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Abstract

Machine learning techniques aim to train a model in such a way that it can approximate
complex dynamics like the vehicle routing problem. In the recent years, combinatorial neural
networks and deep learning methods have been used to predict the solution of routing prob-
lems. However, the approaches investigated so far in literature could be cumbersome to apply
and replicate. Although such methods obtained good results in predicting the solutions of
simple routing problems, their structures are complex and they do not consider any sort of
precedence constraints, an aspect that is crucial in passenger transportation. The goal of this
thesis is to apply supervised learning to predict the optimal cost of single-vehicle pick-up and
delivery problem, leading to a simpler implementation compared with combinatorial neural
networks. First, the most suitable machine learning model able to approximate problem is
chosen as a neural network with one hidden layer and a ReLu activation function. Then, the
input features that improve the prediction accuracy are searched. In particular, very good
results are observed by feeding the solutions of heuristic algorithm as input to the neural
network. Compared to baseline prediction method which returns the length of the route
computed by greedy heuristic, an improvement of 40% in prediction accuracy is obtained
with the proposed approach. Finally, the model is improved to achieve better generalization
properties with respect to a higher number of requests, by using the average optimal length
as an additional input feature.
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“The maze wasn’t meant for you”

— Westworld - Dolores Abernathy

“Considerate la vostra semenza:
fatti non foste a viver come bruti,
ma per seguir virtute e canoscenza”

“Consider well the seed that gave you birth:
your were not born to live as brutes,

but to follow virtue and knowledge.”

— La Divina Commedia - Dante Alighieri






Chapter 1

Introduction

Personal transportation in the urban environment changed noticeably in the 19th century.
Private automobiles allowed point-to-point travels, ensuring autonomy and privacy. Although
the total percentage of households without a vehicle is increasing in the large metropolitan
areas [1], the world’s population is growing by one percent per year [2]. The projection of the
trend implies a continuous growing demand for personal transportation. A greater number
of vehicles would affect congestion, travel-time uncertainty, the likelihood of accidents, fuel
consumption, and pollution. Furthermore, the more the vehicles, the more infrastructures
are required, such as roads and parking spaces. The personal transportation based on private
vehicles is thus not sustainable in an urban dense environment. The major challenge in urban
mobility is then satisfying the demand for urban transportation and preserving the benefits
of private vehicles, providing at the same time quality service for the users and the environ-
ment. A large number of vehicles on the road network has often low occupancy rate, that is
an inefficient use of resources. Therefore, in the recent years, several studies in the field of the
Mobility on Demand (MOD) systems investigated ride-sharing, where more travellers share
the trip in a single vehicle. The key idea is to reduce the number of vehicles by increasing
their occupancy. The results are promising: high capacity ride-sharing allows point-to-point
transportation reducing the total travelled distance without increasing dramatically the single
trip duration [3].

Customers requests have to be assigned to vehicles with the aim to guarantee a reliable and
convenient ride-sharing service. To perform the assignment, the problem to solve consists
in finding which trips can be shared and then matching those trips with the vehicles, such
that a quality service in terms of waiting time and delay for the customers is ensured, and
the travelling costs are reduced. Once the requests are combined, the goal is to find the best
route which services the requests.

In literature, the MOD and Autonomous Mobility On Demand (AMOD) with ride-sharing
[4, 5, 3, 6], are known as variants of the Vehicle Routing Problem (VRP) [7], of the Dynamic
Pick-up and Delivery Problem (DPDP) [8] and of the Dial-A-Ride Problem (DARP) [9].
There are several challenges arising from AMOD ride-sharing systems: how to select which
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2 Introduction

travels can be combined? And how to assign the shared trips to the vehicles? One method
is based on the shareability graph proposed in [10] and extended in a large-scale scenario
[3]. The problem of finding the best assignment between possible shared trips and vehicles is
often formulated as an optimization problem [3, 6, 11]. The cost function to minimize could
be the sum of delays and waiting times [3], travelled distance [12], or operational costs and
emissions [6]. However, the optimum is hard to compute in a given limited time budget. Such
problem is in fact known to be computationally hard [13], being a complicated version of the
Travelling Salesman Problem (TSP) [14], that is a well-known combinatorial optimization
problem. In fact, the number of possible combinations between trips and vehicles grows
exponentially when passengers and vehicles increase. Since a reliable service must ensure real-
time booking experience, heuristic methods can help to estimate a solution [15] and reduce
the size of the problem. Some well-known approaches used to bound the exploration of all
possible combinations are heuristic methods [5], feasibility check [6], limits on the number of
vehicles, limits on the number of possible combinations or timeout for the computation [3].
Authors in [3] were driven by the following question: is it possible to solve a large-scale ride-
sharing scenario using a smart combinatorial optimization formulation? They match vehicles
to the requests using a shareability graph and build a tree where the branches to explore
are the possible trips; a timeout is set to limit the trips generation. Then, they formulated
an Integer Linear Programming (ILP) to assign trips to the vehicles. Authors proved that
their algorithm is anytime optimal: the method returns the best solution found up to the
provided time budget, while an infinite time budget would lead to return the optimal solution.
This practically means that more computational time leads to a better solution. We want to
contribute to the work following the same idea. However, what if instead of increasing the
time budget we reduce the number of combinations to explore by discarding some possible
solutions violating a condition?

In the recent years, many authors tried to design algorithm based on combinatorial neural
networks [16] and deep learning [17, 18] which solve the TSP. Although the results are
promising and the algorithm mathematically elegant, their structure could be cumbersome
to apply and replicate. In addition, to the best of our knowledge, learning methods to solve
the ride-sharing problem have not been investigated deeply yet. Furthermore, we expect that
also these algorithms would present almost the same degree of complexity shown in previous
works [17, 18]. Our goal is to design a model using supervised learning able to predict the
cost of a combinatorial optimization problem, in particular of the single-vehicle Pick-up and
Delivery Problem (PDP). In this way, we can use the estimated value to steer the optimization
algorithm to the optimal value, narrowing the number of possible combinations to explore, i.e.
discarding the trips that have a cost much higher than the estimated. We apply supervised
learning since we strongly believe that there exists some (highly non-linear) function capable
to model the relation between the customers’ requests, and the optimal cost of the routing
problem. It is indeed experimentally found that a Neural Network (NN) trained with the
results of heuristic algorithms applied to the problems is able to predict the optimal cost with
a reasonable degree of accuracy.

The thesis is organized as follows. Chapter 2 introduces basic concepts and notations that
will be useful during the text, such as graph theory, combinatorial optimization problems,
and supervised learning. Chapter 3 gives an overview of the motivation leading this work.
Chapter 4 provides the reader with the problem statement, the notations and the nomencla-
ture adopted in the thesis. Chapter 5 focuses on the literature concerning machine learning
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methods applied to routing problems. Chapter 6 shows the optimization formulations we
designed to solve the TSP and the PDP. Chapter 7 presents the systematic approach used
to design the supervised models and in Chapter 8 the knowledge of Chapter 7 is applied and
extended. Finally, conclusions and further development proposals are discussed in the last
Chapter.
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Chapter 2

Preliminaries

In this chapter, we will provide the major concepts needed to understand the core of the
thesis. In particular, we first will focus on the mathematical tools we use to model and solve
combinatorial optimization problems; then, we will define the Vehicle Routing Problem (VRP)
with its variants and then we will present the basics of supervised learning.

2-1 Graph Theory

In this section, we will describe and define a graph, its properties and the nomenclature we
will adopt.

2-1-1 Basics concepts and definitions

Graphs are discrete mathematical structures which can conveniently describe and model pair-
wise relations between objects. Many real-world situations are indeed described by means of
a diagram consisting of a set of points together with lines (edges) joining certain pairs of these
points (nodes) [19]; such connection can describe any kind of relations between nodes. Due to
their mathematical abstraction, graphs are very flexible and used to model different systems.

A formal description is the following [20]:

Definition 2-1.1. A graph is a pair G = (V,E) with V = {v1,v2,- -+ ,v,} being a set of nodes
or vertices and £ a set of edges or arcs.

A visual representation of graph is in Figure 2-1. In this Figure there are five nodes and six
edges. Elements of edges set £ are generally indicated with (v;,v;) or e;;, which is an arc
from v; to vj. Edge (v, v;) or e;; are said to be outgoing with respect to the node v; and
ingoing with respect to the node v;. It is possible to associate to each edge a weight a;;. A
graph is said undirected if a;; = aj; V(vi,v;) € €. Intuitively, this means that the direction
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6 Preliminaries

between two vertices is irrelevant. If all the nodes are connected with all the other nodes, the
graph is said to be fully connected.

Figure 2-1: An example of an undirected not fully connected graph topology.

Graphs’ properties can be investigated using associated matrices which describe their topology
and structure. One of these matrix is the adjacency matrix A, whose generic element is a;;.
The reader might have noticed that the entry has the same nomenclature of the weights
associated to the edges: both model the same quantity indeed. In this thesis, we suppose the
weights non-negative. Therefore:

a;j > 0 if e;; € €, a;; = 0 otherwise. (2-1)

It is worth mentioning that
a; =0 Vie€,

that means that all the weights on the diagonal are equal to zero. The adjacency matrix can
then be written as follows:

0 a2 ... Qain
asy 0 - Q2
A=| T _ . (2-2)
an1 Aap2 ... 0

When the graph is undirected, the adjacency matrix is symmetric, i.e. A = AT. Finally,
we define a spanning tree. A spanning tree of a graph is a tree containing each node of the
graph using a single edge just once. When the edges are weighted, the Minimum Spanning
Tree (MST) is the spanning tree whose the sum of the edges of such tree is the minimum
between all the possible spanning trees.

2-2 Combinatorial Optimization Problems

In this section, we will give an overview of optimization problems, with particular attention
to combinatorial optimization problems. The section is not aimed to be exhaustive, but only
to provide the reader with the basic tools to understand the concepts we will focus further
on.

Referring to [21] and [22], we define an optimization problem:
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2-2 Combinatorial Optimization Problems 7

Definition 2-2.1. A mathematical optimization problem, or just optimization problem, has
the form:

~—

minimize f(x
x

subject to gi(x) <b;, Yi=1,...,m (2-3)

hi(z) =0, Vj=1,...,h

The vector x = (x1,x9,...,2,) is the optimization variable of the problem, the function
f : R® — R is the objective function, the functions g; : R™ — R,¢ = 1,...,m are the
inequality constraint functions, the constraints by, ..., by, are the limits (or bounds for the
constraints), and the functions h; : R* = R,j = 1,... ,h are the equality constraints. A
vector x* is called optimal or a solution of the problem if it has the smallest objective value
among all vectors that satisfy the constraints: for any z with g1(2) < b1,...gm(2) < by, and
hi(z) = ... = hz(z) =0, we have f(z) > f(z¥).

We generally consider families or classes of optimization problems. For instance, the optimiza-
tion problem of Eq. (2-3) is called a linear program if the objective and constraints functions
are linear. If the optimization problem is not linear, it is called a non-linear program. A con-
vex optimization problem is one in which the objective and constraint functions are convex
[21].

Among the differences stated before, optimization problems can be divided into two major
categories: those with continuous variables and those with discrete variables [22]. An op-
timization problem, like the one shown in Eq. (2-3), is nothing but an abstraction of the
problem of choosing the best possible vector in R" from a set of candidate choices. The
variable z represents the choice made [21]. If the solution must be searched in a finite (or
possibly countably infinite) set, the problem is what we called combinatorial optimization
problem, otherwise it is a continuous optimization problem.

Example 2-2.1

Imagine you would enjoy a drink in a bar with your friends. However, since you are
the driver, you should avoid drinking anything with an alcohol content greater than
10%. Therefore, you ask the bartender to prepare you a cocktail with such maximum
gradation and with three different drinks up to him. To satisfy his customer, the
bartender has some choices to do. First of all, since the bar has only one type of
glass, he knows that the maximum quantity of liquid the glass can contain. Hence, he
must choose wisely the amount of liquor and alcohol-free drinks to maintain the 10%
alcoholic content. He has seven different kinds of liquors and twenty kinds of alcohol-
free juices. Therefore, he must select three drinks and from that compute how much
liquor put in the cocktail.

The choice of the kind of liquor is a combinatorial optimization problem. The amount,
given the liquor, is a continuous optimization problems.

Looking at Figure 2-2, we present another example.
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8 Preliminaries

Example 2-2.2

Imagine you have an undirected connected graph with three nodes. Finding a spanning
tree of minimum length is a combinatorial optimization problem: the solution is the
permutation of the edges in such a way that the sum of their weights is minimized.

Figure 2-2: Example of a combinatorial optimization problem: find the Minimum Span-
ning Tree.

There are three possible combinations:
® 32 + €1,
® 23 + €31,

® e31 + €12.

In the following subsections, we will describe some popular combinatorial optimization prob-
lems related to the transportation.

2-2-1 The Travelling Salesman Problem

One of the most common combinatorial optimization problems is the Travelling Salesman
Problem (TSP) [14]. A salesman, starting from an initial depot, must visit n cities in such a
way that the total travelled distance is minimized. A more formal definition of the TSP is [23]:

Definition 2-2.2. Given a finite set of locations X of |X| points from a metric space, the
Traveling Salesman Problem is to find the minimum-length tour (usually, cyclic) which visits
each point x € X (at least) once.

The TSP is one of the best known combinatorial optimization problems and it can be modelled
using a connected and undirected graph: each city is a node and the links between nodes are
edges. Thus, the TSP can be interpreted as a sort of MST searching. The problem is
combinatorial since the solution is in the set of cardinality p:

p=mn!

Daniele Bellan Master of Science Thesis



2-2 Combinatorial Optimization Problems 9

where n is the number of cities to visit and n! is the factorial of n, n! =n-(n—1)-... -3-2-1.
Further in the text, we will refer without distinction to the minimum-length tour with the
equivalent terms shortest path, and optimal length. An example of TSP is in Figure 2-3.
An interesting property is proved in [24], where authors aim to develop an upper bound for
heuristic algorithms that solves the TSP. The TSP belongs to the class of NP-complete
problems [13] and it has been proved to be Non-deterministic Polynomial-time (NP)-hard.
Hence, TSP cannot be solved in polynomial time, unless P=NP [25].

° e e
'0.0 .:/\o/.;o/

Figure 2-3: Schematic representation of the TSP. In the left image, there are the depot and
the cities to visit. In the right image, the route is designed. The salesman starts and ends at the
depot after visiting each city once.

A survey on the state of the algorithms used to solve the TSP is [26], where exact and ap-
proximation algorithms are described. In Chapter 6 we will show an Integer Linear Program-
ming (ILP) formulation approach to solve the TSP. It is clear that the curse of dimensionality,
where with dimension we here intend for the number of cities, affects the TSP, which becomes
intractable for large instances. But what we mean by large? The answer is related to the
running time and the application purpose. Since we want to eventually provide a real-time
transportation service, the time is crucial. Therefore, it is possible that the optimal solution
cannot be computed for problems size that cannot be solved in seconds.

A simple heuristic to implement to solve a TSP instance is the greedy algorithm. Greedy
heuristic iteratively constructs the path by adding to the sequence the closest node to the
current node (i.e. the shortest edge). The algorithm is listed in Algorithm 1. It is also possible
to indicate the greedy function of a TSP with n points as

G(P)=G(p1; P2, .- Pn) (2-4)

where p; = [z;,y;] is the generic point describing the position of i—th city in the Euclidean
plane, and (x;,y;) are the coordinates. The matrix
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collects all the coordinates of the n points. The function G(P) or simply G returns the length
of the route computed with Algorithm 1.

Algorithm 1: Compute greedy heuristic solution of TSP.

// Input: Symmetric Adjacency matrix A
// Output: The greedy heuristic cost shortest and the path path
// Initialization:
path=[], @ = {0,1,--- ,n}, i=0, j=0, shortest=100n, c=0
for : < n do
p=[;
pliJ+ i;
Qtemp <remove(Q,i);
J
while (j<n AND Qcrmp NOT empty) do
min_edges min(A[j,1],1 € Qtemp, ! # J);
c¢—c+Alj,min_edge];
j<min_ edge;
append(p, j);
Qtemp = remove(Qremp, );
if c>shortest then
‘ break;
end

end

if c<shortest then
shortest+ c;
path<p;

end

end
return shortest, path;

Although greedy heuristic is generally faster than optimization formulation, especially in
large size instances, the results can be sub-optimal and lead to an over-approximation of the
cost. Other heuristic are the Clark and Wright algorithm [27], and the Local Neighborhood
Search (LNS), the Lin-Kernighan algorithm [28]. Another popular method uses a lower
bound of the TSP to estimate the deviation between such bound and the optimal cost and
thus heuristically determine the optimal cost. The lower bound is known as Held-Karp lower
bound (HK), which provides a solution to the Linear Programming (LP) relaxation of the ILP
formulation of the TSP [29, 30]. However, finding the HK is itself a combinatorial optimization
problem, since it requires the computation of a sequence of MST. An iterative estimation
approach of the HK is proposed in [31].

2-2-2 The Vehicle Routing Problem

VRP is another very popular combinatorial optimization problem, introduced as a general-
ization of the TSP. The classical VRP aims to find the optimal routes to serve customers
distributed along the city with a fleet of vehicles, where each vehicle starts and ends its route
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. Depot
‘ Customer

Figure 2-4: Schematic representation of the VRP with three vehicles, starting and ending at the
depot after visiting once each customer.

at the (unique) depot and each customer is visited only once (i.e. the load cannot be dis-
tributed between more vehicles or more trips) by a single vehicle. A schematic representation
of the problem is in Figure 2-4. In this framework, optimal stands for the minimum of a
certain cost function. Customers are supposed to wait for a delivery or to dispatch a certain
load. A mathematical formulation is generally the following [32]:

Definition 2-2.3. The VRP is defined on a directed graph G(V, E) where V = {vg,v1,..., 05}
represents the set of vertices and & = {(v;, vj)|(vi,vj) € V2, i # j} is the arc set, with a cost
ai; defined over each edge e;; € £. The VRP consists in finding a set of routes for the N
vehicles based at the depot, such that each of the vertices is visited exactly once, minimizing
the overall routing cost.

The cost could represent the total travelled distance, emissions, or travel time. The vertex vy
is traditionally the depot. The other vertices could be both the physical intersection between
two roads within the network or more likely the position of customers’ requests to be served.
Vehicles can be homogeneous or heterogeneous, with a certain capacity that must not be
exceeded (often referred to as Capacitated Vehicle Routing Problem (CVRP) [33]). The
complexity is increased by including real-world aspects. There exist in fact several variants,
such as the Vehicle Routing Problem with Time Windows (VRPTW) [34, 35], where each
customer must be visited within a time interval, which can be soft or hard; the Multi-Depot
Vehicle Routing Problem (MDVRP) [36], where more than one depot is considered: vehicles
can start from and end to different depots; the Stochastic Vehicle Routing Problem (SVRP)
[37, 38] where there are stochastic demands, load or travel times; the Dynamic Vehicle Routing
Problem (DVRP) [32], where the demands are dynamically generated and hence the routing
must be performed online; when the demands are dynamic and stochastic, that is the Dynamic
Stochastic Vehicle Routing Problem (DSVRP) [39]; routing problems with varying travel
times due to congestion is investigated in [40]; there exists then the Pick-up and Delivery
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Problem (PDP) [41], where vehicles pick-up load at one location and delivery it at another
location; finally, the Dynamic Pick-up and Delivery Problem (DPDP) [8] can models both
goods and passenger transportation. For the passenger transportation, the VRP is also known
in literature as the Dial-A-Ride Problem (DARP) [9].

The VRP has been proved to be NP-Hard [13] and hence exact algorithm are only efficient
for small-size problems [42]. For this reason, heuristic [43, 42] and metaheuristic [35] methods
are often more suitable for practical application. Local search algorithm [34], Stochastic
Programming [37] and the Ant Colony Optimization [44] are also popular methods.

Variants and the existing trends in the literature of the VRP are well-documented in the
extensive surveys [7, 45], where a taxonomic review of the VRP literature is provided. Another
very detailed bibliography is [46], published in 1995.

2-2-3 The Pickup-and-Delivery Problem

A variant of the VRP is the PDP. In such scenario, goods (or people, see also next subsection)
are transported between an origin and a destination [41, 8]. Each problem instance has n
requests corresponding to the origins and n associated destinations. Therefore, a graph with
2n nodes can model PDP with n requests. Since destinations’ nodes must be reached after
the origin, the graph is not undirected for all the edges and some permutations are discarded.
A more formal definition is:

Definition 2-2.4. Consider n requests, where to each requests is associated a pick-up (origin)
location and a drop-off (destination) location. The PDP is defined on a graph G(V,E) where
V = {vg,01,...,02n41} represents the set of vertices and €& = {(v;,v;)|(vi,v;) € V2, i # j}
is the arc set, with a cost a;; defined over each edge e;; € £. Node vy represents the depot
and node von 11 represents the final position to reach for all the vehicles. The subset Vo C V,
with Vo = v1,...,v, represents the origin and the subset Vp C V, with Vp = vpt1,. .., V2,
the destinations. The origin v; has its corresponding destination v,y;. The PDP consists in
finding a set of routes for the N wvehicles based at the depot, such that each of the vertices is
visited exactly once, minimizing the overall routing cost and ensuring that the nodes of subset
Vo are visited before the corresponding nodes of subset Vp.

As for the TSP, it is possible to define the Adjacency matrix.

2-2-4 Dial-a-Ride Problem

The DARP it can be interpreted as a PDP with time windows [41]. The key idea is to
design vehicles routes and scheduling to satisfy a set of requests, where each request includes
an origin and a destination. Both origins and destinations must be reached within the given
time windows interval. The main difference between DARP and PDP is the relevance given to
the customer inconvenience; in general, the problems to solve are minimizing the cost subject
to full demand satisfaction given a set of constraints or maximizing the satisfied demand
given the vehicle availability and a set of constraints. Quality criteria are the length of the
route, the waiting time, the travel time, the latency between the expected arrival time and
the actual travel time. In the DARP, minimizing the latency is the often considered as the
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strictest requirement, since it is addressed to reduce the passengers’ discomfort. Although
there exists some promising results [9], they are still limited to a relatively small scale scenario.
Nevertheless, the DARP modelling is suitable to model the high-capacity Mobility on Demand
(MOD).

2-3 Supervised Machine Learning methods

A supervised learning method aims to derive a black-box model of an unknown, often non-
linear and non-convex system, given training input data and target output data. Referring to
the routing problems, the dynamics between the features of a specific instance of the problem
and the optimal value is unknown and hard to define. Therefore, usual regressor methods are
not suitable to estimate the relationship between input and output. In addition, supervised
learning methods can train model able to generalize to unseen data.

2-3-1 Neural Networks

Artificial Neural Networks are a functional imitation of biological neural networks [47]. The
main feature of Neural Network (NN) is its ability to learn complex relations by generalizing
from a limited amount of training data. Therefore, such networks are suitable to be black-box
models of non-linear non-convex multivariable systems. To be more specific, NN or Multi-
layer Perceptron (MLP) is a supervised learning model that learns a function f : R? — RC.

4 i
3 i
N
SEpN
1 4
O i
-4 A 0 2 4
z
Figure 2-5: Relu activation function.
Given a set of input features X = [z, x2,...,2,] and a target y, the algorithm can thus learn

complex non-linear functions between input and output. The input features are weighted,
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summed and then passed by a non-linear activation function o(z;), with:

/4
Zj=Y whz +b), j=1,...h, (2-5)
=1

h

where £ is the number of neurons, w;)

output of the neural network will be:

and b? are the weight and the bias respectively. The

h

y =) wio(z)+1° (2-6)
j=1

where we consider a single-output layer. The aim is to tune the parameters w® and w” in such
a way that the difference between the output of the network and the target is minimized. This
problem can be formulated as a non-linear optimization problem with respect to the weights.
One of the most famous algorithms is a first order gradient method, the error backpropagation
[48].

The key insight of NN is to “induce” non-linearity in the mapping between input and output
by the means of the activation function. Two very common activations function are the ReLu
function:

o(x) = max(0, z), (2-7)

which can be observed in Figure 2-5, and the sigmoid function which can be observed in
Figure 2-6:
1

o(z) = 14+e %

(2-8)
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Figure 2-6: Sigmoid activation function.

From such Figures, we can see how the ReLu function is unbounded, while the sigmoid
function is limited in the range [0, 1].
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2-3-2 Support Vector Regression

Support Vector Machine (SVM) was introduced the first time in 1995 as new machine learn-
ing method for classification problems. The machine maps non-linearly input vectors to a
very high-dimension feature space. In this feature space, a linear decision surface is con-
structed. This non-linear mapping is called kernel. Special properties of the decision surface
ensure high generalization ability of the learning machine [49]. Furthermore, SVM has the
flexibility to represent complex functions being resistant to overfitting. This happens because
SVM minimize expected generalization loss instead of minimizing expected empirical loss on
training data [50]. SVM have been extended to solve regressions problems, in the so-called
Support Vector Regression (SVR). The SVR uses the same principle of the correspondent
classification method. In the e-SVR the goal is to find a function that has at most ¢ deviation
from the target for all the training data, being at the same time as flat as possible [51]. More
information can be founded in the very precise essay by Smola [51].
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Chapter 3

Motivation

In this chapter, we will provide an overview of the literature related to ride-sharing and how
this application domain can benefit from having value predictors.

3-1 Mobility on demand

The Vehicle Routing Problem (VRP) investigated in Chapter 2 can be applied to passengers
transportation, modelling Mobility on Demand (MOD) systems. In this framework, the goal
is to find the best assignment between customers requests for transportation and the vehicles.
The promising results of robotics raised to consider autonomous fleet of vehicles, the so-
called Autonomous Mobility On Demand (AMOD) system. Allowing only one passenger on
board is a strong limitation on the potentiality of MOD systems. Relaxing such constraint
and providing customers with a ride-sharing service, the number of vehicles for personal
transportation can be reduced, and thus reducing also congestion and emissions. The goal is
then to find the optimal combinations of shared trips and assign them to the vehicles. The
assignment must be performed being aware of the state of the fleet, and of customers demands
distribution.

In [10], authors consider a small scale scenario. They study the benefits of ride-sharing as
a function of customers inconvenience, that is the maximum tolerate delay. In this work,
a graph-based model computes the optimal strategies for combining the shared trips using
the shareability graph, adopted also in [3] with some modifications. Although the method
is limited for a large number of passengers, the paper gives meaningful insight for further
developments.

A real-time data-driven simulation framework is proposed within a large-scale scenario [4].
Such framework is able to analyze several ride-sharing realistic possible situations, taking
into account the needs and the constraints of the different entities of the problem. The work
highlights the challenge given by the conflicting interests of multiple stakeholders, such as
Government, taxi companies, and passengers: the first aims to reduce traffic and pollution, the
second to maximize profits and minimize consumption and the third to minimize additional
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stops induced by ride-sharing and waiting/travel time. The authors realized that a highly-
scalable and flexible method is required. The algorithm proposed in [4] is linear in the
number of trips and if combined with parallelization, the approach results eventually scalable.
The effective flexibility of the work is illustrated by the results obtained with different cost
functions. Despite the performance, the method does not rely on autonomous vehicles and
the trip-vehicle assignment is performed not optimally, but with a greedy approach. Another
work which proposes a greedy real-time strategy in a non-autonomous vehicles ride-sharing
scenario is [5]; given a new request and an already existing scheduling, the authors aim to
find the taxi status which satisfies the request with the minimum increase in travel distance.
The greedy approach does not guarantee that the total travelled distance is minimized, but
such method ensures both a real-time experience and copes well with the NP-hardness [15].
Authors of [4] also claim that the greedy approach matches a more realistic scenario in which
is not always possible to foresee the future trips or make changes to the past trips.

In [6], authors account the problem of managing a fleet of autonomous vehicles to accommo-
date transportation requests, offering point-to-point services with ride sharing. The major
focus is on scheduling and admission control. The scheduling problem aims to configure the
most economical schedules and routes for the AVs to satisfy the admissible requests and it
is formulated as a Mixed-Integer Linear Programming (MILP). Admission control generally
refers to a validation process in communication systems; in this framework, it aims to de-
termine the set of admissible requests among all requests to produce maximum profit and it
is cast as a bi-level optimization (see the reference therein [6] for more information), which
embeds the scheduling problem as the major constraint. A relevant contribution of [6], is the
capability to modify the previously assigned but not yet serviced requests. A different ap-
proach can be found in [52, 53], where the objective function is designed in order to minimize
the number of vehicles needed to be rebalanced along the network. Rebalancing is required
due to the inevitable uneven distribution of the fleet within the network since some regions
tend to be more popular than others. The problem of rebalancing is investigated also in [3],
where the idle vehicles aim to pick-up the unserviced requests. A further extension is in [54],
where the prediction of future demands helps to spread the vehicles along the road network
trying to anticipate the requests.

Being aware of the traffic condition is crucial to accurately develop the routing of the vehicles:
since the objective is generally to minimize the delays, knowing the travel times on different
road segments allow to compute the shortest path is crucial. In [3] the travel times are deter-
ministic and stored in a precomputed lookup table, while in [15] heuristic methods are used
to avoid the online travel times computation till it is necessary. Similarly to [3], the authors
in [4] aim to reduce the computational time dedicated to the shortest path algorithm using a
cache-indexing method. Although there exist different methods to perform the shortest path
algorithm [55], one should bear in mind that in large-scale scenario there could be billions of
shortest path queries [4]. Hence, offline precomputed shortest paths allow maintaining the
scalability [3]. It is important to mention that the interval dedicated to solving the problem
should be long enough to provide a good solution, but also short enough to provide users with
real-time service.

This trade-off is well-achieved in a recent and promising work [3]. This paper considers a dy-
namic on-demand ride-sharing service in a large scale scenario, i.e. with thousands of requests
[3]. The paper considers a fleet of autonomous vehicles, whose passenger capacity can vary.
The goal is to find feasible trips which minimize waiting time, travel time, and delays in order
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3-1 Mobility on demand 19

to satisfy a batch of collected requests. The trips are thus assigned to the vehicles in such a
way that a certain cost function is minimized, satisfying a set of constraints. During the trip,
additional riders can be picked-up. Such framework is also flexible in case of time-windows,
i.e. maximum user waiting time and maximum additional delay, which can be included in the
set of constraints.

The work in [3] aims to provide a general framework for the multi-vehicle multi-request rout-
ing, in order to address the problems of ride-sharing. The overall objective is computing
incrementally an optimal assignment of a set of request to a set of vehicles with given capac-
ity. The trip-vehicle assignment is performed continuously, taking into account the incoming
request. The method also considers the rebalancing of the fleet.

Pairwi
airwise RTV-graph
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Figure 3-1: Schematic overview of the method for batch assignment of multiple requests to
multiple vehicles proposed in [3]. The method consists of several steps leading to an integer
linear optimization that provides an anytime optimal assignment. In the first picture from the
left, we see an example of a street network with four requests (orange human, origin; red triangle,
destination) and two vehicles (yellow car, origin; red triangle, destination of passenger). Vehicle 1
has one passenger, and vehicle 2 is empty. Then, go to the right, we see a pairwise shareability RV-
graph of requests and vehicles. Cliques in this graph are potential trips. The next image presents
RTV-graph of candidate trips and vehicles which can execute them. A node (yellow triangle) is
added for requests that cannot be satisfied. After that, there is the optimal assignment given by
the solution of the ILP, where vehicle 1 services requests 2 and 3 and vehicle 2 services requests 1
and 4. In the last image, the reader can observe the planned route for the two vehicles and their
assigned requests. In this case, no rebalancing step is required because all requests and vehicles
are assigned.

The problem shown is solved via four steps:

1. Compute a pairwise request-vehicle shareability graph, called RV-graph.

2. Compute a graph of candidate feasible trips, called RTV-graph, which merges one or
more requests and vehicles able to service them.

3. Solve an Integer Linear Programming (ILP) to compute the best assignment of a set of
vehicles to a set of trips.

4. Rebalance the remaining idle vehicles.

The shareability graph of the first step aims to translate spatio-temporal sharing problems
into a graph-theoretic framework, capable to provide efficient solution [10]. The requests are
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supposed to be dynamic. A pool of requests is maintained where new requests are added or
removed. The removal can be caused when a request becomes passenger or when it cannot be
matched with any vehicle due to the constraints. With a certain frequency, a batch assign-
ment of the request to the autonomous vehicles is computed. The designed time interval in
the experiments in [3] is 30s. Hence, since the requests are collected during such time interval,
the overall dynamic optimization problem is split into static optimization problems, where
each horizon is 30s. The batch assignment can be performed by solving the optimization
problem considering the predicted state of the fleet at the assignment time.

As a variant of the VRP, the problem is NP-hard [13]. Hence, obtaining an optimal assign-
ment can be computationally expensive, given that real-time results should be provided. A
sub-optimal solution is thus returned within a runtime budget, which can be improved incre-
mentally up to optimality. The method in [3] is referred to as anytime optimal algorithm;
then, with a non-limited computational time, it would be capable to return the optimal
solution.

The potential of the algorithm is based on the goodness of the RV-graph and of the RTV-
graph. Saving time in generating such graphs and having a smaller size of possible trips lead
the optimization algorithm to have more computational time to explore a narrowed set of
solutions. Authors define trade-off (i.e. maximum number of edges per nodes, maximum
number of vehicle per nodes) for the construction of the shareability graph. Speed-up algo-
rithms can be used to prune the branches to explore [15]. The following step of the method is
to explore the regions of the RV-graph for which its induced subgraph is complete, or cliques,
to find feasible trips to build the RTV-graph. A trip is defined by a set of requests and it
is feasible if the requests can be combined, picked-up and dropped-off by some vehicle while
satisfying the constraints. A request may be part of several feasible trips of varying size, and
a trip might be assigned to different vehicles. For each vehicle, a timeout is set, and after
that, no more trips are explored. This choice leads to faster computation, yet to the price of
sub-optimality of the solution. A trip is thus added to the RTV-graph if it results feasible.
However, imagine that given a subset of requests we are able to predict which is the optimal
cost (within a confidence bound) of servicing such requests. We are then predicting the cost
of the optimal route. This means that if some trips have a cost outside the confidence bound,
we can discard them from the RTV-graph. The goal of the thesis is, therefore, design a ma-
chine learning method able to predict the optimal cost of a routing problem. In particular,
we aimed to predict the cost of single-vehicle Pick-up and Delivery Problem (PDP).
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Chapter 4

Definitions and Problem Statement

In this chapter, we will provide a formal definition of the nomenclature we will adopt and
explain the problem we aim to solve.

4-1 Definitions and notations

Consider the Pick-up and Delivery Problem (PDP) defined in subsection 2-2-3. Consider now
a static, single-vehicle PDP without depot; the solution of the problem consists in finding the
route in such a way all the requests are serviced ensuring certain constraints and minimizing
the overall routing cost. Generally speaking, a request is a demand for a transportation
service, given an origin where to be picked-up and destination where to be dropped off. We
formally define a set of requests R:

Definition 4-1.1. A set of n requests R is a set of tuples, where each tuple r = (O,, D,) is
defined by an origin O, € R? and a destination D, € R?. Both origins and destination are
spatially identified with their coordinates (x,,yy).

Further in the text, when we handle different sets of requests with also different dimensions,
we will refer to the set of requests as R/, where the subscript 7 indicates the instance i, while
the superscript j indicates the cardinality of the set.

When we refer to origin and destination as geometrical entities in the plane, we will call
them indistinctly points or nodes. The former definition is related to the fact that origins
and destination are geometric points in the two-dimensional plane; the latter is used since
we model the problem using graph theory, where nodes are the origins/destinations and the
edges are the Euclidean distances between nodes. Recalling Definition 2-2.4, we can now
define the set of points (or nodes) V:

Definition 4-1.2. We define a set of points (nodes) V = Vo U Vp, where
Vo = {v1,v2,..., 0}
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and

VD = {’Un+1, PN ,Ugn}
such that, being r1, ..., r, some ordering over requests from set R, for all r; € R with R € R",
andi=1,...,n, we have:

V; = Oi, Un+4i = Di, (4—1)

We thus define:

Definition 4-1.3. The solution of PDP is the minimum-length tour which services each
request, ensuring that the destination node is always reached after the corresponding origin
node.

Since we solve the PDP using an optimization formulation, we will call the length of the
minimum-length tour as optimal length.

We said that the single vehicle has a set of requests to satisfy, say n requests. We define
a route p as a sequence of all nodes, with dimension 2n. The sequence of points can be
re-ordered in 2n! permutations. Consequently, there exists 2n ! possible routes:

p1 = {v1,v2, .., Un,Ung1y..., Vot
p2 = {vV2,0V1,..., UnyUnt1y..., U2}
Pan! = {UQn,Un+1,...7Un,...,U2,U1,}

The subscripts {1,2,...,n} indicates the origins, while {n +1,n+2,...,2n} indicates desti-
nation. Further in the text, we will also refer to the origin subset starting from 0 and ending
with n—1 (and thus the destination {n,n+1,...,2n—1} ) to be consistent with the proposed
algorithm and the code we wrote. .

We define a route as feasible or as feasible solution of the PDP if such route does not vi-
olate any precedence constraints. It means that the node v; must precede the node vj4;.
Since there are some infeasible routes, the number of allowable permutations is reduced. The
number ¢ of feasible routes of a PDP with n requests is [56]:

(2n)!
2n

i= (42)

We can now define the set of feasible routes:

Definition 4-1.4. Consider a single-vehicle PDP instance I defined by a set R of requests to

be serviced. The set of requests R consists of n requests {ri,...,rn}, where the i-th request is

r; = (04, D;), with O; € R? being the origin, and D; € R? being the destination. There exist

2n nodes v € V in the Fuclidean plane: nodes vg,v1,...,v,—1 are origins belonging to Vo,

and nodes vy, Upy1, ..., Vap—1 are destinations belonging to Vp. Destination v,4; corresponds
2n)!

to the origin v;. The set of feasible routes R with cardinality ¢ = ( 2n) is the set of discrete

sequences p € N?". The discrete sequences are permutations of all nodes v € ¥V such that node

v; precedes in the sequence the node vy, withi=0,...,n— 1.

The solution of a PDP instance I = (R) is denoted S(I) is defined as the optimal route, and
the value of instance I, denoted v(I), is defined as the optimal length.
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Therefore, solving a PDP instance means finding an optimal route, in such a way that a cost
is minimized. We aim to minimize the length of the route. It is then helpful to define a
function which computes such length:

Definition 4-1.5. Given a route p € N?", the function \:

ARZXR?Zx---xR?2 SR (4-3)

2n times

compute the length of the route p as follows:

2n—2
Z Vg =202 + (g — w2 plil = vj pli+1] = v, v = (25,95), 00 = (a1,m) (4-4)

Example 4-1.1

Consider n = 2 requests and the route p = {v1, vg, v3,v2}. Therefore, the vehicle travels
along the path:
V1 — Vg — V3 — U2 (4—5)

It starts in v1, ends in vy and reaches in between first vy and then vs. The length of p
is computed with the function A(p)) of Eq. (4-4):

Alp) = A(v1, vo,v3,v2) = \/(961 —x0)* + (1 — %0)* + \/ (o — 23)* + (Yo — y3)*+

+ \/ r3—x2)? + (y3 — y2)? (4-6)

Once that we have a function computing the length of a route, we can define the function
which describes the PDP:

Definition 4-1.6. Given a PDP instance with n requests, and the set of feasible routes R of
size ¢, the function

f()‘(pl)a )\(pQ)a ) )‘(:0(7)) = min{)‘(ﬂl)> )‘(p2)7 e 7)‘(:0(?)}7 (4'7)

defined over the domain
f RxRx---xR—=R (4-8)

q times

returns the length of the optimal route, that is the shortest length.

We will refer to this function with f(A). It is worth mentioning that f(\) is a composite
function: f depends on A which depends on p which depends on the set of request R. We
have seen so far that given a set of requests R € R™ how the optimal length is found; firstly, we
generate all the feasible routes p; € R,i =1,...,q. Then, we compute their lengths through
the function A shown in Definition 4-1.5, and then we take the minimum thanks to f(A). The
mapping between the set of requests and the optimal length is thus rather complex, requiring
three steps. This process is shown in Eq. (4-9).
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R? x R? x .. x R2 220, R
2n times
R? x R? x --- x R2 22 R
RL) 2n times &R. (4—9)

R2x R2 x - -- x R2 22,

2n times

Therefore, given a set R of n requests, the minimum is found once that all the lengths of
feasible routes have been computed. This process is referred as brute-force algorithm and
could be cumbersome.

Example 4-1.2

As an example, consider a PDP with five requests: it has 113400 feasible routes; thus,
the function of Eq. (4-4) must be called 113400 times and the function of Eq. (4-8)
must found the minimum between 113400 values.

Although optimization formulation can handle such complications, we want to emphasize that
the PDP is affected by the so-called curse of dimensionality and compute the optimal length
is hard in real-time.

We now define a more general function F(R) describing the single-vehicle PDP:

Definition 4-1.7. Given a set R of n requests of PDP instance, the function F(R) defined
over the domain

F:R*xR*x.---xR*=R (4-10)

n times

returns the length of the optimal route, that is the shortest length.

We aim to find a easy way to evaluate an approximation function f able to predict the value
of the function shown in Eq. (4-10) given the input set of requests R.

4-2 Problem statement

The goal of this thesis is to apply machine learning methods to easily estimate a function f
that given a set of requests of a PDP returns the length of the shortest route.

Definition 4-2.1. Consider a single-vehicle PDP instance I defined by a set R of requests
to be serviced. The set R consists of n requests {r1,...,rn}, where the i-th request is r; =
(04, D;), with O; € R? being the origin, and D; € R? being the destination. We aim to find
a function f(@(R),0) in such a way that the difference |f(p(R),0) — F(R)| is minimized,
where F(R) is the solution of the PDP instance I. We thus define a predictor v(I) as an
approximation of the optimal length v(I).
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The input argument ¢(R) is an unknown feature with still unknown dimensions depending
on the set of requests R and will be determined in such a way that the function f(p(R),6) is
casy to evaluate. We will apply supervised learning methods to derive the model f(¢(R),6),
where 6 is the vector parameter of the machine learning model. The input vector to train the
model will be indicated with X € R™*P, and the output vector with Y € R™.
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Chapter 5

State of the art

In this chapter we will provide an overview of the literature related to learning method applied
to combinatorial optimization problems, emphasizing to open problems this thesis aims to
solve.

5-1 Learning methods applied to combinatorial optimization prob-
lems

In this section, we will summarise the learning methods applied to solve combinatorial opti-
mization problem and in particular the Travelling Salesman Problem (TSP).

5-1-1 Hopfield Network

One of the first work which arose the potential of Neural Network to solve combinatorial
optimization problem was the so-called Hopfield-Tank network [57]. Such network computes
the TSP tour of n cities using a network of n? neurons. The authors proposed an energy-like
approach, using the circuit modelling to represent the network. They modified the energy
function of the network in order to create an equivalence with the objective function of the
TSP. Although the computational power was limited at that time, the results were good
in small-scale (~ 10 cities). However, the network scales dreadfully; this behaviour and its
sensitivity to hyper-parameters design were the greater limits. Further researches did not
make evident improvements. An exhaustive review of Neural networks for combinatorial
optimization, even though not very recent, is [58].

5-1-2 Neural combinatorial optimization networks with reinforcement learning

A substantial step further was possible due to deep learning. Specifically, after the introduc-
tion of attention mechanism [59] and Pointer Networks [16] the TSP is newly revisited.
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Attention mechanism approach was proposed to address the neural machine translation [59].
It is based on and encode-decoder framework, where the encoder reads the input sentences (a
sequence of vectors) and maps it (non-linearly) into another vector ¢, and the decoder aims
to predict a probability over the translation given the context vector ¢. The most common
approach is to use a Recurrent Neural Network (RNN) [60] since they are widely used in the
field of learning functions over sequences from examples. However, these methods rely on a
fixed a priori size of output dictionary; thus they cannot be directly applied combinatorial
optimization problems since the output size depends on the length of the input sequence.
Authors of [16] developed a Pointer Network architecture based on the attention mechanism
to learn approximate solutions of TSP. Their model is addressed to learn the conditional
probability of the output sequence of visited cities. Pointer networks use a softmax proba-
bility distribution as a pointer, indeed, to a specific position in the input sequence, rather
than predicting an index value from a vocabulary of fixed size [17]. With such approach,
they overcome the limitation imposed by attention mechanism. This method, being a super-
vised learning approach, is thus limited since the production of exact solutions is costly for
a large number of cities. From such results, authors of [17] designed a neural combinatorial
optimization with Reinforcement Learning (RL). The parameters of the Pointer Networks
are optimized using model-free policy-based RL. Their algorithm not only overcomes the
limitation of obtaining optimal values as training examples but they also empirically demon-
strate that their method over-perform the Pointer Network also in terms of generalization.
Although such framework works well on TSP, it performs poorly in systems varying over time
such as dynamic Vehicle Routing Problem (VRP) [61]. This happens because if an element
changes, the whole Pointer Network must be updated for computing the probabilities in the
next decision points; in addition, the back-propagation process needs to store all the gradients
since the algorithm needs to know when the dynamic elements changed. The model should,
therefore, be invariant to the input sequence in order to avoid that inputs’ changes affect the
network. Authors of [61] argued that the RNN is a useful tool, but is likely to add unnecessary
complications; thus, it should be avoided unless the input conveys sequential information (as
in the language translation). The approach proposed in [61] removes the RNN encoder and
leaves the RNN decoder. The mapping from the inputs to the higher dimensional space is
made using embedding convolution layers. From the results shown in their paper, it seems
that their approach applied to TSP has a faster training time than [17] with almost same
performance, while the running time comparison with [17] is omitted. The accuracy of VRP
estimation is competitive compared with some heuristic methods, even if slower. However,
the paper is less informative than [17] and thus less reproducible.

A work similar to [17] which aim to solve the TSP is [18]. Authors noticed that the previous
neural combinatorial networks did not include as a baseline the farthest insertion heuristic, a
simple algorithm that greedily inserts the most distant node into the best possible location.
Including such heuristic baseline during the learning updates improves the speed of conver-
gence and the accuracy of the final results. The aim of that work was emphasizing that there
is a structure in combinatorial optimization problem that can be exploited to train model
able to predict unseen problem instances.

Following this concept, the contribution of this thesis is twofold: first, we realized that all
the approaches listed in this subsection are promising, but their implementation could be
cumbersome. We instead want to design a simple way to estimate the cost of a combinatorial
optimization problem. More specifically, we are interested in the prediction of the single-
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vehicle Pick-up and Delivery Problem (PDP) optimal cost, a problem that has not been
investigated yet. Furthermore, as second goal, we will show if a heuristic feature can positively
affect the prediction accuracy.

5-2 Features of interest

As stated in the previous section, we aim to train a model able to predict the cost of a PDP in a
supervised way. We thus wonder what are the features that are significant during the training
process. We were led to the possible features to analyze by a paper which investigated how
to automatically extract features of interest from VRP instances to adapt routing algorithm
to a specific VRP instance [62]. The purpose of the authors was to propose features that
can be used to automatically configure vehicle routing algorithm. The features are clustered
by type: nodes distribution, geometric features, graph properties, heuristic features. In our
work, we applied some of these features as input to the machine learning models and inferred
that the most promising direction is the one which considers the heuristic algorithm results.
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Chapter 6

Optimization formulations

This thesis aims to show how supervised learning can help to estimate the cost of a Pick-up
and Delivery Problem (PDP). Therefore, we need training data and validation data. We
used the optimization formulation to generate the data we need to apply the supervised
learning. We proceeded incrementally, starting from the Travelling Salesman Problem (TSP)
formulation to the PDP formulation.

6-1 Travelling Salesman Problem

In Chapter 2 we summarised the basic of graph theory and TSP. As reported, the solution
of classical TSP is a cyclic tour, starting and ending at a depot. It is important to mention
that in this section we provide a Integer Linear Programming (ILP) formulation of the TSP
without a depot. Hence, the tour is not cyclic and both initial and final point of the tour are
unknown. Our goal is to provide an optimization formulation independent from any initial
point: we only want to find the shortest path between points to maintain the formulation as
general as possible.

Consider an undirected graph G = (V, ), where V is the set of nodes (points) belonging to
R? of the 2D-plane and & is the set of weighted edges connecting two points. In particular,
the arc (edge) e;; connects the point v; to the point vj, where v; € V and v; € V. Each arc
is weighted, and the weight a is the Euclidean distance between the two connected points,
aij = |v; — v;|3. For the sake of simplicity, from now on the text will refer indiscriminately to
the weights and to the edges themselves as their weighted version: e;; = |v; — v;]3. Given n
points (cities), the adjacency matrix is A € R"*", where each element is the edge e;;. Since
the graph is undirected, the matrix is symmetric; plus, the diagonal is filled with zero. These
are two properties that can be exploited to speed up the optimization algorithm. The solution
to TSP consists in finding the minimum-length tour which visits each point v € V (at least
and at maximum) once. The problem is cast using an ILP formulation:
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n—1n—1
min Z Z Tij€i5 (6-1)
Tig i=0 j=0
n—1
s.t. Z Tij < 1, Vi (6—2)
=0
n—1
Y myp <1, V) (6-3)
=0
n—1n—1
szi]’ :n—l, (6—4)
i=0 j=0
n—1n—1
szij :n—l, (6—5)
=0 i=0
i —u; —nxy; <n—1 V(4,75) (6-6)
Tij € {Oa ]-}7 V(Y’aj) (6_7)
eij €€, V(i) (6-8)
(1,7) eV xV (6-9)
u €L, Vi€V (6-10)

where Eq. (6-1) is the objective function; x;; is the binary variable to optimize: if z;; = 1,
the solution contains the edge e; ;; otherwise, it does not. We have n x n binary variables
and n integer variable to optimize. For the sake of simplicity, we consider a matrix X', where
xij, (1,7) € ¥V x V is a generic entry.

We here list and explain the constraints:

e Eq. (6-2): each column of the matrix X must have at maximum one element equal to
one. It means that each node is reached as destination maximum once.

e Eq. (6-3): each row of the matrix X must have at maximum one element equal to one.
It means that from each node only one branch departs.

e Eq. (6-4) ensures that the sum of the elements column by column must be n — 1 and
Eq. (6-5) that the sum of the elements row by row must be n — 1.

e Eq. (6-6): this constraint, using a dummy variable u, avoid the formation of sub-tours:
there is a single tour which connects all the nodes.

e Eq. (6-7) states that the optimization variables z;; must be binary, Eq. (6-8) that the
arcs e;; belong to the edge set, Eq. (6-9) that the nodes i and the nodes;j belong to the
node set, and Eq. (6-10): the dummy optimization variables u; must be integer.

6-2 Pick-up and Delivery Problem

We are now formulation the Euclidean PDP without depot following the same approach of
the TSP formulation of the previous section.
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Consider a graph G = (V, £), where V is the set of nodes (points) belonging to R? of the 2D-
plane and & is the set of weighted edges connecting two points. The arc (edge) e;; connects
the node v; € V to the node v; € V. Each arc is weighted, and the weight a;; is the Euclidean
distance a;; = |v; — Uj\%. As in the previous section, we will refer to the edges as their
weighted version: e;; = |v; —vj]3. Given n requests, to each request is assigned an origin and
a destination. There are then two types of nodes: origin v; € Vo and destination v,y; € Vp.
In this case, we have a total of 2n nodes. Therefore, nodes {vg,...,v,—1} are the origins
and {vy,...,v2,_1} are the destinations. The adjacency matrix is A € R?"*2? where each
element is the edge e;;. The solution of PDP consist in finding the minimum-length tour
which visits each nodes v € V (at least and at maximum) once, ensuring that the destination
node v, is always reached after the corresponding origin node v;.

The problem is cast using an ILP formulation.

2n—12n—1
IIllIl Z Z Lij€ij (6—11)
ij i=0 j=0
2n—1
s.t. > iy <1, Vi (6-12)
j=0
2n—1
Sy <1, Y (6-13)
=0
bri < by + (1 —wij), V(i,j) Vk#1 (6-14)
brj < bpi + (1 —xi5), V(i,j) Vk #i (6-15)
bi; =0, Vi (6-17)
biin =0, Vic{0,....,n—1} (6-18)
Gisni =0, Vi€ {0,...,n—1} (6-19)
n—12n—1
> my=n—1, (6-20)
i=0 j=0
2n—12n—1
oY my=n—1, (6-21)
i=0 j=n
2n—1
> wij=1, Vie{0,....n—1} (6-22)
=0
2n—1
Y wiy=1, Vje{n,...,2n} (6-23)
=0
zij € {0,1}, V(i,j) (6-24)
eij € &, (i, ]) (6-25)
(i,j) €V XV (6-26)

Eq. (6-11) is the objective function: x;; is the binary variable to optimize: if x;; = 1, the
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solution contains the edge e; ;; otherwise, it does not. We have 2n x 2n + 2n x 2n binary
variables to optimize. For the sake of simplicity, we consider a matrix X', where x;;, (i,7) €
YV X V is a generic entry.

We here list and explain the constraints:

e Eq. (6-12): each column of the matrix A must have at maximum one element equal to
one. It means that each node is reached as destination maximum once.

e Eq. (6-13): each row of the matrix X must have at maximum one element equal to one.
It means that from each node only one branch departs.

e Constraints Eq. (6-14),Eq. (6-15), Eq. (6-16), Eq. (6-17) and Eq. (6-18) are intended to
impose precedence ordering [63]. An auxiliary variable b;; allows to avoid that destina-
tion precedes the corresponding origin in the route. In particular, constraints Eq. (6-14),
Eq. (6-15) are called copy constraints, since their function is to copy all the value of by;
to by; . If x;; = 1, means that node 7 is immediately before node j and thus constraints
Eq. (6-14) and Eq. (6-15) force by; = by;. Then, constraint Eq. (6-18) and Eq. (6-19),
thanks to the relation Eq. (6-16), are prior constraints, forcing the pickup node to be
visited before the corresponding delivery node.

e Eq. (6-20) ensures that all the origins but one (the first in the route), must have both
incoming and outcoming flow, while Eq. (6-21) ensures that all the destinations but one
(the last in the route), must have both incoming and outcoming flow.

e Eq. (6-22) ensures that all the origins have outcoming flow and Eq. (6-23) ensures that
all the destination have incoming flow.

e Eq. (6-24) states that the optimization variables z;; must be binary, Eq. (6-25) that the
arcs e;; belong to the edge set, Eq. (6-26) that the nodes ¢ and the nodes;j belong to the
node set, and Eq. (6-27) that the auxiliary optimization variables b;; must be binary.
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Chapter 7

Supervised learning applied to
combinatorial optimization problems

In this chapter, we will show the process that led us to a supervised learning model which
predicts the length of a single-vehicle Pick-up and Delivery Problem (PDP) tour with two
requests. Chapter 5 outlined existing learning methods in literature applied to combinatorial
optimization problems. Such models have complex structures and are applied to predict the
route, that is the order of the cities to visit (or the passengers’ origin/destination). The goal
of this chapter is twofold: first, we investigate how the input features affect the scalability of
the supervised learning models when the desired output to predict is the length of the optimal
route solving the single-vehicle PDP; then, we infer the most suitable learning method for
this class of problems.

7-1 The optimal length function

A model able to predict the output of a PDP instance predicts the length of the optimal
route (see Chapter 4). We saw that we can define a function f(\) which returns the shortest
length among all possible routes A. Therefore, the minimum feasible route is the minimum
of the function shown in Eq. (4-7) and here re-proposed:

f(/\(p1)7 )\(02)7 T /\(/06)) = min{)‘(pl)7 )‘<p2)7 B A(P(j)}, (7'1)

(2n)!
n
the set of feasible routes R and it is the number of permutations that satisfy the precedence
constraints. We also define a more general function mapping from the set of requests R of a

PDP to the optimal length (see Eq. (4-10)):

where ¢ = is the number of allowable feasible routes. It represent the cardinality of

F:R2xR?x---xR2=R (7-2)

n times
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The function in Eq. (7-2) is expected to be a highly non-linear function with multiple local
minima. But how complex is this function?

As an example, consider two requests 71, r2. Each request has an origin O; = (x¢,y¢) and a
destination D; = (2¢,4¢), with i € {1,2}. We will refer to both origins and destinations as
nodes or points. Using the nomenclature of Chapter 4 to make the equation more readable
getting rid of an index, we can refer to origin and destination as points v; = (z;,y;) in the
Euclidean plane. Therefore, vy, vo are the origins and vs, v4 are the corresponding destinations.
Imagine now that the shortest route p* which services these requests is

p" = {v1,v9,v4,v3},
and therefore the path to follow is:
01— Oy — Dy — D;.
The length L of this path is computed using Eq. (4-4):
L= Xp") = MNvy,va,v4,03),

where p* indicates the optimal route.

Now, the length of the route p* computed with the function A(vy,va, vg,v3) is:

L= \J(x1— 22+ (51— 92)? + /(@2 — 22)2 + (2 — 90)? + /(w1 — 23)2 + (2 — y3)2,

where each term is a Euclidean distance. The same procedure can be applied to different
routes and the function Eq. (7-1) returns the minimum over such lengths.

1.7 1 °

1.6+

1.5+

1.4

PDP cost

131 ° .

1.2

0 1 2 3 4 5
Feasible route

Figure 7-1: Graphical representation of function in Eq. (7-1) applied to a 2-requests Pick-up and
Delivery Problem instance.
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Table 7-1: Nodes coordinates of a PDP instance (see also Figure 7-1).

X y
Op: node 0 0.570 0.514
O;1: node 1 0.937 0.0207
Dg: node 2 0.754 0.293
Dj: node 3 0.449 0.515

Example 7-1.1

To simplify the concept. consider a 2—requests PDP. There are four nodes to connect:
two origins vy, v; and two associates destinations vs,v3. There exist 4! = 24 permu-
tation of the four nodes vy, v1,v9,v3. However, due to precedence constraints, some
permutations are infeasible and thus discarded. The feasible permutations (routes) are:

po = {vo, v1,v2,v3}

p1 = {vo, v1,v3, va}

p2 = {vo, v2,v1, v3}

p3 = {v1,vo,v2,v3}

pa = {v1,v0,v3, v}

p5 = {v1,v3,v0, V2 }.
We assign to each permutation a cost, that is the length of the route, computed as in
Eq. (4-4). Consider now four nodes whose coordinates are in Table 7-1. The plot in

Figure 7-1 is indeed the function Eq. (4-7) applied to this example. From such Figure,
we infer that the route for which the length is minimized is permutation 5:

ps = {v1, v3,v0,v2},

and thus the optimal route is O; — D1 — Og — Dy.

\.

Although the function of Eq. (7-1) represented in Figure 7-1 has a unique minimum, each
point in such Figure is computed using Eq. (4-4) and it is the sum of three Euclidean distances.
The minimum must be found between the outcomes of six non-linear functions with probably
multiple local minima. We realize that even the simplest PDP case presents several challenges.
A graphical intuition may be helpful. Consider again a 2-requests PDP, where three nodes
{vo,v1,v9} are fixed and the fourth P is varying. Node vq is the associated destination to
origin vy and P is the associated destination to origin v;. In this example, we want to solve
a PDP where the variable point is the last nodes in the route. Therefore, we have only three
feasible permutations:

po = {vo,v1,v2}
p1 = {vo,v2,v1}
p2 = {v1,v0, v2}
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Table 7-2: Nodes coordinates. The set X and ) contain the coordinates ranging from 0 to 1
with a step of 1/1.

X y
Op: node 0 0.622  0.951
O1: node 1 0.855  0.264
Dg: node 2 0.340  0.604
Di:noded zeX ye)y

Imagine now that instead of finding the optimal route we iteratively compute the length for
each route, varying P. Figure 7-2 shows the experiments performed with the three-fixed
points listed in Table 7-2. The coordinates of P vary in the interval [0, 1] with step 1/l and
[ = 20. We thus obtain 400 possible combinations. As can be observed in Figure 7-2 the
length depends on the route and it is not guaranteed that the for each P the optimal length
is ensured by the same route.

(A'x)4

Figure 7-2: Three-dimensional plot of the length of the routes as function of a variable point.

Predicting the length of a route could be manageable, but predicting the optimal length
is more challenging indeed. In this chapter, we aim to provide a systematic investigation
about the complexity of machine learning method to generate model able to predict the PDP
optimal cost.
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7-2 The Euclidean norm

As stated in the previous section, the solution of the PDP is nothing but the feasible route
of minimum length. Such length is a sum of Euclidean distances. But how complex would be
predicting only the Euclidean distance function? The simplest case is when one of the two
points is the origin O(0,0) of the Euclidean plane, and the other is P(z,y). Given these two

points, the Euclidean distance is:
d(z,y) = \/2? + y?, (7-3)

which is also called Euclidean norm (of P). The shape of this function is in Figure 7-3.
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(a) 3D representation. (b) Contour plot.

Figure 7-3: 3D visualization of the function in Eq. (7-3) and its contour plot.

In the following paragraphs, two supervised learning methods will be discussed: Multi-layer
Perceptron (MLP) (or Neural Network (NN)) and Support Vector Regression (SVR). These
two models are trained in such a way that they are able to approximate the non-linear function
of Eq. (7-3) shown in Figure 7-3.

The training input features for these models are the coordinates (x;,y;) of the generic points
P;,i=1,...,m where m is the dimension of the training set. The entries of the output vector
are the values y/2? 4+ y?. Input and output vector are thus respectively:

1 N x3 4yt

X 2 2
x= |7 Plerme yo | VoRtU | cpm (7-4)

e m vk +

Training dataset and validation dataset shown further have dimensions respectively m = 3000
and My, = 300.

Neural Networks The goal of this chapter is to eventually train a model which predicts the
optimal length of the tour solving the 2-requests PDP. Therefore, the performance of the
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model approximating the Euclidean norm will be evaluated in preparation for such purpose.
As a general rule, the model should be as scalable as possible. Thus, we will focus on:

e the validation error, that is a Root Mean Squared Error (RMSE):

RMSE = \/Z;nml (y'f;al - yzz;)red)2

Myal

(7-5)

where yf}al and y;;red are respectively the target value of the i—th validation example
and the value estimated using the trained model applied the i—th validation example.

e the number of hidden layers and the number of hidden neurons h
e the training time.

A crucial aspect of the MLP design is the choice of the activation function. The concept
behind this NN is to estimate a model using regression technique; we selected as activation
function the ReLu function (see Eq. (2-7)) over the sigmoid activation function (see Eq. (2-
8)) for two reasons: first of all, the ReLu function allows a network to easily obtain sparse
representations [64] and it reduces the problem of vanishing gradients, that is one of the major
drawbacks of sigmoid activation function.

Although such activation function has a small training time and allows the sparsity of the
network activation, there is a relevant aspect that can affect the performance; imagine that
the weight update is based on a gradient descent method. Consider now the case when the
input of a neuron is smaller than zero, and therefore the output will be zero. But this implies
that the gradient will be zero, and hence the related weights will not be updated. Such
phenomenon means that when a neuron assumes state zero, it will never leave that state and
will become blind to the variation of the error or of the input. This problem is known as
dying ReLu problem [65].

5 — 5
—— Relu —— Relu
41 Leaky RelLu 4 a=0.1
3 34 —- a=0.2
--- a=0.3
2 21 --- a=0.4
N N --- a=0.5
& 11 5 14
0 0 —
-1] —1 -mTIIieII
- ’,’,/’
-2 -2 /:’,’
-4 -2 0 2 4 —4 -2 0 2 4
V4 z

Figure 7-4: The leaky RelLu function compared with the classic ReLu function.

To overcome such problem, a common solution is to slightly modify the zero slope part of the
function, as follows:
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Table 7-3: Performance of the Neural Networks predicting the Euclidean norm shown in Eq. (7-3).

Activation Function Error Neurons Training time (s)
ReLu 3x 1073 74 0.13
Sigmoid 5.57 x 1072 67 0.51
ReLu 1.7 x 1073 534 4.38

where a is a parameter which determines the slope. The activation function in Equation
Eq. (7-6) is known as leaky ReLu [65]. Some examples can be seen in Figure 7-4.

The ReLu function is a suitable choice to obtain a fast learning time. In addition, since the
function to approximate is relatively smooth, one hidden layer should be sufficient to achieve
a good validation error. Finally, the number of neurons have been determined in such a way
that the minimum error is obtained. The output of the ReLu function lies in the range [0, oo];
therefore, it is not bounded, differently from the sigmoid activation function which is instead
bounded in the range [0,1]. The function is shown in Eq. (2-8) and Figure 2-6.

Such function has a smoother gradient and small change in the input, when z € [—2, 2], causes
a significant change in the output, as can be seen in Figure 2-6. The sigmoid function has
furthermore an advantage in terms of number of neurons; in fact, it has been proved that
under certain assumptions, feedforward networks with one layer of sigmoidal nonlinearities

1
achieve integrated squared error of order O(—), where h is the number of hidden neurons [66].

Table 7-3 shows the performance of the networks: a model with ReLu activation function is
able to provide a validation error of the order ~ 102 with only 74 neurons. Moreover, as it
could be expected, the training time is smaller for the ReLiu function indeed. There were, in
fact, fewer neurons and smaller computational expense, due to the fact that ReLu relation is
mathematically simpler. The last row of Table 7-3 shows the price of having an even smaller
error: the number of neurons is an order of magnitude greater, leading to a much longer
training time.

Support Vector Regression Support Vector Machine (SVM) is a very popular approach for
supervised learning, especially when any prior knowledge of the system is available [50]. The
Euclidean norm is not actually the case. However, it is relevant to inspect the performance
of such approach in terms of training time, validation error and complexity, as for the NNs,
in prevision of further supervised learning problems.

As explained in Chapter 2, SVM can be extended to solve regression problem [67], leading
to the so-called SVR. Due to the non-linearity of the function to predict (see Eq. (7-3)), a
kernel is required to map into the high-dimensional feature space. The most suitable kernel
is the Gaussian Radial Basis Function (RBF):

!
N

K(z,2')=e 27 (7-7)

Once that the kernel has been chosen, one should select the penalty parameter associated
with the error, that is C'. Such parameter determines the trade-off between the flatness of
the function to approximate and the amount up to which deviation from e are tolerated [51].
A relatively small value of C| that is C' = 2, has been chosen in order to obtain a greater
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Table 7-4: Performance of the Support Vector Regression model predicting the Euclidean norm
shown in Eq. (7-3)

C  Error Training time (s)

2 4.01x1073 0.55

generalization. Other kernels and value of the penalty terms led to a worse performance
in terms of training time and validation error. Table 7-4 shows that SVR error is greater
compared to the NN and such error is also achieved with a longer training time.

Testing of the models It is now useful to visualize the learnt models performance, that is
their ability to replicate the shape shown in Figure 7-3. Looking at Table 7-3, the NN with
the ReLu activation function had the smallest error. Therefore, as expected, the shape of the
predicted function and the Euclidean norm from 7-3 overlap, as can be observed in Figure 7-
5a. On the other hand, even if the sigmoid activation function has still an average low error,
its ability to reproduce the shape of Figure 7-3 is poor compared to the ReLu activation
function. This can be observed both in Figure 7-6a and in the corresponding contour plot in
Figure 7-6b.

— True — True
———- Predicted ---- Predicted
0.8+ 1
0.6 1
>
0.4+ \
0'2‘\
0.0 } ' } +
0.0 0.2 0.4 0.6 0.8
X X
(a) RelLu activation function. (b) SVR

Figure 7-5: Contour plots of two different models. The solid line is the Euclidean function of
Eq. (7-3), the dashed line is the predicted using NN or SVR.

In the previous paragraph, it was shown that the error of models trained with SVR had the
same order of magnitude as the NN with ReLu activation function. Such performance can
be appreciated in Figure 7-5b. It can be noticed how the accuracy worsens when the point
is closer to the origin (see the first purple line for 0 < x < 0.2 and 0 < y < 0.2 in Figure 7-
5b) and when one of the two coordinates is close to the zero. The performance of models
investigated so far are summarized in Table 7-5, ordered in ascending order with respect to
the training time.
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Optimal length — True
—— Predicted Length ---- Predicted

(a) 3d representation. (b) Contour plot.

Figure 7-6: 3D visualization of the Neural Networks with sigmoid activation function performance
and its contour plot.

Table 7-5: Summary of models performance to approximate the Euclidean norm shown in Eq. (7-
3).

Model Error Training time (s) Figure

NN with ReLu 3x1073 0.13 Figure 7-5a
SVR 4.01 x 1073 0.55 Figure 7-5b
NN with sigmoid 5.57 x 1072 0.51 Figure 7-6b

7-3 Euclidean distance between two points

In subsection 7-2, the function to approximate was the Euclidean norm of a point within the
unit square. It depended on two parameters, x-coordinate and y-coordinate. Imagine now
that the Euclidean distance is computed between two random points within the unit square.
The formula of Equation Eq. (7-3) extends to:

d(z1,72,91,2) = \/(901 —x2)% + (Y1 — y2)? (7-8)

The function to approximate has hence four parameters. The question now is: how do scale the
models trained before? From this simple example, it can be inferred which model is the most
suitable to approximate the NP-hard problem. Looking at Table 7-6, some considerations can
be made. First of all, consider the NNs; to achieve an error of the same order of magnitude
as in the previous case, the complexity of the network must increase. This was expected since
the number of input parameters doubled. On the other hand, such result can be obtained
at the price of much slower training time, due to the higher number of neurons. It is worth
noticing that a NN with 159 hidden neurons slightly overcomes the performance of a net with
99 neurons, but the training time is greater than twice. A faster training time is obtained
with the sigmoid activation function; in addition, the number of neurons required to obtain an
error of the same magnitude compared to the previous case is smaller (h = 12). In this case,
the advantages of sigmoid activation function are more evident indeed: when the dimension of
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Table 7-6: Performance of the models approximating Eq. (7-8). For the NN, h stands for the
number of hidden neuros. For the SVR, C' is the penalty term associated to the error.

Model Error Hyper-parameter Training time (s)
NN with ReLu 4.38 x 1073 h =99 0.92
NN with ReLu 4.33 x 1073 h =159 2.12
NN with sigmoid 5.6 x 1072 h =12 0.21
SVR 4.16 x 1073 C =20 5.82

the NN input increases, the sigmoid activation function provide acceptable performance with
a smaller number of neurons, compared to other series expansion. Finally, the SVR model
achieves the same error as in the previous case with a training time 10 times higher.

From such experiments, we inferred that the scalability is compromised, as expected, even
if in this simple scenario. We expect also that in a Euclidean combinatorial optimization
problem the performance would worsen more. From the investigations performed in this
section, we concluded that the coordinates are not the most suitable candidate as input
feature to supervised learning models.

7-4 Alternative distance measure

0.8
175
1.50
125
1.00 X 06
075 O >
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=
0.8 0.2
0.0
0.6
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0.0 0.2 0.4 0.6 0.8
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(a) 3d representation. (b) Contour plot.

Figure 7-7: 3D visualization of the £i-norm of a 2-dimensional vector and its contour plot.

For the sake of completeness, consider now a different measure, that is the L-distance.
Consider first the norm; as the Euclidean norm, the £;-norm is a mapping from R™ to R
defined as follows:

Definition 7-4.1. Given the vector x € R™, the £i-norm is:
m
Ixlly = > il (7-9)
i=1
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Table 7-7: Performance of the Neural Networks predicting the norm.

Error Neurons Training time (s)
L£1-norm 9.37 x 107° 7 0.0035
Euclidean norm 3x 1073 74 0.13
L1-distance 7.3 x 1074 9 0.15
Euclidean distance 4.38 x 1073 99 0.92

From such definition, the £i-distance between two vectors x,y € R™ is
m
de,(x,y) = Y _|wi — yil (7-10)
i=1

Therefore, the £i-distance between two-dimensional vectors is:

de, (P1,P2) = |21 — 2| + |y1 — 12| (7-11)

The vector p; can be considered as a point in the two-dimensional plane and its components
(z4,y;) are the coordinates.

Compared to the Euclidean distance, the L£i-distance complexity grows linearly, while the
former has a quadratic relation. Since the relation is then simpler, the NN achieves better
performance in predicting £-distance. Figure 7-7 shows the 3D representation of Eq. (7-9).
The shape is flatter than the Euclidean norm (see Figure 7-3) and thus the accuracy of the
NN is expected to be better in predicting the two-points distance.

We trained a NN with ReLu activation function for predicting both the distance and the
norm. The validation errors resulted smaller than the Euclidean approximation model, as
can be observed in Table 7-7.

7-5 The Euclidean Pick-up and Delivery Problem

In the previous section, we investigated the complexity related to the supervised learning
approaches to predict the Euclidean distance. In this section, we will focus on how to find
the predictor f(¢(R)) which estimated the optimal cost F(R) of the simplest PDP, that is a
PDP with n = 2 requests.

7-5-1 Generate target data

Since we use a supervised learning approach, the target training data are required. In this
section we will show the performance of the PDP optimization formulation shown in Chapter
6, emphasizing the results that will be useful for the training. For a matter of simplicity,
we will show the validation data: we collected data for n = 1,...,8 and for each n we
did mye = 300 experiments. In each experiment, we sampled n requests with a random
distribution. The points have coordinates within the range [0, 1]. Figure 7-8 shows how the
optimal cost varies by changing the number of requests. We added a jitter along the x-axis
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to make the Figure more readable. We also drew a line connecting the average for each n
and a two bound indicating the mean plus/minus the standard deviation. We noticed that
the trajectory of the mean follows a square-root-like function. It has been proved that if n
pick-up and delivery pairs are sampled randomly with a uniform distribution on a square and
on a Euclidean region of area a, the length Y;, of an optimal tour satisfies [68]:

lim In _ g 2ab (7-12)

n—o00 \/ﬁ

where b is the well-known Travelling Salesman Problem (TSP) constant [69], that is b ~ 0.713.

PDP cost

—— Mean of optimal
---- Mean +/- std
Optimal cost

2 3 4 5 6 7 8
Number of requests

Figure 7-8: Plot of the experiments performed on several PDP instances. You can notice the
black line connecting the averages for different n.

We empirically tried to demonstrate that the length of an optimal tour of a PDP problem
with n requests is equal in average to:

Y, =avn+p (7-13)
for all n. We thus fitted the curve with the input data:
[2,...,2, 3,..,3,..., 8,...,81
X = ——— N — ~—— |,
Myqr times my,q; times My g times

Y = {}—I(R%)7 "?’qual(R’IZTLU )a" '7‘71(R§)""7‘Fmval(R§nval)] )

al

where the function .E(Rf ) is, with some abuse of notation, the function of Eq. (4-10), which
return the optimum value of the PDP ¢-th training example with j requests. The resulting

parameters were:

a =154, B=-0.9254 (7-14)
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Figure 7-9 shows the performance of the fitting. Such result will be useful further in the

thesis.

---- Fitted curve
3.51 — Mean of optimal
—-— Mean +/- std
3.0
0
S 2.5
a
o 2.0
1.51
1.0
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Number of requests

Figure 7-9: Fitting of the function Y;, = ay/n + 3 over the line connecting the averages of

optimal PDP costs for different n.

7-5-2 Coordinates as input features

Having a PDP with two requests means that there are in total four points to connect, where

each point has two coordinates:

o = (330,?/0), r = (961,3/1), T2 = (1132,3/2), s = ($3,y3)-

Hence, considering the PDP I-th instance, the argument of the machine learning model
applied to predict the optimal length v(I) is a vector p(R;) € R® containing the coordinates

of the requests r belonging to the i-th set of requests Rj:

o(Ri)=|ab ub of wi ... o} wh],
and the training input is a matrix X € R™*® containing all the points coordinates:
@(R)
Y 90({32)

Master of Science Thesis Daniele Bellan



48 Supervised learning applied to combinatorial optimization problems

Table 7-8: Pick-up and Delivery Problem: performance of Neural Networks.

Activation Function Error Neurons Training time (s) Input features

ReLu 7.36 x 1072 99 2.74 (x,y) coordinates
ReLu 7.03 x 1072 143 3.08 (z,y) coordinates
ReLu 6.64 x 1072 [109, 57] 6.88 (x,y) coordinates

When the input features are the coordinates of the nodes in the PDP, we will refer to the
generic input vector oo € R? as:

¢C(Ri):[x Y]:[xg v, ., b, yp] (7-15)

As can be easily deduced, the scalability is negatively affected: increasing the number of
requests will lead to making the input vector four times larger. Therefore, other features
input will be further investigated in order to show that another reliable prediction can be still
obtained with a more scalable and yet faster model. The training output vector, that is the
target Y € R™ is the following:

F(Ry)

where F(R;) is the function shown in Eq. (4-10), which returns the optimal length of the i-th
PDP training example whose set of requests if R;.

0.354
8<
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=1 < 0.25
wn o
= £
1) (7]
€4 v 0.20
= s
o
0.154
2<
0.104
0<
0 50 100 150 200 0 50 100 150 200
Number of neurons Number of neurons
(a) Training time. (b) RMSE.

Figure 7-10: Analysis of the training time and the Root Mean Squared Error with respect to the
number of neurons in a 2-requests PDP instance.

With the same approach described in the previous section, the performance of several machine
learning models will be shown with respect to the validation error, complexity, and training
time. In Table 7-8 such performance can be observed. From this Table, it emerges clearly that,
compared with the Euclidean distance, the accuracy of the prediction worsens by a factor of
ten. Furthermore, the training time is much slower compared to the Euclidean distance case;
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moreover, increasing the complexity of the network by adding neurons or additional hidden
layers does not improve the performance considerably. This can be observed in Figure 7-
10. In particular, considering Figure 7-10a, one can notice that the training time increases
almost linearly with the number of neurons. The spikes should be addressed to unpredictable
routines which slow down the process. On the other hand, in Figure 7-10b it is shown that
the RMSE saturates; therefore, after such saturation, it becomes superfluous to still increase
the number of neurons. Another aspect that arises from the Table compared to the previous
case is the absence of models with sigmoid activation function. As can be seen in Figure 7-11,
when the activation is the sigmoid function, the prediction settles on the average of the PDP
cost. This happens because the final goal of NN is to reduce the average error. The reason
for such behavior is related to the shape of the activation function and to the optimization
method. Recalling the Equation Eq. (2-8), the derivative of the sigmoid activation function

1S:
—z

o'(2) = oy = 0(2) - (1~ 0(2)) (7-16)

(I14+e2)

—— Desired result
2.04 Mean of the optimal cost
NN with sigmoid function

1.5

Predicted cost

0.5

0.5 1.0 1.5 2.0
Optimal cost

Figure 7-11: Performance of the model trained using sigmoid activation function in the 2-requests
PDP with coordinates as input features. The scatter of the models lies below the mean of the
optimal validation cost (the dotted line).

In Figure 7-12 is shown the derivative of the sigmoid activation function. Since such derivative
is bounded by 0.25, it can happen very easily that the gradients of all the neurons are small if
the algorithm results stuck in a local minimum. Hence, the product of such bounded values
reaches zero rapidly, due to the vanishing gradient problem. But this means that the NN
must train a model able to quickly leads to an averagely small error. The only way such
goal can be achieved is by generalizing the model in such a way it predicts the mean of
the training output. Therefore, with coordinates as input features, the sigmoid activation
function is discarded from the options.
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Figure 7-12: Plot of the sigmoid function with its derivative.

Regarding the SVR, from Table 7-9 is it possible to see how hard is finding an hyper-plane
able to separate the different cases. In addition, the training time is considerably slow and
therefore such model is not very suitable.

7-5-3 Heuristic as input features

In Chapter 5 we mentioned some possible additional input features for machine learning
models solving the TSP and Vehicle Routing Problem (VRP). In this section the result of
the greedy heuristic applied to the Euclidean PDP is used as input to the supervised learning
model. The concept is explained in Figure 7-13. The input features vector for the supervised
learning model with m training examples is:

G

Ga
X=1. (7-17)

Gm
where G is the function Eq. (2-4) computing the greedy route of the PDP similarly to Al-
gorithm 1. The only difference in the algorithm is that now there are precedence constraints

Table 7-9: PDP: performance of Support Vector Regression.

C  Error Training time (s) Input features
99  1.33x 107! 6.88 (x,y) coordinates
299 1.16 x 107! 7.34 (x,y) coordinates
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to satisfy and therefore destination nodes cannot be inserted in the route before the corre-
sponding origin nodes.

Optimal f
Solver
Termination
Condition
Neural
Points A? rgﬁm} G Network
9 Model

— 1

Figure 7-13: This Figure describes the training procedure when the input is the greedy heuristic.
Given m experiments, in each experiment there are four points generated randomly. Imagine
storing all the coordinates in a matrix called Points, where each row contains the coordinates of
the four points. Therefore, for each row, we computed the greedy solution G; and the optimal
solution f; and stored them in the input and output vectors. Until a termination condition is not
satisfied, the learning algorithm adjusts the weights to overall minimize the error.

Table 7-10, ordered in training time ascent order, summarizes the performances. Even the
slower models of the type f(G) outperform in terms of validation error the faster models
trained with coordinates as input features; in addition, the structure of the network is much
simpler. As in Figure 7-10, the same analysis can be applied to this case and the results are
shown in Figure 7-14. Increasing the number of neurons does not affect the model trained
with the greedy heuristic (see Figure 7-14a); the reason is that the optimization algorithm
used to adjust the weights of the net achieves the sub-optimal result very soon and therefore
the training time is considerably reduced. Furthermore, in Figure 7-14b it can be observed
that the saturation of the RMSE is reached long before in case of greedy heuristic as input.
In the same Figure, a baseline has been added in order to appreciate the performance of
the models (the red dashed-dotted line). Such baseline is the validation error between the
greedy heuristic and the optimal cost. We evaluate how the machine learning improves the
baseline solution using the greedy algorithm. The baseline is Bypceqy = 5.89 X 102, which
is outperformed by all models in Table 7-10. It is worth noticing that the model with the
greatest error still outperforms the baseline, improving it by 6%; therefore, we expect that
the benefits would be much more relevant in a PDP with more requests.

Table 7-10: PDP: performance of machine learning models with other input features. For the
NN, A stands for the number of hidden neurons. For the SVR, C' is the penalty term associated
to the error.

Model Error Hyper-parameter Training time (s) Input features

NN with ReLu 5.3 x 1072 h=9 0.02 greedy heuristic
NN with ReLu 5.2 x 1072 h=[1,9] 0.03 greedy heuristic
NN with Logistic 5.3 x 1072 h =29 0.09 greedy heuristic
SVR 5.46 x 1072 C =0.18 0.19 greedy heuristic
SVR 5.55 x 1072 C=8 0.34 greedy heuristic
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Regarding the SVR, while on one hand the models outperform their versions with coordinates
as input features, the performance is poor compared to the NN. Therefore, from now on SVR
models will be neglected. The models trained instead with the result of greedy heuristic as
input is a one-to-one mapping. Hence, such approach is more promising for the scalability:
the input is mono-dimensional.
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' —-—- Baseline RMS error: greedy
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Number of neurons Number of neurons
(a) Training time. (b) RMSE.

Figure 7-14: Analysis of the NN models with different input features.

7-5-4 Comparisons

The performance of the trained models will be qualitatively evaluated in this subsection. We
will compare the model trained with coordinates as input features and the model trained
with the greedy heuristic. In both cases, the model is a NN with ReLu activation function,
as summarized in Table 7-11. Moreover, both models are also compared with a baseline, that
is the length of the route estimated with a greedy heuristic algorithm.

The performances are evaluated using a set of validation experiments. Each experiment
consists of a batch of 2n = 4 points generated randomly within a Gaussian distribution. The
coordinates are in the range [0, 1]. There are 4 computed costs of the related PDP:

e The optimal cost computed using the Optimization formulation of Eq. (6-11), that is
the value of the function F(R) (see Eq. (4-8)).

e The heuristic baseline cost G(P) computed with the greedy algorithm (see Chapter 2
and Algorithm 1).

e The cost predicted with the learnt model fi (pc) which has as input the coordinates of
the 2n points, po = [X,Y].

e The cost predicted with the learnt model f(pg) whose input is the result of the greedy
algorithm applied to the batch of points, pg = G(P).
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Table 7-11: Performance of the NN models with ReLu activation function.

Input Features Error Neurons Training time (s) Figure
Greedy heuristic ~ 5.33 x 1072 9 0.2 Figure 7-15
(z,y) coordinates 6.64 x 1072 [109, 57] 6.88 Figure 7-16a
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Figure 7-15: Performance of the Neural Network model trained with greedy heuristic as input
feature.

The predicted costs are plotted in a 2-dimensional plane as a function of the optimal cost.
Hence, in Figure 7-15 and Figure 7-16 the x—axis represents the optimal cost, the y—axis the
predicted cost. We did in this way since we aimed to emphasize how the predictions change
over the optimal costs. In each Figure, three lines are drawn to better visualize the models’
performance. Firstly, the bisector of the quadrant (in the (z,y)-plane, it is y = x): when the
prediction is accurate, the scattered points lie on such line. Clearly, points above that line are
an over-approximation of the optimal cost, while points below under-approximated it. Since
it is very unlikely to train a model in such a way that it predicts exactly the optimal cost, one
should have a confidence bound in which the predicted cost is expected to lie in. To academic
purpose, such bound is set using the RMSE between the optimal and the predicted costs
applied to all the validation data set experiments. Hence, in Figure 7-15 and Figure 7-16 the
dotted lines represent the bisector shifted positively and negatively of a factor equal to the
RMSE. Model results thus to be more reliable if the result of its prediction is between these
bounds. Such bound can be interpreted as the uncertainty associated with the prediction.

In Figure 7-15 can be observed the performance of the models trained with the results of
the greedy algorithm as input features. When the greedy solution coincides with the optimal
solution, the predicted output drifts away from the bisector for high value of the cost. Such
behaviour can be explained with the support of Figure 7-17. In that Figure, it is possible to
observe the curve learnt from the model. In the learning process, such curve tries to fit the
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function when the over-approximation given by the greedy algorithm is far from the optimal
cost. In addition, higher optimal costs are more unlikely to happen. Therefore, during the
learning process, there are few examples and larger over-approximations to compensate. A
solution could be increasing the number of training examples with higher optimal cost.
From Figure 7-15, one can infer that for a small PDP instance, a heuristic solution provides
good results. On the other hand, Figure 7-16 shows that the model trained with greedy
heuristic ensures better performance. Furthermore, one expects that the benefits of the
learning become more evident in larger instances.
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ordinates as input features and the baseline. input features.

Figure 7-16: Analysis of the Neural Network models for the PDP with two requests.
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Figure 7-17: Output of the model training with the greedy heuristic algorithm plotted as function
of the greedy cost.
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7-5-5 Analysis of the models

To help visualizing the models performance, a higher-dimensional plot can be useful, like
in section 7-2 (see also Figure 7-6). However, the PDP problem with 2 requests depends
on 8 parameters. Therefore, a solution could be to maintaining 3 of the 4 points fixed and
observe how the cost varies when the 4-th free point moves on the plane. Such experiment
is carried out to interpret the ability of trained models to predict the optimal cost. Since
the smallest error was achieved with the greedy heuristic input, we aim to show the accuracy
only of the model trained with that input features. Some example are in Figure 7-18. The
3D representation plots are of the left, while the contour plots are on the right. The shape
of the function, of course, depends on the fixed points. The slider in these Figures indicates
different positions of three fixed points.

From these Figures, we inferred that the NN model has good prediction performance except
when the function abruptly changes, or when the free point is farther. This could be since it is
an unlikely situation and it is probably that there were not enough training examples in such
sense. From what we experienced, NN has better performance to predict very highly non-
linear non-convex model, especially when there are not any prior information. Moreover, there
are the time-related issues to take into account: training a SVR model is slower compared
to NN and this is a great disadvantage when projecting the learning in larger dimensional
scenarios.
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Figure 7-18: 3D plots and contour plots for different 3-fixed points. In the right column, the
solid line is the optimum of the associated PDP, the dashed line is the predicted length using NN

model trained with greedy heuristic. The slider indicates a different configuration of the three
fixed points.
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Chapter 8

Tests, simulations and results

In this chapter, we analyze the performance of supervised learning to predict the optimal cost
in larger instances of Pick-up and Delivery Problem (PDP), following the same approach as
the previous chapter. We will use the results we obtained to do an educated guess about the
design of the network.

8-1 Experiments on larger-size

In this section, we consider the PDP with more than two requests. Our goal is showing how
this increase will be detrimental to the performance of the network trained in the previous
chapter. We chose six requests, leading to PDP training examples still solvable by the opti-
mization algorithm in a reasonable time. Thus, there are n = 6 requests and 2n = 12 points
to connect. As in the previous chapter, the performance of trained models are compared with
the result of greedy heuristic, showing the benefits of supervised learning over such baseline.

8-1-1 Euclidean distance

Consider the predictor f(pc), where oo = [X,Y]. In a PDP with six requests, the input
is thus oo € R?*. In the previous chapter we saw that a single-layer Neural Network (NN)
model achieves the smallest validation error with 143 neurons (see Table 7-8). Since the
complexity increases, we expect a greater number of neurons to obtain a small error. On the
other hand, consider now the predictor f(pg), where the input is the result of the greedy
heuristic algorithm, o = G(P); such input feature remains a scalar as in the previous chapter
even if the number of requests increases; therefore the complexity of the network is expected

to remain the same.

Figure 8-1 shows the relations between neurons, training time and Root Mean Squared Error
(RMSE) during the training of model able to predict the optimal cost of a PDP with six
requests. Let us analyze separately the greedy heuristic value as input features and the
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coordinates as input features. Firstly, consider the training time; when the input is ¢, the
training time increases almost linearly with the number of neurons (see Figure 8-1a). The
RMSE saturated instead after 80 neurons (see Figure 8-1b). The benefits of the supervised
learning are more evident compared to the two-requests PDP: NN models here improve
substantially the greedy heuristic baseline. However, it is unnecessary to design a higher
number of neurons, since the error does not show any significant improvement after 80 neurons.
Training time, on the other hand, would be negatively affected.

7<
—— Coordinates 0.4l
6 Greedy heuristic '
5<
_ 0.3
¥4 S
[} ()
1S (] i
= 3 E 0.2
2<
014 — Coordinates
11 Greedy heuristic
01 ——- Baseline RMS error: greedy
r : r : r 0.0+~ - r : r
0 50 100 150 200 0 50 100 150 200
Number of neurons Number of neurons
(a) Training time. (b) RMSE.

Figure 8-1: PDP with n = 6 requests: analysis of the neural network models with different input
features.

Models trained with greedy heuristic maintain the performance highlighted in the last chap-
ter. The error reaches low values with small network structure and the training time remains
low compared to the coordinate input features case. Table 8-1 summarizes the models per-
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(a) Greedy heuristic as input feature. (b) Coordinates as input feature.

Figure 8-2: Comparison between the models trained with different input features and the greedy
baseline. Both training time and RMS error have been scaled with respect to their maximum.
The y-label indicates the performance of the network: the higher, the worse.

formances. In the following experiments, we fixed the number of neurons equal to h = 90

Daniele Bellan Master of Science Thesis



8-1 Experiments on larger-size 59

Table 8-1: Performance of the NN models. The fifth column underlines the improvement in
predicting the cost compared to greedy heuristic baseline.

Input Features Error  Neurons Training time (s) Improved accuracy Figure
Greedy heuristic ~ 0.189 106 0.59 40.6% -

(x,y) coordinates 0.2668 184 5.49 23.6% Figure 8-3b
(x,y) coordinates 0.267 90 2.42 23.6% -

Greedy heuristic ~ 0.189 90 0.43 40.6% Figure 8-3a

Table 8-2: £;-norm: performance of the NN models. The fifth column underlines the improve-
ment in predicting the cost compared to greedy heuristic baseline.

Input Features Error Neurons Training time (s) Improved accuracy Figure
Greedy heuristic ~ 0.19 64 0.14 40% Figure 8-4a
(x,y) coordinates 0.26 89 2.47 19% Figure 8-4b

for all models. Such choice is a trade-off for the network trained with coordinates, while
it is irrelevant for the models trained with the greedy. Figure 8-2 helps to understand this
concept: we scaled both RMSE and training time with respect to their maximum. Therefore,
while Figure 8-2a shows that the minimum RMSE can be achieved with a small network, in
Figure 8-2b the minimum is reached after the intersection of the two functions.

A graphical representation of the models performances is in Figure 8-3. Although the un-
certainty range of Figure 8-3a is smaller, there are less outliers than in Figure 8-3b. This
confirms our initial guess that such kind of model satisfies all the requirements for a good
combinatorial optimization result predictor: scalability, reliability, fast training time. As a
consequence, from now on we discard the coordinates as potential input features.
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(a) Greedy heuristic as input feature. (b) Coordinates as input feature.

Figure 8-3: Comparison between the models trained with different input features and the greedy
baseline.
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8-1-2 [,-distance

The approach of the previous subsection can be applied in the same way with a different
distance measure, i.e. the £i-distance. Table 8-2 shows that with such measure the improved
accuracy remains the same when the greedy heuristic is the input, while it improves with
coordinates. The training time is smaller and the net has a smaller number of neurons since
the function to approximate has fewer non-linearities. Therefore, using £;-distance makes
the learning process faster, but cannot be seen any evident improvements in the prediction
accuracy. The overall performance of NN models listed in Table 8-2 can be observed in
Figure 8-4. As expected, the networks maintain a good level of approximation within the
bound in Figure 8-4a. In addition, Figure 8-5 shows the same behavior in the relation Neurons-
RMSE and Neurons-Training time as the Euclidean distance case (see Figure 8-1).
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(a) Greedy heuristic as input feature. (b) Coordinates as input feature.

Figure 8-4: L;-norm: comparison between the models trained with different input features and
the greedy baseline.
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Figure 8-5: PDP with n = 6 requests: analysis of the neural network models with different input
features when the distance measure is the £; distance.
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8-2 Analysis of the approximation accuracy

Following the same approach of subsection 7-5-5, we draw 3D plots to graphically visualize
how the model trained with greedy heuristic as input feature is able to approximate the
function F(R) shown in Eq. (4-10). Therefore, we kept fixed 5 out of 6 points leaving the
sixth free to move and then we computed the optimal and predicted cost. Figure 8-6 shows
the approximation accuracy. Since the validation error is three orders of magnitude bigger
than the 2-requests PDP, the worsening was expected (see Figure 7-18 as a comparison).
Also in this case, the accuracy depends on the sparsity of the fixed points. In the Figures are
visible the multiple local minima which make the combinatorial optimization problem hard
to solve, even in this simplified configuration.

Fixed 14 —— Optimal length Fixed NN 18 —— Optimal length

—— Predicted length —— Predicted length

f(x,y)

Figure 8-6: 3D plots for different configuration of the 5-fixed points. The slider on the top
indicates different distribution of the fixed points.

8-3 Additional input features

In this section, we will investigate if other input features improve the prediction accuracy of
the network we trained.

8-3-1 Lower bound

Chapter 2 referred to a lower bound approximation for the Travelling Salesman Problem
(TSP), that is the Held-Karp lower bound (HK) [29, 30, 31]. We hereby propose a faster
lower bound estimation.

The solution of any TSP instance with n cities is nothing but the sum of n — 1 entries in the
Adjacency matrix (see Chapter 6). As stated before, the adjacency matrix is symmetric and
n(n—1)

the diagonal is filled with zeros. Therefore, the number of entries to consider is 5

Imagine now to store all these entries in an array, shown below:

ail | a2 s ain | a22 | Ann
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Table 8-3: Sorting algorithms: time complexity.

Best Case Average Case Worst Case

Bubble Sort  O(n?) O(n?) O(n)
Insertion Sort O(n?) O(n?) O(n)
Merge Sort O(nlogn)  O(nlogn) O(nlogn)
Quick Sort O(n?) O(nlogn)  O(nlogn)

which is a vector listing all the edges. Imagine now to sort the array in ascending order. The
sum of the first n — 1 elements will be the lower bound of the TSP. The computational effort
depends only on the chosen sorting algorithm [70], as shown in Table 8-3. To summarize, the
algorithm estimate the lower bound is the following:

Algorithm 2: Compute the TSP lower bound

// Input: Symmetric Adjacency matrix A
// Output: The lower bound L
// Initialization: E =1, i=0, =0, ¢c=0
// Compute the upper-triangular part of the Adjacency matrix and store
those entries in an array F
for i<n-1 do
jit1
for j<n do
E[l] Ali;
1+14-1;
end

end

// Sort the array
E<mergeSort(E);

// Sum the first n — 1 entries
L+ Z?:_ol Efi];

return L;

Similarly, the approach can be equally applied to estimate the lower bound of a PDP with
n requests. We call E the sorted vector of the feasible edges, with cardinality 2n(2n — 1)/2,
that is n(2n — 1). The number of edges in a route solving the PDP is 2n — 1. Furthermore,
we called L; the lower bound of the i—th instance, that is the sum of the first 2n — 1 feasible

edges:
2n—1

Li = ;) E[j] (8-1)

The input features vector for the supervised learning with m training examples is now:

G1 Ly
Gy Lo

X=1. ) (8-2)
Gm L
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The experiments are shown in the following Figures. We maintained the same structure of
NN (a single layer with 90 hidden neurons) to predict the optimal length of a PDP with six
requests. Figure 8-7 shows the effect of the additional input to the prediction accuracy. We
want to emphasize, looking at Figure 8-7a, how the model with also the lower bound as input
tends to predict cost closer to the black line, which is the line of optimality.
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2.0 2.5 3.0 3.5 4.0 2.0 2.5 3.0 3.5 4.0
Optimal cost Optimal cost
(a) Comparison with the baseline. (b) Comparison with the model trained only with

greedy heuristic.

Figure 8-7: Lower bound as additional input features to the model predicting the PDP outcome
with n = 6 requests. The left Figure shows the comparison with the greedy heuristic baseline.

The right Figure compares the model trained with only the greedy heuristic and the model with
also the lower bound.
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Figure 8-8: Plot of L and L. Both values lie always below the optimal cost.

Even more interesting is when the lower bound is weighted with the mean E of the edges
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Table 8-4: Performance of the NN models with additional input. The fourth column underlines
the improvement in predicting the cost compared to the model trained with only greedy heuristic.

Input Features FError  Training time (s) Improved accuracy Figure

G, L 0.1725 1.24 8% Figure 8-7b
G,L 0.1639 1.17 13% Figure 8-9b
vector E: B -

The weight is a measure to correct possible misleading measures of the lower bound. In
fact, it could happen that there are 2n — 1 points very close and therefore the estimation of
the lower bound would be too small. But if it is adjusted by a factor equal to the mean of
the edges, we can provide a more reliable measure of the edges. Figure 8-8 emphasizes this
concept. With such input, the performance slightly improves, as reported in Table 8-4. In
addition, the reader can notice in Figure 8-7b how the number of outlier reduces compared
to Figure 8-7b.
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(a) Comparison with the baseline. (b) Effect of weighted lower bound on the prediction
accuracy.

Figure 8-9: Weighted lower bound as additional input features to the model predicting the PDP
outcome with n = 6 requests. The left Figure shows the comparison with the greedy heuristic
baseline. The right Figure compares the model trained with only the greedy heuristic and the
model with the additional input.

8-3-2 Upper Bound

During the thesis, we often underlined that the greedy is one of the possible heuristic methods
to find a solution to the routing problem. We also stressed out that there exists other heuristics
with better accuracy performance. In this subsection, we aim to show how better heuristics
can improve also the prediction accuracy of learnt models.

So far, we used greedy heuristic as a baseline to investigate how supervised learning improves
the prediction of the cost. Moreover, the greedy result can be used as initialization for the
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optimization formulation [3]. Furthermore, Chapter 2 referred to other heuristic procedures.
Imagine defining thus another heuristic: starting from the greedy solution of the PDP, remove
q nodes from the route. Then, iteratively reconstruct the route by adding in place of the
removed nodes one of the possible permutations of such ¢ nodes. This procedure is repeated
until a time limit expires. For each reconstructed route, compute the length of the path and
compare it with the shortest path computed up to that. If the former is smaller then the latter,
update the shortest path. We will refer to such heuristic as Modified Local Neighborhood
Search (MLNS). The pseudo-code is listed in Algorithm 3.

Algorithm 3: Compute the MLNS of PDP.

// Input: Matrix storing the points coordinates P, the number of nodes to
remove ¢, the time limit T. The matrix P is in the form P € R™*%:
each row corresponds to a single requests, thus comprising two points,

origin and destination.
// Output: The heuristic cost shortest and the path path
// Initialization: path=1][, i=0, j=0, ¢=0

n < len(P) // Compute the length of the P matrix. It return the size of
the PDP, that is the number of requests.

shortest, route < greedy(P);

newRoute < route[0:q] // remove q elements from the route and store the
reduced vector in a new variable

Q< route[q:end] // store the removed nodes into a new vector

perm < permutation(Q) // generate all the permutation of Q and store them

while ¢ < T do

// Do until the time limit is not reached

for p in perm do

// In each iteration consider one of the permuations stored in perm

r < newRoute;

append(r, p);

// Reconstruct the route by appending the permutated version of the
removed q nodes

if precedenceConstraint(r) then

// The function precedenceConstraint check if the destinations’
nodes follow the corresponding origins’ nodes

¢ < computeLength(r);

if c<shortest then
shortest+ c;
path<p;

end

end

end
end
return shortest, path;

Giving the result of the MLNS algorithm as input features improves the prediction accuracy.
The new heuristic over-performs (see Table 8-5 and Figure 8-10a) the models trained with
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Modified Local Neighbourhood Search and model Modified Local Neighbourhood Search and the lower
trained with the greedy heuristic. bound and model trained with the greedy heuristic.

Figure 8-10: Performance of the model trained with the Modified Local Neighbourhood Search
results as input feature.

Table 8-5: Performance of the NN models with a new input feature. The fourth column underlines
the improvement in predicting the cost compared to the model trained with the corresponding
model with the greedy heuristic.

Input Features Error Training time (s) Improved accuracy Figure

MLNS 0.157 0.278 17% Figure 8-10a
MLNS, L 0.146 0.09 10% Figure 8-10b

the greedy heuristic. Adding the lower bound L also decrease the estimation error, as shown
in Figure 8-10b. The Figure 8-10 refer to PDP with six requests. All the supervised learning
models are NN with a single layer and 90 neurons. We set the time limit 7" = 0.2s, while a
good choice of ¢ is ¢ =n + 2.

8-4 Design of a general model

All the experiments carried out in previous section used customized models trained for the
PDP with six requests. The capacity of generalization is thus limited and larger instances
would require other models. This means that for | PDP with different [ size, [ models are
required. To avoid such loss of generalization, we aimed to derive a model which takes as
input also the number of request n, that is the size of PDP. For instance, the input could be

XZ[% Y2 0 prom

with ¢;, ¢ = {1,...,l} a general input feature. In this way, a single model can be used for
predicting the solution of PDP with different sizes.

The simpler implementation is the following: we trained a model for n going from 2 to
5 giving as input features the greedy heuristic and the number of requests n. For each
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Table 8-6: Performance of the M (n) models. The fourth column underlines the variation of
M (n) in predicting the cost compared to corresponding model M.

Input Features FError  Training time (s) Improved accuracy Figure

MLNS 0.157 4.47 0% Figure 8-11a
G B 0.1949 5.3 -2.51% Figure 8-11b
MLNS, L 0.1431 6.8 2.05% Figure 8-12

n; € {na,ng,nq,n5} = {2,3,4,5}, the training dataset has dimension m,, = 3000. Therefore,
the training input is:

Gin, 12

Gan, 12

. o

Gmn2 no

X = G2n3 n3 , (8—4)

. s

Gmng ns

_Gmn5 ns |

where Gy, is the result of greedy heuristic applied to the training example 7 with n = [
requests. We will refer to the general model as M (n) and to the customized model M,,; the
latter is the model trained only for a specific n and thus trained with PDP examples with n
requests. Since the input feature dimension increased, we enlarged the size of the network:
instead of h = 90 neurons, we set the number of hidden neurons to A = 190.

8-4-1 Test with six requests

In this section, we will compare how the general model M (n) and the model Mg in the result
prediction of a PDP with six requests. We consider two different scenarios: models trained
with MLNS and models trained with the greedy heuristic G.

It is important to mention, as the reader can observe in Table 8-6, that even if the general
model predicts the cost of unseen examples as the customized model, it slightly worsen the
accuracy when the input is the greedy heuristic, while remains the same when the input is
the MLNS. However, the deviation is limited. This means that the model has a good ability
to generalize. The third column of such Table indicates a slower training time compared to
the training of Mg (see the previous section), but this result was expected since the size of
training input is larger and the number of neurons is almost twice bigger.

In the previous section, we showed that MLNS along with the lower bound ensure the best
prediction. We, therefore, tested if such accuracy is ensured in case of a generalized model.
From the last row of Table 8-6 and from Figure 8-12 we can appreciate how the generalization
does not lead to accuracy loss and instead improves it.
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(a) Comparison between the general model and the (b) Comparison between general model M (n) and
model trained on 6 requests PDP when the input fea- customized model Mg when the input feature is the
ture is the result of the MLNS algorithm. result of the greedy algorithm.

Figure 8-11: Comparison between general and customized models.
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Figure 8-12: Prediction of the cost of a PDP: comparison between general model M (n) and
customized model Mg with the lower bound as input.

8-4-2 Tests with eight requests

The next step is to apply the generalized models to larger PDP instances. Consider the PDP
with n = 8 requests and the models M (n) and Mg. Table 8-7 shows that, except for when the
input feature is the MLNS, the model M (n) trained on instances with n = 2,...,5 generalizes
better than the models trained only on the 6— requests instances. We can explain such result
since the 8 —requests instance is an example closer to the training set of n = 6 and thus the
generalization is more accurate when the input is an over-approximation solution which could
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Table 8-7: Performance of the M (n) models and Mg in terms of prediction the cost of PDP
with eight requests.

Input Features FError of M(n) Error of Mg Figure

MLNS 0.18 0.166 Figure 8-13a
G B 0.19 0.23 Figure 8-13b
MLNS, L 0.1361 0.195 Figure 8-14

be very close to the optimal solution.
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Figure 8-13: Comparison of models generalization capability when the PDP has n = 8 requests.
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Figure 8-14: Comparison of general and customized model when also the lower bound is part of
the input features.
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Table 8-8: Performance of the M (Y) models and Mg in terms of prediction the cost of PDP
with eight requests.

Input Features Error of M(Y) FError of Mg Figure

MLNS 0.18 0.166 Figure 8-13a
G ) 0.234 0.23 Figure 8-13b
MLNS, L 0.1373 0.19 Figure 8-14

Despite the positive results we obtained, we wondered about the capability of generalization
in greater instances, i.e. number of requests greater than eight. We thus investigated how the
two models deviate from the behavior we expected. Given the m = 300 validation examples,
we computed the average of the optimal cost, the cost predicted with M (n) and the cost
predicted with the model Mg. We repeat the procedure for n = {6,7,8}. We noticed that
the average of the two models followed a different evolution when the number of requests
increased, as can be observed in Figure 8-15. Therefore, we expected that the general model
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(a) Averages trajectories. (b) Standard deviation trajectories.

Figure 8-15: Trajectories of averages and standard deviations. The purple line and the yellow
lines connect the average of the trained models for different n.

would lose his generalization capability with the increasing of the requests. In order to ensure
the generalization property, we need to define another input features that can track how the
optimal cost is expected to change when the number of requests increases. We use the result
found in Chapter 6, where we experimentally confirmed the asymptotic results of [69] for
small n. We indeed found that the expectation Y of the optimal cost f()\) applied to a PDP
with n requests generated randomly in the domain [0, 1] x [0, 1] is:

Y, =avn+p3 (8-5)

where we derived that o« = 1.54, (8 = —0.9254. With this value, we have still a dependence
on the number of requests, but the relation follows the variations of the expectation value.
We re-trained the general models substituting the n feature with Y. The results can be

observed in Table 8-8 and Figure 8-16. In the Table, we can notice that the validation error
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worsens especially for the model trained with the greedy heuristic, but the best model has
not been affected dramatically. On the other hand, in Figure 8-16 we can appreciate how
such best model follows the same trajectories of the optimal values.
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Figure 8-16: Trajectories of averages and standard deviations. It can be noticed how the purple
line now follows the trajectories of the average of optimal costs.

8-5 Summary

In this chapter we applied the investigations and results of the previous chapter to PDP with
more than two requests. We used such results to do an educated guess about the structure
of the NN predicting the optimal length of a PDP with six requests and we found the input
features parameters which predict with the best accuracy. Then, we design a general model
able to predict the optimal length of PDPs with different number of requests. We achieve such
generalization given as additional input feature during the training the number of requests
n. We inferred that the generalization capability can be ensured given as additional input
feature not the number of requests, but the average optimal length of the PDP for different
n.
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Chapter 9

Conclusions and future research

Supervised learning is a powerful tool to estimate functions that can replicate complex and
unknown dynamics. This thesis aimed to derive a machine learning model able to predict
the cost of a combinatorial optimization problem: the single-vehicle pick-up and delivery
problem. In literature, methods based on combinatorial neural networks and deep learning
are used to solve routing problems, but such methods could result cumbersome to apply and
they do not consider precedence constraints. We instead designed a neural network model
with one hidden layer and ReL.u activation function which predicts the optimal length of a
routing problem with precedence constraints. We firstly investigated which input features
ensure accurate prediction and we showed that the coordinates of the nodes to connect are
not the most suitable input feature due to scalability issues. Moreover, we found that giving
as input to the model the result of heuristic algorithms improves by 40% the performance
compared to baseline prediction strategy that returns the length of the route computed by
the greedy heuristic. In addition, we obtained even better performance giving as input also
a lower bound estimation of the optimal length, leading to a further 13% improvement over
the model trained with only the heuristic results. We also found that the model generalizes
better to problems with a higher number of requests if it uses the average optimal length as
an additional input feature.

As future research, we believe that it is possible to extend our method to other routing
problems with time windows and cost function different from the minimum length tour, for
instance the dial-a-ride problem that uses passenger travel delay as cost function. Further-
more, it would be worth inspecting if the predictions can indeed speed-up the algorithms
which solve the routing problems (sub-)optimally in a ride-sharing scenario.
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