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Abstract

Geothermal energy plays a role in advancing clean energy solutions for a sustainable future, which
is why we investigate the sustainability of geothermal systems in an aquifer. The geothermal system
examined in this research operates using two wells, positioned 1 km apart. One well pumps cold water
into the porous medium and the second well pumps warm water out of the aquifer. As warm water
is extracted, the temperature of the aquifer decreases. This cooling disturbs the chemical balance of
the minerals in the water, which can lead to precipitation reactions. This precipitation reduces the
porosity and consequently the permeability of the aquifer.

The temperature distribution is modeled using the pressure and velocity field. This showed that
the aquifer had cooled to 40˝C in 6 years. According to this result, the use of a geothermal aquifer
is not sustainable. The cooling within 6 years is not accurate, because the boundary conditions that
were selected were not fully chosen to reflect the complexities of the system and we didn’t properly
consider the heat coming from Earth’s core.

Precipitation reactions lead to an increase or decrease in concentration of various minerals in the
water. These reactions cause deposits of solid minerals on the grains or porous rock, causing the
aquifer to clog, allowing less and less water to flow through. In this model, the amount of precipitation
was very small and therefore had little effect on the water flow and the sustainability of the aquifer.
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List of symbols

Variable Symbol Value Unit
Length of the aquifer L 1000 [1] m
Width of the aquifer H 1000 m

Thickness of the aquifer τ 30 [2] m

Injection flux Qinj 300 [2] m3

hr

0.083 m3

s
Initial porosity ϕ0 0.15 [2] -

Flow rate u0 3.17 ¨10´5 [2] m
s

Initial permeability k0 10´12 m2

Viscosity of water µ 1.1375 ¨10´3[3] Pa ¨ s
Characteristic distance dc 1000 m
Characteristic time tc 5.4 ¨ 107 s

Characteristic velocity uc 1.85 ¨ 10´5 m
s

Characteristic pressure pc 21 ¨ 106 Pa
Thermal conductivity water λw 0.6 [3] W

m¨K

Density water ρw 1 ¨ 103 [3] kg
m3

Specific heat water cw 4.18 ¨103 [3] J
kg¨K

Thermal conductivity porous medium λpm 1.1 [3] W
m¨K

Density porous medium ρpm 2.6 ¨ 103 [3] kg
m3

Specific heat porous medium cpm 0.8 ¨103 [3] J
kg¨K

Low temperature Tlow 15 ˝C
High temperature Thigh 80 [4] ˝C

Diffusion coefficient D 1.5 ¨10´9 [5] m2

s
Arrhenius pre-exponential factor A 4.65 ¨10´2 [2] 1

m2s

Activation energy Ea 34000 [2] J
mol

Universal gas constant R 8314.3 J
mol¨K

Reactive surface area Adiss “ Aprec 1 m2

kg

Initial concentration of the porous medium Cpm 2 ¨10´4 mol
kgw

Initial concentration of Na` CNa` 1.84 ¨10´1 [2] mol
kgw

Initial concentration of Cl´ CCl´ 4 ¨10´3 [2] mol
kgw

Activity coefficient for Na` γNa` 1.188 ¨10´1r2s -
Activity coefficient for Cl´ γCl´ 2.659 ¨10´3 [2] -
Step size in the x-direction ∆x 0.01 m
Step size in the y-direction ∆y 0.01 m

Table 1: An overview of all the parameters used in this model.
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Introduction

Geothermal energy is a renewable energy source derived from the internal heat of the Earth. It
harnesses thermal energy generated and stored within the Earth’s crust. Unlike fossil fuels, geothermal
energy is environmentally friendly, producing minimal greenhouse gas emissions. With its reliability
and low operational costs, geothermal energy plays an increasing role in the advancement of clean
energy solutions for a sustainable future. In 2022, geothermal energy contributes approximately 0.5%
to the global electricity generation capacity [6]. The Dutch government aims to increase this share,
targeting geothermal energy to meet 5% of the nation’s heating demand by 2030 and 23% by 2050 [7].

Geothermal aquifers are natural underground reservoirs of water heated by the internal heat of the
Earth. These aquifers, located within permeable rock formations, serve as a key source of geothermal
energy. The water in these aquifers absorbs heat from the surrounding rocks, often reaching high
temperatures. By tapping into these geothermal aquifers, we can extract heat for various applications
such as electricity generation, direct heating systems and agricultural uses.

The geothermal system examined in this research operates using two wells, positioned 1 km apart
(Figure 1.1). One well pumps cold water into the porous medium and the second well pumps warm
water out of the aquifer.

Figure 1.1: Geothermal system with an aquifer at several kilometers deep where the temperature is
around 80 ˝C. The aquifer (yellow) is enclosed by two layers with a low permeability (gray). The
left well (blue) pumps water into the aquifer and the right well (red) pumps heated water out of the
aquifer.

As warm water is extracted, the temperature of the aquifer decreases. This cooling disturbs the
chemical balance of the minerals in the water, which can lead to precipitation reactions. This precipi-
tation reduces the porosity and, consequently, the permeability. As a result, the pumps that circulate
water in and out of the aquifer must work harder, increasing energy consumption. Eventually, the
energy required for pumping may exceed the amount of energy extracted from the water. We would
like to prevent this from happening and have a better understanding of these processes by modeling
the relation between porosity, permeability and reaction rate.

Therefore, our main research question:

How sustainable is the use of geothermal energy in an aquifer?

We divide this research question into two subquestions:

How long does it take for the geothermal aquifer to cool?
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How long does it take for the geothermal aquifer to clog due to precipitation reactions?
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Derivation of the model equations

This chapter will cover the geometric domain and system used in this model (section 2.1), the properties
of the porous medium (section 2.2), the Darcy model (section 2.3) and the dimensionless quantities
used in this model (section 2.4). We will also formulate the model equations for the pressure/velocity
field (section 2.5), the temperature distribution (section 2.6) and the concentration field (section 2.7).

2.1 Geometric domain

An enclosed aquifer located several kilometers beneath the surface will be examined, focusing on a
two-dimensional horizontal domain characterized by a length x “ L and a width y “ H (see Figure
2.1).

Figure 2.1: Schematic representation of an aquifer (yellow) enclosed by two layers with a low perme-
ability (brown) with dimensions L x H. [8]

In general, in a geothermal system, two cylindrical wells are placed, with the water flowing radially.
This water is slowly heated by the porous medium as the water flows further. Some of this heated
water is pumped up through the other well (see Figure 2.2a).
In this model, the geothermal system has been simplified in two ways:

1. We set the well width to match the domain width. Due to the chosen control volume (Lx H),
the curvatures in the flow pattern are negligible. Instead of a circular flow pattern, this results
in a parallel flow pattern. This simplifies the model since there’s no need to use cylindrical
coordinates.

2. We assume that all the water flows directly from one well to the other in a parallel manner.

With this simplification we lose accuracy, because in a circular flow pattern, the velocity and therefore
the pressure decreases as the water flows further. This is not the case with the simplification. These
simplifications lead to the simplified geothermal model depicted in Figure 2.2b.
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(a) A general geothermal system with two cylin-
drical wells where water with a low temperature
flows in a circular manner out of the (blue) well.
This water is slowly heated by the porous medium
as the water flows further. Some of this heated wa-
ter is pumped up through the other (red) well.

(b) The simplified geothermal model used in this
model with a parallel flow pattern and the width
of the wells match the domain width.

Figure 2.2: Top view of two geothermal systems: a general system on the left and the applied model
on the right. The color gradient from blue to red represents the increase in water temperature. The
arrow indicates the relevant direction of water flow.

2.2 Properties of the porous medium

The aquifer is composed of a porous medium saturated with water and has two important characteris-
tics. The first characteristic is the porosity ϕ, which indicates the fraction of the total volume that is
occupied by water. The second characteristic is the permeability k, which is a measure of how easily
the water can flow through the pores of the medium (Figure 2.3). The permeability is influenced by
the structure, the size of grains in the porous medium and by precipitation due to chemical reactions
on the grains.

Figure 2.3: Schematic representation of the porous medium in the aquifer. The precipitation (yellow)
on the grains (brown) causes the water to flow less smoothly through the pores (white). The arrows
represent possible flow paths of water through the medium.

2.3 The Darcy model

In this project we consider velocities of the water in a porous medium at a macroscopic scale, the
Darcy velocity. The superficial velocity is calculated by dividing the water flux passing through a
cross-section of the medium by the area of that cross-section. Due to the partial coverage of this
region with a porous medium, the Darcy velocity is less than the actual velocity. In this model, we will
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simulate two extremely wide wells with a water flow that is parallel and flows from one well to the other.

Darcy’s law is an equation that describes the flow of a fluid through a porous medium. This law
states that velocity is proportional to pressure gradient and is given by:

ÝÑu “ ´
k

µ
∇p (2.1)

with Darcy velocity ÝÑu , permeability k, viscosity µ and pressure p. The Darcy velocity is a superficial
velocity that is given as the volume flow rate over a chosen area and is different from the local velocity
in the porous medium. The Darcy velocity is a velocity field that only gives the general direction and
speed. The Darcy model can only be applied if the Reynolds number is very low, which is the case in
this model.

2.4 Dimensionless quantities

Each dimensionless quantity relates to a specific problem. In this case, we are focused on the inter-
actions and dynamics occurring between the two wells within the macroscopic model of a geothermal
system. Therefore, the following quantities are normalized:

xd “
x

dc
(2.2)

yd “
y

dc
(2.3)

With dc “ L “ 1000 m the distance between the two wells. x is the horizontal axis of the domain
(from 0 to L) and y is the vertical axis of the domain (from 0 to H).

Now for the dimensionless quantity time td, we use the ”porevolume”, as follows

td “
t

tc
(2.4)

With tc “
LτHϕ0

Qinj
“ 5.4 ¨ 107 s « 1.7 years, where Qinj “ 0.083 m3

s is the injection flux, ϕ0 “ 0.15 is

the initial porosity, H “ 1000 m the width of the porous medium and τ “ 30 m the thickness of the
porous medium. In this case, t “ tc is the time it takes to fill up the porous medium with water.

The dimensionless velocity ud is calculated using the dc and tc, as follows

ud “
u

uc
(2.5)

With uc “ dc

tc
“

Qinj

τHϕ “ 1.85 ¨ 10´5 m
s « 1.6 m

day .

To get the dimensionless quantity for pressure pd, we use Darcy’s law in 1D and the dimensionless xd

and ud.

u “ ´
k0
µ
∇p

ud ¨ uc “ ´
k0
µ

dpd ¨ pc
dxd ¨ dc

ud “ ´
k0pc
µdcuc

dpd
dx

k0pc
µdcuc

“ 1

pc “
µdcuc

k0

(2.6)
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With µ “ 1.1375 ¨10´3 Pa ¨ s is the viscosity of water and k0 “ 10´12 m2 the initial permeability. So
we get a dimensionless quantity pd:

pd “
p

pc
(2.7)

With pc “
µLQinj

k0τHϕ0
« 21 ¨ 106 Pa “ 21 Bar.

For the dimensionless quantity temperature Td, we have

Td “
T ´ Tlow

Thigh ´ Tlow
(2.8)

Where Tlow is the temperature of the cold water that is pumped into the porous medium and Thigh

the temperature of the porous medium at t “ 0.

For the concentration of two dissolved substances, we assume that one of the substances is in
abundance, we have

Cd “
C ´ Cpm

Cpm
(2.9)

With Cpm “
KeqpThighq

γCl´γNa`CNa`
“ 2 ¨10´4 mol

kgw the initial concentration of the porous medium (see equation

2.40).

2.5 Conservation of mass

The law of conservation of mass states that for any closed system, the mass of the system must remain
constant over time. In this case, no water should appear or disappear when flowing through the porous
medium. This is shown by the following equation:

m “

¡

∆V

ρϕdV (2.10)

Where m is the mass, ∆V a small volume where the water flows though, ρ the density of water and ϕ
the porosity, the fraction of the volume that is occupied by water.
The mass flow Φ is defined as the amount of water that flows into the system per time given by the
formula:

Φ “ ´

£

S

pρÝÑu q ¨ n̂dS “ ´

¡

∆V

∇ ¨ pρÝÑu qdV (2.11)

Here the divergence theorem is applied after the second equal sign A.1.
The change in total mass is only due to mass flow. So by differentiating m with respect to time, as
follows

dm

dt
“

d

dt

¡

∆V

ρϕdV “

¡

∆V

d

dt
ρϕdV “ ´

¡

∆V

∇ ¨ pρÝÑu qdV “ Φ (2.12)

From this expression we extract:

B

Bt
pρϕq “ ´∇ ¨ pρÝÑu q (2.13)

In this model we look at a parallel water flow from one well to the other. So we assume that water
flows in at x “ 0 with velocity u0 and out at x “ L with the same velocity. We also assume that there
is no water flow in or out of the boundaries at y “ 0 and y “ H, because the only water inflow is at
the boundary x “ 0 and de flow pattern is parallel (see Figure 2.4).
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Figure 2.4: Visual representation of the equation and the boundary conditions for the pressure field p.
Through the boundaries x “ 0 and x “ L we have a water flow of u0. Using the law of Darcy, we get
the boundary condition ´ k

µ
Bp
Bx p0{L, yqx̂ “ u0x̂. We also assume that there is no water flow through

the boundaries at y “ 0 and y “ H [8]. Using the law of Darcy again, we get Bp
By px, 0{Hq “ 0.

If we assume that ρ and ϕ are constant over time and space (later, we assume that ϕ is a function
of time, because of precipitation reactions, see section 3.3), as follows

$

’

’

’

’

&

’

’

’

’

%

∇ ¨ ÝÑu “ 0
ÝÑu “ ´ k

µ∇p
ÝÑu px, 0q “ ÝÑu px,Hq “ ´ k

µ
Bp
By px, 0q “ ´ k

µ
Bp
By px,Hq “ 0

ÝÑu p0, yq “ ÝÑu pL, yq “ ´ k
µ

Bp
Bx p0, yq “ ´ k

µ
Bp
Bx pL, yq “ u0

(2.14)

Now we substitute Darcy’s law in 2.14 and we get our pressure field equation with boundary
conditions:

$

’

’

’

’

’

&

’

’

’

’

’

%

∇ ¨ p´ k
µ∇pq “ 0

Bp
By px, 0q “

Bp
By px,Hq “ 0

Bp
Bx p0, yq “ ´ u0

k
µ p0,yq

Bp
Bx pL, yq “ ´ u0

k
µ pL,yq

(2.15)

And this equation in dimensionless form:

∇ ¨ p´
k

µ
pc∇pdq “ 0 (2.16)

2.6 Temperature

There are three ways of heat transport: diffusion/conduction, convection and radiation. In this model
we will only look at diffusion and convection, because the radiation of heat is negligible.
First we define a heat energy density e, which is linearly related to the temperature T :

epx, y, tq “ cwρT px, y, tq (2.17)

The specific heat for water cw can be considered a constant in the model’s temperature range.

The convection flux density
ÝÑ
Φ̂c refers to the rate at which heat is transferred by convection per unit

area and is given by:

ÝÑ
Φ̂c “ eÝÑu “ cwρTÝÑu (2.18)
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The diffusion flux density
ÝÑ
Φ̂d relates to the Fourier’s law given by:

ÝÑ
Φ̂d “ ´λ∇T (2.19)

with λ the thermal conductivity.

The changes in heat energy density caused by the diffusion and convection flux are calculated using
the divergence theorem applied to a small volume ∆V .

∆V ϕ
Be

Bt
“ ´

¿

S

ÝÑ
Φ̂d¨n̂dS´

¿

S

cwρTÝÑu ¨n̂dS “ ´

ĳ

∆V

∇¨
ÝÑ
Φ̂ddV ´

ĳ

∆V

∇¨pcwρTÝÑu qdV “ ∆V pλ∇2T´cwρ∇¨pTÝÑu qq

(2.20)
From this expression we extract:

BT

Bt
“

1

cwρ

Be

Bt
“

a

ϕ
∇2T ´

1

ϕ
∇ ¨ pTÝÑu q (2.21)

with thermal diffusivity a “ λ
cwρ .

The sand will cool rapidly in comparison to the duration required for water to flow around the grains
[8] [9] [10]. Consequently, the temperatures of both the porous medium Tpm and the water Tw can be
considered approximately equal, represented as T . However, the heat diffusivity coefficients of the two
materials are not identical, leading us to formulate two distinct heat equations: one for the temper-
ature of the water (see equation A.2) and another for the temperature of the medium (see equation
A.3). Then we get the complete heat equation with both the porous medium and water parameters,
as follows

BT

Bt
“

λw ` λpm

cwρwϕ ` cpmρpmp1 ´ ϕq
∇2T ´

cwρw
cwρwϕ ` cpmρpmp1 ´ ϕq

∇ ¨ pTÝÑu q “: α∇2T ´β∇ ¨ pTÝÑu q (2.22)

where we defined an effective thermal diffusivity α and the correction factor for convective heat
transport β. See A.2 for the steps between equation 2.21 and 2.22.

For this model we assume that at x=0, water is pumped in with a temperature Tlow. At x ą 0
the initial temperature of the porous medium is Thigh. We also assume that there is no heat transfer
at the boundaries y “ 0 and y “ H, because the domain repeats itself for higher and lower values of
y. We intoduce the Péclet number βu∆x

α , where α and β are the coefficients of equation 2.22, u the
velocity of the fluid flow and ∆x the step size used in the model. Calculating the Péclet number, we
see that the heat transport is dominated by convection. Therefore we set the boundary at x “ L to
have no heat diffusion, assuming that diffusion is not an important contributor to heat flow at this
location.

This gives the following boundary and initial conditions:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

T p0, y, tq “ Tlow

BT
Bx pL, y, tq “ 0
BT
By px, 0, tq “ 0
BT
By px,H, tq “ 0

T px ą 0, y, 0q “ Thigh

(2.23)

And this equation in dimensionless form:

BTd

Btd
“ α

tc
dc

∇2Td ´ β
tcuc

dc
∇ ¨ pTd

ÝÑudq (2.24)
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Figure 2.5: Visual representation of equation and the boundary conditions for the temperature distri-
bution T . At the boundaries y “ 0 and y “ H there is no heat transfer, because the domain repeats
itself for higher and lower values of y. At x “ L to have no heat diffusion, because the heat transport
is dominated by convection. At x “ 0, water is pumped in with a temperature Tlow. At x ą 0 the
initial temperature of the porous medium is Thigh.

Figure 2.6: The schematic representation of the model derived thus far.

2.7 Concentration

The change in concentration C of dissolved substances in the water depends on diffusion, convection
and potential reactions with other materials. The calculations for the concentrations are similar to
those of the temperature. Only here Fourier’s law is replaced by Fick’s law for diffusion ánd there is
a reaction rate term r. The convection flux density ÝÑqc is given by:

ÝÑqc “ CÝÑu (2.25)

And the diffusion flux density ÝÑqd is given by:

ÝÑqd “ ´D∇C (2.26)
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with the diffusivity D. Using the divergence theorem we get he change in concentration inside a small
volume ∆V .

∆V ϕ
BC

Bt
“ ´

¿

S

pÝÑqd`ÝÑqc q¨n̂dS´rϕ∆V “ ´

ĳ

∆V

∇¨p´D∇C`CÝÑu qdV ´rϕ∆V “ ∆V pD∇2C´∇¨pCÝÑu q´rϕq

(2.27)
And simplifying this gives the model equation for the concentration of species A:

BC

Bt
“

D
ϕ
∇2C ´

1

ϕ
∇ ¨ pCÝÑu q ´ r (2.28)

We assume that there is no flux of dissolvents at the boundaries y = 0 and y “ h. At x= 0
the concentration is given by the injection concentration Cin. The initial concentration of the porous
medium is given by Cpm.

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Cp0, y, tq “ Cin

BC
Bx pL, y, tq “ 0
BC
By px, 0, tq “ 0
BC
By px,H, tq “ 0

Cpx ą 0, y, 0q “ Cpm

(2.29)

2.7.1 Precipitation reactions

Precipitation reactions are chemical reactions in which two soluble reactants combine in an aqueous
solution to form an insoluble solid, called a precipitate. This occurs when the product of the reaction
exceeds the solubility limit of a compound. Precipitation reactions are typically represented by double
displacement equations and are used in qualitative analysis to identify ions in a solution.

We determine the reactionrate/net precipitation rate r by considering a precipitation reaction with
two species A and B:

AB Ø A ` B (2.30)

The activity related to the concentration of a species A (similarly for species B) is defined as

aA “
γACA

γrCr
(2.31)

Where γA is the activity coefficient and CA the concentration of species A. The reference concentration
Cr and the reference activity coefficient γr are both chosen to be one.

The precipitation rate Rprec (backward arrow) is given by

Rprec “ ApreckprecaAaB “ ApreckprecIAP (2.32)

Here aA and aB are the activities related to the concentration of respectively species A and B, Aprec

the surface area (in m2) and kprec the precipitation reaction constant. The ionic activity product
(IAP) is defined as

IAP “ aAaB “
γAγBCA ¨ CB

γ2
rC

2
r

(2.33)

The dissolution rate Rdiss (forward arrow) is given by

Rdiss “ Adisskdiss (2.34)

The activity of a solid is assumed to be one.
The net precipitation rate r is given by

r “ Rprec ´ Rdiss “ Adisskdiss

˜

IAP

Keq
´ 1

¸

(2.35)
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Where the equilibrium constant Keq is defined as

Keq “
Adisskdiss
Apreckprec

(2.36)

Since kprec is difficult to determine (and difficult to find in the literature) we use Keq and kdiss to
calculate kprec. The dissolution reaction constant kdiss is given by the Arrhenius equation

kdiss “ Ae´
Ea
RT (2.37)

where A is the Arrhenius pre-exponential factor, Ea the activation energy, R the universal gas constant
and T the temperature in Kelvin [11] [12]. In the final model this equation is not used due to a
simplification explained in section 3.3.

One of the many ways to express the equilibrium constant Keq is given by:

log10Keq “ A1 ` A2T `
A3

T
` A4log10T `

A5

T 2
` A6T

2 (2.38)

See table 2.1 for the values of A1 up to and including A6. Temperature T is in Kelvin.

Constant Value
A1 3.55 ¨103

A2 1.21
A3 -1.33 ¨105

A4 -1.41 ¨103

A5 5.08 ¨106

A6 -4.55 ¨10´4

Table 2.1: Equilibrium constants for Keq [2].

At equilibrium the reaction term equals zero, then the equilibrium concentration C0pT q (dependent
on temperature T (in Kelvin)) is given by:

γAγBC0 ¨ CB

KeqpT q
´ 1 “ 0

C0pT q “
KeqpT q

γAγBCB

(2.39)

At t “ 0, the temperature T equals Thigh, this gives the initial concentration of the porous medium
(Cpmq.

C0pThighq “ Cpm “
KeqpThighq

γAγBCB
(2.40)

This gives our new concentration equation in dimensionless form:

BCd

Btd
“

D
ϕ

tc
dc

∇2Cd ´
1

ϕ

tcuc

dc
∇ ¨ pCd

ÝÑudq ` AkdisstcCd (2.41)
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Figure 2.7: The schematic representation of the model derived thus far.

Since precipitation reactions are now implemented in the concentration model, the porosity ϕ and
also the permeability k are not constant in time. Therefore the following equations have changed:

∇ ¨ p´
k

µ
∇pq “ ´

Bϕ

Bt
(2.42)

Similar for the velocity

∇ ¨ pÝÑu q “ ´
Bϕ

Bt
(2.43)

We assume that the relation between the porosity ϕ and the permeability k is given by [13]:

k “
d2

180

˜

ϕ3

p1 ´ ϕq2

¸

(2.44)

with d the size of the gains.
In this model we assume that precipitation occurs when the concentration of species A (C) is higher

than the equilibrium concentration C0pT q. The surplus with respect to the equilibrium concentration
will precipitate. When C is lower than C0, there will be a deficit with respect to the equilibrium
concentration and this will dissolve the solid salt. The amount of precipitation P is calculated by
taking the difference between C and C0 which is defined as

P “ C ´ C0 (2.45)
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2.8 Overview of the model

Figure 2.8 shows the schematic of the derived model. Now each arrow in this model will be explained:

1. The relation between the pressure and velocity equation given by the law of Darcy.

2. The influence of the velocity field on the temperature field given by the convection term.

3. The dissolution reaction constant kdiss is temperature dependent. The factor influences the
precipitation reaction.

4. Similar to kdiss is the equilibrium constant Keq dependent on temperature. The equilibrium
concentration C0 can be calculated with this equilibrium constant.

5. Similar to kdiss, the equilibrium concentration influences the precipitation reaction.

6. Similar to arrow 2, the velocity field influences the concentration field.

7. Arrow 7 combines the concentration equation and the precipitation reaction to yield a concen-
tration field.

8. Arrow 8 defines when precipitation occurs, so for C0 ă C. Similar for dissolution. For further
explanation, see section 3.3.

9. The amount of precipitation is calculated by taking the difference between the concentration and
the equilibrium concentration.

10. Arrow 10 couples the amount of precipitation to the porosity ϕ.

11. Permeability k is calculated via the Kozeny-Carman relation using the porosity ϕ.

12. Arrow 12 represents the feedback from the change in porosity and permeability to the pressure
and the velocity field.
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Figure 2.8: The schematic of the derived model, showing the connections between the variables.
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Results

3.1 Pressure and velocity field

In this section, the pressure and velocity equations will be solved numerically and analytically. The
analytical solution is possible due to the chosen equation and boundary conditions (see section 2.5).
We verify the numerical approximation with this analytical solution of the pressure field.

3.1.1 Numerical approximation of the pressure and velocity field

For the numerical approximation in this model the 2D domain r0, Ls ˆ r0, Hs has been divided in small
rectangles of ∆x ˆ ∆y with ∆x “ L

nx
and ∆y “ H

ny
. Here nx and ny are the number of grid points

in the x-direction and y-direction respectively. We choose nx and ny such that ∆x and ∆y are very
small.

pi,j is the numerical approximation of pressure at location rpi ` 1
2 q∆x, pj ` 1

2 q∆ys (Figure 3.1).

Similarly for κi,j := k
µ i,j

. Equation 2.15 will be approximated with the central difference method

(see appendix A.3), because of its simplicity and it gives an accurate enough approximation of our
flow. This numerical method will yield a linear matrix equation, that is solved by the python solver:
numpy.linalg.solve(). When the pressure field is calculated, the velocities can be derived from the
Darcy model (equation 2.1) by approximating the pressure gradient with the difference between two
grid points. A staggered grid is used to connect the velocity field with the pressure field (see Figure
3.1). The numerical solution of the velocity field ÝÑu is given in Figure 3.2.

Figure 3.1: Discretization of scalar pressure p and vector velocity ÝÑu .
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Figure 3.2: The numerical solution of the velocity field ÝÑu with the arrows indicating the magnitude
and direction of the Darcy velocity.

3.1.2 Analytical solution for the pressure field

Now we will solve equation 2.15 analytically. We start with assuming that k
µ is constant in space, as

follows

$

’

’

’

&

’

’

’

%

∇2p “ 0
Bp
By px, 0q “

Bp
By px,Hq “ 0

Bp
Bx p0, yq “ ´

u0µ
k

Bp
Bx pL, yq “ ´

u0µ
k

(3.1)

Observe that qpx, yq “ ´
u0µ
k x is a solution that satisfies the boundary conditions: Bp

Bx p0, yq “
Bp
Bx pL, yq “ ´

u0µ
k .

Now define rpx, yq :“ ppx, yq ´ qpx, yq, as follows

$

’

’

’

&

’

’

’

%

∇2r “ ∇2pp ´ qq “ ∇2p “ 0
Br
By px, 0q “ Br

By px,Hq “ 0
Br
Bx p0, yq “

Bp
Bx p0, yq ´

Bq
Bx p0, yq “ ´

u0µ
k `

u0µ
k “ 0

Br
Bx pL, yq “

Bp
Bx pL, yq ´

Bq
Bx pL, yq “ ´

u0µ
k `

u0µ
k “ 0

(3.2)

To solve the following equations, we used the separation of variables method (see appendix A.6).
The dimensionless solution for the pressure field, as follows

pd “ ´
u0µdc
kpc

xd `
p0
pc

(3.3)

3.1.3 Results of the pressure field

The numerical and analytical solution of the pressure field p is given in Figure 3.3 and the relative
difference between them is given in Figure 3.4.
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(a) The numerical solution of the pressure field p
expressed in the dimensionless pressure pd.

(b) Analytical solution of the pressure field p ex-
pressed in the dimensionless pd.

Figure 3.3: The numerical and analytical solution for equation 2.16 on the dimensionless domain
pxd, ydq.

(a) The numerical and analytical solution for pres-
sure p plotted in the x-direction. There is little or
no visible difference between the two solutions.

(b) The relative difference between the analytical
solution and the numerical solution for pressure p:
ppnum ´ panaq{maxppnumq ¨ 100%. The difference
between the two solutions is at most 5 ¨ 10´12%,
so a minimal difference.

Figure 3.4: The analytical and numerical solution for equation 2.16 and the relative difference on the
dimensionless domain pxd, ydq.

To find the accuracy of a numerical method, the numerical solutions are compared with the analyt-
ical solution. In this case, the numerical and analytical solution of the pressure equation were almost
identical and therefore the numerical approximation is very accurate.
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3.2 Temperature Distribution

In this section, the temperature equation will be solved numerically and analytically.

3.2.1 Numerical approximation of the temperature distribution

Ti,j is the numerical approximation of pressure at location rpi ` 1
2 q∆x, pj ` 1

2 q∆ys. Equation 2.22 will
be approximated with several numerical methods (see appendix A.4) Similar to the pressure, equation
2.22 will be approximated by the central difference and for time derivative terms forward Euler will be
used. The stability of the forward Euler is checked in section A.8. The numerical solution for equation
2.24 is given in Figure 3.5 and 3.6.

(a) Temperature distribution T at td “ 0 ex-
pressed in the dimensionless temperature Td.

(b) Temperature distribution T at td “ 1 ex-
pressed in the dimensionless temperature Td.

Figure 3.5: The numerical solution for equation 2.24 on the dimensionless domain pxd, ydq.

Figure 3.6: The numerical solution for the dimensionless temperature distribution Td plotted in the
x-direction.
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3.2.2 Analytical solution for the temperature distribution

Now we will solve equation 2.22 with boundary conditions 2.23 analytically. We start with assuming
that the Darcy velocity ÝÑu is constant in space and substitute γ “ βÝÑu , as follows

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

BT
Bt “ α∇2T ´ γ∇ ¨ T

T p0, y, tq “ Tlow

BT
Bx pL, y, tq “ 0
BT
By px, 0, tq “ 0
BT
By px,H, tq “ 0

T px ą 0, y, 0q “ Thigh

(3.4)

Now assume that α ‰ 0, γ ‰ 0 and we neglect the y-component of the heat equation. We get a 1D
heat equation:

BT

Bt
“ α

B2T

Bx2
´ γ

BT

Bx
(3.5)

With γ “ βÝÑu . For a solution of this heat equation try:

T px, tq “ e´
γ2

4α te
γ
2α tvpx, tq :“ Avpx, tqr14s (3.6)

Substituting 3.6 into equation 3.5, as follows

´
γ2

4α
Av ` A

Bv

Bt
“ α

˜

γ2

4α2
Av ` 2

γ

2α
A

Bv

Bx
` A

B2v

Bx2

¸

´ γ

˜

γ

2α
Av ` A

Bv

Bx

¸

A
Bv

Bt
“

˜

2
γ2

4α
´

γ2

2α

¸

Av ` pγ ´ γqA
Bv

Bx
` αA

B2v

Bx2

Bv

Bt
“ α

B2v

Bx2

(3.7)

So now we get our new problem:

$

’

’

’

&

’

’

’

%

Bv
Bt “ α B

2v
Bx2

vp0, tq “ 0
γ
2αvpL, tq ` Bv

Bx pL, tq “ 0

e
γ
2αxvpx ą 0, 0q “ ∆T

(3.8)

Here we use separation of variables (see appendix A.7). The dimensionless solution, as follows

Tdpx, tq “

8
ÿ

n“1

cn
∆T

e´p
γ2

4α `λnαqtctde
γ
2αdcxdsinp

a

λndcxdq (3.9)

With:

cn “

ş1

0
∆Te´

γdc
2α xdsinp

?
λndcxdqdxd

ş1

0
sin2p

?
λndcxdqdxd

(3.10)

3.2.3 Results of the temperature distribution

This analytical solution is given in figure 3.7.
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Figure 3.7: The analytical solution for equation 2.24 with neglection of the y-component. The tem-
perature distribution T is expressed in the dimensionless temperature Td.

The analytical problem could not be solved purely through analytical methods, because the eigen-
values and therefore also the eigenfunctions are too complicated to solve by hand. We used numerical
methods for the derivation of the eigenvalues and therefore some errors from the numerical computa-
tion influenced the results of the analytical solution. Therefore the accuracy of the numerical model
for the temperature distribution could not be determined with certainty. The numerical methods used
in the simulation are stable for ∆td ď 0.03 (see A.8).

The aquifer is defined as completely cooled if the temperature on the right side of the aquifer is
less than 40 ˝C. For a constant κ “ k

µ in time and space, the aquifer is fully cooled after 1.83 ¨108 s

(td “ 3.39), which is 5.803 years.
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3.3 Concentration field

3.3.1 Numerical approximation of the concentration field

For the numerical approximation of the concentration equation some considerable simplifications have
been applied.

1. Only two species A and B are involved in the precipitation reaction. In this model we choose
Na` as species B and Cl´ as species A. Both these minerals have the highest concentration of
all the minerals in water. The precipitation reaction will form solid salt (NaCl):

NaCl Ø Na` ` Cl´ (3.11)

2. The concentration of Na` is much larger than the concentration of Cl´ [2]. Therefore the
production of NaCl only depends on the concentration of Cl´. Furthermore, the concentration
of Na` remains constant in time and space.

3. The change in porosity ϕ and permeability k due to precipitation has no influence on the pres-
sure, velocity and temperature distribution (A). This simplification is done because the pres-
sure/velocity equation then gets an extra time-dependent term, which complicates the solution
considerably. This simplification is allowed when the change in porosity ϕ and permeability k is
negligibly small.

4. Precipitation occurs when the concentration of Cl´ (C) is higher than the equilibrium concen-
tration C0pT q. The surplus with respect to the equilibrium concentration will precipitate. When
C is lower than C0, there will be a deficit with respect to the equilibrium concentration and this
will dissolve the solid salt (B).

5. At each time step ∆t, the concentration C will approach the equilibrium concentration C0

through the concentration field equation. Then we calculate the amount of precipitation P
by taking the difference between C and C0 (arrow C) which is defined as

P “ C ´ C0 (3.12)

So for P ą 0 we have precipitation of Cl´, which will form solid salt and for P ă 0 we have
dissolution of Cl´. After each time step, we set the concentration C equal to C0 and begin
the next time step (arrow D). This simplification is only allowed when the timescale of the
precipitation reactions are almost similar to the timescale of the convection/diffusion reactions.
The first Dahmköhler number (DaI) quantifies the ratio of the reaction timescale to the transport
timescale and is defined in this model as [2]

DaI “
Akdissdc
C0uc

» 1 (3.13)

The schematic of the simplified model described is shown in Figure 3.8.
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Figure 3.8: The schematic of the simplified model, showing the connections between the variables.
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3.3.2 Results of the concentration field

BC

Bt
“

D
ϕ
∇2C ´

1

ϕ
∇ ¨ pCÝÑu q (3.14)

Ci,j is the numerical approximation of pressure at location rpi ` 1
2 q∆x, pj ` 1

2 q∆ys. Equation 3.14
will be approximated with several numerical methods (see appendix A.5) Similar to the temperature,
equation 3.14 will be approximated by the central difference and for time derivative terms forward
Euler will be used. The stability of the forward Euler is checked in section A.8. This concentration
field C is shown in Figure 3.9.

(a) td “ 1.48 (b) td “ 2.96

Figure 3.9: The concentration field C at different td expressed in the dimensionless concentration Cd.

From the model we get an amount of precipitation in mol per kg water. This is equal to the
concentration of solid salt (NaCl) due to the 1:1-reaction. Via the molar mass of NaCl (MNaCl “

0.05844 kg/mol), we can calculate the amount of kg NaCl per kg water. Via the density of NaCl
(ρNaCl “ 2.163 ¨103 kg{m3), we can calculate the total volume that is occupied by the solid salt taking
into account the initial porosity ϕ0 and the volume of a cell Vcell as follows

ϕ “ ϕ0 ´
P

Vcell
(3.15)

See Figure 3.10 for the amount of precipitation P expressed in mol NaCl and in m3 NaCl per kg
water. In Figure 3.11 we calculated the porosity via equation 3.15 and the permeability via equation
2.44.
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(a) The amount of precipitation P expressed in
mol NaCl per kg water.

(b) The amount of precipitation P expressed in
m3 NaCl per kg water.

Figure 3.10: The amount of precipitation P for normal C0 expressed in mol NaCl and in m3 NaCl
per kg water.

(a) Porosity ϕ for different values of C0. (b) Permeability k for different values of C0.

Figure 3.11: The porosity ϕ and the permeability k at halfway the domain for different values of C0.

Since the amount of precipitation was very small, the change in porosity ϕ is in the order of 10´9

and the change in permeability in the order of 10´12 for a normal C0. For C0 ¨ 10´3, the change in
ϕ and k is even smaller. If we increase the initial concentration of Cl´, we get a larger decrease in
porosity, but then the simplifications in the numerical approximation are not justified.
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Conclusion

As outlined in the introduction, this study aims to investigate the sustainability of geothermal energy
in an aquifer. We divided this research goal into two subquestions:

How long does it take for the geothermal aquifer to cool?

How long does it take for the geothermal aquifer to clog due to precipitation reactions?

To address these questions, we performed numerical simulations based on pressure equations, heat
transport equations and chemical reaction kinetics.

• The numerical and analytical solution of the pressure equation were almost identical and therefore
the numerical approximation for the pressure equation is very accurate.

• The introduction of colder water alters the composition and temperature of the water in the
aquifer. These changes influence chemical equilibria, potentially leading to the dissolution or
precipitation of certain minerals.

• The analytical problem could not be solved purely through analytical methods. We used numer-
ical methods for the derivation of the eigenvalues and therefore some errors from the numerical
computation influenced the results of the analytical solution. Therefore the accuracy of the nu-
merical model for the temperature distribution could not be determined with certainty. The
numerical methods used in the simulation are stable for ∆td ď 0.03.

• The aquifer is defined as completely cooled if the temperature on the right side of the aquifer
is less than 40 ˝C. For a constant κ “ k

µ in time and space, the aquifer is fully cooled after

1.83 ¨108 s (td “ 3.39), which is 5.803 years. The is not realistic because we neglected the heat
supply from the earth core and chose simplified boundary conditions (see chapter 5). Therefore
(depending on the amount of heat supply and the chosen boundary conditions) the aquifer will
take longer to fully cool. However, in this model, the use of geothermal energy is not sustainable
in terms of temperature.

• Since the amount of precipitation was very small, the change in porosity ϕ is in the order of
10´9 and therefore in this model porosity and permeability will not play a significant role in
sustainability of the geothermal system.

• The simplifications in the numerical approximation were justified, since ϕ and k were negligibly
small.
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Discussion

In this project, we examined the sustainability of a geometric aquifer and the results above provided
significant insights. However, several results raised important questions about model extensions and
the aquifers’ long-term viability.

• According to the result above, the aquifer is cooled after almost 6 years. This is not entirely
accurate, because the boundary conditions that were selected were not fully chosen to reflect
the complexities of the system. We also didn’t properly consider the heat coming from Earth’s
core. As a result, the cooling time of the aquifer was significantly faster than anticipated. For
a possible model extension, we can introduce a heat source Q and use the boundary conditions
explained in [15].

• This study did not investigate the microscopic-level concentration distributions, which could play
a critical role in understanding the chemical interactions within the aquifer.

• In this model we neglected the influence of change in porosity ϕ and permeability k due to
precipitation on the pressure, velocity and temperature distribution. In this model this was
allowed, because the change in porosity ϕ and permeability k were negligibly small. In possible
model extension, this might not be the case (different choice of mineral).

• A possible report extension can answer the question:

How can we prevent mineral precipitation in a geothermal aquifer to keep it sustainable?

Examples of solutions are the use of heat exchangers or chemical inhibitors.

• In our model, we assume that the change in Keq is only influenced by change in temperature.
We assume that the effects of change in pH are negligible. The effects of the change in pH can
be added to a possible model extension.
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Appendix

A.1 Divergence theorem

The Divergence Theorem (also known as Gauss’s Theorem) is a fundamental result in vector calculus.
It relates the flow of a vector field through a closed surface to the divergence of the field within the
volume enclosed by that surface. Mathematically, it is expressed as:

ż

V

p∇ ¨ Fq dV “

¿

BV

F ¨ n dS (A.1)

where F is a vector field, ∇ ¨F is the divergence of F, BV the closed surface bounding the volume V ,
n is the outward unit vector to the surface BV , dV and dS are respectively volume and surface elements.

In essence, the theorem states that the total outward flux of a field through a closed surface is equal
to the integral of the divergence of the field over the volume enclosed by the surface.

A.2 Derivation heat equation

BTw

Bt
“

aw
ϕ

∇2Tw ´
1

ϕ
∇ ¨ pTw

ÝÑu q `
hA

cwρwϕV
pTpm ´ Twq (A.2)

BTpm

Bt
“

apm
1 ´ ϕ

∇2Tpm ´
hA

cpmρpmp1 ´ ϕqV
pTpm ´ Twq (A.3)

With Tw « Tpm :“ T we get:

pcwρwϕ ` cpmρpmp1 ´ ϕqq
BT

Bt
“ pcwρwaw ` cpmρpmapmq∇2T ´ cwρw∇ ¨ pTÝÑu q (A.4)

A.3 Numerical approximation pressure field

∇p «
pi` 1

2 ,j
´ pi´ 1

2 ,j

∆x
x̂ `

pi,j` 1
2

´ pi,j´ 1
2

∆y
ŷ (A.5)

For κi` 1
2 ,j

we use the mean of the 2 boundary points.

κi` 1
2 ,j

:“
2

1
κi,j

` 1
κi`1,j

(A.6)

∇ ¨ p´κ∇pq «
´κi` 1

2 ,j
pi`1,j´pi,j

∆x ` κi´ 1
2 ,j

pi,j´pi´1,j

∆x

∆x
`

´κi,j` 1
2

pi,j`1´pi,j

∆y ` κi,j´ 1
2

pi,j´pi,j´1

∆y

∆y
(A.7)

“
´κi` 1

2 ,j
pi`1,j ` pκi` 1

2 ,j
` κi´ 1

2 ,j
qpi,j ´ κi´ 1

2 ,j
pi´1,j

∆x2
`

´κi,j` 1
2
pi,j`1 ` pκi,j` 1

2
` κi,j´ 1

2
qpi,j ´ κi,j´ 1

2
pi,j´1

∆y2

(A.8)
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&

’
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’

%

Bp
Bx p0, yq «

p0,j´p´1,j

∆x “ ´ u0

κ
´ 1

2
,j

Bp
Bx pL, yq «

pnx,j´pnx´1,j

∆x “ ´ u0

κ
nx´ 1

2
,j

Bp
By px, 0q «

pi,0´pi,´1

∆y “ 0
Bp
By px,Hq «

pi,ny ´pi,ny´1

∆y “ 0

(A.9)

29



For 0 ă i ă nx ´ 1 and 0 ă j ă ny ´ 1, we have:

´κi` 1
2 ,j

pi`1,j ` pκi` 1
2 ,j

` κi´ 1
2 ,j

qpi,j ´ κi´ 1
2 ,j

pi´1,j

∆x2
`

´κi,j` 1
2
pi,j`1 ` pκi,j` 1

2
` κi,j´ 1

2
qpi,j ´ κi,j´ 1

2
pi,j´1

∆y2
“ 0

(A.10)
Now for the boundary conditions:
For i “ 0 and j “ 0, we have:

´κi` 1
2 ,j

pi`1,j ` κi` 1
2 ,j

pi,j

∆x2
`

´κi,j` 1
2
pi,j`1 ` κi,j` 1

2
pi,j

∆y2
“

u0

∆x
(A.11)

For i “ 0 and 0 ă j ă ny ´ 1, we have:

´κi` 1
2 ,j

pi`1,j ` κi` 1
2 ,j

pi,j

∆x2
`

´κi,j` 1
2
pi,j`1 ` pκi,j` 1

2
` κi,j´ 1

2
qpi,j ´ κi,j´ 1

2
pi,j´1

∆y2
“

u0

∆x
(A.12)

For 0 ă i ă nx ´ 1 and j “ ny ´ 1, we have:

´κi` 1
2 ,j

pi`1,j ` pκi` 1
2 ,j

` κi´ 1
2 ,j

qpi,j ´ κi´ 1
2 ,j

pi´1,j

∆x2
`

´κi,j´ 1
2
pi,j ` κi,j´ 1

2
pi,j´1

∆y2
“ 0 (A.13)

For i “ nx ´ 1 and j “ ny ´ 1, we have:

´κi´ 1
2 ,j

pi,j ` κi´ 1
2 ,j

pi´1,j

∆x2
`

´κi,j´ 1
2
pi,j ` κi,j´ 1

2
pi,j´1

∆y2
“ ´

u0

∆x
(A.14)

A.4 Numerical approximation temperature distribution

∇2T “
T k
i`1,j ´ 2T k

i,j ` T k
i´1,j

∆x2
`

T k
i,j`1 ´ 2T k

i,j ` T k
i,j´1

∆y2
(A.15)

∇ ¨ pTÝÑu q “ ´
ux,i`1,jT

k
i,j ´ ux,i,jT

k
i´1,j

∆x
´

uy,i,j`1T
k
i,j ´ uy,i,jT

k
i,j´1

∆y
(A.16)

BT

Bt
«

T k`1
i,j ´ T k

i,j

∆t
(A.17)

Substituting A.15, A.16 and A.17 in 2.22:

T k`1
i,j “ T k

i,j ` ∆tα

˜

T k
i`1,j ´ 2T k

i,j ` T k
i´1,j

∆x2
`

T k
i,j`1 ´ 2T k

i,j ` T k
i,j´1

∆y2

¸

`∆tβ

˜

´
ux,i`1,jT

k
i,j ´ ux,i,jT

k
i´1,j

∆x
´

uy,i,j`1T
k
i,j ´ uy,i,jT

k
i,j´1

∆y

¸ (A.18)
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T p0, y, tq « T k
0,j “ Tlow

BT
Bx pL, y, tq «

Tk
nx,j´Tk

nx´1,j

∆x “ 0

BT
By px, 0, tq «

Tk
i,0´Tk

i,´1

∆y “ 0

BT
By px,H, tq «

Tk
i,ny

´Tk
i,ny´1

∆y “ 0

T px, y, 0q « T 0
i,j “

#

Tlow, i “ 0

Thigh, i ‰ 0

(A.19)

For 0 ă i ă nx ´ 1 and 0 ă j ă ny ´ 1, we have equation A.18.
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Now for the boundary conditions: For i “ nx ´ 1 and 0 ă j ă ny ´ 1, we have:

T k`1
nx´1,j “ T k

nx´1,j ` ∆tα

˜

T k
nx´1,j ` T k

nx´2,j

∆x2
`

T k
nx´1,j`1 ´ 2T k

nx´1,j ` T k
nx´1,j´1

∆y2

¸

`∆tβ

˜

´
ux,nx,jT

k
nx´1,j ´ ux,nx´1,jT

k
nx´2,j

∆x
´

uy,nx´1,j`1T
k
nx´1,j ´ uy,nx´1,jT

k
nx´1,j´1

∆y

¸ (A.20)

For 0 ă i ă nx ´ 1 and j “ 0, we have:

T k`1
i,0 “ T k

i,0 ` ∆tα

˜

T k
i`1,0 ´ 2T k

i,0 ` T k
i´1,0

∆x2
`

T k
i,1 ´ T k

i,0

∆y2

¸

`∆tβ

˜

´
ux,i`1,0T

k
i,0 ´ ux,i,0T

k
i´1,0

∆x
´

puy,i,1 ´ uy,i,0qT k
i,0

∆y

¸ (A.21)

For “ nx ´ 1 and j “ 0

T k`1
nx´1,0 “ T k

nx´1,0 ` ∆tα

˜

T k
nx´1,0 ´ T k

nx´2,0

∆x2
`

T k
nx´1,1 ´ T k

nx´1,0

∆y2

¸

`∆tβ

˜

´
ux,nx´1,0T

k
nx´1,0 ´ ux,nx´1,0T

k
nx´2,0

∆x
´

puy,nx´1,1 ´ uy,nx´1,0qT k
nx´1,0

∆y

¸ (A.22)

A.5 Numerical approximation concentration field

For the numerical approximation of equation 3.14, we use the same numerical methods as in the
numerical approximation for pressure and temperature, as follows

∇2C “
Ck

i`1,j ´ 2Ck
i,j ` Ck

i´1,j

∆x2
`

Ck
i,j`1 ´ 2Ck

i,j ` Ck
i,j´1

∆y2
(A.23)

∇ ¨ pCÝÑu q “ ´
ux,i`1,jC

k
i,j ´ ux,i,jC

k
i´1,j

∆x
´

uy,i,j`1C
k
i,j ´ uy,i,jC

k
i,j´1

∆y
(A.24)

BC

Bt
«

Ck`1
i,j ´ Ck

i,j

∆t
(A.25)

We get:

Ck`1
i,j “ Ck

i,j ` ∆t
D
ϕ

˜

Ck
i`1,j ´ 2Ck

i,j ` Ck
i´1,j

∆x2
`

Ck
i,j`1 ´ 2Ck

i,j ` Ck
i,j´1

∆y2

¸

`∆t
1

ϕ

˜

ux,i`1,jC
k
i,j ´ ux,i,jC

k
i´1,j

∆x
`

uy,i,j`1C
k
i,j ´ uy,i,jC

k
i,j´1

∆y

¸ (A.26)

With boundary conditions:
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Cp0, y, tq « Ck
0,j “ CCl´

BC
Bx pL, y, tq «

Ck
nx,j´Ck

nx´1,j

∆x “ 0

BC
By px, 0, tq «

Ck
i,0´Ck

i,´1

∆y “ 0

BC
By px,H, tq «

Ck
i,ny

´Ck
i,ny´1

∆y “ 0

Cpx, y, 0q « C0
i,j “

#

CCl´ , i “ 0

Cpm, i ‰ 0

(A.27)
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For 0 ă i ă nx ´ 1 and 0 ă j ă ny ´ 1, we have equation A.26.
Now for the boundary conditions: For i “ nx ´ 1 and 0 ă j ă ny ´ 1, we have:

Ck`1
nx´1,j “ Ck

nx´1,j ` ∆t
D
ϕ

˜

Ck
nx´1,j ` Ck

nx´2,j

∆x2
`

Ck
nx´1,j`1 ´ 2Ck

nx´1,j ` Ck
nx´1,j´1

∆y2

¸

`∆t
1

ϕ

˜

´
ux,nx,jC

k
nx´1,j ´ ux,nx´1,jC

k
nx´2,j

∆x
´

uy,nx´1,j`1C
k
nx´1,j ´ uy,nx´1,jC

k
nx´1,j´1

∆y

¸ (A.28)

For 0 ă i ă nx ´ 1 and j “ 0, we have:

Ck`1
i,0 “ Ck

i,0 ` ∆t
D
ϕ

˜

Ck
i`1,0 ´ 2Ck

i,0 ` Ck
i´1,0

∆x2
`

Ck
i,1 ´ Ck

i,0

∆y2

¸

`∆t
1

ϕ

˜

´
ux,i`1,0C

k
i,0 ´ ux,i,0C

k
i´1,0

∆x
´

puy,i,1 ´ uy,i,0qCk
i,0

∆y

¸ (A.29)

For i “ nx ´ 1 and j “ 0

Ck`1
nx´1,0 “ Ck

nx´1,0 ` ∆t
D
ϕ

˜

Ck
nx´1,0 ´ Ck

nx´2,0

∆x2
`

Ck
nx´1,1 ´ Ck

nx´1,0

∆y2

¸

`∆t
1

ϕ

˜

´
ux,nx´1,0C

k
nx´1,0 ´ ux,nx´1,0C

k
nx´2,0

∆x
´

puy,nx´1,1 ´ uy,nx´1,0qCk
nx´1,0

∆y

¸ (A.30)

A.6 Analytical solution pressure

We have a partial differential equation with homogeneous boundary conditions and we apply separation
of variables by substituting rpx, yq “ fpxqgpyq in 3.2, as follows

g
B2f

Bx2
` f

B2g

Bx2
“ 0 (A.31)

1

f

B2f

Bx2
“ ´

1

g

B2g

Bx2
“ ´λ (A.32)

with λ ą 0 the separation constant.
From this equation we get 2 ordinary differential equations:

#

d2f
dx2 “ ´λf
df
dx p0q “

df
dx pLq “ 0

(A.33)

#

d2g
dy2 “ λg
dg
dy p0q “

dg
dy pHq “ 0

(A.34)

From ODE A.33 we find, fnpxq “ cospnπ
L xq with λn “ pnπ

L q2, for n = 1,2,3,...
And from ODE A.34 we find, gnpyq “ coshpnπ

H yq.
So we get:

rpx, yq “ a0 `

8
ÿ

n“1

ancos
´nπ

L
x

¯

cosh
´nπ

H
y

¯

(A.35)

with an = 0 for all n ě 1 to satisfy the boundary conditions.
So we get rpx, yq “ a0 “ pp0, 0q :“ p0 and that gives:

ppx, yq “ rpx, yq ` qpx, yq “ ´
u0µ

k
x ` p0 (A.36)
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A.7 Analytical solution temperature

Here we use separation of variables by substituting vpx, tq “ fpxqhptq, as follows

1

αh

dh

dt
“

1

f

d2f

dx2
“ ´λ (A.37)

with λ ą 0 the separation constant.
To solve this equation, we first solve the spatial part of the equation:

$

’

&

’

%

d2f
dx2 “ ´λf

fp0q “ 0
γ
2αfpLq `

df
dx pLq “ 0

(A.38)

From ODE A.38 we find, fnpxq “ sinp
?
λnxq with tanp

?
λnLq “ ´

2α
?
λn

γ .
And for the temporal part:

dh

dt
“ ´λαh (A.39)

which gives: hptq “ Ce´λnαt

Combining these two solutions, we get

vpx, tq “

8
ÿ

n“1

cnsinp
a

λnxqe´λnαt (A.40)

With (by using the initial condition):

cn “

şL

0
∆Te´

γ
2αxsinp

?
λnxqdx

şL

0
sin2p

?
λnxqdx

(A.41)

This only holds when the eigenfunctions are orthogonal. So we get:

T px, tq “

8
ÿ

n“1

cne
´p

γ2

4α `λnαqte
γ
2αxsinp

a

λnxq (A.42)

A.8 Stability check

In this section we will check if the chosen numerical method for time integration (forward Euler method)
is stable in equation A.18.

First define the following

αx “
∆tα

∆x2

αy “
∆tα

∆y2

βx “
∆tβ

∆x

βy “
∆tβ

∆y

(A.43)

The numerical scheme becomes:

T k`1
i,j “ T k

i,j ` αxpT k
i`1,j ´ 2T k

i,j ` T k
i´1,jq ` αypT k

i,j`1 ´ 2T k
i,j ` T k

i,j´1q

´βxpux,i`1,jT
k
i,j ´ ux,i,jT

k
i´1,jq ´ βypuy,i,j`1T

k
i,j ´ uy,i,jT

k
i,j´1q

(A.44)

Assume the solution is represented as a Fourier mode (we replaced i “ l to avoid confusion):

T k
l,j “ Gkeipkxl∆x`kyj∆y (A.45)
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Where Gk is the amplification factor after k timesteps ánd kx and ky are the wavenumbers in the x-
and y-direction.

Substitute this expression into the numerical scheme. After substitution, the scheme becomes:

G “ 1 ` αxpeikx∆x ´ 2 ` e´ikx∆xq ` αypeiky∆y ´ 2 ` e´iky∆yq

´βxpuxe
ikx∆x ´ uxq ´ βypuye

iky∆y ´ uyq
(A.46)

For the diffusion terms:

eikx∆x ´ 2 ` e´ikx∆x “ ´4sin2

˜

kx∆x

2

¸

eiky∆y ´ 2 ` e´iky∆y “ ´4sin2

˜

ky∆y

2

¸ (A.47)

We approximate the advection terms eikx∆x ´ 1 « ikx∆x, similar for eiky∆y ´ 1.
Combine therms to get the amplification factor G:

G “ 1 ´ 4αxsin
2

˜

kx∆x

2

¸

´ 4αysin
2

˜

ky∆y

2

¸

´iβxkxux ´ iβykyuy

(A.48)

For the scheme to be stable: 1. The magnitude of the amplification factor must not grow:

|G| ď 1 (A.49)

2. The diffusion terms contribute to decay (RpGq ď 1q) and the advection terms add oscillations
(SpGq), but shouldn’t amplify |G|.

So the conditions that ensure stability are:

∆t ď
1

2
minp

∆x2

α
,
∆y2

α
q

∆t ď minp
∆x

ux
,
∆y

uy
q

(A.50)

After computing this, we get that the numerical method is stable for ∆td ď 0.03.
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