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Abstract 
 

Introduction: Trauma-induced rib fractures are a common injury, affecting millions of individuals 
globally each year. Although anteroposterior thoracic radiographs are part of the standard 
posttraumatic screening, the most sensitive modality, and therefore golden standard for diagnosing 
rib fractures, is computed tomography (CT). Still, between 19.2% and 26.8% of rib fractures are 
missed. Another problem encountered in rib fracture treatment management is the large 
interobserver variability on their taxonomy. This thesis aims to automate rib fracture detection and 
improve consistency in their classification by developing a Deep Learning (DL) model, using CT data. 
Methods: The rib fractures were classified according to the Chest Wall Injury Society (CWIS) 
taxonomy, evaluating rib fracture’s type, displacement and location. Furthermore, the ribs were 
numbered from 1 up to and including 12 from cranio-caudal direction. For the detection and three 
CWIS labels, three classification models of the nnDetection framework were trained. The rib 
numbering consisted of a trained nnU-Net segmentation model. The four models were combined to 
obtain the proposed DCRibFrac model.  
Experiments and results: The dataset is composed of retrospectively collected and anonymized CT 
scans of 100 randomly selected patients (1010 rib fractures) who were admitted to the Erasmus MC 
following blunt chest trauma. On the internal test set, DCRibFrac achieved a detection sensitivity of 
77%, precision of 79%, and F1-score of 78%, with a mean false-positives per scan of 2.26. The type 
labels had the lowest scores, with sensitivities between 17% and 90%. The displacement labels had 
sensitivities between 43% and 91%. The location labels had the highest scores, with sensitivities 
between 88% and 96%. The rib number was correct in 72% of the rib fractures when wrong 
segmentations were excluded.  
Conclusion: The proposed DL model automates acute rib fracture detection and reaches a sensitivity 
that is on par with clinicians. This model is the first, to the authors’ knowledge, to incorporate the 
CWIS taxonomy and shows its potential for achieving a consistent classification.  
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1. Introduction  
 

1.1 Clinical motivation  
The Dutch healthcare system is facing challenging times, with a predicted personnel shortage of 
135.000 by 2031, primarily affecting hospitals and elderly care facilities [1]. Maintaining the status quo 
is no longer feasible and change is needed. In the meantime, medical technology is starting to play a 
bigger role and holds promise to alleviate part of this pressure [2].  

Amongst others, an area with great potential for (technological) improvement is rib fracture 
treatment. Trauma-induced rib fractures is a common injury, affecting millions of individuals globally 
each year, with a prevalence of 10-40% in trauma patients [3-6]. Common causes are high-energy 
trauma (i.e. falling from height or car accidents) as well as lower-energy traumas in older patients (i.e. 
fall from standing height) [7]. Rib fractures, in general, lead to high morbidity and causes mortality in 
combination with other conditions, such as hemothorax, pneumothorax, extremity fractures and 
injuries to soft tissue [3]. Moreover, inadequate pain control can lead to respiratory complications 
such as pneumonia, due to impaired coughing and insufficient breathing [8].  

While most rib fractures are managed conservatively, there is growing interest in surgical 
stabilization of rib fractures (SSRF) as an alternative approach [9]. For patients with a flail chest, 
characterised by three or more consecutively fractured ribs at multiple locations per rib, SSRF is 
increasingly recognised, based on evidence, as the preferable treatment option [10, 11]. For these 
patients, SSRF can result in benefits such as a shorter hospital stay, shorter duration of mechanical 
ventilation, decreased pneumonia risk and improved cost-effectiveness compared to conservative 
treatment [12-15]. Another group that can benefit from surgical fixation, are the patients with a non-
union (non-healing) of their rib fracture a few months after the trauma [16]. However, there are no 
internationally acknowledge guidelines for this patient group yet [17], and there may be other types 
of rib fractures that could benefit from SSRF.  

One factor for the limited implementation of SSRF guidelines could be the inconsistency in rib 
fracture classification, which makes communication in clinical practice and scientific research difficult. 
The ideal classification system should predict outcomes, has an optimal inter- and intra-observer 
agreement and covers all fracture entities, enabling a consistent and non-confusing discussion. Up to 
2020, there was no standardised and widely used rib fracture classification system yet. The Chest Wall 
Injury Society (CWIS) addressed this problem by a Delphi consensus study [18]. However, literature 
shows a significant interobserver variability among clinicians using this system, emphasizing the need 
for a more robust and reliable computed tomography- (CT-)scoring approach [19].  Another limiting 
factor is the number of missed fractures. In the primary survey of trauma patients, an anteroposterior 
thoracic radiograph is the standard of care. However, the sensitivity is low for rib fractures and 50-
80% remain undetected [20-22]. Therefore, the golden standard for diagnosing rib fractures is 
computed tomography (CT). This does improve the sensitivity but missed rib fractures are still 
common, ranging from 19.2% to 26.8% [19, 23-25].  

Artificial Intelligence (AI) has the potential to address these challenges by improving the 
detection sensitivity and classification consistency of rib fractures, offering valuable insights and 
guidance for optimal treatment strategies. This benefits the healthcare system by improving patient 
outcomes and cost-effectiveness while alleviating the burden on the healthcare system.  
 

1.2 Related work   
In recent years, an uptake of interest for Deep learning (DL) models, a subset of AI, in rib fracture 
detection can be seen, with one study published on this topic in 2018 [26], and in the year of 2022, 
already eight studies were published [27-34]. (For a brief technical introduction, please refer to 
Appendix A.) Not surprisingly, DL models hold promise in enhancing rib fracture detection and 
establishing a more consistent classification compared to clinicians. (Table 1)  
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In general, studies prioritised a high sensitivity over a low false-positive rate. This emphasis on 
sensitivity may be attributed to the clinicians’ capability to be more specific than sensitive in their 
assessments. Consequently, these models are often designed to work collaboratively with clinicians 
allowing them to complement each other. In clinical practice, the achievable sensitivity of a model will 
therefore partly depend on the time needed for a clinician to review the positively labelled spots and 
exclude false-positives.  

Although achieving high sensitivities, many studies failed to report on key dataset 
characteristics (i.e., data selection methods, pixel sizes, patient demographics), the definition of false-
positives and testing on an external test set. This makes it difficult to determine how robust these high 
sensitivities are in context of real-world datasets. Furthermore, existing classification systems are 
inconsistent and not up-to-date with the CWIS taxonomy standards. (Table 1) These reported 
classifications offer limited clinical value as they have no treatment consequences.  
 
Table 1: Results of 16 studies describing the detection of rib fractures and reporting sensitivities. Nine studies also classified 
rib fractures for which only the studies with the lowest and highest scores are presented. All studies were published before 
February of 2023.  

 Sensitivity F1-score False-positives 
per scan 

Detection 0.645-0.971 [25, 26, 28, 
29, 31-42]  

0.652-0.940 [25, 28, 32, 
37, 39, 41, 42]  

0.14-2.71 [29, 31, 
33-35]  

Classification 

• Acute 

• Healing 

• Old 

• Displaced 

• Non-displaced 

• Buckle  

 
0.68-0.92 [33, 40]  
0.86-1 [33] [41, 50] 
0.59-0.97 [33, 40]  
0.92-1 [34, 35]  
0.74-0.85 [31, 34]  
0.58-0.83 [35, 37]  

 
0.85, 0.87+ [33, 42]  
0.82, 0.86+ [33, 42]  
0.77-0.94 [33, 42] 
0.89 [32]  
0.78 [32]  
Not reported 

 

+Only two articles reported F1-scores.  
 

Considering the challenges and opportunities presented, the primary objective of this thesis is 
to automate and improve rib fracture detection and set a standard for the taxonomy of rib fractures 
from CT to promote clear and standardised communication, aid in predicting clinical outcomes and 
provide support for scientific research. 
 

1.3 Contributions   
The key contributions of this thesis are:  

• A new open-source labelling software for the CWIS classification;  

• An ensemble model where four DL models are combined to detect and classify rib fractures 
from CT scans. The model’s detection sensitivity aligns with those achieved by clinicians and 
other DL models;  

• Assessment of using non-standardised CT scans derived from routine clinical practice.  
 
This thesis is divided into six  chapters.  Chapter 1 gives a general introduction to this thesis and explains 
the relevance in broader (social) context. A brief summary of literature is given on the topic of DL-based 
detection and classification of rib fractures. Chapter 2 covers the methods developed in this project to 
obtain the proposed DCRibFrac model. Chapter 3 presents the experiments and results where the 
ground truth establishment is evaluated and results of DCRibFrac, on the internal test set, are 
presented. Chapter 4 discusses and interprets the findings, presents limitations and gives 
recommendations for future research. Lastly, Chapter 5 summarizes the main findings.   
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2. Methods 
 

This project introduces a model designed for the automatic detection and classification of acute rib 
fractures (DCRibFrac) from CT scans. Section 2.1 introduces the three CWIS classifications used in this 
project. This classification system is extended by incorporating the rib number, on which a fracture is 
located, as a fourth label. Section 2.2 describes the method’s technical details with three more 
detailed sections. Section 2.2.1 covers the implementation of the nnU-Net framework. Similarly, 
Section 2.2.2 provides insights into the nnDetection framework. Lastly, section 2.2.3 presents the 
integration of these models to form DCRibFrac. The code can be accessed at 
https://gitlab.com/radiology/igit/msc-projects/noor-borren/dcrib. 
 

2.1 CWIS taxonomy of rib fractures  
The CWIS set a standard for the taxonomy of rib fractures by conducting a Delphi consensus study. This 
classification is based on three characteristics; the fracture line’s type, fracture’s displacement and the 
fracture’s location on the rib bow. The fracture line’s type could be described with the labels (Figure 1) 
[18]:  

- Simple: characterised by a single fracture line that runs through the rib; 
- Wedge: characterised by a single fracture line with an additional line that does not run through 

the entire width of the rib. This creates a chipped-off fragment; 
- Complex: characterised by two or more fracture lines that extend across the entire rib width, 

resulting in the presence of one or more fragments. 
 

 
Figure 1: Schematic representation of a A) simple; B) wedge and C) complex fracture [18].  

 
The fracture displacement could be described as (Figure 2) [18]: 

- Undisplaced: more than 90% cortical contact; 
- Offset: between no cortical contact and 90% contact; 
- Displaced: no cortical contact.  

 

 
Figure 2: Schematic representation of A) an undisplaced; B) an offset and C) a displaced fracture [18]. 

 

https://gitlab.com/radiology/igit/msc-projects/noor-borren/dcrib/
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In the CWIS study, there was consensus reached on defining three anatomical sectors for the fracture’s 
location on the rib bow. This encompasses only the bony part of the rib, thus excluding the chondral 
area, medial to the costochondral joint, and excludes the paravertebral section, medial to the 
costotransverse joint. (Figure 3) However, there was no consensus on where the boundaries of these 
three sectors should be. One of the proposals was to define the sectors with angles from the mid-
thoracic point [18]. This point is defined as the middle of the line drawn between the linear alba and 
the posterior aspect of the vertebral spinous process. This method is the most objective and describes 
the fracture location as (Figure 3): 

- Anterior: defined as the angle between 0° and 60°; 
- Lateral: defined as the angle between 60° and 120°; 
- Posterior: defined as the angle between 120° and 180°. 

 
Figure 3: Schematic overview of the third proposal of the CWIS standard for defining the anatomical sectors of the rib. 

 
In this project, a fourth classification was added for denoting the rib number on which the fracture is 
located.   
 

2.2 Methods overview   
This project proposes a model designed for the detection and classification of acute rib fractures 
(DCRibFrac). Figure 4 provides an overview of DCRibFrac's pipeline, which consists of three main 
components. First, to detect the rib fractures and assign the three CWIS labels, the nnDetection 
framework is employed [43]. Second, to determine the rib on which the fracture is located, the nnU-
Net framework is utilised [44]. Lastly, the models are combined in post-processing steps to generate 
the final output, the detection of a rib fracture with four labels. To provide a comprehensive 
understanding, the following paragraph will explain nnU-Net first, as nnDetection builds upon the 
concept introduced by nnU-Net. 
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Figure 4: Overview of DCRibFrac’s pipeline for the automatic detection and classification of rib fractures. The CT scans of the 
patient are inputs for four DL-models, each responsible for one of the classifications. The results are post-processed for the 
final result; a detected rib fracture with four labels.  

 

2.2.1 nnU-Net    
In this project, rib segmentations are needed to determine the rib on which the fracture is located. To 
accomplish this, the state-of-the-art medical segmentation framework nnU-Net is utilised. This 
framework was chosen because it handles the entire pipeline, including preprocessing, training, and 
post-processing, autonomously across a wide variety of segmentation tasks. This simplifies the 
implementation, ensures reproducibility and eliminates laborious hyperparameter tuning. nnU-Net can 
train three networks, all of which are based on the original U-Net architecture [44]. In this project, the 
3D low resolution U-net was trained, as the segmentation task does not require a high level of 
precision. For a more in-depth understanding of this framework’s training process, refer to Appendix 
B. 

After the ribs are segmented, they are split into individual ribs to facilitate the determination of 
the rib number. This is achieved by the following steps:  

1. Segmentation improvement – the segmented ribs are refined using the morphological 
operation opening, to remove small artifacts, and closing, to fill holes. The kernel size of 2x2x2 
and the number of iterations, one and three respectively, were empirically determined on a 
subset of the training set. 

2. Rib splitting – the segmented ribs are split into individual ribs using the SciPy library’s label 
function. Only regions larger than 500 voxels are retained using the remove_small_objects 
function. If the region count is less than 22 (for patients without a 12th rib), an error message 
is outputted. In cases of severe rib displacement due to a fracture, which leads to a single rib 
consisting of two regions, the rib numbering is influenced.  Therefore, if the number of regions 
exceeds 24, three additional iterations of the morphological operation dilation are performed 
with the same kernel size in an attempt to merge these regions. If the region count is still higher 
than 24, an error message is outputted. The error messages indicate that the numbered rib 
segmentations cannot be utilised. 

3. Laterality definition - the centre-of-mass (CoM) is calculated for each region with the function 
regionprops of the skimage library. By computing the mean of all CoMs, the regions are split in 
left and right by having their CoM x-coordinate higher or lower than that mean, respectively.  
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4. Order definition - two lines are fitted through the left and right CoM points with the function 
Line.best_fit. Each CoM point is then projected onto the line to determine the order in which 
the CoMs should be labelled. The rib numbers are assigned to the regions associated with the 
CoMs, starting with one for the first right rib and ending with 24 for the left 12th rib. 

The coupling of rib fractures with these numbered rib segmentations is addressed in section 2.2.3. 
 

2.2.2 nnDetection    
nnDetection is a framework for semantic segmentations, which can also be utilised as an object 
detector, and follows the same self-configuring strategy as nnU-Net [43, 44]. Part of the framework 
consists of Retina U-Net. This merges the object detector RetinaNet, also used by one of the top five 
models in literature [33], with a U-Net architecture. Retina U-Net uses the Feature Pyramid Network, 
which extracts features at different scales, enabling analysis of objects with varying sizes. To enhance 
the classification without introducing unnecessary complexity, Retina U-Net uses two additional layers 
dedicated to the classification task solely (P1 and P0 in Figure 5). This optimizes the model’s 
classification without making the model inefficient [45].  
 

 
Figure 5: A schematic 2D representation of Retina U-Net [45].  

 
The nnDetection framework handles only one classification at a time, for example the fracture’s 

type. Therefore, the framework is used for training three separate models, each dedicated to one of 
the CWIS classifications. The detection of rib fractures are indicated by spherical objects (referred to as 
"blobs" throughout this project), with their midpoint corresponding to the middle of the rib fracture. 
In separate files, information regarding the label information are given. Additional information on how 
these files are constructed and an example are given in Appendix C. 

A trained nnDetection model produces bounding box coordinates, accompanied by probability 
scores, and one of the three labels for each detection. (Figure 4) Consequently, one rib fracture 
detection with the complete CWIS classification can have three different bounding boxes. To address 
this, an ensemble approach is used by combining the results from the three models. First, each 
individual nnDetection model is filtered to remove overlapping bounding boxes where the ones with 
the lowest probability scores are discarded. Two bounding boxes are considered overlapping if their 
Intersection-over-Union (IoU) score exceeds 50%. IoU is calculated by:  
 

𝐼𝑜𝑈 =
𝑏𝑏𝑜𝑥1∩𝑏𝑏𝑜𝑥2

𝑏𝑏𝑜𝑥1∪𝑏𝑏𝑜𝑥2
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where bbox1 and bbox2 are bounding boxes, ∩ indicates the intersection and ∪ the union of the 
boxes. Secondly, the models are merged with the requirement that there is an overlap of bounding 
boxes from at least two models, indicating the detection of a potential rib fracture by at least two 
models. These bounding boxes are combined through union. In cases where only two of the three 
models overlap, one of the labels cannot be assigned. In such instances, a label 'unknown' is assigned.  
 

2.2.3 Combining classification results  
The last step combines the merged nnDetection models with the numbered rib segmentations. This is 
done by converting the bounding box coordinates into a binary label map. Subsequently, the binary 
label map and the numbered rib segmentations are compared. Bounding boxes that do not overlap 
with the numbered rib segmentations are discarded and for the others, the fourth label, indicating the 
rib number, is assigned. This concludes the DCRibFrac model. (Figure 4)  
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3. Experiments and Results 
 

3.1 Data  
The data were retrospectively collected and anonymized CT scans of 100 randomly selected patients 
(1010 rib fractures) who were admitted to the Erasmus MC following blunt chest trauma. An ethical 
approval waiver was granted by the Institutional Review Board under the reference number MEC-2023-
0039. Further details about the data selection process can be found in Appendix D. 

In 98 of the 100 patients, the scans were acquired with the Siemens SOMATOM Definition Edge 
scanner. These scans had an in-plane image size of 512x512 pixels, with variations in the Z-direction 
between 216 and 1513 slices. Additional patient and image characteristics are provided in Table 2. 

The labelling process was conducted in software specifically developed for this project within 
the Free MeVisLab SDK and performed by a single researcher (NB) [46]. For additional information 
regarding this software and the labelling procedure, refer to Appendix E. Ground truth label distribution 
in the dataset is presented in Table 2 and visualised in Appendix F.1, showing a similar distribution 
between the left and right sides. 

 
Table 2: Dataset characteristics of patients and CT images 

Variables Internal training set Internal test set 

No. patients 81 19 
No. fractures (%)  803 (80) 207 (20) 
Mean age (range) 55 (20-86) 58 (37-86) 
Gender, female:male (%) 19:62 (23:77) 3:16 (16:84) 

No. CT slice thickness = 2 mm (%) 51 (63) 12 (63) 
No. CT slice thickness = 1 mm (%) 8 (10) 0 
No. CT slices thickness < 1 mm (%) 22 (27) 7 (37) 
No. CT pixel spacing > 0.9 mm (%) 
No. CT pixel spacing 0.7< x <0.9 mm (%) 
No. CT pixel spacing < 0.7 mm (%) 

16 (20) 
49 (60) 
16 (20) 

5 (26) 
10 (53) 
4 (21) 

No. fractures for Type (%) 
- Simple 
- Wedge 
- Complex 

 
597 (74) 
138 (17) 
68 (9) 

 
145 (70) 
40 (19) 
22 (11) 

No. fractures for Displacement (%) 
- Undisplaced 
- Offset  
- Displaced  

 
506 (63) 
195 (24) 
102 (13) 

 
103 (50) 
79 (38) 
25 (12) 

No. fractures for Location (%) 
- Anterior 
- Lateral 
- Posterior  

 
159 (20) 
364 (45) 
280 (35) 

 
21 (10) 
116 (56) 
70 (34) 

 

3.2 Implementation  
Training of the nnDetection and nnU-Net models was performed on the GPU cluster of the Erasmus 
MC with the 2090 Ti 11GB and Nvidia A40 48GB GPU’s. A random 80-20 train-test split was used on the 
number of fractures with the corresponding patients. To ensure class balance for the minority class, 
stratified sampling was performed. Furthermore, during training, a five-fold cross-validation strategy 
was implemented for each model. The post-processing of DCRibFrac was developed in Python version 
3.7. 
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3.3 Evaluation metrics 
The Krippendorff’s Alpha and Fleiss’ Kappa were selected as tests to assess interobserver agreement 
on a subset of the training set. Krippendorff’s Alpha is suitable for multiple observers. It has a scale 
from 0 to 1, accommodates categories, handles missing data and takes both the level of agreement 
and disagreement into account [47, 48]. Fleiss’ Kappa is an extension of Cohen’s Kappa and can be used 
for multiple observers. This metric assesses the level of agreement but does not account for missing 
data. It has a scale from -1 to 1, where -1 shows a lower agreement than would be expected by chance 
and positive values indicate better agreement than expected by chance [49]. Cohen’s kappa was used 
to assess the intra-observer variability which also scales from -1 to 1 and can be interpreted as the 
Fleiss’ kappa [50]. (Table 3)  
 
Table 3: Interpretation of interobserver agreement tests [19].  

Krippendorff’s Alpha and 
Kappa values 

Interpretation 

0.00-0.20 Slight  
0.21-0.40 Fair 
0.41-0.60 Moderate 
0.61-0.80 Substantial 
0.81-0.90 Strong 
> 0.91 Almost perfect 

 
Evaluation of DCRibFrac was performed at the per-fracture level. The quantitative evaluation 

for the rib fracture detection consisted of the sensitivity, precision, F1-score, number of false positives 
per scan (FPPS) and precision-recall curve. A false-positive was defined as a 3D bounding box that did 
not overlap with the midpoint of a blob in the ground truth, where each blob could only be coupled to 
one bounding box. For the classification, sensitivity, precision and confusion matrices were utilised to 
present the results.  

The qualitative evaluation, important because there is a high chance of missed rib fractures in 
the ground truth, was performed in 3D Slicer [51].  

 

3.4 Results  
In this section, the experimental results are presented. In section 4.4.1, the inter- and intra-observer 
agreement on a subset of the test set is assessed. In section 4.4.2, two dataset sizes are compared to 
evaluate the influence on training of a nnDetection model. In section 4.4.3, the ensembled DCRibFrac 
models’ detection performance with associated thresholds are shown to gain a better understanding 
of the model’s behaviour. In section 4.4.4, DCRibFrac is utilised to detect and classify rib fractures in 
the test set to assess the overall performance. Additionally, the results of the qualitative assessment 
are presented.  
 

3.4.1 Inter- and intra-observer agreement  
To assess the ground truth in the current dataset, an inter- and intra-observer agreement study was 
performed on a subset of 50 rib fractures from the test set. Two researchers (NB, MvD) and a Trauma 
surgeon (MW) labelled the rib fractures according to the CWIS taxonomy. For the intra-observer 
agreement test, one researcher (NB) labelled the rib fractures twice with a one-month interval.  

In total, there were 58 rib fractures noted by the three observers of which 44 rib fractures 
were seen by all observers. The results of both studies are seen in Table 4 and 5 where a slight 
discrepancy between the Fleiss’ Kappa and Krippendorff’s Alpha measures for the interobserver 
agreement can be observed. Notably, the location classification achieved the highest agreement 
among all observers. Furthermore, the intra-observer study yielded to the higher agreements than 
the inter-observer study.  
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Table 4: Interobserver agreement for the CWIS classification of rib fractures  

Label Fleiss’ Kappa (95% CI) Interpretation Krippendorff’s 
Alpha (95% CI) 

Interpretation 

Type 0.23 (0.11-0.38) Fair 0.34 (0.20-0.47) Fair 
Displacement 0.02 (-0.01-0.11) Slight 0.46 (0.32-0.58) Moderate 
Location  0.14 (0.07-0.27) Slight 0.63 (0.48-0.76) Substantial  

 
 
Table 5: Intra-observer agreement for the CWIS classification of rib fractures 

Label Cohen’s kappa (95% CI) Interpretation 

Type 0.71 (0.52-0.89) Substantial 
Displacement 0.80 (0.65-0.95) Substantial 
Location  0.84 (0.69-0.99) Strong 

 

3.4.2 Influence of dataset size  
To assess the impact of training with more data on the nnDetection models, an experiment with two 
dataset sizes was performed. The first training existed of 35 patients with 293 rib fractures. Then, 
training was done with the entire training dataset of 81 patients with 803 rib fractures.  

Training with a small dataset led to more overfitting, seen by the validation curve starting to 
increase after just a few epochs and the larger gap between the validation and training curves. The 
addition of more data reduced overfitting, seen by the plateauing validation curve with a smaller gap 
between the training and validation curve. (Figure 6) 

 

 

Figure 6: A,B) The train and validation loss of training with 35 and 81 patients, respectively; C,D) The classification loss for 
training with 35 and 81 patients, respectively. 
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3.4.3 Performance of ensembled nnDetection models on the validation set 
To gain further insight into the detection performance of the ensembled nnDetection models on the 
validation set, following cross-validation, a precision-recall curve was generated with corresponding 
thresholds. (Figure 7) Also, the probability score threshold could be chosen to achieve a detection 
sensitivity of 82%. This sensitivity surpasses the range typically observed among clinicians, which falls 
between 73.2% and 80.8% [19, 23-25].   
 The precision-recall curve illustrates that DCRibFrac cannot reach a sensitivity of one, as the 
highest sensitivity, at a threshold of zero, is 0.95. A threshold of 0.448 was chosen to achieve the 
aimed sensitivity.  
 

 
Figure 7: Precision-Recall curve with thresholds of DCRibFrac's detection performance on the validation set. 

 

3.4.4 Performance of DCRibFrac on the test set 
To evaluate the performance of DCRibFrac on unseen data, the detection and classification of rib 
fractures was performed on the test set. The total time for running the DCRibFrac pipeline for a 
patient was between 30-90 minutes depending on the image size.  

DCRibFrac achieved a detection sensitivity of 77%, precision of 79% and F1-score of 78%, 
with a mean FFPS of 2.26 on the test set. All classification labels were assigned, as there were no 
cases with only two overlapping nnDetection models. An example of a correctly detected rib fracture 
can be seen in Figure 8A. 

The qualitative evaluation for the detection of rib fractures revealed two additional true-
positives that were not labelled in the ground truth. (Figure 8B) False-positives mostly resulted from 
old fractures, indicated by callus (Figure 8C), paravertebral fractures and cysts. The missed fractures 
were mostly simple fractures with a small interruption of the cortical bone and severely dislocated 
fractures with a translation in the z-direction. (Figure 9) More examples of false-positives and -
negatives can be seen in Appendix F.2.  

In terms of the type classification, complex fractures had a sensitivity and precision of 17% 
and 30%, wedge fractures 30% and 42%, and simple fractures 90% and 75%, respectively. For the 
displacement classification, displaced fractures had a sensitivity and precision of 43% and 75%, offset 
fractures 78% and 79%, and undisplaced fractures 91% and 83%, respectively. The location 
classification showed the highest performance, where posterior fractures had a sensitivity and 
precision of 96% and 84%, lateral fractures 88% and 95%, and anterior fractures 88% and 88%, 
respectively. (Appendix F.3, Table 7) These were compared with the results of the interobserver 
agreement study and are presented in Appendix F.3 (Table 8,9,10). Interestingly, for the two labels 
that were most distinct in the location and displacement classifications, namely the anterior-posterior 
and undisplaced-displaced labels, there were no wrong classifications. (Figure 11) The numbered rib 
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segmentations were incorrect for six patients, indicated by the error messages. (Figure 10A,B) This 
resulted in 72% correctly classified rib number labels when these six patients were excluded.  

The qualitative evaluation of the numbered rib segmentations revealed the presence of 
eleven wrong segmentations instead of six. There was no error message for these five patients 
because the merging and splitting of ribs were in equilibrium, with 11 or 12 regions observed on each 
side. (Figure 10C,D) In the correct segmentations, the bounding box sometimes overlapped with a 
more cranial rib segmentation first, resulting in a wrong rib number.  

 

 
Figure 8: Three DCRibFrac detections in one patient at different levels. Squares indicate detections and circles represent the 

ground truth; A) A true-positive as the circle overlaps with the square; B) A true-positive which was not present in the 
ground truth; C) A false-positive because of an old, thus not an acute, fracture as indicated by the callus around the fracture. 

 
 

  
  Figure 9: Example of two blobs 

for indicating one severely 
dislocated rib fracture. A) Red, 
left blob on slice 238; B) Green 

blob on slice 255. 

 

 Figure 10: Examples of wrongly segmented ribs with the regions of interest 
indicated by the red circles. A) Posterior view of a 3D segmented model 
where the fracture splits the segmentation in two; B) Axial slice of the 

fracture encircled in A. C, D) Anterior and lateral view of a fracture causing 
the rib to be split in two and dilation that caused the merging of three ribs, 
respectively. The counting did not result in errors as the total count for the 

right side was still 11. 
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Figure 11: Confusion matrices of the labels in the test set. The diagonal represents the correctly predicted labels. 
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4. Discussion  
 

The aim of this project was to automate and improve the acute rib fracture detection and set a standard 
for the taxonomy of rib fractures. The proposed model, DCRibFrac, was implemented by combining 
three nnDetection models and one nnU-Net model for the detection of rib fractures and classification, 
according to the CWIS taxonomy. Although the rib fracture detection was automated, the sensitivity 
yielded to 77%, which is on par with that of clinicians but did not surpass them. The classification 
demonstrated commendable sensitivity and precision scores for the displacement, except for the 
displacement label, and location classifications. However, DCRibFrac could not set a proper standard 
for the rib fracture type classification. The last label, the rib number, had favourable results for patients 
with minor displaced rib fractures but did not work on severely dislocated ribs. In general, DCRibFrac 
shows potential for improved detection sensitivity and a consistent classification of acute rib fractures 
from CT scans but further refinements are needed. 

The achieved detection sensitivity aligns with the findings reported in the literature, despite 
using a comparatively smaller dataset. (Table 6) From the loss graphs of the two dataset sizes, 
overfitting is still evident in the larger dataset size, used for training DCRibFrac. As the parameters of 
nnDetection are difficult to manually adjust, addition of a larger dataset is needed to decrease 
overfitting and improve both the detection and classification. More specifically, adding data of simple 
fractures with a minimal cortical interruption and severely dislocated fractures with a translation in the 
z-direction should be incorporated. Moreover, to decrease the FPPS, training with data of old fractures 
could lead to improved performance as the model will learn to not detect these types of rib fractures. 
The publicly available RibFrac dataset, primarily existing of old fractures, is suited to incorporate in the 
training dataset to decrease the FPPS [52].  
  
Table 6: Comparison with other DL 
methods that noted both the sensitivity 
and false-positives per scan (FPPS) for 
detecting rib fractures. *Denotes a 
missing value   

 
 
 
 

 
 
 
 
 
 
 
 

The approach for determining the rib number was suboptimal. The choice of using CoMs for 
the rib order is only suited for ribs that are not segmented in multiple regions. Still, to improve this 
approach for non-severely displaced fractures, the morphological operation erosion should be applied 
to the bounding box label map. This makes sure that the bounding box has no overlap with more cranial 
rib segmentations. However, (severely) displaced ribs are common. Particularly, the algorithm’s output 
of splitting the ribs’ segmentation into single ribs was poor in an additional five patients despite the 
output remaining error-free. As a consequence, this model cannot be used unsupervised. 

 Patients, 
fractures 

Sensitivity FPPS 

Zhou et al. [33]  640, 2853 94.9% 0.17 

Niiya et al. [29]  918, * 93.5% 1.9 

Meng et al. [37]  8829, 34699 92.2% 0.14 

Wang et al. [31]  9265, 43803 85% 0.35 

Wu et al. [41]  10943, 9590 84.9% 0.764 

Azuma et al. [34]  539, 4906 83.7% 2.71 

Zhou et al. [42]  1049, 25054 83.2% 1.1 

Zhang et al. [35]  3580, 15947 79.4% 0.43 

DCRibFrac  100,  1010 77% 2.26 

Weikert et al. [40]  159, 991 65.7% 0.16 

Kaiume et al. [39]  39, 256 64.5% 1.1 
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The Krippendorff’s Alpha results of the interobserver agreement study closely resemble the 
results obtained in a large interobserver agreement by Van Wijck et al [19]. This underscores the 
complexity of establishing a uniform ground truth among observers. Notably, Fleiss’ Kappa indicated 
an even weaker agreement than the Krippendorff’s Alpha, as it did not consider the level of 
disagreement and label order (e.g., the difference between the anterior and posterior label is the 
largest) [48]. In this project, a single researcher established the ground truth. This potentially 
introduced bias as some classifications could be interpreted differently by other observers. 
Nevertheless, the substantial and strong consistencies observed in the intra-observer agreement 
suggest that random errors may be minimal. 

This study has some limitations. First, the establishment of the ground truth was done by one 
observer. Therefore, the model was not only impacted by the data that it trained on but the calculation 
of the performance metrics is potentially not an accurate representation of the real sensitivity. This is 
also indicated by the additional true-positives encountered in the qualitative assessment. Therefore, 
all sensitivities, precisions and F1-scores should be interpreted cautiously. Secondly, the large label 
imbalance might have made the learning of the less frequent labels’ characteristics more challenging. 
This is exemplified by the sensitivities observed for the categories with the least amount of rib fractures 
in the dataset: wedge, complex and displaced rib fractures.  This shortcoming might be overcome by 
increasing the number of these rib fractures in the training dataset.  However, the results of the 
interobserver studies might be an explanation for the poor results too. Potentially, the CWIS 
classification system is not suited for a clear definition of rib fractures as the distinction between the 
different groups may not be clear enough. Thirdly, there was no direct comparison with clinicians on 
the same dataset that the model was trained on. As a result, the generic percentages of missed 
fractures by clinicians might not accurately represent the performance on the current dataset. Still, the 
threshold for the minimal sensitivity was chosen based on the percentages reported in literature. 
Another limitation of this study was the absence of an external test set to evaluate the generalisability 
of DCRibFrac. 

DL models are highly dependent on the data that they are trained on and tend to perform 
better with homogeneous datasets [53, 54]. However, real-world datasets are heterogeneous due to 
variations in CT scanners, slice thickness, imaging protocols and populations. In this project, the dataset 
remained as close to the real-world as possible by not excluding scans based on the available kernels, 
slice thickness, pixels spacing, imaging protocol or minor motion artefacts. However, the scans of the 
Erasmus MC were primarily acquired by one CT scanner and predominantly represented a male 
population. This could limit the clinical relevance in other populations or hospitals. Moreover, for a 
more comprehensive evaluation, paravertebral and costo-chondral fractures should be included too. 

Another point for the clinical relevance is that DCRibFrac is not expected to yield to direct speed 
advantages in the radiologists’ workflow of the acute setting. The current total reading time for a CT 
scan already falls within the time needed to run DCRibFrac, with rib fracture detection alone taking 
approximately 3 to 7 minutes [32, 41, 42]. Therefore, fastening improvements to DCRibFrac should be 
made to have a running time that falls within the total reading time. However, in the non-acute setting, 
DCRibFrac holds potential benefits. When optimised, it could improve the detection sensitivity and 
establish a consistent standard for rib fracture  classification. This does not only enable clear and 
uniform communication but also has implications for predicting clinical outcomes and support further 
scientific research.  

Future research should aim to improve DCRibFrac by exploring the previously mentioned 
approaches. Additionally, improvements for the numbered rib segmentations are needed. First, the 
problem with severely displaced rib parts should be resolved when making use of the CoMs. A potential 
approach is to use label information. If a displaced label is assigned to a fracture, local morphological 
operations such as dilation could be applied to merge the fragmented regions together. As an 
alternative to using CoMs for determining the order of the ribs, Lessmann et al. [66] presented a 
method to count the vertebrae, which were later used as inputs for counting ribs [55, 56].  

Furthermore, it would be interesting to uncouple the detection and classification task. This could 
entail using nnDetection models for the detection of rib fractures and then experimenting with 
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alternative methods for the classification. For instance, recent work done by Edamadaka et al. 
introduced a deterministic formula for calculating the percentage of displacement [57]. Similarly, the 
location on the rib could be mathematically calculated in degrees. Then, the classification could be 
made more objectively by setting boundary conditions for each label based on the numerical values. 

A benefit of this approach is that the numerical values would be well suited as inputs for a 
prediction model too. For example, a model could predict whether rib fractures will naturally heal or 
remain fractured. In these prediction models, the input of clinical data, as described by Zhou et al. [69], 
could improve results even further [58]. This information could aid clinicians in making informed 
decisions about surgically fixating ribs that are unlikely to heal naturally. Preferably, this decision has to 
be made within the first 3-7 days after trauma which is too soon for basing this decision on radiological 
signs in the CT scans [59]. By integrating these approaches, future research could lead to clinicians 
delivering optimised care and improve patient outcomes in the management of rib fractures. 
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5. Conclusion 
 

In conclusion, this thesis presents DCRibFrac, a DL model that aims to automate and improve acute 
rib fracture detection, and set a standard for their taxonomy from the golden standard CT. While the 
current detection sensitivity is comparable to that of clinicians, further refinement holds promise of 
surpassing the sensitivity reported for clinicians (73.2% - 80.8%) [19, 23-25]. Notably, this project is 
the first, to the authors’ knowledge, to incorporate the CWIS taxonomy into a DL classification model 
and shows its potential for achieving a consistent classification. Future research should focus on 
improving and fastening the different components of DCRibFrac and advancing towards prediction 
models to increase the clinical added value for acute rib fracture patient management and treatment 
planning. 
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7. Supplementary material  
 

Appendix A: Short introduction to technical aspect of the thesis  
 
AI entails various techniques, including Machine Learning (ML), which is widely used in the medical 
imaging field. Traditional ML methods rely on the developers' expertise and knowledge to quantify 
features that are used for a classifier. This classifier can then make predictions on new data by the 
adjusted weights of these features. In contrast, Deep learning (DL), a subset of ML, automates the 
feature extraction (on raw data) [60]. This can result in superior performance in comparison with ML, 
when the dataset is sufficiently large, especially in medical image analysis [60, 61].  
One of the areas where DL is widely used, is in Computer Vision Tasks. Within this broad term there 
are a few tasks specifically relevant for medical image analysis; image classification, object localisation, 
object detection and semantic segmentation [62]. First, image classification is concerned with 
classifying one image with one label at a time. For instance, classification of pneumonic or healthy lungs 
on a chest X-rays [63]. In object localisation, the objective is to locate (referred to as “detect” 
throughout this project) one or more objects in an image. This is usually done by defining a bounding 
box that captures the object(s) of interest. An example of this is the detection of pulmonary embolisms 
[64]. Object detection combines the two previous tasks. Thus, in an image, an object is simultaneously 
detected and classified. This is applicable to this project where rib fractures are detected and classified. 
Taking the object detection a step further is to delineate, or segment, an object and classify it. This is 
referred to as semantic segmentation [62]. For instance, segmenting each rib and stating which rib 
number it is.  
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Appendix B: Training process of nnU-Net   
 
Data used for training nnU-Net consisted of the RibSeg opensource dataset [65], which contains 490 
segmented ribs, and a part of the Erasmus MC dataset. The RibSeg dataset consists of mainly healing 
and old fractures, thus does not represent the patients in this project with acute fractures. However, it 
could still be used as a basis, because creating a segmented dataset from scratch was not possible due 
to time limits in this project. Therefore, an iterative approach was taken by gradually adding Erasmus 
MC data in two training loops. The first training was done on ten RibSeg patients. The trained model 
then made a prediction on nine randomly chosen Erasmus MC patients, containing contrast-enhanced 
images as these are not present in the RibSeg dataset. These predicted segmentations were evaluated 
and improved in 3D Slicer [51].  The corrected segmentations were all input for the second training 
which consisted of 17 RibSeg patients and the nine corrected Erasmus MC patients. A schematic 
overview is process can be seen in Figure 12. 
 

 
Figure 12: Schematic overview of the process to train the nnU-Net model. 
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Appendix C: Label pre-processing; from CSV-file to NIfTI and JSON files  
 
The information of the rib fractures needs to be converted into the specific label files used in the 
nnDetection framework. This entailed one NIfTI file containing the label map for the location of the rib 
fractures and three corresponding JSON files with CWIS classifications for the fracture. The fourth label, 
representing the rib number, did not require additional formatting. 

The decision to use blobs instead of the more conventional bounding boxes was made because 
bounding boxes have the limitation that they are axis-aligned. However, blobs are isotropic, therefore 
invariant to rotation and easily constructed from the midpoints.  The radius of the blobs was 10 voxels 
in the voxel-coordinate system of each NIfTI file. This was a balance between overlapping the majority 
of the rib fracture and avoiding too much overlap with other structures. To create these spherical blobs, 
the pixel spacing of the images needed to be accounted for. It is common that the in-plane pixel spacing 
is different from the pixel-spacing in the z-direction. Therefore, to construct a spherical blob instead of 
an ellipsoid, this is corrected for. Lastly, the pixel values assigned to the blobs are unique. This ensures 
that each blob is linked to their corresponding label in the JSON files. Each label map retains the same 
image shape, direction, origin and spacing as the original  image.  

The JSON files contain the label information in numerical format. For instance, anterior 
fractures are assigned a value of 0, lateral fractures a value of 1, and posterior fractures a value of 2. In 
Figure 13, an example of an axial label map overlaid on the original image with the corresponding JSON 
file for the label ‘location’ is seen.  
 

  
Figure 13: Left) An example of the original image with the green spheres indicating the overlayed label map; Right) 

Corresponding JSON file for the location on the rib bow, where instances 1 and 2 correspond to the blobs seen in the left 
image and having assigned the posterior label. 
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Appendix D: Data selection  
 
Chest CT images of patients with rib fractures were retrieved and anonymised through the Trialbureau 
of the Erasmus MC and accessible through XNAT. CT scans that did not include all ribs, only had 
fractures with callus formation, indicating older fractures, or had significant motion artifacts around a 
rib fracture were excluded from the dataset. In case of a patient with multiple CT reconstructions, the 
scan with the smallest slice thickness was chosen, and if there was more than one image with the 
smallest slice thickness,  the one reconstructed with the lowest kernel number was chosen, irrespective 
of given contrast. The DICOM files were converted to NIfTI files.  
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Appendix E: Labelling software 
 
A comprehensive overview of the labelling software and the application in this project is explained in 
this section. First, the module network is explained. Then, a manual belonging to the graphical user 
interface (GUI) will be given.  
 

E.1 Module Network  

 
Figure 14: Module network of MeVisLab for the labelling of rib fractures. 

There are two main parts in the module network; the marker & labels assignment, and the calculation 
of the angle from which the location label can be determined. Each module will briefly be described. 
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(Figure 14) For both parts, the same input is needed from the OrthoView2D, which is used to visualise 
the image that is loaded through ImageFromFile. Then, for the midpoints and label assignments:  

SoView2dMarkerEditor – used for setting markers in the middle of the rib fractures;  
StylePalette – used for setting different colours per marker to be able to distinguish them;  
BoolInt – used to set the height and width of the visualisation bounding box around the marker;  
XMarkerListContainer – used to merge all markers with their labels to a string;  
StringSplit & StringUtils – used to concatenate all four labels belonging to one marker;  
XMarkerListTransform – used to transform the world coordinates of the marker points to voxel 
coordinates. The voxel to world transformation matrix is given by the 
GetImageInformationsInfo;  
StringsUtils1 – used to obtain the image size information;  
RunPythonScript – used to combine all information, reformat it and save it as a CSV-file. For an 
example of the output, refer to Figure 15. If not all labels are assigned, instead of saving the 
CSV-file, an error-messages is outputted in the GUI.   

 

 
Figure 15: Example of the CSV output file for the first five fractures  of a patient is shown. The voxel and world coordinates of 
the fractures are given, the four labels and the image shape of the NIfTI file. 

 
Similarly, the location label angle calculation is set up. However, instead of using markers to 

which the labels are assigned, it uses midlines from which angles can be calculated. The 
SoView2DMarkerEditor is now used in vector mode. Then, the RunPythonScript is used to calculate the 
angle between the marker and the drawn midline. The calculation of this angle was based on the 
following formula: 
 

cos 𝜃 =
𝐚 ∗  𝐛

|𝐚||𝐛|
 

 
where a represents the vector from the mid-thoracic point to the linear alba and b represents the 
vector from the mid-thoracic point to the landmark.  The dot product between these two vectors was 
divided by the product of their lengths to obtain the cosine of the angle. The angle was calculated on 
the slice where the landmark was placed, in the centre of the rib fracture. The result of this script is an 
angle in degrees which can help in deciding which location label should be assigned. The module 
network comes together in the GUI that is explained in the next chapter.  
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E.2 GUI manual  

 
Figure 16: The GUI of the MeVisLab labelling software with numbers indicating the different sections. 

The GUI will be explained according to the different sections in the interface, corresponding to the 
numbers in Figure 16.  

1. Give the path to the NIfTI image and click on ‘Load File’.  
2. The images are shown in axial, sagittal and coronal slices. After identifying the rib fracture, left 

mouse click in the middle of the fracture to set a marker. Here, shown as the yellow square. If 
you want to calculate the angle for the location label, hold shift + right mouse click from the 
posterior aspect of the vertebral spinous process to the linear alba to create the midline 
(direction of vector is important). The angle will be outputted in section 5.  
A marker can be deleted by clicking on it and using delete on your keyboard. Shift + right mouse 
click on the midline begin or endpoint to delete the midline.  

3. A quick user guide on how to use the software. Additional tips are given for adjusting the 
images in section 2. Moreover, a short description of the classification system is given.  

4. When going through the slices of different patients, the field of view is sometimes not correct 
and it seems like there is no image showing. Press Unzoom to set the field of view to the current 
patient.  

5. In the first line, the rib fracture number that is currently selected and the assigned labels are 
shown. In the drop-down menus, the four labels can be allocated. Then, the output path needs 
to be defined. Once all rib fractures are marked and given their labels, the Create .csv files 
button can be clicked. If all rib fractures have all four labels and there is at least one midline 
drawn, the notification will output Saved pt [name patient]. If labels are missing, the 
notification will output which marker’s label is missing. When no midline is defined, the output 
is Draw at least one midline.  

6. If the patient data is saved and a new patient is loaded, all markers and midlines of the former 
patient should be deleted. To do this, click on Delete all markers & midlines. 

7. The visualisation of section 2 can be changed a little. The visualisation bounding box can be 
changed, which is purely for visualisation purposes as it does not influence the marker 
coordinates. Lastly, the locator and the number notation next to the yellow box can be 
changed.  
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Appendix F: Supplementary graphs  
 

F.1 Dataset 

 
Figure 17: Schematic representation of the labels per rib in the training dataset. Left, Middle, Right) Distribution per rib 

number for the labels type, displacement and location, respectively.  

 
 

F.2 Detection 
 

 
Figure 18: Examples of wrong detection outputs indicated with the white arrow. A) Cyste; B) Paravertebral fracture;              

C, D) Old fractures with callus; E, F, G) Small fractures that remained unnoticed by DCRibFrac. 
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F.3 Classification 
 
Table 7: Results of the proposed model on the internal test set. 

 Sensitivity Precision F1-score FPPS 

Detection 0.77 0.79 0.78 2.26 
Type 

• Simple 

• Wedge 

• Complex  

 
0.90 
0.30 
0.17 

 
0.75 
0.42 
0.30 

 
0.82 
0.35 
0.21 

 

Displacement 

• Undisplaced 

• Offset  

• Displaced  

 
0.91 
0.78 
0.43 

 
0.83 
0.79 
0.75 

 
0.86 
0.78 
0.55 

 

Location 

• Anterior 

• Lateral  

• Posterior 

 
0.88 
0.88 
0.96 

 
0.88 
0.95 
0.84 

 
0.88 
0.92 
0.90 

 

 

 
Table 8: Cohen's kappa scores with 95% confidence interval for type label comparison between observers and DCRibFrac on 
34 rib fractures from the test set 

 Observer A Observer B Observer C DCRibFrac 

Observer A  x 0.53 (0.26-0.79) 
 

0.37 (0.06-0.68) -0.02 (-0.39-0.34) 

Observer B 0.53 (0.26-0.79) x 
 

0.37 (0.06-0.67) -0.18 (-0.54-0.17) 

Observer C 0.37 (0.06-0.68) 0.37 (0.06-0.67) 
 

x 0.15 (-0.27-0.56) 

DCRibFrac -0.02 (-0.39-0.34) -0.18 (-0.54-0.17) 
 

0.15 (-0.27-0.56) x 

 
 
Table 9: Cohen's kappa scores with 95% confidence interval for displacement label comparison between observers and 
DCRibFrac on 34 rib fractures from the test set 

 Observer A Observer B Observer C DCRibFrac 

Observer A  x 0.73 (0.54-0.93) 0.54 (0.30-0.78) 0.28 (0.01-0.56) 

Observer B 0.73 (0.54-0.93) x 0.38 (0.14-0.63) 0.20 (-0.05-0.50) 

Observer C 0.54 (0.30-0.78) 0.38 (0.14-0.63) 
 

x 0.13 (-0.15-0.41) 

DCRibFrac 0.28 (0.01-0.56) 0.20 (-0.05-0.50) 0.13 (-0.15-0.41) x 
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Table 10: Cohen's kappa scores with 95% confidence interval for location label comparison between observers and 
DCRibFrac on 34 rib fractures from the test set 

 Observer A Observer B Observer C DCRibFrac 

Observer A  x 0.63 (0.39-0.87) 0.74 (0.51-0.98) 0.45 (0.16-0.76) 

Observer B 0.63 (0.39-0.87) x 0.54 (0.28-0.80) 0.58 (0.33-0.84) 

Observer C 0.74 (0.51-0.98) 0.54 (0.28-0.80) x 0.36 (0.05-0.67) 

DCRibFrac 0.45 (0.16-0.76) 0.58 (0.33-0.84) 0.36 (0.05-0.67) x 
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Appendix G: Implementation details nnDetection 
 
The nnDetection framework was slightly changed for this project. First, the nevergrad library used 
within nnDetection was not up-to-date with the newer numpy functions. Therefore, in the following 
scripts, changes needed to be made:  

- Nevergrad/parametrization/data.py at line 16: np.int changed to int and np.float changed to 
float; 

- Nevergrad/optimization/base.py at line 95: np.int changed to int; 
- Nevergrad/optimization/utils.py at line 149: np.float changed to float. 
 

Secondly, the blobs used within this project all had exactly the same voxel size. This consistency caused 
issues with a particular definition within nnDetection, where bounding box sizes falling within the 0.005 
upper and lower percentile were filtered out. Consequently, in this project, the filtering resulted in the 
removal of all blobs. Adjustments were made as follows: 

- nnDetection/nndet/planning/architecture/boxes/base.py line 398-425: at the return 
statement boxes_np[mask.astype(bool)] changed to boxes_np. 

 
Lastly, a recommended modification, though not necessary, involved changing the training logger to an 
online version. By implementing this change, it becomes possible to track the models in real-time 
without the need to log in to the GPU cluster. To utilise this feature, an account needs to be made on 
the website wandb.ai. Then, make the following adjustments in the code:  

- nnDetection/scripts/train.py line 28: add to the imports from pytorch_lightning.loggers import 
WandbLogger and at line 189-190: pl_logger = WandbLogger(project=cfg[“task”], etc. 

- In the slurm script, an account-specific key should be exported. An example: export 
WANDB_API_KEY=c34f87beebb843a3ce5d9293c0c5bffc45905a3 

 


