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Abstract
In spite of progress on hardware design languages, the design of high-performance hardware accel-
erators forces many design decisions specializing the interfaces of these accelerators in ways that
complicate the understanding of the design and hinder modularity and collaboration. In response to
this challenge, Tydi has been presented as an open specification for streaming dataflow designs in
digital circuits, allowing designers to express how composite and variable-length data structures are
transferred over streams using clear, data-centric types. Earlier efforts in providing an implementa-
tion framework for Tydi managed to generate VHDL boilerplate code for Tydi interfaces, but offered
limited design value over custom solutions due to VHDL’s low abstraction level. In contrast, Chisel,
with its high level of abstraction and customizability offers a suitable platform to implement Tydi-based
components.

In this thesis, the Tydi-Chisel library is presented along with an A-to-Z design-process description for
data-streaming accelerators. A stream-interface solution is presented that offers both compatibility with
Tydi in traditional HDLs and maximum utility within Chisel through two intercompatible representations.
In addition, design complexity is reduced through novel utilities like stream-complexity conversion, de-
veloped to alleviate interface specification mismatches between components. Using the presented
toolchain and library, the amount of code required to specify Tydi interfaces for representative use-
cases can be reduced several times compared to a Verilog description, while offering increased utility.

Tydi-Chisel aims to simplify the design of data-streaming accelerators through the integration of
the Tydi interface standard in Chisel, along with helper components, syntax sugar, and verification
tools. In combination Chisel and Tydi help bridge the hardware-software divide, making solo-design
and collaboration between designers easier.
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Preface
Before starting this project, I did not know the first thing about Tydi, or Chisel, and had only basic knowl-
edge about practical computation hardware design. The concept of enabling better hardware accel-
erator design through better communication between components and people intrigued me, however.
The practical use and absolute real world potential that Tydi, and as I came to realize the combination
with Chisel, can provide has been a strong motivator for me in this project.

I got interested in this topic by the thesis opportunities presented at the end of Dr. Zaid Al-Ars’
“Supercomputing for Big Data” course, which I recommend any to take if they have an interest in this
field. I would like to thank Prof. dr. Peter Hofstee for helping me find a direction to take the research
in and continued support and ideas, somehow always finding a time for a meeting. Peter and Zaid are
both great supervisors.

This project can be described as the third generation of toolchain development projects, so there
was a lot to learn about previous work in Tydi and Tydi itself. Therefore I must thank Matthijs Reukers,
Yongding Tian, Jeroen van Straten, and others for answering all my Tydi-related questions and provide
corrections. It was great to see Yongding’s enthusiasm for Tydi-lang being re-lit by our collaboration on
this project.

I can recommend anyone to learn Chisel and take an interest in Tydi. Finally, I hope the reader will
experience some of the inspiration and intrigue I have felt myself.
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1
Introduction

Parts of the contents of this thesis also appear in “Enabling Collaborative and Interface-Driven Data-
Streaming Accelerator Design with Tydi-Chisel”, a paper that was submitted to NorCAS 2023 [7].

1.1. Context: General
The deceleration in performance gain of CPUs signals the advent of the post-Moore’s Law era [44, 12].
Nonetheless, computational demands, especially from fields like machine learning and big data, con-
tinue to escalate rapidly. To meet these growing needs, there has been a pivot towards heterogeneous
computing platforms that include GPUs and FPGAs. Yet, the process of algorithm implementation on
FPGAs tends to be more prolonged and intricate compared to that on GPUs. While there are several
frameworks, like HLS (High-Level Synthesis), OpenCL [37], and HLS4ML [24], designed to stream-
line FPGA development, challenges remain. These challenges are amplified in the big data domain,
where developers can typically write a few lines of SQL to execute a query, whereas translating the
same query to FPGA requires thousands of lines of hardware description code. Sampson [33] accen-
tuates this disparity, as depicted in Figure 1.1, subsequently advocating for a transition from Hardware
Description Language (HDL) to Accelerator Design Language (ADL).

Figure 1.1: The difficulty of accelerator design [33]
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2 1. Introduction

1.2. Context: Tydi
A central challenge in designing data-streaming accelerators pertains to the transfer of structured and
dynamically-sized data between components in a flexible manner. Peltenburg’s observations provide
insight into this conundrum:

“We have explored active (open-source) hardware frameworks, including classical HDLs and con-
temporary ones (C𝜆ash, Chisel, and Spatial). All these HDLs support compound types that map onto
bit-vectors (e.g., VHDL’s record, Chisel’s Bundle,etc.), and statically sized aggregate types, but lack in-
herit support for dynamically sized aggregate typesmapped onto streamspace. This is unsurprising; the
type systems of these frameworks reason only about space, but not about stream transfers—the latter
being typically left to the designer—as the goal is to describe hardware just above the register-transfer
level.

In libraries of some of the languages, abstractions for streaming dataflow designs are provided, e.g.,
Chisel’s DecoupledIO. The abstractions move toward the level we envision when composing designs
out of streams and streamlets, but only abstract the handshake mechanism for otherwise completely
user-defined signals, lacking inherent support for throughput scaling of streams that is available in
AXI/Avalon.” [28, pp. 123].

To combat the issues faced by the authors, the idea for Tydi (Typed Dataflow Interface) was erected.
Figure 1.2 aims to illustrate the difference by showing a metaphorical representation of a raw data
stream, handshaked stream, and Tydi stream. A handshaked stream already allows the transfer of
data in packets when the sender has valid data available and the receiver, like a conveyor belt in a
supermarket where the transfer stops until the cashier is ready. These handshaked packets can even
be formed with a structured bundle inside. However, in real-world scenarios, data that needs to be
transferred often cannot be represented by a flat data structure, since the data is, or contains, (a)
multidimensional list(s). Tydi offers a straightforward solution for these more intricate data-structures,
and can be seen a salable set of conveyor belts, transferring packets with dimensionality data attached.

Without a common interface standard like Tydi, designers are often left designing their own com-
munication protocol. While in simple cases this is often trivial, during development and optimization
complexity generally rises. As the complexity rises, communication solutions will become more spe-
cific and divergent. When adapting IP or working between projects, this creates a lot of unnecessary
overhead in specification and conversion. Debugging and interpreting the communication flow easily
becomes very hard, quickly leading to the feeling expressed by Figure 1.1. Standards and tooling can
help alleviate hardship in design choices, implementation effort, and debugging & interpretation. Tydi
aims to be a standard that can offer this. In this thesis, we show how to create a Tydi-based com-
munication flow specification for complex structured data and how Chisel is a suitable implementation
platform using Tydi-Chisel.

Tydi development started with the introduction of the original specification by Peltenburg et al. in
[28] . With it, a basic tool-chain set-up was created. Multiple follow-up projects ensued using or work-
ing on the Tydi ecosystem, listed in detail in Chapter 2. A second round of tool-chain projects [31,
41] developed a more complete and usable design pipeline. The Tydi-lang front-end allowed users
to describe their data-structures, data-flow and components. In turn, the resulting Tydi intermediate
representation could be used to acquire VHDL interface and boilerplate code to start implementation
development. While this technically allowed hardware designers to develop Tydi-using components,
establishing a presence for Tydi was still difficult. The value Tydi could add in an established ecosys-
tem is clear. IP with Tydi interface specification could easily be adopted by other designers and teams.
However, without an established ecosystem, Tydi’s utility is still limited. While the available tooling was
functional, creating a design with Tydi components was overall not much simpler than creating one’s
own project-specific solution. When awaiting the advantage of an ecosystem, the incentive for adop-
tion should therefore come from ease of implementation for single projects. As mentioned, the VHDL
boilerplate provided by the previous toolchain saves work getting started writing an implementation,
but does not inherently make creation of the implementation much easier. VHDL, often parodied with
the description “Verbose Hardware Description Language” has a very low abstraction level, compa-
rable to assembly for software. As previously articulated, successful wider deployment of hardware
accelerators can only be achieved by offering a higher abstraction level. Tydi-lang already provides
a high-level way to describe the dataflow in a system in a way that is close to the software domain.
For Tydi’s success and achieving low effort hardware accelerator design, implementation of Tydi-using
components must become simpler.



1.2. Context: Tydi 3

Tydi
n = 3, d = 2 next

next

next

next

next

next
next

next

next

valid

valid

invalid

last
last

last

Signals:
data

Signals:
data
ready
valid

Signals:
data
ready  valid
stai   endi
strb   last

next

Handshaked

next

next

Raw
������������������������������������������������������������

������������������������������������������������������������

������������������������������������������������������������

������������������������������������������������������������

������������������������������������������������������������

������������������������������������������������������������

������������������������������������������������������������

������������������������������������������������������������

������������������������������������������������������������

������������������������������������������������������������

������������������������������������������������������������

Lane
1

Lane
2

Lane
3

Figure 1.2: A comparison of stream types represented as checkout conveyor belts.
The Tydi stream has 𝑛 = 3 lanes and a dimensionality of 𝑑 = 2.
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4 1. Introduction

Chisel has emerged as a promising way to achieve this transition. Chisel [5] aims to lower design
complexity by providing designers more powerful design tools. These tools empower designers to
craft highly parameterized generator components, seamlessly manipulate intricate signal-aggregates,
and utilize high-level programming paradigms. Since Chisel is tailored for broad-spectrum hardware
design, however, an opportunity exists to further refine the design process through a domain-specific
strategy, particularly for data-streaming accelerators.

1.3. Problem statement & research questions
The narrative thus far presents two critical challenges impeding the widespread adoption and efficacy
of Tydi. First, despite the strides made in rendering the Tydi ecosystem more accessible and complete,
establishing Tydi’s presence remains a challenging task. The potential value within an established
ecosystem is evident - IP components with Tydi interfaces and communication specifications, ranging
from low-level utilities to entire query-processors, could easily be adopted various designers and teams.
Yet, in the absence of such an ecosystem, the potential utility of Tydi remains limited. Existing tools
have not significantly simplified the process of designing of Tydi component implementations, making it
comparable in complexity to creating a project-specific solution. While the VHDL boilerplate provided by
the previous toolchain aids the initiation of implementation development, it does not substantially reduce
the laboriousness inherent in creating the implementation. The low abstraction level of classic HDLs
can deter wider utilization of hardware accelerators - an eventuality dependent on a higher abstraction
level offering.

The solution potentially lies in the Chisel language, which emerged as a promising means to lower
design complexity and equip designers with more potent design tools. An opportunity thus lies in
integrating Tydi into Chisel. Chisel’s broad-spectrum hardware design orientation leaves a gap for en-
hancing the design process via a domain-specific approach, especially for data-streaming accelerators.
Accordingly, the main research question motivating this study is: how can the Chisel language be used
within the Tydi ecosystem, simplifying the process of implementing Tydi-using components, thereby
reducing data-streaming accelerators design complexity? To answer this main question, several more
focused questions can be identified:

• What role can Chisel fulfill in existing and future Tydi-based toolchains?

• How can Tydi-concepts be effectively integrated in Chisel?

• What additional utilities are required to lower design-complexity?

• How can developed functionality be verified?

1.4. Contributions
This project makes several notable contributions to the fields of hardware description and data-streaming
communication in relation to Tydi and Chisel. First, an overview is provided of Tydi specification,
toolchains and projects up till now. This includes an updated stream description diagram, displaying
stream signal layout, inclusion conditions, and role at different stream complexities.

Second, a library is created to enable and make accessible the employment of Tydi concepts in
Chisel. This library allows intuitive declaration of all Tydi element types and stream interfaces in Chisel.
Tydi streams can be expressed in intercompatible standard and detailed representations. The stan-
dardized representation, following the Tydi standard, ensures compatibility with external components.
This compatibility furthers the scope of communication with components crafted outside of Chisel. The
detailed representation featured in the library gives improved clarity and usability within components
and tests. Nested streams are completely supported. For streams, several helper functions are in-
cluded for recurring signal use-cases. A detailed analysis of implementation methods of Tydi elements
and the stream representations is included.

Additionally, the library facilitates the creation of Tydi Modules. It provides a base class, with possibil-
ity for extension, alongsidemultiple utilities for common use-cases, similar to a standard library. Notable
among these utilities are a stream duplicator, an “interleave” component that splits a multi-lane stream
into multiple single-lane streams for easy processing, and importantly, a stream complexity converter
component that can be deployed between components to convert any incoming stream to the lowest
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source complexity, ultimately reducing design efforts in source and sink components. The project fur-
ther contributes a syntax for chaining stream-processing components, presenting advantages akin to
method-chaining in software.

For reciprocity with Tydi-lang, a Tydi-lang-2-Chisel transpiler is devised to convert Tydi types, inter-
faces, and components described in Tydi-lang-2 to Chisel code, thereby utilizing the Tydi-Chisel library.
A reverse-transpiler is also created to share types and components created with Tydi-Chisel in the form
of Tydi-lang-2 code. In this process, limitations of information acquisition from the Chisel library were
encountered. These limitations, and opportunities, are discussed.

An all-inclusive design-pipeline for data-streaming hardware accelerators is outlined through the use
of available tooling, accompanied by a simple illustrative example. This design-methodology demon-
strates the applicability and efficacy of an interface-driven and dataflow oriented workflow. A more
advanced example utilizing the majority of the developed tools and utilities follows the pipeline. The
advanced example strongly illustrates the composibility of systems when working with Tydi-enabled
components, strengthening Tydi’s claims about added value. For a real-world scenario example, an
industry-standard TPC-H query is examined and its top level components described together with
streams and data-types. An analysis of the code writing effort saved by using the pipeline is supplied
for all examples.

Last, testing utilities are developed, featuring a Chiseltest test-driver for Tydi stream interfaces,
which encompasses helper functions for creating Chisel data literals and offers user-friendly enqueue
and dequeue functions. Verification methods for aforementioned library utilities are described, which
can be used as inspiration for test development for other components.

1.5. Document outline
This thesis consists of several thematic chapters. For easy overview, every chapter starts with a short
summary in cursive text.

• In Chapter 2 a background of the work presented in this thesis and related work is provided.
Background information is supplied on the Tydi specification, previous toolchain projects, and
Tydi-using projects. Related work on alternative HDLs, streaming design, and accelerator design
is supplied.

• Chapter 3 offers a short narrative on the previous toolchain and search for enhancement oppor-
tunities and use of Chisel’s capabilities, together with an analysis of the usability and scope of the
Tydi specification.

• Tydi-Chisel’s main library contents are covered in Chapter 4. Descriptions and motivations are
given for the implementation of Tydi elements, streams, and components. General utility compo-
nents that can be used for common use-cases are listed and exampled. Particularly the stream
complexity converter, a drop-in-between component to bridge stream complexity issues between
source and sink.

• Interaction between Chisel and Tydi-lang is explored in Chapter 5, where the process of forward
and backward conversion is described, together with limitations of Tydi-lang and dynamic system
introspection in Chisel.

• In Chapter 6, a complete Tydi-driven design workflow is explored with several example use-
cases. Examples include a minimum complexity processing pipeline design, an advanced, higher
throughput design using several Tydi-Chisel utilities, and the macro components of the TPC-H
19 benchmark query.

• Chapter 7 describes testing utilities included in Tydi-Chisel as well as verification methods and
results of the developed utilities and components.

• Finally, Chapter 8 summarizes the whole document and provides an overview of future work.





2
Background

In this background chapter, a short overview is given of technologies used in this project and related
work. A synopsis of the Tydi specification and its history is provided. Chisel is placed in a context
of emerging open source hardware description languages. Fletcher is presented as a related project
to achieve acquisition and deposition of data from and to a host computer. Finally, related work on
interface design and acceleration of data-streaming processing is discussed.

2.1. Tydi
2.1.1. Specification
The Tydi specification was first introduced in [28]. This initial version defines a methodology for repre-
senting composite, dynamically-sized data structures along with the physical-level streaming protocol.
Later, a refined version of Tydi specification was released [6]. Based on this refined version, Reuk-
ers et al. developed an intermediate representation tailored for hardware circuit design using the Tydi
framework, accompanied by a compiler for VHDL translation [31, 32]. In co-operation, a “front-end” lan-
guage called Tydi-lang [41, 42] was developed to more naturally express Tydi concepts with a higher
abstraction level. These projects laid the foundation of practical Tydi implementation and correspond-
ing terminology that were not yet featured or fully developed in [28, 6]. The terms utilized within the
Tydi intermediate representation and Tydi-lang and their meanings are summarized in Table 2.1. Sec-
tion 3.1 provides additional details about the roles and interplay of the Tydi-IR and Tydi-lang projects.
For a broader perspective, a comparative study between Tydi and prevalent protocols such as AXI and
Avalon can be consulted in Table 4 of [28].

The basic data types used in Tydi intermediate representation are 𝑁𝑢𝑙𝑙, 𝐵𝑖𝑡𝑠, 𝐺𝑟𝑜𝑢𝑝, 𝑈𝑛𝑖𝑜𝑛. The
𝑆𝑡𝑟𝑒𝑎𝑚 is a wrapper of basic data types, adding extra streaming properties, such as 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦,

Term Type Software
equivalent

Chisel equivalent Meaning

Null Tydi logical type Null Bits(0) Empty data, a stream of Null type will be
optimized out.

Bits Tydi logical type Any primary data
type

Any non-aggregate
Data object

Represents data that requires x hardware bits to
represent.

Group Tydi logical type Struct Bundle A tuple of several other logical types. Total
hardware bit would

Union Tydi logical type Union Bundle & tag An union of several other logical types. Total
hardware bit would

Stream Tydi logical type Bus – Represents a stream of a Tydi logical type. The
stream can also

Stream-
let

Tydi hardware
element

Interface Trait with IO definitions Represents the port map of a component. This
term is almost

Impl Tydi hardware
element

Class with
functionality

Module “impl” is the abbreviation of ”implementation,
representing

Table 2.1: Tydi terms and corresponding meaning

7



8 2. Background

𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛, and 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡.

• Complexity: denotes the intricacy of the physical protocol. The present Tydi specification de-
lineates eight distinct complexity levels, ranging from 1 to 8. A lower complexity value implies
a more straightforward protocol, yet correspondingly, the component may necessitate increased
complexity to guarantee data availability. Figure 2.1 visually represents the protocol of complex-
ities at levels 1 and 8. Table 2.2 specifies constraints of streams for different complexity levels,
while Figure 2.2 shows the difference in signal layout and usage for a stream at different com-
plexities along with example transfers. It is noteworthy that a source port with a lower complexity
is able to connect with a sink port of a higher complexity.
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Figure 2.1: The stream complexity property [31]

• Dimension: indicates the dimension of data. Consider the representation of the phrase “she is a
dolphin” in terms of data dimensions as it transits between components. Conceptually, this phrase
can be parsed as a 2-dimensional array: [ [s,h,e], [i,s], [a], [d,o,l,p,h,i,n] ].
Given that each character requires 8 bits for representation, the appropriate streaming type for
this data structure would be designated as Stream(Bit(8), dimension=2).

• Throughput: indicates the designed throughput. Referring back to the streaming sentence ex-
ample, if the throughput is specifically designed to be 3, then the total data lane would be 24 bits
(8 bits per character multiplied by 3).

Tydi’s design flexibility promotes teamwork in engineering, enabling one group to concentrate on
the source component and another on the sink. This adaptability in design also means components
can be easily used in different setups without needing extra steps like manual protocol conversion.

2.1.2. Tydi-using projects
Several projects have emerged that utilize Tydi-related methodologies. Among these, Tydi-JSON [10]
is a collection of Tydi-interfacing hardware components that can be used to create a JSON parser,
written in VHDL. Building upon the foundations laid by [10] and [31], JSON-TIL [11] examines a pro-
vided JSON reference input, subsequently generating the requisite Tydi-IR (TIL) and VHDL files. This
process facilitates the creation of a comprehensive JSON parser tailored to the specific JSON schema
in question. Additionally, the VHDL-regex match generator [36] incorporates Tydi interfaces. This ini-
tiative enables the generation of hardware blueprints for regular expression matchers that operate on
UTF-8-encoded strings.

2.2. Chisel
The call for higher abstraction levels in hardware design as described in the introduction resulted in
the rise of high-level synthesis tools by major vendors and creation of a multitude of open source
alternative hardware description languages [5, 19, 23, 20, 25, 18, 9, 21, 17, 4] with different paradigms
and abstraction levels. Of these languages and frameworks, Chisel [5] (Constructing Hardware In a
Scala Embedded Language), is one of the oldest and most established, while still undergoing active
development.
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Example for 2D char seq.
{{she}, {is}, {a}, {dolphin}}

Category

Name

Bit width 1 1 E E E ⌈log2N⌉ ⌈log2N⌉ N N×D U

Element
Last element in sequence
End of seq. (no elements)

Multiple sequences can be
terminated per transfer.

strb can be used in addition to
stai & endi to signal active
data lanes.

stai can be used in addition to
endi to signal active data lanes.

Inner sequences can be broken
up in multiple, partial, transfers.

last data can be delayed.

Inner sequences can be broken
up in multiple, max utilization,
transfers.

Only inner sequences must be
transfered in one go.

Outer (& inner) sequences must
be transfered in one go.

Signal usage depends on C Usage
depends on C

Used when N>1 Used when D>1 Used when U>1

Lane 0 Lane 1 Lane N-1

Same value for C≤6

Figure 2.2: Tydi stream complexities diagram based on Figure 3 of [28], updated with info from [6]

𝐶 Description
< 8 Only one sequence can be terminated per transfer.
< 7 The indices of the active data lanes can be described with a simple range.
< 6 The range of active data lanes must always start with lane zero.
< 5 All lanes must be active for all but the last transfer of the innermost sequence.
< 4 The last flag cannot be postponed until after the transfer of the last element.
< 3 Innermost sequences must be transferred in consecutive cycles.
< 2 Whole outermost instances must be transferred in consecutive cycles.

Table 2.2: Stream complexity limitations [6]

Chisel is an open-source hardware construction language developed to facilitate the design of highly
parameterized hardware components. Traditional HDLs primarily focus on the structures and intercon-
nections of hardware components. Chisel allows designers to leverage Scala’s built-in features such
as high-level abstraction and type inference features to describe components more efficiently. This al-
lows for the creation of sophisticated hardware modules with reduced development effort. Importantly,
designs written in Chisel are ultimately translated to low-level Verilog code, ensuring compatibility with
existing digital design flows.

2.3. Fletcher
The Fletcher project [27, 26] was developed to facilitate the delivery of in-memory Apache Arrow data
to hardware accelerators. To achieve this, Fletcher offers an automated toolset capable of generating
VHDL components directly from data schemas. Complementarily, it provides a software framework
tailored for efficient data delivery to these generated components. At its core, Fletcher serves as a
comprehensive framework, designed to bridge FPGA accelerators with software tools and frameworks
that employ Apache Arrow. However, despite Fletcher’s capabilities in generating components for
memory data access, the challenge of designing the processing circuits on FPGAs remains. This is an
application domain where Tydi proves relevant, especially since in-memory data structures tend to be
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both complex and dynamic.

2.4. Related work
The field of stream processing has been the subject of extensive research across varied contexts.
This research trajectory has culminated in the development of multiple languages and frameworks for
software-oriented stream design [3, 39, 8, 15] on multi-threaded CPUs and GPUs. Moreover, specific
studies have focused on the intricacies of FPGA-oriented streaming [13, 34]. Notably, these studies
primarily address data transfer at the bit stream level, often neglecting the complexity and dynamic
nature of the data from software side. Beyond the specific research domains mentioned, [38] proposed
a holistic language, meticulously crafted for universal streaming logic.

Simultaneously, the evolving landscape of hardware design workflows has given rise to innovative
languages and representations [35, 16], although their objectives diverge from those of Tydi. Efforts
have been made for their seamless integration with existing languages & frameworks to simplify the
design process [22]. In response to the challenges posed by component interface compatibility, several
industry standards have been established [1, 2, 14, 29]. However, these existing works focus on the
hardware signals rather than an effective representation of complex data, which is addressed by Tydi.

The introduction mentions Chisel’s DecoupledIO to create handshaked connections and reasons
why it is insufficient for complex communication flows. With the dsptools library, Chisel also features a
DspBlock component. A DspBlock implements signal-processing functionality with an interchange-
able interface (TileLink, AXI4, APB, AHB, …). While this also offers more flexible implementation in
a project, it is implementation centered, whereas Tydi is interface centered. Tydi therefore leads to
interface-driven design, a successful concept in software development.



3
Chisel’s place in the Tydi toolchain

In this chapter, a brief overview is given of process evaluation of the toolchain after previous projects, the
search for options in utilizing Chisel, and a small review of the completeness of the Tydi specification.
The IR output for Tydi-lang was changed from Tydi-IR to a JSON format for easier expansion of tools.
Chisel is found to be capable of implementing Tydi concepts from a low to high level. Tydi’s specification
is found to be targeted towards low-abstraction HDLs and low-level transfer, missing descriptions or
guides for communication as a whole.

3.1. Previous toolchain structure & motivation for a new toolchain
Initially no-one in the research group was very familiar with Chisel. Chisel appeared to be a promising
research direction with its powerful hardware generation system. The exact extend of possibilities of the
role that Chisel could fulfill with respect to Tydi and the role that Tydi could fulfill with respect to Chisel
were unclear. The toolchain resulting from Tydi-lang and Tydi-IR [41, 31] is depicted in Figure 3.1a.
Tydi-lang would be used to describe logical types (elements), streamlets, and implementations. The
templates could either be ‘normal’ implementations, or templates for implementations that take type
parameters. The Tydi-lang code would get get compiled and expanded to Tydi-IR, or til code. This
til code would, through compilation, generate component interconnects and interfaces, and link cor-
responding behavior files in the output.

After the projects, it became clear that tooling with the custom intermediate representation was
hard to further develop. While the domain specific grammar and syntax is suitable for specifying Tydi
types and components, the need to parse and process this custom dialect restricted expansion to
new languages and development of new tools. Tian proposed a new conceptual toolchain, shown in
Figure 3.1b. As a more generally applicable intermediate representation, JSON was chosen. JSON
can be used to describe all properties of objects, and is established as a portable data storage format.
A new “back-end” could then parse the JSON description of the Tydi elements and components and
convert it to a chosen output format. In fact, this idea was implemented in this work, the process of
which is described in Section 5.1.

3.2. Exploration of a role for Chisel
As a first iteration and for lack of information about Chisel’s exact capacity, the new toolchain concept
included Chisel in a similar way as VHDL was included in the previous toolchain. As can be seen, a
perceived possibility was to use Chisel to implement parameterized template components. Chisel’s
ability to describe parameterized component generators and Scala’s advanced typing abilities seemed
like a good fit.

Eventually, after exploration of stream implementation possibilities (see Section 4.2), it became
clear that, thanks to polymorphic typing, little boilerplate code was necessary to use streams and build
Tydi-enabled components. Types and interfaces could be described with similar verbosity to and ease
as Tydi-lang. This meant Chisel could be used both as a general purpose implementation framework
in combination with Tydi-lang and as a stand-alone tool to develop projects.

11
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Tydi-lang

Template
implementations

Normal
implementations

Instance
(normal implementations)
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Component
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(a) Previous/legacy toolchain

Tydi-lang

Template
implementations

Frontend

Normal
implementations

IR (maybe JSON)

Component
interconnection

Behavior code +
interface

Circuit

Synthesis

Backend

Tydi-IR (JSON)

Rust side

Scala side

JSON as IR

Chisel (Scala)

Behavior code for non-
template components

3rd party lib

(b) Ideas for renewed toolchain

Figure 3.1: Toolchain diagrams for brainstorming Chisel’s role

3.3. Role & limitation of the Tydi spec
The Tydi standard was developed with at least compatibility in mind with traditional HDLs such as VHDL
and Verilog. In that sense it is not very imaginative with stream representation and capabilities. The
advantage of this is that it can likely be implemented in any HDL. The disadvantage is that extra effort
is required to offer usability to the user while still retaining standard compatibility, as described in Sub-
section 4.2.2. Additionally, the Tydi specification is limited to data transfer specification, and does not
prescribe any propositions for communication where multiple streams are involved. This is not surpris-
ing, projects can have wildly different use-cases and requirements. A component might function as a
subordinate component in a processor with a request response interface. Or, a query must be exe-
cuted with a lot of child streams for strings in the row data. Yet, as an advocated specification that helps
transfer complex structured data, the lack of further (suggested) specification of communication can be
seen as a limitation. This limitation and need for specification is briefly discussed in Subsection 6.1.3.



4
Tydi in Chisel

This chapter provides an overview of the implementation methods and choices for integration of Tydi
concepts in Chisel. Implementation of Tydi’s datatypes is outlined. Streams are implemented in a Tydi-
standard compatible variant and a high-utility detailed representation, making use of Chisel’s strong
typing and aggregate signal support. Different base-classes are described for component implemen-
tation development. Various utility components that can be used in composing systems are outlined.
Notably, the stream-complexity converter, a component that can take in a high complexity stream,
buffer it, and output a stream at the lowest complexity. Implementation challenges, solutions, and
design choices are given.

4.1. Tydi elements
Elements are an essential part of the Tydi specification. They are the building blocks of the data struc-
tures used for communication. Even the streams are elements, since they can be included in e.g. Group
elements. This must be reflected in the implementation and usage of Tydi elements within Chisel. The
following Subsection will give some information about the implementation method considerations. The
next Subsection will give some details about the specific types.

4.1.1. Basic implementation
Every element must, from a type perspective, be recognizable as being a Tydi element. Therefore,
every element must share a common super-class or trait. Finally, it must be usable within Wires and
IO, for use in Subsection 4.2.3’s detailed representation. For this project, a trait called TydiEl was
created that extends Chisel’s Bundle class. This is convenient for implementation of the Group and
Union elements, since they have multiple sub-fields/elements.

The Bundle class includes several methods, such as getElements that returns a sequence of
the bundle’s elements. This functionality is essential for the connection of detailed and standard form
streams (see Subsection 4.2.4). Behavior like getElements requires knowledge about the structure
of the Bundle sub-class in the class itself. In interpreted languages, this is often easy. In Scala this
is more difficult, but still possible through two types of reflection. Chisel handles this by employing a
compiler plug-in. This plug-in, among other things, provides the information that getElements uses.
By sub-classing Bundle, the burden of implementing this inspection is saved.

Bit elements only contain a single value. It would, therefore, be convenient to express this class
as a subclass of the more fundamental Data and not Bundle. A problem here is that neither the
ground types (such as UInt, SInt, Bool, …), nor the Data class can be manipulated. The ground
types cannot be extended either, for their classes are marked as sealed. It was therefore chosen to
implement all elements as a sub-class of Bundle.

4.1.2. Types
Null
The Null element is meant to signify the absence of a value. Its implementation accordingly is a bundle
without any fields that therefore can not have a value.

13
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Bits
A Bit element is the lowest form of element in Tydi, signifying some ground datatype of a certain bit-
width. As already explained in the previous Subsection, it must still be implemented as a sub-class of
Bundle. Straightforwardly, it contains a single field called value of an unsigned int of specified width.
One can override the value field or simply create a Group with a single value field.

Group
A Group represents a structure with multiple (Tydi) element fields. This directly mirrors what a bundle
already does in Chisel.

Union
In Tydi, a Union is similar to aGroup, except that only a single field carries significance at a time. Which
field that is, is indicated by a tag field that has the active field index as value. It is therefore dissimilar
to unions in, for example, C, where all fields share the same data. Instead, it bares more resemblance
to a mux. Union behavior is clearly explained in [31], specifically Section 2.2 and Figure 2.3.

An accompanying object can be specified with value constants for user-friendly assignment to
the tag field. Field indexes need then not be remembered. This methodology is shown in Figure 4.1.
Generation of such an object is automated by the Tydi-lang-2-Chisel transpiler, see Section 5.1.

It would be convenient if a Union-extending class automatically determined the required tag field
width from the union’s elements. This is, regretfully, not possible. It is unsure if this is because, in
Scala, a superclass constructor is called before the subclass constructor, or because a getElements
in the superclass constructor call will not yield information about the subclass.

4.2. Streams
In Tydi-Chisel, two representations of Tydi streams exist. A standard representation, and a detailed
representation. Since we concern ourselves with hardware design here, these are both variations
on the physical stream description. The standard representation follows the Tydi specification [6] as
close as possible. It is meant to be compatible with other HDLs such as VHDL and Verilog. This way
Tydi-using components designed in Chisel can be used in projects using different HDLs. The detailed
representation focuses on offering maximum usability in Chisel. Both representations were made to
share a common base class (also a TydiEl), share the same signal names, and can be connected to
each other at will.

4.2.1. Standard representation
Standard representation streams, are, in Tydi-Chisel, a direct implementation of the PhysicalStream
as described in the specification. Parameters and signals are exactly the same. A physical stream is
constructed in the spec as 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝑆𝑡𝑟𝑒𝑎𝑚(𝐸,𝑁, 𝐷, 𝐶, 𝑈). The parameters of a physical stream are as
follows:

• E Element type

• N Number of lanes

• D Dimensionality

• C Complexity

• U User signals

This is directly reflected in the instantiation of a standard stream in Chisel:
new PhysicalStream(e, n, d, c, u). The number of lanes 𝑁 is assigned directly, instead
of working with the logical stream parameter throughput (𝑡). A physical stream’s signals are ready,
valid, data, stai, endi, strb, last, and user. The standard representation is only meant for
usage in IO ports and components that do not operate on the data of a stream itself. In other cases,
the detailed representation can better be used. More information about interconnection and usage will
follow in Subsection 4.2.4.
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4.2.2. Why standard is not enough
The Tydi specification considers the data signal to be a least-index-first concatenation of the data
lanes. The idea behind this order is that it is the most natural to work with. E.g., taking the first bit index
will result in the first bit of the first element. A packing order of elements is not explicitly stated, but
could be derived from the fields function described in [6, 2.4. Logical streams]. Whichever packing
is considered, this concatenated data signal representation requires subword reads and writes from
and to the signal. A subword is a range of bits in a bit-vector signal. In VHDL, one would do this by
either reading or writing to data(y downto x). Working with indexes like this is cumbersome and
prone to error. The Tydi specification mentions alternative representations “to improve code readability
in hardware definition languages supporting array and aggregate constructs (record, struct, ...)”. It
recommends only using it within components, keeping outside connections standard for compatibility,
but the value of other representations is recognized.

Chisel’s strong support for aggregate types, such as vectors and bundles, seems to offer better us-
ability in hardware design. Working with bit-vectors to manipulate data does, therefore, seem like a poor
strategy. In fact, the Chisel docs state: “Chisel3 does not support subword assignment. The reason
for this is that subword assignment generally hints at a better abstraction with an aggregate/structured
types, i.e., a Bundle or a Vec.”. In Chisel, a subword can be read using data(y, x), but not written.
Clearly, working with structured types is not only a more usable option, but also the suggested way to
work from within Chisel’s philosophy.

4.2.3. Detailed representation
As described in the previous Subsections, the detailed stream representation goal is to offer maximum
utility within the Chisel environment. This can be done by making use of bundles and vectors. Specif-
ically, the detailed stream representation is implemented as a polymorphic class. The parameters
for its construction are the same as for the standard representation, but their significance is differ-
ent. Instead of working with just the TydiEl interface of the passed element and using the width,
the PhysicalStreamDetailed class is type-parameterized based on the element data and the user
data. Its signature is as follows:

class PhysicalStreamDetailed[Tel <:TydiEl, Tus <:Data](private val e: Tel, n: Int = 1, d: Int = 0, c: Int,

var r: Boolean = false, private val u: Tus = Null())extends PhysicalStreamBase(e, n, d, c, u)

The class still accepts the same parameter types, but by polymorphically parameterizing the class type,
more information becomes available that can be used in declarations:

val data: Vec[Tel] = Output(Vec(n, e))

val user: Tus = Output(u)

The user and data signals get the type of (vector of) the exact datatype that is passed. In other words,
if a Group is passed as the element argument of the stream, the data property becomes a signal of a
vector of this group type, instead of a bit-vector.

Listing 4.1 gives an example of a nested stream, similar to the timestamped message of [28, Figure
2.b], but with a Union instead of just a character. This is a good test-case for nested stream syntax and
usability. Because the data and user signals now have structured types, they can be used for direct
reads and assignments. This type information is also available to IDEs, offering auto-complete and live
type-checking support. See Figure 4.1 for an example situation working with the detailed representation
of Listing 4.1. The stream’s el method is just a shortcut for accessing the first data lane, data(0).

Listing 4.1: Example nested timestamped message example

class NestedBundle extends Union(2) {
val a: UInt = UInt(8.W)
val b: Bool = Bool()

}

object NestedBundleChoices {
val a: UInt = 0.U(1.W)
val b: UInt = 1.U(1.W)

}

class TimestampedMessageBundle extends Group {
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private val charWidth: Width = 8.W
val time: UInt = UInt(64.W)
val nested: NestedBundle = new NestedBundle
val message = new PhysicalStreamDetailed(BitsEl(charWidth), n = 3, d = 1, c = 8)

}

stream: PhysicalStreamDetailed[TimestampedMessageBundle, Null] = PhysicalStreamDetailed(new
timestampedMessageBundle, 1, c = 8)

Figure 4.1: IDE assistance example

The detailed physical stream class contains utility methods to quickly produce a standard form
stream from the detailed instance. Since the parameters are the same, this is straightforward. This
method can also directly connect the two streams. How this is done is explained in Subsection 4.2.4.
The reverse cannot be done, since the standard representation only has knowledge about the TydiEl
type and can therefore not properly parameterize the detailed representation.

Limitations of nested streams
A drawback of the detailed representation implementation as elements inside other elements presents
itself when working withmultiple lanes. Every lane will contain the complete element structure, including
nested streams. This breaks with the Tydi standard, where a nested stream in the hierarchy is only
exposed once. The nested streams of lanes other than the first can be marked DontCare, however,
and be left unused. In the FIRRTL to Verilog compilation step, unused signals will be trimmed.

Additionally, though the stream signals of the standard representation should be compatible with
the Tydi specification, the naming convention is not yet followed. A strategy to achieve this probably
involves name generation by the Tydi-lang-2-Chisel tool and use of one of Chisel’s methods to control
signal names1. Signal names generated by the til tool [30] deviate from standard representation
slightly as well, as VHDL by default does not support two consecutive underscore characters. Some
work to standardize across tools is, therefore, still required.

Failed implementation method
The first attempt to create a detailed physical stream was based on a Module. The module had the
IO associated with a detailed physical stream, and an IO port for the standard representation. The
advantage of working this way was that all signals between the detailed representation and the standard
representation could automatically be connected upon instantiation of the module class. There are
three problems with this approach. The first is that, since the class is based on Module and not
Bundle, the detailed representation does not have the same base-class as the element-manipulating
elements. This is just an inconvenience that could probably be worked around with common traits. The
second is that nested streams are not accessible and so unusable. This is due to the fact that a nested
detailed stream would be a module within the outer stream’s module. Signals that are not a module’s
IO are inaccessible from outside the module. Since the inner module’s IO are just signals in the outer
module and not IO, the signals cannot be used. Third, this model assumes that one is always working
with a detailed stream and a standard stream equivalent, connected together. This offers little flexibility.
This implementation method was therefore discarded.
1See the naming cookbook: https://www.chisel-lang.org/chisel3/docs/cookbooks/naming
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Limitations of anonymous bundles
From a syntactical perspective, it should not matter if a class is defined as named class, or declared as
anonymous class where it is used. Due to a limitation in the Chisel compilation framework, anonymous
classes cannot reliably be used in Tydi-Chisel. Listing 4.2, using an anonymous class, will therefore
not work well. Subsection 4.1.1 already talks about the enumeration of bundle and therefore TydiEl
elements. This plug-in functionality only seems to work for named classes, however. This is not a
problem when referencing the bundle in code, but functionality that uses the element enumeration will
not work as it should. Connection of bundles is an example of this. More details about this process will
can be found in the next Subsection.

Listing 4.2: Using an anonymous bundle for the nested group

class TimestampedMessageBundle extends Group {
private val charWidth: Width = 8.W
val time: UInt = UInt(64.W)
// It seems anonymous classes don't work well
val nested: Group = new Group {
val a: UInt = UInt(8.W)
val b: Bool = Bool()

}
val message = new PhysicalStreamDetailed(BitsEl(charWidth), n = 3, d = 1, c = 8)

}

4.2.4. Connection & syntax
The standard and detailed stream representation are both vital to creating hardware components that
are both easy to write and compatible with other languages and projects. To be able to use both,
it is essential that the signal information can easily be exchanged between formats. Because of the
difficulties mentioned in Subsection 4.2.2, this is not trivial. Subwords cannot be written to and the
order of items is reversed in an array (RTL) relative to a bit-vector (LTR).

Four situations can be identified for connecting streams:

1. Standard to standard

2. Standard to detailed

3. Detailed to standard

4. Detailed to detailed

Situations 1 and 4 are trivial, since for compatible streams, the signals and structures will be exactly
the same and source and sink can directly be connected to each other. Situations 2 and 3 involve
the outlined conversion difficulties. Although their solutions are not the same, both methods start with
obtaining a deterministic packing order of the fields. To remind the reader, every Tydi stream consists
of a tree of data elements and streams, called element manipulating and stream manipulating types.
For the packing of the data in a bit-vector, we need all the elements that are not streams. Indeed, sub-
streams in the hierarchy should get their own (standard) physical streams. To achieve this, a depth-first
recursive function is defined that gets the element’s child elements and does a flatMap operation on
the result of all TydiEl elements that are not streams. Listing 4.3 shows this function’s implementation.
This process is similar to the 𝑓𝑖𝑒𝑙𝑑𝑠 method in [6].

Listing 4.3: Recursive acquisition of all element fields

/** Gets data elements without streams. I.e. filters out any `Element`s that are also streams */
def getDataElements: Seq[Data] = getElements.filter(x => x match {
case x: TydiEl => !x.isStream
case _ => true

})

/** Recursive way of getting only the data elements of the stream. */
def getDataElementsRec: Seq[Data] = {
val els = getDataElements
val mapped = els.flatMap(x => x match {
case x: TydiEl => x.getDataElementsRec
case x: Bundle => x.getElements
case _ => x :: Nil
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})
mapped

}

With this list of data-fields in hand, signal connection can take place. In situation 2, standard to
detailed, all fields must be set to the correct subword in the data bit-vector. Listing 4.4 shows this pro-
cess’ implementation. Every lane will contain the collection of fields given by the getDataElements
functions. Then, because of the RTL order of data in the bit-vector, the data fields list is reversed and
iterated over using a fold operation. The starting value is the bit-index of the start of the lane. Then,
every data field gets its value assigned based on the current index and the field’s width, adding the
width to the start value for the next field. This process is repeated for the user data fields, but then
without the different lanes. this refers to the detailed stream and bundle to the standard stream.

Listing 4.4: Connection of bit-vector subwords to data fields

// Connect data bitvector back to bundle
for ((dataLane, i) <- this.data.zipWithIndex) {
val dataWidth = bundle.elWidth
dataLane.getDataElementsRec.reverse.foldLeft(i*dataWidth)((j, dataField) => {
val width = dataField.getWidth
// .asTypeOf cast is necessary to prevent incompatible type errors
dataField := bundle.data(j + width - 1, j).asTypeOf(dataField)
j + width

})
}
// Connect user bitvector back to bundle
this.getUserElements.foldLeft(0)((i, userField) => {
val width = userField.getWidth
userField := bundle.user(i + width - 1, i)
i + width

})

For situation 3, detailed to standard, the subword assignment problem is encountered. The way
around this is to not assign parts of the bit-vector signal at all, but to create a new signal and assign
the signal. This signal is then constructed purely by concatenation of data field signals. Care needs
to be taken to maintain the right order of signals, but the code, shown in Listing 4.5 is otherwise quite
simple. this refers to the standard stream and bundle to the detailed stream.

Listing 4.5: Concatenation of data fields to signal and assignment to bit-vector

def getDataConcat: UInt = data.map(_.getDataConcat).reduce((a, b) => Cat(b, a))
def getUserConcat: UInt = user.asUInt

...
this.data := bundle.getDataConcat
this.user := bundle.getUserConcat

To verify that the packing by these connection methods is done correctly, a Tydi compliance test was
created. Details can be found in Subsection 7.2.1.

Direction of streams
In Tydi, streams can have a forward or a reverse direction. In HDLs, generally, there is an input and
an output. In Chisel, if no direction is specified, an IO signal is considered to be an output. Specific
directions can be indicated by wrapping a data type in Input or Output before turning them into
IO with the IO call. Bundles, luckily, can have different directions for sub-signals. This is not only
useful for the reverse-direction ready signal, but also for nested streams with reverse direction in the
detailed representation. When a bundle is wrapped in Input or Output, the internal directions are
overwritten. Instead, the Flipped function can be used to reverse the direction of all nested signals.
Unfortunately, there is no way to acquire the direction of a signal in code. This limitation is further
discussed in Subsection 5.2.2. This makes it slightly harder to ensure all signals are registered in
the correct direction, and users have to rely more on Chisel’s low-level errors. In the future, better
error detection and messaging could be implemented. When a stream is set to reverse direction, it will
execute a flip on all its child streams. Flipping can only be done before registering the signals as IO.
When using the signals as wire instead of IO, the situation becomes even more uncertain, for wires
must be connected at two ends, and so have no explicit direction. Therefore, it is up to users to clearly
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denote their signal directions. Assistive error handling could assist users in cases where a low-level
error occurs.

Syntax
Chisel knows a few connect operators that are used for connecting signals together. The documentation
mainly mentions :=, known as the mono or “strong” connect operator, and <>, known as the bulk
connect operator. Other available options are :#=, the mono connect operator, :<>=, the bi-connect
operator, and :<=, the aligned connect operator, and :>=, the flipped connect operator. These all have
different semantics in how they connect sub-signals in aggregate signal types. For simple signals, :=
is normally always used.

When a stream is connected to a similar representation, their bundles will be the same (with mir-
rored direction if IO ports), and the :<>= operator can be used to connect them. Connecting different
representations is more intricate, however, as outlined previously. Since streams are considered as
one signal or communication channel, it is advantageous to use a single connect operator to connect
all sub-signals correctly. The strong connect operator (:=) was chosen for this purpose. By sticking to
this notation, it is expected that it will feel intuitive to existing Chisel developers and be easy to under-
stand for new ones. These operators are defined as methods on the stream classes and can be used
as operators by Scala’s infix notation. A connect operator method is defined for every situation in the
list earlier this Section. Listing 4.4 and Listing 4.5 contain snippets from these connect functions.

4.3. Tydi components
With elements and streams covered, components can be designed. Referring back to Table 2.1,
Chisel’s equivalent of an implementation is a module. This Section will describe library methods and
classes related to writing and working with modules in a Tydi context.

4.3.1. Module bases
In principle, writing a module and using Tydi streams is enough to call something a Tydi component.
To offer some additional functionality and abstraction, some base classes were created.

Tydi module
Modules come in three flavors in Chisel: Module, RawModule, and BlackBox, all being variants of
BaseModule. General purpose components will use Module. When one or more non-default clock
and reset signals are required, RawModule can be used. BlackBox modules are used for interfacing
with external component and are not emitted to Verilog.

For most circumstances, a Module will be used. Accordingly, the base module for Tydi compo-
nents, called TydiModule, is based on Chisel’s Module. Though in part writing components based
on TydiModule is done for conveying semantic meaning, TydiModule also offers some functionality.
This is mainly related to the reverse transpilation, discussed in Section 5.2. The class defines some
overloaded methods to e.g. keep track of the registered nested Modules, get the ports, etc. In the
end, basing all components on TydiModule allows for future expansion of base functionality.

Processor base
The processor base is a class that was originally developed for the multiprocessor utility of Subsec-
tion 4.4.3. Essentially, it is an abstraction to save boilerplate code when manually defining components.
That is, not generated from Tydi-code (see Section 5.1. Its constructor allows creation of a Tydi compo-
nent with an input and output stream of specified type. Standard streams, in and out, are exposed as
IO. Detailed streams of the specified type are set-up and connected to both the standard representation
IO streams and each other. By default, the component thus creates pass-through. Connections can
be overwritten. This makes it possible to very simply define a filter component that controls the strobe
lanes based on some criteria. In fact, this would only require a single line in simple cases. A “simple”
version is also available that does not include detailed streams. This is relevant for components that
just describe stream connections for nested modules and don’t include logic themselves. Both versions
are based on an abstract signal definition class (SubProcessorSignalDef), that defines the pres-
ence of the in and out streams. This is considered to be a standard interface for simple, single-stream
components. This interface is, at the moment, required for the pipeline notation of next subsection.
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4.3.2. Syntax sugar & overloading
When writing a component’s implementation, first defining a module instance, and then connecting its
input and output streams is rather verbose and makes it difficult to visualize the dataflow. In software, a
popular paradigm is “method-chaining”. In method chaining, each method acts on the output of the pre-
vious method, forming a chain. Method-chaining is used by many big-data frameworks because of its
convenience and conciseness. Therefore, a similar pipeline notation was developed to more naturally
formulate a data-stream processing pipeline and provide a better overview of what is happening to a
data-stream. This notation is shown in Listing 4.6. The processWithmethod instantiates the module
it gets passed, connects the input stream of the module to the referenced output stream, and returns
the module’s output stream for further chaining. At the moment, this only works with modules adhering
to the SubProcessorSignalDef interface, with one input and one output stream. This could later
be extended for more advanced configurations. The convert method connects a stream complexity
converter (as discussed next Section) with a specified buffer size similar to the processWithmethod.

Listing 4.6: Example data-streaming processing pipeline with pipeline notation

class PipelineExamplePlus extends PipelineExamplePlus_interface {
out := in.processWith(new MultiNonNegativeFilter)

.convert(bufferSize)

.processWith(new MultiReducer(n))
}

4.4. Utilities
To advance the goal of making Tydi-based data-streaming hardware design easier, several utilities can
be defined. These utilities fulfill the role of “standard library”. Their intent is to take away design-effort in
often occurring use-cases. Since the exact use-cases cannot be predicted, these utilities should be as
general as possible. The utilities are consequently often (polymorphically) parameterized to be made
corresponding to the user’s situation. This Section will describe several utilities.

4.4.1. Complexity converter
One of the more important and complicated developed utilities is the stream complexity converter, or
complexity converter for short. The idea behind this component is that it can be inserted between
components with incompatible sink and source complexities but compatible data-layout. In Tydi, com-
patible sinks and sources can be connected if the complexities 𝐶sink ≥ 𝐶source. Designing a sink compo-
nent requires more effort to take in a high-complexity stream, whereas designing a source component
outputting a high-complexity stream requires less effort. The complexity converter’s role becomes
apparent. By creating a universal component that can convert a high-complexity source stream to a
low-complexity sink stream, design efforts can be saved on both ends, while retaining correct operation.
Section 4.5 will detail the design of this component.

4.4.2. Stream duplicator
The stream duplicator is a standard component that was already introduced in [41] to split one output
stream into two or more output streams, each going to another component. Generally, an output can
be connected to multiple inputs, but not the other way around. Since the Tydi signal definition (Sub-
section 2.1.1) includes the ready signal in reverse direction, being an input for an output stream, one
cannot simply connect all wires together. Receiving components have independent sinks with ready
signals. A transfer must logically not happen before all components are ready to receive data. The
ready pulse is therefore only sent to the source when all sinks are ready. Another strategy would be to
transfer data to a sink as soon as it is ready and then set valid low.

4.4.3. Interleave/multiprocessor
The interleave/multiprocessor component is a component that offers easy workload parallelization for
multi-lane streams carrying independent data elements. In essence, the component is an extension of
the functionality that the stream duplicator offers. The idea is that a stream with 𝑁 lanes is split into 𝑁
separate streams with a single lane. Every lane is connected to a processing element (called processor
here) that operates on the data from that stream. While the splitting of data, strobe, and dimensional
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information is trivial, special caremust be taken in connecting and driving the ready and valid signals.
The first step is similar to the way the stream duplicator creates multiple streams, except in this case
the streams carry independent data. A similar reverse process must be repeated after the processing
elements. The processors should not receive a ready pulse until all processors have valid output
ready. Only then can all information be sent as a single transfer at the interleave output. Essentially
the streams are synced at the processor inputs and outputs. A framework- and vendor-agnostic stream
synchronization VHDL component has been developed at the ABS group before2.

Integration of the multiprocessor has been kept as simple as possible. The module generator class
takes arguments about the stream datatypes, number of lanes, number of dimensions, and most im-
portantly, a module Definition of a processor. It is used in the advanced example presented in Subsec-
tion 6.2.2. This processor should extend the Processor Base of Subsection 4.3.1. In combination with
the pipeline syntax of Subsection 4.3.2, an interleave operation can be inserted in a stream in a single
line.

4.5. Complexity converter implementation
4.5.1. Desired functionality
As mentioned, the complexity converter’s job is to take in a stream with high complexity, and to output
the same data in a stream of low complexity. It should function such that it can be inserted between
two components without either of the source or sink noticing the difference from being connected to
respectively a high complexity sink and a low complexity source.

More technically, the component take in the data and dimensionality information at 𝐶source, buffer and
compress it, and output the information again at the required 𝐶sink. Table 2.2 denotes the constraints
for stream behavior at different complexities.

The mentioned buffering of information is evident when looking at Figure 2.2. Higher complexity
streams are not required to send the data in one continuous cascade. Instead they can use the stai
(𝐶 ≥ 6), endi (𝐶 ≥ 5), and strb (𝐶 ≥ 7) signals to turn individual lanes off. At 𝐶 ≥ 3 valid can go
low in the middle of a sequence, effectively pausing the input stream. In general it can be said that
the high complexity input signal can be more fragmented and the low complexity output must be less
fragmented as dedicated by the complexity rules.

For complexities 𝐶 ≥ 4, the last flag can be postponed, i.e. sent after the element data. For 𝐶 < 4
this is not allowed, which means the complexity converter component should be able to re-align the
dimensionality information with the element data. This is one of the harder problems, and its solution
is discussed in Subsection 4.5.3. But first, the general implementation.

4.5.2. Implementation information
The idea behind the stream complexity conversion is quite simple. The design requires some intricate
operations that are tricky to implement. Two implementation paths seem plausible. One is making
multiple converter layers that each reduce the stream complexity one or a few steps, another is making
a design that does complete reduction from the highest complexity (8 right now), to the lowest (1). The
advantage of the first approach is that layers could be combined to form the converter necessary for the
situation. Different layers will likely contain duplicate (and so superfluous) buffering, andmore hardware
must be designed. The advantage of the second approach is that only a single component must be
designed, and tested, which subsequently is able to handle any situation. Efficiency will depend on the
stream complexity conversion that is required. It was decided to go for the single-component option for
a focused and complete resolution.

Operation can be split up in three stages. Input processing, buffer, and output. Central are the
buffer registers: the data register, last register, and empty register. Each buffer is a vector of registers
of length 𝑛, the buffer size. The buffer should be able to hold the longest full sequence. A good value
for 𝑛 will, therefore, depend on project-specific requirements.

• Input processing consists of re-aligning and reducing optional delayed dimensional data, con-
cluding when an empty element/sequence occurs, and computing where all element data should
go. Order of the elements is also important here.

2https://github.com/abs-tudelft/vhlib/blob/master/stream/StreamSync.vhd
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• For the buffering it is important that the data is coherently stored, in the right order. New data
is coming in, and stored data is going out when the sequence is ready. Input and output are
uncoupled, so this can happen in the same clock-cycle! Care should, therefore, be taken in
getting all the indexes right.

• Output generation consists of the logic to form a valid 𝐶 = 1 stream.

Details of the implementation will now be described. Figure 4.2 shows a visual explanation of the
complexity converter in case converting of a 2D character stream, in the middle of sending ["Hello", "

World"], ["Tydi", "is", "nice"], [""], []. The explanations will work using this example. Note that the
data does not actually contain indicators for the start of a sequence. The displayed { characters are
just for illustration purposes.

d i} {i

{{h e l l o} {w o r l d}} {{T y

Serie 1
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Index

{{h e l l o} {w

d i } {i

Previous last write index

Transfer 5 items out

Transfer 3 items in

Start write index

8 8 9 9 9 10

1 0 1 0 0 1Increment index at
Write index

Reduced items to be inserted
@ next clock

Data in

Shift all items 5 places
@ next clock

Complexity Converter

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

["Hello", "World"], ["Tydi",

"is", "nice"], [""], []

Transfering

Buffer contains
["Hello", "World"], ["Ty...

1st inner seq end

Complexity 8

Complexity 1

Data out

Figure 4.2: Visual explanation of complexity converter operation

Write index basis
Calculation of the correct write indexes is one of the harder parts of the design. As already noted, data
can come in and go out simultaneously. Clearly, if no data is coming in, the base writing index, 𝑤, stays
the same and is equal to the top index 𝑖. If data is going out, then 𝑤 = 𝑖next = 𝑖 −𝑛out. If data is coming
in (and not going out), then 𝑤 = 𝑖next will be 𝑖next = 𝑖 + 𝑛in. More concretely, the last valid element’s
write index + 1. This relationship is given by Equation 4.1. Write indexes are denoted by 𝑤 and the
base write index by 𝑤0. The individual write indexes 𝑤[𝑗] are given by Equation 4.3 later.

𝑖next = 𝑤[𝑛lanes − 1] + 1 (4.1)

𝑤0 = 𝑖 − 𝑛out (4.2)
Figure 4.2 shows the top index, marked by previous last write index at 𝑖 = 12, which would be 𝑤 if

no data was going out, and the start write index as actual 𝑤 at 7.

Dimensionality information
At stream complexities of 𝐶 ≥ 4, dimensionality information can be delayed with respect to the last data
element sent. Even more tricky, empty sequences can be formed based on last values. Retrieval
of correct dimensionality information and detection of empty elements is a problem on its own and is
discussed in the next subsection (4.5.3).
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Individual write indexes & empty elements
After the possible empty sequences have been identified by the last sequence processor, the indi-
vidual write indexes can be computed. In general, writing starts at 𝑤. The 𝑛 data lanes are iterated
over and examined. When a lane either has valid data, or indicates an empty element/sequence
through the last sequence processor, the index is incremented. This is shown in Figure 4.2 at incre-
ment index at and write index. An element is marked as empty when the last sequence processor
indicates a new sequence but there is no valid data. Finally, data is written to the buffers for lanes
where incrementIndexAt is high to the lane’s corresponding write index, given by Equation 4.3.
The last buffer register uses a slight variation of this approach, as indicated by Subsection 4.5.3.

𝑤[𝑗] = 𝑤0 + 𝑃𝑜𝑝𝐶𝑜𝑢𝑛𝑡(𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝐼𝑛𝑑𝑒𝑥𝐴𝑡[𝑗 ∶ 0]) − 1 for 0 ≤ 𝑗 ≤ 𝑛lanes (4.3)

In this equation, PopCount is a function that counts the number of 1’s in the signal. Alternatively, one
could formulate it this way:

𝑤[𝑗] = 𝑤[𝑗 − 1] + 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝐼𝑛𝑑𝑒𝑥𝐴𝑡[𝑗] for 0 ≤ 𝑗 ≤ 𝑛lanes
𝑤[0] = 𝑤0 + 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝐼𝑛𝑑𝑒𝑥𝐴𝑡[0] − 1

(4.4)

In the example of Figure 4.2, three elements are transferred in the first, third, and sixth lane. This
results in incrementIndexAt to be, in reversed binary notation for clarity, 101001, and 𝑤0 = 8 so
𝑤 = [8, 8, 9, 9, 9, 10]. ‘d’ is written to index 8, ‘i’ #1 to index 9 and ‘i’ #2 to index 10. The difference in
standard notation order of a bit-vector (least item right) and a sequence (least item left) is something
to watch out for here.

Counting sequences
For reasons illustrated in output stream, the number of full sequences must be kept track of. A full
sequence is indicated by an element which has themost significant last bit set. Multiple full sequences
can come in per transfer at 𝐶 = 8, but only one can go out for 𝐶 ≤ 7. One can either count all the
MSB’s present in the last buffer, or keep a register with the count. The count is incremented with the
MSB’s in the last lanes and decremented by the presence of an MSB in the last value of the last
item of an outgoing transfer. In Figure 4.2, a single full-sequence is present. The ‘d’ at index 9, marks
the end of this sequence. In this situation, that character was received in the previous transfer.

Output stream
As mentioned, the output should be formatted as a valid 𝐶 = 1 stream. For 𝐶 = 1, the output should
be written in one continuous set of transfers. Accordingly, outputting can only start when it is know
that at least one entire sequence is stored. Else, the risk of running out of data exists, a pause must
be inserted, and the protocol at 𝐶 = 1 is broken. Additionally, not more than a single inner sequence
can be sent at a time, so the length of an inner sequence must be found (if shorter than the number of
output lanes). Logically, this is done by finding the index of the first lane with an asserted LSB last
bit. In Figure 4.2, the inner sequence “hello” has 5 letters/elements, so 5 elements are transferred and
the buffer shifts 5 places to the left.

Next to sequence management, the usual signals must correctly be set. stai is driven to 0. Rel-
evant are the other signals: ready, valid, data, endi, last, and strb. strb is used to indicate
empty signals. The last bits must be acquired from the buffer index of the last valid element. This in-
dex is the same integer that is driven to endi. As before, care must be taken with the order of elements
in the data signal.

4.5.3. Dimensionality information reduction
In the context of the complexity converter implementation, a crucial aspect is the reduction of dimen-
sionality information within the data stream to cross from 𝐶 ≥ 4 to 𝐶 < 4. This Subsection delves into
the intricate task of dimensionality information reduction. The algorithm for this reduction and hardware
design for this challenging problem are explored in detail. Figure 4.2 does show an example of last
compression for the third and fourth lanes.
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What is a new sequence?
The first question that must be addressed when attempting to solve the problem of dimensionality
reduction is to know what we are trying to achieve. Globally, at 𝐶 = 1, this is to output a stream without
gaps in the data for a whole outer sequence, each inner sequence in its own transfer, or transfers,
depending on length (see Figure 2.2). The central question is therefore, how dowe identify a sequence?
In a Tydi stream, a sequence runs from the sequence starting point, to the item before the start of a
next sequence. While this seems like a nonsensical definition at first, it lays at the core of how one can
detect sequences. The reason for this is the possibility of delayed last signals and empty sequences.

In the simplest situation, a sequence is terminated by the most significant last bit, signaling an
end of the previous sequence. Any sequence after it, empty or not, will start at the next element. When
the MSB last bit has not been asserted yet and another transfer takes place, there are a few options
of things that can happen:

• a new element follows

– if a last bit was asserted, a new sequence starts
– if no last bit was asserted, the previous sequence continues

• last information follows without element data

– additional dimensions can be closed off, still relating to the old sequence
– a new, empty sequence can be started

The first situation category is trivial and does not require any special handling. It is the second
situation category that illustrates the dimensionality reduction problem. Looking at these situations it
becomes apparent that we have two tasks. The first is to keep adding the last information to the last
element (either with data or empty), this is the reduction. The second is detecting when a new (empty)
sequence starts based on the last information alone. It is here that the loop becomes apparent. A new
sequence depends on the last information of the previous element, but to compile this information
we must know where the next (empty) sequence starts!

𝑖prev𝐿𝑆𝐵 ≥ 𝑖new𝐿𝑆𝐵 (4.5)

Breaking the loop

Start

NoYes

Does new
el start?

Update
reduction

Reset
reduction

Write el to
buffer

Figure 4.3: Sequential processing of
incoming elements

When viewing the reduction problem from a sequential/software per-
spective, executing the task is really easy. One simply starts with the
first element, decide if a new element should start based on the cur-
rent reduction value and last information, create the new reduction
value, and move on to the next element. If one stores which index the
previous element started, or store the element itself, one can write the
reduced last information to the element index in your buffer when a
new element starts. This process is visualized in Figure 4.3.

If we only worked with single-lane streams for the complexity con-
verter, life would indeed be this simple. A few state registers and you
are done. Because taking in a single lane is much simpler, at 𝑛 = 1,
the converter has limited use. The problem thus becomes execut-
ing the reduction task for multiple lanes at the same time. A possible
way to do this is by pipelining the solution. In each stage, one would
figure out the index of the next element, do the reduction, and pass
on the index as starting point for the next stage. There would be as
many stages as lanes, even though there might be fewer elements.
At the end all information would be available for writing to the buffer.
Creating such a design is possible. Designing the dataflow in such
a component is hard and a lot of registers are required to store the
state, however. Luckily, a simpler solution is available, which will be
detailed next.
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Combinational solution
As it turns out, the problem can be simplified by separating the creation of last reduction & new
sequence information and getting the information to the right place. For the first part, the design shown
in Figure 4.5, called the “last sequence processor” was conceived. This design essentially works like
a basic carry-propagation adder. Each processor element can be compared to a full adder, with a
reduced in (analogous to carry in), two inputs, an output (whether a new sequence starts based on
the last values), and a reduced out (analogous to carry out). Figure 4.4 shows the functionality of
such a processor element. Note that the lane validity and lane last values are not shown here, even
though they are used in the decision process.

NoYes
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reduction

Reset
reduction

Output 1 Output 0

Prev
reduction
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reduction

Figure 4.4: Processing of lane information

The adder-like structure essentially acts as a sequential solution, but without a clock. Each pro-
cessor element takes decisions based on the previous element. Because the design is very simple,
it should be fast enough for any situation except for very large lane counts and high clock speeds. In
such situations, a more personalized approach is more fitting anyway.
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Example details
Figure 4.5 shows an input sequence of 8 lanes, where several possible situations are outlined. A
processor element contains the letter 𝐷 when a new element starts based on the presence of element
data. It contains an 𝐿 when a new element starts based on last values. Lane 1 is an average situation
with data and no last information. Lanes 2, 3, and 4 together form the second element with delayed
last information for the second dimension. At lane 5, a new element is denoted by data presence,
but also by last information; a dimension is closed that was already closed by the previous element.
This would result in an empty sequence if there had not been element data. At lane 7, such an empty
sequence is started since there is no element data. Summarizing, an empty element arises when a
new sequence starts based on last values. As can be seen from the figure, the final reduced last
value is available at the index before the next element. This is important for the next section, where
the data is aligned and written to the buffer.

Matching element information
After executing the reduction the following information is available:
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• Flags for which lanes start new elements based on last values

• Reduced last values for each element from the start of the element to before the next one.

The remaining problem consists of getting the correct reduced last values corresponding to the
item. Two solutions are available to solve this problem. One option is to propagate the element data
with the (reduced) last data in the sequence processor. Another is to use “look back” indexing. The
main difference between the two strategies is how they handle trans-transfer delayed dimensionality
info. When a transfer does not start with a new element but with (additional) last assertions, this
informationmust be added to the last item in the buffer. This behavior is native to the look back indexing.
For the data-propagation strategy, one must keep the last element in memory, i.e. not commit it, until
new sequence starts. In general, in both cases, the systemmust wait with outputting the sequence until
either an outer sequence ends, or a new inner sequence starts. After all, additional related last bits
could still follow. At 𝐶 = 1, an outer sequence end is always awaited before output of that sequence
can start.

In the end, the look back indexing was chosen since it offers better separation of concerns. List-
ing 4.7 shows calculation of the write indexes and writing the data to memory. The look back indexing
is done where lastReg is written. For each valid element, the last information of the element before
it in the buffer is set to the reduced last value of the index before this element of the last sequence
processor. Since the last processor works from left to right, this is the index that will contain all last
information for this element. Notice that if the data is a continuous stream of elements, the previous
buffer element gets written to the previous last value in a 1:1 fashion. For completeness, the final
reduced last value is also written to the last element in the buffer. This is required for situations where
the outer index ends at the last element lane and no element follows after to write the required last
information back.

Listing 4.7: Write index calculation and writing data to buffer in ComplexityConverter

// Calculate & set write indexes
for ((indexWire, i) <- writeIndexes.zipWithIndex) {
// Count which index this lane should get
// The strobe bit adds 1 for each item, which is why we can remove 1 here, or we would not fill

the first slot.
indexWire := writeIndexBase + relativeIndexes(i) - 1.U
// Empty is if the a new sequence is assigned by last bits, but the lane is not valid
val isEmpty: Bool = lastSeqProcessor.outCheck(i) && !in.laneValidity(i)
val isValid = incrementIndexAt(i) && in.valid
when (isValid) {
dataReg(indexWire) := lanesIn(i)
// It should get the reduced lasts of the lane *before* the *next* valid item
// If the first item has data we don't care about the previous last value anymore.
// If it does not, it will get set at i=1
if (i > 0) {
when(indexWire > 0.U) {
lastReg(indexWire - 1.U) := lastSeqProcessor.reducedLasts(i - 1)

}
}
emptyReg(indexWire) := isEmpty

}
}
// Fix for the "looking back" way of setting last signals.
lastReg(writeIndexes.last) := lastSeqProcessor.reducedLasts.last
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Working with Tydi-lang

Within this chapter, the reciprocity of Chisel and Tydi-lang code is explored. A code generation tool
for producing Chisel code from Tydi-lang 2 output is described. Data format, pre-processing, and code
generation procedure are explained. A reverse code generation strategy fromChisel to Tydi-lang is also
introduced. In this process, several limitations of the Chisel library are encountered and work-arounds
explored.

Tydi-langwas designed as a domain-specific language to effectively describe Tydi elements, streams,
streamlets, and, from a connection perspective, implementations. Hence, the role of a Tydi-lang de-
scription of a system in the Tydi ecosystem is that of a blueprint. This blueprint in part serves as a
specification of the system’s communication structures (elements) and channels (streams & ports).
The blueprint can further be used to create boilerplate code for implementations.

Subsection 2.1.1 outlined the first Tydi-lang project that generated Tydi intermediate representation
language (TIL) code and the Tydi-IR project that is able to generate VHDL component boilerplate code
[41, 31]. Tian [40] developed Tydi-lang 2 with several syntax and compiler improvements and new
output format. Since Tydi-lang 2 supercedes Tydi-lang 1, yet shares most grammar, Tydi-lang code in
this document refers to Tydi-lang 2 compliant code. As mentioned in Section 3.1 JSON was chosen as
a favorable output format for Tydi-lang 2, for it is widely used and parsing is straightforward in almost
every popular programming language. This should lead to easier development of code generation tools
such as [31], in turn lightening the burden of adoption into ecosystems.

5.1. Code generation from Tydi-lang to Chisel
In this section, the strategy and details of Chisel code generation from a Tydi-lang specification is
outlined. Output interpretation, information processing, code generation, and project considerations
are discussed. Take a look at Table 2.1 for the relation between Tydi concepts and Chisel concepts.

5.1.1. Format
When Tydi-lang code is compiled, a JSON document is produced, as already explained in the chapter’s
introduction. The JSON document contains objects, also known as dictionaries or maps, that describe
the properties of all elements, streamlets, and implementations. The three top-level keys are therefore
logic_types, streamlets, and implementations. In each of these category objects, objects
describing the properties of the entities described in Tydi-lang reside under unique keys. Listing 5.1
shows an example JSON object under logic_types describing a stream. The stream and user types
are specified as references to the keys of the datatypes for the element and user fields respectively.
Every logic type object has a type property that can be either Ref, Stream, Bit, Group, or Null. Im-
portantly, emitted logic type information includes documentation string, if specified. This documentation
is later rendered in Chisel code as well, improving clarity.

Listing 5.1: Example JSON output snippet

"generated_0_36_JI5PTYzg_24": {

27
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"type": "Stream",
"value": {
"stream_type": {
"type": "Ref",
"value": "package_pack0__NumberGroup"

},
"dimension": 1,
"user_type": {
"type": "Ref",
"value": "7RVI_15__user_type_generated_0_36_JI5PTYzg_24"

},
"throughput": 1.0,
"synchronicity": "Sync",
"complexity": 1,
"direction": "Forward",
"keep": false

}
},

5.1.2. Code generation strategy
To perform the actual task of Chisel code generation from a Tydi-lang JSON document a program
was written in Python. Python was chosen for its simplicity, flexibility, and the authors pre-existing
knowledge of it and relevant libraries. The program works in three phases.

1. Parsing the JSON document containing the Tydi-lang entity descriptions

2. Pre-processing the information

3. Generating Chisel code based on templates with Jinja2

Parsing JSON in Python can be done with the built-in JSON library and does not merit further expla-
nation. Jinja2 was selected as templating engine for its extensive functionality, including logic and
operations in the template, and simple operation. While it could be attempted to generate code directly
from the JSON object, placing necessary logic in the templates, this is not very efficient or legible form
a programming perspective. Therefore, some pre-processing is done on the information first. The next
section will describe this process.

5.1.3. Information pre-processing
The pre-processing function executes several tasks to transform the raw data in such a way that it is
easier to use in the templating environment. The following transformation tasks are included:

• Extract entity names and package information from object key

– Clean names are available for streamlets, implementations, groups, unions, group & union
elements, ports, and connections.

– Other entities have, at the moment of writing, automatically generated names. This is not a
big issue, since these are types that are used by streams, groups, or unions. A user working
with the generated interfaces and components will thus not be exposed to these names.

• Replace references in the data structure by the objects they are referencing

– Notably for groups, union & group elements, ports, and connections
– In several places, the JSON file features references to references

• Extract names for streamlet ports and implementation connections

• For every streamlet’s port, find the stream’s child streams.

– This information is required to specify all connections as Tydi’s standard representation child
streams are exposed as parallel streams, whereas Tydi-lang logically only specifies the top-
level stream that is required.

• Filter out duplicate entities
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5.1.4. Output
After the information is processed it is ready for translation into code by evaluating the templates. As
already mentioned, Jinja2 is the framework used to do this. The templates files contain templates
of the Scala code for the Tydi-Chisel datatypes, interfaces, and components. All the Bit elements
are grouped in an object called “MyTypes”, where they are defined as a parenthesisless function that
returns the ground datatype. Tydi and Tydi-lang explicitly do not express the datatype that a Bit element
describes, leaving it to the target HDL to fill this in. After code generation, all Bit elements are thus
emitted as Chisel’s UInt type. This types is meant to be replaced by the desired ground type by
the user. An assert line is in place that checks if the (user) specified type has the correct bit-width.
All streams are rendered as a subclass of PhysicalStreamDetailed with the specified e, n, c, r,
and u parameters. The d parameter is constructed as an integer-cast of the floating point t property.
Streamlets are emitted as interface classes extending the TydiModule class. All ports specified in
the streamlet are defined and initialized here. Implementations are classes that extend the relevant
interface class. The class contains the modules analogous to the implementation’s inner instances
and port connections. As mentioned, item documentation is propagated to Chisel output code where
available.

5.2. Code generation from Chisel to Tydi-lang
The example in Chapter 6 assumes a situation where a complete reference implementation or blueprint
is already available. In reality, it often happens that specifications change during a project, or influencing
factors are overlooked at the start. To facilitate a more design-cycle like workflow, a “reverse”-transpiler
was created. This functionality allows generating Tydi-lang code from a Chisel definition of a Tydi Ele-
ment or TydiModule, including its dependencies. This simplifies making changes to the Tydi-lang spec,
or generate a first draft spec when converting existing projects. This role is also shown in Figure 6.1.

5.2.1. Strategy
A complete Tydi-lang description of a system consists of implementations of streamlets using streams
using elements (that can contain other streams/elements). This top-to-bottom dependency is analo-
gously reflected in Chisel of Module implementations of Module interface classes using streams using
(a hierarchy of) TydiEl elements. Generation of Tydi-lang code is done by traversing this dependency
hierarchy in a depth-first manner.

Tydi Elements

Tydi Elements

StreamsStreams Tydi Element

Other streamsInner module

Top level Module

Inner Module

Inner modules Ports

Ports

Stream 1 Other streams

Tydi Element

Sub-stream

Tydi Element

Tydi ElementsStreams

Tydi Elements

Ports

Tydi Elements

Streams
Streams

Figure 5.1: Example dependency graph of a system using Tydi components

Figure 5.1, similar to [41, Figure 4.2], shows an example of a dependency graph for a system. In the
depth-first approach, the Tydi elements on the left bottom would get transpiled first. The figure features
some elements and streams that get referred to by multiple others. This will often happen in a real
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design, especially for the ground types. To make sure every element will only get emitted as Tydi-code
once and for efficiency, every element generates a deterministic unique fingerprint based on its type.
When a Module’s or element’s transpile function is called, first the depending item’s transpile function is
called, and then the Tydi-lang code is generated. This Tydi-code is added to a map, with the fingerprint
strings as keys and code strings as values. Finally, this map can be joined into a string with newline
separators and the Tydi-lang code for the system is obtained. Please note that while Figure 5.1 shows
a top level module as starting point, one can start anywhere in the graph, also in streams or elements.

5.2.2. Implementation notes & Chisel lib limitations
Every class that must be able to generate Tydi-lang code must be able to do three things: generate
a unique fingerprint for the class (or parametric instance), generate Tydi-lang code equivalent of the
Chisel code for this class, and call the transpile functions of all the items this class depends on. This
is implemented as a trait defining three functions that extending classes must implement: finger-
print, tydiCode, and transpile. This is enough for TydiModules and TydiElements (which include
streams). The ground types are all subclasses of Data, however. To transpile these types to Bit types,
an implicit class implementing the transpile trait is required to extend Data’s interface. Additionally,
the method implementations of the implicit class include upcasting functionality for cases where the
transpile function is called from a place the items are type-wise processed as Data sub-classes to still
execute the correct functions.

Acquiring a module’s sub-modules and ports to traverse the dependency tree is a challenge in
Chisel. A lot of functionality and data is locked behind a private[chisel3]modifier. This restricts a
function’s usage to within the Chisel library only, even for sub-classes. This limits the functionality that
can be achieved by the code generation function. Thankfully, the ports of a module can be acquired with
the getModulePorts function, but this is only because, by other use, it cannot be private-restricted
like other functions. Specifically, a comment above the function says “getPorts unfortunately already
used for tester compatibility”. The direction of the port signals cannot be extracted, however, even
though the information is available in the port’s instance. Because of this, a guess is made based on
the port’s name containing either “in” or “out”. Wire connection information is not available.

There seems to be no direct internal functionality to get a Module’s sub-modules. It is also likely
that a method supplying this information would be library-private as well. This can still be achieved
by overloading the Module method that instantiates modules. The TydiModule class contains a
Module method that instantiates the Module by calling the Chisel Module function and adding that
instance to a list of the parent module instance. This same mechanism could not successfully be
applied for Chisel’s experimental Instance method to instantiate parameterized Module Definitions,
for the original module’s information is not exposed outside the Chisel library either.

This lock-down of information is not inexplicable. The authors of Chisel probably did not foresee
use-cases of examination of Modules and IO, while meddling with this internal data could hamper the
functionality and correctness of hardware generation.

Using a fewwork-arounds, an almost complete reverse-transpilation can be achieved. Port direction
and connection information is unavailable and can thus not be emitted. A complete description could
be acquired when starting from the FIRRTL output of a circuit, which contains the missing information.
This requires parsing the FIRRTL dialect, however, and is considered not worth the effort by the author.
Theoretically, in the event that Tydi would be adopted into the Chisel base library, these workarounds
would not be necessary. This is unlikely however, for even libraries that are considered official are
developed as external packages, outside the chisel3 package. In the future, the Chisel library could
release more information to allow easy system introspection.

5.2.3. Tydi-lang limitations
Most of the structure from Chisel systems can be translated to Tydi-lang. There are a few limitations,
however.

• in and out are direction keywords in Tydi-lang, and can therefore not be used as stream names.
This reportedly is a technical limitation of the parsing framework. The workaround is to rename
streams from in to std_in and from out to std_out. The forward transpiler renames these
back.

• No low-level types can be specified for Bit elements. This is a design decision of Tydi. This
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information can therefore only be emitted as comments (see next point).

• Not all elements have support for doc-strings yet in Tydi-lang at the time of writing. Comments
can be added, but these are not propagated back were forward transpilation to be executed.

• Some items still have auto generated names, making the structure harder to decipher.

• Use of streams in Tydi-lang creates a new copy in the JSON output for every use of the stream.
This is superfluous of course.
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Streaming hardware design using Tydi

and Chisel
This chapter features a systematic design-strategy a.k.a. cookbook, along with several illustrative
examples. In the design strategy all steps are included one could need when developing a hardware
accelerator from a reference software implementation. The examples demonstrate these design steps
and reveal the added value of building systems with Tydi-interfaced components through composition.

6.1. Steps
This section describes how Tydi, Tydi-Chisel, and Chisel can be used to develop a hardware design
that operates on a streaming dataflow. This design flow is illustrated with examples in Section 6.2.

In this scenario, desired is a hardware design for a stream-processing problem that already has a
software implementation. A step-by-step pipeline going from a software specification to a hardware
design would look like this:

1. Idea / software definition

2. Write interface specifications in Tydi-lang code

3. Describe additional communication specification

4. Transpile with Tydi-lang-2 & Tydi-lang-2-Chisel

5. Write component functionality in Chisel with generated interfaces

6. Test with testing utilities

7. Synthesize using vendor tools

These steps and relevant toolchain projects are depicted in Figure 6.1.

6.1.1. Software definition
It is likely that many projects will start with a software implementation. Either because the software
was already developed before deciding on the design of a hardware accelerator, as a means of quick
development to make design choices, or simply as a reference for correct operation. Whatever the
reason may be, the software implementation serves as a good starting point for hardware development.
It already contains all data-structures, data-flow, and operations that the hardware must also contain.

6.1.2. Tydi-lang specification
As explained before, Tydi-lang was designed to close the gap between software and hardware de-
sign. It is therefore the next step in our design pipeline. Identified data-structures must be converted to
Tydi elements. Operations must be decomposed into components, their communication signatures de-
scribed in streamlets with ports of streams of the described elements. After streamlets, data-flow must

33
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Figure 6.1: Tydi toolchain components
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Elements

Streamlets Ports

Streams

Implementations Instances Ports

ConnectionsPorts

Figure 6.2: Tydi-lang specification contents. Bold items are top-level defined. Underlined items are specified within other items.
Instances of nested implementations are declared inside implementations.

be described in terms of connections specified in implementations between implementation instance
ports. Nested streams. Implementations can either purely consist of instances and connections, or
contain logic themselves. Implementation definitions that require such practical implementations are
left empty. Figure 6.2 shows the contents of a Tydi-lang specification.

It is here that the interface driven design takes place. A well-defined interface specification allows
abstraction. Hardware designers can then purely focus on their own components, relying on the Tydi
standard and interface specification for their components to work with others. With only data structure
and port assignments, the specification is not yet complete, however. For that some extra detailing is
required.

6.1.3. Communication specification
The Tydi specification establishes a standard for communicating data over streams. It also specifies
how a data structure can be formed by combining different data elements through nesting. It does not
specify how communication between components should take place, just like the internet protocol does
not specify how TCP packets should be sent. In other words, low-level data transfer in specified, not
data-packet communication. The difference is not immediately visible when looking at a single stream
transferring a sequence. Instead, the difference is notable when working with multiple streams. In
Tydi, streams can be nested to describe their hierarchical semantic relation. In the standard repre-
sentation, however, these streams end up as parallel streams. Inherently, this is also what they are,
separate communication channels to transfer data related to the parent stream. Tydi specifies a basic
order-of-operations and allowed dependencies mechanism to prevent deadlocks, but otherwise leaves
coherency up to the user.

6.1.4. Transpile code
Once data-structures, components, data-flow, and communication protocol have been created, work
can proceed towards HDL code. The first step is to obtain Chisel boilerplate code from the Tydi-lang
specification code. This is done by first running Tydi-lang-2, obtaining a json description that is
used to generate the Chisel code with Tydi-lang-2-Chisel. This process is explained in detail in
Section 5.1.

The output Chisel code will contain the transformed Element datatypes, interface specifications
(from streamlets), and implementation skeletons. As Subsection 5.1.4 explains, after code generation,
the correct primitive types must be substituted for the UInt placeholders.
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6.1.5. Implementation code
After finishing the generated code with primary types, implementations for Modules must be written.
Interface classes with port registrations following the streamlet definitions are available to build on top
of. In addition, implementation stubs extending the interface classes are available, and will include any
specified nested modules and stream connections. The application-specific logic can be added to the
these stubs. This is the hardest part of the design process. The tools and utilities outlined in Chapter 4
can be used to assist in design. Writing correct implementations will likely remain difficult, however,
especially when a lot of streams are involved in a component.

6.1.6. Test
When the implementation has been designed for a component, the subsequent step is to verify its
functionality. Section 7.1 describes available tools and utilities to aid in Tydi component testing. Likely,
a design cycle is now entered where implementation, or even an earlier design step, is altered based
on simulation results.

6.1.7. Finishing the system
Depending on the scenario, different steps may remain to finish the system. After testing the design
might be done. If the component is destined as IP for other projects, a design that is tested and
documented with Tydi-lang and communication specification is ready to be exported. For complete
system designs, more steps are likely to be required. Acquisition and deposition of the data streams,
for example. Fletcher can play a role here, by generating VHDL interfaces for FPGAs to acquire data
from Apache Arrow RecordBatches on a PC through some accelerator interface. Once in the system,
the data can be transferred to the Tydi-using components. Potential for future work here includes the
automatic generation of Tydi interfaces and components by Fletcher. When all necessary hardware
design files are available, mapping and synthesis can be executed with vendor tools to deliver the
hardware.

6.2. Examples/proof of concepts
6.2.1. Simple number pipeline
To illustrate the aforementioned pipeline, an example is provided. This example is purposefully kept
simple and the reader must remember that the advantage of Tydi’s ecosystem is greater with more
complex projects. In this example, we take in a stream of numbers with timestamps attached. The
structure is thus like {time: unsigned Integer, value: Integer}. This stream first gets
filtered on 𝑣𝑎𝑙𝑢𝑒 ≥ 0 and then reduced to statistics: min value, max value, sum of values, and average,
all unsigned integers since there are no negative values anymore. The structure of this processing
pipeline is displayed in Figure 6.3.

Timestamped
numbers

Timestamped
numbers

Filter
non-negative
numbers

Statistics
Reduce
Calculate
statistics

Numbers
input

Statistics
output

Figure 6.3: Number pipeline structure

Software definition
As a reference of both functionality and difficulty of implementation, a software definition is first created.
The task is not hard, and can be executed in Apache Spark in just a few lines of code, as shown in
Listing 6.1. Here, the method chaining syntax is used that was already mentioned in Subsection 4.3.2.

Listing 6.1: Example Spark code

df.filter(col("value") >= 0).groupBy("timestamp")
.agg(
min("value").as("min_value"),
max("value").as("max_value"),
sum("value").as("sum_value"),
avg("value").as("avg_value")

)
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Tydi-lang specification
The first design step for our system is to create a Tydi-lang description of the data-structures, streamlets,
and implementations. Listing 6.2 shows Tydi-lang code for our example. It includes two ground data-
types, one for the signed and one for the unsigned integers. Two groups are included, NumberGroup
and Stats, with respective streams. For simplicity, a throughput of 1 is chosen. According to Fig-
ure 6.3, streamlets and implementations are defined for the non-negative filter, statistics reduction
module, and top level module. The implementation of the top level module includes instances of the
filter and reducer modules and connections of their streams. The implementations of the filter and re-
ducer modules themselves are empty, since their logic will be defined later. For order, the code is split
up in two files, one for the logic types and one for the streamlets and implementations.

Listing 6.2: Example Tydi-lang source code

#### package pack0;

UInt_64_t = Bit(64); // UInt<64>
SInt_64_t = Bit(64); // SInt<64>

Group NumberGroup {
value: SInt_64_t;
time: UInt_64_t;

}

Group Stats {
average: UInt_64_t;
sum: UInt_64_t;
max: UInt_64_t;
min: UInt_64_t;

}

NumberGroup_stream = Stream(NumberGroup, t=1.0, d=1, c=1);
Stats_stream = Stream(Stats, t=1.0, d=1, c=1);

#### package pack1;
use pack0;

streamlet NonNegativeFilter_interface {
std_out : pack0.NumberGroup_stream out;
std_in : pack0.NumberGroup_stream in;

}

impl NonNegativeFilter of NonNegativeFilter_interface {}

streamlet Reducer_interface {
std_out : pack0.Stats_stream out;
std_in : pack0.NumberGroup_stream in;

}

impl Reducer of Reducer_interface {}

streamlet PipelineExample_interface {
std_out : pack0.Stats_stream out;
std_in : pack0.NumberGroup_stream in;

}

impl PipelineExample of PipelineExample_interface {
instance filter(NonNegativeFilter);
instance reducer(Reducer);
filter.std_out => reducer.std_in;
reducer.std_out => self.std_out;
self.std_in => filter.std_in;

}

Communication specification
Since all components have only one input stream and one output stream without nested streams, no
further communication specification need be made. For bigger projects, this step is more important, as
previously explained.

Transpile code
A snippet of the generated Chisel code is given in Listing 6.3. The code shows the transformed Ele-
ment datatypes, interface specifications (from streamlets), and implementation skeletons. Since Tydi
focusses on the structure of the data, not about the primitive data-types, after code generation, the
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correct primitive types must be substituted for the UInt placeholders. The code includes an assert
to check if the used datatype adheres to the specified bit-width. After finishing the specification with
primary types, implementations for Modules must be written, following the streamlet _interface def-
initions. An example implementation of the filter function is given in Listing 6.4 where the data-lanes
of filtered items are turned off. The cost of this simple implementation is that the output complexity is
raised to 𝐶 = 7; The next component must do work to re-align the items when the sequence is required.

Listing 6.3: Chisel output code from Tydi-lang transpilation

object MyTypes {
/** Bit(64) type, defined in pack0 */
def generated_0_7_AudkORtF_29 = UInt(64.W)
assert(this.generated_0_7_AudkORtF_29.getWidth == 64)

/** Bit(64) type, defined in pack0 */
def generated_0_7_CTh3cRpJ_27 = UInt(64.W)
assert(this.generated_0_7_CTh3cRpJ_27.getWidth == 64)

}

/** Group element, defined in pack0. */
class NumberGroup extends Group {

val time = MyTypes.generated_0_7_CTh3cRpJ_27
val value = MyTypes.generated_0_7_AudkORtF_29

}

/** Group element, defined in pack0. */
class Stats extends Group {

val average = MyTypes.generated_0_7_CTh3cRpJ_27
val max = MyTypes.generated_0_7_CTh3cRpJ_27
val min = MyTypes.generated_0_7_CTh3cRpJ_27
val sum = MyTypes.generated_0_7_CTh3cRpJ_27

}

/** Stream, defined in pack0. */
class Generated_114_139_TSuzlpzQ_3 extends PhysicalStreamDetailed(e=new NumberGroup, n=1, d=1, c=1, r=

false, u=Null())

object Generated_114_139_TSuzlpzQ_3 {
def apply(): Generated_114_139_TSuzlpzQ_3 = Wire(new Generated_114_139_TSuzlpzQ_3())

}

...

/** Streamlet, defined in pack1. */
class NonNegativeFilter_interface extends TydiModule {

/** Stream of [[in]] with input direction. */
val inStream = Generated_165_190_BDoT0FmX_5().flip
/** IO of [[inStream]] with input direction. */
val in = inStream.toPhysical
/** Stream of [[out]] with output direction. */
val outStream = Generated_114_139_TSuzlpzQ_3()
/** IO of [[outStream]] with output direction. */
val out = outStream.toPhysical

}

/** Streamlet, defined in pack1. */
class PipelineExample_interface extends TydiModule {

// Docstrings left out
val inStream = Generated_607_632_HlxXfYFN_13().flip
val in = inStream.toPhysical
val outStream = Generated_562_581_8ln94DFm_11()
val out = outStream.toPhysical

}

...

/** Implementation, defined in pack1. */
class NonNegativeFilter extends NonNegativeFilter_interface {}

/** Implementation, defined in pack1. */
class PipelineExample extends PipelineExample_interface {

// Modules
val filter = Module(new NonNegativeFilter)
val reducer = Module(new Reducer)

// Connections
reducer.in := filter.out
out := reducer.out
filter.in := in

}
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Implementation code
An example implementation of the filter function is given in Listing 6.4 where the data-lanes of filtered
items are turned off. The cost of this simple implementation is that the output complexity is raised to
𝐶 = 7; The next component must do work to re-align the items when the sequence is required.

Listing 6.4: Example implementation of multi-lane capable filter

class NonNegativeFilter extends NonNegativeFilter_interface {
outStream := inStream
for ((dataLane, strbLane) <- inStream.data.zip(outStream.strbVec)) {
strbLane := dataLane.value >= 0.S && inStream.valid

}
}

Test
Verification of the pipeline modules was done bottom up. First, the NonNegativeFiltermodule was
tested, then the Reducer, and finally the top level module. First, a sequential test with some manual
values was done for the top level module. Afterwards, an automatic randomized test was created where
100 values were enqueued and the dequeued values checked against computed values.

6.2.2. Advanced number pipeline
As a demonstration of Tydi-Chisel’s utilities and the modularity of well-specified Tydi components, an
advanced version of the number pipeline was developed. In this version, the number of lanes is in-
creased. In a project one might want to do this to increase throughput. The design is parameterized,
so the exact number of lanes does not matter, but 𝑛 = 4 is chosen for this example. From the original
number pipeline, filter and reducer components are available that are both single lane. These com-
ponents must be adapted or replaced to accept multiple lanes. Since the number elements can be
independently filtered, the filter component can be put inside an interleave component. Each filter then
processes a single lane and the interleave infrastructure routes the signals such that, from the outside,
the block acts like a multi-lane filter. Specifically, the filter modules operate on the strobe signal. This
raises the stream complexity to 𝐶 ≥ 7. For the reduction step, the elements are not independent, so a
new multi-lane version must be designed. For this example, we specify an input complexity of 𝐶 = 3.
At this complexity, stop bits are included in the same transfer as elements and the number of items can
be derived from endi. The output stream complexity of the multi-lane filter block is now higher than
the specified input stream complexity of the statistics reducer. To solve this, the stream complexity
converter can be inserted between the components! The buffer size of the complexity converter must
be chosen to be at least as big as the longest (filtered) sequence. The resulting system structure is
shown in Figure 6.4 and an example of data flowing through the component in Figure 6.5.
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Figure 6.4: Advanced number pipeline structure (T/N stands for timestamped numbers)

The code for composition of this module is shown in Listing 6.5. Assuming the multi-lane statis-
tics reduction component and filter are available IP components, a designer wishing to implement the
pipeline of Figure 6.4 would effectively only need to write the few displayed lines of code. The whole
design is parametric in the number of lanes and buffer size of the complexity converter.

Listing 6.5: Compositioning of advanced pipeline in Chisel

class MultiNonNegativeFilter extends class MultiNonNegativeFilter extends MultiProcessorGeneral(
Definition(new NonNegativeFilter), 4, new NumberGroup, new NumberGroup, d=1

)
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class PipelinePlusModule(n: Int = 4, bufferSize: Int = 50) extends SimpleProcessorBase(
new NumberGroup, new Stats, nIn = n, nOut = 1, cIn = 7, cOut = 1, dIn = 1, dOut = 1) {
out := in.processWith(new MultiNonNegativeFilter)

.convert(bufferSize)

.processWith(new MultiReducer(n))
}

6.2.3. TPC-H 19 – interfaces and implementation stubs
The Transaction Processing Performance Council benchmark H [43] (TPC-H for short), is an industry
standard for testing query execution performance. It includes 22 queries of varying difficulty, providing
an excellent reference for real-world use-cases that one might want to build a hardware accelerator for.
Tian extensively used TPC-H queries to illustrate Tydi-lang 1’s capabilities [41]. As an experiment and
demonstration of capabilities for a real world scenario, a proof of concept implementation of the inter-
faces of the macro-components of the TPC-H 19 query and their connections was created, as depicted
by Figure 6.6. Specifically, all the TPC-H data-types and the TPC-H 19 query data-types, streamlets,
and implementation stubs were considered. Created code samples are given in Appendix B. Listing B.1
gives the Tydi code for all TPC-H tables and corresponding streams, followed by the TPC-H 19 specific
data types and streams together with streamlet descriptions and implementation stubs. The top level
component includes stream connections between its three nested instances: the table join, filter, and
reducer. Any internal functionality of these components is outside the scope of this investigation and
could be a project upon itself.

TPC-H 19 query

Line
items

Parts

Join

Line
items

Parts

Filter RevenueReduce

Line
items

Parts

Figure 6.6: Developed TPC-H 19 data-flow

For this example, non-nullable Text and String types are implemented as a 1D character stream.
Nullable Text is implemented as aUnion of the respective character stream andNull. The Scala/Chisel
file with all the TPC-H types and streams is very long and therefore not bundled in this document. List-
ing B.2 gives the generated Chisel code TPCH-19 specific data-types, streams, and interface classes.
Listing B.3 shows the implementation stubs for the components, the generated top level component
that includes stream connections, and a main class that provides the number of code-lines for next
section’s analysis. This code shows a disadvantage of usage of the standard representation streams.
In this case, but likely in general, every string in the data-structure is a nested stream that is exposed
as a parallel stream. All these streams must be connected in order to transfer all data. This results in
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Tydi-
lang

Generated Chisel
boilerplate

Manual
Chisel

Verilog output –
unoptimized

Verilog output – debug
optimization

Simple number
pipeline

45 107 27 113 60

Advanced
number pipeline

45(+8) 107 33 25259 381

TPCH 19
interfaces

80 357 - 1587 487

Table 6.1: Lines of code for different representations; see text for explanation

a lot of boilerplate code and reduces visual clarity. On the other hand, since the code is automatically
generated from a cleaner description in Tydi-lang, it should not require further inspection or alteration.

6.3. Investigation of saved effort
It is difficult to give a general heuristic about effort saved through the contributions of this paper. A lot
of the value provided by this methodology will manifest itself through the lack of research required in
custom communication solutions and effort saved through better tooling. A general statistic that is often
included in code transformation and generation research is lines of code of input and output. An attempt
was made to analyze the the lines of code of various representations of the three systems discussed in
the previous section. Numbers are provided for the Tydi-lang description, generated Chisel boilerplate,
manual creation in Chisel using Chapter 4’s utilities, and (System)Verilog output, both in unoptimized
and debug-optimized mode for a representation of expression in low-abstraction HDLs. Production
optimized Verilog code is not included because empty components and signals are trimmed, resulting
in the code being unsuitable to write further implementation code for.

The first system is the simple number pipeline. The Tydi-lang code for this example was given
earlier in Listing 6.2, counting 47 lines. The generated, deduplicated, Chisel boilerplate code, with
-to be developed- implementations, comes in at 107 lines including docstring comments. An efficient
manual implementation using Tydi-Chisel’s base classes and syntax in a clever way, can express the
same circuit in 27 lines, excluding imports, however. Unoptimized and debug-optimized Verilog outputs
are 113 and 60 lines respectively. For a simple system, the number of lines used is thus in a same
order of magnitude.

For the second system, the advanced number pipeline, the Tydi-lang code is almost exactly the
same as the first. Only the number of lanes have changed from this perspective. If the complexity
converter were included as a streamlet and instance, this would add approximately 8 lines. Similarly,
the generated Chisel boilerplate code is the same, just with more lanes. To remind the reader, the
boilerplate must still be extended with implementation code. In the manual Chisel code, partially shown
in Listing 6.51, the interleave and stream complexity converter utilities are used, logically resulting in
(much) more Verilog output. While this can be seen as an unfair comparison, since implementation
code is included in the Verilog output that is also dependent on the specified buffer size, a lot of design
effort could be saved by use of these utilities.

Finally, the example of the TPC-H 19 query is the biggest. Although the full Tydi-lang description in
Listing B.1 is 155 lines, the relevant code for TCPH-19 is only 80. This part results 357 lines of Chisel
boilerplate. A manual implementation was not attempted here. Unoptimized and debug-optimized
Verilog outputs are 1587 and 487 lines respectively for this system.

The results of this comparison show that the lines of code saved by use of tooling varies by design
complexity, use of utilities, and re-use of data-types and interfaces. Comparing to debug-optimized
Verilog, in the simplest case, an improvement of 25-55% on code size is made, depending on method
of implementation. The second example mainly shows how use of utilities and available IP blocks can
save a lot of design effort. For a big project like the TPC-H 19 query, the debug-optimized Verilog is six
times as large as the original Tydi-lang specification! This will be mainly due to the number of nested
streams for strings and the re-use of elements and streamlets. As mentioned at the start of this section
and throughout this document, the added value of using Tydi and the tools and utilities of this document
1Listing A.3 in Appendix A shows the code of the advanced example with implementation. For the comparison, the MultiRe-
ducer and NonNegativeFilter implementations were left empty
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are encountered at various stages of development and cannot simply be expressed in lines of code
of expressed boilerplate. That being said, next to easier implementation, the suggested methods still
show a reduction in lines to write, up to several times the code’s size.



7
Testing & verification

The contents of this chapter revolve around the development tools to simplify component testing and
subsequent verification of the developed framework utilities and components. A Chiseltest test driver
is developed and the potential for further development analyzed. Various verification strategies for the
library functionality are sketched. The stream complexity converter is tested in detail.

Testing and verification clearly is an important field in both software and hardware design. A good
test will guarantee that a component will function in any prescribed condition. This chapter describes
utilities to make testing and debugging easier, and verification of components that were developed for
this project.

7.1. Testing & debugging utilities
When designing data-streaming components that require asynchronous structured data communica-
tion, components are designed and expected to fulfill some high-level function. In the simplest case, a
component might be fed with a string or a series of numbers. In more complicated cases, a top-level
component might be responsible for processing whole data-sets with multiple tables. When working
with high-level communication and processing like this, it is undesirable, even on the verge of hope-
less, to inspect and test a component by looking at simple signal waveforms. It is clear that additional
utilities are required to help designers work with Tydi streams.

7.1.1. Desired functionality
It is easy to think of all kinds of high-level test and debug utilities that would be convenient to use.
Tools must be built-up from the ground, or on top of other tools, however. Speculating about very high-
level tools is, therefore, not a good strategy. Instead, it can be investigated what the most laborsome
component of working with current tools is, create new tooling, and iterate. Chisel’s core testing utility is
Chiseltest. This framework allows assigning values to signals, reading signal values, placing assertions
on them, and clock stepping. This tooling’s basic functionality is suitable for simple combinational
circuits, final state machines, or more even complicated input-output circuits, but is inadequate for
dataflow components. A Tydi stream is an aggregate signal consisting of multiple sub-signals. The
total meaning of the data is made up of all sub-signal values together. A more fitting way to set and
check the signal values would, therefore, be to address the Tydi stream signal as a whole instead of
the sub-signals.

A stream can have multiple data lanes, so it should be easy to distribute data onto the lanes and
set other relevant data such as the lane last flags and strobe. A way to do this in a systematic and
accessible way is thus necessary. Subsection 7.1.2 will introduce the concept of a test driver to do this
and explicate the implementation’s functionality.

Difficulty in conceiving the best test tooling arises based on the fact that different modules have
different optimal testing methods. During this master thesis project, most of the tests involved verifying
functionality of lower-level utility components. In these situations, exact placement and timing of data
and dimensionality information matters to check the behavior of the component. For these situations,

43
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a low-level abstraction is fitting that exposes a lot of information and allows for great control. In other
cases, when testing a top level module, the focus will be more on the data flowing in and out, and less on
how this data is e.g. distributed over lanes. If anything, this would ideally be done automatically by the
software according to a specified stream-complexity. A high-level abstraction is more fitting accordingly.
Finally, each project will have specific requirements with respect to data layout and communication. It
is likely that specific utility functions will still be required to fulfill functions that a general tooling solution
cannot fulfill. In the end, it is therefore best to create flexible tools that can easily be modified or built
upon.

7.1.2. Testing driver
It was established in the previous section that, when testing high-level, data-driven circuits, it is un-
desirable to poke and peek individual wires at set times. Instead, a more asynchronous approach
of enqueueing data on the input streams and waiting for and checking the validity of the data that is
dequeued at the output stream(s) is a more functional approach.

The Chiseltest package offers an example of a testing driver for DecoupledIO signals, Chisel’s
handshaked IO solution that was already mentioned in Chapter 2. This test driver allows specifying
data to be enqueued to or dequeued from a DecoupledIO signal, abstracting away the need for
manual interaction with the ready and valid signals. This concept can be extended to Tydi streams
to enqueue and dequeue data on stream signals. So, to aid designers with writing these functional
tests for Tydi-interface using components, a test driver was developed for Tydi stream signals based
on the DecoupledIO test driver from the Chiseltest package.
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Figure 7.1: Testing set-up with module, streams, and testing driver

7.1.3. Test wrapper
Creation of data literals
One of the more challenging parts about setting, getting, and checking data to and from signals is
the creation of data literals. A poke or expect call requires such a literal value to respectively set
the signal value to or compare the signal value to. For ground types such as UInt and SInt, this
is straightforward. Different fabrication methods exist, such as int or String conversion: -8.S,
”b101101”.U. For aggregate types, such as bundles and vectors, experimental fabrication methods
are available (added through implicit classes, just like the ground methods). A bundle literal can then,
for example, be created with myBundleInstance.Lit(_.a -> -8.S, _.b -> ”b101101”.U). A
vector literal can be created in two ways. One option is direction construction: Vec.Lit(1.U, 2.U),
creating a contiguous sequence of elements with width of the widest element. Another is again in-
stance based: myVecInstance.Lit(0 -> 1.U, 2 -> 2.U), where a sequence is created of
myVecInstance’s type with elements at specified indexes. When for a bundle not all elements are
specified, pokePartial can be used to only poke the specified sub-signals without throwing an error
about incompleteness.

In most cases, an instance of the Vec or Bundle instance must be available to be able to call these
literal creation methods. On top of this, the instance is not allowed to be a hardware registered instance
such as a wire. One can therefore not simply state c.in.data.Lit(0 -> c.in.el.Lit(_.a -
> ...), ...) because both of these are hardware. Creating the required instances is somewhat
verbose and keeping them around is inconvenient. The test driver therefore includes some methods
to more easily create the hardware literals. These include elLit to create a literal for a stream’s data
element type, and dataLit to create a literal for a stream’s data lane vector. These test driver methods
can be combined with a user’s own functions to easily create the required literals for testing from an
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intuitive source representation. A valid way to create a full data literal using the driver would then be
c.in.dataLit(0 -> c.in.elLit(_.a -> ...), ...).

Enqueueing and dequeueing
The DecoupledIO test driver’s enqueue functions are rather simple. A ready stream is either awaited
or expected, depending on variant, valid is asserted and signal data assigned, followed by a clock step.
The enqueue method waits for the sink to be ready, whereas the enqueueNow method expects the
sink to be ready the moment it is called (it asserts this). Finally, an enqueueSeq method is available
that takes a sequence of data literals and calls enqueue for each item in the sequence. Mirrored
dequeue, dequeueNow, and dequeueSeq methods are available for sources. All methods have their
functionality wrapped in a timescope, such that signals manipulated inside the call return to their
previous value when the call is finished. This prevents issues like accidentally leaving a flag set or data
driven on a signal.

For Tydi streams, a few adaptationsmust bemade. First of all, a stream’s state does not only consist
of the handshake and data bits, but also the other sub-signals. On the other hand, often their value is
optional, see Figure 2.2. The Tydi stream driver enqueue and enqueueNowmethods therefore contain
Option arguments for the non-data signals. When these arguments are not specified, the signals are
not perturbed. If they are, the signals get set to their specified values. The same principle applies for
the dequeue and dequeueNow methods.

The enqueueSeq and dequeueSeq are a bit different. When checking a sequence, it is likely
undesirable to specify all signal values for every time-step that the stream is ready/valid. What’s more,
the data sequence can be multi-dimensional with an arbitrary number of dimensions. Since Scala is a
statically typed language, all types must be known at compile time. One cannot dynamically nest the
source type in an unknown number of sequences. Lastly, optimal behavior differs between complexities
𝐶 < 8 and 𝐶 = 8, where multiple inner sequences can be sent per transfer. This makes writing a
general purpose sequence-processing function quite difficult. This is therefore considered future work.
Fortunately, with the available enqueue and dequeue methods, writing code that transmits or receives
a use-case specific sequence should be straightforward.

State printing
Since a Tydi stream has 8 signals and can have multiple lanes, it is hard to get a grasp of the overall
state that is conveyed at a given time. Therefore, a state printing function was developed that attempts
to portray the information in a comprehensible and structured way. Listing 7.1 and Listing 7.2 show
examples of a state print of respectively the output and input stream of the complexity converter in
the “Hello World” test of Subsection 7.2.2. In the header, the name of the signal, signal direction, and
clock tick count are displayed (if available). Then follow stai, endi, strb, and last. Subsequently,
lane-specific information is printed. This example’s streams have six lanes and a complexity of 8 for
the input and 1 for the output. Since the signals behave differently at different stream complexity levels
(see e.g. Table 2.2, Figure 2.2), the relevant information is also different for different 𝐶. In the example
of the 𝐶 = 1 output, only the last lane of the last signal is relevant and, therefore, displayed. The
strobe is also used to turn off all lanes at once, so its value is displayed as true or false. For the
𝐶 = 8 input, all last values are relevant and displayed, both in the header and per lane. A lane’s
validity is controlled by the start index, end index, and the relevant strobe bit. To make debugging this
easier, lane activeness is displayed together with its reason components. Finally, the data is printed per
lane. The data layout designers will use for their stream elements is arbitrary and cannot be predicted.
Therefore, by default, the data literal is printed. For this example, the letter ‘n’ will be rendered as
BitsEl(value=UInt<8>(110)). While this is a technically correct representation of the value, it is
not very useful to a designer. Therefore, a data renderer function can be supplied to the state printing
method to convert the data literal to a string format that is useful to the designer. In this case the
function is def charRenderer(c: BitsEl): String = s"'${c.value.litValue.toChar}'" or _.value.litValue.toChar
as a lambda function.

Listing 7.1: State printing example of out stream

State of "out" ↑ @ clk-step 6:
valid ↑: ✓ ready ↓: ✓
stai ≥: 0 endi ≤: 3
strb: true (001111)
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last: 11
Lanes:
0 data: 'n'

active: ✓ (strb=✓; stai=✓; endi=✓;)
1 data: 'i'

active: ✓ (strb=✓; stai=✓; endi=✓;)
2 data: 'c'

active: ✓ (strb=✓; stai=✓; endi=✓;)
3 data: 'e'

active: ✓ (strb=✓; stai=✓; endi=✓;)
4 data: ' '

active: ❌ (strb=❌; stai=✓; endi=❌;)
5 data: ' '

active: ❌ (strb=❌; stai=✓; endi=❌;)

Listing 7.2: State printing example of in stream

State of "in" ↓ (unable to get clock):
valid ↓: ✓ ready ↑: ✓
stai ≥: 0 endi ≤: 5
strb: 000011
last: 00|00|01|10|11|10
Lanes:
0 data: 'c'

last: 00
active: ✓ (strb=✓; stai=✓; endi=✓;)

1 data: 'e'
last: 00
active: ✓ (strb=✓; stai=✓; endi=✓;)

2 data: ' '
last: 01
active: ❌ (strb=❌; stai=✓; endi=✓;)

3 data: ' '
last: 10
active: ❌ (strb=❌; stai=✓; endi=✓;)

4 data: ' '
last: 11
active: ❌ (strb=❌; stai=✓; endi=✓;)

5 data: ' '
last: 10
active: ❌ (strb=❌; stai=✓; endi=✓;)

Other utilities
Finally, some functions are defined to more nicely print data literals. Primarily, three general functions
have been created. The first creates a binary representation string from a number value or literal with
appropriate zero-padding. The second transforms a vector literal to a string of comma separated item
literal values. The third does the same but prints the items in binary using the first function.

7.1.4. Future work
Indulging in speculating about useful tooling, several ideas for future work on tooling can be identified.
One of the bigger problems with the currently available tooling is that creating the data literals required
to poke or expect, and conversion back to a well-readable format is cumbersome. As explained,
in order to poke a wire, a literal value must be supplied. These literals are still required when using
the higher-level enqueue and dequeue functions. While the literal-creation methods of the test driver
make this easier, wrapping user code is still often necessary. To lower test design efforts, mechanisms
to ease literal creation could be developed.

Another opportunity for progress was mentioned in the section about enqueueing and dequeueing.
There is no standard way or mechanism to enqueue or dequeue a data sequence to or from a stream.
Figure 7.2 shows a variation of Figure 7.1 where the test driver abstracts away more functionality so
designers have to focus less on writing utilities for testing. In a software framework, one would load
in a data-frame or -table, feed it to the program, and check the output. Despite the described tooling
advancements, verification of hardware components is still far off from the ease of software verification.

Further, the functionality offered by the stream state printing could be extended as a plug-in for
waveform viewing applications or other visualizations. The better the state, data, and communication
of a component can be outlined, the easier it is to grasp what is going on in a component, identify
issues, and solve problems.
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Finally, opportunities lie in stream protocol conformation verification. This holds for both source and
sink streams. When enqueueing data to a sink, edge cases of a specified stream complexity should be
investigated to guarantee compliance of the component. Similarly, the output stream of a component
should be examined to verify standard conformity. Tooling to automatically permutate the input signals
to explore edge cases and check output stream compliance can help hardware designers to certify
their IP as stable and ready for use.

7.2. Framework and component testing
7.2.1. Tydi compliance
Section 4.2 describes the two stream representations that Tydi-Chisel offers, and the intricacies of
connecting/converting between the two. Because Tydi prescribes a special ordering for the data, care
should be taken to follow this order, and keep data intact between connections. To ensure this, a Tydi
compliance test was created. The module in testing (MIT) is a pass-through module that has a detailed
stream input, connected to a standard stream in the middle, connected to a detailed stream output.
Data is poked at the data and last signals of the input. Data direction and integrity is thereafter
verified at the middle and output stream. For proper verification of aspects, the streams consist of two
lanes and the datatype is a Group with two elements with byte values. The data is set to, in binary
notation, {00000000, 01010101}, {11111111, 10101010} and the last lanes to 00000000,
11111111. Following Tydi standard, this will result in a data signal value of 0xAAFF5500 and a last
signal of 0xFF00. Some convenience type conversion methods are also tested for correctness.

7.2.2. Complexity converter
The stream complexity converter, highlighted in Section 4.5, was not conceived and designed in one
go, but rather in phases. In each phase, more tests were developed or expanded to verify added
functionality. In the end, five tests were developed, verifying different different aspects of the component
at different levels.

1. A sequential low level internal and external signal test with one data lane

2. A sequential low level internal and external signal test with two data lanes

3. A sequential enqueue and dequeue test using testing driver

4. Functional parallel 2D string test – “she is a dolphin”

5. Functional parallel 2D string test – “Hello World”

Low level tests
Tests 1 and 2 were created in the first phase of the module’s development. The complexity converter
is only concerned with the elements themselves, and not with the element contents. It therefore op-
erates on standard stream representation. For these basic tests, standard representation streams are
therefore used. Consequently, for both cases, data is poked manually onto the stream IO wires. Some
data is first enqueued, and various indexes and counters are checked along the way to ensure correct
internal state. Checked signals include the current write or top index, number of series stored, num-
ber of items ready to transfer out, an number of items that are transferring out. Then, dequeueing is
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initiated and the same signals checked. The purpose of these tests was to ensure the correctness of
these basic signals to rule them out as sources of error for further development and to detect errors if
changes were made to the component. This did happen later in development in conjunction with the
functional tests. Test 2 added verification when varying the number of supplied or withdrawn elements
using e.g. strobe.

Test driver test
The ‘test driver test’ was developed in part to test and develop the test driver and in part test the
component in a more use-case appropriate data-driven way. To do this, the component interface used
should be a detailed stream, not a standard stream. Therefore, a wrapper component was created for
testing that simply exposes a detailed stream that is connected to the complexity converter’s standard
stream for both in- and output. The detailed streams can be manipulated by the testing driver. This
test driver test is still sequential and still verifies some low level signals, similar test 1 and 2. A single
data lane is used.

“She is a dolphin” test
This is the first test that is set-up as a high-level functionality test. Transfers are enqueued and de-
queued in parallel functions to undo the forced synchronicity of sequential tests. This test is again
executed with the detailed-stream-exposing wrapper and test driver. The test follows the transfer of
{{she}, {is}, {a}, {dolphin}}, as depicted in [28, Figure 3.b], modernized in Figure 2.2.
Aspects tested include the re-alignment of elements, output formatting, closing multiple sequences per
transfer, and delayed last info. For this test, a stream layout of 4 lanes was chosen with a simple 8
bit BitsEl data element, capable of containing ASCII characters. Table 7.1 displays the transfers to
the input and output of the MIT. A _ character means that there is no data in the respective lane, and
the respective strobe bit will be low. last bits are asserted at word ends, except for the last character,
for which the last flags are delayed to transfer 7. Important to note is that output transfer #1 will not
happen at the same time as input transfer #1, but rather after input transfer #7, where the sequence is
closed off. The table shows how the garbled input is correctly transformed to neat continuous output
transfers, as is expected.

Transfer # Input Output

1 shei she
2 - is
3 s_a_ a
4 d_ol dolph
5 ph__ in
6 __in
7 last indicator

Table 7.1: Transfers of “she is a dolphin” test

“Hello World” test
The Hello World test is the most complete system test of the complexity converter component. The
set-up for this test is the same as the previous test, with wrapper component, driver, and data-type.
The only difference is the number of lanes, which is 6 in this case. The testing case is taken from
[6, last signal description], where a detailed representation of the input transfer can be found as well.
This test tests parallel input and output, delayed last flags & re-alignment, and empty sequences.
These aspects cover the hardest scenarios that the component will face when used in real designs.
Since input and output is, for the first time, parallel, the data indexing for and movement in the buffer is
verified.

The visual explanation of Figure 4.2 displays the state of the complexity converter at transfer 3, but
with different input data to offer more insight in the re-alignment of data and last-reduction. The data
that is eventually transferred is [”Hello”, ”World”], [”Tydi”, ”is”, ”nice”], [””],
[]. Table 7.2 shows what data is in which transfer for input and output. A technical an semantic
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Transfer # Input Input semantic Output Output semantic

1 H e l l o W [“Hello”“W Hello [“Hello”
00 00 00 01 00 00 01

2 o r l d T y orld”][“Ty World “World”]
00 00 00 11 00 00 11

3 d i i s n i di”“is”“ni Tydi [“Tydi”
00 01 00 01 00 00 01

4 c e _ _ _ _ ce”][“”][] is “is”
00 00 01 10 11 10 01

5 nice “nice”]
11

6 _ [“”]
11

7 _ []
10

Table 7.2: Transfers of “Hello World” test

representation is included. The first line gives the characters that are sent, where again a _ indicates
an inactive data-lane. The second line gives the last signal value.

In Listing 7.3 and Listing 7.4, the code for enqueueing and dequeueing & checking the data is
shown. Some utility functions are used for the construction of required vector literals from strings and
bundle literals from characters.

Listing 7.3: “Hello World” test, enqueue side

// Send HelloW
c.in.enqueueNow(vecLitFromString("HelloW"),

last = Some(Vec.Lit("b00".U(2.W), "b00".U, "b00".U, "b00".U, "b01".U, "b00".U)),
strb = Some(bRev("111111")))

// Send orldTy
c.in.enqueueNow(vecLitFromString("orldTy"),

last = Some(Vec.Lit("b00".U(2.W), "b00".U, "b00".U, "b11".U, "b00".U, "b00".U)),
strb = Some(bRev("111111")))

// Send diisni
c.in.enqueueNow(vecLitFromString("diisni"),

last = Some(Vec.Lit("b00".U(2.W), "b01".U, "b00".U, "b01".U, "b00".U, "b00".U)),
strb = Some(bRev("111111")))

// Send ce____
c.in.enqueueNow(vecLitFromString("ce"),

last = Some(Vec.Lit("b00".U(2.W), "b00".U, "b01".U, "b10".U, "b11".U, "b10".U)),
strb = Some(bRev("110000")))

Listing 7.4: “Hello World” test, dequeue side

c.out.waitForValid()
c.out.ready.poke(true)

c.out.data.expectPartial(vecLitFromString("Hello"))
c.out.last.last.expect("b01".U)
c.out.endi.expect(4.U)

c.clock.step(1)
c.out.data.expectPartial(vecLitFromString("World"))
c.out.last.last.expect("b11".U)
c.out.endi.expect(4.U)

c.clock.step(1)
c.out.data.expectPartial(vecLitFromString("Tydi"))
c.out.last.last.expect("b01".U)
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c.out.endi.expect(3.U)

c.clock.step(1)
c.out.data.expectPartial(vecLitFromString("is"))
c.out.last.last.expect("b01".U)
c.out.endi.expect(1.U)

c.clock.step(1)
c.out.data.expectPartial(vecLitFromString("nice"))
c.out.last.last.expect("b11".U)
c.out.endi.expect(3.U)

c.clock.step(1)
// Transfer should be done now.
println("\n-- Transfer out 6")
c.out.last.last.expect("b11".U)
c.out.strb.expect(0.U)
c.out.endi.expect(0.U)

c.clock.step(1)
c.out.last.last.expect("b10".U)
c.out.strb.expect(0.U)
c.out.endi.expect(0.U)
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Conclusions and recommendations

8.1. Conclusions
The research question encompassing this work was:
how can the Chisel language be used within the Tydi ecosystem, simplifying the process of implement-
ing Tydi-using components, thereby reducing data-streaming accelerators design complexity?

There were several aspects and challenges to achieving this.

• First was: what role can Chisel fulfill in existing and future Tydi-based toolchains?
In this project, Chisel is shown to be a suitable platform for writing component implementations
for systems defined in Tydi-lang, but also to be an effective platform for full development on its
own using Tydi-Chisel’s utilities.

• Second, how can Tydi-concepts be effectively integrated in Chisel?
Through intricate and polymorphically typed implementations, Tydi concepts were successfully
integrated in Chisel. Tydi-elements are based on Chisel’s Bundle class for natural integration.
Tydi-streams are available in Tydi-Chisel in two variants, offering maximum utility to hardware
designers and compatibility with external projects. Advanced concepts like nested streams are
fully supported.

• Third, what additional utilities are required to lower design-complexity?
Several general purpose utilities were developed in various categories that allow designers to
save development effort. Component implementation effort was reduced by supplying module
base classes to automate initialization. Working with streams was simplified by providing detailed
stream interfaces with excellent IDE typing support. Compositing a system from components is
facilitated by the interleave and stream complexity converter components and module chaining
syntax.

• Finally, how can developed functionality be verified?
The answer to this question is twofold. To start, testing utilities to aid Tydi-enabled component
verification were developed. These testing utilities were subsequently used to verify functionality
of developed utilities and components.

In answer to the main question and in summary, Tydi-Chisel is presented as a library with tools and
utilities to effectively integrate, implement, and test Tydi concepts and components in Chisel. Next,
using two-way code generation, a comprehensive accelerator design pipeline is introduced. In various
examples, the power of system composability when working with Tydi-components is demonstrated.

Tydi’s standard and specification abilities allow software and hardware designers to work together
better in an interface-driven approach. It also allows hardware designers to avoid the pitfalls of de-
signing or working with custom dataflow communication solutions. Thanks to the work in this thesis,
together with previous projects, tools are available for specification of dataflows in the design, creating
hardware design boilerplate code from this specification, utilities for writing the implementations, testing,
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and generating software-hardware interfaces for communication trough Apache Arrow. In the future,
Tydi-related tooling can be expanded to aid developers in various stages of accelerator development.

Eventually the author envisions an ecosystem of IP components with Tydi interface specifications.
Designers working on a data-streaming hardware design project could then use these IP components,
needing to concern themselves only the data communication specification, which is easy to implement,
and not the component’s implementation, avoiding implementation-dependent design.

8.2. Recommendations
The work presented in this thesis can serve as a foundation for future development of Tydi or otherwise
related tools. Additionally, the project itself has several areas for enhancement.

• Similar frameworks to Tydi-Chisel could be created for other advancing HDLs. Code genera-
tion for new platforms could easily be implemented by adapting the Tydi-lang-2-Chisel code and
templates.

• Additional library utilities can be developed to aid hardware designers. Interesting targets might
be components that execute common operations required for executing queries, such as string
matching.

• Enhanced tooling could be developed for testing and verification, both within Chisel and in wave-
form utilities.

– For Tydi-Chisel specifically, an easier way to create data literals from data sources and en-
/dequeue those.

– Stream protocol compliance verification.

• Signal naming is as of yet inconsistent between tools and the Tydi standard.

• The Fletcher project could be expanded to directly generate hardware components with Tydi
interfaces to enable easy data exchange with computers.

• The Chisel framework could be adapted to release more information about the generated system
for introspection.

• Tydi-lang’s functionality can be expanded and limitations (discussed in Subsection 5.2.3) reduced.

• Detection of signal direction and error handling of stream connection methods could be improved.
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Number pipeline code

Listing A.1: Number pipeline in Chisel

1 package pipeline
2
3 import tydi_lib._
4 import chisel3._
5 import chisel3.internal.firrtl.Width
6 import chisel3.util.Counter
7 import chiseltest.RawTester.test
8 import circt.stage.ChiselStage.{emitCHIRRTL, emitSystemVerilog}
9

10 /** Basic data-types used in groups etc. */
11 trait PipelineTypes {
12 val dataWidth: Width = 64.W
13 def signedData: SInt = SInt(dataWidth)
14 def unsingedData: UInt = UInt(dataWidth)
15 }
16
17 /** A basic Group element with a timestamp and a value. */
18 class NumberGroup extends Group with PipelineTypes {
19 val time: UInt = UInt(64.W)
20 val value: SInt = signedData
21 }
22
23 /** Statistics output group. */
24 class Stats extends Group with PipelineTypes {
25 val min: UInt = unsingedData
26 val max: UInt = unsingedData
27 val sum: UInt = unsingedData
28 val average: UInt = unsingedData
29 }
30
31 /** A module based on a stream-processing base with input and output streams of type `NumberGroup`.
32 * Input and output streams are passthrough-connected by default so only meaningful signals are

overridden. */
33 class NonNegativeFilter extends SubProcessorBase(new NumberGroup, new NumberGroup) {
34 outStream.strb := inStream.strb(0) && inStream.el.value >= 0.S
35 }
36
37 /** Another streaming module that calculates some statistics of the incoming stream. */
38 class Reducer extends SubProcessorBase(new NumberGroup, new Stats) with PipelineTypes {
39 val maxVal: BigInt = BigInt(Long.MaxValue) // Must work with BigInt or we get an overflow
40 val cMin: UInt = RegInit(maxVal.U(dataWidth))
41 val cMax: UInt = RegInit(0.U(dataWidth))
42 val nValidSamples: Counter = Counter(Int.MaxValue)
43 val nSamples: Counter = Counter(Int.MaxValue)
44 val cSum: UInt = RegInit(0.U(dataWidth))
45
46 inStream.ready := true.B
47 outStream.valid := nSamples.value > 0.U
48
49 when (inStream.valid) {
50 val value = inStream.el.value.asUInt
51 nSamples.inc()
52 when (inStream.strb(0)) {
53 cMin := cMin min value
54 cMax := cMax max value
55 cSum := cSum + value

53
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56 nValidSamples.inc()
57 }
58 }
59 outStream.el.sum := cSum
60 outStream.el.min := cMin
61 outStream.el.max := cMax
62 outStream.el.average := Mux(nValidSamples.value > 0.U, cSum/nValidSamples.value, 0.U)
63 }
64
65 /** Using the stream processing modules, connecting them manually. */
66 /*class PipelineExampleModule extends TydiModule {
67 private val numberGroup = new NumberGroup
68 private val statsGroup = new Stats
69
70 // Create and connect physical streams following standard with concatenated data bitvector
71 val numsIn: PhysicalStream = IO(Flipped(PhysicalStream(numberGroup, 1, c = 7)))
72 val statsOut: PhysicalStream = IO(PhysicalStream(statsGroup, 1, c = 7))
73
74 val filter = Module(new NonNegativeFilter())
75 filter.in := numsIn
76 val reducer = Module(new Reducer())
77 reducer.in := filter.out
78 statsOut := reducer.out
79 }*/
80
81 /** Using the stream processing modules with chaining syntax.
82 * SimpleProcessorBase is similar to SubProcessorBase but does not expose the detailed Stream content

signals. */
83 class PipelineExampleModule extends SimpleProcessorBase(new NumberGroup, new Stats) {
84 out := in.processWith(new NonNegativeFilter).processWith(new Reducer())
85 }
86
87 object PipelineExampleModule extends App {
88 println("PipelineExample")
89
90 test(new TopLevelModule()) { c =>
91 println("Tydi-lang code of PipelineExample")
92 println(c.tydiCode)
93 }
94
95 println("FIRRTL & Verilog of NonNegativeFilter")
96 println(emitCHIRRTL(new NonNegativeFilter()))
97 println(emitSystemVerilog(new NonNegativeFilter(), firtoolOpts = firNormalOpts))
98
99 println("FIRRTL & Verilog of Reducer")

100 println(emitCHIRRTL(new Reducer()))
101 println(emitSystemVerilog(new Reducer(), firtoolOpts = firNormalOpts))
102
103 println("FIRRTL & Verilog of PipelineExampleModule")
104 println(emitCHIRRTL(new PipelineExampleModule()))
105 println(emitSystemVerilog(new PipelineExampleModule(), firtoolOpts = firNormalOpts))
106
107 println("Done")
108 }

Listing A.2: Test code for number pipeline

1 package TydiTesting
2
3 import chisel3._
4 import chiseltest._
5 import org.scalatest.flatspec.AnyFlatSpec
6 import tydi_lib._
7 import tydi_lib.testing.Conversions._
8 import pipeline._
9

10 class PipelineExampleTest extends AnyFlatSpec with ChiselScalatestTester {
11 behavior of "PipelineExample"
12
13 class NonNegativeFilterWrap extends TydiTestWrapper(new NonNegativeFilter, new NumberGroup, new

NumberGroup)
14 class ReducerWrap extends TydiProcessorTestWrapper(new Reducer)
15 class PipelineWrap extends TydiTestWrapper(new TopLevelModule, new NumberGroup, new Stats)
16
17 it should "filter negative values" in {
18 test(new NonNegativeFilterWrap) { c =>
19 // Initialize signals
20 c.in.initSource().setSourceClock(c.clock)
21 c.out.initSink().setSinkClock(c.clock)
22
23 parallel(
24 c.in.enqueueElNow(_.time -> 123976.U, _.value -> 6.S),
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25 c.out.expectDequeueNow(_.time -> 123976.U, _.value -> 6.S),
26 )
27
28 parallel(
29 c.in.enqueueElNow(_.time -> 123976.U, _.value -> 0.S),
30 c.out.expectDequeueNow(_.time -> 123976.U, _.value -> 0.S),
31 )
32
33 parallel(
34 c.in.enqueueElNow(_.time -> 123976.U, _.value -> -7.S),
35 timescope {
36 c.out.ready.poke(true.B)
37 fork.withRegion(Monitor) {
38 c.out.strb.expect(0.U)
39 }.joinAndStep(c.clock)
40 }
41 )
42 }
43 }
44
45 it should "reduce" in {
46 test(new ReducerWrap) { c =>
47 // Initialize signals
48 c.in.initSource().setSourceClock(c.clock)
49 c.out.initSink().setSinkClock(c.clock)
50
51 c.in.enqueueElNow(_.time -> 123976.U, _.value -> 6.S)
52 println(c.out.printState())
53 c.out.expectDequeueNow(_.min -> 6.U, _.max -> 6.U, _.sum -> 6.U, _.average -> 6.U)
54
55 c.in.enqueueElNow(_.time -> 124718.U, _.value -> 12.S)
56 println(c.out.printState())
57 c.out.expectDequeueNow(_.min -> 6.U, _.max -> 12.U, _.sum -> 18.U, _.average -> 9.U)
58
59 c.in.enqueueElNow(_.time -> 129976.U, _.value -> 15.S)
60 println(c.out.printState())
61 c.out.expectDequeueNow(_.min -> 6.U, _.max -> 15.U, _.sum -> 33.U, _.average -> 11.U)
62 }
63 }
64
65 it should "process a sequence" in {
66 test(new PipelineWrap) { c =>
67 // Initialize signals
68 c.in.initSource().setSourceClock(c.clock)
69 c.out.initSink().setSinkClock(c.clock)
70
71 // Enqueue first value
72 c.in.enqueueElNow(_.time -> 123976.U, _.value -> 6.S)
73 println(c.out.printState())
74 c.out.expectDequeueNow(_.min -> 6.U, _.max -> 6.U, _.sum -> 6.U, _.average -> 6.U)
75
76 // Enqueue second value that should be filtered out, output remains constant
77 c.in.enqueueElNow(_.time -> 123976.U, _.value -> -6.S)
78 println(c.out.printState())
79 c.out.expectDequeueNow(_.min -> 6.U, _.max -> 6.U, _.sum -> 6.U, _.average -> 6.U)
80
81 // Enqueue second valid value
82 c.in.enqueueElNow(_.time -> 124718.U, _.value -> 12.S)
83 println(c.out.printState())
84 c.out.expectDequeueNow(_.min -> 6.U, _.max -> 12.U, _.sum -> 18.U, _.average -> 9.U)
85
86 // Enqueue second invalid value
87 c.in.enqueueElNow(_.time -> 124718.U, _.value -> -12.S)
88 println(c.out.printState())
89 c.out.expectDequeueNow(_.min -> 6.U, _.max -> 12.U, _.sum -> 18.U, _.average -> 9.U)
90
91 // Enqueue third value
92 c.in.enqueueElNow(_.time -> 129976.U, _.value -> 15.S)
93 println(c.out.printState())
94 c.out.expectDequeueNow(_.min -> 6.U, _.max -> 15.U, _.sum -> 33.U, _.average -> 11.U)
95 }
96 }
97
98 it should "process a sequence in parallel" in {
99 test(new PipelineWrap) { c =>

100 // Initialize signals
101 c.in.initSource().setSourceClock(c.clock)
102 c.out.initSink().setSinkClock(c.clock)
103
104 // define min and max values numbers are allowed to have
105 val rangeMin = BigInt(Long.MinValue)
106 val rangeMax = BigInt(Long.MaxValue)
107 val nNumbers = 100
108
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109 // Generate list of random numbers
110 val nums = Seq.fill(nNumbers)(
111 Int.MinValue + BigInt(32, scala.util.Random)
112 )
113
114 // println(nums)
115
116 // Storage for statistics
117 case class StatsOb(count: BigInt = 0,
118 min: BigInt = rangeMax,
119 max: BigInt = 0,
120 sum: BigInt = 0,
121 average: BigInt = 0)
122
123 val initialStats = StatsOb()
124
125 // Calculate cumulative statistics
126 val statsSeq = nums.scanLeft(initialStats) { (s, num) =>
127 if (num >= 0) {
128 val newCount = s.count + 1
129 val newSum = s.sum + num
130 val newMin = s.min min num
131 val newMax = s.max max num
132 val newAverage = newSum / newCount
133
134 s.copy(count = newCount, min = newMin, max = newMax, sum = newSum, average = newAverage)
135 } else {
136 s
137 }
138 }.tail
139
140 // Test component
141 parallel(
142 {
143 for ((elem, i) <- nums.zipWithIndex) {
144 c.in.enqueueElNow(_.time -> i.U, _.value -> elem.S)
145 }
146 },
147 {
148 for ((elem, i) <- statsSeq.zipWithIndex) {
149 // println(s"$i: $elem")
150 c.out.expectDequeue(_.min -> elem.min.U, _.max -> elem.max.U, _.sum -> elem.sum.U, _.

average -> elem.average.U)
151 }
152 }
153 )
154 }
155 }
156 }

Listing A.3: Advanced number pipeline in Chisel

1 package pipeline
2
3 import tydi_lib._
4 import chisel3._
5 import chisel3.experimental.hierarchy.Definition
6 import chisel3.internal.firrtl.Width
7 import chisel3.util.Counter
8 import chiseltest.RawTester.test
9 import circt.stage.ChiselStage.{emitCHIRRTL, emitSystemVerilog}

10
11
12 // Operating at C=1
13 class MultiReducer(val n: Int) extends SubProcessorBase(new NumberGroup, new Stats, nIn=n, dIn = 1,

dOut = 1) with PipelineTypes {
14 val maxVal: BigInt = BigInt(Long.MaxValue) // Must work with BigInt or we get an overflow
15
16 val cMinReg: UInt = RegInit(maxVal.U(dataWidth))
17 val cMaxReg: UInt = RegInit(0.U(dataWidth))
18 val cSumReg: UInt = RegInit(0.U(dataWidth))
19 val nSamplesReg: UInt = RegInit(0.U(dataWidth))
20 val lastReg: Bool = RegInit(false.B)
21
22 private val incomingItems = inStream.endi + 1.U(n.W)
23 private val last: Bool = inStream.last(n-1)(0)
24 private val strb: Bool = inStream.strb(0)
25
26 lastReg := lastReg || last
27
28 // Reset everything after transfer
29 when (lastReg && outStream.ready) {
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30 cMinReg := maxVal.U(dataWidth)
31 cMaxReg := 0.U(dataWidth)
32 cSumReg := 0.U(dataWidth)
33 nSamplesReg := 0.U
34 lastReg := false.B
35 }
36
37 // Do work when we have a valid transfer
38 when (inStream.valid && inStream.ready && strb) {
39 nSamplesReg := nSamplesReg + incomingItems
40
41 val values: Vec[UInt] = VecInit(inStream.data.zipWithIndex.map {
42 case (el, i) => Mux(i.U <= inStream.endi, el.value.asUInt, 0.U)
43 })
44
45 cMaxReg := cMaxReg max values.reduceTree(_ max _)
46 cSumReg := cSumReg + values.reduceTree(_ + _)
47
48 cMinReg := cMinReg min VecInit(inStream.data.zipWithIndex.map {
49 case (el, i) => Mux(i.U <= inStream.endi, el.value.asUInt, maxVal.U(dataWidth))
50 }).reduceTree(_ min _)
51 }
52
53 inStream.ready := !lastReg
54 outStream.valid := lastReg
55 outStream.last(0) := lastReg
56 outStream.el.sum := cSumReg
57 outStream.el.min := cMinReg
58 outStream.el.max := cMaxReg
59 outStream.el.average := Mux(nSamplesReg > 0.U, cSumReg/nSamplesReg, 0.U)
60 outStream.stai := 0.U
61 outStream.endi := 1.U
62 outStream.strb := 1.U
63 }
64
65 class MultiNonNegativeFilter extends class MultiNonNegativeFilter extends MultiProcessorGeneral(
66 Definition(new NonNegativeFilter), 4, new NumberGroup, new NumberGroup, d=1
67 )
68
69 class PipelinePlusModule(n: Int = 4, bufferSize: Int = 50) extends SimpleProcessorBase(
70 new NumberGroup, new Stats, nIn = n, nOut = 1, cIn = 7, cOut = 1, dIn = 1, dOut = 1) {
71 out := in.processWith(new MultiNonNegativeFilter)
72 .convert(bufferSize)
73 .processWith(new MultiReducer(n))
74 }
75
76 object PipelineExamplePlus extends App {
77 println("Test123")
78
79 test(new PipelinePlusModule()) { c =>
80 println(c.tydiCode)
81 }
82
83 println(emitCHIRRTL(new MultiNonNegativeFilter()))
84 println(emitSystemVerilog(new NonNegativeFilter(), firtoolOpts = firNormalOpts))
85
86 println(emitCHIRRTL(new MultiReducer()))
87 println(emitSystemVerilog(new Reducer(), firtoolOpts = firNormalOpts))
88
89 println(emitCHIRRTL(new PipelinePlusModule()))
90
91 // These lines generate the Verilog output
92 println(emitSystemVerilog(new PipelinePlusModule(), firtoolOpts = firNormalOpts))
93
94 println("Done")
95 }

Listing A.4: Test code for advanced number pipeline

1 import chisel3._
2 import chisel3.experimental.BundleLiterals.AddBundleLiteralConstructor
3 import chisel3.experimental.VecLiterals.{AddObjectLiteralConstructor, AddVecLiteralConstructor}
4 import chiseltest._
5 import org.scalatest.flatspec.AnyFlatSpec
6 import pipeline._
7 import tydi_lib._
8 import tydi_lib.testing.Conversions._
9

10 class PipelineExamplePlusTest extends AnyFlatSpec with ChiselScalatestTester {
11 behavior of "PipelineExamplePlus"
12
13 private val n: Int = 4
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14
15 class NonNegativeFilterWrap extends TydiTestWrapper(new MultiNonNegativeFilter, new NumberGroup, new

NumberGroup)
16 class ReducerWrap extends TydiProcessorTestWrapper(new MultiReducer(n))
17 class PipelineWrap extends TydiTestWrapper(new PipelinePlusModule, new NumberGroup, new Stats)
18
19 private val numberGroup = new NumberGroup
20
21 def vecLitFromSeq(s: Seq[BigInt]): Vec[NumberGroup] = {
22 val mapping = s.map(c => numberGroup.Lit(_.value -> c.S, _.time -> 0.U)).zipWithIndex.map(v => (v.

_2, v._1))
23 Vec(n, numberGroup).Lit(mapping: _*)
24 }
25
26 def numRenderer(c: NumberGroup): String = {
27 s"${c.value.litValue} @ ${c.time.litValue}"
28 }
29
30 def statsRenderer(c: Stats): String = {
31 s"min: ${c.min.litValue}, max: ${c.max.litValue}, sum: ${c.sum.litValue}, av: ${c.average.litValue

}"
32 }
33
34 it should "reduce multi-lane" in {
35 test(new ReducerWrap) { c =>
36 // Initialize signals
37 c.in.initSource().setSourceClock(c.clock)
38 c.out.initSink().setSinkClock(c.clock)
39
40 val t1 = vecLitFromSeq(Seq(3, 6, 9, 28))
41 val t1Last = Vec.Lit(0.U, 0.U, 0.U, 1.U)
42
43 c.in.enqueueNow(t1, endi = Some(2.U), last = Some(t1Last))
44 println(c.out.printState(statsRenderer))
45 c.clock.step()
46 println(c.out.printState(statsRenderer))
47 c.out.expectDequeueNow(_.min -> 3.U, _.max -> 9.U, _.sum -> 18.U, _.average -> 6.U)
48
49 println(c.out.printState(statsRenderer))
50
51 val t2 = vecLitFromSeq(Seq(18, 6, 9, 28))
52 val t2Last = Vec.Lit(0.U, 0.U, 0.U, 0.U)
53 val t3 = vecLitFromSeq(Seq(3, 10, 12, 0))
54 val t3Last = Vec.Lit(0.U, 0.U, 0.U, 1.U)
55
56 c.clock.step()
57 println(c.out.printState(statsRenderer))
58 c.in.enqueueNow(t2, endi = Some(3.U), last = Some(t2Last))
59 println(c.out.printState(statsRenderer))
60 c.out.expectInvalid()
61 c.in.enqueueNow(t3, endi = Some(3.U), last = Some(t3Last))
62 println(c.out.printState(statsRenderer))
63 c.clock.step()
64 println(c.out.printState(statsRenderer))
65 c.out.expectDequeueNow(_.min -> 0.U, _.max -> 28.U, _.sum -> 86.U, _.average -> 10.U)
66 }
67 }
68
69 case class StatsOb(count: BigInt = 0,
70 min: BigInt = Long.MaxValue,
71 max: BigInt = 0,
72 sum: BigInt = 0,
73 average: BigInt = 0)
74
75 def randomSeq(n: Int): Seq[BigInt] = {
76 Seq.fill(n)(
77 Int.MinValue + BigInt(32, scala.util.Random)
78 )
79 }
80
81 def processSeq(seq: Seq[BigInt]): StatsOb = {
82 val filtered = seq.filter(_ >= 0)
83 val sum = filtered.sum
84 StatsOb(
85 count = filtered.length,
86 min = filtered.min,
87 max = filtered.max,
88 sum = sum,
89 average = sum / filtered.size,
90 )
91 }
92
93 it should "process a sequence in parallel" in {
94 test(new PipelineWrap) { c =>
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95 // Initialize signals
96 c.in.initSource().setSourceClock(c.clock)
97 c.out.initSink().setSinkClock(c.clock)
98
99 // Generate list of random numbers

100 val nNumbers = 50
101 val nums = randomSeq(nNumbers)
102 val stats = processSeq(nums)
103 val filtered = nums.filter(_ >= 0)
104
105 println(s"Number of filtered items: ${stats.count}")
106 println(s"Stats: $stats")
107
108 // Test component
109 parallel(
110 {
111 for (elems <- nums.grouped(4)) {
112 c.in.enqueueNow(vecLitFromSeq(elems), endi = Some((elems.length-1).U))
113 }
114 c.in.enqueueElNow(numberGroup.Lit(_.time -> 0.U, _.value -> -1000.S), last = Some(1.U))
115 },
116 {
117 c.out.waitForValid()
118 println(c.out.printState(statsRenderer))
119 c.out.expectDequeue(_.min -> stats.min.U, _.max -> stats.max.U, _.sum -> stats.sum.U, _.

average -> stats.average.U)
120 }
121 )
122 }
123 }
124 }
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Listing B.1: Tydi-lang code for TPCH types and types, streamlets, and implementations for TPCH-19 query

1 package pack0;
2
3 // Character type
4 Char = Bit(8);
5 // Integer type
6 Integer = Bit(4*8);
7 // Double type
8 Real = Bit(8*8);
9

10 // Stream for non-nullable text
11 TextStream = Stream(Char, t=1.0, d=1);
12
13 # This Union specifies a nullable text #
14 Union OptionalText {
15 text: TextStream;
16 null: Null;
17 }
18
19 // Stream for nullable text
20 OptionalTextStream = Stream(OptionalText, t=1.0, d=0);
21
22 Group Region {
23 R_RegionKey: Integer;
24 R_Name: TextStream;
25 R_Comment: OptionalTextStream;
26 }
27
28 Region_stream = Stream(Region, t=1.0, d=1);
29
30 // NATION TABLE
31 Group Nation {
32 N_NationKey: Integer;
33 N_Name: TextStream;
34 N_RegionKey: Integer; // FOREIGN KEY REFERENCES Region
35 N_Comment: OptionalTextStream;
36 }
37 Nation_stream = Stream(Nation, t=1.0, d=1);
38
39 // PART TABLE
40 Group Part {
41 P_PartKey: Integer;
42 P_Name: TextStream;
43 P_Mfgr: TextStream;
44 P_Brand: TextStream;
45 P_Type: TextStream;
46 P_Size: Integer;
47 P_Container: TextStream;
48 P_RetailPrice: Real;
49 P_Comment: TextStream;
50 }
51 Part_stream = Stream(Part, t=1.0, d=1);
52
53 // SUPPLIER TABLE
54 Group Supplier {
55 S_SuppKey: Integer;
56 S_Name: TextStream;
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57 S_Address: TextStream;
58 S_NationKey: Integer; // FOREIGN KEY REFERENCES Nation
59 S_Phone: TextStream;
60 S_AcctBal: Real;
61 S_Comment: TextStream;
62 }
63 Supplier_stream = Stream(Supplier, t=1.0, d=1);
64
65 // PARTSUPP TABLE
66 Group Partsupp {
67 PS_PartKey: Integer; // FOREIGN KEY REFERENCES Part
68 PS_SuppKey: Integer; // FOREIGN KEY REFERENCES Supplier
69 PS_AvailQty: Integer;
70 PS_SupplyCost: Real;
71 PS_Comment: TextStream;
72 }
73 Partsupp_stream = Stream(Partsupp, t=1.0, d=1);
74
75 // CUSTOMER TABLE
76 Group Customer {
77 C_CustKey: Integer;
78 C_Name: TextStream;
79 C_Address: TextStream;
80 C_NationKey: Integer; // FOREIGN KEY REFERENCES Nation
81 C_Phone: TextStream;
82 C_AcctBal: Real;
83 C_MktSegment: TextStream;
84 C_Comment: TextStream;
85 }
86 Customer_stream = Stream(Customer, t=1.0, d=1);
87
88 // ORDERS TABLE
89 Group Orders {
90 O_OrderKey: Integer;
91 O_CustKey: Integer; // FOREIGN KEY REFERENCES Customer
92 O_OrderStatus: TextStream;
93 O_TotalPrice: Real;
94 O_OrderDate: TextStream;
95 O_OrderPriority: TextStream;
96 O_Clerk: TextStream;
97 O_ShipPriority: Integer;
98 O_Comment: TextStream;
99 }

100 Orders_stream = Stream(Orders, t=1.0, d=1);
101
102 // LINEITEM TABLE
103 Group LineItem {
104 L_OrderKey: Integer; // FOREIGN KEY REFERENCES Orders
105 L_PartKey: Integer; // FOREIGN KEY REFERENCES Partsupp
106 L_SuppKey: Integer; // FOREIGN KEY REFERENCES Partsupp
107 L_LineNumber: Integer;
108 L_Quantity: Integer;
109 L_ExtendedPrice: Real;
110 L_Discount: Real;
111 L_Tax: Real;
112 L_ReturnFlag: TextStream;
113 L_LineStatus: TextStream;
114 L_ShipDate: TextStream;
115 L_CommitDate: TextStream;
116 L_ReceiptDate: TextStream;
117 L_ShipInstruct: TextStream;
118 L_ShipMode: TextStream;
119 L_Comment: TextStream;
120 }
121 LineItem_stream = Stream(LineItem, t=1.0, d=1);
122
123 Revenue_stream = Stream(Real, t=1.0, d=1);
124
125 streamlet Tphc19_Top_interface {
126 lineItemsIn: LineItem_stream in;
127 partsIn: Part_stream in;
128 revenueOut: Revenue_stream out;
129 }
130
131 streamlet Tphc19_LineItem_Part_Passthrough_interface {
132 lineItemsIn: LineItem_stream in;
133 partsIn: Part_stream in;
134 lineItemsOut: LineItem_stream in;
135 partsOut: Part_stream in;
136 }
137
138 impl Tphc19_Join of Tphc19_LineItem_Part_Passthrough_interface {}
139 impl Tphc19_Filter of Tphc19_LineItem_Part_Passthrough_interface {}
140 impl Tphc19_Reducer of Tphc19_Top_interface {}
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141
142 impl Tphc19_Top of Tphc19_Top_interface {
143 instance join(Tphc19_Join);
144 instance filter(Tphc19_Filter);
145 instance reducer(Tphc19_Reducer);
146
147 self.lineItemsIn => join.lineItemsIn;
148 self.partsIn => join.partsIn;
149 join.lineItemsOut => filter.lineItemsIn;
150 join.partsOut => filter.partsIn;
151 filter.lineItemsIn => reducer.lineItemsIn;
152 filter.partsIn => reducer.partsIn;
153 reducer.revenueOut => self.revenueOut;
154 }

Listing B.2: TPCH-19 specific generated types and interfaces

1 package tpch
2 import chisel3._
3 import tpch._
4 import tydi_lib._
5
6 class Revenue extends Group {
7 val value: UInt = MyTypes.real
8 }
9

10 /** Stream, defined in pack0. */
11 class RevenueStream extends PhysicalStreamDetailed(e=new Revenue, n=1, d=1, c=1, r=false, u=Null())
12
13 object RevenueStream {
14 def apply(): RevenueStream = Wire(new RevenueStream())
15 }
16
17 /**
18 * Streamlet, defined in pack0.
19 */
20 class Tphc19_LineItem_Part_Passthrough_interface extends TydiModule {
21 /** Stream of [[lineItemsIn]] with input direction. */
22 val lineItemsInStream = LineItem_stream().flip
23 /** IO of [[lineItemsInStream]] with input direction. */
24 val lineItemsIn = lineItemsInStream.toPhysical
25 val L_CommentIn = lineItemsInStream.el.L_Comment.toPhysical
26 val L_CommitDateIn = lineItemsInStream.el.L_CommitDate.toPhysical
27 val L_LineStatusIn = lineItemsInStream.el.L_LineStatus.toPhysical
28 val L_ReceiptDateIn = lineItemsInStream.el.L_ReceiptDate.toPhysical
29 val L_ReturnFlagIn = lineItemsInStream.el.L_ReturnFlag.toPhysical
30 val L_ShipDateIn = lineItemsInStream.el.L_ShipDate.toPhysical
31 val L_ShipInstructIn = lineItemsInStream.el.L_ShipInstruct.toPhysical
32 val L_ShipModeIn = lineItemsInStream.el.L_ShipMode.toPhysical
33
34 /** Stream of [[lineItemsOut]] with output direction. */
35 val lineItemsOutStream = LineItem_stream()
36 /** IO of [[lineItemsOutStream]] with output direction. */
37 val lineItemsOut = lineItemsOutStream.toPhysical
38 val L_CommentOut = lineItemsOutStream.el.L_Comment.toPhysical
39 val L_CommitDateOut = lineItemsOutStream.el.L_CommitDate.toPhysical
40 val L_LineStatusOut = lineItemsOutStream.el.L_LineStatus.toPhysical
41 val L_ReceiptDateOut = lineItemsOutStream.el.L_ReceiptDate.toPhysical
42 val L_ReturnFlagOut = lineItemsOutStream.el.L_ReturnFlag.toPhysical
43 val L_ShipDateOut = lineItemsOutStream.el.L_ShipDate.toPhysical
44 val L_ShipInstructOut = lineItemsOutStream.el.L_ShipInstruct.toPhysical
45 val L_ShipModeOut = lineItemsOutStream.el.L_ShipMode.toPhysical
46
47 /** Stream of [[partsIn]] with input direction. */
48 val partsInStream = Part_stream().flip
49 /** IO of [[partsInStream]] with input direction. */
50 val partsIn = partsInStream.toPhysical
51 val P_BrandIn = partsInStream.el.P_Brand.toPhysical
52 val P_CommentIn = partsInStream.el.P_Comment.toPhysical
53 val P_ContainerIn = partsInStream.el.P_Container.toPhysical
54 val P_MfgrIn = partsInStream.el.P_Mfgr.toPhysical
55 val P_NameIn = partsInStream.el.P_Name.toPhysical
56 val P_TypeIn = partsInStream.el.P_Type.toPhysical
57
58 /** Stream of [[partsOut]] with output direction. */
59 val partsOutStream = Part_stream()
60 /** IO of [[partsOutStream]] with output direction. */
61 val partsOut = partsOutStream.toPhysical
62 val P_BrandOut = partsOutStream.el.P_Brand.toPhysical
63 val P_CommentOut = partsOutStream.el.P_Comment.toPhysical
64 val P_ContainerOut = partsOutStream.el.P_Container.toPhysical
65 val P_MfgrOut = partsOutStream.el.P_Mfgr.toPhysical
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66 val P_NameOut = partsOutStream.el.P_Name.toPhysical
67 val P_TypeOut = partsOutStream.el.P_Type.toPhysical
68 }
69
70 /**
71 * Streamlet, defined in pack0.
72 */
73 class Tphc19_Top_interface extends TydiModule {
74 /** Stream of [[lineItemsIn]] with input direction. */
75 val lineItemsInStream = LineItem_stream().flip
76 /** IO of [[lineItemsInStream]] with input direction. */
77 val lineItemsIn = lineItemsInStream.toPhysical
78 val L_CommentIn = lineItemsInStream.el.L_Comment.toPhysical
79 val L_CommitDateIn = lineItemsInStream.el.L_CommitDate.toPhysical
80 val L_LineStatusIn = lineItemsInStream.el.L_LineStatus.toPhysical
81 val L_ReceiptDateIn = lineItemsInStream.el.L_ReceiptDate.toPhysical
82 val L_ReturnFlagIn = lineItemsInStream.el.L_ReturnFlag.toPhysical
83 val L_ShipDateIn = lineItemsInStream.el.L_ShipDate.toPhysical
84 val L_ShipInstructIn = lineItemsInStream.el.L_ShipInstruct.toPhysical
85 val L_ShipModeIn = lineItemsInStream.el.L_ShipMode.toPhysical
86
87 /** Stream of [[partsIn]] with input direction. */
88 val partsInStream = Part_stream().flip
89 /** IO of [[partsInStream]] with input direction. */
90 val partsIn = partsInStream.toPhysical
91 val P_BrandIn = partsInStream.el.P_Brand.toPhysical
92 val P_CommentIn = partsInStream.el.P_Comment.toPhysical
93 val P_ContainerIn = partsInStream.el.P_Container.toPhysical
94 val P_MfgrIn = partsInStream.el.P_Mfgr.toPhysical
95 val P_NameIn = partsInStream.el.P_Name.toPhysical
96 val P_TypeIn = partsInStream.el.P_Type.toPhysical
97
98 /** Stream of [[revenueOut]] with output direction. */
99 val revenueOutStream = RevenueStream()

100 /** IO of [[revenueOutStream]] with output direction. */
101 val revenueOut = revenueOutStream.toPhysical
102 }

Listing B.3: Unfilled implementation stubs and Verilog code generation; Top module is generated

1 package tpch.IO
2
3 import chisel3._
4 import circt.stage.ChiselStage.{emitCHIRRTL, emitSystemVerilog}
5 import tpch.{Tphc19_LineItem_Part_Passthrough_interface, Tphc19_Top_interface}
6 import tydi_lib._
7
8 /**
9 * Implementation, defined in pack0.

10 */
11 class Tphc19_Join extends Tphc19_LineItem_Part_Passthrough_interface {
12 lineItemsInStream := DontCare
13 partsInStream := DontCare
14 lineItemsOutStream := lineItemsInStream
15 partsOutStream := partsInStream
16 }
17
18 /**
19 * Implementation, defined in pack0.
20 */
21 class Tphc19_Filter extends Tphc19_LineItem_Part_Passthrough_interface {
22 lineItemsInStream := DontCare
23 partsInStream := DontCare
24 lineItemsOutStream := lineItemsInStream
25 partsOutStream := partsInStream
26 }
27
28 /**
29 * Implementation, defined in pack0.
30 */
31 class Tphc19_Reducer extends Tphc19_Top_interface {
32 partsInStream := DontCare
33 lineItemsInStream := DontCare
34 revenueOutStream := DontCare
35 }
36
37 /**
38 * Implementation, defined in pack0.
39 */
40 class Tphc19_Top extends Tphc19_Top_interface {
41 lineItemsInStream := DontCare
42 partsInStream := DontCare
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43 revenueOutStream := DontCare
44
45 // Modules
46 val join = Module(new Tphc19_Join)
47 val filter = Module(new Tphc19_Filter)
48 val reducer = Module(new Tphc19_Reducer)
49
50 // Connections
51 join.lineItemsIn := lineItemsIn
52 join.L_CommentIn := L_CommentIn
53 join.L_CommitDateIn := L_CommitDateIn
54 join.L_LineStatusIn := L_LineStatusIn
55 join.L_ReceiptDateIn := L_ReceiptDateIn
56 join.L_ReturnFlagIn := L_ReturnFlagIn
57 join.L_ShipDateIn := L_ShipDateIn
58 join.L_ShipInstructIn := L_ShipInstructIn
59 join.L_ShipModeIn := L_ShipModeIn
60 join.partsIn := partsIn
61 join.P_BrandIn := P_BrandIn
62 join.P_CommentIn := P_CommentIn
63 join.P_ContainerIn := P_ContainerIn
64 join.P_MfgrIn := P_MfgrIn
65 join.P_NameIn := P_NameIn
66 join.P_TypeIn := P_TypeIn
67
68 filter.lineItemsIn := join.lineItemsOut
69 filter.L_CommentIn := join.L_CommentOut
70 filter.L_CommitDateIn := join.L_CommitDateOut
71 filter.L_LineStatusIn := join.L_LineStatusOut
72 filter.L_ReceiptDateIn := join.L_ReceiptDateOut
73 filter.L_ReturnFlagIn := join.L_ReturnFlagOut
74 filter.L_ShipDateIn := join.L_ShipDateOut
75 filter.L_ShipInstructIn := join.L_ShipInstructOut
76 filter.L_ShipModeIn := join.L_ShipModeOut
77 filter.partsIn := join.partsOut
78 filter.P_BrandIn := join.P_BrandOut
79 filter.P_CommentIn := join.P_CommentOut
80 filter.P_ContainerIn := join.P_ContainerOut
81 filter.P_MfgrIn := join.P_MfgrOut
82 filter.P_NameIn := join.P_NameOut
83 filter.P_TypeIn := join.P_TypeOut
84
85 reducer.lineItemsIn := filter.lineItemsOut
86 reducer.L_CommentIn := filter.L_CommentOut
87 reducer.L_CommitDateIn := filter.L_CommitDateOut
88 reducer.L_LineStatusIn := filter.L_LineStatusOut
89 reducer.L_ReceiptDateIn := filter.L_ReceiptDateOut
90 reducer.L_ReturnFlagIn := filter.L_ReturnFlagOut
91 reducer.L_ShipDateIn := filter.L_ShipDateOut
92 reducer.L_ShipInstructIn := filter.L_ShipInstructOut
93 reducer.L_ShipModeIn := filter.L_ShipModeOut
94 reducer.partsIn := filter.partsOut
95 reducer.P_BrandIn := filter.P_BrandOut
96 reducer.P_CommentIn := filter.P_CommentOut
97 reducer.P_ContainerIn := filter.P_ContainerOut
98 reducer.P_MfgrIn := filter.P_MfgrOut
99 reducer.P_NameIn := filter.P_NameOut

100 reducer.P_TypeIn := filter.P_TypeOut
101
102 revenueOut := reducer.revenueOut
103 }
104
105 object Tpch19 extends App {
106 println("TPCH 19 implementation stubs")
107
108 private val FIRRTL: String = emitCHIRRTL(new Tphc19_Top())
109 println(s"FIRRTL code = ${FIRRTL.split('\n').length} lines")
110
111 // These lines generate the Verilog output
112 private val verilogCodeNormal: String = emitSystemVerilog(new Tphc19_Top(), firtoolOpts =

firNormalOpts)
113 println(s"Verilog normal options = ${verilogCodeNormal.split('\n').length} lines")
114
115 private val verilogCodeUnoptimized: String = emitSystemVerilog(new Tphc19_Top(), firtoolOpts =

firNoOptimizationOpts)
116 println(s"Verilog no optimization options = ${verilogCodeUnoptimized.split('\n').length} lines")
117
118 println("Done")
119 }
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