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Distributed Optimisation With Linear Equality and
Inequality Constraints Using PDMM

Richard Heusdens , Senior Member, IEEE, and Guoqiang Zhang , Member, IEEE

Abstract—In this article, we consider the problem of distributed
optimisation of a separable convex cost function over a graph,
where every edge and node in the graph could carry both linear
equality and/or inequality constraints. We show how to modify the
primal-dual method of multipliers (PDMM), originally designed
for linear equality constraints, such that it can handle inequality
constraints as well. The proposed algorithm does not need any slack
variables, which is similar to the recent work (He et al., 2023) which
extends the alternating direction method of multipliers (ADMM)
for addressing decomposable optimisation with linear equality and
inequality constraints. Using convex analysis, monotone operator
theory and fixed-point theory, we show how to derive the update
equations of the modified PDMM algorithm by applying Peaceman-
Rachford splitting to the monotonic inclusion related to the lifted
dual problem. To incorporate the inequality constraints, we impose
a non-negativity constraint on the associated dual variables. This
additional constraint results in the introduction of a reflection
operator to model the data exchange in the network, instead of
a permutation operator as derived for equality constraint PDMM.
Convergence for both synchronous and stochastic update schemes
of PDMM are provided. The latter includes asynchronous update
schemes and update schemes with transmission losses. Experiments
show that PDMM converges notably faster than extended ADMM
of (He et al., 2023).

Index Terms—Convex optimization, distributed optimization,
linear programming, PDMM.

I. INTRODUCTION

IN THE last decade, distributed optimisation [2] has drawn
increasing attention due to the demand for either distributed

signal processing or massive data processing over a pear-to-pear
(P2P) network of ubiquitous devices. Its basic principle is to
first formulate an optimisation problem from the collected or
manually allocated data in the devices, and then performing
information spreading and fusion across the devices collabora-
tively and iteratively until reaching a global solution of the opti-
misation problem. Examples include training a machine learning
model, target localisation and tracking, healthcare monitoring,
power grid management, and environmental sensing. In general,
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the typical challenges faced by distributed optimisation over
a network, in particular ad-hoc networks, are the lack of in-
frastructure, limited connectivity, scalability, data heterogeneity
across the network, data-privacy requirements, and heteroge-
neous computational resources [3], [4].

Depending on the applications, various methods have been
developed for addressing one or more challenges in the consid-
ered network. For instance, the work [5], [6] proposed a pairwise
gossip method to allow for asynchronous message-exchange in
the network, while [7] describes a combination of gossip and ge-
ographic routing. In [8], the authors proposed a broadcast-based
distributed consensus method to save communication energy.
Alternatively, [9], [10] describes a belief propagation/message
passing approach and [11], [12], [13] considers signal processing
on graphs. The work in [14] considered distributed optimisation
over a directed graph. A special class of distributed optimisation,
called federated learning, focuses on collaboratively training of
a machine learning model over a centralised network (i.e., a
server-client topology) [15], [16].

A method of particular interest to this work is to approach
the task of distributed signal processing via its connection with
convex optimisation since it has been shown that many classical
signal processing problems can be recast in an equivalent convex
form [17]. Here we model the problem at hand as a convex
optimisation problem and solve the problem using standard
solvers like dual ascent, method of multipliers or ADMM [2] and
PDMM [18], [19]. The solvers ADMM and PDMM, although
at first sight suggested to be different due to their contrasting
derivations, are closely related [19]. The derivation of PDMM,
however, directly leads to a distributed implementation where no
direct collaboration is required between nodes during the com-
putation of the updates. For this reason we will take the PDMM
approach to derive update rules for distributed optimisation with
linear equality and inequality constraints.

PDMM was originally designed to solve the following sepa-
rable convex optimisation problem

minimise
∑
i∈V

fi(xi)

subject to Aijxi +Ajixj = bij , (i, j) ∈ E ,
(1)

in a synchronous setting, where the undirected graphG = (V, E)
represents a P2P network from practice. The recent work [20]
shows theoretically that PDMM can also be implemented asyn-
chronously, and that it is resilient to transmission losses. In [21],
PDMM is modified for federated learning over a centralised
network, where it is found that PDMM is closely related to
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the SCAFFOLD [16] and FedSplit [22] algorithm. In addition,
PDMM can be used for privacy-preserving distributed optimi-
sation where a certain amount of privacy can be guaranteed by
exploiting the fact that the (synchronous) PDMM updates take
place in a certain subspace so that the orthogonal complement
can be used to obfuscate the local (private) data, a method
referred to a subspace perturbation [23], [24], [25], [26]. More-
over, it has been shown in [27] that PDMM is robust against
data quantisation, thereby making it a communication efficient
algorithm.

For the special case of consensus problems, where the con-
straints in (1) are given by xi = xj for all (i, j) ∈ E , a large
number of algorithms have been proposed in the literature. Typ-
ical methods include decentralized gradient descent (DGD) [28],
exact first-order algorithm (EXTRA) [29], distributed stochastic
gradient tracking [30], and push-sum distributed dual averaging
(PS-DDA) [31]. One major difference between PDMM and the
above mentioned methods is that PDMM can be derived straight-
forwardly by applying Peaceman-Rachford splitting, a well-
known technique for decomposable optimisation. Accordingly,
the convergence analysis of PDMM can be conveniently carried
out by using the existing convergence theory of Peaceman-
Racheford splitting (see [19], [32] and the analysis in this paper).

A. Related Work

In recent years, a number of research works (e.g., [33],
[34], [35]) have considered applying ADMM for distributed
optimisation with linear inequality constraints. The basic idea
is to introduce slack variables and to reformulate the inequality
constraints into equality ones. The most recent work [1] is an ex-
ception and tackles the linear inequality constraints differently.
The authors of [1] avoid introducing slack variables in extended
ADMM to handle both equality and inequality constraints via
a prediction-correction updating strategy. The prediction step
in extended ADMM follows a similar update structure as the
one in conventional ADMM and the correction step is newly
introduced to ensure algorithmic convergence. In this work, we
revisit PDMM for dealing with both equality and inequality
constraints by applying Peaceman-Racheford splitting to the
monotonic inclusion related to the lifted dual problem. Similar
to [1], no slack variables are introduced in PDMM to avoid
any additional transmission or computation overhead between
neighbours in a P2P network. The main difference between ex-
tended ADMM and PDMM is that no additional correction step
is required in PDMM to handle the inequality constraints, result-
ing in significant faster convergence and lower computational
complexity, as is demonstrated in Section VII. The convergence
of PDMM is essentially guaranteed by the convergence theory
of Peaceman-Racheford splitting.

Another related branch of work is distributed optimisation
with nonlinear inequality constraints. For instance, the work [36]
proposed an effective algorithm for minimising an objective
function subject to a set of nonlinear inequality constraints.
The algorithm can be implemented in a parallel manner if
both the objective function and the nonlinear constraints are
properly decomposable. The authors of [37] further extended

the work of [36] by considering additional equality constraints
by combining three algorithms, where each one is designed for
a particular type of constraints.

B. Main Contribution

In this work, we consider applying PDMM for distributed
optimisation with both linear equality and inequality constraints.
To this purpose, we make two main contributions. Firstly, to
incorporate the inequality constraints, we impose nonnegativity
constraints on the associated dual variables and then, inspired
by [19], derive closed-form update expressions for the dual
variables via Peacheman-Rachford splitting of the monotonic
inclusion related to the lifted dual problem. As mentioned earlier,
no additional correction step is needed in PDMM while extended
ADMM in [1] must introduce an additional correction step to
guarantee convergence. Secondly, we perform a convergence
analysis for both synchronous and stochastic PDMM. The latter
is based on stochastic coordinate descent and includes asyn-
chronous update schemes and update schemes with transmission
losses. In addition, we give convergence conditions that are less
restrictive than the ones given in [19] and [20] for equality con-
strained PDMM, where strong convexity and differentiability of
the objective function is assumed.

C. Organisation of the Paper

The remainder of this paper is organized as follows. Sec-
tion II introduces appropriate nomenclature and reviews prop-
erties of monotone operators and operator splitting techniques.
Section III describes the problem formulation while Section IV
introduces a monotone operator derivation of PDMM with in-
equality constraints and demonstrates its relation with ADMM.
In Section V we derive convergence results of the proposed
algorithm and in Section VI we consider a stochastic updating
scheme, which includes asynchronous PDMM and PDMM with
transmission losses as a special case. Finally, Section VII de-
scribes experimental results obtained by computer simulations
to verify and substantiate the underlying claims of the document
and the final conclusions are drawn in Section VIII.

II. BACKGROUND

There exist many algorithms for iteratively minimising a
convex function. It is possible to derive and analyse many of
these algorithms in a unified manner, using the abstraction of
monotone operators. In this section we will review some proper-
ties of monotone operators and operator splitting techniques that
will be used throughout this paper. For a primer on monotone
operator methods, the reader is referred to the self-contained
introduction and tutorial [38]. For a detailed discussion on the
topic the reader is referred to [32].

A. Notations and Functional Properties

In this work we will denote by N the set of nonnegative inte-
gers, by R the set of real numbers, by R

n the set of real column
vectors of length n and by R

m×n the set of m by n real matrices.
The symbols �,�,≺ and � denote generalised inequality;
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between vectors it represents component wise inequality. We
will denote by ‖x‖ the standard Euclidean norm of x ∈ R

n

induced by the inner productxTx. Whenx is updated iteratively,
we write x(k) to indicate the update of x at the kth iteration.
When we consider x(k) as a realisation of a random variable,
the corresponding random variable will be denoted by X(k)

(corresponding capital). The expectation operator is denoted
by E. Let X , Y ⊆ R

n. A set valued operator T : X → 2Y is
defined by its graph gra(T ) = {(x, y) ∈ X × Y | y = T (x)},
where 2Y is the power set of Y . We define dom(T ) = {x ∈
X |T (x) 
= ∅}. If T (x) is a singleton or empty for any x, then
T is a function or single-valued, usually denoted by f . The
notion of the inverse of T , denoted by T−1, is also defined
through its graph, gra(T−1) = {(y, x) ∈ Y × X | y = T (x)}.
We denote by JcT = (I + cT )−1, c > 0, the resolvent of an
operatorT andCcT = 2JcT − I the associated Cayley operator,
sometimes referred to as the reflected resolvent. The composi-
tion of two operators T1 : X → 2Y and T2 : Y → 2Z is given
by T2 ◦ T1 : X → 2Z . The set of fixed points of T is denoted by
fix(T ) = {x ∈ X |T (x) = x}.

Functional transforms make it possible to investigate prob-
lems from a different perspective and sometimes simplify the
analysis. In convex analysis, a suitable transform is the Leg-
endre transform, which maps a function to its Fenchel con-
jugate. The Fenchel conjugate of a function f is defined as
f ∗(y) = supx(y

Tx− f(x)). The function f and its conju-
gate f ∗ are related by the Fenchel-Young inequality f(x) +
f ∗(y) ≥ yTx [32, Proposition 13.15]. Furthermore, the set
of all closed, proper, and convex (CCP) functions f : Rn →
R ∪ {+∞} is denoted by Γ0(R

n) and we denote by ∂f the
subdifferential of f . If f ∈ Γ0(R

n), then f = f ∗∗. Moreover,
we have y ∈ ∂f(x)⇔ x ∈ ∂f ∗(y)⇔ f(x) + f ∗(y) = yTx. If
f ∈ Γ0(R

n), the proximity operator proxcf is defined as
proxcf (x) = argminu∈Rn(f(u) + 1

2c‖x− u‖2) and is related
to the resolvent of ∂f by proxcf (x) = Jc∂f (x) [32, Proposition
16.44]. If IC is the indicator function on a closed convex subset
C of Rn, then proxIC = ΠC , the projection operator onto C.

We denote an undirected graph as G = (V, E), where V is
the set of vertices representing the nodes in the network and
E = {(i, j) | i, j ∈ V} is the set of undirected edges in the graph
representing the communication links in the network. We use Ed
to denote the set of all directed edges (ordered pairs). Therefore,
|Ed| = 2|E|. We use Ni to denote the set of all neighbouring
nodes of node i, i.e.,Ni = {j | (i, j) ∈ E}. Hence, given a graph
G = (V, E), only neighbouring nodes are allowed to communi-
cate with each other directly.

B. Monotone Operators and Operator Splitting

The theory of monotone set-valued operators plays a central
role in deriving iterative convex optimisation algorithms. A
prominent example of a monotone operator is the subdifferential
of a convex function, and the problem at hand is expressed
as finding a zero of a monotone operator (monotone inclusion
problem) which, in turn, is transformed into finding a fixed point
of its associated resolvent. The fixed point is then found by
the fixed point (Banach-Picard) iteration, yielding an algorithm

for the original problem. In this section we give background
information about monotone operators and operator splitting to
support the remainder of this paper.

Definition 1 (Monotone operator): Let T : Rn → 2R
n

. Then
T is monotone iff for all x, y ∈ dom(T )

(T (y)− T (x))T (y − x) ≥ 0.

The operator is said to be strictly monotone iff strict inequality
holds. The operator is said to be uniformly monotone with
modulus φ : R+ → [0,+∞) if φ is increasing, vanishes only
at 0, and

(T (y)− T (x))T (y − x) ≥ φ(‖y − x‖).
The operator is said to be strongly monotone with constant m >
0, or m-strongly monotone, if T −mI is monotone, i.e.,

(T (y)− T (x))T (y − x) ≥ m‖y − x‖2.
The operator is said to be maximal monotone iff for every
(x, u) ∈ R

n × R
n,

(x, u) ∈ gra(T )⇔(∀(y, v) ∈ gra(T )) (v− u)T (y − x) ≥ 0.

In other words, there exists no monotone operatorS : Rn → 2R
n

such that gra(S) properly contains gra(T ).
It is clear that strong monotonicity implies uniform mono-

tonicity, which itself implies strict monotonicity.
Definition 2 (Nonexpansiveness): Let T : Rn → 2R

n

. Then
T is nonexpansive iff for all x, y ∈ dom(T )

‖T (y)− T (x)‖ ≤ ‖y − x‖.
T is called strictly nonexpansive, or contractive, if strict in-
equality holds. The operator is firmly nonexpansive iff for all
x, y ∈ dom(T )

‖T (y)− T (x)‖2 ≤ (T (y)− T (x))T (y − x).

Note that when T is (firmly) nonexpansive, it is single valued
and continuous.

Definition 3 (Averaged nonexpansive operator): Let T :
dom(T )→ R

n be nonexpansive and let α ∈ (0, 1). Then T
is averaged with constant α, or α-averaged, if there exists a
nonexpansive operator S : dom(T )→ R

n such that T = (1−
α)I + αS.

It can be shown that if T is maximally monotone, then the
resolvent JcT is firmly nonexpansive [32, Proposition 23.8]
and the Cayley operator CcT = 2JcT − I is nonexpansive [32,
Corollary 23.11 (ii)]. We have

0 ∈ T (x)⇔ x ∈ (I + cT )(x)⇔ (I + cT )−1(x) � x

⇔ x = JcT (x),

where the last relation holds since JcT is single valued. There-
fore, we conclude that a monotone inclusion problem is equiv-
alent to finding a fixed point of its associated resolvent. More-
over, since JcT = 1

2 (CcT + I) is 1/2-averaged, we have, by the
Krasnosel’skii-Mann algorithm, that the sequence generated by
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the Banach-Picard iteration x(k+1) = JcT (x
(k)) is Fejér mono-

tone [32, Definition 5.1] and converges weakly1 to a fixed point
x∗ of JcT for any x(0) ∈ dom(JcT ) [32, Theorem 5.15], and
thus to a zero of T . A prime example of this procedure is the
case where T is the subdifferential of a convex function. In that
case the Banach-Picard iteration x(k+1) = Jc∂f (x

(k)) results in
the well known proximal point method [32, Theorem 23.41].

For many maximal monotone operators T , the inversion op-
eration needed to evaluate the resolvent may be prohibitively
difficult. A more widely applicable alternative is to devise an
operator splitting algorithm in which T is decomposed as T =
T1 + T2, and the operators T1 and T2 are employed in separate
steps. Examples of popular splitting algorithms are the forward-
backward method, Tseng’s method, and Peaceman-Rachford
and Douglas-Rachford splitting, where the first two methods
require T1 (or T2) to be single valued (for example the gradient
of a differentiable convex function). The Peaceman-Rachford
splitting algorithm is given by the iterates [32, Proposition 26.13]

x(k) = JcT1
(z(k)),

v(k) = JcT2
(2x(k) − z(k)),

z(k+1) = z(k) + 2(v(k) − x(k)). (2)

When T1 is uniformly monotone, x(k) converges strongly to x∗

(notation x(k) → x∗), where x∗ is the solution to the monotonic
inclusion problem 0 ∈ T1(x) + T2(x). The iterates (2) can be
compactly expressed using Cayley operators as

x(k) = JcT1
(z(k)),

z(k+1) = CcT2
◦ CcT1

(z(k)).

If either CcT1
or CcT2

is contractive, then CcT2
◦ CcT1

is con-
tractive and the Peacman-Rachford iterates converge geomet-
rically. Note that since CcT2

◦ CcT1
is nonexpansive, without

the additional requirement of T1 being uniformly monotone,
there is no guarantee that the iterates will converge. In order to
ensure convergence without imposing conditions like uniform
monotonicity, we can average the nonexpansive operator. In the
case of 1/2-averaging, the z-update is given by

z(k+1) =
1

2
(I + CcT2

◦ CcT1
) (z(k)),

which is called the Douglas-Rachford splitting algorithm. This
method was first presented in [39], [40] and converges under
more or less the most general possible conditions. A well known
instance of the Douglas-Rachford splitting algorithm is the
alternating direction method of multipliers (ADMM) [41], [42],
[43], [44] or the split Bregman method [45].

III. PROBLEM SETTING

To simplify the discussion, we will first consider the minimi-
sation of a separable convex cost function subject to a set of
inequality constraints of the form Ax � b, and later generalise

1In the work here we only consider finite-dimensional Hilbert spaces so that
weak convergence does imply strong convergence.

this to include equality constraints as well. That is, we first
consider the following problem

minimise
∑
i∈V

fi(xi)

subject to Aijxi +Ajixj � bij , (i, j) ∈ E ,
(3)

where fi : R
ni �→ R ∪ {∞} are (CCP) functions, Aij ∈

R
mij×ni and bij ∈ R

mij . We can compactly express (3) as

minimise f(x)
subject to Ax � b,

(4)

where x = (xT
1 , . . . , x

T
|V|)

T ∈ R
n, f(x) =

∑
i∈V fi(xi), A ∈

R
m×n, b ∈ R

m with n =
∑

i ni and m =
∑

(i,j) mij . More
specifically, we have A = (a1, . . . , a|V|), ai ∈ R

m×ni , where
ai(l) = Aij and b(l) = bij if and only if el = (i, j) ∈ E . As-
suming the graph is connected and m ≥ n, A has full column
rank. With (4), the dual problem is given by

minimise f ∗(−ATλ) + bTλ,
subject to λ � 0,

(5)

with optimisation variable λ ∈ R
m, where λ = (λij)(i,j)∈E and

λij ∈ R
mij denotes the Lagrange multipliers associated to the

constraints on edge (i, j) ∈ E . At this point we would like
to highlight that the only difference between inequality and
equality constraint optimisation is that with inequality constraint
optimisation we have the additional requirement that λ � 0. In
the case the constraints are of the formAx = b, the dual problem
is simply an unconstrained optimisation problem.

IV. OPERATER SPLITTING OF THE LIFTED DUAL FUNCTION

Let A = (a1, a2, . . . , a|V|), where ai ∈ R
m×ni . Since

f(x) =
∑
i∈V

fi(xi) ⇔ f ∗(y) =
∑
i∈V

f ∗i (yi),

that is, the conjugate function of a separable CCP function is
itself separable and CCP, we have

f ∗(−ATλ) =
∑
i∈V

f ∗i (−aTi λ) =
∑
i∈V

f ∗i

(
−
∑
j∈Ni

AT
ijλij

)
. (6)

By inspection of (6) we conclude that every λij , associated to
edge (i, j), is used by two conjugate functions: f ∗i and f ∗j . As
a consequence, all conjugate functions depend on each other.
We therefore introduce auxiliary variables to decouple the node
dependencies. That is, we introduce for each edge (i, j) ∈ E two
auxiliary node variables μi|j and μj|i, one for each node i and j,
respectively, and require that at convergence μi|j = μj|i = λij .
Collecting all auxiliary variables μi|j and μj|i into one vector
μ ∈ R

2m and introducing C = (c1, c2, . . . , c|V|), ci ∈ R
2m×ni ,

where ci(l) = Aij and μ(l) = μi|j if and only if el = (i, j) ∈
E and i < j, and ci(l +m) = Aij and μ(l +m) = μi|j if and
only if el = (i, j) ∈ E and i > j, we can reformulate the dual
problem as

minimise f ∗(−CTμ) + dTμ
subject to μ = Pμ,

μ � 0,
(7)
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where C ∈ R
2m×n, d = 1

2 (b
T bT )T ∈ R

2m and P ∈ R
2m×2m

is a symmetric permutation matrix exchanging the first m with
the last m rows. That is, if η = Pμ, then ηi|j = μj|i. We will
refer to (7) as the lifted dual problem of (4). Let M = {μ ∈
R

2m |μ = Pμ, μ � 0}. Hence M is closed and convex. With
this, we can reformulate the dual problem as

minimise f ∗(−CTμ) + dTμ+ IM (μ), (8)

where IM denotes the indicator function on M . Again, by
comparing inequality vs. equality constraint optimisation, the
difference is in the definition of the setM ; for equality constraint
optimisation the set M reduces to M = {μ ∈ R

2m |μ = Pμ}.
The optimality condition for problem (8) is given by the inclu-
sion problem

0 ∈ −C∂f ∗(−CTμ) + d+ ∂IM (μ). (9)

In order to apply Peaceman-Rachford splitting to (9), we
define T1(μ) = −C∂f ∗(−CTμ) + d and T2(μ) = ∂IM (μ). To
show that both operators are maximally monotone, we have

(T1(μ)− T1(η))
T(μ− η)

= − (
∂f ∗(−CTμ)− ∂f ∗(−CT η)

)T
CT (μ− η) ≥ 0,

(10)

since ∂f ∗ is monotone. Similarly,

(T2(μ)−T2(η))
T(μ− η)

= (∂IM (μ)− ∂IM (η))T (μ− η) ≥ 0,

and we conclude that both T1 and T2 are monotone. Maximality
follows directly from the maximality of the subdifferential [32,
Theorem 20.25]. As a consequence, Peaceman-Rachford split-
ting to (9) yields the iterates

μ(k) = JcT1
(z(k)), (11a)

z(k+1) = CcT2
◦ CcT1

(z(k)). (11b)

We will first focus on the Cayley operator CcT2
in (IV), which

carries the inequality constraints encapsulated by M . To do so,
we introduce an intermediate vector y(k), such that

y(k) = CcT1
(z(k)),

z(k+1) = CcT2
(y(k)).

Since M is a closed convex subset of Rn, we have JcT2
(y) =

proxcIM (y) = ΠM (y), the projection of y onto M . As a conse-
quence, CcT2

is given by CcT2
= 2ΠM − I , the reflection with

respect to M , which we will denote by RM . We can explicitly
compute ΠM (y), and thus RM (y).

Lemma 1:

JcT2
(y) =

[
1

2
(I + P )y

]+
,

where [·]+ denotes the orthogonal projection onto the non-
negative orthant.

Proof: We have

JcT2
(y) = arg min

u∈M
‖u− y‖2. (12)

Fig. 1. Illustration of the reflection operator RM .

The corresponding Lagrangian is given by L(u, η, ξ) = ‖u−
y‖2 + ηT (Pu− u)− ξTu. Let ũ denote the optimal point of
(12) and let ξ̃ and η̃ denote the optimal dual variables. With this,
the KKT conditions are given by

1. ũ = P ũ, ũ � 0, (13a)

2. ξ̃ � 0, (13b)

3. ξ̃ � ũ = 0, (13c)

4. 2(ũ− y) + (P − I)T η̃ − ξ̃ = 0, (13d)

where � denotes component-wise multiplication. Combining
(13a) and (13d) we obtain ũ = 1

2 (I + P )y + 1
4 (I + P )ξ̃ so

that for � = 1, . . . ,m : ũ� = ũ�+m = 1
2 (y� + y�+m) + 1

4 (ξ̃� +

ξ̃�+m). Hence, if 1
2 (y� + y�+m) > 0, then ũ� > 0 by (13b) and

thus ξ̃� = 0 by (13c). If 1
2 (y� + y�+m) < 0, then ξ̃� > 0 by (13a)

and thus ũ� = 0 by (13c). If 1
2 (y� + y�+m) = 0, then ũ� ≥ 0

by (13b). However, if ũ� > 0, then ξ̃� = 0 by (13c), and thus
ũ� = 0, which is a contradiction. Hence ũ� = 0. This completes
the proof. �

Recall that CcT2
= 2ΠM − I = RM . To get some insight in

how to implement RM , note that RM (y) = [(I + P )y]+ − y
where the orthogonal projection onto the non-negative orthant
is due to the non-negativity constraint of λ (and thus of μ).
Without this constraint, we have JcT2

(y) = 1
2 (I + P ) and thus

CcT2
= P , which is simply a permutation operator. This per-

mutation operator represents the actual data exchange in the
network. That is, we have for all (i, j) ∈ E : zi|j ← yj|i, zj|i ←
yi|j . In the case of inequality constraints, however, we only
exchange data whenever2 yi|j + yj|i > 0 and locally update
zi|j ← −yi|j , zj|i ← −yj|i otherwise. Fig. 1 illustrates the ef-
fect of RM for a two-dimensional example, where 1 = (1, 1)T .
If y is in the halfspace {u : uT1 > 0} we have z = Py, and
z = −y otherwise. The iterates (IV) can now be expressed as

μ(k) = JcT1
(z(k)),

y(k) = 2μ(k) − z(k),

z(k+1) = RM (y(k)).

2In the case yi|j and yj|i are vector-valued, we have to do the thresholding
component wise.
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In order to find a dual expression for JcT1
(z(k)), we note that

μ̃ = JcT1
(z) ⇔ z − μ̃ ∈ cT1(μ̃).

Hence, μ̃ = z + c(Cx̃− d) where x̃ ∈ ∂f ∗(−CT μ̃), and
thus −CT μ̃ ∈ ∂f(x̃). Hence, 0 ∈ ∂f(x̃) + CT μ̃ = ∂f(x̃) +
CT z + cCT (Cx̃− d) so that

x̃ = argmin
x

(
f(x) + zTCx+

c

2
‖Cx− d‖2

)
.

With this, the iterates can be expressed as

x(k) = argmin
x

(
f(x) + z(k)

T

Cx+
c

2
‖Cx− d‖2

)
,

(14a)

μ(k) = z(k) + c(Cx(k) − d), (14b)

y(k) = 2μ(k) − z(k), (14c)

z(k+1) = RM (y(k)), (14d)

which can be simplified to

x(k) = argmin
x

(
f(x) + z(k)

T

Cx+
c

2
‖Cx− d‖2

)
,

(15a)

y(k) = z(k) + 2c(Cx(k) − d), (15b)

z(k+1) = RM (y(k)). (15c)

The iterates (IV) are collectively referred to as the inequality-
constraint primal-dual method of multipliers (IEQ-PDMM).

The distributed nature of PDMM can be made explicit by
exploiting the structure of C and d and writing out the update
equations (IV), which is visualised in the pseudo-code of Algo-
rithm 1. It can be seen that no direct collaboration is required
between nodes during the computation of these updates, leading
to an attractive (parallel) algorithm for optimisation in practi-
cal networks. The update (15c) can be interpreted as one-way
transmissions of the auxiliary y variables to neighbouring nodes
where the actual update of the z variables is done.

A. Equality and Inequality Constraints

As mentioned before the only difference in having equality
or inequality constraints is in having a nonnegativity constraint
λ � 0 in the latter case, and thus in the definition of the set
M . Hence, we can trivially extend our proposed inequality con-
straint algorithm to include equality constraints as well. In the
case of an equality constraint, we simply ignore the thresholding
and exchange the associated auxiliary variables along that edge.
That is, let μ = (μT

ν , μ
T
λ )

T , where μν denote the Lagrange
multipliers for the equality constraints and μλ the Lagrange
multipliers for the inequality constraints. Then μλ � 0, while
μν is unconstrained. Defining the auxiliary variables y and z in
a similar way, (15c) becomes

z(k+1)
ν = Py(k),

z
(k+1)
λ = RM (y(k)).

Algorithm 1: Synchronous IEQ-PDMM.

1: Initialise: z(0) ∈ R
2m �Initialisation

2: for k = 0, . . ., do
3: fori ∈ V do � Node updates

4: x
(k)
i = argminxi

(
fi(xi)+

∑
j∈Ni

(
z
(k)T
i|j Aijxi +

c
2‖Aijxi − 1

2bij‖2
))

5: for all j ∈ Ni do

6: y
(k)
i|j = z

(k)
i|j + 2c

(
Aijx

(k)
i − 1

2bij

)
7: end for
8: end for

9: for all i ∈ V, j ∈ Nido �Transmit variables
10: nodej ← nodei(y

(k)
i|j )

11: end for

12: for all i ∈ V, j ∈ Ni do �Auxiliary updates
13: if y(k)i|j + y

(k)
j|i > 0 then

14: z
(k+1)
i|j = y

(k)
j|i

15: else
16: z

(k+1)
i|j = −y(k)i|j

17: end if
18: end for
19: end for

B. Node Constraints

In the previous sections we considered constraints of the form
Aijxi +Ajixj � bij , or Aijxi +Ajixj = bij in the case of
equality constraints. If we setAji to be themij × nj zero matrix,
we have constraints of the form Aijxi � bij or Aijxi = bij ,
which are node constraints; it sets constraints on the values xi

can take on. Even though xj is not involved in the constraint
anymore, there is still communication needed between node i
and node j since at the formulation of the lifted dual problem
(7) we have introduced two auxiliary variables, μi|j and μj|i,
one at each node, to control the constraints between node i
and j. This was done independent of the actual value of Aij

and Aji. In order to guarantee convergence of the algorithm,
these variables need to be updated and exchanged during the
iterations. Note that it is irrelevant which of the neighbouring
nodes is used to define the node constraint on node i. We could
equally well defineAi�xi � bi� with � ∈ Ni, in which case there
will be communication between node i and node �. To avoid
such communication between nodes, we can introduce dummy
nodes, one for every node that has a node constraint. Let i′ denote
the dummy node introduced to define the node constraint on
node i. That is, we have Aii′xi � bii′ . Since dummy node i′ is
only used to communicate with node i, it is a fictive node and
can be incorporated in node i, thereby avoiding any network
communication for node constraints.
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C. Relation With ADMM

Consider the prototype ADMM problem given by

minimise f(x) + g(u),
subject to Ax+Bu = c.

(16)

Following [19], we can reformulate (4) in the form (16) by
introducing auxiliary variablesui|j , uj|i ∈ R

mij such thatui|j =
Aijxi − 1

2bij and uj|i = Ajixj − 1
2bij . Collecting all auxiliary

variables ui|j and uj|i into a vector u ∈ R
2m and using the

matrices C,P and d as defined before, the constraints of (4)
are given by u = Cx− d and u+ Pu � 0. Hence, (4) can be
equivalently expressed as

minimise f(x) + g(u)
subject to Cx− u = d,

where g(u) is the indicator function IM ′ on M ′ = {u ∈
R

2m |u+ Pu � 0}. The dual problem is therefore given by

minimise f ∗(−CTμ) + I∗M ′(μ) + dTμ, (17)

whereμ, as in the PDMM case, denotes the stacked vector of dual
variables μi|j and μj|i associated with the edges (i, j) ∈ E . The
ADMM algorithm is equivalent to applying Douglas Rachford
splitting to the dual problem (17). Comparing (8) and (17), we
can note that the apparent difference in the dual problems is the
use of IM (μ) in the case of PDMM and I∗M ′(μ) in the case of
ADMM. However, we have

I∗M ′(μ) = sup
u

(
μTu− IM ′(u)

)
=

{
0, μ = Pμ, μ � 0
∞ otherwise,

and thus I∗M ′(μ) = IM (μ) and we conclude that the problems (8)
and (17) are identical. As Douglas-Rachford splitting is equiv-
alent to a half-averaged form of Peaceman-Rachford splitting,
half-averaged PDMM and ADMM will give identical results.

V. CONVERGENCE OF (IN)EQUALITY-CONSTRAINT PDMM

Let T = CcT2
◦ CcT1

. Since both CcT2
and CcT1

are nonex-
pansive, T is nonexpansive, and the sequence generated by the
Banach–Picard iteration z(k+1) = T (z(k)) may fail to produce
a fixed point of T . A simple example of this situation is T = −I
and z(0) 
= 0. Although operator averaging provides a means of
ensuring algorithmic convergence, it is well known that Banach-
Picard iterations converge provable faster than Krasnosel’skii-
Mann iterations for the important class of quasi-contractive
operators [46]. As discussed before, the Peaceman-Rachford
splitting algorithm converges when T1 is uniformly monotone.
However, by inspection of (10), due to the row-rank deficiency
of C, ∃(μ, η), μ 
= η : CT (μ− η) = 0 which prohibits T1 of
being strictly monotone, and thus uniformly monotone. It is
therefore of interest to consider if there are milder conditions
under which certain optimality can be guaranteed. Whilst such
conditions may be restrictive in the case of convergence of the
auxiliary variables, in the context of distributed optimisation we
are often only interested in primal optimality. For this reason we

define conditions that ensure x(k) → x∗ even if z(k) 
→ z∗, z∗ ∈
fix(T ).

Proposition 1: Let T1 = −C∂f ∗(−CT (·)) + d and T2 =
∂IM such that Z = fix(T ) 
= ∅ and ∂f is uniformly monotone
with modulusφ, let c > 0, and letx∗ be the solution to the primal
problem (4). Given the iterates (IV) and z(0) ∈ R

2m, we have
x(k) → x∗.

Proof: Let z∗ ∈ Z . We have for all k ∈ N,

‖z(k+1) − z∗‖2 = ‖CcT2
◦ CcT1

(z(k))− CcT2
◦ CcT1

(z∗)‖2

≤ ‖CcT1
(z(k))− CcT1

(z∗)‖2

= ‖2μ(k) − z(k) − (2μ∗ − z∗)‖2

= ‖z(k) − z∗‖2

− 4(μ(k) − μ∗)T (z(k) − μ(k) − (z∗ − μ∗))

= ‖z(k) − z∗‖2

+ 4c(μ(k) − μ∗)TC(x(k) − x∗), (18)

where the last equality follows from (14b). Moreover,
since x(k) minimises f(x) + z(k)

T
Cx+ c

2‖Cx− d‖2, we
have that 0 ∈ ∂f(x(k)) + CT z(k) + cCT (Cx(k) − d) =
∂f(x(k)) + CTμ(k), so that (18) can be expressed as

‖z(k+1) − z∗‖2 ≤ ‖z(k) − z∗‖2

− 4c(∂f(x(k))− ∂f(x∗))T (x(k) − x∗)

≤ ‖z(k) − z∗‖2 − 4cφ(‖x(k) − x∗‖). (19)

Hence, φ(‖x(k) − x∗‖)→ 0 and, in turn, ‖x(k) − x∗‖ → 0. �
Remark 1: Since T is at best nonexpansive, the auxiliary

variables will not converge in general. In fact, they will reach
an alternating limit state, similar to what has been shown for
equality constraint PDMM [19]. In addition, the condition for
primal convergence given in Proposiiton 1 is less restrictive
than the ones given in [19] for equality constrained PDMM,
where strong convexity and differentiability of f is assumed.
We will demonstrate the convergence of the algorithm for non-
differentiable uniformly convex functions in Section VII.

VI. STOCHASTIC COORDINATE DESCENT

In order to obtain an asynchronous (averaged) IEQ-PDMM
algorithm, we will apply randomised coordinate descent to the
algorithms presented in Section IV.

Stochastic updates can be defined by assuming that each
auxiliary variable zi|j can be updated based on a Bernoulli
random variable ξi|j ∈ {0, 1}. Collecting all random variables
ξi|j in the random vector ξ ∈ R

2|E|, following the same ordering
as the entries of z, let (ξ(k))k∈N denote an i.i.d. random pro-
cess defined on a common probability space (Ω,A,P), such
that ξ(k) : (Ω,A) �→ {0, 1}2|E|. Hence, ξ(k)(ω) ⊆ {0, 1}2|E| in-
dicates which entries of z(k) will be updated at iteration k. We
assume that the following condition holds:

(∀(i, j) ∈ Ed) P({ξ(0)i|j = 1}) > 0. (20)
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Since (ξ(k))k∈N is i.i.d., (20) guarantees that at every itera-
tion, entry z

(k)
i|j has nonzero probability to be updated. We

define the block-diagonal random matrix U ∈ R
2m×2m as U =

diag(ξi|jImij
). With this, we define the stochastic Banach-

Picard iteration [20] as

Z(k+1) =
(
I − U (k)

)
Z(k) + U (k)T (Z(k)), (21)

where Z(k) denotes the random variable having realisation z(k).
If T is α-averaged, a convergence proof is given in [47], [48],
where it is shown that Z(k) − T (Z(k))

a.s.→ 0 (almost surely). If
T is not averaged, we do not have convergence in general since
T is at best nonexpansive and we need additional conditions for
convergence.

Let ‖z‖2Q = zTQz where Q � 0 (Hermitian positive defi-
nite). Moreover, let Q−1 = E(U). Clearly, Q � 0 by condition
(20). In addition, let (Ak)k≥1 be a filtration on (Ω,A) such that

Ak := σ{ξ(t) : t ≤ k},
the σ-algebra generated by the random vectors ξ(1), . . . , ξ(k)

and thusAk ⊆ Al for k ≤ l. We have the following convergence
result for stochastic PDMM.

Proposition 2: Let T1 = −C∂f ∗(−CT (·)) + d and T2 =
∂IM such that Z = fix(T ) 
= ∅ and ∂f is uniformly monotone
with modulusφ, let c > 0, and letx∗ be the solution to the primal
problem (4). Given the stochastic iteration (21) and z(0) ∈ R

2m,
we have X(k) a.s.→ x∗.

Proof: For any z∗ ∈ Z we have [49, Appendix A]

E

(
‖Z(k+1) − z∗‖2Q | Ak

)

= ‖Z(k) − z∗‖2Q + ‖T (Z(k))− z∗‖22 − ‖Z(k) − z∗‖22.
(22)

Using (19), (22) becomes

E

(
‖Z(k+1) − z∗‖2Q | Ak) ≤

‖Z(k) − z∗‖2Q − 4cφ(‖X(k) − x∗‖),
(23)

which shows that (‖Z(k) − z∗‖2Q)k≥1 is a nonnegative super-

martingale. Moreover, since ( · )1/2 is concave and nondecreas-
ing on R+, we conclude that (‖Z(k) − z∗‖Q)k≥1 is a nonneg-
ative supermartingale as well and therefore converges almost
surely by the martingale convergence theorem [50, Theorem
27.1]. Taking expectations on both sides of (23) and iterating
over k, we obtain

E

(
‖Z(k+1) − z∗‖2Q

)
≤ ‖z(0) − z∗‖2Q

− 4c

k∑
t=1

E

(
φ(‖X(t) − x∗‖)

)
.

Since E(‖Z(k) − z∗‖2Q) ≥ 0, we have

k∑
t=1

E

(
φ(‖X(t) − x∗‖)

)
≤ 1

4c
‖z(0) − z∗‖2Q <∞,

which shows that the sum of the expected values of the pri-
mal error is bounded. Hence, using Markov’s inequality, we
conclude that
∞∑
t=1

Pr
{
‖X(t) − x∗‖2 ≥ ε

}
≤ 1

ε

∞∑
t=1

E

[
‖X(t) − x∗‖2

]
<∞,

for all ε > 0, and by Borel Cantelli’s lemma [50, Theorem 10.5]
that

Pr

{
lim sup
k→∞

(
‖X(k) − x∗‖2 ≥ ε

)}
= 0,

which shows that ‖X(k) − x∗‖2 a.s.→ 0. �
Remark 2: As with synchronous IEQ-PDMM, the condition

for primal convergence given in Proposiiton 2 is less restrictive
than the ones given in [20] for equality constrained stochastic
PDMM, where strong convexity and differentiability of f is
assumed.

A. Asynchronous IEQ-PDMM

In practice, synchronous algorithm operation implies the
presence of a global clocking system between nodes. Clock
synchronisation, however, in particular in large-scale heteroge-
neous sensor networks, can be cumbersome. In addition, due
to the heterogeneous nature of the sensors/agents, processors
that are fast either because of high computing power or be-
cause of small workload per iteration, must wait for the slower
processors to finish their iteration. Asynchronous algorithms
partly overcome these problems as there is much more flexi-
bility regarding the use of the information received from other
processors. Asynchronous IEQ-PDMM can be seen as a special
case of stochastic IEQ-PDMM when we update a set of auxiliary
variables simultaneously. That is at each iteration, a single node,
or possibly a subset of nodes chosen at random, are activated.
More formally, let (ζ(k))k∈N denote an i.i.d. random process
defined on a common probability space such that ζ(k) ⊆ 2V

denotes a set of indices indicating which nodes will be updated
at iteration k. Hence, ζ(k) denotes the set of active nodes at
iteration k. Asynchronous IEQ-PDMM can be seen as a specific
case of stochastic IEQ-PDMM when we define the entries of
ξ(k) as

(∀(i, j) ∈ E) ξ
(k)
j|i =

{
1 if i ∈ ζ(k),
0 otherwise.

That is, at iteration k, we update all auxiliary variables ξ(k)i|j , j ∈
Ni, for all nodes i ∈ ζ(k). The pseudocode for lossy asyn-
chronous IEQ-PDMM is given in Algorithm 2.

B. IEQ-PDMM With Transmission Failures

IEQ-PDMM with transmission losses can also be seen as a
special case of stochastic IEQ-PDMM. Let (η(k))k∈N denote an
i.i.d. random process defined on a common probability space
such that η(k) ⊆ 2Ed denotes a set of ordered pairs of nodes
indicating which directed edges will be updated at iteration k.
Hence, η(k) denotes the set of active directed edges at iteration
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Algorithm 2: Asynchronous IEQ-PDMM.

1: Initialise: z(0) ∈ R
2m �Initialisation

2: for k = 0, . . ., do
3: Select a random subset of active nodes: ζ(k) ⊆ 2V

4: for i ∈ ζ(k) do �Active node updates

5: x
(k)
i = argmin

xi

(
fi(xi)+

∑
j∈Ni

(
z
(k)T

i|j Aijxi +
c
2‖Aijxi − 1

2bij‖2
))

6: for all j ∈ Ni do

7: y
(k)
i|j = z

(k)
i|j + 2c

(
Aijx

(k)
i − 1

2bij

)
8: end for
9: end for

10: for all i ∈ ζ(k), j ∈ Ni do �Transmit variables
11: nodej ← nodei(y

(k)
i|j )

12: end for

13: for i ∈ ζ(k), j ∈ Ni do �Auxiliary updates
14: if y(k)i|j + y

(k)
j|i > 0 then

15: z
(k+1)
j|i = y

(k)
i|j

16: else
17: z

(k+1)
j|i = −y(k)j|i

18: end if
19: end for
20: end for

k; (i, j) ∈ η(k) implies that there has been a successful trans-
mission from node i to node j, but we could have a transmission
failure from node j to i. IEQ-PDMM with transmission losses
can thus be seen as a specific case of stochastic IEQ-PDMM
when we define the entries of ξ(k) as

(∀(i, j) ∈ Ed) ξ
(k)
j|i =

{
1 if (i, j) ∈ η(k),
0 otherwise.

Obviously, a combination of asynchronous updating and trans-
mission loss can be modelled by defining

(∀(i, j) ∈ Ed) ξ
(k)
j|i =

{
1 if i ∈ ζ(k) and (i, j) ∈ η(k),
0 otherwise.

VII. NUMERICAL EXPERIMENTS

In this section we will discuss experimental results obtained
by computer simulations. We will start by demonstrating that the
relaxed condition (∂f being uniformly monotone) as given in
Proposition 1 and Proposition 2 is a sufficient condition for pri-
mal convergence. We show convergence results for synchronous
and asynchronous IEQ-PDMM, and demonstrate the robustness
of the algorithm against transmission faillures. Secondly, we will
discuss an application of network linear programming, where we
collaboratively compute the intersection of convex polytopes
for target localisation. Finally, we will compare the proposed
algorithm with extended ADMM [1] and a PDMM variant

Fig. 2. Demonstration of a random geometric graph with 25 nodes.

where we introduced slack variables to handle the inequality
constraints.

A. Primal Convergence Guarantees

To demonstrate that PDMM doesn’t converge for general
problems, we consider the following �1 consensus problem:

minimise
n∑

i=1

‖xi − ai‖1
subject to xi = xj , (i, j) ∈ E ,

(24)

where the data ai was randomly generated from a Gaussian
distribution. We consider a random geometric graph of n =
25 nodes where we have set the communication radius r =√

2 log(n)/n, thereby guaranteeing a connected graph with
probability at least 1− 1/n2 [51]. The resulting graph is de-
picted in Fig. 2.

Since the objective function is not uniformly convex, the IEQ-
PDMM algorithm is not guaranteed to converge. This is shown
in Fig. 3 (blue curve). In addition, results are shown when we
average IEQ-PDMM for different values of α in which case
the algorithm is expected to converge. Note that the case α =
1
2 corresponds to Douglas-Rachford splitting of the lifted dual
function. The step size parameter c was set to c = 0.4.

To demonstrate that uniform monotonicity of the subdiffer-
ential ∂f is sufficient for primal convergence, we consider the
following extended problem:

minimise
n∑

i=1

(‖xi − ai‖1 + ‖xi − ai‖33
)

subject to xi = xj , (i, j) ∈ E .
(25)

That is, compared to problem (24), we added to the �1 norm an
�3 norm cubed, thereby making the objective function uniformly
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Fig. 3. Convergence results for IEQ-PDMM for the �1 consensus
problem (24).

Fig. 4. Convergence results for IEQ-PDMM for the extended �1 consensus
problem (25).

convex. Note that the resulting objective is not differentiable nor
strongly convex. Fig. 4 shows convergence results for problem
(25), where the MATLAB function “fmincon” was used as the
internal optimisation solver. As expected, standard IEQ-PDMM
converges for this problem and averaging slows down the con-
vergence rate.

To demonstrate the convergence of stochastic IEQ-PDMM,
we consider problem (25) again. Fig. 5 shows convergence
results for synchronous and asynchronous IEQ-PDMM, where
again the MATLAB function “fmincon” was used as the in-
ternal optimisation solver. The blue curve shows the result for
synchronous IEQ-PDMM and is identical to the blue curve in
Fig. 4. However, in order to make a meaningful comparison
between synchronous and asynchronous update schemes, the
convergence results are presented as a function of number of
transmission rather than number of iterations. We can observe
that synchronous and asynchronous IEQ-PDMM have similar
convergence rates. In addition, the algorithm is robust against

Fig. 5. Convergence of IEQ-PDMM for synchronous and asynchronous up-
date schemes with different levels of transmission loss.

transmission failures and converges for all loss rates; the con-
vergence rate decreases proportional to the loss rate, similar to
what has been observed for equality constraint PDMM [20].

B. Target Localisation

The second simulation considers an application of network
linear programming (LP) for target localisation. We consider a
set of n sensors randomly distributed in a unit cube which have
to detect a target location xt ∈ R

d. The sensors could be, for
example, cameras, microphones or radars. We assume that each
sensor has focused on the target by steering a beam towards the
target, where we have added zero-mean Gaussian noise to the
true direction to model uncertainty in the direction-of-arrival.
We will model the beam as the intersection of a finite number of
half-planes. In our two-dimensional example scenario, we will
use two half-planes to model the beam pattern so that the sensing
region is modeled by a cone. Fig. 6 shows such a set-up, where
we have four sensors indicated by the blue dots. The dashed
blue lines indicate the hyperplanes (lines in R

2) modeling the
sensing beams. The intersection of the regions detected by the
sensors (grey area in Fig. 6) can be used to estimate the target
location. Since this is the intersection of half-planes, this region
is a polytope which itself is convex and non-empty. The goal is
to find an inner approximation of the polytope by computing
the largest Euclidean ball contained in it. The centre of the
optimal ball is called the Chebyshev centre of the polytope and
is the point deepest inside the polytope, i.e., farthest from the
boundary. A polytope, in general, can be described as

P = {x ∈ R
d : aT� x ≤ b�, � = 1, . . . ,m},

where m is the number of hyperplanes defining the polytope,
and a ball as B = {xc + u : ‖u‖ < r}, where xc ∈ R

d is the
centre and r ∈ R the radius of the ball. Our task is to maximise
r subject to the constraintB ⊆ P . Finding the Chebyshev centre
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Fig. 6. Target location estimation by collaboratively computing the intersec-
tion of convex polytopes.

can be determined by solving the LP [52]

maximise r,
subject to aT� xc + r‖a�‖ ≤ b�, � = 1, . . . ,m.

In order to solve this problem distributed, we introduce local
variables xi and ri at each node and add the additional constraint
that xi = xj and ri = rj for all (i, j) ∈ E , where E is the set of
edges (communication links) in the network. That is, we solve
the LP

maximise
n∑

i=1

ri,

subject to aT� xi + ri‖a�‖ ≤ b�, i ∈ V, � = 1, . . . ,m,
xi = xj , ri = rj , (i, j) ∈ E .

(26)
Obviously, (26) is of the form of our prototypical problem with
both linear equality and inequality constraints and can, therefore,
be solved using IEQ-PDMM. Fig. 6 shows the result (red circle
and red triangle) for our two-dimensional example in the case of
synchronous IEQ-PDMM. Fig. 7 shows convergence results for
finding the Chebyshev centre. In this example, we half-averaged
the operator T since the objective function is not uniformly
convex and the algorithm would fail to converge without av-
eraging. Alternatively, we could find an outer approximation
of the polytope by finding the smallest bounding rectangle (or
k-polytope) enclosing it. In the case of a bounding rectangle, we
need to solve four linear programs. Let dk, k = 1, . . . , 4, denote
the normal vector to the kth hyperplane defining the bounding
rectangle. We then have to solve the following LPs:

minimise dTk x,

subject to aT� x ≤ b�, � = 1, . . . ,m,

Fig. 7. Convergence results for finding the Chebyshev centre.

for k = 1, . . . , 4. Again, in order to solver this problem dis-
tributed, we introduce local variables xi at each node and add
the additional constraint that xi = xj for all (i, j) ∈ E . That is,
we solve the LPs

minimise dTk xi,

subject to aT� xi ≤ b�, i ∈ V, � = 1, . . . ,m,
xi = xj , (i, j) ∈ E ,

which are of the standard form suitable to be solved using IEQ-
PDMM. The result is shown in Fig. 6 (orange rectangle and
corresponding centre point), where we again half-averaged the
operator T for the same reason as mentioned above.

C. Comparison With Existing Algorithms

In this section we consider a distributed quadratic optimi-
sation problem with inequality constraints over the random
geometric graph depicted in Fig. 2. The problem we consider
here is given by

minimise
∑
i∈V

1

2
‖xi − ai‖2

subject to xi ≤ xj for i < j, (i, j) ∈ E ,
(27)

where the data ai was randomly generated from a Gaussian dis-
tribution. We compared three methods. First of all we compared
the proposed IEQ-PDMM method with a PDMM variant where
we introduced, as is commonly done, additional slack variables.
The reason for this comparison is to find out if the introduction
of slack variables helps accelerating the convergence. For every
edge constraint we introduce a slack variable wij ≥ 0 such that
the inequality constraints in (3) can be expressed as

Aijxi +Ajixj + wij = bij ,

wij ≥ 0.

Since standard PDMM can only handle equality constraints, the
inequality constraints wij ≥ 0 can be included in the objective
function by introducing the indicator function I{w�0}. However,
by doing so, the objective function is not separable anymore.
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Fig. 8. Convergence comparison of IEQ-PDMM, PDMM-slack, and extended
ADMM over the random geometric graph depicted in Fig. 2.

TABLE I
COMPARISON OF COMPUTATIONAL COMPLEXITY PER ITERATION (IN SECONDS)

This can be easily overcome by introducing two slack variables
per edge, wi|j ≥ 0 and wj|i ≥ 0, and add the additional equality
constraint wi|j = wj|i. With this, the PDMM variant that can
handle inequality constraints becomes

minimise
∑
i∈V

⎛
⎝fi(xi) +

∑
j∈Ni

I{wi|j≥0}

⎞
⎠

subject to Aijxi +Ajixj + wi|j + wj|i = bij
wi|j − wj|i = 0 (i, j) ∈ E .

We will refer to this algorithm as PDMM-slack. Secondly,
we will compare our proposed algorithm to a state-of-the-art
ADMM-based algorithm that avoids slack variables, referred
to as extended ADMM [1]. Since the extended ADMM al-
gorithm is a synchronous update scheme, we only compare
synchronous versions of the algorithms. In both IEQ-PDMM
and PDMM-slack, the parameter c was set to c = 0.7 and
in extended ADMM [1] the parameters ν and β were set to
(ν, β) = (0.5, 0.5). These values for c, ν and β were chosen
to produce the fastest convergence rate. To make a fair com-
parison between the methods, we set α = 1

2 (ADMM). For
completeness, we included results for α = 1 as well. Fig. 8
visualises the convergence results of the three methods. As can
be seen, both PDMM algorithms have similar convergence rates
and outperform the extended ADMM algorithm in terms of
number of iterations needed to converge to a certain accuracy
level. However, the computational complexity of the proposed
IEQ-PDMM algorithm is significantly lower than the extended
ADMM and PDMM-slack algorithm. This can be seen from
Table I which shows the average time (in seconds) needed per
iteration for the three methods. Clearly, IEQ-PDMM consumes
the least amount of time, demonstrating its efficiency. The

PDMM-slack algorithm is most expensive because we have
to perform an inequality constraint optimisation problem at
each and every iteration (here implemented using the MATLAB
program “quadprog”). The above results indicate that the intro-
duction of slack variables does not improve the convergence rate
of PDMM and that it is most efficient to handle the inequality
constraints directly by imposing non-negativity constraints on
the dual variables as is done in (5).

VIII. CONCLUSION

In this paper, we have presented a node-based distributed
optimisation algorithm for optimising a separable convex cost
function with linear equality and ineqaulity node and edge
constraints, termed inequality-constraint primal-dual method
of multipliers (IEQ-PDMM). Using monotone operator theory
and operator splitting, we derived node-based update rules for
solving the problem. To incorporate the inequality constraints,
we imposed non-negativity constraints on the associated dual
variables, resulting in the introduction of a reflection operator to
model the data exchange in the network, instead of a permutation
operator as derived for equality constraint PDMM. We showed
how to avoid unnecessary communication between nodes in the
case we have node constraints by introducing fictive nodes in the
network and highlighted the relation with Peaceman-Rachford
splitting and ADMM. We showed convergence results for both
synchronous and stochastic update schemes, where the latter
includes asynchronous update schemes and update schemes with
transmission losses. The algorithm converges for any CCP cost
function when using averaged iterations, and has primal conver-
gence for non-averaged updates in the case the cost function is
uniformly convex.
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