use of the same equation (7.1). Therradditional components identified as
relevant for determination of the recovery are gias:

Table 7.5: LPIR recovery components

Recovery components

4q flow changeg;, — qout Qin inflow
qcad capacity drop (absolute) Qour  Outflow
Veq(q) speed, derived from fundamente

diagram

The recovery equation is derived in a similar faghio the resistance equations, making use
of the fundamental relation and a further expangibthe underlying variables, but in this
case for a congested traffic state. The two maifi¢rvariables that influence the recovery of
a road section are found to be the resultagacity dropin a section and the difference
between the in- and outflow of traffic into a rosettion. From equation (7.5), it is clear that a
higher capacity drop will reduce the ability to oger, as well as a higher inflow compared to
the outflow. The density in congestion makes usthefcongested speed, which is dependent
on the traffic flow and can be calculated from thedamental diagram to give,(q). The
applied fundamental diagram is given in equatioAQY. To recover from congestion, traffic
inflow must reduce if capacity does not increaseisTis derived for a single road section
through the change in flaw;, — q.,.:;- Combined these variables together with the
fundamental relation give:

_q+Aq
Veq(q)

(7.7)

The critical density in congestion is similar touatjon (7.4) from the pre-congested state.
There is however one important difference, thatmt@ngestion occurs a capacity drop often
also occurs. This is added to the equation, while volatility of the capacity is less
interesting as traffic breakdown has already oezlriherefore, the equation for the critical
density becomes:
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Qeap(91)-f = qea (7.8)

kerie =
Verit

Substitution of equation (7.7) and equation (7r8)equation (7.1) results in the recovery
equation is given by:

[q + 4q
Veq(q)
qcap (gr h)f - ch]

Verit

Recovery = (7.9)

Again, the equation is valid for a set time intérf@a which the dependence on time is
excluded from the equation for readability. Herg,(q), further represents the speed derived
from the fundamental diagram with inpgt: Written in full, this corresponds to:

q

kcrit + (1 - m) (kjam - kcrit)

Veq(4), = (7.10)

wherek;,, is the jam density ankl.,;. is the critical density.

7.4.3 General Link Performance Indicator for Resilence

As we define resilience in traffic flow as the candiion of both resistance and recovery, the
combination of the previously described equatie@wmilts in the Link Performance Indicator
for Resilience (LPIR) and is given by:

q
(] k]
LPIR = lz 7 L @l 711
T £ | [qeap(g B)f + o] F=rerte [qcap(g, nf — ch] K>kt '
Verit Verit

Combining both parts is allowed as it gives thdaremange of possible density values, from
uncongested to congested density values. Noteedhett variable is valid for a set time
interval. For readability, the notation of the degence on t has been omitted from the
equation. The total LPIR score per road sectioi@saverage over all time intervals for the
considered period.

The LPIR can be applied to any road section to givéndication of the relative resilience of
that road section compared to other road sectibosus on local homogeneity means that
network connectivity is deliberately avoided tooall the index to describe the local
vulnerability. Obviously local traffic conditionge& influenced by network effects, however
the index is not greatly sensitive to this as tWeduation of a road section considers local flow
and local capacities. A value of LPIR =< 1 indicatbat a road section is able to resist a
significant drop in level-of-service and therefeegnain uncongested and by definition must
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be considered resilient as well as robust. Howexenad section that does suffer a drop in
level-of-service, but can recover promptly shoulsbabe considered resilient as resilience
considers the ability to recover from a disturbancdoss of service. However, in the latter
case, the road section may not be considered roasist failure event occurred. One cannot
state that a value above LPIR > 1 is always notigas Normalisation of the LPIR may be
applied, as this may make comparison between vdtoes different road sections easier.
However, this has the drawback that the quantgaititerpretation of the index is lost and is
not performed in the experimental case.

7.4.4 Stochastic Link Performance Indicator for Reience

The presented description of the LPIR given in équa(7.11) is a deterministic score for
resilience. However, increasingly the importance explicitly considering stochastic
fluctuations in traffic is being seen as relevantl @ften necessary. Therefore, a stochastic
representation of the LPIR is also relevant. InctdRy, it is not that difficult to transform
LPIR for a stochastic representation. The vargbépresenting the flow from the original
LPIR should be described as random variables rakt@ar deterministic and must be further
condensed, resulting in:

[q . Aq]

Veq(q)

LPIR =7 Z Lieskerie + sk, 7.12

T [QCap (g, h)f] feskerit [QCap (g: h)f - ch] >Kerit ( )
Verit Verit

Note that the main changes relate to the represamiaf g, which is now the random variable

g. Furthermore the volatility variables become d®oin a stochastic version, as they were
used as a measure of variability, which is now ipocated in the random variables of the
flows and capacities. It is also possible to repméshe incident reduction factor as a random
variable, as well as the speed and critical spidedever, it is chosen not to do that here and
consider stochasticity only from the flow and capeacariables.

7.4.5 Considerations and component sensitivity

The presented methodology differs in its approashmntany other methods that have
previously been presented for similar measuresnignam the area of robustness. The first
main difference is the focus on specific road s&sj rather than on a network performance.
The second one is the explicit consideration offitrdlow dynamics, where many other
methods consider more static descriptive variables.

In relation to consideration of local road secticas implicit consideration of the influence of
other bottlenecks and connectivity to the rest loé¢ ihetwork is present: downstream
congestion that reaches an arbitrary road sectibbraffiect the LPIR score of that section in
conjunction with the severity of the congestionwdwer, the opposite does not apply. That is
the network effect of congestion caused by a cemed road section on the rest of the
network. This is a drawback when one wishes to edpghe method to be used to calculate a
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network index. In relation to consideration of fi@flow dynamics, this method aims to seek
out the core reasons behind resilience or the ¢cknd offers the possibility to connect the
resilience score to the causes. At the highest,l¢is is only calculated from traffic data,
while further adding detail to thge and h terms, denoting road and traffic characteristics,
allows explicit causality to be derived. This ig performed in this chapter though.

The variables applied in the method have beenddstetheir sensitivity, while a few other
variables that were considered have been showmorim® of great relevance. The choice of
the time intervalT, has been analysed for its effect on the resiiis.time interval is mainly
relevant for the volatility variables)], including the delta flow variablel¢). The outcome
of the analysis shows that the absolute value dRLd®es shift slightly, but in relative terms
there is a limited effect. In any case, this is sofficiently large enough to influence the
analysis of the road sections. When delta flow o$ included, the LPIR shows a higher
sensitivity for higherT values T=15), while for lowerT-values (i.e.T=2), the exclusion of
delta flow does not influence the LPIR score. As itifluence of delta flow requires a higher
T-value and the relative difference is not largenleein T-values, a value of 15 minutes is
viewed as a suitable value, as this allows vamairoflows to be considered in LPIR. The
analysis of this variable is shown in Appendix AesRles thelqg andT variables, a further
volatility term for congested traffic was considér@s well as a volatility value for the speed
and critical speed. Congested traffic is more stalbhn uncongested traffic and the term
already includes the relevant variations in recgyvsuch that the inclusion of a volatility term
for the recovery does not have a large effect.uliicly a volatility terms for the speed and
critical speeds in the resistance equation alsmdigossibly influence the scores. The traffic
speeds were found to include too much noise tombleided as they made the results messy,
while the flow volatility already captured many tife fluctuations, but in a more stable
manner. The critical speed was found to be ratharles for most locations and between
different breakdown events (consistently betweery5&m/hr) and therefore added little to
the overall method. Therefore these additionaltidgiavariables were not applied.

7.5 Experimental study results

In this section, the LPIR is demonstrated in aneexpental case study for a part of a heavily
congested network north of the city of Rotterdanenidnstration of the validity of the
method is achieved through comparison with othdices related to robustness and recovery
and with a comparison with the qualitative causes effects of regular congestion on the
considered network.

7.5.1 Setup and network

A demonstration of the Link Performance Indicatmr Resilience (LPIR) is given making use
of a real network. The purpose of the demonstrasda show the applicability of the method
using existing and accessible traffic data. The awestration also acts as an indicative
validation of the methodology.
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This is achieved by comparison with two simple nuees for both robustness and resilience,
namely thetime to recoveryand thetotal delay time.The time to recoveryJTR per road
section is defined as:

Z Trecover
TR = %for N >10 (7.13)

Here, T, ¢°°v¢" is the recovery time of a single congestion eventefined as the time from
the start of congestion to the end of congestibis the number of congestion events per road
section, while a minimum number of 10 congestioergs is required to give an estimate.

The total delay time, TD, per road section, is miedi as:

TD = Z veh(t) (7.14)

vfree Vobs (t)

Here,veh(t) is the number of vehicles on a road section iima interval,vs,.. is the free-
flow speed, which corresponds to the maximum sfiegt andv,, is the observed average
speed of all vehicles during the time period. laltthere are a number of time periods.
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Figure 7.2: Considered network of the A13 and A20 wtorways

The considered network exists of two interconnectimotorway stretches to the north of the
city of Rotterdam in The Netherlands (see Figu®.7The motorways are the A13 and the
A20 motorways and vary in width between two to ftames and include several junctions
and interchanges. The network is regularly congeste the peak periods with known

bottlenecks at multiple locations. The total distnof the roads is approximately 55
kilometres long.
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The data used for the considered network is takam fan extensive collection of induction
loops at a distance of approximately 300-500 meffeg induction loops relay one minute
aggregated data on the traffic flow and the spéaaaffic.

7.5.2 LPIR calculation

The Link Performance Indicator for Resilience (LPIR calculated for the network shown in
Figure 7.2. This is performed using an aggregdiime interval of 15 minutes, as argued in
section 7.4.5. Data for the entire year of 20083ed in the experiment. Road sections are
defined as the section of road between two comwecking loop detectors. In this test case the
jam density of traffic is assumed as 130 vehicles lplometre per lane. Incidents are not
explicitly considered, meaning that the incidemtugion term is unused and has a value of 1.
Capacity values are pragmatically estimated frota dy taking the 99.9th percentile value
for each road section. At bottleneck locationss thill resemble the real capacity, while at
non-bottleneck locations the value will be less ami@nt as traffic flow will either remain
uncongested (captured by the traffic speed) or bellinfluenced by an external bottleneck
with a lower capacity value.
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Figure 7.3: LPIR score per road section

The primary LPIR results of the experiment are sthaw Figure 7.3 on the considered
network. Values are shown to generally vary betw@dn4, with one section in particular
reaching a LPIR value of 2.0. Road sections withhar values are sections that should be
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viewed in more detail and are the sections thatulshde most readily considered for
improvement to improve the traffic throughout andurn the network performance, even if
the network performance is not directly calculatedFigure 7.3, road sections that appear
with a red colour or darker are the least resilidiftese are road sections that have a LPIR
score equal to or above 1.2, with orange indicatialgies around 1.0, and yellow and green
indicating values below 1.0, which are deemed todael sections that have a lesser priority
in comparison to the higher scoring road sections.

Using the results from the LPIR analysis, a priohist can be constructed which indicates
which road sections should be addressed with whigkency by road authorities. This list is
given in Table 7.6, with the numbered sections showFigure 7.3. A manual check based on
expert judgement is performed to give an indicatbbrthe possible reasons of each section
belonging to the list and the causality of the Iesilience score. Causality can be added to
the analysis by making use of the traffic charasties and road characteristics terms from
equation (7.11). This would exist of adding datanfrfurther relevant variables, such as data
on the road surface, infrastructure geometry, irafdbmposition, and many more. This more
detailed analysis is not performed here, theretatesality is left to expert judgement.

Table 7.6: Least resilient road sections from the 23-A20 analysis

Section nr LPIR Location Section type Estimation of problem

(see Fig. 3) value description (expert judgement)

1 2.0 A20L Terbregseplein Joining flows after interchange

2 1.9 A20R Centrum Section with Narrow lanes, gradient and

onramp inflowing traffic on short onramp

3 1.7 A20L Weaving section Weaving section
Kleinpolderpolein

4 1.6 A13R Delft-Zuid Onramp Joining flow with a beimdthe

road

5 1.4 A20R Weaving section Weaving traffic at interchange
Kleinpolderplein split

6 1.4 A20L Centrum Off-ramp Short uphill off-ramp

A deeper analysis of the results is shown in Figa# for the A20 motorway in the
westbound direction. The figure shows the traffieexds during an arbitrary work week along
with the LPIR scores.
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Figure 7.4: Comparison between speeds (left) and LR values (right) on the A20R

From Figure 7.4, it quickly becomes apparent thatltPIR score does not simply replicate
traffic speeds, but rather focusses on the maiasaire which congestion occurs. Moreover,
the method also aims to gives an indication ofahgity of a road section to recover from
disturbances. Road sections which suffer congestaond are especially the cause of
congestion, and cannot readily recover receivedrigidex scores, representing this. This can
be derived at a number of places from Figure 7h& dongestion in the middle of the road
(around section nr 60) is more severe and lastgeloand even leads to secondary congestion
upstream. In comparison, the congestion observedddeabottom of the figure (near section
100) occurs regularly during a week, but is lesgese and has a tendency in a number of
cases to lead to limited spillback and to disséhster. This is represented in the LPIR score,
which is close to 1.0, therefore indicating a readtion that may need attention, but has a
limited negative effect.

7.5.3 Comparison with other measures

In many disciplines, the resilience of a systetméasured by the required recovery time. The
recovery time is then a measure for the recoveltholigh recovery is only seen as part of the
resilience definition here, a comparison with tH&R score can be insightful. In Figure 7.5,
the average recovery times are shown for a rodibeeto exit congestion. It is expected that
a number of locations that have a long recoverg tare part of the higher LPIR locations.
However, there are also a few that do not scorle tigthe LPIR. One such example is that at
the coordinates [9.8; 4.42]. Alternatively, someations with relatively low recovery times,
are shown to have relatively high LPIR scores, @b¢iney are not among the highest LPIR
scores. These effects are down to the combinedtedfeboth recovery and resistance in the
LPIR. If one of these aspects is low, then the alV&PIR will also be relatively low. This
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shows that the LPIR is a typical impact index. Dk&espome difference, the majority of the
least resilient road sections are also amonggsbidw sections with the highest recovery times.
The ability of the index to react to both weaklgistant and road section with weak recovery
is a particular strength of the index and an imgaartontribution.

Another measure used to compare the LPIR resulkeisetwork delay, for which the results

are shown in Figure 7.6 per kilometre distance. fot@ network delay is a measure that can
be used to indicate robustness and therefore meefiicts the resistance part of traffic flow.

The total network delay includes a further elemssmpared to the LPIR and the recovery
time, which is the total flow. This acts as a suriveight for negative effects of congestion
and indicates also a combined effect of the nunobetehicles affected and the length of a
delay. However, the indicator focusses on the efééctraffic breakdown and not on the

causality, which is a more important part of thdR.PTo that extent, the locations shown are
slightly different to the LPIR. The presence of gestion in the LPIR does not necessarily
lead to the highest LPIR score. And although thievaek delay does indicate where most
delays are recorded, it fails to pinpoint the magaknesses in the network.
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7.6 Conclusions and discussion

In this chapter, the Link Performance Index for iRasce (LPIR) is presented as a new
methodology to evaluate the resilience level ofdreactions in relation to the surrounding
network, where resilience was defined #e“ability of a system to cope with disturbances
and recover after a loss of function"The methodology offers a powerful tool that aléow
road authorities and alike to perform analysesheirtroad network and identify the weak
links, which may demand the higher priority whemsidering investment. The focus of the
methodology is on resilience and is therefore with@an robustness, as it also considers the
ability of road sections to recover from disturbasmas well as the classical robustness itself.
To this extent, a distinction is made between &tasce part and a recovery part as part of
the entire methodology. Contrary to many other wptke basis for the methodology does
not focus on the network as a whole or as a gemescription of the network and its parts
against a certain measure. Rather, the resilien@alculated in relation to the traffic flow
characteristics at a flow level and the abilityrofd sections to maintain their predefined
purpose to serve vehicles without overly experiega@ongestion. The focus on homogenous
and volatile traffic flows also leads many of thensidered components to relate closely to
traffic flow characteristics.

Prior to the explanation of the method, an extenbterature review was performed to set the
scene for the LPIR, but also to indicate where neffsirts have been performed in the past.
This showed that much has been done and is being itoreliability and vulnerability and
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increasingly in robustness analysis. Resiliencefoisnd in many transportation related
disciplines, such as transport networks, freightemeents and logistics, but it not explicitly
commonplace in traffic flow analysis. This is whéne niche and the main contribution of the
LPIR method lies. The relevance of resilience asialyn traffic flow stems from the
importance of road section not only to resist dégtian of function, but to also recover
promptly as a consequence of traffic flow stahility

The effectiveness and validity of the methodologgémonstrated in an experimental case for
a small network of two interconnecting motorwaysttte north of the city of Rotterdam in
The Netherlands. This showed that the LPIR is ableletect weak and poorly resilient
locations by calculating the relative resilientualof individual road sections. For the road
sections with the highest LPIR value a manual daysa given as a further demonstration of
how a road authority may be able to use the resuli®termine poorly resilient road sections.
The calculated LPIR values are further comparedth wie results of two other measures for
resilience and robustness, namely the ‘recoverg’tand ‘total delay’. Many locations that
performed poorly in the LPIR were also highlightedthe other measures, however there
were also important differences that further showesl strength of focussing on resilience.
The recovery time merely shows locations that caicklly recover from a congestion event
after a disturbance, while the occurrence ratetsconsidered and therefore says little about
the overall impact during a longer period. On tkieeo hand, the total delay experienced on a
road section does give an overall indication of tlegative effect of congestion on a road
section. In comparison to the LPIR, this lacks &sdaes not sufficiently take into
consideration where bottlenecks are present aneftre the road sections which are the
cause of congestion. Congestion on a road sectiora foottleneck further downstream is
unfairly penalised due to the weakness of anoth&d section. Although one may argue that
this is also a part of resilience, it does not aataly contribute to the purpose of identification
of the main problem areas for disturbed trafficwfl@nd recovery from congestion and
therefore a lack of resilience. We therefore artiia the analysis of the resilience offers a
deeper insight into the way road sections are jddgeweakness and that resilience analysis
offers a complementary tool to robustness. Thigspecially the case when the analysis
concentrates on the influence of disturbances affidrflow at the level of traffic rather than
at a higher abstraction level.

The LPIR methodology also allows for a deeper asslgf the casualty of a poorly resilient
road section. This is performed through additicshatia analysis. This part of the LPIR was
not further elaborated on in this chapter and wsas aot part of the experimental case. The
consideration of incidents was also not part ofdbeesidered case. Both of these elements are
given as recommendations for further research. &alhethe analysis of resilience causality
is an interesting area that can be a strong additidhe presented method, as it does not only
return road sections that require attention, bsb @ives a strong indication of the reasons
behind the lack of resilience allowing a road attlydo act more precisely.
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Appendix 7.A: Sensitivity of the time interval parameter T

The parameter for the time intervdl, is relevant for the considered period in whick th
volatility and extreme values of the flow are measu There is however no required value,
therefore an analysis of appropriate values isiezhrout to test the influence of different
values. This is also combined with a test of theessity of the delta flow variable, which
indicates the difference between the incoming anthang flows on a congested road
section.

An upper bound is set of 15 minutes foy as a higher value would lead to a less
representative observation of the traffic statesiight even be suggested that 15 minutes is
already too high, however such a value is not aoommon aggregation level in traffic flow
theory and modelling. Figure 7.7 shows LPIR valiesthe A20R (westbound) for thréle
values: 2, 5, and 15 minutes. From the figure, eashlt shows that the locations of higher
values correspond betwe&nvalues, which is not surprising. High&values show a higher
LPIR score. This is also not surprising as longeetintervals allow a larger range of flows to
be observed, which in turn will lead to a higheinRPFurther analysis shows that the scores
between the three tested values are relativelyia@imiherefore, for relative comparison there
is little difference. As the LPIR is applied as elative index between road sections, we
conclude that there is not a strong preferencetiferchoice ofT value based on its own
sensitivity alone
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In Figure 7.8, the effect of the delta flow variab$ considered together with differeft
values: 2 and 15 minutes. This comparison showssthevalue ofT does matter for the
results of LPIR when delta flow is included. Thancbe seen in the difference between the
first and second result, with or without the usehef delta flow term. However, whén= 2,
there is no difference between the LPIR scores witivithout delta flow, which can be seen
from the third and fourth column in Figure 7.8. Fhnhakes sense as there are only two
observations foll = 2, and therefore the maximum and minimum vallkalways be one of
those values.

The results of this analysis show that the maifetthces are absolute shifts, rather than
relative shifts in the scores. Nevertheless theafi§e=15 while retaining the delta flow term
gives more pronounced results, as the absolutewvalte higher. A more pronounced result
makes it easier to distinguish between roads sectad therefore a preference is made to use
aT = 15, with the delta flow term. This also givesmmobservations to make an estimate of
the volatility, which is limited by a smalld@rvalue. While stating this, we recognise that the
use of a lowet-value would not necessarily be an incorrect apgroa



Chapter 8

Comprehensive case study

This chapter gives a demonstration of the applittgband usefulness of the developed
methodologies in a comprehensive case study. Ircdse study, the application of traffic
management to improve traffic flow is analysedtiSed.1 describes the applied framework
and its steps. The considered network is presantsdction 8.2. Execution of the framework
steps are performed from section 8.3, concluding thie assessment of the results of the case
in sections 8.6 and 8.7.

This chapter is an edited version of the article:

Calvert, S. C., Taale, H., Snelder, M., & Hoogendoorn, S. P. (2016). Improving traffic management
through consideration of uncertainty and stochastics in traffic flow. Submitted for publication in Case-
studies in Transport policy.

161



162 TRAIL Thesis series

8.1 Framework

To integrally demonstrate the developed tools desdrin this thesis, a comprehensive case
study is performed in which the complete chain @bld, to analyse and apply traffic
management in an uncertain traffic system, is sh@wditionally, a second goal is defined to
demonstrate the necessity of considering traffistashastic for traffic management. The case
is carried out on a network with the aim to derweakly resilient locations, offer traffic
management solutions for these locations and prede positive effect that the traffic
management measures are expected to have. Thesestaps are described in greater detail
in this section. In section 8.7, we will also derstvate the necessity of considering
uncertainties and traffic flow fluctuations wherniesting the future effects of specific traffic
management measures.

Step 1: Network resilience scan

The first step involves a resilience scan of thesatered network using the Link Performance
Indicator for Resilience (LPIR). The LPIR was pawsly described in Chapter 8, where more
details are given on the indicator.

As resilience is defined in traffic flow as the doimation of both resistance and recovery (see
section 8.4), both elements are combined in thé& Berformance Indicator for Resilience
(LPIR), given by:

. / lq+¢"l [q+Aq]

LPIR = lz 7 L @l 8
T £ | [qeap(g R)f + o] F=rerte [qcap(g, nf - ch] K>kt '
Verit Verit

Here, for each time interval q is the traffic flow,v the traffic speedy,,;; the critical speed
just before traffic breakdowrk, the traffic densityq,.,,, the estimated capacity,a temporal
reduction factor for the capacity (i.e. due to dweits) andg.; the estimated capacity drop.
Y? andy“® are volatility variables that give an indicatiohtbe extent of homogeneity for
the traffic flow and capacity respectively.andh represent the road and traffic characteristics
and influence the capacity. In Chapter 7, a moterestve explanation of the build-up of the
equation is given.

Recall that each variable is valid for a set timeenval[t, t+dt). For readability, the notation
of the dependence dnhas been omitted from the equation. The total LBdBre per road
section is the average over all time intervals tfog considered period. In this case, the
considered period is a complete year of data ferARO and A13 motorways in the year
2009, due to availability. The data is taken frameatensive collection of induction loops at
a distance of approximately 300-500 metres. Thadtidn loops relay one minute aggregated
data on the traffic flow and the speed of traffic.
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The LPIR gives an indication of the relative resilte of that road section compared to other
road sections. A value @fPIR < 1 indicates that a road section is able to ressguaificant
drop in level-of-service and therefore remain ummsted and by definition must be
considered resilient as well as robust, as se€&hapter 7. However, a road section that does
suffer a drop in level-of-service, but can recopermptly should also be considered resilient
as resilience considers the ability to recover feodisturbance or loss of service. However in
the latter case, the road section may not be cereidobust, as a failure event occurred.

Step 2: Design of set of Traffic management measures

In the first decade of the 2tentury a coherent framework was developed inNétherlands

for the deployment and decision making processeswwuding traffic management (In Dutch:
‘Gebiedsgericht benutten’). The framework is applés the basis on which the majority of
integral traffic management decisions are takenké$Raterstaat, 2003). In the framework,
depicted in Figure 8.1, a distinction is made betweservices and measures for the
application of traffic management. Services retatéhe network wide objective that is being
sought through traffic management for an identif@blem. A service is in general a
description of actions intended to achieve therddseffect for certain traffic flows, locations,
or roads (e.g. limit the flow of incoming traffi;jcrease the capacity at the bottleneck). On
the other hand measures relate to the physicaicapiph of an action that directly influences
the traffic system. In general, measures are deifirgam services, where the measures are the
actions that achieve the objectives set out instrgices. The services categories are defined
as: influencing throughput, redistribution of trafflow, influencing demand, influencing
capacity, and general network-services. In the gdasade, a number of additional services
and measures may be added to the list, such asnpdised in-car travel information and
cooperative ITS.

Although the traffic management framework give®adjoverall indication of the majority of
possible measures, new options have been devekiped its finalisation which is very
relevant to the considered case. One aspect thabrisidered is that of network wide
integrated traffic management. Although there amnynways such an approach can be
defined and implemented, we will focus here ondaénitions and approach as described in
(Hoogendoorn et al., 2015, Hoogendoorn et al., 20&dddman et al., 2010). In this approach
four main principles are applied:

» Spare capacity in the network is optimally utilisgden the prevailing traffic
conditions

» Capacity drop is prevented for as long a time &sipte

« Traffic flows in the network should not be unneeesyg hindered (secondary
congestion)

+ A bottleneck should be resolved at the level acWli manifests.
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Figure 8.1: ‘Gebiedsgericht benutten’ (GGB) traffic management strategy framework
(Rijkswaterstaat, 2003)

These principles are applied in practice on a nétvsoch that multiple bottlenecks can be
tackled without a solution at one location leadingecondary problems at another and also
allowing multiple correlated bottlenecks to be dianeously addressed. In most instances,
the measures that can be applied exist in the quehli described framework; however the
setup and application of the measures are cordrslieh that each one considers the setup of
the other measures and such each measure doesnkanhdividually, but rather as part of an
integrated system.

In this case, a service solution will be defineddach identified location from which one or
more traffic management measures can be selectesl.s€lected measures will then be
analysed for their effectiveness as describedarfahowing step.

Step 3: Evaluation of measures

Forecasting of the effect of traffic management sneas for each carriageway is carried out
using simulation models in which the stochasticrabir of traffic flow is considered on
different levels. Two models are applied for thiggose: INDY-MonteCarlo and FOMSA.
INDY-MonteCarlo is a dynamic macroscopic traffic deb based on the LTM and enriched
with advanced Monte Carlo sampling algorithms facertainty modelling, as described in
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Chapter 4. INDY-MonteCarlo is suited for use witimcartainty analysis and network
scenarios. The considered scenario and uncertamtgegiven in the following subsection.

The FOMSA model is a Lagrangian based dynamic seanroscopic model based on first
order traffic flow theory with additional invarianterms to consider stochastic driver
behaviour. The use of Lagrangian coordinates alleeisicles and vehicle-groups to be
individually followed and be assigned specific @weristics. This model is described in
Chapter 6 of this thesis. For specific locationsl &araffic management measures, a more
detailed analysis of the traffic flow may be regdir An analysis on the level of vehicles and
vehicle interaction can give insight into the lewdl effectiveness of traffic management
measures. This may be the case where there arplmurttteracting traffic flows that cannot
as easily be captured in a regular macroscopic mbdsuch a case, the FOMSA model is
suited and can be applied using a single vehid&ph (therefore microscopically) or on a
platoon basis.

8.2 Case study network

The case study is performed for the A20 motorwayictvforms the North Ring of Rotterdam

motorway network. The network of greater Rotterdamshown in Figure 8.2. The network

covers the city of Rotterdam including surroundaiges and towns, such as Delft, Dordrecht
and Zoetermeer and includes the major motorwaysraatconnecting roads down to a local
level.

Figure 8.2: Road network for Greater Rotterdam with the considered A20 motorway
highlighted
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The objective of the study is to evaluate the itadperations on and throughput of the A20
motorway on the north ring of Rotterdam (see Figid) and consider traffic management
improvements to improve traffic flow conditions dhat corridor and the surrounding
network. The A20 on the North Ring of Rotterdam aasumber of bottleneck locations with
spillback often reaching other bottleneck locatiombere are a lot of intertwining traffic
flows, both local and national. The congestion fepits on the road have been a major
concern for a while and continue to form a chalkeregpecially as there is very little space to
expand the infrastructure to increase capacityréibee traffic management potentially has
an important role to play.

8.3 Network scan for weakness

The first step of the approach entails scanninghéte/ork for weak elements. To this end, the
Link Performance Indicator for Resilience (LPIR)dalculated for the network shown in
Figure 8.2. This is performed using an aggregadiime interval of 15 minutes. Data for the
entire year of 2009 is used in the experiment. Reeautions are defined as the section of road
between two correct working loop detectors. In tbése the critical density of traffic is
assumed as 25 vehicles per kilometre per laneddnts are not explicitly considered,
meaning that the incident reduction term is unus®dihas a value of 1. Upper bounds for the
traffic flow are pragmatically estimated from détataking the 99.9th percentile value of the
flows for each road section. At bottleneck locasidinis will resemble the real capacity minus
outliers, while at non-bottleneck locations theueaWill be less important as traffic flow will
either remain uncongested (captured by the traffeed) or will be influenced by an external
bottleneck with a lower capacity value.

The LPIR results of the experiment are shown inufég8.3 on the considered network.
Values generally vary between 0.0-1.4, with ondigedn particular reaching a LPIR value
of 2.0. Road sections with higher values are sestibat should be viewed in more detail and
are the sections that should be most readily censit for improvement with traffic
management to improve the traffic throughout antliin the network performance. In Figure
8.3, road sections that appear with a red colodtadker are the least resilient. These are road
sections that have a LPIR score equal to or aba¥ewith orange indicating values around
1.0, and yellow and green indicating values belody Wwhich are deemed to be road sections
that have a lesser priority in comparison to tlghar scoring road sections.

Using the results from the LPIR analysis a priolisy can be drawn up that indicates which
road sections should be addressed with prioritydaygl authorities. This list is given in Table
8.1, with the numbered sections shown in Figure B.®lausibility check based on expert
judgement is performed to give an indication of thessible reasons of each section
belonging to the list and the causality of the Iesilience score. Causality can be added to
the analysis by making use of the traffic charasties and road characteristics terms from
equation (8.1). Data is added from other relevamiables, such as data on the road surface,
infrastructure geometry, traffic composition, andnmy more. This more detailed analysis is
not performed in this contribution, therefore caing#s left to expert judgement.
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Table 8.1: Locations with the highest LPIR values

Sectionnr LPIR Location description  Section type Initial estimation of problem
(see Fig. 8.3) value
1 2.0 A20L Terbregseplein Joining flows after interchange
and lane drop
2 1.9 A20R Centrum Section with Narrow lanes, gradient and
onramp inflowing traffic on short
onramp
3 1.7 A20L Kleinpolderplein Weaving section Weaving section
4 1.4  A20R Kleinpolderplein Weaving section Weavirgffic at interchange
split
5 1.4  A20L Crooswijk Weaving section Weaving section

. 29r.|t1cldim| g

Figure 8.3: Network and results of the LPIR analyss

8.4 Design of traffic management solutions

In the second step of the proposed framework,i¢rafftnagement solutions are constructed
for selected locations. The quick-scan resilientaysis of the network returned a number of
locations that are found to be the least resilidiiese locations have been prioritised as
shown in Table 8.1. An initial estimation of theasens behind the lack of resilience is also
given for each location. Using this analysis, aes@bn of feasible traffic management

measures can be drawn up to tackle the problenidosa

Two sub-cases are considered to allow both modeiéohniques to be demonstrated. On the
westbound carriageway (A20L) the FOMSA model isligpolp as this corridor shows multiple
interacting bottlenecks, which can be suitably ysed by this model. On this stretch, it is ill
advised to consider a single location as the oeage of multiple bottlenecks do not stand



168 TRAIL Thesis series

alone, rather a coordinated traffic management campr is required. On the eastbound
carriageway (A20R) advanced sampling Monte Carlapglied using the INDY-MonteCarlo
model. The second sub-case considers locationn2 Figure 8.3 at which will be referred to
as location A20R31. The results from the LPIR asiaglynto the resilience of the motorway
are considered to a focus on especially weak anedise carriageways.

8.4.1 Sub-case 1: Westbound carriageway of the ABIng Rotterdam

The westbound carriageway of the A20 Ring Rotterthas a long standing problem during
peak periods due to multiple bottleneck locatidr®ere is very limited space available for the
realisation of extra capacity and many traffic ngemaent measures thus far have not
eradicated the expansive congestion problems.

Location: A20L from Terbregseplein interchange to Keinpolderplein interchange

Problem: Multiple bottlenecks in succession:
- Merging flows after an interchange (Terbregsepieiarchange)
- Inflow of HGV onto main highway together with bead road
- Busy on-ramp (Crooswijk)
- Two weaving sections in quick succession (CroosWwigkterdam Centrum-A13).
Solution*: Coordinated traffic management with multiple slns.
- Facilitate merging
- Maximize bottleneck capacity
- Limit traffic flow
Possible measures:
- (Dynamic) Lane drop prior to merge
- Lane drop on the outside lane instead of inside lan
- Prevent left lane changes in merge area
- Lane choice advice
- Ramp-metering
Solution approach scenario 1.
- Dynamic lane drop prior to merge location. (Terlseggein interchange)

The first scenario considers the reduction of icatbw into the motorway corridor. Due to
congestion at the merging section at Terbregsepleimcle interaction can lead to congestion
for both inflowing traffic flows (see Figure 8.4)his combined with the lane drop leads to an
increased reduction of the local capacity. By mguime lane drop upstream before the merge,
removes the necessity to merge over all lanes aahsthat any congestion resulting from
the lane drop only affects one of the incoming Bowlowever, applying the lane drop
upstream will lead to a reduced utilisation of aafya as the flow with the lane drop can no
longer make use of any spare capacity on the tnesl&rom the other inflowing carriageway.
It is unclear to what extent this plays a majoerdrhis measure is focussed on reducing the
inflow of vehicles into the problem area and theslucing the chance of secondary
congestion on the Rotterdam Ring.
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‘.

‘Lane drdp

Figure 8.4: Terbregseplein motorway merge consideckein scenario 1 of sub-case 1

Solution approach scenario2:

- Construction of the considered A16-A13 bypass esiten

While creating extra capacity on the A20 is notgiolg, for a number of decades there have
been plans to build a bypass extension to the Adtmway, which would reduce the size of
the traffic flow on the A20 (see Figure 8.5). Thasnot really a traffic management option,
but is considered as it has long been seen adbke\aad attractive option. However, it should
be noted that it comes at a far greater monetapgrese. The construction of the bypass
diverts traffic from the A16 and A20 that have thggstination north of Rotterdam away from
the city ring road and therefore reduces the presso the North Ring (A20).

[NE] o
Ommoord
Rotterdam The Hague Airport
i Terbregseplein
Overschie
Kleinpolderplein Al6

Figure 8.5: Planned A16/A13 bypass considered inestario 2 of sub-case 1
(Rijkswaterstaat, 2015)

Solution approach scenario 3:

- Ramp-metering (Crooswijk on-ramp)



170 TRAIL Thesis series

The third considered scenario involves focussing tb@ most significant downstream
bottleneck location on the carriageway. As congestnoves in an upstream direction, the
most downstream bottlenecks are of most signifieaas spillback will influence the greatest
area. The on-ramp and weaving section at Croodilagation 5 in Figure 8.3) is one of the
most downstream bottlenecks on the corridor. Thiewnof traffic at this onramp is high
during peak periods and has a disruptive effecthenmain carriageway. Therefore ramp-
metering is applied on the on-ramp to reduce tifievinand level of disruption on the main
carriageway and therefore lead to a lower levetaigestion and upstream spillback into
other bottleneck locations.

This scenario also requires network traffic managr@nfor the secondary roads that connect
to the on-ramps. This additional secondary bufteris required as there is limited space
available on the on-ramp for buffering and addailospillback onto the urban roads is

undesired. The secondary buffering limits trafficoughput to the onramp on urban roads and
therefore prevents the onset of additional congestt the start of the on-ramp. This

methodology has been previously described by (Hodgern et al., 2015, Hoogendoorn et

al., 2014). However the secondary network traffienagement is not modelled in the case
and is presumed possible.

8.4.2 Sub-case 2: Eastbound carriageway of the ARIng Rotterdam

Similarly to the westbound carriageway, the eastbogarriageway also has extensive
congestion problems with few options for capacitpansion. However, there is one clear
bottleneck location at which the majority of conty@s occurs. This allows a more focussed
approach to the problem. Another difficulty thatnist tackled here, but is of relevance, is
regular spillback from connecting motorways. Howevere will focus on congestion
occurring from the A20 itself in this sub-case.

Location: A20R Centrum (A20R31)

Problem: Narrow lanes, gradient and inflowing traffic on ghanramp
- Busy onramp with short merge distance onto a @@way on a gradient with narrow
lanes.
Solution*: Restrict flow / Buffer traffic
Possible measures:
- NB: Keep your lane is already in operation!
- Ramp-metering
- Traffic buffering at subsequent upstream intersectin secondary network
Solution approach:
- Ramp-metering (Redesigned with coordinated trafbictrols for secondary roads)

A ramp-metering installation is already presenthatonramp, but not in use, partially due to
the spillback onto the secondary road network aamtigdly due to the limited effectiveness.
The proposed measure will make use of the rampringténstallation with an increased
buffer-area. As the buffer area will still be incient and it is infeasible to allow traffic to
buffer on the upstream roundabout, coordinatedid¢rabntrol is proposed from traffic onto
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the roundabout for the directions heading to theamp (Hoogendoorn et al., 2015,
Hoogendoorn et al., 2014). The exact control setilp not be considered in the case,
however the effect on the roundabout will. The @fief ramp-metering should delay the on-
set of congestion, which has a positive effect ugloa reduction of the duration of the
capacity drop and the reduction in secondary effécm the spillback from congestion on
the motorway network. The effect of a reduced cépaltop duration is estimated at 2%
during the entire peak period on the upstreamdiwatik link (Zhang and Levinson, 2003).

Figure 8.6: Rotterdam Centrum onramp considered irsub-case 2

8.5 Model set-up and scenarios

In this step, we will discuss the (experimentat}ige of the two models that will be used for
the respective subcases. Also, the applied disioihsl and scenario application is discussed
in this section. The correct choice and set-upppir@priate modelling tools is essential for the
correct assessment of the measures that have béeéorward in section 8.4. For subcase 1,
we have opted to use FOMSA to model the interadbietween bottlenecks, as the model
considers microscopic fluctuations in traffic anlderefore allows interactions between
bottlenecks to be visible as trajectories are folid. For subcase 2, we elect to make use of
INDY-MonteCarlo because of its ability to consideeenario based uncertainties that are
present on the A20R at the considered bottlenexktitmn.

8.5.1 FOMSA model setup (sub-case 1)

The first sub-case considers the westbound A20Liatgeway over a distance of 11.6 km

from the onramp at Capelle to the Giessenbrug bridépe Lagrangian model is setup with

the correct number of lanes for each road sectmmtding the presence of peak hour lanes.
Onramps and off-ramps are not considered in thebeuraf lanes, unless they are weaving
sections, as vehicles will ‘appear’ or ‘disappdeasin the carriageway at these sections in the
model. At on-ramp locations vehicles are forcigilgdded to the road and the surrounding
vehicles on the carriageway have the opportunityadiqust their speed and headway to
accommodate the new vehicle.
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The basic setup of the traffic demand is derivediftraffic data collected from the motorway
at the relevant in- and outflow locations. Durirgiloration of the model these values were
adjusted in a conservative manner to create anraecaongestion pattern for the morning
peak period, which is the dominant peak period.lg&ations on the carriageway where
further capacity reductions are present, an additi@apacity reduction is applied, which
directly influences flow through the fundamentagtiam. An example of this is at a location
prior to the Crooswijk onramp where there is a glmnd in the carriageway together with a
gradient.

The applied fundamental diagram has a nominal jamsity of 140 veh/km and a critical
density of 25 veh/km. The maximum speed limit i® k@n/hr, the critical speed is set at 85
km/hr and the minimal spacing at standstill is m.5A time-step of 0.5s is applied to comply
with the number of lanes and traffic density anel\tbhicle group size is 2 vehicles per group.
A forced capacity drop value is applied of 10% d¢ongestion, while the advection invariant
is set at a value of 0.2 and the maximum acceterdtound is 1.0 m?s

The simulation is carried out for a time period&®f minutes, in which the traffic flow is
gradually increased up to the desired level andhtaimied for 15 minutes after which it is
reduced to a lower level to allow congestion tosigiate. This is sufficiently long to
demonstrate the build-up and dissipation of comgestA short increase and decrease is
chosen as a controlled way to demonstrate thetsftdccongestion and the performance of
the motorway stretch. Use of real demand profile gmoved complicated and overly time-
consuming for the sake of the required demonstratind was not chosen. As different
random sampling of the vehicle characteristicslead to different results, a single identical
sample is taken which is applied identically tolreacenario for the sake of comparison.

8.5.2 INDY-MonteCarlo model setup (sub-case 2)

The applied network for sub-case 2 is shown in fEg82. The network consists of 8200
links and 285 zones and is calibrated for an aft@mnpeak period between 2-8 PM. The
network is derived from the Dutch national modetl dherefore has accredited speed and
capacity values. The assignment model is INDY, Whi a dynamic macroscopic model,
which makes use of the Link Transmission Model (Yp@n, 2007). The network is
calibrated for the evening peak period, which & dlominant period for the carriageway. The
model is run with time steps of 10 seconds.

The applied Monte Carlo routine makes use of Solbwhbers on the two input variables:
demand and capacity, to construct a well distridbiget of samples. Sobol quasi-random
numbers were previously shown to give a good thigtion of samples and 20 samples proved
also sufficient to obtain and good distributiorendical sample values are applied for both the
reference and traffic management scenario for sakemparison. The sampled distributions
are shown later in this sub-section.
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8.5.3 Scenarios and boundary conditions

Scenarios and stochastic fluctuations in traffosv are considered in the analysis. Scenarios
are defined as uncertainties on a day-to-day leveven on a greater time horizon, such as
over multiple years. Scenarios reflect the posgiaf a set of conditions being present for a
longer period of time during a day, such as weatlbeditions, the present of an incident or
road works, the day of the week, the presence mbpr event and so on. Fluctuations are
defined as inherent stochastic changes dynamidaliyng a relatively short time period. Such
fluctuations are often difficult to exactly prediotadvance and are often the consequence of
local conditions combined with external influendesn the current scenario or scenarios.

The main uncertainties can be reduced to variatadnbe traffic demand (on a day-to-day
basis and for scenarios) and variations in capacitis demonstrated in Chapter 3 of this
thesis. Figure 8.7 gives an overview of how capeaitd demand variations are influenced by
scenarios and fluctuations in the traffic systemheW considering day-to-day uncertainties,
external temporal conditions play an important relech weather effects, day of the week,
etc. For stochastic fluctuations between vehidbedavioural aspects are far more important,
such as time-headways and level of aggressivergsdfic demand and infrastructure
characteristics have a substantial effect on botieriainty and fluctuations.

Ext |
e iporsl Demand
conditions
Q‘S’o
(S P

Infrastructure /&
characteristcs

traffic stochastics
(behaviour)

Uncertainties (inter-day scenarios)

Fluctuations (in-day dynamics)

Figure 8.7: Relationship between uncertainty and fictuations in traffic demand and
capacity

In sub-case 2, a choice is made in relation tcstemarios to be considered for each location.
The scenarios determine the demand profile fofi¢raind the base capacity levels for the
network. For example, if a scenario is consideradaf weekend day in wet weather, the
traffic demand distribution will represent a setfedisible demand for a weekend day and the
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road capacity will represent a distribution of engailly obtained capacity values in wet

weather. Dynamic in-day fluctuations of the traffiemand and actual capacity fluctuations
are applied to the demand profiles and capacityegafor sub-case 1. Doing this completes
the distributions to be applied in the model analys

The goal of this case study is to evaluate theceféd traffic management on the A20,
primarily during regular peak periods and demonsttiae applied models. For this reason, the
scenarios and the applied distributions are takem fnon-holiday days. The demand
distributions give an indication of the level ofnd@nd and the spread of the demand. A
relative demand distribution is derived for eacly dathe week separately. These are relative
distributions as the model already harbours absolatues which have been pre-calibrated
for the applied network. The level of demand is\at through the selection and analysis of
a set of five locations spread out across the mitaba major motorway on which no or little
congestion is present. The presence of congestainhits an accurate demand estimation, as
capacity is exceeded and therefore the measuretslde not resemble the true demand. The
selected locations at which the demand is measaredyiven in Figure 8.8.The following
assumptions are made for the data-processing &ircehthe distribution:

- Only week days are considered, outside of the hglmkriods

- Capacity and demand data is captured for the m®egpitember through November
2014 as this is a coherent and continuous peritid avily a single holiday week.

- Both carriageways are analysed separately.

- Capacity variation is only applied locally to thensidered bottleneck location which
is being analysed.

- Global capacity variations are not applied.

Demand distributions are applied to all Origin-Destion pairings equally as a generic
indication of business.

Figure 8.8: Locations used to determine the demandistribution
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The distributions for the demand are shown in g8 and have been smoothed to 15-
minute intervals for effective use in the modellgsia.

Demand distributions in time
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Figure 8.9 Traffic demand distributions

Capacity scenarios and distributions

Two types of capacity distributions can be appliedal capacity distributions that affect a
single link, or global distributions that influenttee entire network. Global capacity variation
may be used for situations such as weather conditibat affect a whole (sub)network in a
similar way. In this case, only local capacity a#ion is applied and in particular for the
bottleneck locations that are specifically conséderThe capacity distributions are derived
using an adapted Product Limit Method, describe@aivert et al (2015). The method is not
expanded on here, as it is already explained inpt&ha. As driving behaviour is a major
factor that influences capacity, a distinction lsoamade for the day of the week for the two
bottleneck locations. The distributions for thedbcapacity variation are shown in Figure

8.10.
Capacity distribution

Cumulative probability

1%00 1500 2000 2500
Capacity per lane (veh/hr)

Figure 8.10 local capacity distribution
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Traffic flow stochastics

While uncertainties relate to scenarios, withinnse® traffic flow remains a stochastic
process with fluctuations that are often causeddifferences between drivers. These
fluctuations can lead to premature congestion dretefore an incomplete utilisation of
capacity. Stochastic fluctuations are analysedttiertwo locations and a demonstration is
given of improvements in homogeneity of trafficdhgh the application of the proposed
traffic measures.

The initial parameter values are derived usingaValable data from the above distributions
for the median day and calibration of the FOMSA eldd represent the level of congestion.
New parameter values are derived for the new sitiatith traffic management measure by
sampling traffic stochasticity at a nearby refeeefacation which has similar characteristics
to the new situations. The parameter values aneatkthrough comparison with the initial
calibrated parameters prior to simulation.

Network adjustments

Implementation of the scenarios in the models reguadjustments of the network and to the
traffic flows on the network. These adjustmentsgven in Table 8.2.

Table 8.2: Model adjustments per scenario

Scenario Network/Flow changes
Sub-case 1: Westbound (FOMSA)
- Scenario 1 (lane drop) Inflow reduced from 2+2 lanes to 2+1 lanes. Infl@ate from
3100 -> 2200 veh/hr on reduced road.
- Scenario 2 (bypass) Inflow from A16 to A20L reduced from 3100 - > 1006h/hr

- Scenario 3 (ramp-metering) Outflow from A20L to A16/A13 increased from 41005200 veh/hr
Inflow on on-ramp decreased from 1000 -> 500 veh/hr

Sub-case 2: Eastbound (INDY- Capacity on-ramp reduced from 2052 -> 900 veh/hr
MonteCarlo) Capacity weaving section increased from 5888->6@08hr (+2%)

The first sub-case contains three scenarios, wihitlrence two different locations. Scenario
1 and 2 are applied to the Terbregseplein interphdsee Figure 8.3, location 1). Scenario 1
reduces the inflow onto the Rotterdam ring throaglane drop prior to the lane merge and
therefore aims to reduce secondary spillback addces traffic volume on the ring at the cost
of possibly more congestion entering the ring frhma east. Scenario 2 applies a planned
bypass of the entire A20L north ring. This resuita major reduction in the traffic volume on
the A20L. Scenario 3 applies ramp-metering at th@o8wijk on-ramp (Figure 8.3, location
5) to specifically target an important bottlene&cenarios 1-3 are implemented in the
FOMSA model. The scenario for sub-case 2 also targe on-ramp in the A20R direction
eastbound. Implemented in INDY-MonteCarlo, the atipents for the scenario involve a
reduction of the inflow onto the main carriagewayni the on-ramp located at the Centrum
junction (Figure 8.3, location 2). A capacity inase of 2% is presumed on the main
carriageway due to a reduction in weaving movem@itang and Levinson, 2003).
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8.6 Analysis and assessment of measures

The goal of the case is to demonstrate the efientiss of the developed models in a real case
for traffic analysis and effectiveness of trafficanagement. Additionally, a further
demonstration of the necessity of considering stettity in traffic flow for these analyses is
sought. The latter goal is demonstrated in se@i@rand the prior is addressed in this section.
The traffic management scenarios are aimed at negleongestion on the A20 motorway and
increasing throughput. With this in mind, the tatelay and travel time, as well as congestion
length are considered as three relevant performagieators. As both models are setup for
different types of analysis, the applied indicatiffer and are applied as follows:

Sub-case 1: Congestion length and spillback:

Lcong = maX(Lcong.end - Lcong.start) (82)
Travel time
Teis — Tu;
TT = Z B,i,t Alt (83)
Nveh,i,t

The congestion length,, is the largest distance from the start of congesio the end of
congestion or at a specific time. The travel tifi€, considers the average actual travel time
of all vehicles between a two locations, A and B.

The results of the second analysis allow for a mordepth qualitative analysis. This is
carried out for the effects of congestion spillbasier the various bottleneck locations for the
three scenarios in this sub-case.

Sub-case 2: Total (network) delay:

veh(t
TD = Z © (8.4)
17free Vobs (t)
Average peak travel time:
5 2Tt —Taut
_ Nveh,i,t _ (85)
TTAp = max(t) fOT' t=1..4

The total delay,TD, indicates the delay experienced by all vehiclesngd) a specified time
period,t=0.., in relation to free-flow traffic conditions deted by the speedy,... The

average peak travel tim&T ,p, considers the actual travel time for all vehictksing the

main nominal peak period,= 1. .4.



178 TRAIL Thesis series

8.6.1 Sub-case 1 (FOMSA)

The first sub-case considers three different seemn&o improve traffic flow on the westbound
carriageway (A20L). The resulting trajectory pldttbe reference is given in Figure 8.11a.
Additionally the traffic speed diagrams for thea@rscenarios are given in Figure 8.12a-d.
Comparison of the levels of congestion is madelation to the reference scenario, shown in
Figure 8.12a, for which no additional traffic maragent measures are taken. The numbers
shown in Figure 8.12a represent the two locatiohere the traffic measures are applied,
while in the scenario figures in the locations green with an arrow. In the reference
scenario, congestion occurs relatively early at @meoswijk onramp (location 1 in Figure
8.11) and propagates upstream. At Terbregseplégncimange (location 2) congestion also
occurs and is later exacerbated by the spillbamk f€rooswijk.

In scenario 1 (Figure 8.12b), the lane drop at fiegybeplein is moved upstream to before the
merge with inflowing traffic from the adjoining nmmivay (A16). This has three
consequences for the congestion pattern. Firsteydownstream activation of the Crooswijk
bottleneck is avoided due to a reduction in th#itrdlow that passes the merge point. The
second consequence is that no congestion propagpstieam towards the A16 from the
merge point, as congestion is triggered prior ®rierge point. The third consequence is an
increase in the severity of congestion on the epstrflow from the A20. However, Figure
8.12b shows that the congestion remains limited tduthe available upstream capacity to
temporarily buffer the traffic.

Distance ->

Time ->
Figure 8.11: FOMSA model results given as trajectoes the reference scenario

Scenario 2 (Figure 8.12c) considers the presencéh@fAl6/A13-bypass, substantially
reducing the traffic flow onto the A20L. From FiguB.11c it is clear that this has a large
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effect on the occurrence of congestion on the rdadll potential bottleneck locations, traffic
flow is sufficiently reduced to prevent congestaoturring.

Scenario 3 (Figure 8.12d) focusses on the redudii@ongestion at Crooswijk through ramp-
metering. Inflowing traffic is reduced to 500 vde® per hour at the onramp. This leads to a
delay in the onset of congestion at the onrampadsal leads to less severe congestion and a
slower spread of congestion to upstream bottlet@chtions. This also has a positive effect
on the congestion that occurs at Terbregsepleingaasbeen seen in comparison to the
reference. Further analysis of the bottleneck abo€wijk showed that a reduction to
approximately 200 vehicles per hour would be remlito prevent congestion occurring at the
on-ramp.
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Figure 8.12: FOMSA model results given as the spegdor all scenarios of sub-case 1

A further analysis of the results of the scenaisogiven by the developments of travel times
and is shown in Figure 8.13. These are the actaaklt times of vehicles that entered the
motorway at the most upstream location and exite® km later at the most downstream
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location, which is not the case for all vehiclebeTreference scenario shows an increasing
travel time until the traffic demand is reduced amdly a slight decrease in travel time once
the inflow demand is reduced. This is due to thiermsive congestion that occurs. The line for
the reference scenario also finishes earlier aghashwith later starting times spend too long
in congestion to be able to exit the motorway slrebefore the end of the 60 minute
simulation. Scenario 1 (lane drop prior to merg®] &cenario 3 (ramp-metering) both show
similar travel time patterns. For the higher infloate, the travel time gradually grows as
congestion increases, however at a much loweithmatethe reference. Once the traffic inflow
is reduced, congestion starts to dissipate anelttanes quickly drops towards the free-flow
travel time, which is approximately 6.5 minuteseario 2 (Bypass) shows a slight increase
in the travel time to 7 minutes when traffic is Yiea, however as no congestion occurs, the
travel-time remains low throughout.
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Figure 8.13: Travel-times in the sub-case 1 scenats

8.6.2 Sub-case 2 (INDY-Monte Carlo)

The results of the total delay time of the 20 MoGt&lo simulations for the reference (blue)
and scenario (red) are given in Figure 8.14. Tisalte are in sorted ascendingly to give an
indication of the distribution of the delay. Thellgav bars show the percentage difference
between the two. From this, it is clear that thsr@an exponential distribution of the delay
probability for the network. This means that in goextreme cases very high delays are
present for certain traffic conditions, while in saaases there is some sort of an average
delay, which corresponds to the extent of the itraffonditions. In the Monte Carlo
simulations, two variables are applied, namely ghebal demand and the local capacity.
Figure 8.15a-b shows the sampled demand and cepaciors respectively in comparison to
the total delay time. The figures show that theafbf the traffic demand is much greater on
the total delay than the change in capacity valirere is a very definitive increase for the
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demand samples, while the capacity samples shavidea distribution with a small tendency
for a higher total delay for lower capacity valuas,may be expected. An explanation for this
can be found in part by the fact that the demartiofais applied globally to the entire
network, while the capacity factor is only appliedhe analysed bottleneck location.
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Figure 8.14. Total network delay for sub-case 2
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Figure 8.15 a-b. Total network delay versus demansample for sub-case 2

The yellow bars in Figure 8.14 indicate the peragatdifference between the reference
scenario and considered scenario of the networ&kydéirom this, the effectiveness of the
traffic management measure is indicated. The resshiow that the traffic management
measure is effective with an improvement in thaltdelay of 2-12% for the majority of the
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samples, with a median improvement of 3.7%. Thedti@f the reduction in absolute terms is
uniform over all samples, which results in a deoljrelative improvement for higher total

delays. This can be expected as ramp-metering Isa$ lBandwidth in which it is effective.

Once traffic flow exceeds the upper bounds, comgestill occur and the improvement on

traffic flow reaches its optimum.

The distribution of the travel times along the A20Rtorway is given in Figure 8.16 for the

reference (scenario) and scenario (red). Theildigion of the travel times shows a much
greater linearity than the delay time. This is tméhe measurement of the travel time on the
A20R only, while the total delay is calculated ovlee entire network. Therefore, secondary
delays, as a consequence of congestion on the A@@Rcaptured by the total delay time,

which works exponentially for greater degrees afgastion at the considered bottleneck
location.

The effect of the traffic management measure ferithprovement in travel time is found to
be in the range of 6-11% with a median value o%«.Bhe improvement in travel time along
the considered road stretch is also more lineaglative terms, but does decrease slightly for
the higher travel time samples.
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Figure 8.16. Average peak travel times for sub-casz

In summary, the application of ramp-metering adettaffic management measure for the
Rotterdam-Centrum on-ramp is effective in reducihg network delay on the Rotterdam
Ring (3.7%) and reducing the travel time on the R2totorway (7.5%) and may be
considered for implementation. The practical impatation of additional buffering and
coordinated traffic signals on the connecting urlad provincial roads is not considered
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however. This should be reviewed before the rampenmg can be applied to prevent
secondary problems on the local road network.

8.7 Assessing the influence of stochastic charaadtgics

As part of step 3, consideration of the influenteariations in traffic flow is given to address
the second goal of this case. The models in thse eme designed and applied to consider
uncertainty and stochastic variations in traffiowl on different scales. The INDY-
MonteCarlo model considers uncertainty in traffmaf and capacity values on a day-to-day
level in which each individual day a different gaut is visible. The FOMSA model focusses
on inter-vehicle stochastics in which each veharl@ehicle group shows different behaviour
and therein influences traffic flow. In this sectjothe relevance of considering these
stochastics is demonstrated by offering the alter@maapproach in which a deterministic
approach is applied. When considering the realhsisttc variations, one is considering the
effects that are also present in reality on ro@dssideration of a non-existence average case
as a deterministic calculation deviates from tted va@alues which would be found in practice,
which is shown in the next paragraphs.

8.7.1 Sub-case 1 (FOMSA)

The first sub-case, carried out with the FOMSA mpoaensiders stochastic behaviour
between vehicles, rather than their macroscopictoaay influence. Two parameters are
adjusted to show their influence in the model, ngrtree advection invariant, which describes
the following times, and the bounded accelerataie.rThe case with no invariant value and
no acceleration bound is shown Figure 8.17a. Fi§utéb shows the same reference scenario
with an invariant value of 0.4 and a bounded acaétm of 0.5 m/& Interestingly, the
‘stochastic’ case yields less congestion than tleéerministic’ case. Analysis of the results
shows that this is mainly due to the ability of gieg traffic to accommodate inflowing
vehicles better when natural gaps are present,asahthe stochastic case. When all vehicles
drive with identical gaps, inflowing vehicles foradditional gaps when merging, which lead
to a reduction of capacity. In numbers, there titelidifference between both cases on the
upstream bottleneck, however on the downstreantebettk congestion in the deterministic
case takes 904 seconds to reach the second updiotemeck. In the stochastic, case this is
1143seconds, which is 26% longer. This causesdhgestion spillback in the stochastic case
to reach more than 200 metres further upstreamttieudeterministic case before stabilising
and slowly dissipating. The effect on the traveldiis found to be less than 1% during the
congestion build-up. The influence of only considgrthe bounded acceleration is limited, as
has been shown in previous research (Calvert e2@L5). The individual characteristics of
vehicles, when decelerating and accelerating, tscoasidered here and may change the
outcome of the results as it can be hypothesisatl ithmay lead to a quicker onset of
congestion due to greater heterogeneity in théidridbw at bottlenecks. Furthermore, there
may also be additional capacity drops effects whiehlimited here.
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a) Reference: without invariant & without BA
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Figure 8.17a-b: Sub-case 1 comparison for modelling) deterministically b)
stochastically

8.7.2 Sub-case 2 (INDY-MonteCarlo)

A single INDY-MonteCarlo simulation is run for th@edian input values of the traffic
demand and road capacity. This is the determinisiige and is performed for both the
reference scenario and the traffic management goeffdne results of the deterministic runs
are compared with the stochastic case in Figurg. 8&re the deterministic results are given
with dashed lines for both the reference and saeiiar the total delay. The stochastic case
here shows a reduction in total delay due to ta#i¢crmanagement measure to be 3.7%, while
the reduction in the deterministic case is only4.Erom the results it is very clear that the
deterministic case underestimates the improvememitich is due to the inability of an
‘average’ input value to consider the entire dmttion of all possible values. This is
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especially the case for the more extreme endseodlitribution. This result is not a surprise
and has been previously found in other examples Qd®pter 2 of this thesis). Nevertheless,
it once again demonstrates the importance to censtbchastic elements of traffic flow,
especially when applying measures that are aimaddressing extreme delays in traffic.
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Figure 8.18: Comparison between stochastic and detsinistic modelling for sub-case 2

8.8 Conclusions

In this case study, the entire chain for the apilim of stochastic effects in traffic modelling
to aid the application of traffic management hasnbdemonstrated. This was performed for
the A20 motorway, the northern part of the Rotterdding Road. The Link Performance
Indicator for Resilience was first applied as acitscan method to indicate weak sections of
a road network requiring attention. Weak sectiongle network were identified and their
sources were identified as possible locations tplyagraffic flow improving traffic
management measures. The application and seleatitraffic management measures was
applied in part using the ‘Gebiedsgericht benutt@@GB) methodology, developed by
Rijkswaterstaat in The Netherlands for the applicabf traffic management. In two subcases
a set of measures were selected. The first subfoasssed on the eastbound A20L motorway
using the FOMSA model to analyse the knock-on &ffet individual vehicle behaviour on
multiple interrelated bottleneck locations. The et sub-case focussed on the westbound
A20R using the INDY-MonteCarlo model to consideg-daday stochastic variations in the
local capacity and global demand. The analysisath lzases is not related, but shows the
application of the different models and why one slod more suited to one case, while
another may be suited to another.

Ramp-metering at a critical location (Rotterdam @en onramp) on the westbound (A20R)
carriageway was shown to be effective in reduciatays by 2-12% depending on the day.
On the eastbound (A20L) carriageway, ramp-meteginipe Crooswijk onramp was found to
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have a positive effect on the reduction and defagoagestion. The most effective measures
on this carriageway were found to be related toréuiction in traffic flow onto the North
Ring. A change to the configuration of Terbregsephaerge between A20 and Al6 traffic
flows, showed that congestion on the A20L can llpeliminated by moving the lane drop
prior to the merge. The construction of the A13/AlMpass of the A20 Ring North was also
considered and showed that such a measure woudcc&t@ congestion as it would divert a
sufficiently high amount of traffic from the A20lHowever, it comes at a much greater
financial cost and it not strictly a traffic managent measure.

In the application of the case, the models showex)y tare able to perform well and
demonstrated their value for their specific purgosad their ability to a priori evaluate
potential traffic management measures for sensitbad sections and carriageways. The
importance of consideration of the stochastic efice of traffic is further demonstrated for
both day-to-day variations as well as intraday iaer-vehicle stochastics for the outcome of
studies. Failure to consider the stochastic effecisld of have resulted in a bias of 26% for
the speed of congestion spillback in sub-case 104200% for the delay in the second sub-
case. A further recommendation is made in relationthe GGB methodology. The
methodology remains extremely effective and relevawowever is in need of updating,
especially in relation to the possibilities of flog devices and social media. The increase in
possibilities for communication and traffic flow igance has further developed in past
decades and should be further included in a revisesion of the GGB methodology.



Chapter 9

Visualisation of uncertainty in probabilistic traff ic
models for policy and operations

This chapter investigates different methods toalise uncertainty in static graphical
representations of probabilistic traffic model pretcbns on road networks. Throughout the
chapter, probabilistic may be seen as synonymotlsstaochastic. Although various
graphical cues may be used to represent uncertainitynot a-priori clear which of them are
most suited for this purpose, since their legipjlintelligibility and the degree to which they
interfere with other graphical elements in a regmetation differ widely. Several graphical
uncertainty representations were therefore devealap®d analysed in expert sessions. A
selection of the initial set of uncertainty vissalions has further been evaluated in a
cognitive alternative task-switching experimentisidhapter also presents an overview of
possible graphic uncertainty representations areldbnsiderations involved when applying
them to uncertainty in traffic model visualisations

The first section gives a description of the mdiallenge which is tackled in this chapter.
Section 9.2 looks at the main elements to be cerexddn visualisation of traffic flows in
models. In section 9.3, a number of visualisatamespresented, followed by the results of a
cognitive experiment for a selection of the devetbpisualisations in section 9.4. The results
are discussed in section 9.5 and conclusions aagvdrin section 9.6.

This chapter is an edited version of the article:

Calvert, S. C., Rypkema, J., Holleman, B., Azulay, D., & de Jong, A. (2015). Visualisation of
uncertainty in probabilistic traffic models for policy and operations. Transportation, 1-29. DOI:
10.1007/s11116-015-9673-3

187



188 TRAIL Thesis series

9.1 Introduction

Developments in road traffic modelling have led @ogreater consideration of various
uncertainties, which are present in traffic systembese models, referred to here as
probabilistic traffic models, consider uncertaiatand stochastic fluctuations in traffic flows,
which are of importance to accurately represenfficraflow and determine correct
performance indicator values (Calvert et al., 20¥2hile the focus has traditionally been on
the development of probabilistic traffic modelsg thepresentation of their output and,
particularly the uncertainty therein, has grown importance. In contrast to interactive
visualisations, that allow a wide range of intei@ts, the static representation of the output of
probabilistic traffic models is much more challemgysince this requires that all information is
contained in a single figure. In this chapter, theus is on feasible options to represent the
results of probabilistic traffic models which comtauncertainty data in road networks. A
selection of five of these visualisations is testied an experiment. This considers
visualisations for printed communication and in@sda description of the needs and
shortcomings of existing traffic model visualisasofor this objective and.

9.1.1 Probabilistic traffic models

In traffic modelling, a number of distinctions cée made between models. A primary
distinction is on the level of detail: microscopmodels consider the movements of individual
vehicles, while macroscopic models consider theegaged movement of all vehicles on a
specific road section. Some models are dynamicghwimdicates that they make use of a time
component, while static models are not time dependgut it is primarily at the level of
determinism where probabilistic traffic models degined. Deterministic traffic models make
use of uniformity in traffic behaviour and do nainsider stochastic variations in the traffic
flow. Stochastic traffic propagation models considleictuations in traffic flows, while
probabilistic models explicitly consider a quardiion of fluctuations in terms of uncertainty
or probability. This is typically reflected in prabilities of accuracy or of calculated and
displayed values. While there are many differergsgulities for probabilistic modelling, a
flow of traffic for a specific road section may fexample include either a feasible probability
distribution of the traffic flow or in a simplifiedpproach show a confidence bandwidth of
certain standard deviations or percentiles.

Traditionally probabilities of uncertainty are ajgol in modelling through the use of Monte
Carlo simulation (Calvert et al., 2014b). Multiptgmulations are performed with random
input values taken from distributions of the ungiew the considered variables, which also
result in a distribution of results. However, swah approach is usually not applied unless
there is a specific need to consider uncertainhgesthe associated computation times are
greater. Even as probabilistic models continueeteetbp and no longer have to (entirely) rely
on Monte Carlo simulation, their application islldimited often due to monetary or time
constraints (Binder and Heermann, 2010, Calverlget2014b). Hence there is a need to
develop new ways to visualise their results (Batter et al., 2014).
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9.1.2 Difficulties in probabilistic traffic model visualisation

Results from traffic models are typically reportedprojecting the informative variables onto
a road network. In general, this approach allowstwgwo variables to be represented.
Normally this is performed for a single moment ime, as transforming a time dimension
into a spatial dimension is not feasible for aisteisual representation. The use of colours is
most commonly applied to identify the value of éifint variables projected onto a network.
These may indicate one of many different variablesn the speed of traffic, traffic flow,
delays, but also other variables, such as envirotehgariables for example. When a second
variable is applied on a single one-dimensionalvodt link, this is often performed by
adding a further spatial dimension to the one-dsi@ral network link. Network links are
constructed using vectors to describe their gedgcaplocation. A network link vector may
remain unchanged, while additional spatial dimemsimrthogonally can vary in size
representing different values for the considerathibe.

In traffic modelling, it is uncommon for a third nable to be depicted in a single figure.

However, when one considers the uncertainty ofafrtevo variables, it may be desirable to

include an additional visual cue to represent trasiable. This however not only offers

challenges in designing such a cue, but more slesigning one that is comprehensible. This
means that the visualisation should be intuitivel ahould fit in the current methods of

visualisation, such that a complete interpretatan be achieved without so called switching
difficulties.

9.2 Visualisation considerations

9.2.1 Common visualisations

When considering visualisation of traffic models wiél focus mainly on the macroscopic
class of models, as these models are aggregatararitierefore more easily applicable for
use with probabilistic visualisation. Even probadbit results of microscopic models must be
aggregated, as one cannot consider the distritgitball vehicles simultaneously, which may
be performed in a similar visual surrounding to macopic models. As described in the
introduction, macroscopic models will tend to makee of up to two dimensions for
visualisation of results. It is common for theseeénsions to depict the variables speed and
traffic flow. In Figure 9.1 an example is given tfie OmniTRANS model package
(OmniTRANS, 2015), which depicts traffic flow asetthickness of a line and the speed as
the colour of that line. In this chapter, this aygwh is taken as the basis for expansion into
probabilistic visualisations, as it is the most coomly applied method.

Although it is not commonplace, it is not unhearfl for more than two quantitative
dimensions to be applied on a network. However,yr@ases in which more dimensions are
added tend to be purpose-built for a specific typeariable and typically not for uncertainty.
There is also a trend to externalise probabilisuls outside of the network representation.
This gives a great deal of flexibility as theren® need to maintain a close link to a network.
However, this poses two difficulties; the first bgithat a large area is required to visualise
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the uncertainty of a whole network externally, ssle user is only interested in a specific
location. The second difficulty is that the physicannection between the visualisation and
network is lost. Furthermore, there may be issueslving interference between a larger
number of visual cues in a visualisation. Therefueh approaches, although useful, are not
considered as ideal for static reporting of prolistic traffic model results. Later in section
9.5 it is shown that this approach can be usefutiymamic interaction.
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Figure 9.1: A regular macroscopic traffic model visialisation (OmniTRANS (2015))

When a network is considered, and the proximitythed graphical representation to the
network is relaxed, additional visual cues havenble@own to be applied beyond the strict
network locations. For example, characteristica oetwork link may be shown at a (small)
distance relative to the physical location of awwek link. This is especially the case in
environmental representations of additional vagal§br road networks. An example is given
in Figure 9.2 for air pollution as a consequenceaoaid traffic (Batterman et al., 2014). In
Figure 9.2, three variables are applied by reptesgiraffic flow by the line type, vehicle
classification volumes by the size of a circle dhe volume of the classification types by
colour of the circle. This example demonstrates esatifficulties of combing multiple
variables. Overlapping visual cues make some indtion difficult or even impossible to
interpret, and the limited interval scale also tsrihe precision.

Anwar et al. (2014) use luminance to highlight lbmas where road traffic incidents have
occurred (see Figure 9.3). Often such visual cuesapplied to attract visual attention of
users. The colour of a circle indicates the typdralffic incident, while the network lines
denote traffic states. In many cases, the visuaisaf uncertainty in printed reporting is
given as an additional variable. This is applieddach road section on a network. However, a
continuous representation demands a different agprirom an incidental one.
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et al. (2014))

Acodents

e vl

Dreakdodns

" A fin_ b

B free
1 dense traffic

B traffic jam
certain

uncertain

City X
oyt

Figure 9.3: Incident frequency displayed in Figure 9.4: Uncertainty in traffic

a luminance cue (Anwar et al., 2014)

visualisation by spatial colour extension
(Bender et al., 2005)

Continuous representation of traffic state uncetyaon a network scale is demonstrated by
Bender et al. (2005) (see Figure 9.4). This malsesaf a double line for road sections, with
the inner coloured line indicating the traffic stand the outer grey-scaled line indicating the
certainty of the traffic state. While this solutican clearly be applied continuously over an
entire network and will also work for a ratio-scateremains a two dimensional solution and
therefore lacks flexibility to add additional vaslas. Most current traffic models consider



192 TRAIL Thesis series

speed and traffic flow through link colour and liwmedth, while here the width of the line is
more difficult to vary due to the presence of aldedine. Nevertheless, this solution is one of
few proposed and applied solutions that gets diosdfering a solution to adding probability
to the existing visualisation of traffic model réswon a traffic network.

From these examples, it is apparent that therechedlenges for the visualisation of
uncertainty in traffic modelling. The main challesgrelate todimensionality and clarity,
visual perceptiorandcognitive processing

1. Dimensionalityand clarityconvey the ability to present the desired variabiesclear
an intuitive manner. In this research that referthe application in a traffic network.
There are limitations to the application of certigipes of visual cues and the number
of dimensions. These limitations have been showramin the previous examples.

2. Inrelation tovisual perceptionA visualisation must be able to be easily intetpd.
Overloading happens when too many visual cuespglked. Overloading, as seen in
Figure 9.2, solves the first challenge, but malatam variables difficult or nearly
impossible to extract. This is especially the caken the visualisations of different
variables need to be compared: such as the unugrtdianother variable.

3. Cognitive processingf probabilistic visualisations does not only telto a correct
perception of results, as in the second challemgiealso means that visualisations
should be able to be processed in an efficient rarirthis relates to the way results
can be used by a user to draw conclusions andagiveterpretation of the results with
as little difficulty as possible.

The mentioned challenges are simultaneously adebtess the development of possible
options for the visualisation of probabilistic frafmodel results.

9.2.2 Classification of graphical variables for unertainty

Information visualisation is defined as “the actpoocess of interpreting in visual terms or of
putting information in visual form” (Theis, 2011)né involves symbolization and
comprehensionlt also offers tools to explore and analyse data and therefore facilitates
the discovery and extraction of relevant informattbrough graphical means. Furthermore,
the application of uncertainty visualisation carphminimize the effects of uncertainty on
analysis and decision making (Thomson et al., 20@&) is not straightforward. A
visualisation is graphically perfect when it givbe viewer the greatest number of ideas in the
shortest time (Tufte and Graves-Morris, 1983). Hesve different types of data require
different representations of uncertainty and speoifsualisation techniques are usually
designed with a specific data-dimensionality in dnhiSanyal et al., 2009). As data
dimensionality increases, the amount of visual caesilable for displaying uncertainty
becomes limited (Potter et al., 2012, Sanyal e2809) which leads to an increased difficulty
in quantifying, representing and understanding litofmson et al., 2005).
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While cognitive theory contains a large body of kveelated to human visual attention,
empirical research on the attentional aspects aofemi@inty visualisation is limited
(MacEachren et al., 2012). A main challenge is thirference may arise between different
visual channels under certain circumstances whely #re utilised in the same display
(Acevedo and Laidlaw, 2006, Carswell and Wicker@90al MacEachren et al., 2012). Bertin
(1974) compiled a classification system in whichalssesses visual variables according to the
characteristics okelectiveness, associativeness, orderedness, tptaainessand length
Selectivenesmdicates whether a variable facilitates immedjateceptual group perception.
Associativenesmdicates the way in which a variable is groupedcpptually.Orderedness
indicates the natural perceptual ordering of theate. Quantitativenesindicates whether a
variable facilitates quantitative comparisons. Afitally, length indicates the number of
distinct value-levels a variable can assume (Zutk @arpendale, 2006, Tufte and Graves-
Morris, 1983).

In this research, the main focus is on the qudninaess variable, since we are dealing with
numeric values. According to Bertin, there are salistinct classes of visual variables:
position, size, shape, value, colour, orientat@amdtexture Another applicable categorization
of visual attributes is presented by Ware (2012)yhichcolour, orientation, size, contrast
andmotion or blinkingare stronger cues, while effects such as line turgare weaker.
Wolfe and Horowitz (2004) consider 'undoubted Atites’ to be those features supported by
a wide body of literature, such as colour, motmnentation and size (including length and
spatial frequency).uminance onset (flicker), luminance polarity, verroffset, stereoscopic
depth and tilt, pictorial depth cues, shape, liaetination, closure, topological statasd
curvaturealso belong to this category. A summary of the rége cues is given in Table 9.1.
There is a wide range of categorizations possittée it is also important to recognise that
while some visual cues stand out better than gtleerabinations must be considered for
application to different variables in a single \aBsation. The main feasible combinations
from the cited literature aspace and colour, stereoscopic depth and coloargsscopic
depth and motion, luminance polarity and shapeyeaity/concavityandcolour (shape from
shading), and finallynotion and shap@Nare, 2012).

Table 9.1: Summary of applicable visual cues

Position Orientation Luminance polarity Line termination
Size Texture Vernier offset Topological status
Shape Contrast Stereoscopic depth ~ Curvature

Value Motion Stereoscopic tilt

Colour Blinking Depth (pictorial)

Since uncertainty estimations in traffic model audtpre inherently numeric, graphical cues
should be able to convey absolute magnitudes arddble relative comparisons with other
uncertainty estimations. Furthermore, traffic modsualisations are generally displayed on a
background of road-networks, presenting additieoalrces of potential visual interference.
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9.2.3 Task-switching

Commonly, analysis of visual representations iggpered through task-switching (Monsell,
2003), as is also the case in this research. Cemadidn of both visual attention and
combinations of different visual features leadanalysis of a user’s ability to actively switch
between different visual cues. This is studiedna &rea of Task-switching (Monsell, 2003).
When subjects switch between tasks that have diffecognitive requirements, such as
switching between naming a digit and then reporiing is even or odd, they incur a
switching costSubjects generally take longer and show highear eates when responding
on switch-trials in which they switch from a different kind of kaghan omon-switch-trials
where the current task is identical to the previone (Monsell, 2003). The task-switching
paradigm relies on the concept of the task-set:cthrdiguration of cognitive resources in
preparation for the execution of a specific tasko@gell, 2003). For each task, there is a
preparation effect and a residual cost. The préiparaffect is a reduction in effort of an
upcoming switch task due to advance knowledge.dRasicosts are the additional effort
required at a task-switch, possibly quantified sisn@-delay. Residual costs may indicate that
some parts of the reconfiguration process cannabb&leted until after a stimulus has been
presented (Rogers and Monsell, 1995).

The task-switching paradigm provides a frameworwimch response times and accuracy can
systematically be measured in users for visualdtunensions. Higher switch costs will in this
case be indicative of more interference betweeruttoertainty dimension and the other cue
dimensions. This is an indication that the cue disi@ens are not pre-attentively processed
well together. This therefore allows different candtions of visual cues to be tested for pre-
attentive processing, to test the ability of a ueesfficiently interpret the displayed results.

9.3 Multi-dimensional probabilistic visualisation

The construction of a set of feasible visualisaias carried out through an approach that
consists of multiple expert sessions and is folldwg a visual experiment in which a selected
number of graphical representations are prelimitesyed as described in section 9.4. Based
on literature of uncertainty visualisation and oaihstorm sessions with both cognitive and
traffic experts, a collection of initial optionsrfeisualising uncertainty are constructed within
the boundaries of a traffic network and as a caomtiion of existing traffic model
visualisation. The goal of the expert sessions wasonstruct a range of visualisations that
include representations of traffic speeds, trdfiev and uncertainty variables.

The traffic speeds and traffic flow correspond wthie traditional traffic model results, while
the uncertainty variable is a new visual cue thaegy an indication of the uncertainty, or
rather probability, of the value of one of the fi@atariables for each road section. It is also
possible to seek an additional uncertainty variabeich may be referred to as the impact
variable. This variable is a more flexible variatilat allows either an incidental indication or
a continuous spatial indication of a certain qugnfihis may be the probability of incidents
at specific locations, a metric for evaluation fiaf signals, or merely the
uncertainty/probability estimation of the secoratftc variable.
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The initial set of graphical representations apasated into different categories and all make
use of the existing basis of macroscopic modebs rasjuisite as described earlier. The applied
categories argymbols, colour, texturand spatial dimension (3Dand are shown in Figure
9.5. A gualitative comparison can be made usingipattributes. An example of suitable
attributes may be taken from Ravden and JohnsoB89§19vho present a checklist of
attributes for which visual cues should be evaldiaithe considered attributes are: visual
clarity, consistency, compatibility, informative ef@gback, explicitness, appropriate
functionality, flexibility and control, error preméon and correction, user guidance and
support. Partially based on these attributes, §jxaghical representations are chosen to be
applied in the experiment: boxplot, line style, tte® pattern, blur and saturation/opacity.
Note that blur is not present in Figure 9.5, as ot easily visible on the presented scale and
can be seen in Figure 9.7.
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Figure 9.5: Graphical representations for uncertairty and impact
9.4 Task-switching experiment

9.4.1 Experimental design and set-up

As interpretation of visual cues is a task thablmegs subconscious processing of information
to interpret data and make decisions, an experinmemathich a select number of graphical
representations from the original expert sessigeerformed. The experiment is designed to
test thepre-attentive processingf a visualisations presented together with ofpessibly
interfering) cues. This indicates how well a usan mterpret the model results, and tests the
ability of a user to perform task-switches. Thighier gives an indication of a user’s ability to
process different types of information in conjunntii.e. consider the uncertainty of a traffic
variable as well as its value.

The experiment is a forced choice bi-alternativektswitching experiment using multiple
stimulus blocks. This entails that participantseveinown two visualisations beside each other
(see Figure 9.6). Each visualisation has threealisues and contains information on traffic
speed, traffic flow and an uncertainty value. Ih \@bualisations, the traffic speed was
represented by the colour and the traffic flow wemesented by the height. The third visual
cue changed from block to block and representedethe of uncertainty. A participant is
asked to state, in as shortest time as possibtheifjuantity of a certain queried variable is
‘equal’ or ‘non-equal’. The quantity for which tiparticipant must make an estimate for was
given in text above the visualisations and is dnspeed, flow or uncertainty
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Queried variable to be estimated
(here INTENSITEIT indicates the

| N T E N S I T E I T ? Traffic intensity or rather th&raffic

flow)

Visual cue for uncertainty
(here this is a boxplot)

Visual cues for speed and traffic flow
(Colour is always speed, height is
always traffic flow)

Figure 9.6: An example of a single trial in the vigal experiment

Participants were requested to complete 10 consechtocks consisting of 16 trials. The
entire experiment took the average participant @gprately 10 minutes. In each trial, a
participant is given a single choice between twifetgnt visualisations for which a choice
has to be made. The participants made their chHoycpressing one of two keyboard keys,
with the keys representing ‘equal’ or ‘not equdPrior to the start of the experiment,
examples were given of the uncertainty cues anciaing block containing 16 trials was
completed by the participant to ensure the padiipunderstood the procedure. Each
uncertainty cue was applied for two entire blockdr@ls. The order of the 10 blocks in
relation to the applied uncertainty cue was randenhifor each participant in an attempt to
minimize carry-over and learning effects. This neetrat the order of the uncertainty cue was
different for each participant and that for a senglarticipant each block contained an
unknown and randomised uncertainty cue, with t&riation that an uncertainty cue was not
applied in more than two blocks. Task-switching wasdomly applied. Non task-switch
blocks had identical queries for consecutive tridlse visualisation types for the uncertainty
variable changed between trial blocks and was relihe, line-style, saturation, boxplot or
texture patterr(see Figure 9.7). For each trial in each of thélbaks, theime-to-answeand
thecorrectnes®f an answer was recorded by the computer.

I 1

Figure 9.7: Graphical representations tested in thexperiment: blur, texture pattern,
saturation/opacity, boxplot, and line style
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Participants

In total 48 participants took part and complete@ thial. Invited participants for the
experiment were a combination of traffic expertsl aron-traffic experts. Traffic related
participants were specifically selected and appgredcby email to participate in the
experiment. Other participants were attracted ggreeral advertisement, mainly made among
students. On one hand, traffic experts were invitkefudge the graphical representations as
potential users in traffic models. On the otherdyahe graphical representations should be
generic enough that one’s profession should notenzaHifference. Of all participants, 49%
had a professional background in a traffic or tpansrelated area, while the rest were not
professionally involved in traffic related subject$ie ages of participants were: 34% 18-25
yo, 32% 26-31 yo, 12% 32-40 yo, 8% 41-50 yo, anélb Mere 51+ years old. 63% had
completed a university education, with 16% haviogipleted a higher college education and
22% having high school as their highest completeohfof education. Participants performed
the experiment on computers using a web-basedcayipih that controls the experiment and
collects the required information and results. iPigdnts are first instructed in a few screens
on what is expected of them and are asked to gedliack if they understand. Then they
commence with the example trials before starting éxperiment in earnest. A separate
analysis of the results from both groups of pgrtiaits (traffic and non-traffic related) did not
show any significant or substantial differences,clvhallows both groups to be analysed
together.

9.4.2 Measures

Pre-attentive processing is tested by making ug@eotime required for a user to react to a
visual cue and correctly give feedback in relatiorthat cue. Task-switching is tested in a
similar way, by recording the time required to teaca visual cue in a correct manner for the
case that a visual cue is changed compared withpteeious cue. The results of the
experiment are analysed using the following indicst

Effectivenesss tested by means of the percentage of correBP§) @nswered trials.
This gives an indication of effectiveness as thditabof a person to correctly
distinguish between different scores of the samabke.

Efficiency of a visual cue is tested using the response (R19, which is the time
required to give a correct answer. This gives ahcation of efficiency as a user’s
ability to promptly analyse, interpret and reactite visual cue of a variable.

Inverse Efficiency Score (IE®) a combined metric in order to simultaneouskeas
the two measures: effectiveness and efficiency. Theernational Standards
Organisation (ISO) define efficiency as reflectitng amount of resources required,
such as time, to complete a task, and effectiveagseflecting the extent to which a
process can be completed without error. Therefeffgctiveness is mirrored by
accuracy, and that efficiency is mirrored by regeotime. The Inverse Efficiency
Scores (Bruyer and Brysbaert, 2011) is defined as:
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RT(n) (9.1)

IES(n) = PC(n)

Here,RT is response time arfiC is proportion of correct answers, both of a spedifal n.
This means that better scores are given by lowSrdécomes. In addition to the experiment,
a few questions in the survey query participantshenvisual cues in which participants can
also explicitly state their preference for a viseak to represent the uncertainty variable.
Participants are also asked to give a score fdn geaphical representation in a range of 1-5
for its ability to convey uncertainty informatiolm this survey, general information regarding
a participant’s education, age, experience andafre@rk was also asked.

9.5 Results

9.5.1 Effectiveness

The accuracy of the answers given in the task-gwitcexperiment indicates how well visual
cues can be analysed in a short time. It is nepgedsanote again that participants were
requested to respond as quickly as possible, whiph have reduced the accuracy levels. The
results of the effectiveness are given in Table &h@ are separated into switch and non-
switch trial accuracies.

Table 9.2: Effectiveness results of the visual expment [percentage score]

method Mean Std.
Error
1. Blur 0.88 0.33
2. Texture 0.76 0.43
3. Saturation 0.81 0.39
1. Non-switch trial , g, ot 094| 023
5. Line style 0.88 0.32
1. Blur 0.84 0.37
2. Texture 0.88 0.32
2. Switch trial 3. Saturation 0.88 0.33
4. Boxplot 0.93 0.26
5. Line style 0.85 0.35

The effectiveness results show that the boxplohest often correctly estimated for switch
and non-switch trials with a combined accuracy gbraximately 94%. Blur and line style
score similarly for both accuracies. The saturataou texture were both found to yield
relatively low accuracies. Their accuracies for tio®-switch trials were significantly lower
than for switch trials for both.
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9.5.2 Efficiency

The efficiency scores, which are measured by theti@n time to correctly give an answer,
are given in Table 9.3 with the values being therage values over all relevant trails in
milliseconds. Outliers are removed for which thacten time was lower than 300 ms or
higher than 8000 ms. The lower boundary indicatesréactive ability of a participant that
will never be below 300 ms. The higher bound isecteld as a reasonable value in which most
participants easily make a choice. There were 8&dond outliers and 109 high-end outliers
from the 7680 trials. The efficiency score refletiie ability of a participant to correctly
interpret the shown graphical representations wighgiven time frame.

Table 9.3 Efficiency results of the visual experintg [reaction time in seconds]

Switch type method Mean Std. 95% Confidence Interval
Error Lower Upper
Bound Bound

1. Blur 3447 1635 864 6006

2. Texture 2644 1787 968 6145

itch trial 3. Saturation 3457 1730 870 6282

1. Non-switch trial - o plot 1956| 1082 889 4384

5. Line style 2009 1118 925 4129

1. Blur 2927 1308 1425 5526

) ] 2. Texture 2644 1318 1076 5674

2. Switch trial 5 o4 ration 2694| 1486 1063 5965

(to uncertainty)
4. Boxplot 2683 1489 1168 5959
5. Line style 2459 1146 1248 4731

The reaction times for switch trials are found & dimilar for all graphical representations
with all values found to be around 2500-2900 ms roidsignificantly different. The boxplot
and line style were found to yield the lowest reacttimes and therefore the highest
efficiency, which are significantly better than tbther graphical representations. The blur,
texture and saturation scored worse when consgléoth the switch and non-switch trials.

9.5.3 Inverse Efficiency

While the efficiency of a graphical representationa visual cue is measured by the reaction
time, it is a requisite that the accuracy of a isumaintained. If a participant reacts to a visual
cue effectively, but does so with a high inaccuydbgn that graphical representation cannot
be considered efficient. Therefore, the Inverséckeificy Score (IES) is applied for which the
results of all trials are given in Table 9.4.
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Table 9.4: Inverse Efficiency (IES) score for the@isual task-switching experiment

Switch type method Mean Std. 95% Confidence Interval
Error Lower Upper
Bound Bound
1. Blur 3921 1720 983 5864
2. Texture 3478 1934 1273 5983
. . 3. Saturation 4268 1846 1074 5943
1. Non-switch trial
4. Boxplot 2072 1148 941 4335
5. Line style 2275 1233 1048 4044
1. Blur 3480 1455 1695 4751
) ] 2. Texture 3002 1421 1222 4837
2. Switch trial 5 o2t iration 3078| 1589 1215 5547
(to uncertainty)
4. Boxplot 2891 1455 1258 5503
5. Line style 2884 1581 1463 5500

For the switch trial, the IES is similar for allsualisations, with values roughly between

2900-3400. The boxplot is found to score the bdstmboth accuracy and effectiveness are
simultaneously considered in the IES, closely fo#d by the Line style. Blur also scores

reasonably well, in part due to a high level ofeefiveness. The ability of participants to

interpret the saturation and texture cues appedss telatively poor.

9.5.4 Task-switching

For the previous indicators, all task-switching ¢tomations were combined as an overall
indication of the effectiveness and efficiency @cle graphical representation. Here we
investigate the different task-switching combination more detail. A task switch means that
different variables need to be assessed on twoecatige trials. For three variables, six
different task-switches are possible. The scorestdsk-switches between each of three
variables are shown in Figure 9.8. The variablevtoch was switched was found to be
relevant, while the previous variable was lessviaié therefore we can suffice with showing
the switches to the three variables.

The segregation of the results gives some furtigglnts into the overall performance of the
graphical representations. The accuracy for swit¢bédoth traffic flow and traffic speed was
relatively high, at approximately 90-95% and 85-9@®4th no difference between switch or
non-switch trials. Two interesting observations dsn made for the boxplot and texture
representations. The boxplot scores higher for switches than other for the speed cue,
while slightly worse for the traffic flow. It mayebthat the colour cue, indicating speed, is not
affected by the boxplot, while it does interferehwone’s estimate of the magnitude of the
traffic flow cue. Texture scores poorly for non-sshi trials for the traffic flow. It is not
entirely clear why this is, but it could be causgdcognitive overload in combination with the
perception of the magnitude of a cue.
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Figure 9.8: Detailed task-switching results

A switch to the uncertainty cue shows a much gredigparity in scores. Both the texture and
saturation accuracy scores are well below the sdorehe other visual representations at just
below or above 70% correct for non-switch trialfurBscores especially poor for switch trial
to the uncertainty cue, while better for non-switicals, which indicates that this visualisation
requires more effort from a user to adjust to ttathe other representations. The efficiency
score for texture, saturation and blur, also shuoat tisers need more time to interpret these
graphical representations while achieving less @yt especially for the non-switch trials.
This suggests a certain negative adaptation t@ tipegohical representations.

9.5.5 Questionnaire

Participants were asked to rank each graphicaéseptation from 1-5, with 5 being the best
score, for its ability to convey uncertainty infation. The results are shown in Figure 9.9.
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Figure 9.9: Assessment survey scores (5 is the bssbre)

The boxplot appeared to be easy to interpret watdrly half of the participants giving it the
highest score and less than 15% giving it one @ftto lowest scores. Line style also scored
favourably with nearly 60% giving it one of the ttyo scores. Participants reacted varied to
texture, with an average overall score of 3.2. Blas given a generally poor assessment with
over half of the participants giving it one of tlegvest two scores. Finally, saturation received
by far the lowest scores, with an average of 1Bsaime 57% giving it a score of 1.

Comparison of the results of the questionnaire \lithse from the experiment shows an
incredible amount of similarity in the relative ses between the analysed graphical
representations. From both, it is clear that th&plm scored best, while line style also
performs well. At the other end of the scale battusation and texture both scored poorly in
both the experiment as well as in the survey. énfthlowing section, these results, as well as
the outcome of the expert sessions, are discusgkedarified, where possible.

9.5 Discussion

Visualising additional dimensions for the uncertgiof the results of probabilistic traffic
models is not straightforward and no one solutian loe said to be best for all circumstances.
The results of the experiment clearly showed thatltoxplot performed best among the five
tested graphical representations for the unceytatute, both objectively (in terms of
processing efficiency and accuracy) and subjectiyiirough positive assessments). Line
style also scored well, even though its performamas rated slightly lower than that of the
boxplot. Both of these cues have the advantage itftataction with the cues of other
displayed variables, the traffic flow (height) asmked (colour), is limited: neither cue distorts
the colour of a network link. The effect on theffiaflow cue seemed also to be limited.
Although the individual task-switching results msiyyggest that the boxplot shows a slight
interference with the traffic flow, it was not embu to substantially reduce its score.
Comments made by participants indicated that alicomiccurred for saturation and texture
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with the colour cue representing the speed. This egpecially the case for saturation, which
can also easily be seen in the low accuracy olddmreuncertainty estimations from this cue.
But also for texture, participants struggled touwmately and promptly distinguish between
different levels of texture intensity. Both of tleegraphical representations are therefore less
useful in their current form, because of their tedi ability to convey quantitative information
and because they interact with the speed cuechanis also found it difficult to distinguish
different gradations of blur, however this repreéagan did not suffer from interference with
the other graphical representations to the sanemext

The results of this study clearly show that the rappateness of a given uncertainty
visualisation depends on the condition in whicls itleployed. We identified three important
issues that should be considered before selectgzhical cue to represent uncertainty in
traffic flow model outputs:

Avoid interactionbetween graphical dimensionBoth the results of the experiment and the
outcome of accompanying questionnaire indicated dghaphical cues are more difficult to
process when they are used in conjunction (i.e.nvthey occupy the same physical space,
e.g. a combination of saturation and colour).

Use visualisations that allow explicit comparisonquantification The experts judged that
certain graphical representations can be useddicate a scenario, but are less suited for
comparison of their underlying values. Blur is aogoexample of this. Participants had
difficulties in judging the extent of the blur. Gme other hand, the boxplot proved to be easier
to interpret, possibly due to its crisp scale. Eheare certain categories of visual
representations that are less suited for explamgarison or quantification, and this should
be considered if this is seen as a requirementhervisual cue, as is the case here for
uncertainty.

Avoid visual clutterln the introduction on model visualisations, thias already mentioned
and is again confirmed in this study. Also when bonmg different visual cues in a single
visualisation, one must be careful not to overltevisualisation and therein limit the clarity
and ability of a user to promptly interpret a viksetion. It is suggested that certain
combinations of visual cues and graphical reprediems do not mix well in this regard. This
is especially the case when multiple cues attfaetattention of a user and even prohibit the
view of other graphical representations and theetgithg network or background.

While these considerations are mainly relevantatcsvisualisations, they should not entirely
be ignored for interactive dynamic visualisatiorowever, in an interactive visualisation
there are more options available to select varoues and therefore to limit the number of
cues shown at once. This does not only limit tHermation load, but also allows certain
explicit and easily comprehendible graphical repnégtions to be used alternatively.

While the proposed graphical representations irptiegious sections are designed with static
reporting in mind, there are also a number of aoltil possibilities when the considered
visualisations are placed in an interactive framwdhere are increasingly more interactive
environments becoming available for hands-on icteya with model results and data. An
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example of a platform using some of the visuals®ti from this research is the
CommonSense platform (TNO, 2014), shown in Figui®9The three visualisation options

shown in Figure 9.10 give some insight into the wtatic visual cues may be deployed in a

dynamic interactive environment where the speqgfigpose of the overall visualisation

dictates which type of visualisation is most sugab
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9.6 Conclusions

In conclusion, this chapter presents a number odlidate graphical representations that can
be applied to represent uncertainty in traffic mModsualisations. Although the focus was on
uncertainty visualisations, the graphical represtoris may also be applied to represent other
dimensions. The applicability and quality of thespresentations was initially assessed
through a series of expert workshops. In a follggwisual cognitive experiment, a selection
of the graphical representations was further evathalt appeared that certain graphical
representations performed better than others (glbbxand a line style representation
outperformed the other representations). An addiliéinding was that participants were able
to assess graphical representations relativelyratay. This was found by comparing the
(objective) results of the experiment with the {sabve) preferences reported in response to
an accompanying questionnaire. It appears thatthgal choice of a graphical uncertainty
representation strongly depends on the desired sy@ed and level of information disclosure
and is therefore model and scenario dependanthéfugnalysis showed that three main
considerations should be taken into account whesigdemg model visualisations. It is
important (1) to avoid interference between thauaiscues on different dimensions, (2) to
apply cues that allow explicit comparison or quigzdtion where required, and (3) to be
aware of the detrimental effects of clutter or ¢e@ding visualisations with too much
information. It is evident that no single graphicapresentation will serve to represent
uncertainty in all different traffic model visuaisons. A set of feasible candidates are
presented together with some essential issuesnted to be considered when deploying
uncertainty representations to traffic model vigaion.



Chapter 10

Conclusions and recommendations

The research presented in this thesis has beeompeetl with the motivation to improve the
understanding and analysis of the stochastic effettraffic flow with respect to the
application and impact of traffic management. Thmesan areas are highlighted and
considered, namely the analysis of uncertainty fluctuations in traffic, modelling of
uncertainty and fluctuations to a-priori evaluataffic management measures and the
visualisation and communication of uncertaintyraffic. The main conclusions and
recommendations of the presented research are givédtis chapter, as well as some
practical implications of the research results.

The chapter starts with the main findings and cosicns of the research in section 10.1 and
is followed by the practical implications of thesudts for application in section 10.2. Section
10.3 offers some recommendations for further redetollowing the developments made in
the presented research in this thesis.

207
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10.1 Main findings and conclusions

The main findings and conclusions of this thesie presented in this section. This is
performed using the same structure as applied ¢sept the research objectives in the
introduction chapter, which considers the topicamdlysis, modelling and visualisatiofhe
modelling section 10.1.2 is split into three paft&ussing onbackground, the models, and
practice In each sub-section, the main relevance of tleeifp topic is firstly highlighted,
and then the main findings are given followed g/ ¢bnclusions found in this thesis.

10.1.1 The analysis of uncertainty and fluctuationg traffic

Analysis of stochastic characteristics of the Ja@da that influence traffic flow is necessary in

order to understand and model uncertainty anduaiains. These variables lead to a greater
understanding of the extent of the stochasticsamdact as input for models. Both demand
and capacity are directly affected by such vargbemand fluctuations strongly depend on

the local network and scenario. Capacity fluctusioo too; however they tend to be more
generic and less easy to quantify in model calidmnatT herefore, the main focus for analysis

was on capacities.

In Chapter 3, two methodological frameworks werespnted for stochastic analysis of
traffic; one based on stochastic capacity and thercon combined stochastic demand and
capacity. In Chapter 3, both research questionsstgpns 1 and 2) regarding the analysis of
uncertainty are addressed. The first methodologi@hework is a conceptual model for
practical stochastic capacity estimation that afidive stochastic nature of capacities to be
captured and quantified. The methodology is designegive practitioners and researchers a
concise and easy to follow approach for stochas#ipacity estimation. The stochastic
capacity estimation part of the framework is basedthe adapted Product Limit Method
(PLM) by Brilon et al. (2005) to quantify capactyg a distribution. This approach was found
to be robust, but also effective as it uses botkbpeakdown, as well as breakdown
observations, of traffic to construct a probabiliigtribution of capacity. Furthermore, the
approach can easily be applied under differentat@nto construct capacity distributions for
different conditions, such as for incidents, witiffedent weather conditions, or for major
events. A quantification of day-type specific véioa in capacity values was given in the
form of a Weibull capacity estimation fit for eatyipe-of-day scenario. In the case, weekdays,
weekend days and holiday days were consideredeanddsas a demonstration of the applied
methodology and gave a generic capacity distributapplicable for The Netherlands
motorway network. In addition to the framework, amtensive overview of capacity
influencing variables was described and presenteal diagram. This showed that variables
can be categorised as exogenous, endogenous arregmp

The second methodological framework, also presemte@hapter 3, considered the joint
stochastic effect of demand and capacity on trdlifiw. The methodology applied the same
capacity approach as the first method and derivsdathd distributions through an empirical
process of cordoned observations. This was perfdrioethe influence of the endogenous
variable environmental effects in the form of weatlconditions, as one of the most
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influential external and commonly occurring vareblon traffic flow. Weather conditions
affect both traffic demand as well as road capaditye capacity estimation framework was
applied on weather as part of a holistic approawmhsfmultaneous influence on both the
demand and supply in an extensive data-driven aisalfpr the effects of rain, snow,
temperature and wind for their influence on traffithe results showed that for increasing
precipitation in the form of rainfall, both the @ity and demand decreased. Despite the
reduction, the overall influence of rain on tradfiability to flow fluently was not substantially
reduced, due to the interaction between the denaandcapacity. Insufficient data for the
described approach meant that capacity estimatoidaot be made for snowfall, while a
reduction in demand for snow was found of more tH#&%. The influence of cold
temperatures proved to be substantial on traffierfty. Demand was found not to vary
significantly, while capacity decreased leadingtgreater chance of a reduction in level-of-
service of roads. Similarly, high winds were foutal also reduce the quality of traffic
fluency, although at a lower level of approximatély3%. For each weather scenario,
stochastic distributions were derived. These showed the distribution shape of each
weather type does not significantly differ and vi@snd to yield similar shape-parameters
when fitted for a Weibull distribution. The shapietioe demand distributions also showed a
close resemblance to each other and was foundheredo a t-location-scale and logistic
distributions. From the case study, we conclude tte methodology can be applied to give
estimation of the effects of varied demand and c&paariables in a single analysis. The
resulting distributions may be useful for a numbgfuture purposes, such as application of
uncertainty and sensitivity analysis both in datakgsis and modelling of traffic effects
during weather to name just two.

10.1.2 Modelling uncertainty and traffic fluctuations: the background

Before being able to construct new approaches swanthe research questions, it was first
necessary to understand what the current statbeohit is in macroscopic and stochastic
modelling. Furthermore, insight was also requiredtbe necessity of considering traffic
stochastically, which without there is no need@éeksmethods to analyse and model it. Both
the necessity and the background of stochastic osegpic modelling were presented in
Chapter 2. It was found that two main avenues odleteare utilisedrepetitive Monte Carlo
simulation and theanalytical consideration of probability in the core of a modélhile
classically, the Monte Carlo approach has beenegphe advancement of various analytical
approaches has increased, with a number of extensad deterministic models being
proposed. It was found that too often stochastidatian in models is insufficiently
considered in practice, either for applicationha hecessity for development. Models that did
include stochastic elements, did so with variouscesses, but often succumb to one of the
two following shortcomings: too high complexity computational effort for easy application
in practice, or oversimplification, resulting inaiccuracies and a limited consideration of the
real stochastic effects in traffic flow. To demaoast the necessity of considering uncertainty
in traffic modelling, two experimental cases weneeg in Chapter 2, in which the application
of a deterministic approach was shown to yield sriglly biased results in comparison to a
stochastic approach. A further deliberation conetuthat stochastic models can be seen as
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more accurate than deterministic models, as theyesent reality better, however their
application is not recommended where there i®litngestion, little variability in variables
or when a general indication of network performaiscgought. In most other cases, stochastic
variability in traffic should be considered. Is wargued that there is a clear necessity, but
also many challenges for the scientific and coasaly communities to further develop and
apply stochastic modelling in traffic analysisislthe joint responsibility of both communities
to address this and make further developmentdsmatiea of research possible and realise that
blindly applying non-stochastic models where prolitghs rife can have detrimental effects.

Research question 3, the first research questioglation to modelling stochastics, addressed
the main issues that still exist. In Chapter 2,rtfen issues to modelling stochastics, derived
from the literature research, were presentedCasnputational efficiency, Correlations and
spatiotemporal dependency, Data gathering and msiog, Stochastic propagation of
probability, Generality of stochastic variatioand Driving behaviour in macroscopic traffic
For each issue, a challenge was formulated to d@aitklin Chapter 2, it was derived that
especially the manner of stochastic propagatigorabability in traffic is a key issue. There is
a strong influence from this issue to both the neamm which the spatiotemporal dependency
Is influenced and the extent to which stochastitabdes can be dealt with generically. It may
be that certain presumptions for dealing with utaiety propagation may limit how
stochastic variables are defined. Furthermore, eastle was found to affect the computation
time of a model and in most cases contributesltovar computational efficiency. During the
development of the modelling approaches in thisitheéhe described issues were taken into
account as much as possible, while it was beyoadstiope of the thesis to extensively and
explicitly address all of the issues individually.

10.1.3 Modelling uncertainty and traffic fluctuations: the models

Two levels of modelling stochastics are considenetthis thesisuncertaintyis considered in
macroscopic stochastics, which describes day-totdaertaintiesbetweentraffic flows in
scenarios, andfluctuations is considered in microscopic stochastics, whiclscdbes
microscopic variabilityin the traffic flow between vehicles. This distinetics necessary as
both have inherently different consequences andineglifferent modelling approaches, even
if the source of the stochasticity is the same.

Two types of uncertainty modelling were presentadthis thesis and reflect the main
modelling approaches found in ChapteiMbnte Carlo modellingand‘one shot’analytical
modelling These approaches give an answer to researchiaqudstHow can uncertainty
scenarios in traffic be modelled effectivelyRe first type considered the application of
Advanced Monte Carlo simulation to include uncertiaChapter 4). These are Monte Carlo
techniques that make use of algorithms to spreawbles for simulation and therefore require
fewer samples to give a representative distributiimese techniques were investigated for
their ability to reduce the computational load. Amparison was made in several
experimental cases between these techniques anhaftlmagular Monte Carlo simulation.
Three approaches were analysédtin Hypercube Samplingmportance Samplingand
Sobol Quasi-random Sequencingihe techniques were clearly shown to be stabl@ an
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consistently able to improve the convergence ofpdesnto a true distribution allowing for a
reduction in computational load and to make stanhand reliability analyses with Monte
Carlo simulation in traffic modelling more applidakand efficient. This had not previously
been demonstrated for traffic modelling. Sobol Quasdom Sequences was clearly shown
to be the most effective technique in the presectesks. The technique samples with an
explicit spread from a set, however it also expiiatonsiders the consequential construction
of the samples using an analytical sequence. Fat nmalicators, the error level was a
multifold smaller compared to Crude Monte CarlotihaHypercube Sampling was most
effective for multiple input variables. In the caeyed cases, two stochastic variables were
considered, which proved to be sufficient for tliatified technique to substantially improve
convergence, however not as well as the Sobol tggbnimportance Sampling has a great
potential to decrease computational load througituceng the extremities of a distribution,
especially when the traffic system has an amplié#dct on the outcome, as is often the case
in congestion. The technique however is dependenh® applied estimator distribution, and
did not perform as well in the presented casesliégpon of an estimator method to optimize
the estimator distribution is therefore essentialthis thesis, the importance of a reliable
estimator function was demonstrated for ImportaBaepling. Quasi-random sequencing is
concluded to be most effective in general, due ¢wad spread in samples and a robust and
simple application. However, other techniques mayapplied and may be more effective
depending on the specific application and variabtessidered.

The second type of uncertainty modelling consideratew modelling framework: the Core
Probability Framework (Chapter 5). The Core Prolatgldtramework (CPF) is a probabilistic
framework for modelling multi-dimensional variat®nn capacity and traffic demand in
dynamic macroscopic traffic flow. The CPF makes ofsa propagation model, tH2iscrete-
Element Core Probability Model (DE-CPMhat extends a base model, such as the Cell
Transmission Model (CTM), by considering each tcaMfariable as a stochastic variable
denoted as a probability distribution of the chaofcealues for each traffic variable. The CPF
and DE-CPM extend current deterministic trafficwflonodels by redefining traffic variables
in the core of the model as discrete distributi@ctors of probable values for each traffic
variable. Each discrete element in the distributiepresents a single plausible scenario. In
such a way, stochastic variation in traffic is megdised in the model and does away with the
necessity of repetitive Monte Carlo simulation. tharmore, a greater degree of flexibility in
analysis is obtained, as each individual trafficialale in time and space may be given as a
function of their probability. Moreover, the undenlg distribution of each traffic variable in
space and time is preserved such that the intrmfuof distribution fitting errors is limited to

a minimum. Important issues facing stochastic izaffow modelling: computational
efficiency spatiotemporal dependencstochastic propagation of probabiljtandstochastic
generality,were shown to be tackled by the CPF. The outcontieeotalculation time tests on
simple networks, compared to a CTM Monte Carlo nhosleowed that the DE-CPM has
great potential to reduce computation times, intnoases by a factor 5-20, especially for
larger networks and for greater levels of stockdgti This is mainly due to the small
marginal computational costs incurred when increasie level of uncertainty in the discrete
model. The DE-CPM addresses the other mentionagessshrough the element based
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calculation using the so-called chain-rule, whiefjuires the dependencies between variables
to be dealt with externally and then explicitly m@ins distributions of scenarios in the
propagation of traffic through a network. We therefconclude that the CPF and DE-CPM
offer an alternative approach that tackles mangterg issues in modelling uncertainty in
traffic.

Modelling of fluctuations in traffic flow is presesd in Chapter 6. There, a microscopic
stochastic method to include stochastic vehicleciipebehaviour and interaction was
presented, which addresses research questibfow: can stochastic fluctuations in traffic
flow be modelled macroscopicallyPhe First Order Model with Stochastic Advection
(FOMSA) is presented as a first order macroscopierkatic wave model in a platoon-based
Lagrangian coordinate system. Capturing micro-setib driving behaviour in a
macroscopic model is important to accurately descriraffic flow phenomena on a
macroscopic level. The proposed model makes us#rsif order traffic flow theory in
conjunction with an additional invariant term, thehicle specific invariant, which describes
the heterogeneous effect of vehicle behaviour &eddvel of aggressiveness of drivers and
represents the vehicle specific change to a detésti density value. The use of Lagrangian
coordinates was shown to allow characteristics p#csic vehicles or vehicle-groups to
propagate along with the traffic flow using the b specific invariant and had previously
been shown to lead also to more accurate resuies.déscribed model offers the advantages
of including vehicle behaviour with an increaseduwaacy due to reduced diffusion effects,
while doing this in a first order setting and tHere avoiding some of the complexity
involved in second order model that are often aoblio incorporate vehicle behaviour in
macroscopic modelling. The model was demonstrateshi experimental case on a corridor
with two bottlenecks present. The case demonstritedface validity of the model and
offered insight into the effects of different vatutor the model parameters. To include the
effects of the capacity drop, further analysis wagormed through two different approaches:
bounded acceleratioand driver reaction timesThe investigation of bounded acceleration
found that the application in the model under caiséd conditions has a limited contribution
to a capacity drop. Only under low accelerationrasuwas there a substantial capacity drop
visible. This led to the conclusion that the capadrop is not merely a consequence of a
restriction in the acceleration ability of vehicles an individual basis. In the second
approach, the effect of reactions times for aceéiley vehicles out of congestion was
analysed and successfully captured capacity dropsintreasing reaction times. It also
showed that the influence of heterogeneous trafilgugh use of the invariant term, leads to
lower capacities, while the capacity drop compateda deterministic scenario is not
increased.

10.1.4 Modelling uncertainty and traffic fluctuations: in practice

Putting the developed models into practice forficahanagement requires a mandate for the
necessity of traffic management at a location eaakVhile the locations of some problems
are obvious, others are less so, especially in tmpetworks with highly heterogeneous

traffic flow. In Chapter 7, a methodology is pretsehthat evaluates the resilience level of
road sections based on traffic flow stochasticse Tinethodology applies théink
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Performance Index for Resilience (LPIR)ich evaluates the resilience level of individual
road sections in relation to the wider road netwdrke focus of the methodology is on
resilience and is therefore wider than robustnassijt also considers the ability of road
sections to recover from disturbances as well ascthissical robustness itself. Resilience is
found in many transportation related disciplinesichs as transport networks, freight
movements and logistics, but it not explicitly coomplace in traffic flow analysis, while
reliability and vulnerability and increasingly inobustness analysis are. Also when
considering the effect of stochastics in traffiovil for performance, resilience is considered
most relevant. A distinction was made between staesce part and a recovery part as part of
the entire methodology with a focus on homogenaus wlatile traffic, which plays an
important role in resilience. The resilience wascwated in relation to the traffic flow
characteristics at a flow level and the abilityrofd sections to maintain their predefined
purpose to serve vehicles without overly experiegotongestion. The method explicitly
aimed at capturing the level of traffic heteroggnerhe effectiveness and validity of the
methodology was demonstrated in an experimentaé das a small network of two
interconnecting motorways. This demonstrated théRkPability to detect weakly resilient
locations by calculating the relative resilientualbf individual road sections. The calculated
LPIR values were compared with the results of twbeo measures for resilience and
robustness, namely the ‘recovery time’ and ‘totalag’. Many locations that performed
poorly in the LPIR were also highlighted in the eittmeasures, however there were also
important differences that further showed the gftlerof focussing on resilience. It was
therefore concluded that the analysis of the esike offers a deeper insight into the way road
sections are judged for weakness compared to ¢uapamoaches and that resilience analysis
offers a complementary tool to robustness. Thiggpecially the case when the analysis
concentrates on the influence of disturbances affidrflow at the level of traffic rather than
at a higher abstraction level. The LPIR methodolatpp allows for a deeper analysis of the
casualty of a poorly resilient road section. Thes ke performed through additional data
analysis.

In Chapter 8, a demonstration of the entire modigéss given in a comprehensive case study
for a real network and problem case. The case stady performed for the application of
stochastic effects in traffic modelling to aid #yeplication of traffic management. In this, the
LPIR, Advanced Monte Carlo simulation, and FOMSA delis were all applied. The
application and selection of traffic managementsueas was applied in part using the Dutch
‘Gebiedsgericht benutten’ (GGB) methodology for #pplication of traffic management. In
the case, the models showed they are able to periail and demonstrated their value for
their specific purposes and their ability to a-prievaluate potential traffic management
measures for sensitive road sections and carriagewae importance of consideration of the
stochastic influence of traffic was further demoatgd for both day-to-day variations as well
as intraday and inter-vehicle stochastics for thicemme of studies. Failure to consider the
stochastic effects would of have resulted in a WaL6% for the speed of congestion
spillback in the first sub-case and of 200% fordletay in the second sub-case.
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10.1.5 Visual aids for effective communication ofncertainty in traffic

The sixth and final research question referrechéovisualisation of uncertainty in traffic and
asks:What are effective options to visualise and compaiaiuncertainty from probabilistic
traffic models?An answer to this question was given in Chaptef ¢his thesis. Here, the
results are given of an investigation into difféaremethods to visualise uncertainty in static
representations of macroscopic stochastic traffacleh predictions on road networks. Several
graphical uncertainty representations were developed analysed in expert sessions.
Following this, a selection of the initial set afiaertainty visualisations was evaluated in a
cognitive alternative task-switching experimentcénclusion from this was that the actual
choice of a graphical uncertainty representatioongfly depends on the desired type, speed
and level of information disclosure and is therefamodel and scenario dependant.
Nevertheless, it was possible to find appropriafgesentations and it was shown that boxplot
and line-style representations of uncertainty wggaerally favourable additions to current
macroscopic model visualisations. An additionaldiity from the experiment was that
participants were able to assess graphical repsams relatively accurately. Further
analysis on designing model visualisations shovirad three main considerations should be
taken into account. Firstly, it is important to alenterference between the visual cues on
different dimensions, secondly, to apply cues #tlatwv explicit comparison or quantification
where required, and thirdly, to be aware of theicheintal effects of clutter or overloading
visualisations with too much information. The claptoncluded with a presentation of a set
of feasible candidate visualisation for uncertaintyraffic model visualisation.

10.2 Practical implications

The research presented here is performed to aicrbbysis and implementation of traffic
management in practice. To that extent, the resiithe research have evidential practical
implications. The main practical implications faaptice are discussed in this section.

10.2.1 Data analysis implications

The presented data analysis frameworks allow sgticheapacity and demand estimations to
be made. The practical implementations from them@éworks are described as:

* Application of the frameworks in practice allowspeaities to be estimated with
greater detail and above all stochastically. Ineedaaccuracy of capacity estimation
can aid model application as more accurate capaetyes should lead to more
accurate predictions and easier calibration of risode

* Analysis of traffic networks and systems can befquered while taking the joint
effects of capacityynd demand variation into account. This is importasttlze joint
effects will often lead to unexpected, but mordiséia results, as was shown with the
precipitation case in Chapter 3. Such approachesbeaapplied for network broad
analyses of traffic flow, such as for the analysfsexisting traffic management
measures, expansion of a network, or merely foraanurate analysis of the
performance of a network.
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 The performed cases in this thesis also have pectelevance. The stochastic
capacity distributions found for the capacity faffetent day-types, and for the
different weather types can be applied straigltt models or in analyses requiring this
type of data.

10.2.2 Modelling implications

In this thesis, three different modelling approachad a network evaluation approach were
presented. These all have separate practical iatjgits as well as a combined relevance:

« The combination of the resilience methodology amathbtypes of modelling
approaches, for uncertainty and fluctuations, gaveemplete procedure for analysing
and a-priori evaluating the application of trafftanagement on a road network (see
Figure 10.1). Their combined application can beliegdpby road authorities to
improve traffic flow and network performance thrbugnalysis of roads and the
evaluation and application of traffic managemenasoees.

» Prior to the application of traffic managemenisitiseful to first evaluate the possible
gains. As variations in traffic play an importanarp in this effectiveness, the
application of Advanced Monte-Carlo simulationgloe Core Probability Framework
to estimate the effectiveness allows road autlesrito more accurately apply traffic
management measures than using models that doamsider uncertainty. This
greatly improves their ability to come to an appiaie decision for action.

* Consideration of uncertainty in traffic modelling not only relevant for traffic
management, but for all forms of traffic modellithgat considers the performance of a
traffic network and considers different scenariésr example, Cost Benefit Analyses
often requires analysis of networks for differingesarios, in which the presence of
uncertainty is rife and is therefore suitable tplgmne of the developed approaches.

» Besides uncertainty, also fluctuations in traffiowf between vehicles plays a role.
Capturing and modelling these fluctuations with F&M allows analysis on a
microscopic stochastic level to be performed offfitraflow, however using a
macroscopic model. This allows stochastic dynammctaffic flow to be modelled
without the necessity of multiple simulations wdlffer seeds and also in a much
shorter computation time. The model especiallygaential for practical applications
for multiple interacting disturbances in traffioW and for the analysis of traffic flow
phenomenon on networks, such as congestion shoelswav
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Figure 10.1: Analysis procedure for a-priori measue evaluation

10.2.3 Communication implications

Analysis and modelling with stochasticity is onent)) but being able to communicate the
results of these processes is another, which isritapt if the approaches are to have practical
value.

* The presented research on visualisation for unogytanodelling of traffic gives
tangible options to visualise the extent of unéetyain static reports. This allows the
results of uncertainty analysis to be presentedad authorities, managers and other
decisions makers when making a case for specifasares.

* A number of considerations for communicating uraiaty are given in Chapter 9.
These have practical implications for the consiti@naof communication techniques
when attempting to communicate results of unceréai@nts or scenarios. Often the
way results are presented plays just as large e aslthe content of the results,
therefore careful consideration of how they ares@néed can have a large influence on
the outcome of a process.

10.3 Recommendations for future research

While certain questions have been answered andimgghts gained on various aspects on
the stochastic effects of traffic on traffic managmt, this research has also led to new
guestions and paths of thought that did not fithie scope or time constraints of the research.
These are presented in this section as recommendatfor future research. The
recommendations are again presented followingttinetsire of the research objectives of this
thesis.

10.3.1 The analysis of uncertainty and fluctuationg traffic

The main recommendations for analysis of uncestamtthe variables that influence traffic
flow relate to the relationships between vehicM#hile methodologies exist and analyses
have been performed to give insights into singla tew variables, there is a need to consider
the wider interdependencies of variables for tifiuence on traffic flow. This is also the
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case in reference to the uncertainties and fluciostin these variables; how do these
stochastic elements influence each other and yitlad traffic system?

10.3.2 Modelling uncertainty and traffic fluctuations

In this thesis, a set of issues related to stochasicroscopic traffic modelling were given.
While solutions and improvements were given to lmeknumber of them, further advances
are still required and are recommended. Especidilg issues: correlations and
spatiotemporal dependency, stochastic propagatioprobability, and driving behaviour in
macroscopic trafficstill require further attention.

The possibilities of advanced Monte Carlo samplwege reviewed. However, there is still a
need to further review which technique is mosteshiinder which conditions. It may be that
Quasi-random sequences are found to be most @Hdatiall situations, however this has still
to be investigated and further research on speaifiplication of various techniques is
therefore recommended.

The other uncertainty approach, the Core Probgtiiiamework (CPF), introduced a novel
approach to consider uncertainty in macroscopic efsodlhe application of the Discrete-
Element Core Probability Model (DE-CPM) showed pisen but is only one example of

possible execution of the framework. Further regearnto extensions, additional models and
more integrate approaches for the CPF is recomndewth the hope that computation time
may be further decreased and more complex modepiradplems with more extensive

consideration of uncertainty can be tackled.

The FOMSA model demonstrated a good ability to m@rsmicroscopic fluctuation in
macroscopic traffic flow. Two expansions for futesearch are recommended. The first
relates to a greater understanding and descriptformicroscopic traffic dynamics in
macroscopic modelling. Traffic flow dynamics candmnplex, even on a microscopic scale.
Scaling up to a macroscopic level can be even robedlenging and will require further
research to include more elements that are alrk@olyn in microscopic modelling. Also, the
changing dynamics of traffic flow with different lwele populations and possibilities form a
challenge, such as consideration of increased eaitdomation. The second challenge refers
more directly to FOMSA. At the moment, the modeldessigned for motorway corridors.
Expansion of the model to be efficiently applicabde (complex) networks and for urban
networks is recommended. This is in theory very sfie, but requires careful
implementation and consideration of a number o&thaffic aspects, such as interweaving
traffic and intersections.

The Link Performance Indicator for Resilience (LPPWRas presented as an approach to
evaluate resilience levels and identify hot spatstfaffic management application. In the
framework of the approach, a description was giwkan additional aspect of the LPIR that
allows causality of resilience weakness to be @erifvom data analysis. This was not further
expanded on in this research and is left as a memordation for further research. The
analysis of resilience causality is an interestamga that can be a strong addition to the
presented method, as it does not only return reatiosns that require attention, but also gives



218 TRAIL Thesis series

a strong indication of the reasons behind the tdalkesilience allowing a road authority to act
more precisely.

Finally, the comprehensive case study applied tbdeats and used the GGB methodology for
traffic management measure selection. The methgglodas found to be extremely effective
and relevant, however is in need of updating, eafedn relation to the possibilities of
floating devices, social media, and cooperative antbmated driving. The increase in
possibilities for communication and traffic flow igance has further developed in past
decades. Therefore, a recommendation is made igerthe current methodologies to include
traffic fluctuations and the latest developmentgaffic modelling.

10.3.3 Visual aids for effective communication ofncertainty in traffic

In this thesis, existing visualisation options weieved for communication of uncertainty. It
was beyond the scope of the thesis to design newalcues for uncertainty representation for
macroscopic models; however this is an interesiimg) maybe important area that should be
considered. Making use of the main considerationsdésigns, it is recommended that new
designs are made that comply with the findingsemwe=d in this research and can further aid
the communication of uncertainty in traffic modedji Furthermore, the focus in this research
was on static reporting of model results. Howewecreasingly interactive platforms and
methods of communication are advancing and itesefore also recommended that a similar
study is performed into the effectiveness of treualisation of uncertainty for such platforms
of communication.
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Summary

When congestion becomes a problem on a road or mebaork, there are generally three
main solution areas available to tackle it: coredtam, pricing or traffic management. Traffic
management became an increasingly preferred optwemrds the end of the twentieth
century as an alternative to construction in maages. Traffic management proves a more
efficient alternative and focusses on influencirgffic flows such that the existing road and
network capacity is more effectively utilised rdgg in a reduction in congestion. The
effectiveness of traffic management is dependenthenability to influence traffic flow.
However, traffic contains a relatively large amouwft stochastic behaviour, which is
connected to human driving behaviour. The fluctuagithat occur in traffic flow due to this
stochastic behaviour have a large effect on thect¥eness of traffic management.
Furthermore, uncertainty between time dependamasiu®s has also shown to have a large
influence on the outcome of the analysis of traffianagement measures. In the past, little
attention has been paid to these effects. Thereloeemain objective of this thesis is to give
insight into the stochastic fluctuations and uresety in traffic flow for the application of
traffic management measures and to propose toalsattow these effects to be analysed and
subsequently modelled in aggregated macroscopiesfldn doing this, the necessity to
consider uncertainty and fluctuations for traffiamagement is also demonstrated. Stochastic
processes are considered wasertainty which describes day-to-day uncertaintetween
traffic flows, andfluctuations which describes microscopic variability the traffic flow.
Three main areas are focussed on: the analysiar@tions in traffic, modelling fluctuations
and uncertainty in traffic, and the visual commatimn of uncertainty from traffic models.

Analysis

Analysis of stochastic characteristics of the Ja@da that influence traffic flow is necessary in
order to understand and model uncertainty anduateins. Both traffic demand and capacity
are directly affected by such variables. Two methogical frameworks are presented for
stochastic analysis of traffic; one based on ststohaapacity and the other on combined
stochastic demand and capacity. The first methgilcdb framework is a conceptual model
for practical stochastic capacity estimation tHimves the stochastic nature of capacities to be
captured and quantified based on the adapted Rraduit Method (PLM) and quantified as
a distribution. The second framework considers jtet stochastic effect of demand and
capacity on traffic flow. The methodology applidtetsame capacity approach as the first
framework and derived demand distributions throwgh empirical process of cordoned
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observations. Considering demand and capacityliegét found to give a deeper and holistic
understanding of the effect of variation on théfizdlow system.

Models

The developed models consider the distinction betwencertainty and fluctuations, which is
necessary as both have inherently different coresemps and require different modelling
approaches, even if the source of the stochastigityye same. Two types of uncertainty
modelling are presented in this thedidonte Carlo modellingand ‘one shot’ analytical
modelling The first type considers the application of Adseah Monte Carlo simulation to
include uncertainty, which makes use of algorithtosspread samples of variables and
requires fewer samples to give a representativerildiion. These techniques were
investigated for their ability to reduce the congtignal load in uncertainty scenario
modelling. Three approaches were analysedtin Hypercube Samplinglmportance
Sampling andSobol Quasi-random Sequencirithe techniques were shown to be stable and
consistently able to improve the convergence twa distribution allowing for a reduction in
computational load and to make Monte Carlo simaikath traffic modelling more applicable
and efficient. These techniques had not previobskgn demonstrated for traffic modelling.
Of the analysed techniques, Sobol Quasi-random €3egs are shown to be the most
effective.

The second type of uncertainty modelling considerestw modelling framework: The Core
Probability Framework (CPF), which is a probabitistramework for modelling multi-
dimensional variations in capacity and traffic dechan dynamic macroscopic traffic flow.
The CPF makes use of a propagation model Diserete-Element Core Probability Model
(DE-CPM) that extends a base model, such as the Cell Tiasism Model (CTM), by
considering each traffic variable as a stochasiitable denoted as a probability distribution
of the chance of values for each traffic variablee CPF and DE-CPM extend current
deterministic traffic flow models by redefining tiia variables in the core of the model as
discrete distribution vectors of probable values éach traffic variable. Important issues
facing stochastic traffic flow modelling:computational efficiengy spatiotemporal
dependencystochastic propagation of probabilitandstochastic generalitywere shown to
be tackled by the CPF. The outcome of the calandatime tests on simple networks,
compared to a CTM Monte Carlo model, showed that bfE-CPM has great potential to
reduce computation times, especially for largerwoeks and for greater levels of
stochasticity.

Modelling of fluctuations in traffic flow is consaled in the developed First Order Model
with Stochastic Advection (FOMSA). This is a fimtder macroscopic kinematic wave model
in a platoon-based Lagrangian coordinate systenptuiag micro-stochastic driving

behaviour in a macroscopic model is important twueately describe traffic flow phenomena
on a macroscopic level. The proposed model makesti§irst order traffic flow theory in

conjunction with an additional invariant term, thehicle specific invariant, which describes
the heterogeneous effect of vehicle behaviour &eddvel of aggressiveness of drivers and
represents the vehicle specific change to a detestic density value. To include the effects
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of the capacity drop, further analysis was perfatnterough two different approaches:
bounded acceleration and driver reaction times.rbdel offers the advantages of including
vehicle behaviour with an increased accuracy dueedoiced diffusion effects, while doing
this in a first order setting and therefore avagdgome of the complexity involved in second
order model that are often applied to incorporaieicle behaviour in macroscopic modelling.

To detect road sections requiring attention to meprthroughput, a methodology is presented
that evaluates the resilience level of road sestibased on traffic flow stochastics. The
methodology applies the developkthk Performance Index for Resilience (LPIRMich
evaluates the resilience level of individual roadt®ns in relation to a wider road network.
The focus of the methodology is on resilience arakes a distinction between a resistance
part and a recovery part as part of the entire atetltogy with a focus on homogenous and
volatile traffic. The resilience is calculated lation to the traffic flow characteristics at a
flow level and the ability of road sections to mtain their predefined purpose to serve
vehicles without overly experiencing congestione Thethod is explicitly aimed at capturing
the level of traffic heterogeneity. A demonstratiohthe entire model suite is given in a
comprehensive case study for a real network anblgmocase of the A20 North ring road of
Rotterdam and was performed for the applicatiostothastic effects in traffic modelling to
aid the application of traffic management. In thiee LPIR, Advanced Monte Carlo
simulation, and FOMSA models were all applied. Thedels showed they are able to
perform well and demonstrated their value for ttsgiecific purposes and their ability to a-
priori evaluate potential traffic management meesufor vulnerable road sections and
carriageways. The importance of consideration & $tochastic influence of traffic was
further demonstrated in the case for both day-toadaiations as well as intraday and inter-
vehicle stochastics for the outcome of studies.

Visual communication

Communication of results based on uncertainty edgaoires attention and is considered. This
is performed through an investigation of differeméthods to visualise uncertainty in traffic
for static representations of macroscopic stochastffic model predictions on road
networks. Several graphical uncertainty represemsit were analysed in a cognitive
alternative task-switching experiment. Although #wtual choice of a graphical uncertainty
representation strongly depends on the desired syg@ed and level of information disclosure
it was possible to find appropriate representatamm it was shown that boxplot and line-style
representations of uncertainty were generally faaole additions to current macroscopic
model visualisations. Further analysis on designimafel visualisations showed that three
main considerations should be taken into accourgtly; it is important to avoid interference
between the visual cues on different dimensionspredly, to apply cues that allow explicit
comparison or quantification where required, anddhp to be aware of the detrimental
effects of clutter or overloading visualisationgiwioo much information.
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Implications

This research has strong implications for theouy,dl the more for practice. The developed
frameworks and methodologies allow the effectsraffit management, but also for other
traffic analyses, to be evaluated to a much gretggree of accuracy prior to implementation,
much more than what is current practice. Corregrri@d analysis should allow more
extensive and specifically tuned measures to b&/setdh and applied to further utilise road
capacity, improve traffic flow and ultimately reducelays and congestion. It is therefore
highly recommended that uncertainty and fluctuaiontraffic are considered when planning
for traffic management.



Samenvatting

Als congestie een probleem wordt op een weg ofen eerkeersnetwerk zijn er in het
algemeen drie belangrijke oplossingsrichtingen: witbgeidingen, beprijzen of
verkeersmanagement. Aan het einde van de twintggstev begon verkeersmanagement in
toenemende mate de voorkeur te krijgen boven wemiing, omdat verkeersmanagement
vaak een efficiéntere optie bleek te zijn. Verkeesagement richt zich op het beinvioeden
van verkeersstromen om de bestaande infrastrubeter te benutten, wat vaak resulteert in
minder filevorming. De effectiviteit van verkeersmagement is afhankelijk van het
vermogen om verkeer te beinvloeden. Verkeer besldeeeen grote mate van stochasticiteit
afkomstig van menselijk rijgedrag. De fluctuatie et verkeer als gevolg van dit
stochastische rijgedrag heeft een groot effect ope deffectiviteit van
verkeersmanagementmaatregelen. In het verledenharaveinig aandacht aan besteed.

Het hoofddoel van deze dissertatie is het geveninaicht in stochastische fluctuaties en
onzekerheden in verkeersstromen om de effectiwtgit verkeersmanagement te vergroten.
Nieuwe methodieken worden geintroduceerd om dezecteh in geaggregeerde
macroscopische verkeersstomen te analyseren emdellsren. Hierbij wordt de noodzaak
om rekening te houden met onzekerheid en fluctsiaiak aangetoond. Twee stochastische
processen worden onderscheidenzekerhedeeschrijven dag-specifieke variatigsssen
verkeerstromen erfluctuaties beschrijven microscopische variaties verkeer. Deze
dissertatie bestaat uit drie onderdelen: analyseweaaiaties in verkeer, het modelleren van
fluctuaties en onzekerheden in verkeer, en viswgmmunicatie van onzekerheid in
verkeersmodellen.

Analyse

Analyse van de stochastische karakteristieken vanabelen, die invioed hebben op
verkeersstromen, is noodzakelijk om onzekerheddtuetuaties in modellen te begrijpen. De
verkeersvraag en de wegcapaciteit worden beinvib@or dergelijke variabelen. Twee
methodologische raamwerken zijn gepresenteerd demtochastische analyse van verkeer.
Het eerste methodologische raamwerk betreft eeneptunele model voor het schatten van
stochastische capaciteiten in praktijk. De stocbels¢ eigenschappen van capaciteiten
worden geschat met behulp van een aangepaste Pradmé Method (PLM) en
gekwantificeerd als een verdeling. Het tweede raarkvbetreft het gezamenlijke effect van
vraag en capaciteit op verkeersstromen. Deze melihgie gebruik dezelfde
capaciteitsaanpak als de eerste methodologie agt afgeleide vraagverdelingen hieraan toe
door een empirisch proces van afgebakende vraagemargen. Het gezamenlijk bekijken
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van vraag en capaciteit blijkt een dieper en useier begrip mogelijk te maken van het
effect van variatie op verkeerssystemen.

Modellen

Voor het modelleren van onzekerheid en verkeemfai®s zijn verschillende
modelaanpakken ontwikkeld. Dit is noodzakelijk gidgin omdat beide vormen van variaties
inherent verschillend zijn, zelfs al is de bron vsatochasticiteit hetzelfde. Twee type
onzekerheidsmodellen zijn beschouwdonte Carlo modelleren ‘one shot’ analytische
modellen Voor de modellering van verkeersfluctuaties is eeuw model ontwikkeld.

Advanced Monte Carlo simulatiemodellen trekken haltielijk invoervariabelen uit
kansverdelingen en voeren met die variabelen ewolaiie uit. Door gebruik te maken van
algoritmes om lotingen beter te spreiden is eeméte steekproefomvang vereist om een
representatieve verdeling op te bouwen. Drie Ist@chnieken zijn beoordeeld op hun
vermogen om de benodigde rekentijd te reducdtatin Hypercube Samplindmportance
Sampling en Sobol Quasi-random Getallee technieken bleken stabiel en consistent in
staat om convergentie naar de werkelijke verdelemgergroten, en daarmee de benodigde
rekentijd te reduceren en de toepasbaarheid eniégffie van Monte Carlo simulatie te
vergroten. De technieken zijn niet eerder gebruidadr verkeersmodellering. Sobol Quasi-
random Getallen bleek het meest effectief te zijn.

In deze dissertatie is daarnaast een nieuw angiytsamwerk ontwikkeld waarmee via één
(‘one-shot’) modelrun onzekerheid kan worden gerieded: het ‘Core Probability
Framework’ (CPF). Het CPF is een probabilistisziinnwerk voor het modelleren van multi-
dimensionele variaties in capaciteit en verkeeesyran een dynamische macroscopische
verkeersstroom. Het CPF maakt gebruik van een niptapagatiemodel: het ‘Discrete-
Element Core Probability Model’ (DE-CPM). Het DR maakt gebruik van een bestaand
basismodel, zoals het Cell Transmission Model (CBM)beschouwt elke verkeersvariabel
als een kansverdeling. Het CPF en DE-CPM bouwentwagw bestaande deterministische
verkeersstroommodellen door de variabelen in de kem het model te definiéren als
vectoren van waarschijnlijke waarden voor elke grvariabele. Het CPF pakt belangrijke
uitdagingen voor stochastische verkeersmodelleraan, zoals rekentijd, ruimtelijke
afhankelijkheid,stochastische propagatie van verdelingemstochastische geldigheidJit
rekentijdexperimenten op simpele netwerken is dg@alat het DE-CPM in vergelijking met
CTM Monte Carlo in staat is rekentijden (fors) ésluceren. Voor grotere netwerken en een
groter mate van stochasticiteit bleek de rekeiwgsparing nog groter te zijn.

Voor het modelleren van verkeersfluctuaties in eerkis het ‘First Order Model with

Stochastic Advection’ (FOMSA) ontwikkeld. Dit is reeeerste orde macroscopische
kinematische golf model in een Lagrangiaans coatdmstelsel. Om verkeersfenomenen
nauwkeurig te beschrijven op macroscopisch niveawet van belang om micro-stochastisch
rijgedrag aan macroscopische modellen toe te vodgeinvoorgestelde model maakt gebruik
van eerste order verkeersstroomtheorie in comiginatet een extra invariant term, de
voertuig specifieke invariant, om de heterogenieit rijgedrag in verkeer en een mate van
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agressiviteit van bestuurders te beschrijven deateterministische dichtheid van het verkeer
aan te passen. De capaciteitsval is op twee manmeezgenomen: via acceleratiebeperking
en door rekening te houden met reactietijden vatubeders. Het model maakt het mogelijk
om rijgedrag mee te nemen samen met een verhoogtke ran nauwkeurigheid door een
afname van de diffusie-effecten in het model. Dordt bovendien gedaan in een eerste orde
macroscopische beschrijving, waardoor tweede ordeegsen worden vermeden, die vaak
leiden tot extra complexiteit.

Tot slot is een methode ontwikkeld voor het idecgifen van wegvakken waar de
doorstroming naar verwachting het meest kan wordembeterd door inzet van
verkeersmanagement of andere maatregelen. Dezedeetivalueert de mate van veerkracht
van een wegvak ten opzichte van het omliggende erktwia de ontwikkeldeLink
Performance Index for Resilience (LPIR)e. De focus van de methode richt zich op
veerkracht en maakt onderscheid tussen een wedssgiel en een hersteldeel met een focus
op de homogeniteit en volatiliteit van het verkd2e. weerstand is berekend op basis van de
verkeersstroomkarakteristieken en het vermogen wagvakken om hun gespecificeerde
afwikkelingsniveau te faciliteren zonder overtaliigvorming. De methode richt zich explicit
op het afleiden van de verkeersheterogeniteit.

In een uitgebreide case-studie voor het verkeesgmktvan de A20 ring Rotterdam Noord
zijn de effecten van verschillende verkeersmanagememtregelen berekend. Hierin zijn de
LPIR, Advanced Monte Carlo simulatie, en FOMSA ingfe De case-studie heeft aangetoond
dat de modellen goed werken. Tevens is de meereaaid de afzonderlijke modellen
aangetoond om de potentie van verkeersmanagengeitrate evalueren. Het belang van het
beschouwen van stochasticiteit werd hierin verdangatoond voor zowel het aspect
onzekerheid als voor verkeersfluctuaties tussenwigen.

Visuele communicatie van onzekerheid

Communicatie van resultaten van onzekerheden @wgt aandacht. Meerdere grafische
weergaves van onzekerheid in verkeer zijn geanatlgismet een zogenaamd cognitief ‘task-
switching’ experiment voor een statische weergaae kesultaten van een macroscopische
verkeersmodel. De keuze voor een weergavevorm woaekerheid hangt af van de

gewenste de snelheid en het niveau en type varmatce-uitwisseling. Over het algemeen is
de ‘boxplot’ en ‘lijnstij’ het meest geschikt gelllen om onzekerheden in verkeer te
communiceren. Verdere analyse van ontwerpaspeaben modelvisualisaties lieten een

drietal aandachtpunten zien. Ten eerste dient farwtie tussen ‘visual cues’ van

verschillende dimensies te worden vermeden. Teredeanoeten ‘visual cues’ toegepast
worden die een bepaalde mate van kwantificatietdaaes En ten derde moet worden gewaakt
om niet te veel informatie in een visualisatie emémen.

Implicaties

De ontwikkelde raamwerken en methodieken maken rhegelik om de effecten van
verkeersmanagement, maar ook andere verkeerkunibigegregelen, vooraf met een hoger
mate van nauwkeurigheid te evalueren. Hierdoor &nnwerkeersmanagementmaatregelen
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extensiever en doelgerichter worden ingezet waardegen beter kunnen worden benut, en
minder reistijdverlies en congestie ontstaat. Damaraordt het sterk aanbevolen om
onzekerheden en verkeersfluctuaties mee te nemane®n nieuwe verkeersmanagement
maatregelen worden gepland.
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