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Executive Summary

Hierarchy is a network property that identifies the organisation and importance of network
elements. Public transport systems consist of stops organised by connections, which can
be regarded as networks. In a Public Transport Network (PTN) with a high hierarchy, the
number of elements gradually decreases as their importance increases, where the majority
of elements have low importance and a few high-important elements. The hierarchical or-
ganisations in PTNs contribute to the network performance by efficiently allocating resources
based on the elements’ importance. In the field of transport, the hierarchy has been studied
with different methods and data sources. However, the literature related to quantification and
comparison methodologies of PTN hierarchy and its mode-wise and continent-wise effects is
scarce, particularly for high-capacity PTNs that serve the majority of public transport demands.
A unified PTN hierarchy definition and the quantification methodology which is necessary to
enable PTN comparisons in terms of the network organisations, and reflect the relative PTN
performance.

Background and Research Objectives
The PTN is the backbone of urban public transport. The performance of PTN greatly influences
the performance of urban transport networks. The high performance of a PTN is achieved
when the public transport demands are assigned with a capable organisation of elements in the
PTN. The high-performance organisation of elements can be reflected by the PTN hierarchy.
Hierarchy is a network property indicating the organisation of network elements, where the
number of elements gradually descends as their importance increases. The high-importance
elements are few, and the elements with low importance are the majority. By quantifying
the PTN hierarchy, the PTN performance can be assessed from the perspective of network
element organisations. Based on the unimodal PTN hierarchy comparison between different
modes and continents located, the mode-wise and continent-wise effects on PTN hierarchy
can be revealed.

In the previous work, there are some main PTN hierarchy identification methods. With the
PTN element attribute-based method, the levels of network elements’ importance are coarse
and limited, making the PTN hierarchy hard to quantify and compare. The passenger flow
data-oriented method is more accurate than the PTN element attribute-based method but
only studies the observed empirical patterns. Compared to these two methods, the network
topology-based method is closer to the essence of the PTN hierarchy for quantification and
comparison. The PTN elements are classified into importance levels based on element topo-
logical attributes. Notwithstanding, there are still some research gaps that need to be filled.
First, although the previous research proved that the hierarchy exists as a property of a PTN,
a unified network topology-based PTN hierarchy definition is missing, which is the base of
the hierarchy comparison. Second, there is a shortage of identification of the PTN hierarchy’s
topological characteristics from multiple scales. With the identified multi-scale characteris-
tics, the PTN hierarchy can be more comprehensively assessed and compared. Third, lack
of PTN hierarchy quantification and comparison methodologies that endeavours to utilize net-
work topology. Fourth, research about the effects of PTN attributes on the hierarchy is lacking,
such as the modes and continents. To fill the research gap, the formulated research questions
are presented below, beginning with the main question:
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vi Executive Summary

How to quantify and compare unimodal Public Transport Networks hierarchy?
The main research question is divided into four sub-questions in this study. First, referring

to the hierarchy-related literature in different fields, a unified definition of the PTN hierarchy is
proposed, which focuses on the PTN elements organisations. Second, by exploring the ex-
isting literature, the multi-scale topological characteristics of the PTN hierarchy are identified,
both in network and element scales. The third step develops the network topology-based PTN
hierarchy quantification and comparison methodology. Based on the topological characteris-
tics, the hierarchy of high-capacity unimodal PTNsworldwide is quantified and compared along
the dimensions of the corresponding topological indicators. Fourth, according to the hierarchy
of these high-capacity unimodal PTNs, the mode-wise and continent-wise comparisons are
conducted, and the effects of modes and continents on the PTN hierarchy are investigated.

Research Methodology
In general, the methodology of this study has four steps. The workflow of the methodology is
shown in Figure 1. First, clearly define the PTN hierarchy, then identify and select its topo-
logical characteristics based on the literature review. The second step selects quantified in-
dicators for the topological characteristics and develops the quantification methodology for
the PTN hierarchy. Third, the methodology is applied to a GTFS data-based case study. A
database consisting of 63 high-capacity unimodal PTNs worldwide is investigated, obtaining
the six-dimension PTN hierarchy. The final step carries out PTN hierarchy comparisons with
visualised radar charts, analysing the PTN hierarchy in each dimension and the mode-wise
and continent-wise effects.

Network-based
topological indicators

Network-scale
characteristics

Vertex-based
topological indicators

Element-scale
characteristics

Topological
characteristics

Vertex
accessibility

Element
intermediacy

Vertex cluster
importance

Scale-free network
structure

High-clustering
network structure

Vertex connection
pattern

Closeness centrality

Betweenness centrality

Eigenvector centrality

Vertex degree centrality

Modularity coefficient

Assortativity coefficient

R2
(Indicator's
probability

density
distribution

fitting skewed
normal

distribution)

Six-dimension
PTN hierarchy

L-space graph
representation

Public Transport
Networks (PTNs)

Figure 1: Workflow of the research methodology

First, originating from the PTN hierarchy defined as a network property, six topological
characteristics of the PTN hierarchy on element and network scales are identified and se-
lected by summarising the literature reviewed. In the element scale, vertex accessibility,
element intermediacy and vertex cluster importance are selected to represent the PTN el-
ements’ importance. In a high-hierarchy PTN, the elements follow hierarchical organisations
by their importance. In the network scale, scale-free network structures, high-clustering net-
work structures and vertex connection patterns by vertex degrees are selected to reflect the
high-hierarchy networks’ structures.

Second, six vertex-based and network-based topological indicators are selected to quantify
the six topological characteristics. The selected vertex-based indicators include vertex degree,
closeness centrality, betweenness centrality and eigenvector centrality. The selected network-
based indicators are the optimal modularity coefficient and the assortativity coefficient. Among
the vertex-based topological indicators, the vertex degree is used for quantifying a network-
scale characteristic, the scale-free network structures. In vertex-based quantification, each
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PTN is first assumed to have the probability density distribution of elements’ importance fol-
lowing a skewed normal distribution. The goodness of fit (R square) of vertex-based indicator
probability density distribution fitting skewed normal distribution represents the quantified PTN
hierarchy. The network-based coefficients can directly quantify the PTN hierarchy.

Next, apply the PTN hierarchy quantification methodology to a GTFS data-based case
study. The case study database consists of 63 high-capacity unimodal PTNs worldwide. The
GTFS data are collected from online mobility data platforms and public service providers. Af-
ter data processing, the GTFS data are filtered and converted to L-space-represented PTN
graphs for topological quantification. With the hierarchy quantified, each PTN has a six-
dimension hierarchy based on indicator values.

Finally, based on the 63 high-capacity unimodal PTNs’ hierarchy, the variation of the hi-
erarchy in each dimension is evaluated. Supported by the six-dimension radar charts, the
normalised PTN hierarchy comparison is visualised and intuitive, reflecting the relative net-
work performance. Plus, the mode-wise and continent-wise effects are comprehensively dis-
cussed with influencing factors’ typical values based on the median hierarchy of PTNs with the
same modes or located in the same continent. Three high-capacity public transport modes
are included in the mode-wise comparison, the metro, tram and BRT. The continent-wise com-
parison considers the six inhabited continents, Africa, Asia, Europe, Oceania, North America
and South America.

Results
First of all, the worldwide high-capacity unimodal PTNs’ hierarchy varies in the six dimensions.
Figure 2 presents the normalised PTN hierarchy in six dimensions. In vertex degree and net-
work assortativity dimension, the PTNs in the database show a tendency to have a relatively
low hierarchy. It appears that the scale-free network structures and vertex connection patterns
by degrees are not significant amid the investigated PTNs. By contrast, the R square value
distributions in the closeness centrality and betweenness centrality dimensions indicate ten-
dencies for PTN in the database to have a relatively high hierarchy. The organisations of PTN
elements by the vertex accessibility and element intermediacy tend to be hierarchical. The dis-
tributions of PTN hierarchy in the eigenvector centrality and network modularity dimensions
both present a slightly left-skewed distribution, indicating a similarity in the numbers of PTNs
exhibiting relatively low and high hierarchy. The hierarchical organisation of vertex clusters
by their importance and the high-clustering structures are relatively moderate for PTNs in the
database.

Second, in the PTN hierarchy comparison with radar charts, the implications of hierarchy
in six dimensions are different and exhibit priority distinction. Figure 3 offers an example of a
normalised PTN hierarchy comparison with a radar chart. According to the PTN hierarchy in
the six dimensions, evaluations in the closeness centrality and betweenness centrality dimen-
sions hold a high priority across the six dimensions. The hierarchy in these two dimensions
evaluates the organisation of PTN elements from the perspectives of stop accessing and traffic
flow intermediacy, which could serve as important references for passengers and public ser-
vice providers during PTN operations. The hierarchy in the eigenvector centrality and network
modularity dimensions assesses the mono-centric and multi-centric structures, respectively.
The hierarchy in the vertex degree and network assortativity dimensions is less apparent than
in the former four dimensions, because of the insignificant scale-free structures and vertex
connection patterns by degrees in PTNs of the database.

Next, the mode-wise and continent-wise comparison of the median high-capacity unimodal
PTN hierarchy in the database revealed the effects of public transport modes and located con-
tinents. Figure 4(a) presents the radar chart of mode-wise median PTN hierarchy comparison.
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Figure 2: Histograms of normalised topological indicators in the six dimensions
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Figure 3: PTN hierarchy comparison example with six-dimension radar chart

The results show that the order of modes having PTN hierarchy from high to low is metro, tram,
and BRT. None of the modes has the highest PTN hierarchy in all dimensions. The PTN hierar-
chy is mainly influenced by stop spacing and line spacing, the stop infrastructure, the operating
speed and the stopping patterns. These influencing factors affect the number of vertices in
the PTNs, the number of connections between vertices and the weights of edges. Affecting
the topology of PTNs by the number of vertices and edges, the modes bring effects to the PTN
hierarchy. The European PTNs tend to have a higher hierarchy than North American PTNs.
Neither of the two continents has a higher PTN hierarchy in all dimensions. The continent-wise
effects mainly result from the different modal compositions, especially the proportions of tram
and BRT networks in the two continents.
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Figure 4: Mode-wise and continent-wise median PTN hierarchy comparison with six-dimension radar charts

Conclusions and Recommendations
This thesis presented an assessment of the hierarchy in high-capacity unimodal PTNs and
how modes of transport and geographical location influence this hierarchy. It fills the research
gap where hitherto there is a rare unified topological-based definition of PTN hierarchy and a
lack of quantification and comparison methodology. With regard to the organisation of network
elements, the PTN hierarchy is defined as a network property. A six-dimension topology-based
quantification methodology is developed on both network and element scales. A database
that relies on GTFS data and contains the network topology information of 63 high-capacity
unimodal PTNs worldwide is used as a case study. The PTN hierarchy is interpreted and
analysed along the dimensions of topological indicators. Furthermore, the effects of modes
and continents are discussed by comparing the PTN hierarchy.

This research develops a network topology-based methodology for PTN hierarchy com-
parison and quantification. First, a unified definition of the PTN hierarchy is established. In
this definition, the PTN hierarchy is determined by the organisation of the elements in PTNs.
Then, it has been found that the PTN hierarchy is embodied in multiple aspects and different
scales based on the literature review. Six topological characteristics of the PTN hierarchy
are identified and selected in element and network scales. To reflect the organisation of el-
ements based on their multi-aspect importance, the R square values between element-scale
indicators’ probability density distributions and skewed normal distributions are regarded as
the PTN hierarchy. Based on the normalised PTN hierarchy in the six dimensions, the PTN
hierarchy is visually compared through radar charts. To apply the methodology to a case
study for high-capacity unimodal PTNs worldwide, a database that depends on GTFS data
and contains L-space topology information is constructed with a data pipeline. Relying on this
data pipeline, 63 high-capacity unimodal PTNs worldwide are processed and included in the
database. With the quantified hierarchy of the high-capacity unimodal PTNs in the database,
the analysis and discussion of the PTN hierarchy are conducted. It has been found that the
PTN hierarchy in dimensions exhibits a priority distinction. For example, PTN hierarchy in the
closeness centrality and betweenness centrality holds priority and could serve as important
references for passengers and service providers during operation. In addition, metro networks
present a tendency to have a high hierarchy than the tram and BRT networks. The mode-wise
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effects result from factors influencing PTN topologies, such as stop spacing and line spacing.
For different modal compositions, the European PTNs have a higher hierarchy compared to
North American PTNs.

For future research, an integrated and quantified multi-dimension PTN hierarchy metric
is recommended. Based on the found PTN hierarchy priority of dimensions, future work can
work on quantifying the weights of dimensions and integrating the six-dimension PTN hierar-
chy with one single quantified metric. Based on the single quantified PTN hierarchy metric,
the assessment of the PTN hierarchy can be direct, simplified and accurate. Besides, the PTN
hierarchy can be further studied with the relationship between the vulnerability of PTNs. Both
PTN hierarchy and PTN vulnerability focus on the element organisations in PTNs, especially
the elements with high importance. In past research, some topological indicators in this study
are usually associated with PTN vulnerability analysis, such as closeness centrality and be-
tweenness centrality. Benefiting from it, the planning PTNs can be evaluated and optimised
by balancing the PTN hierarchy and vulnerability. Moreover, if data source and volume allow,
the relation between the mode-wise and continent-wise effects on PTN hierarchy and their
influencing factors can be quantified and analysed.
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1
Introduction

The public transport network (PTN) is the backbone of urban public transport. The PTN ac-
counts for the general and high-capacity public transport services, greatly influencing the urban
transport network. Particularly, high-capacity PTNs undertake the majority of people’s mobil-
ity with the public transport modes having high-capacity and exclusive right of way, such as
metro, tram and bus rapid transit (BRT) (Raicu et al., 2009). Therefore, the performance of
the high-capacity PTN largely affects the performance of a PTN, such as the total travel times,
travel cost and level of service. The high performance of a high-capacity PTN is achieved
when the public transport demands are assigned with a capable organisation of elements in
the PTN.

To investigate the element organisations of high-capacity PTNs, the hierarchy can be an
evaluation indicator. Hierarchy is a network property indicating the organisation of network
elements, where the number of elements gradually descends as their importance increases.
The high-importance elements are few, and the elements with low importance are the major-
ity. Hierarchy is studied across multiple disciplines, such as neuroscience (Zhao et al., 2015),
social networks (Rowe et al., 2007), and in particular PTNs (Buijtenweg et al., 2021; Pumain,
2006; Tsiotas and Polyzos, 2015; Van Nes, 2002a; Wang et al., 2020). Hierarchy in PTNs
indicates the organisation of elements in the PTN, such as stops, route sections, or stop clus-
ters. Therefore, by understanding the PTN hierarchy, the PTN elements with high importance
can be identified. Thus, the public transport service can be designed to cope with the demand
efficiently, improving the performance of PTN. Various modes in a high-capacity PTN lead to
different effects on the hierarchy due to their unit capacity, stop spacing, and operating speed
(Aston et al., 2021; Pomykala, 2018). Quantifying and comparing the hierarchy of different
high-capacity unimodal PTNs can help to understand the effects of public transport modes
on the hierarchy, which is valuable for optimising the existing PTN and evaluating future PTN
planning. Previous works show three main methods for PTN hierarchy identification: the PTN
element attribute-based method, the passenger flow data-oriented method, and the network
topology-based method.

In the PTN element attribute-based method, the PTN element importance levels are based
on one or several PTN attributes, for example, the modes of PTN or the location of network
elements, such as urban, suburban and rural. Van Nes (2002b) discussed an optimisation
method for PTN, classifying the network into urban and interurban networks, referring to the
locations of travel origins and destinations. Similarly, Gao et al. (2012) classified the PTN links
into three types: mass route, feeder route and local route, based on the distance between
stations and the transfer routes. Yap et al. (2018) classified PTN into three levels, where
each level utilises one or several transport mode networks. For instance, the train network

1



2 1. Introduction

represents an inter-region level, the metro and tram networks represent an agglomeration
level, and the bus network stands for an urban level. With the PTN element attribute-based
method, the levels of network elements’ importance are coarse and limited, making the PTN
hierarchy hard to quantify and compare.

The secondmainmethod to identify hierarchies in PTNs is the passenger flow data-oriented
method. Passenger flow data is recorded by the Automatic Fare Collection (AFC) systemwhen
passengers travel in the PTN, indicating passenger flow volume on PTN elements, such as
stops or route sections. The volume of passenger flow is used for classifying the PTN element
importance levels. The higher the passenger flow undertaken, the higher the importance lev-
els of the elements. Bassolas et al. (2019) studied the urban mobility hierarchy and proposed
a flow-based hierarchy metric, reflecting the magnitude of trips between trip flow-based travel
hot spots and the hot spot hierarchy. Yap et al. (2019) used smart card data to identify and
cluster the significant transfer hubs with passenger flow in the PTN. The PTN hierarchy identi-
fied by this method is more accurate than the PTN element attribute-based method, focusing
on the attributes of PTN elements, such as transfer volumes of stops. However, the passenger
flow data-oriented method only studies the observed empirical patterns, like the distribution of
passenger flow, which is a consequence of the passenger demand and the network. There-
fore, the essential reasons for the PTN hierarchy behind the passenger flow are not explored.
In addition, the passenger flow data of PTNs are large-volume and not easily accessible, mak-
ing it difficult to conduct a comparison between a large number of PTNs.

The network topology-based method is the third main method of PTN hierarchy identifi-
cation. The network topology theory describes the organisation of network elements. Using
topological network indicators, the PTN elements are classified into importance levels based
on network attributes, for example, the stops’ number of connections, or the minimum number
of links between two stops. Yerra and Levinson (2005) found that the emergence of trans-
port network hierarchy is a self-organised process, and the properties of vertices and edges
reflect the hierarchy. Investigating the relation between passenger flow data with the intrinsic
attributes of networks, Luo et al. (2020) proved that the topological properties of PTN have a
linear correlation with the passenger flow distribution, which implies the possibility of correlat-
ing topological attributes with the PTN hierarchy. Some research fuses network topological
analysis with the passenger flow data for PTN hierarchy identification. For example, Buijten-
weg et al. (2021) proposed an integrated hierarchymetric to quantify the importance of stations
in the PTN by three topological vertex attributes and passenger flow data. Wang et al. (2020)
used passenger transfer flow as the weights of PTN edges. Fusing with network topological
coefficient modularity, a four-level time-dependent PTN hierarchy is identified. Compared to
the other two methods, the network topology-based method also focuses on the attributes of
PTN elements, which can identify and quantify the PTN hierarchy from a more fundamental
perspective.

Reviewing the previous research on PTN hierarchy identification methods, the network
topology-based method is the closest to the essence of PTN hierarchy for quantification and
comparison. However, there are still some research gaps that need to be filled. First, although
the previous research proved that the PTN hierarchy exists as a property of a PTN, the repre-
sentation and interpretation of the PTN hierarchy are different, and a unified and clearly defined
PTN hierarchy is missing. Second, there is a shortage of identification of the PTN hierarchy’s
topological characteristics from multiple scales. With the identified multi-scale characteristics,
the PTN hierarchy can be more comprehensively assessed and compared. Third, lack of
methodology of PTN hierarchy quantification and comparison methodologies that endeavours
to utilize network topology. Fourth, research about the effects of other attributes of PTN on
PTN hierarchy is lacking, such as the continents of PTNs.
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In response to the above research gaps, this research proposes a network topology-based
method for quantifying and comparing the high-capacity unimodal PTN hierarchy. First, a clear
definition of the PTN hierarchy is given, focusing on the PTN elements and reflecting the organ-
isation of these PTN elements. Second, a network topology-based interpretation of the PTN
hierarchy is offered, in which the multi-scale topological characteristics of the PTN hierarchy
are identified, both in network and element scales. Third, the network topology-based PTN
hierarchy quantification and comparison methodology is developed. Based on the topological
characteristics of the PTN hierarchy, the hierarchy of high-capacity unimodal PTNs worldwide
is quantified and compared along the dimensions of the corresponding topological indicators.
Fourth, according to the hierarchy of these high-capacity unimodal PTNs, the mode-wise and
continent-wise comparisons are conducted, and the effects of modes and continents on the
PTN hierarchy are investigated.

To fill the research gap, the main research question is stated as follows:

How to quantify and compare unimodal Public Transport Networks hierarchy?
The main research question is divided into four sub-questions:

1. What are the definition and the topological characteristics of the PTN hierarchy?

2. What indicators can be used to quantify the network topology characteristics of PTN
hierarchy?

3. Based on the selected indicators, how do the high-capacity unimodal PTNs worldwide
quantify and compare in terms of hierarchy?

4. Based on high-capacity unimodal PTNs’ hierarchy, what are themode-wise and continent-
wise effects on PTN hierarchy?

The rest of the thesis is structured as follows: Chapter 2 reviews the related works and
discusses the definition and topological characteristics of the PTN hierarchy. In Chapter 3,
based on the topological characteristics of the PTN hierarchy, the PTN hierarchy quantifica-
tion and comparison methodologies are developed. Chapter 4 applies the network topology-
based PTN hierarchy quantification methodology to 63 high-capacity unimodal PTNs world-
wide. Based on the results, the PTN hierarchy along each dimension of topological indicators
and the mode-wise and continent-wise effects on PTN hierarchy are discussed. Finally, Chap-
ter 5 provides the conclusions and recommendations for future research.





2
Literature Review

This chapter clarifies the research scope and the two main topics of the literature review in
Section 2.1. In Section 2.2, the PTN hierarchy definition-related research is reviewed, and
two main definitions of the hierarchy are discussed. The related literature about the PTN
hierarchy’s topological characteristics is reviewed from the network and element scales in
Section 2.3, which summarizes the corresponding topological indicators for analysis.

2.1. Scoping
There are two topics of the literature review from top to bottom: the definition of PTN hier-
archy and the topological characteristics of PTN hierarchy. The following literature review is
organised following these two topics:

• Hierarchy definition-related research: The topic focuses on different definitions of
“hierarchy” in the previous research. Since the definition of hierarchy is not unified,
hierarchy-related research from different fields is reviewed to fill this research gap. This
review builds a better understanding of the network hierarchy for further analysis.

• Topological characteristic-related research: The topological characteristics of the
PTN hierarchy are embodied on multiple scales. For example, the network scale or
element scale, such as vertices, edges or vertex clusters. Topological indicators can
quantify each topological characteristic. Different topological indicators are reviewed
and discussed based on the PTN hierarchy’s topological characteristics. The review
helps to select appropriate topological indicators for building the PTN hierarchy quantifi-
cation methodology.

2.2. Hierarchy definition-related research
Multiple definitions for hierarchy can be found in different research fields including, such as
sociology (Garandeau et al., 2014; Pattiselanno et al., 2015; Pumain, 2006; Rowe et al., 2007),
neuroscience (Meunier et al., 2009; Zhao et al., 2015), aviation transport (Fernandes et al.,
2019). Based on the definitions of hierarchy, past works have two main streams: “hierarchy is
an order of items”, and “hierarchy is a property of a network”. The related work of each stream
is reviewed below.

2.2.1. Hierarchy is an order of items
The first definition of hierarchy is an order of a series of same-type items based on one or
several quantifiable indicators. Thus, the hierarchy indicates the series’ high or low order of

5
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items. For example, in social network research, Garandeau et al. (2014) discussed the social
hierarchy in groups of students by surveying the indices of popularity and social impact of stu-
dents in small groups. Rowe et al. (2007) identified the social hierarchy based on the number
of exchanged emails between persons. In city hierarchy-related research, Godfrey and Zhou
(1999) investigated the global city hierarchy, based on the number of headquarters and first-
level subsidiaries of the world’s top 500 companies in cities. Fang et al. (2017) investigated
the hierarchy of cities based on the population for city urbanisation evaluation. Research with
this hierarchy definition is also common in transport, especially aviation-related hierarchy re-
search. For instance, Grubesic et al. (2008) identified the worldwide airport hierarchy based on
the passenger flow data, such as the airport flight and passenger throughput, and the airports’
maximum exchange volumes. Fernandes et al. (2019) ranked the Brazilian airports annually
based on an original indicator “networkability”. This indicator depends on airports’ connec-
tivity and mutual passenger flow. By comparing the change in the airport hierarchy over ten
years, the development of the regional economy is discussed. Chen et al. (2022b) identified
the airport hierarchy based on passenger throughput and the accessibility of airports to high-
speed railway facilities. Research with this hierarchy definition on other transport facilities is
also common. Tsigdinos et al. (2022) studied the hierarchy of urban roads based on traffic
flow and the road infrastructure, for example, the flow of the city’s central areas and the cov-
erage of cycling or bus facilities. Acton et al. (2022) identified the hierarchy of BRT networks
based on the total line length and the independence of the BRT networks’ right-of-way. In a
word, in the research defining hierarchy as an order, a common point is shared: the hierarchy
identification is based on the ordering by one or several quantifiable indicators.

2.2.2. Hierarchy is a property of a network
The second definition considers hierarchy as a property of a network. A hierarchical network
has an organisation of network elements, in which the minority of elements have high impor-
tance, while the majority of elements have low importance. Compared to the first definition,
the scale of hierarchy changes from element to network. When hierarchy is a network prop-
erty, the hierarchy is not only the order of elements based on their importance, but also a more
macroscopic network-scale organisation shown by these elements. When hierarchy is an or-
der of items, it cannot reflect the network-scale organisation of elements. Yerra and Levinson
(2005) discussed the self-organised emergence of hierarchy in the transport network by as-
signing unbalanced traffic demands to a theoretical grid network. The differences in road use
create the hierarchy of the transport network, performing an organisation of edges in highly
differentiated levels. Lai and McDysan (2002) claimed that the hierarchy is the abstraction of
the network’s topology mechanism. The network hierarchy reflects a universal law followed by
vertex connections in the network. Mones et al. (2012) discussed the commonalities of various
complex networks and offered a complex network hierarchy quantification methodology. The
quantification of hierarchy is based on an original network-scale indicator, the global reach-
ing centrality (GRC), which denotes the heterogeneity of the reaching centrality of vertices.
The higher GRC of a network, the higher heterogeneity between vertices’ reaching centrality,
i.e., a higher network hierarchy. Loginova et al. (2022) studied the national economy network
hierarchy. In the economy networks, cities act as nodes, and the connections between multi-
nation firms’ headquarters and branch offices are edges. Regarding the nations as subplots
in the network, the k-core method is used to evaluate the national city importance heterogene-
ity. Furthermore, the Gini coefficient of k-core values is used to reflect the national economy
network hierarchy.

The network hierarchy can be affected by multiple aspects, for example, the traffic flows
and the network topology characteristics. Bassolas et al. (2019) associated the urban mobility
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network hierarchy with the traffic flow between city hotspots. They used the trip flow between
city hotspots and assigned the city hotspots to five levels, in which a high network hierarchy
is derived from more connections within similar-level hotpots but fewer connections between
different levels.

In PTN hierarchy research, network hierarchy is also regarded as a network property and
is evaluated by topological network characteristics. Von Ferber et al. (2009) developed the
essential methodology for evaluating the PTN hierarchy. Four PTN representation spaces
were developed to interpret the PTN characteristics better. The four spaces are L-space for
infrastructure, P-space for service, C-space for transfer availability, and B-space for public
transport line coverage. With the four-space PTN representation, Wang et al. (2020) fused
the PTN hierarchy with passenger transfer flow data and identified the time dependence of
the PTN hierarchy by optimising the network modularity in C-space. The PTN achieves op-
timal modularity when it reaches the highest inter-group passenger flow heterogeneous on
edges, indicating the PTN hierarchy. Buijtenweg et al. (2021) quantified the city’s PTN hierar-
chy in L-space and proposed a hierarchy degree metric, regarding the stops as vertices and
the connection between stops as edges. The hierarchy degree in this research is affected
by three vertex-based topological attributes: topological influence, transfer redundancy, and
transfer potential. Incorporating with passenger flow data, each attribute is quantified based
on a vertex-based topological indicator: eigenvector centrality, clustering coefficient and ver-
tex degree. Eventually, the Gini coefficient of vertex “hierarchy degrees” is regarded as the
quantified PTN hierarchy.

In a word, the network hierarchy as a network property is consistent with the research.
When regarding the hierarchy as a network property, it reflects not only a numerical relationship
between the importance of network elements but also the organisation of network elements
based on the heterogeneity of their importance.

2.3. Topological characteristic-related research
The network hierarchy can be reflected in the network characteristics from multiple aspects,
especially by using the topological characteristics. The topological characteristics of network
hierarchy describe the organisation of network elements (Groth and Skandier, 2005). The
organisation of network elements is evaluated from the network and element scales, reflecting
corresponding network hierarchy topological characteristics.

2.3.1. Element-scale topological characteristics
The element-scale characteristics are the topological characteristics embodied in network ele-
ments, which reflect and quantify the importance of network elements. The network hierarchy
is high when the elements in a network follow an organisation, where the number of elements
gradually descends with their importance ascends, and the majority of elements have low
importance, while a few elements have high importance.

The importance of network elements can be embodied in different aspects. Four main
element-scale topological characteristics have been studied in past research, which are the
accessibility of vertices (Háznagy et al., 2015; Huang et al., 2014; Luo et al., 2019), the in-
termediacy of elements (Derrible, 2012; Kanrak and Nguyen, 2022; Zhang et al., 2013), the
importance of sub-networks or vertex clusters (Háznagy et al., 2015; Hong et al., 2019; Pat-
tiselanno et al., 2015) and the connectivity of vertices (Hong et al., 2019; Shanmukhappa et al.,
2018). Among the four element-scale topological characteristics, the connectivity of vertices
is particular. In the previous works, two main topological indicators are used for quantifying
the connectivity of vertices, the hub and authority centrality (Kleinberg, 1999) and the vertex
degree (Newman, 2010). The hub and authority centrality originates from a web page ranking
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algorithm, identifying the hub and authority vertices based on large numbers of in or out con-
nections. Shanmukhappa et al. (2018) applied the hub and authority centrality to the L-space
bus networks in Hong Kong, London and Bengaluru, identifying the hub and authority vertices
in the network. Because most of the connections between the bus stops are bi-directional, it
was found that the identified hub and authority vertices have a large overlap. Although the
hub and authority centrality is a quantified indicator, it qualitatively identifies the hub or au-
thority vertices, which is not appropriate to reflect the heterogeneity of vertices’ importance for
PTN hierarchy assessment. As for vertex degree, which is a basic indicator for quantifying the
connectivity of single vertices. Applying the vertex degrees in the network scale, the indicator
can further quantify the extent of scale-free network structures. Thus, this study categorises
the vertex degree as a network-scale characteristic. Other than vertex connectivity, the ac-
cessibility, intermediacy and importance of sub-networks or vertex clusters comply with the
definition of the PTN hierarchy and are discussed in detail in the following paragraphs.

Vertex accessibility
The accessibility of vertices denotes the difficulty of reaching a vertex from other elements in
the network. In PTNs, the difficulties of reaching a vertex are shown by travel impedance, such
as travel time, distance, and ticket fare. The vertices with the lower impedance to reach indi-
cate higher importance. There are three main topological indicators used in the previous work
quantifying vertex accessibility, the average travel impedance (Luo et al., 2019), eccentricity
centrality (Hage and Harary, 1995), and closeness centrality (Bavelas, 1950). Luo et al. (2019)
defined a travel time-based travel impedance metric, evaluating the vertex accessibility in tram
networks worldwide by average travel impedance between vertices. The research verified that
the travel-time information from other data has benefits for vertex accessibility evaluation, such
as the AFC data. However, the average travel impedance focus on the impedance between
vertex pairs in P-space networks, which does not comply with L-space methods in this re-
search. Háznagy et al. (2015) utilised the distribution of the vertices’ eccentricity centrality in
the comparative analysis of PTNs in five Hungarian cities. The networks were represented
in L-space and weighted by the vehicle capacity of edges in the morning peak. It has been
found that a large city area decreases vertex accessibility in PTNs. The eccentricity centrality
of vertices can partly denote the vertex accessibility by calculating the greatest impedance
to other vertices, but it is not comprehensive to reflect the general accessibility of vertices by
considering the impedance to all other vertices in the network. Luo et al. (2020) investigated
the relationship between the quantified element properties by centrality indicators in L-space
and the passenger flow distribution in P-space. The closeness centrality is used as the indi-
cator for quantifying vertex accessibility. The case study on the Hague and Amsterdam tram
networks shows that the PTN topological properties can be used to approximate the global
passenger flow distribution on the PTNs. Hong et al. (2019) compared L-space elements’
topological characteristics between the unimodal PTNs, such as bus and metro networks,
with the integrated PTN in Soul, South Korea. The closeness centrality of vertices is utilised
as the indicator for vertex accessibility. They found that the vertex accessibility is increased in
the integrated PTN compared to the unimodal PTNs. In this research, the closeness centrality
is appropriate to quantify the vertex accessibility in L-space by comprehensively considering
the impedance between all vertex pairs in the networks.

Network element intermediacy
The intermediacy of network elements describes the importance of elements in forming con-
nections between other elements and further denotes the flow passing through network el-
ements (Zhang et al., 2013). The intermediacy can be embodied on vertices or edges. In
past research, the widely used topological indicator for quantifying elements’ intermediacy is
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betweenness centrality (Freeman, 1977). Derrible (2012) applied the betweenness central-
ity as the indicator for vertex intermediacy in 28 L-space metro networks worldwide. It was
found that the vertex intermediacy becomes more evenly distributed with the increasing sizes
of metro networks. Zhang et al. (2013) studied the L-space topological characteristics of ur-
ban rail networks worldwide and used betweenness centrality as the intermediacy indicator.
They found the average betweenness centrality of vertices and edges linear increases with
the increase of vertices in urban rail networks. Besides, when the vertex with the highest in-
termediacy is attacked, the network failure is the most severe. Shanmukhappa et al. (2018)
used the L-space betweenness centrality of vertices to identify the “supernodes” in the bus
networks of Hong Kong, London and Bengaluru. They found that removing the vertices with
high intermediacy would significantly increase the average path length and change the routing
behaviour of both passengers and buses. Thus, the betweenness centrality can well present
the intermediacy of network elements, fitting well with the definition of PTN hierarchy in this
research.

Sub-network or vertex cluster importance
Sub-networks and vertex clusters are part of the networks, consisting of several vertices and
connecting edges. The number of sub-networks and vertex clusters with different importance
can also be quantified and reflect the PTN hierarchy. In the previous works, the main topo-
logical indicators for quantifying the sub-networks or vertex clusters are clique (Bron and Ker-
bosch, 1973), Pagerank centrality (Page et al., 1999), and eigenvector centrality (Bonacich,
1987). The maximum clique are frequently used in social network assessment. Rowe et al.
(2007) formed an undirected social network in a company by email communications, where
the weights of edges are the number of emails and the average response time between two
people. The cliques in the network are identified and assigned scores based on the sizes of
cliques. With the clique scores, the social hierarchy is detected. However, the clique is not
appropriate for this research. First, the clique is applicable for undirected networks, such as
social networks, rather than the directed PTNs. Second, although cliques can be applied to
identify the important sub-networks in the network, the quantification of importance is limited,
which is usually reflected by the sizes of cliques but cannot embody the difference of sub-
network importance in detail. Pagerank centrality and eigenvector centrality both define that
a vertex’s importance depends on the vertices it connects with. When the Pagerank centrality
or eigenvector centrality value of a vertex is high, then the importance of the cluster consisting
of the vertices and all the connecting vertices is high. Háznagy et al. (2015) applied Pagerank
centrality to identify the important vertices in L-space PTNs of Hungarian cities and found the
distributions of the Pagerank centrality in the five PTNs are similar. Soh et al. (2010) applied
daily passenger flow-weighted eigenvector centrality for quantifying the importance of the sta-
tions in the L-space rail transit network and bus network in Singapore. A dynamic analysis of
the two networks’ topological characteristics is conducted by calculating the eigenvector cen-
trality values for stations with weekday and weekend passenger flow data. The case study
results showed that the rail transit network’s topological characteristics are less affected by
the time-dependent passenger flow, while the bus network was deeply affected. Compared to
the eigenvector centrality, the Pagerank centrality only considers the in-degree of vertices. In
this research, the PTNs focus on the connections between infrastructures, so the difference
between in and out vertices connections is unimportant. Thus, the eigenvector centrality is
more applicable for quantifying the importance of vertex clusters.

2.3.2. Network-scale topological characteristics
The network-scale topological characteristics are reflected in the overall network structures.
Some researchers investigated the association between network hierarchy and network struc-
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tures. Ravasz and Barabási (2003) found that scale-free networks are strongly associated with
high network hierarchy and high-clustering network structures. The researchers calibrated a
“hierarchical network” model with high-hierarchy and high-clustering networks to prove the as-
sociation. The model results indicate whether or not the input network is high-hierarchy and
high-clustering. When applying the proven scale-free networks to this model, such as the ac-
tor co-starring network, the World Wide Web network, and the language network, the model
results show these networks are high-hierarchy and high-clustering. The results proved that
the scale-free network is associated with a high-clustering network structure and a high net-
work hierarchy. Besides, Czégel and Palla (2015) discussed some specific network structures
and the network hierarchy with the random walking method. This research discusses three
specific network structures: the star, tree and chain-shape network structures. These network
structures in specific shapes result from specific connection patterns of vertices. It was found
that in directed networks, the tree network structure has a higher network hierarchy than the
chain or star-shaped network structure, for vertices in tree network structures connect to ver-
tices with similar importance. When the random walker density in the random walking method
reaches convergence, the tree-shaped network structure shows the highest heterogeneity of
elements’ importance and indicates a higher network hierarchy.

Scale-free network structure
The scale-free network structure is strongly associated with a high network hierarchy. In the
scale-free network structure, a few vertices take up the majority of connections. The vertices
with many connections are the minority, while the majority has a few connections. Solé and
Valverde (2004) associated scale-free networks with high heterogeneity of network elements.
The research summarised that complex networks have three topological characteristics: net-
work heterogeneity, modularity and randomness. Visualised by a 3-dimensional complex net-
work space, scale-free networks always associate with high network heterogeneity of network
elements, consistent with high-hierarchy networks’ characteristics. To identify and analyse
scale-free networks, vertex degree is the most widely used topological indicator. Tsiotas and
Polyzos (2015) and Von Ferber et al. (2009) claimed that the distribution of vertex degrees re-
flects the network structures. Solé and Valverde (2004) found that the vertex degrees always
exhibit a long-tail distribution. Moreover, Barabási and Bonabeau (2003); Newman (2005)
found that the degree distribution in scale-free networks is usually associated with the power-
law distribution. However, according to Broido and Clauset (2019), scale-free networks are
rare in reality, and the degree distribution rarely follows the power-law distribution in real-life
networks. Clauset et al. (2008) found that the real-life scale-free networks usually follow the
skewed normal distribution. In particular, being PTNs a real-life example, the scale-free net-
work structures can be identified and analysed by vertex degrees’ skewed normal distribution.
The better goodness of fit between the vertex degree distribution and the skewed norm distri-
bution can illustrate the higher network hierarchy.

High-clustering network structure
The high-clustering networks have a high potential to be deconstructed and rebuilt into ver-
tex clusters with a higher density of connections within clusters than between clusters. There
are two main topological indicators for quantifying the extent of high-clustering structures, the
global clustering coefficient (Luce and Perry, 1949) and the modularity coefficient (Newman,
2006). The global clustering coefficient is a topological indicator that measures the degree
of vertices in a network that tends to form triplet clusters. For example, Dimitrov and Ceder
(2016) examined the structure and topological properties of the L-space bus route network
in Auckland, New Zealand. The case study results showed that the bus route network is
high-clustering but not “small-world”, which is a type of network having most nodes not di-
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rectly connected, but vertices can have indirect connections with other vertices through a few
vertices. Since the empirical value for the average path length is longer than the theoreti-
cal length in a random graph, which cannot meet the requirement of a small-world network.
Although the global clustering coefficient can quantify the degree of a network being high-
clustering, it only focuses on the triplets or full-connected cliques. The connections not in
vertex triplets or cliques are not included. The optimal modularity coefficient also quantifies
the degree of high-clustering structures. Some work has been done on applying the optimal
modularity coefficient in network hierarchy identification. Guimerà and Amaral (2005a) pro-
posed an optimal modularity-based hierarchy identification methodology. In high-clustering
networks, when the optimal modularity coefficient is reached, the roles of vertices are iden-
tified based on the vertex’s connections within the cluster and between clusters. Then they
applied the methodology and identified the network hierarchy in the high-clustering organism’s
metabolic networks (Guimerà and Amaral, 2005b) and worldwide aviation networks (Guimerà
et al., 2005). The optimal modularity coefficient does not confine to the full-connected clusters.
The vertices with localised denser connections can be identified as clusters, which contributes
to the high-clustering structure. Thus, the optimal modularity coefficient is more appropriate
for this research.

Vertex connection pattern
Vertex connection following a unified pattern contributes to the high network hierarchy. For
example, the vertices in a network are prone to connect the vertices having a similar number
of connections. If the vertex connections follow some patterns, the network structure shows
a specific shape. Jiang et al. (2017) studies the two types of high-hierarchy network struc-
tures following the vertex connection based on vertex degree. The two network structures
are named core/periphery network and star-like network, as shown in Figure 2.1. In a net-
work following vertices connect to vertices with similar degrees, namely high-degree vertices
prone to connect high-degree vertices, and low-degree vertices prone to connect low-degree
vertices pattern, then the network is concentrated and shows a core/periphery structure. In a
core/periphery network, the vertices in the core area have higher importance than the vertices
in the periphery areas, which can be regarded as a variant of the tree-shape networks studied
by (Czégel and Palla, 2015). By contrast, in a network following low-degree vertices prone to
connect high-degree vertices patterns, the vertices with similar degrees are dispersed. The
network is decentralised and shows a star-like structure.

(a) Core/periphery network (b) Star-like network

Figure 2.1: Network structures with vertex connection patterns (Jiang et al., 2017)

Both the centralised and decentralised network structures show heterogeneity of vertex im-
portance. In core/periphery networks, the vertices in the core areas have higher importance
than the periphery areas. The importance of vertices is gradually decreased from the core
to the periphery, which complies with the definition of hierarchical networks. In star-like net-
works, the vertices with more local connections show higher importance than the low-degree
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vertices connected to them. The two types of networks are the two extremes of networks hav-
ing vertex connection patterns based on vertex degrees. To evaluate the extent of a network
having a vertex connection pattern, the assortativity coefficient is widely chosen. Assortativ-
ity is a concept derived from the definition of the assortative network, where well-connected
vertices are prone to connecting other well-connected vertices (Newman, 2002). Kanrak and
Nguyen (2022) applied the assortativity coefficient to the Asian-Australasian cruise shipping
network. Regarding ports as the vertices, the port connection patterns were evaluated. The
case study results showed that ports with a similar number of connections tend to connect to
each other. Chopra et al. (2016) assessed the resilience of the London metro network by the
network topology with passenger flow data. The results of the case study showed there is no
significant connection pattern where high-degree vertices connect high-degree vertices, and
more connections are low-degree vertices connect low-degree vertices. Plus, the results also
show the London metro network does not show a small-world structure, and the conclusion is
the London metro network is vulnerable. With the assortativity coefficient, the extent of a net-
work following a connection pattern can be quantified, so that this network-scale topological
characteristic of different PTNs can be compared.

2.3.3. Topological indicator summary
Based on the topological characteristics of PTN hierarchy from network and element scales,
the related research is reviewed. Considering the applicability to the PTN hierarchy, not all
topological indicators are included in the content. Therefore, Table 2.1 offers an overview of
all these topological indicators referenced in the research. In the column of other topological
indicators, there are element-scale or network-scale topological indicators which do not comply
with PTNs or embody the network organisation. For vertex-based indicators, they are less
suitable for reflecting the elements’ importance in PTN networks, for example, the information
centrality. For network-based indicators, they focus more on a specific aspect of networks,
rather than reflecting overall element organisations, such as the network diameter and average
shortest path length. With the review of the indicators in the previous research, the topological
indicators selected in this study can reflect the importance of PTN elements with element-
based indicators and interpreter the overall structures of high-hierarchy networks with network-
based indicators.
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Table 2.1: Summary of studies on network hierarchy using topological indicators

Literature Network objects PTN representation Directed/
Undirected

Weighted/
Unweighted

Closeness
centrality

Betweenness
centrality

Eigenvector
centrality

Node
degree

Assortativity
coefficient

Modularity
coefficient Others topological indicators

Cats (2017) Urban rail - Directed Unweighted √ √ √
Total network length, network diameter,
network connectivity, network meshedness,
network directness

Gattuso and Miriello (2005) Metro L-space Directed Unweighted √ Total network length, network diameter,
network connectivity, number of loops

Luo et al. (2019) Tram L-space, P-space Directed Travel times √ Number of nodes and links

Cats and Birch (2021) Multi-modal PTN L-space Directed Travel times √ √ Total network length, network connectivity,
network directness, average link length

Silva et al. (2022) Air - Directed Number of flights √ √ √ Clustering coefficient, network density,
authorities and hubs

Huang et al. (2014) Social - Undirected Unweighted √ √ √ √ Clustering coefficient, information centrality,
vertex efficiency

Tanglay et al. (2022) Neurosurgery - Undirected Weighted √ √ Pagerank centrality

Von Ferber et al. (2009) PTN L-space, P-space,
C-space Undirected Unweighted √ √ √ Shortest path length

Tsiotas and Polyzos (2015) Air - Directed Number of flights √ √ √ √ Mobility centrality, clustering coefficient
Chen et al. (2022b) Air - Undirected Total carriers √ √ √
Guan et al. (2020) International trade - Directed Unweighted √
Solé and Valverde (2004) - - Undirected Unweighted √ √
Ravasz and Barabási (2003) - - Undirected Unweighted √ √
Czégel and Palla (2015) - - Directed Weighted √ Pagerank centrality
Clauset et al. (2008) - - Undirected Unweighted √ √

Kanrak and Nguyen (2022) Cruise shipping - Directed Unweighted √ √ √ Network density, average path length,
clustering coefficient

Guimerà et al. (2005) Air - Directed Number of flights √ √ √ Average shortest path, clustering coefficient
Guimerà and Amaral (2005b) Metabolic - Undirected Unweighted √ √
Bienenstock and Bonacich (2021) - - Directed Unweighted √ √ √
Meunier et al. (2009) Brain function - Undirected Unweighted √ √
Pattiselanno et al. (2015) Social - Undirected Unweighted Clique
Loginova et al. (2022) City - Undirected Number of firms √ K-core
Mones et al. (2012) - - Directed Unweighted √ Local reaching centrality
Badhrudeen et al. (2022) Road - Undirected Unweighted √
Dimitrov and Ceder (2016) PTN L-space Directed Unweighted √ Average shortest path, clustering coefficient

Hong et al. (2019) PTN L-space Directed Inversed distance √ √ √ √ √ √ Network diameter, average path length
clustering coefficient, eccentricity centrality

Soh et al. (2010) Rail, bus L-space Bi-directed Daily travel √ √ √ Clustering coefficient
Háznagy et al. (2015) PTN L-space Directed Peak-hour capacity √ √ √ Pagerank centrality, average path length
Cats et al. (2020) PTN L-space Undirected Distance √ Ringness
Fernandes et al. (2019) Air - Directed Number of flights √

Luo et al. (2020) PTN L-space, P-space Directed Passenger flow,
travel time √ √ √

Rowe et al. (2007) Social - Undirected Number of mails √ √ Clique, clustering coefficient
Buijtenweg et al. (2021) PTN L-space, P-space Directed Passenger flow √ √ Clustering coefficient
Wang et al. (2020) PTN L-space, C-space Directed Passenger flow

Shanmukhappa et al. (2018) Bus L-space Directed Number of lines √ √ √ Clustering coefficient, average shortest path length,
hub and authority centrality

Zhang et al. (2013) Urban rail L-space Undirected Unweighted √ √ Clustering coefficient, average shortest path length,
topological efficiency

Derrible (2012) Metro L-space Undirected Unweighted √

Chopra et al. (2016) Metro L-space Directed Passenger flow √ √ √ Clustering coefficient, average shortest path length,
global efficiency

Robson et al. (2021) Infrastructure - Undirected Unweighted √ √ √ Cycle basis

This study PTN L-space Directed Average travel times of trips
Inverse of average travel times of trips √ √ √ √ √ √





3
Methodology

In Section 3.1, the definition of the PTN hierarchy and the PTN hierarchy’s topological charac-
teristics are clarified before proceeding to the quantification. Section 3.2 introduces the graph
representation of the topological PTN hierarchy quantification. Section 3.3 and Section 3.4
present the topological quantification methods of PTN hierarchy’s topological characteristics,
including vertex-based indicators and network-based coefficients.

3.1. Problem description
Before starting with the PTN hierarchy quantification, the definition of the PTN hierarchy and
the topological characteristics of the PTN hierarchy are clarified and determined.

3.1.1. PTN hierarchy
Firstly, the PTN hierarchy is a network property of PTNs, which defines an organisation of
PTN elements, such as vertices, edges and vertex clusters. The organisation has the follow-
ing features: PTN elements have high heterogeneity of importance, and the number of PTN
elements gradually descends with the importance ascending. The PTN elements with high
importance are the minority, and the majority has low importance. The importance of PTN
elements is multi-aspect, which can be reflected by the PTN hierarchy’s topological character-
istics. Element organisations having these features are defined as hierarchical organisations.

3.1.2. Topological characteristics of PTN hierarchy
PTN hierarchy has topological characteristics from element and network scales. Six topolog-
ical characteristics of the PTN hierarchy are chosen in this study and summarised as follows:

1. Network element-scale characteristics

• PTN elements follow the hierarchical organisation by vertices’ accessibility
• PTN elements follow the hierarchical organisation by elements’ intermediacy
• PTN elements follow the hierarchical organisation by vertex clusters’ importance

2. Network-scale characteristics

• The PTN structure is scale-free
• The PTN structure has a high-clustering level
• Vertex connections follow a pattern based on vertex degrees

15
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Each topological characteristic can interpret the PTN hierarchy from one aspect, forming
a dimension of the PTN hierarchy. The higher extent a PTN meets one of the characteristics,
the higher hierarchy the PTN has in the dimension of this indicator. The following PTN hier-
archy quantification methodology is based on the six topological characteristics. Topological
indicators quantify the extent to which a PTN has these topological characteristics.

3.2. PTN representation
Based on the PTN representation forms developed by Von Ferber et al. (2009), PTNs in topo-
logical hierarchy quantification are presented in L-space. L-space is the representation form
of infrastructure in the PTN. A stop represents a vertex 𝑣𝑖. The set of all stops 𝑣 in a PTN is
represented as 𝑉. If at least one public transport line directly connects two stops 𝑖 and 𝑗, the
two stops are connected with an edge 𝑒(𝑖, 𝑗). Every two connected stops can have a maximum
of an edge. The self-loop edges having the endpoints as the same vertex is not permitted.
The set of all the edges in a PTN is represented as 𝐸.

The edges in PTNs are directed as it is how in reality operates. The edge 𝑒(𝑖, 𝑗) ≠ 𝑒(𝑖, 𝑗).
The directed edges can represent the directions of connections between stops. In metro and
tram networks, most connections between stops are in two opposite directions, represented
by the bi-directed edges in the network, for which both 𝑒(𝑖, 𝑗) and 𝑒(𝑗, 𝑖) exist. PTNs like BRT
networks sometimes have stops that have connections with other stops only in one direction,
presented by single-directed edges. The 𝑒(𝑖, 𝑗) is feasible for the single-directed edges, but
𝑒(𝑗, 𝑖) is not.

The edges in PTNs are also weighted. The weight of the edge 𝑒(𝑖, 𝑗) is represented as
𝑊(𝑖, 𝑗). In the topological characteristics of the PTN hierarchy, the impedance of connections
and the strength of connections are represented by two types of edge weights. The impedance
of connections is weighted by the average travel time of the trips on the edges. The average
travel time of edge 𝑒(𝑖, 𝑗) is mathematically represented as 𝑡(𝑖, 𝑗). By contrast, the strength of
connections is represented as the inverse of the average travel time of the trips on the edges.
The connection strength of edge 𝑒(𝑖, 𝑗) is mathematically represented as 𝑠(𝑖, 𝑗).

In a word, the PTNs are weighted and directed with the L-space PTN representation. The
PTNs are represented as 𝐺 = (𝑉, 𝐸,𝑊). The PTN 𝐺 consists of stops as vertices 𝑉 and con-
nections as edges 𝐸. Two types of edge weights of an edge𝑊(𝑖, 𝑗), the connection impedance
weight 𝑡(𝑖, 𝑗) and the connection strength 𝑠(𝑖, 𝑗).

3.3. Vertex-based indicators
The vertex-based indicator dimensions use the goodness of fit to quantify the PTN hierarchy
topological characteristics, where the goodness of fit is between the vertex-based topological
indicators’ probability density distribution and the skewed normal distribution. The following
sub-sections detail the goodness of fit and the four vertex-based indicator dimensions.

3.3.1. Goodness of fit
The goodness of fit is used to represent the quantified PTN hierarchy in the dimensions of
vertex-based indicators. When the PTN elements follow the hierarchical organisation by their
importance, the distribution of the PTN elements’ importance follows a skewed normal distri-
bution (Clauset et al., 2008). The goodness of fit measures the extent of PTN elements fol-
lowing the skewed normal distribution by their importance. The importance of PTN elements
is multi-aspect, and each aspect is reflected by one vertex-based topological indicator.

The coefficient of determination, also known as R square (𝑅2), is selected as the measure-
ment of the goodness of fit for two reasons. First, the R square can deal with PTNs having
different sizes of elements, ensuring the hierarchy comparison between the PTNs. Second,
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the difference between R square values of PTNs is meaningful, it denotes the ratio that the fit-
ted skewed normal distribution explains the probability density distribution of the vertex-based
indicators. The difference in R square values can quantify and reflect the difference between
the PTN hierarchy.

The R square denotes the proportion of data explained by the regression distribution (Rao,
1973). The equations of the coefficient of determination are shown as Equation 3.1.

𝑅2 = 1 − 𝑆𝑆res𝑆𝑆tot
(3.1)

𝑆𝑆res =∑
𝑖
(𝑦𝑖 − 𝑓𝑖)2 (3.2)

𝑆𝑆tot =∑
𝑖
(𝑦𝑖 − �̄�)2 (3.3)

A data set has 𝑛 values denoted as 𝑦1, ..., 𝑦𝑛, collectively known as 𝑦𝑖. The regression
values of the data are denoted as 𝑓1, ..., 𝑓𝑛, collectively known as 𝑓𝑖. The average value of the
data set is �̄�. The sum of squares of residuals (𝑆𝑆𝑟𝑒𝑠) indicates the differences between the
data values 𝑦𝑖 and the regression values 𝑓𝑖. The total sum of squares (𝑆𝑆𝑡𝑜𝑡) indicates the
difference between the data values and the average data value �̄�. The R square equals the
difference between 1 and the fraction of 𝑆𝑆𝑟𝑒𝑠 and 𝑆𝑆𝑡𝑜𝑡. The value range of R square is from
negative infinity to 1. If the regression values all equal the data value, the R square value is 1,
indicating the best goodness of fit. When the R square equals 0, the goodness of fit is as good
as the average value of the data set. The R square can also be negative when the regression
values have a worse fit than the average data value. The more the R square value between
a data set and the regression distribution, the better goodness of fit they have.

The probability histograms reflect the probability density distributions of vertex-based topo-
logical indicators. In the histogram, the x-axis indicates the bins of topological indicators val-
ues, while the y-axis indicates the probability density of vertices allocated to the bins. The
number of bins in the histogram is determined with Equation 3.4 with Scott’s normal reference
rule (Scott, 1979), which considers the variance of data and the data size. In Equation 3.4, ℎ
indicates the bin width, �̂� is the standard deviation of the data, and 𝑛 is the size of the data. In
the R square value calculations and PDF representations, the midpoints of bins in histograms
are applied as the representative values of probability density distributions.

ℎ = 3.49�̂�
3√𝑛

(3.4)

The logistic regression for the skewed normal distribution uses the coordinates composed
of the median values of bins as the 𝑥 values and the height of the bins as the 𝑦 values. The
probability density function (PDF) 𝜙(𝑥) of the skewed normal distribution is shown as Equation
3.5.

𝜙(𝑥) = 2
𝜔√2𝜋

𝑒−
(𝑥−𝜉)2
2𝜔2 ∫

𝛼(𝑥−𝜉𝜔 )

−∞

1
√2𝜋

𝑒−
𝑡2
2 𝑑𝑡 (3.5)

In the equation, 𝑥 is the independent variable, ranging from negative infinity to positive
infinity. Real numbers 𝜉, 𝜔 and 𝛼 denote the distribution’s location, scale and shape parame-
ters.

In this study, the comparison between the PTN hierarchy in each dimension is relative.
Considering the difference in topological characteristics of the PTN hierarchy, the distribution
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ranges of R square values in topological dimensions vary, and R square values in different
indicator dimensions are not directly comparable. The comparison of all PTN hierarchy indi-
cators is introduced in the following sections. In this study, R square is the method quantifying
the PTN hierarchy, rather than the parametric test of the skewed normal distribution, so no
non-parametric test is required. For PTNs investigated in this study, the probability density
distribution of vertex-based indicators is pre-assumed following the skewed normal distribu-
tion. R square values denote the extent that the PTN element organisation follows the hierar-
chical organisation, namely the PTN hierarchy. The higher R square value of a PTN indicates
a higher hierarchy the PTN has compared to other PTNs in the dimension of a vertex-based
indicator.

3.3.2. Vertex degree
The vertex degree dimension is the PTN hierarchy dimension that uses vertex degree as the
topological indicator. The R square value of the vertex degree PDF fitting the skewed normal
distribution indicates the degree of PTN’s scale-free structure and further denotes the PTN
hierarchy. Besides, the dimension is the vertex-based indicator dimension that reflects the
network-scale PTN hierarchy topological characteristic.

The vertex degree, also known as degree centrality, is the number of edges a vertex con-
nects to (Newman, 2010). The degree is one of the most basic indicators in network topol-
ogy, describing the vertex’s connectivity. In directed networks, the degree includes in-degree
and out-degree, and the vertex degree equals the sum of the in-degree and out-degree. To
exclude the differences in the number of vertices between PTNs, the vertex degree values
are normalised by dividing by the maximum possible degree of the network. For a network,
𝐺 = (𝑉, 𝐸), the network’s adjacency matrix is 𝐴. 𝐴𝑖𝑗 is one of the elements in the adjacency
matrix, showing whether a connection exists from vertex 𝑖 to vertex 𝑗. When it exists, 𝐴𝑖𝑗
equals 1. Otherwise, the value is 0. Thus, the degree of the vertex 𝑘𝑖 is equal to:

𝑘𝑖 =∑
𝑗
𝐴𝑖𝑗 +∑

𝑗
𝐴𝑗𝑖 , ∀𝑖, 𝑗 ∈ 𝑉 (3.6)

3.3.3. Closeness centrality
The closeness centrality dimension is the PTN hierarchy dimension using the closeness cen-
trality of vertices as the topological indicator. The R square of the closeness centrality PDF
of vertices fitting the skewed normal distribution denotes the degree of vertices following the
hierarchical organisation by their vertex accessibility and further denotes the PTN hierarchy.

In a PTN consisting of 𝑁 vertices, the closeness centrality 𝐶𝑖 of vertex 𝑖 is defined as the
harmonic mean value of the weighted shortest path lengths 𝑑𝑖𝑗 from vertex 𝑖 to every other
vertex 𝑗, shown as Equation 3.7. Apart from the endpoints of the shortest path from 𝑖 to 𝑗,
there are 𝑃 vertices located in the middle of the shortest paths are 𝑘1, ..., 𝑘𝑃. The lengths of
the shortest paths 𝑑𝑖𝑗 are defined as the sum of the weights of edges located on the paths,
namely the average travel time of trips on the edges, shown in Equation 3.8. To exclude the
differences in the number of vertices between PTNs, the closeness centrality of vertices is
normalised by the sum of all the shortest path lengths in the PTN.

𝐶𝑖 =
1

𝑁 − 1 ∑
𝑗(≠𝑖)

1
𝑑𝑖𝑗
, ∀𝑖, 𝑗 ∈ 𝑉 (3.7)

𝑑𝑖𝑗 = 𝑠(𝑖, 𝑘1) +
𝑃−1

∑
𝑝=1

𝑠(𝑘𝑝, 𝑘𝑝+1) + 𝑠(𝑘𝑃 , 𝑗) (3.8)
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A better understanding of the closeness centrality distribution patterns in specific network
configurations helps analyse the organisation of vertices by their accessibility. As an exam-
ple, the four network configurations are shown in Figure 3.1. The network configurations are
undirected and unweighted. In the examples, vertices with more connections have higher
closeness centrality than their connected vertices with fewer connections.

Linear network segment is defined as a network configuration where each vertex connects
one after the other sequentially from one end to another. Figure 3.2 offers two examples of
linear network segments from vertex 𝑎 to 𝑏. The linear network segment consists of two
endpoints 𝑎 and 𝑏, which are the vertices connecting one vertex or more than two vertices.
The endpoints that connect only one vertex are called the dead ends, for example, the vertex
𝑏 in Figure 3.2(b). The other vertices located on the linear segments are denoted as 𝑘1 to 𝑘𝑝.
There is a pattern of the closeness centrality value changes on linear network segments. For
the vertices on the same linear network segment, the closer the vertices are to the endpoint
with more connections, the higher their closeness centrality.

Figure 3.1: Closeness centrality values in network configurations (undirected & unweighted) (Charles and Rony,
2016)

(a) (b)

Figure 3.2: Linear network segments from endpoints 𝑎 to 𝑏 via vertices 𝑘1,...,𝑝

3.3.4. Betweenness centrality
The betweenness centrality dimension is the PTN hierarchy dimension that uses the vertex’s
betweenness centrality as the topological indicator. The betweenness centrality denotes the
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intermediacy of network elements. The R square between the betweenness centrality PDF
fitting the skewed normal distribution indicates the degree of the vertices following the hierar-
chical organisation by their intermediacy and further denotes the PTN hierarchy.

The betweenness centrality 𝐵𝑖 of a vertex measures the times a vertex lies on the shortest
paths between other vertex pairs (Newman, 2010). In the identification of the shortest paths,
the average travel times of trips on the edges are considered as the weights of edges. The
equation of betweenness centrality is shown as Equation 3.9.

𝐵𝑖 =∑
𝑠𝑡
𝑛𝑖𝑠𝑡 , ∀𝑖, 𝑠, 𝑡 ∈ 𝑉 (3.9)

In the equation, 𝑖, 𝑠 and 𝑡 are three vertices in the network. 𝑛𝑖𝑠𝑡 denotes whether having
one shortest path between vertices 𝑠 and 𝑡 that vertex 𝑖 lies on. Once one shortest path
between vertices crossing vertex 𝑖, the 𝑛𝑖𝑠𝑡 equals 1; otherwise, it equals 0. To exclude the
vertex amount differences of PTNs, the betweenness centrality values are standardised by
the number of possible shortest paths not ending at vertex 𝑖 in the network, which equals
(𝑛 − 1)(𝑛 − 2), where 𝑛 is the number of vertices in the PTN.

Figure 3.3: Betweenness centrality values in network configurations (undirected & unweighted) (Charles and Rony,
2016)

The betweenness centrality of vertices shows patterns in some network configurations.
Take examples of simplified unweighted and undirected network configurations in Figure 3.3.
The examples show that the betweenness centrality of vertices withmore connections is higher
than the connected vertices with fewer connections. The betweenness centrality of linear net-
work segments’ endpoints with one connected vertex is 0, lying on no shortest path. Vertices
on the same linear network segment have higher betweenness centrality when they are to
endpoints with more connections. Another pattern is that the betweenness centrality of ver-
tices with the same degree and on the same linear network segment is similar. Except for the
shortest paths that end at the vertices on the linear network segment, the times that shortest
paths pass through these vertices are the same. Because of this pattern of betweenness cen-
trality values, the vertex-based betweenness centrality can reflect the intermediacy of not only
the vertices but also the linear network segments.

3.3.5. Eigenvector centrality
The eigenvector centrality dimension is the PTN hierarchy dimension that uses the eigenvector
centrality of vertices as the topological indicator. The eigenvector centrality values denote
the importance of the vertex clusters consisting of the vertices and the vertices they connect
to. The R square between the vertex’s eigenvector centrality PDF fitting the skewed normal
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distribution denotes the degree of the vertex clusters following the hierarchical organisation
by their importance and further denotes the PTN hierarchy.

The eigenvector centrality 𝐸𝑖 of vertex 𝑖 is proportional to the sum of the eigenvector central-
ity of vertices connecting vertex 𝑖 (Newman, 2010). The calculation of eigenvector centrality
considers the strengths of the connections between vertices as the weights of edges. The
strength of connections is represented by the inverses of the average travel times of the trips
on the edges. The following Equation 3.10 shows the equation of eigenvector centrality.

𝐸𝑖 = 𝜅−11 ∑
𝑗
𝐴𝑖𝑗𝐸𝑗 , ∀𝑖, 𝑗 ∈ 𝑉 (3.10)

In the equation, 𝑖 and 𝑗 are two vertices in the network. 𝐸𝑖 denotes the eigenvector cen-
trality of vertex 𝑖. 𝜅1 is a constant, denoting the network’s largest eigenvector value of the
adjacency matrix 𝐴. For directed networks, the calculation of eigenvector centrality only con-
siders the in-edges of vertices to avoid duplication. The results of eigenvector centrality are
inherently normalised. The determination of eigenvector centrality to all vertices in the network
is iterative. Each vertex is first evenly assigned the same centrality. Then the total eigenvector
centrality is reassigned based on the adjacency matrix 𝐴𝑖𝑗, until reaching the convergence.

In practical implication, a PTN with a high hierarchy in the dimension of eigenvector cen-
trality indicates a small number of concentrated high-degree stops. Because the importance
of vertex clusters is deeply influenced by the importance of the vertex connecting to the centre
vertex, a high hierarchical PTN has the important vertex clusters concentrated in a small area
and shows a mono-centric structure.

3.4. Network-based indicators
The network-based indicator dimensions use the network-based coefficient as the topologi-
cal indicator. The values of the network-based coefficients denote the interpretation of the
network-scale PTN hierarchy topological characteristics. The details of the network-based
coefficient dimensions are introduced in the following sub-sections.

3.4.1. Network modularity
The network modularity dimension is the PTN hierarchy dimension that uses the optimal value
of the network-based modularity coefficient as the topological indicator. The value of the opti-
mal modularity coefficient denotes the degree of a PTN’s high-clustering structure and further
denotes the PTN hierarchy.

The modularity coefficient 𝑄 describes a network’s potential to be separated into clusters
with high similarity within cluster (Newman, 2006). The modularity coefficient is the fraction
of the expected connections between vertices that fall within the same clusters minus the
fraction of the connections in the situation where the connections are randomly distributed.
The equation of the modularity coefficient is shown as Equation 3.11.

𝑄 = 1
2𝑚∑

𝑖𝑗
(𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗
2𝑚 )𝛿(𝑐𝑖 , 𝑐𝑗) (3.11)

𝑘𝑖 and 𝑘𝑗 are the vertex degree of vertex 𝑖 and 𝑗. 𝑚 is the total number of edges in the
network. Thus, 2𝑚 is the number of endpoints of all the edges. 𝑘𝑖𝑘𝑗2𝑚 is the possible number of
edges between vertex 𝑖 and 𝑗. 𝑐𝑖 is the cluster of vertex 𝑖. 𝛿(𝑐𝑖 , 𝑐𝑗) is the Kronecker delta of the
clusters of vertex 𝑖 and 𝑗. When 𝑐𝑖 and 𝑐𝑗 are the same clusters, 𝛿(𝑐𝑖 , 𝑐𝑗) equals 1, otherwise
equals 0. 1

2𝑚 is used for calculating the fraction of the connections.
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The value range of the modularity coefficient is [−12 , 1] (Brandes et al., 2007). If the modu-
larity coefficient is closer to 1, the vertices have more connections in the same cluster, showing
a high-clustering network structure. A modularity coefficient close to 0 denotes the vertices
are connected randomly. A negative modularity coefficient means the vertices connect more
with vertices in different clusters.

The modularity coefficients are influenced mainly by the compositions of vertex clusters.
A heuristic method called the Leiden algorithm is used to find the optimal vertex cluster com-
position (Traag et al., 2019). Developed from the Louvain algorithm (Blondel et al., 2008),
the Leiden algorithm is more suitable for directed networks. The algorithm starts by assigning
each vertex in the network to a cluster. Then the vertex clusters are aggregated or reassigned
to new clusters until they converge to the maximum modularity coefficient.

In practical implication, a PTN having a high hierarchy in the dimension of networkmodular-
ity indicates a large number and widely distributed high-degree stops. The widely-distributed
high-degree stops have more connections with adjacent stops locally, which increases the
value of the optimal network modularity coefficient, and the PTN tend to present a multi-centric
structure.

3.4.2. Network assortativity
The network assortativity dimension is the PTN hierarchy dimension that uses the assorta-
tivity coefficient as the topological indicator. The assortativity coefficient of a PTN denotes
the degree of the vertex connections following a unified pattern and further denotes the PTN
hierarchy.

Assortativity coefficient 𝑟 describes the connection pattern of vertices in a network based
on the vertex degree (Newman, 2002). The vertex 𝑖 and 𝑗 are two vertices in the network. The
covariance value of all connections on the edges between two vertices 𝑖 and 𝑗 is 𝑐𝑜𝑣(𝑘𝑖 , 𝑘𝑗).
The calculation equation is shown as Equation 3.12. A high covariance value means the
similarity of the connected vertex pairs’ vertex degrees is high. The assortativity coefficient
𝑟 is the normalised covariance of vertices degree by the maximum value of the covariance.
The maximum covariance happens where the degree values of connecting vertices are the
same (Newman, 2010). The normalisation equation of the assortativity coefficient is shown
as Equation 3.13.

𝑐𝑜𝑣(𝑘𝑖 , 𝑘𝑗) =
1
2𝑚∑

𝑖𝑗
(𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗
2𝑚 )𝑘𝑖𝑘𝑗 , ∀𝑖, 𝑗 ∈ 𝑉 (3.12)

𝑟 =
∑𝑖𝑗(𝐴𝑖𝑗 − 𝑘𝑖𝑘𝑗/2𝑚)𝑘𝑖𝑘𝑗
∑𝑖𝑗(𝑘𝑖𝛿𝑖𝑗 − 𝑘𝑖𝑘𝑗/2𝑚)𝑘𝑖𝑘𝑗

, ∀𝑖, 𝑗 ∈ 𝑉 (3.13)

In Equation 3.12 and 3.13. 𝛿𝑖𝑗 is the Kronecker delta indicating whether vertex 𝑖 and 𝑗
have the same vertex degrees. When the degrees of two connected vertices are the same,
𝛿𝑖𝑗 equals 1, otherwise equals 0.

The value range of the assortativity coefficient is from -1 to 1. The assortativity coefficient is
positive when the vertex connections in a network follow a pattern where high-degree vertices
connect to high-degree vertices and low-degree vertices connect to low-degree vertices. In
contrast, the assortativity coefficient is negative when the vertex connections follow a pattern
where the high-degree vertices tend to connect with low-degree vertices. The assortativity
coefficient of a PTN is close to either +1 or -1 have a vertex connection pattern in terms of
degrees. However, considering the reality of the PTN operation, the assortativity coefficient
close to -1 is not feasible. In a PTN where the vertex connections follow a pattern where low-
degree vertices tend to connect with high-degree vertices, the PTN has a star-like network



3.5. Six-dimension PTN hierarchy 23

structure, as shown in Figure 2.1(b), which is contrary to the reality. For this reason, the
connection pattern in this study only considers the pattern where high-degree vertices connect
high-degree vertices, and low-degree vertices connect low-degree vertices.

According to the equations of the two network-based indicators, both indicators are derived
from the covariance of elements and indicate the similarity or homophily between elements.
However, the two indicators assess network elements’ similarity between clusters and ver-
tices respectively. The modularity coefficients assess the similarity from the perspective of
the clusters, evaluating whether connections exist within the same cluster or between clus-
ters. In contrast, the assortativity coefficients assess similarity from the perspective of vertices,
whether connections exist between vertices having similar degrees.

3.5. Six-dimension PTN hierarchy
Hierarchy is a multi-dimension property of PTNs. Apart from the single-dimension comparison
of each PTN hierarchy indicator, the multi-dimension comparisons of the PTN hierarchy can
lead to a comprehensive assessment. The six PTN hierarchy indicators have different distri-
bution ranges or units. The indicators are scaled to the same range to ensure the comparison
is meaningful. The min-max normalisation is used as the scaling method for this study. For a
database consisting of multiple PTNs, the original PTN hierarchy in each dimension is repre-
sented as 𝐻. The normalised PTN hierarchy is 𝐻′, calculated with Equation 3.14. 𝑚𝑎𝑥(𝐻) and
𝑚𝑖𝑛(𝐻) represent the maximum and minimum values of the PTN hierarchy in each dimension
respectively. After the normalisation, the PTN hierarchy in the six dimensions is scaled to
[0, 1].

𝐻′ = 𝐻 −min(𝐻)
max(𝐻) −min(𝐻) (3.14)

The radar chart is developed to offer a comprehensive and intuitive presentation of the
six-dimension PTN hierarchy. In the radar chart of a PTN, the six-dimension PTN hierarchy
values are presented on a chart with multiple axes originating from the same centre of the
radar chart. Figure 3.4 shows an example of the radar chart.
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Figure 3.4: An example of a six-dimension radar chart
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In the radar chart, each axis represents one PTN hierarchy dimension. For clear presenta-
tion, the names of the topological indicators of the PTN hierarchy dimension are simplified as
𝑅2(Degree), Modularity, Assortativity, 𝑅2(Closeness centrality), 𝑅2(Betweenness centrality)
and 𝑅2(Eigenvector centrality). On the top of the radar chart is the city name of the PTN, and
the colour of the enclosed area indicates the mode. The ranges of the axes are all set from 0
to 1. The values on the axes decrease from the edge to the centre of the radar chart. The size
of the area enclosed by the connections of value points denotes the overall six-dimension hi-
erarchy of a PTN. The larger size of the enclosed area, the higher the six-dimension hierarchy
of the PTN.



4
Case Study

This chapter introduces a case study implementing the methodology, based on GTFS data
of high-capacity unimodal PTNs. Section 4.1 provides an overview of the data preparation
process for the case study. Section 4.2 presents the quantification and comparison of 63
high-capacity unimodal PTNs worldwide in terms of their hierarchy. Additionally, Section 4.3
and Section 4.4 discuss the mode-wise and continent-wise effects based on the hierarchy of
the PTNs.

4.1. Data preparation
The data preparation for the case study includes three processes, data selection, data col-
lection and data processing, in order to obtain suitable high-capacity unimodal PTN data for
hierarchy quantification and comparison.

4.1.1. Data selection
The data for this case study are selected from high-capacity unimodal PTNs worldwide. The
data should meet the following requirements. First, the mode of the PTNs is one of the three
high-capacity public transport modes: metro, tram or BRT. These three modes are commonly
used high-capacity public transport modes around the world. Second, the selected unimodal
PTNs need to have limited impacts from other modes, being the main unimodal PTN in the
whole city. Therefore, the selected unimodal PTNs are mostly the unimodal PTNs with the
highest annual ridership.

Following the requirements, 63 high-capacity unimodal PTNs from 62 cities worldwide are
selected. Most cities have one unimodal PTN selected, except Berlin. Because of the historical
reasons in the post-war period, Berlin’s metro and tram network are independently developed,
and their mutual impacts are limited. Thus, the metro and tram networks of Berlin are both
selected. The PTNs are distributed in six continents: Africa, Asia, Europe, Oceania, North
America and South America. The distribution map of the 63 high-capacity unimodal PTNs is
shown in Figure 4.1. Each dot represents a PTN, where the colours of the dots indicate its
mode. Figure 4.2 is a nested pie chart indicating both modes and continents of the selected
high-capacity unimodal PTNs.

4.1.2. Data collection
The data used in this case study is General Transit Feed Specification (GTFS) data, which
follows the standard format of transit data published by Google in 2006 (Google, 2022a). The
transit data are generated during the public transport operation and collected by the service

25
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Figure 4.1: Distribution of the selected high-capacity unimodal PTNs worldwide
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Figure 4.2: Nested pie chart of modes and continents of the selected high-capacity unimodal PTNs

provider. The data includes transit information, such as the stop geographic coordinates,
the operating frequency, and the arriving and departing times of stops. The raw GTFS data
are compressed as zip files and stored as text or comma-separated values (CSV) files. The
source of the GTFS data are mostly from the public GTFS data collection platform, Transit-
Feeds (OpenMobilityData, 2022), and the rest are requested from the authorities or the public
transport service providers.

4.1.3. Data processing
The data processing has four steps, processing the raw GTFS data to analysable PTNs:
database generation, data filtering, draft network generating and network revision. The data
preparation workflow of the high-capacity unimodal PTNs is shown in Figure 4.3.

Through the database generation step, the raw GTFS data are converted into the SQLite
database (Hipp, 2020). The GTFS data analysing library GTFSPY offers effective tools to
associate different transit data together based on the route IDs and trip IDs (Kujala et al.,
2018).
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Figure 4.3: Flowchart of the GTFS data processing

The next step is filtering the data of high-capacity unimodal PTN from the database. The
raw GTFS data usually includes the transit information of all the modes in the city over a period
of time. To select data of the main high-capacity unimodal PTN from the whole database,
the filtering is based on the mode ID of the high-capacity modes, such as metro and tram.
However, BRT doesn’t have the exclusive mode ID for filtering, which needs additional filtering
after filtering the data of the bus. The additional filtering is based on the route ID or the operator
ID of BRT. After the mode filtering and getting the data of high-capacity unimodal PTN, the
date filtering is needed to reduce the volume of data and the calculation time of the following
steps. The date filtering selects the representative date, which is closest to the data release
date and contains over 90% of the maximum single-day trips. The operating hours of the
representative day are from 5 AM till 12 AM of the next day, namely 19 hours, excluding the
night public transport services.

The following step uses the filtered data and the GTFSPY library to generate graph repre-
sentations of PTNs. The generated PTN graphs include topological and operating information,
such as stops’ coordinates, the trip arrival and departure times of stops, and route directions.
Supported by the python library Bokeh (Bokeh Development Team, 2018) and Google maps
API (Google, 2022b), the graphs can be visualised and interactive with maps. The stops in
graphs are located based on their coordinates as vertices. The stops are connected by di-
rected edges when trips happen between two stops. The directed edges are labelled with two
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types of weight information (see Section 3.2), one of which can be selected in the calculation
of each topological indicator.

Although the draft networks have the essential vertices and edges, there are still flaws
in the networks that need to be calibrated. For example, the unrecognised duplicated stops
or transfer stops. These flaws are calibrated in two rounds. The first round automatically
merges the identified duplicated stops by setting thresholds of distances and the similarity of
stop IDs. In the second round, the thresholds of distances and ID similarity are reduced, and
the merge recommender algorithm suggests the possible remaining duplicated stops. With
manual checking, the confirmed duplicated stops are merged, and the denied duplicated stops
are maintained. Figure 4.4 offers an example of the merge recommender during the second
round calibration of the Karlsruhe tram network. Apart from the two rounds of calibration, the
manual merge of stops is also possible.

Figure 4.4: An example of a prompt from the merge recommender algorithm

Another type of flaw is the missing information on the edges, which usually happens in BRT
networks. In some BRT networks, the stopping pattern is not strictly following the operating
map, and the BRT can skip some stops with no demand. The stop-skipping results in missing
information on the edges between two stops. For this kind of situation, the skipped stops are
merged with the closest upstream stops to them. The coordinate of the merged vertex is the
upstream vertex’s coordinate.

Through the four steps of data processing, the high-capacity unimodal PTNs are gener-
ated and saved as Python graph pickle format files. Networks saved in this format can be
topologically analysed by Python packages iGraph (Csardi and Nepusz, 2006).

4.2. PTN hierarchy in dimensions of topological indicators
In the section, the 63 high-capacity unimodal PTNs worldwide are compared and quantified
in terms of hierarchy with the selected topological indicators. The similarities and differences
between the PTN hierarchy in the six dimensions of topological indicators are discussed.
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4.2.1. Vertex degree dimension
Vertex degree denotes the number of connections of a vertex. The R square values in the
vertex degree dimension quantify the degrees of the PTNs’ scale-free network structure and
denote the PTN hierarchy. The histogram and scattered box plot presented in Figure 4.5
shows the distribution of the R square values of the high-capacity PTNs in the database.
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Figure 4.5: Distribution of R square values in the vertex degree dimension

According to the plots and statistics, the range of the R square in the vertex degree di-
mension is from 0.124 to 0.912. The majority of the R square values are located in the range
from 0.25 to 0.45. There are 66.7% of PTNs in the database distributed over a quarter of the
value range. The mean value and median values are 0.386 and 0.373. The R square val-
ues of PTNs show a right-skewed distribution, and more PTNs tend to have a relatively low R
square value. The R square value distribution of the 64 PTNs shows that scale-free structures
are not common for PTNs. More PTNs in the database tend to have insignificant scale-free
structures.

The reasons that result in the right-skewed distributed R square values are the majority of
low-degree vertices and the lack of high-degree vertices in most PTNs. These reasons make
the heterogeneity of low-degree vertices low, and the numbers of vertices in the histogram
do not gradually decrease when the degree increases. As examples, PDFs with the fitted
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skewed normal distribution curves of three PTNs are shown in Figure 4.6. They are the BRT
network in Kansas (US), the tram network in Den Haag (Netherlands) and the metro network
in Santiago (Chile). The three PTNs are representative of the PTNs with low, medium and
high R square values in the case study database, whose R square values are 0.129, 0.364
and 0.717, respectively.
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(b) Tram, Den Haag (Netherlands)
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(c) Metro, Santiago (Chile)

Figure 4.6: Vertex degree PDFs with fitted skewed normal distribution curves

In the three plots shown in Figure 4.6, the probability densities of the second lowest vertex
degrees are the largest. The differences between the three PDFs are the largest probability
density and the highest degree. In the plot of the Kansas BRT network, the vertices with low
and medium degrees are the vast majority. In contrast, the vertices with high degrees are
few, and thus the curve’s goodness of fit is poor. In the plot of the Den Haag tram network,
although the majority of the vertices have low degrees, there are a few vertices having medium
and high degrees, the decrease of the probability density is smoother than in the plot of the
Kansas BRT, and the curve has better goodness of fit. As for the Santiago metro network, the
proportion of the low-degree vertices is lower than in the other two PTNs. Besides, there are
more vertices with medium and high degrees, and the probability densities of vertex degrees
are gradually decreased. The curve’s goodness of fit is high in the Santiago metro network.

Through the analysis of the maps of PTNs, the majority of low-degree vertices and the lack
of high-degree vertices are related to the large proportion of linear network segments and the
lack of the high-degree transfer stop in the PTNs. The maps of the three PTNs samples are
provided in Figure 4.7 for illustration.

In maps, the proportions of vertices on the linear network segments are different. The
vertices on the linear network segments have two adjacent connected vertices, embodied as
the vertices in the second lowest histogram bins, whose degrees are higher than the dead
ends of networks. In the maps of the Kansas BRT network and the Den Haag tram network,
most of the stops are located on the linear network segments connecting the city centre and
the suburban areas. As for the map of the Santiago metro network, the stops located on
linear network segments are fewer. The stops in the Santiago metro network are not only
sequentially connected but can also connect with non-adjacent stops, reducing the number
and length of linear network segments. Another difference is the number of stops having high
vertex degrees. In the Kansas BRT network, only a small number of stops have high degrees
in the central areas. The Den Haag tram network has more high-degree vertices, and a few
transfer stops for multiple lines have higher degrees. In the Santiago metro network, the
connections between non-adjacent vertices increase the connections of stops, having more
high-degree stops.
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(a) BRT, Kansas (US) (b) Tram, Den Haag (Netherlands) (c) Metro, Santiago (Chile)

Figure 4.7: Maps of example PTNs for comparison in the vertex degree dimension

4.2.2. Closeness centrality dimension
The closeness centrality of vertices denotes the vertices’ accessibility. In the closeness cen-
trality dimension, the R square values quantify the degree of vertices following the hierarchical
organisation by accessibility and indicate the PTN hierarchy. For the investigation of the R
square value distribution, the histogram for positive R square values, and the scattered box
plot are presented as Figure 4.8.

According to the plots and the statistics, the R square values in the closeness centrality
dimension have a wide distribution range, from -1.940 to 0.948. The median and average R
square values for the database are 0.564 and 0.321, and the distribution shows a significant
left-skewed distribution, with more PTNs prone to have a high hierarchy. Among the PTNs in
the case study database, 15 PTNs (23.81%) have negative R square values and low hierarchy,
taking up nearly one-quarter of PTNs in the database. Over half of the studied PTNs have
R square values spread over the range from 0.5 to 0.95. The numbers of PTNs increase
roughly as the R square values of histogram bins increase. According to the R square value
distribution, more PTNs tend to have a hierarchical organisation of stops in terms of their
accessibility.

The reasons that result in the difference in R square values of PTNs are the number of ver-
tices with different closeness centrality and the heterogeneity of vertices’ closeness centrality.
In a PTN having similar numbers of vertices with different closeness centrality, the number
of bins in the PDF of closeness centrality is small and the shape of the PDF is flat. The flat
PDF cannot meet the gradually decreased number of vertices when the closeness centrality
increases, thus the skewed normal distribution curve’s goodness of fit is not good and the R
square value is low. As examples, in Figure 4.9, three closeness centrality PDFs with the fitted
skewed normal distribution curves of PTNs are shown: the Philadelphia metro network in the
US, the Nuremberg metro network in Germany and the Rotterdam tram network. The three
PTNs represent the low, medium and high values of R square values in the database, whose
R square values are -1.940, 0.564 and 0.948, respectively.

In the three PDFs of vertices’ closeness centrality, the goodness of fit of the fitted skewed
normal distribution curves increases from the Philadelphia metro network to the Rotterdam
tram network. The PDF of the Philadelphia metro network contains four bins of closeness
centrality values. The probability densities of the bins with high and low closeness central-
ity values are similar and do not gradually decrease. The fitted skewed normal distribution
curve cannot fit the flat PDF, having worse goodness of fit than the horizontal average value
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Figure 4.8: Distribution of R square values in the closeness centrality dimension
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(a) Metro, Philadelphia (US)
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Figure 4.9: Closeness centrality PDFs with fitted skewed normal distribution curves

line of the probability densities. Thus, the R square value of the Philadelphia metro network
is negative, showing no PTN hierarchy. In the PDF of the Nuremberg metro network, the
heterogeneity of the probability densities of closeness centrality values is not high enough.
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In addition, in the PDF of the Rotterdam tram network, there are seven closeness centrality
values, and the differences between the probability densities of closeness centrality values
are apparent. More vertices in the PTN have low and medium closeness centrality, and the
number of high closeness centrality vertices gradually decreases with the indicator increase.
Thus, the goodness of fit of the skewed normal distribution curve is high, and the Rotterdam
tram network has a high R square value and a high PTN hierarchy.

By analysing the PTN element organisations in the maps of PTNs, the heterogeneity of
vertices’ closeness centrality is related to the number of high-degree transfer stops and the
proportion of vertices on the linear network segments starting from the dead ends of the net-
work. In Figure 4.10, the maps of the three sample PTNs are provided for illustration.

(a) Metro, Philadelphia (US) (b) Metro, Nuremberg (Germany) (c) Tram, Rotterdam (Netherlands)

Figure 4.10: Maps of example PTNs for comparison in the closeness centrality dimension

The vertices on the linear network segments starting from the dead ends have the lowest
accessibility in the network. The vertices on the same linear network segment have similar
closeness centrality. The closeness centrality noticeably changes at the high-degree ends of
the linear network segments (see Section 3.3.3). Therefore, more high-degree transfer stops
and a modest proportion of vertices on the dead-end started linear network segments result
in high heterogeneity of vertices’ closeness centrality. In the metro network of Philadelphia,
most of the vertices are located on the dead-end-started linear network segments. The metro
lines only cross three times in the central areas. Besides, the Nuremberg metro network has
a lower proportion of vertices on the dead-end started linear network segments than Philadel-
phia’s. The metro lines have more crossings in the central areas. As for the tram network in
Rotterdam, the vertices on the dead-end-started linear network segments are lower than the
other two PTNs, and the tram lines have many crossings in the network. The R square values
of the three PTNs compliance the analysis of the PTN element organisations.

4.2.3. Betweenness centrality dimension
The betweenness centrality of a vertex denotes its intermediacy and can reflect the interme-
diacy of the linear network segment it locates. In the betweenness centrality dimension, the
R square values indicate the degree of the hierarchical organisation of vertices or linear net-
work segments by their intermediacy. In Figure 4.11, the histogram and box plot of the R
square values of the high-capacity unimodal PTNs in the case study database is presented
for distribution analysis.

According to the plots and statistics, the range of the R square values is from 0.57 to 0.99.
The median and average R square values of PTNs are 0.886 and 0.866. The R square values
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Figure 4.11: Distribution of R square values in the betweenness centrality dimension

show a left-skewed distribution, indicating the majority of PTNs are prone to have a high R
square value in the betweenness centrality dimension. The density of scatters in the box plot
witnesses an increasing trend with the R square values increase. There are 48 PTNs having R
square values over 0.8, taking up 76.2%, over three-quarters of the PTNs in the database. In
a word, more assessed PTNs tend to have a relatively high hierarchy in the betweenness cen-
trality dimension, indicating the network elements follow a hierarchical organisation in terms
of traffic load intermediacy in these PTNs.

The reason resulting in the R square value differences is the probability gaps between be-
tweenness centrality values. For instance, the three sample PTNs have relatively low, medium
and high R squares in the betweenness centrality dimension: the Berlin tram network (0.573),
the Dallas tram network (0.884) and the Milan metro network (0.991). The PDFs with the fit-
ted skewed normal distribution curves in Figure 4.12 can show the reason that makes their R
square values different.

In the three PDFs of different R square values, the shapes of the PDFs are similar. The
probability densities of the leftmost betweenness centrality are the highest, and the probability
densities decrease with the betweenness centrality increases. The differences between the
PDFs are the probability density gaps between the adjacent points in each PDF. In the PDF of
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(a) Tram, Berlin (Germany)
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(b) Tram, Dallas (US)
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(c) Metro, Milan(Italy)

Figure 4.12: Betweenness centrality PDFs with fitted skewed normal distribution curves

the Berlin tram network, the probability density gaps are not smoothly changed. The excessive
leftmost probability density result in a big gap to points on the right. Besides, the probability
density of the second rightmost betweenness centrality has a slight increase, breaking the
trend of decreasing with the betweenness centrality increase. Thus, the curve’s goodness of
fit in the Berlin tram network is relatively low. The Dallas tram network has a better goodness
of fit for the skewed normal distribution curve than Berlin. However, the probability density of
the second leftmost point is not large enough, having a large gap to the leftmost point, and
a small gap to the point on the right. The curve’s goodness of fit is high but lower than the
Milan metro network. In the PDF of the Milan metro network, the probability densities are
gradually decreased, the probability density gaps between points are smoothly decreased,
and the goodness of fit is high.

In themaps of PTNs, the reasons that trigger the probability density gaps between adjacent
points in PDFs are mainly embodied in the large numbers of dead ends or the long linear
segments in the network. The maps of the three sample PTNs are presented in Figure 4.13
as examples.

(a) Tram, Berlin (Germany) (b) Tram, Dallas (US) (c) Metro, Milan(Italy)

Figure 4.13: Maps of example PTNs for comparison in the betweenness centrality dimension

In Section 3.3.4, the betweenness centrality change patterns on linear network segments
are discussed. The dead ends of a PTN are not part of any shortest path between other pairs of
vertices in the network, and their betweenness centrality is 0, having the lowest betweenness
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centrality in the PTN. So if a PTN has a large number of dead ends in the network, the number
of vertices with low betweenness centrality will be large and result in the high leftmost bins in
the PDF. Besides, the betweenness centrality values of vertices on the same linear segment
are similar and slightly increase when closer to the endpoints with more connections. The
long linear network segments make the probability density of betweenness centrality similar,
and cannot smoothly decrease in the PDF. In the map of the Berlin tram network, there are
a large number of dead ends, so the number of vertices with low betweenness centrality is
large, resulting in the leftmost bins in the PDF being high. In addition, the number of vertices
on the linear network segments connecting the central areas with the southeast Köpenick
area is large, resulting in small gaps between the probability density of the medium and high
betweenness centrality and relatively medium hierarchy. By contrast, the maps of the Dal-
las tram network and the Milan metro network do not have many dead-ends and long linear
network segments, and their PTN hierarchy is relatively high.

4.2.4. Eigenvector centrality dimension
The eigenvector centrality denotes the importance of a vertex by the importance of its connect-
ing vertices and the importance of the vertex cluster consisting of the vertex and the connecting
vertices. The R square values in the eigenvector centrality dimension quantify the degree of
hierarchical organisation of vertex clusters in a PTN by their importance. To investigate the
distribution of the R square values of the PTNs in the case study database, the histogram and
box plots are presented as Figure 4.14.

The range of R square values is from 0.379 to 0.955. The median and average values are
0.700 and 0.685. The R square values show a slightly left-skewed distribution. The majority of
the PTNs have R square values from 0.5 to 0.8, concentrated in the middle right of the value
range. The distribution of R square values shows around half of PTNs in the database tend
to show a hierarchical organisation of vertex clusters based on their importance and show
mono-centric network structures.

The reasons that result in the differences in R square values in the eigenvector centrality
dimension are the number of bins in the histograms and the proportion of vertices having low
eigenvector centrality. As examples for interpretation, the PDFs with the fitted skewed normal
distribution curves of three PTNs with low, medium and high R square values of the database
are presented in Figure 4.15. The three PTNs are the tram network of Melbourne, Australia
(0.379), the BRT network of Seattle, the USA (0.700) and the metro network of Lyon (0.955).

The method used to determine the bin width for the PDF is Scott’s rule (see Section 3.3.1),
which is influenced by the standard deviation and the size of the data. If the number of vertices
in the PTN is large and the eigenvector centrality values of vertices have a small standard de-
viation, the bin width of the PDF would be small, and the number of bins in the PDF would
be large. Therefore, the number of bins in the PDF denotes the standard deviation of data,
and the heterogeneity of the eigenvector centrality. If the number of bins in the PDF is very
large, the heterogeneity of eigenvector centrality in the PTN is low, resulting in a low R square
value. In the three PDFs, the number of bins for the eigenvector centrality values is different,
in which the number of bins in the PDF of the Melbourne tram network is significantly higher
than the other two PTNs. In the PDF of the Melbourne tram network, the number of bins is
large, and the probability density of most points is low, but the point with the lowest eigenvector
centrality value has a high probability density. In the Melbourne tram network, the number of
high-degree vertices is large and their distribution is wide, resulting in the eigenvector central-
ity of vertices being various, but no vertex shows significant importance. Thus, for the vertex
clusters consisting of a vertex and all its connecting vertices, most of their importance is low
and lacks heterogeneity. In contrast, in the PTNs with a few and concentrated high-degree
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Figure 4.14: Distribution of R square values in the eigenvector centrality dimension
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Figure 4.15: Eigenvector centrality PDFs with fitted skewed normal distribution curves
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vertices, the number of bins for eigenvector centrality values is small. The high-degree ver-
tices and their connecting vertices have high importance. For example, in the Lyon metro
network, the high-degree vertices are concentrated and form a ring. The vertices on the ring
can be adjacent to multiple high-degree vertices, having significant high eigenvector centrality
values. Another difference between the PDFs is the number of vertices with low eigenvector
centrality. In the PDFs of the Melbourne tram network and Seattle BRT network, the propor-
tions of the vertices in the leftmost point of PDFs are high, and the vertices with medium and
high eigenvector centrality are few. The excessive number of vertices with low eigenvector
centrality makes the probability density of the leftmost bin high and results in low goodness
of fit of the skewed normal distribution curves. Compared to the other two PTNs, the PDF of
the Lyon metro network have a small number of bins, a modest number of vertices with low
eigenvector centrality, and vertices with medium and high eigenvector centrality. The hetero-
geneity of vertices’ eigenvector centrality is high, the curve’s high goodness of fit and thus the
high R square value.

Reflected on the maps of PTNs, the high R square values in the eigenvector centrality
dimension are related to the vertex organisation having a small number of concentrated high-
degree vertices. The maps and zoomed-in maps of the three sample PTNs are provided in
Figure 4.16 for illustration.

(a) Tram, Melbourne (Australia) (b) BRT, Seattle (US) (c) Metro, Lyon (France)

(d) Tram, Melbourne (Zoomed in) (e) BRT, Seattle (Zoomed in) (f) Metro, Lyon (Zoomed in)

Figure 4.16: Maps of example PTNs for comparison in the eigenvector centrality dimension

In the maps of the three PTNs, the numbers of the high-degree transfer stop decrease,
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and the distributions are more concentrated with the R square values increase. In the map
of the Melbourne tram network, the tram lines have multiple crossings in central areas and
suburban areas. The high-degree transfer stops are distributed over a wide area of the whole
network. In the BRT network in Seattle, the BRT lines extend in three directions, and the
crossings of lines form several high-degree transfer stops in the city’s central area. As for the
Lyon metro network, the high-degree transfer stops form a ring and connect each other by
a small number of vertices, which have a concentrated distribution in the city’s central area,
showing a mono-centric network structure. The stops connecting with the high-degree stops
have high eigenvector centrality. Thus, a small number and concentrated high-degree vertices
are assigned with higher eigenvector centrality values for their higher importance than other
vertices. By contrast, the large number and widely distributed high-degree vertices make
the vertex clusters centred with these high-degree vertices have similar importance, and the
heterogeneity is reduced. The importance of the vertex clusters centred on these important
vertices is significantly higher than other vertex clusters, forming the heterogeneity in the vertex
clusters’ importance and further resulting in high R square values.

4.2.5. Network modularity dimension
The network optimal modularity coefficient quantifies the degree of a PTN having a high-
clustering structure, where the network has a higher potential to be divided into vertex clus-
ters with high intra-similarity and low inter-similarity. The high optimal modularity coefficient
of a PTN indicates the high degree of the PTN’s structure being high-clustering. Figure 4.17
presents the histogram and the box plot of the PTNs’ optimal modularity coefficients.

In the histogram of the optimal modularity coefficients, the distribution range is from 0.621
to 0.898. The median and average optimal modularity coefficients are 0.775 and 0.770, in-
dicating a slightly left-skewed normal distribution. Nearly half of the PTNs in the database
tend to have a relatively high hierarchy. In the box plot, most PTNs have optimal modularity
values between 0.70 to 0.85, taking up around 79.4% of the PTNs in the case study. The
distribution of optimal modularity coefficients shows that over half of the PTNs in the database
show a relatively high hierarchy, indicating a high-clustering network structure and presenting
multi-centric network structures.

According to the definition of the modularity coefficient, the optimal modularity coefficient
is reached when the connections within vertex clusters are more than the connections with
vertices outside the clusters. In other words, these clusters are formed around the vertices
with the local most connections, i.e. the high-degree vertices. The number of high-degree
vertices in a PTN affects the potential of forming the high intra-similarity and inter-difference
clusters and influences its optimal modularity coefficient. As examples, the vertex degree
histogram and the visualised vertex clusters with optimal modularity coefficients of three PTNs
are respectively presented in Figure 4.18 and Figure 4.19. The three sample PTNs are the
metro network of Marseilles, the metro network of Vienna and the tram network in Melbourne,
Australia, having optimal modularity coefficients equal to 0.621 (low), 0.777 (medium) and
0.898 (high).

In the vertex degree histograms of the three PTNs, the Marseilles metro network has the
minimum high-degree vertices among the three PTNs, with only two high-degree vertices. The
number of high-degree vertices in the Vienna metro network is more than in Marseilles, having
ten high-degree vertices. As for the Melbourne tram network, there are seventy-six high-
degree vertices in the network. Since the optimal modularity coefficient is related to the local
high-degree vertices, the more and wider distributed high-degree vertices result in a higher
potential of forming clusters with high intra-similarity and inter-difference. The visualised vertex
clusters with optimal modularity coefficients can also reflect this relation between the numbers
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Figure 4.17: Distribution of optimal modularity coefficients in the network modularity dimension
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(c) Tram, Melbourne (Australia)

Figure 4.18: Degree histograms of the example PTNs for the comparison of optimal modularity coefficients

of high-degree vertices with optimal modularity coefficients. In Figure 4.19, the vertices with
the same colours are in the same clusters and the arrows indicate the connections between
vertices. It can be seen that the vertices around high-degree vertices are grouped in the same
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clusters. The more high-degree vertices in the PTNs, the number of vertex clusters formed
are higher.

(a) Metro, Marseilles (France) (b) Metro, Vienna (Austria) (c) Tram, Melbourne (Australia)

Figure 4.19: Visualised clusters of the example PTNs with optimal modularity coefficients

(a) Metro, Marseilles (France) (b) Metro, Vienna (Austria) (c) Tram, Melbourne (Australia)

(d) Metro, Marseilles
(Zoomed-in)

(e) Metro, Vienna (Zoomed-in) (f) Tram, Melbourne (Zoomed-in)

Figure 4.20: Maps of example PTNs for comparison in the network modularity dimension

The differences in optimal modularity coefficients can be reflected in the numbers of trans-
fer stops and their distribution ranges inmaps. In a PTNwith a large number of wide-distributed
high-degree vertices, there is no clear centre of the network, and the PTN shows amulti-centric
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structure. The maps of the three sample PTNs are presented in Figure 4.20 for illustration.
In the map and zoomed-in map of the Marseilles metro network, the two high-degree vertices
and the vertices in between formed a clear centre of the network, and the metro lines are
extended from the centre. In the maps of the Vienna metro network, the high-vertices stops
are distributed in a wider range of the network. The metro lines have more crossings in the
centre areas of the city, but the stops of the network are not concentrated in a small area
and the centre of the network is unclear. As for the Melbourne tram network, the number of
high-degree stops is large. The high-degree stops are distributed over the network, not only
in the downtown area of Melbourne but also on the north and east sides of the city. There is
no clear centre of the network, and the structure of the tram network is multi-centric.

4.2.6. Network assortativity dimension
The assortativity coefficient quantifies the extent of the vertex connections in a PTN following a
unified pattern, with which high-degree vertices connect high-degree vertices, and low-degree
vertices connect low-degree vertices. The closer an assortativity coefficient to 1, the higher
extent of vertex connections in the PTN following the pattern, indicating higher PTN hierar-
chy in the dimension. Figure 4.21 presents the histogram and the box plot of assortativity
coefficients of the high-capacity unimodal PTNs in the case study database.

The values of the assortativity coefficients range from -0.184 to 0.551. One-third of the
PTNs in the database have negative assortativity coefficients. The median and average as-
sortativity coefficients are 0.041 and 0.066, showing a right-skewed distribution, with more
PTNs having relatively low assortativity coefficients. According to the box plot, most of the
PTNs have coefficients from -0.1 to 0.2, taking up 74.6% of PTNs in the database. According
to the distribution of the assortativity coefficients, more PTNs in the database tend to have a
low hierarchy in the network assortativity, presenting insignificant vertex connection patterns
by vertex degrees and core/periphery network shapes.

From the perspective of the organisation of PTN elements, the reasons resulting in the
majority of PTNs tending to have a low hierarchy in the dimension are the lack of both high-
degree and low-degree stops and the infeasible continuous connections between high-degree
stops. It has also been found that public transport operating with different stop spacing on
the same infrastructure can increase the assortativity coefficient. Three PTNs are presented
as examples for interpreting the findings: the metro network of Vancouver (Canada), the tram
network of Amsterdam (Netherlands) and the BRT network of Cleveland (US). The three PTNs
have assortativity coefficients equal to -0.184, 0.070 and 0.551, respectively. The histograms
of vertex degree are presented in Figure 4.22, and their maps and zoomed-in maps of the
three PTNs are presented in Figure 4.23.

According to the vertex degree histograms of the three PTNs, either the high-degree or
low-degree vertices take up a small proportion of the vertices in the network. As discussed in
Section 4.2.1, the variety of the vertex degree in high-capacity unimodal PTNs is limited, and
the high-degree stops with multiple connections are hard to achieve. By contrast, the majority
of vertices are on the linear network segments with two adjacent connections, their degree
neither low nor high. The connections between the vertices on the linear network segments
have less contribution to the assortativity coefficient. For example, in the Vancouver metro
network, only five high-degree transfer stops in the network.

Another reason for the low assortativity coefficient is the connection between low and low-
degree vertices and high and high-degree vertices are infeasible. The low-degree vertices
in PTNs are the dead ends of the network, with only one connected vertex. The connection
between low-degree vertices will increase their degree. As for the connections between high-
degree vertices, the connections between two transfer stops are unusual, and cannot form a



4.2. PTN hierarchy in dimensions of topological indicators 43

0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
Assortativity coefficient

0

2

4

6

8

10

12

14

16

18

C
ou

nt

(a) Histogram

0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5
Assortativity coefficient

(b) Scattered box plot

Figure 4.21: Distribution of assortativity coefficients in the network assortativity dimension

0.050 0.075 0.100 0.125 0.150
Normalised vertex degree

0

10

20

30

40

Pr
ob

ab
ilit

y 
de

ns
ity

(a) Metro, Vancouver (Canada)
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(c) BRT, Cleveland (US)

Figure 4.22: Degree histograms of the example PTNs for the comparison of assortativity coefficients

unified pattern, especially for the metro stops. Transfer stops of multiple lines need more land
use for the infrastructures than normal stops or transfer stops for two lines (Chen et al., 2022a).
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(a) Metro, Vancouver (Canada) (b) Tram, Amsterdam
(Netherlands)

(c) BRT, Cleveland (US)

(d) Metro, Vancouver (Zoomed-in) (e) Tram, Amsterdam (Zoomed-in) (f) BRT, Cleveland (Zoomed-in)

Figure 4.23: Maps of example PTNs for comparison in the network assortativity dimension

The land use limits many direct connections between multiple-line transfer stops and cannot
form a connection pattern. In the map of the Amsterdam tram network, the tram lines cross in
the city’s central areas. Some high-degree transfer stops are connected, which increases the
assortativity coefficient value but cannot show a unified connection pattern.

Other than the reasons reducing the assortativity coefficient, it has been found that when
public transport operates with different stop spacing on the same infrastructure, the assorta-
tivity coefficient increases. For example, in the Cleveland BRT network, many vertices are
located on the linear network segments connecting the central areas with suburbs. However,
the number of high-degree vertices is not small. In Figure 4.22(c), two bins of vertex degree
have a high probability density, which is because of the flexible stop spacing during the oper-
ation. In the operation of some BRT networks, the stopping strategy is flexible. The drivers
don’t need to follow the map and stop at every stop strictly. Flexible changing the stop spac-
ing is possible due to the passenger demand for getting on and off. This stopping strategy
results in non-adjacent stops being connected, and increase their vertex degrees. Plus the
original connections following the operating map, the connections between high-degree ver-
tices increase. For instance, in Figure 4.23(f), the three stops around Rocky River have higher
vertex degrees and connect each other. The organisation of vertices like this is common in
the Cleveland BRT network, which makes the high-degree vertices have more connections
with high-degree vertices and increases the assortativity coefficient. For the same reason,
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the lines with different stop spacing operating on the same infrastructure, like the Santiago
metro network in Figure 4.7(c), also have positive effects on the assortativity coefficient value.

4.2.7. Discussion
The above six dimensions evaluate the organisation of the PTN elements from different per-
spectives to quantify and compare the hierarchy. The discussion about the similarities and
differences between the normalised indicators of the six dimensions helps to have an effec-
tive and comprehensive utilisation of the methodology.

Figure 4.24 offers an overview comparison of the distribution of the normalised six indica-
tors. To ensure the comparison are meaningful, PTN hierarchy indicators in all six dimensions
are scaled to the range from 0 to 1, whose method is introduced in Section 3.5. The ranges
of x-axes are set from 0 to 1, and the y-axes ranges are set from 0 to 28.
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Figure 4.24: Histograms of normalised topological indicators in the six dimensions

In the plots, the R square values in the vertex degree dimension and the assortativity
coefficients both show right-skewed distributions around 0. More PTNs in the database have
a low hierarchy. As for the closeness centrality and betweenness centrality dimensions, the
R square values are left-skewed distributed, and more PTNs in the database have a high
hierarchy. In the eigenvector centrality and the network modularity dimensions, the indicator
values both show approximate normal distributions. The similarities and differences between
the three pairs of PTN hierarchy dimensions are discussed as follows.

Vertex degree & network assortativity dimensions The PTN hierarchy in the vertex de-
gree and network assortativity dimensions are both prone to be relatively low. The reasons
that result in the relatively low hierarchy are similar, which are the excessive low-degree ver-
tices and rare high-degree vertices in the PTNs. These reasons result in the heterogeneity of
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the vertices’ importance being low, and no significant vertex connection pattern in PTNs. In
hierarchy-related research in other fields, high-hierarchy networks are usually associated with
scale-free network structures. By contrast, the results of the case study show that scale-free
network structures are not common in PTNs.

However, the generally low PTN hierarchy in the two dimensions does not mean the topo-
logical indicators are not capable of the PTN hierarchy comparison and quantification. The
topological indicator values in the two dimensions are distinguishable for PTN hierarchy com-
parison.

Closeness centrality & betweenness centrality dimensions Themajority of the assessed
PTNs are prone to have a high hierarchy in both the closeness centrality and betweenness
centrality dimensions. The closeness centrality and betweenness centrality are both based
on the shortest paths between vertex pairs. The PTN hierarchy in the closeness centrality
dimension reflects the network element organisation from the perspective of accessing stops.
For example, if a PTN has a high hierarchy in the closeness centrality dimensions, there
are stops with different levels of accessibility distributed in the network, so the destinations
can be reached with less detouring by passing through the stops with different closeness
centrality. The PTN hierarchy in the betweenness centrality dimension reflects the network
element organisation from the perspective of the intermediacy and loads on infrastructures.
For instance, in a PTN with a high hierarchy in the betweenness centrality dimension, the
infrastructures with high intermediacy takemore load. The PTNs in the case study tend to have
a high hierarchy in the two dimensions for two reasons, the heterogeneity of the elements’
importance and the gradually changing probability density of different importance in PDFs,
which ensure the high goodness of fit for the fitted skewed-normal distribution curves.

Eigenvector centrality & network modularity dimensions Around half of the PTNs in the
database have a relatively high hierarchy in both eigenvector centrality and network modularity
dimensions. The distributions of the PTN hierarchy in the two dimensions are both concen-
trated in the middle of the histograms, showing approximate normal distributions. The PTN
hierarchy in both two dimensions is related to the number of high-degree vertices and their
concentration, but the relations are opposite. The PTN hierarchy in the eigenvector centrality
dimension is high when the PTN has a small number and concentrated high-degree vertices.
By contrast, the high PTN hierarchy in the network modularity dimension is related to the large
number and widely distributed high-degree vertices. Moreover, the PTN hierarchy in the two
dimensions is found to have a negative linear relation. Figure 4.25 presents the scatter plot
for the PTN hierarchy in the two dimensions with the regression line. The R square value of
fitting is 0.832, indicating the negative linear relation is credible.

The PTN hierarchy in the eigenvector centrality dimension is more suitable for evaluat-
ing the mono-centric PTNs, while the network modularity dimension reflects the multi-centric
PTNs’ hierarchy better. The two dimensions complement each other in the application objects.

Evaluation and comparison With the radar chart representation, the PTN hierarchy can be
comprehensively evaluated and compared from six perspectives (see Section 3.5). Taking the
comparison between the Bogota BRT network and the Atlanta metro network as an example,
Figure 4.26 presents the six-dimension radar chart of the two PTNs and the referencedmedian
PTN hierarchy of the case study database. The methods of using the radar chart for PTN
hierarchy evaluation and comparison are introduced as follows.

In Figure 4.26, the enclosed yellow and pink areas denote the six-dimension hierarchy of
the Bogota BRT network and the Atlanta metro network, respectively. Since the PTN hierarchy
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Figure 4.25: Scatter plot of eigenvector centrality R square and modularity coefficient with the fitted line
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Figure 4.26: PTN hierarchy comparison of the Bogota BRT network and the Atlanta metro network with six-
dimension radar chart

in each dimension is not evenly distributed, the median values represent the reference values
of the six-dimension PTN hierarchy, shown in the radar chart as the enclosed red lines.

According to the previous analysis of the PTN hierarchy in each dimension, it has been
found that differing from high-hierarchy networks in other fields, the scale-free network struc-
ture and the vertex connection pattern are insignificantly embodied in PTNs. Thus, in the
assessment of the six-dimension radar chart, the R square values and the assortativity coeffi-
cients are not used as the primary indicators. By contrast, the hierarchy in closeness centrality
and betweenness centrality dimensions has better effects. The PTN hierarchy is sufficiently
differentiated in both dimensions, and most PTNs in the database tend to have a relatively high
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hierarchy. The hierarchy in the two dimensions assesses the PTN element organisation from
the stop accessibility and the intermediacy of traffic load, which are important for passengers
and service providers in the PTN operation. As for the PTN hierarchy in eigenvector centrality
and network modularity dimensions, the distributions both show a nearly normal distribution,
indicating the mono-centric or multi-centric network structure of the PTN.

In the radar chart of the Bogota BRT network, the hierarchy in the closeness centrality and
betweenness centrality are both lower than the Atlanta metro network and the median PTN
hierarchy. The lower hierarchy in the two dimensions indicates that the Bogota BRT network
performs worse in the stop accessing and the traffic load intermediacy, and may affect the
network performance in the PTN operation, especially in stop accessibility for passengers.
In the eigenvector centrality and network modularity dimensions, both the two PTNs have a
relatively high hierarchy in the eigenvector centrality dimension and a relatively low hierarchy
in the network modularity dimension, presenting mono-centric network structures and having
important stop clusters concentrated in an area. Compared to the Atlanta metro network, the
Bogota BRT network has a less obvious mono-centric structure. As for the vertex degree
and network assortativity dimensions, the Bogota BRT network has a higher hierarchy in both
dimensions compared to the Atlanta metro network, showing a more significant scale-free
network structure and a stop connection pattern that high-degree stops connect with high-
degree stops.

Radar chart shape patterns By investigating the radar charts of the 63 PTNs in the database
(Figure 4.27), some PTNs show radar chart shape patterns, which indicates the similarity be-
tween PTNs. The following are two identified patterns for discussion.

Figure 4.28 shows a radar chart shape pattern in four PTNs, including metro networks of
Copenhagen, Kobe, Marseilles and Naples. The shapes of the four radar charts are mainly
distributed on the left sides. In the four radar charts, the PTN hierarchy is relatively high in
the closeness centrality, betweenness centrality and eigenvector centrality dimensions and
moderate in the vertex degree dimension. In the dimensions of network assortativity and
network modularity, the PTN hierarchy is relatively low, especially in the network modularity
dimension. This pattern of radar shapes indicates the four PTNs show hierarchical element
organisation in terms of stop accessibility and traffic flow intermediacy, which tend to have
good network performance during operation. The four PTNs also show relatively significant
mono-centric structures, having a few concentrated important vertex clusters in the central
area. The scale-free structures are modestly embodied in the four PTNs, while the vertex
connection patterns are relatively insignificant.

The maps of the four PTNs in Figure 4.29 confirm the assessment of the radar charts.
The ring structures in the networks enable hierarchical organisations of elements in terms of
stop accessibility and traffic flow intermediacy. The four PTNs show mono-centric structures.
The PTNs show modest scale-free network structures. Few direct connections between high-
degree stops, showing an insignificant vertex connection pattern.

Figure 4.30 shows three PTN hierarchy radar charts having another shape pattern, includ-
ing the Amsterdam tram network, the Hartford BRT network and the London metro network. In
the radar charts of the three PTNs, the PTN hierarchy in the closeness centrality and network
modularity dimensions is relatively high and moderate in the betweenness centrality dimen-
sion. In the vertex degree, network assortativity and eigenvector centrality dimensions, the
PTN hierarchy is relatively low. This radar chart shape pattern indicates that the three PTNs
have high hierarchical element organisations in terms of stop accessibility, and passengers
can access stops with less detouring. As far as traffic flow intermediacy, the three PTNs’ ele-
ment organisation is less hierarchical, which may be due to excessive low-intermediacy ele-
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Figure 4.27: Radar charts of all selected high-capacity unimodal PTNs
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Figure 4.28: Radar charts of PTNs with radar chart shape pattern 1

(a) Copenhagen (Metro) (b) Kobe (Metro)

(c) Marseilles (Metro) (d) Naples (Metro)

Figure 4.29: Maps of the PTNs with radar chart shape pattern 1

ments. The three PTNs have relatively significant multi-centric structures, and the high-degree
vertices are widely distributed. The scale-free structures and vertex connection patterns by
vertex degrees are also relatively less obvious.

Themaps of the three PTNs in Figure 4.31 confirm the assessment of the radar charts. The
transfer stops in the three PTNs are widely distributed, resulting in hierarchical organisations
of stops by their accessibility. The PTNs are high-clustering, and show multi-centric network
structures. Because of the relatively large number of dead ends, the low-intermediacy ele-
ments in the three PTNs are excessive, and the hierarchical structures in terms of traffic flow
intermediacy are less significant. Due to the long linear network segments, the three PTNs are
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Figure 4.30: Radar charts of PTNs with radar chart shape pattern 2

less scale-free. The small number of direct connections between high-degree vertices results
in insignificant vertex connection patterns in the PTNs.

(a) Amsterdam (Tram) (b) Hartford (BRT) (c) London (Metro)

Figure 4.31: Maps of the PTNs with radar chart shape pattern 2

4.3. Mode-wise comparison
In this study, three public transport modes are involved: the metro, tram and BRT. The pie
chart in Figure 4.32 shows the proportion of each mode. Among the 63 high-capacity unimodal
PTNs in the database, the metro networks take up over 50%, with 37 metro networks. The
number of tram networks is slightly larger than the BRT networks, with 15 tram networks and
11 BRT networks.

4.3.1. Mode-wise effects
In Figure 4.33(a), the six-dimension PTN hierarchy radar chart for the three high-capacity
modes is presented. Since the distributions of the PTN hierarchy indicators are uneven, the
median hierarchy in each dimension of each mode is selected for representation. The PTN
hierarchy in the six dimensions is scaled to the range from 0 to 1 in the radar chart. The scaled
median values of the PTN hierarchy in each dimension are listed in Table 4.33(b) as reference.

In the six-dimension radar chart, no mode has the highest hierarchy in all dimensions, and
the differences between modes are insignificant. Supported by Table 4.33(b), the order of
modes having a high PTN hierarchy in the overall six dimensions is metro, tram and BRT.
The metro networks have the highest median hierarchy in the dimensions of vertex degree,



52 4. Case Study

11

37

15

Modes of PTN
BRT
Metro
Tram

Figure 4.32: Pie chart of modes of the selected PTNs
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BRT 0.221 0.477 0.595 0.846 0.452 0.557
Metro 0.373 0.286 0.427 0.862 0.901 0.652
Tram 0.259 0.355 0.768 0.927 0.733 0.282

(b) Scaled median hierarchy

Figure 4.33: Mode-wise comparison of PTN hierarchy indicators

betweenness centrality and eigenvector centrality. The tram networks have themedian highest
PTN hierarchy in the closeness centrality and network modularity dimensions. In the network
assortativity dimension, the BRT networks have a higher median hierarchy than the other two
modes.
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4.3.2. Influencing factors
The three high-capacity modes have differences in multiple characteristics, such as the stop
and line spacing, stop facilities, operating speeds and stopping patterns. These factors have
effects on PTNs of modes and influence their hierarchy.

The first influencing factor is the stop spacing and line spacing of modes. According to
previous studies, the average stop spacing of metro networks is larger than the other two
modes. The average stop spacing of BRT networks usually ranges from 800 to 1600 metres
(Walker, 2012). For tram networks, the typical average stop spacing ranges from 400 to 1,500
meters. And the typical average stop spacing of metro networks is from 600 to 2,500 metres
(Kolks et al., 2003). The metro and BRT networks have a higher stop spacing and line spacing
than the tram networks (Walker, 2012).

Another influencing factor is the operating speed of modes. The typical operating speeds
of metro networks are 50 to 80 kilometres per hour (Feng et al., 2011). For tram networks, the
typical operating speed range from 20 to 25 kilometres per hour (Spårvagnsstäderna, 2023).
The typical operating speed of BRT networks is similar to tram networks, ranging from 23.8 to
24.8 kilometres per hour (Jain et al., 2022). The metro networks usually have higher operating
speeds than tram networks and BRT networks.

The third influencing factor is the facilities of the stops. Metro stops generally have larger
land use than the tram and BRT networks. The larger land use of metro stops enables metro
transfer stops can have more lines cross at the same stop (Walker, 2012).

The fourth influencing factor is called the flexible stopping pattern, which is observed in
the connected non-adjacent stops in the PTNs of the case study database. The reasons that
result in flexible stopping patterns are stop-skipping and the lines with different stop spacing
operating on the same infrastructures (Liu et al., 2013). The flexible stopping patterns are
more likely to occur in the BRT and metro networks.

4.3.3. Vertex degree dimension
In the scattered box plot in Figure 4.34, the metro networks generally have a higher hierarchy
than tram networks and BRT networks. The distribution of tram networks’ PTN hierarchy is
concentrated from 0.2 to 0.4. As for BRT networks, the variance between networks is high.
Although one BRT network has the highest vertex degree R square in the database, most of
the BRT networks have relatively low R square values.

0.0 0.2 0.4 0.6 0.8 1.0
R2 (Degree)

Tram

Metro

BRT

Figure 4.34: Mode-wise PTN hierarchy box plot in the vertex degree hierarchy dimension
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The low PTN hierarchy in the vertex degree dimension is related to the excessive low-
degree vertices and lack of high-degree vertices. Most of the low-degree vertices are the
vertices located on linear network segments, so PTNs with fewer vertices on linear network
segments have positive effects on hierarchy. On linear network segments with the same
length, the low-degree vertices in metro networks are fewer than in tram and BRT networks
for the larger stop spacing. Besides, the high-degree vertices are usually the transfer stops
for multiple lines. The larger land use of metro stops usually enables metro transfer stops to
have more lines cross at the same stop, resulting in more high-degree vertices. In the tram
and BRT networks, the numbers of lines crossing at the same stop are limited.

4.3.4. Closeness centrality dimension
Figure 4.35 presents the scattered box plots of the mode-wise R square values in the close-
ness centrality dimension. The order of modes by themedian R square values in the closeness
centrality dimension is tram, metro and BRT. The highest hierarchy of all modes is similar. The
distribution range of themetro networks is the largest among the threemodes, nearly two times
larger than tram networks’.

2.0 1.5 1.0 0.5 0.0 0.5 1.0
R2 (Closeness centrality)

Tram

Metro

BRT

Figure 4.35: Mode-wise PTN hierarchy box plot in the closeness centrality dimension

In some PTNs, the high stop and line spacing makes some metro and BRT networks less
likely to have connections between lines. In these PTNs, the metro and BRT lines only have
connections in the central areas. These connection vertices have high closeness centrality,
but the number of vertices with medium closeness centrality is few. Therefore, the number of
vertices does not gradually descend with the closeness centrality increase, and the R square
values of these PTNs are low or negative. By contrast, tram networks have small line spacing,
and are more likely to form connections between lines. So there are fewer tram networks with
relatively low R square values.

4.3.5. Betweenness centrality dimension
According to Figure 4.36, the order of modes having high median PTN hierarchy is metro, tram
and BRT. Most of the metro networks are concentrated in the range from 0.9 to 1.0, higher
than the other two modes. Compared to BRT networks, more tram networks have a higher
hierarchy.

The stop and line spacing have effects on the PTN hierarchy in the betweenness cen-
trality dimension. The betweenness centrality indicates the intermediacy of the elements in
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Figure 4.36: Mode-wise PTN hierarchy box plot in the betweenness centrality dimension

the PTNs. For the metro networks, the stop and line spacing is larger than the other two
modes, making the structures of the metro networks simple. The intermediacy of the net-
work elements is high in the central areas and gradually decreases in the suburbs. For the
tram networks, the stop and line spacing is smaller than the metro networks, and the density
of lines is higher, making the importance of network elements less concentrated and more
elements with low intermediacy. Differing from rail-bound networks, such as metro and tram
networks, BRT networks usually have fewer requirements on the infrastructure. The BRT lines
are relatively more independent and have fewer transfer stops to other lines, resulting in ex-
cessive low-intermediacy elements and relatively low hierarchy in the betweenness centrality
dimension.

4.3.6. Eigenvector centrality dimension
Based on the median R square values, The order of the modes having a high PTN hierarchy is
metro, BRT and tram. In Figure 4.37, metro networks tend to have a relatively high hierarchy,
and over a quarter of metro networks have a higher hierarchy than all tram and BRT networks.
The distribution ranges of tram and BRT networks are similar and smaller thanmetro networks.
Tram networks tend to have a relatively lower hierarchy than the other two modes.

The reasons for the PTN hierarchy differences between modes in the eigenvector cen-
trality dimension are related to stop spacing and line spacing. In metro networks, the large
stop and line spacing enables a small number of high-degree vertices in the central areas.
These vertices are concentrated and form a centre. So the metro networks are more likely to
be mono-centric and have a relatively high PTN hierarchy. For tram networks, the small line
and stop spacing result in the high-degree vertices being widely distributed. The tram net-
works usually do not perform mono-centric structures and tend to have a lower hierarchy. In
BRT networks, the distribution of high-degree vertices shows no pattern to be concentrated or
widely distributed, so the PTN hierarchy is relatively moderate. Besides, the operating speed
has effects on the PTN hierarchy. Since the weights of the edges are the inverse of the aver-
age travel time of the trips on the edges, the higher operating speed can reduce the average
travel times on the edges and increase the importance of the vertex clusters. The operating
speed of metro networks is the highest among the three modes, having positive effects on the
PTN hierarchy in the eigenvector centrality dimension.
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Figure 4.37: Mode-wise PTN hierarchy box plot in the eigenvector centrality dimension

4.3.7. Network modularity dimension
The order of modes having a high PTN hierarchy is tram, BRT and metro in the network mod-
ularity dimension. Figure 4.38 shows that tram networks tend to have a higher PTN hierarchy
than PTNs with the other two modes. The distribution ranges of the three modes are similar,
and the range of metro networks is slightly wider than the other two. BRT networks tend to
have a moderate PTN hierarchy between tram and metro networks. Around a quarter of metro
networks in the database have a lower hierarchy than all tram and BRT networks.
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Modularity coefficient
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Figure 4.38: Mode-wise PTN hierarchy box plot in the network modularity dimension

Opposite to the eigenvector centrality dimension, the small line and stop spacing increase
the PTN hierarchy and are more likely to form multi-centric structures. The optimal modularity
dimensions are more effective in evaluating multi-centric networks. Because of the small line
and stop spacing, the tram networks have large numbers of and widely distributed high-degree
vertices, showing high-clustering and multi-centric structures, so the tram networks have a
high PTN hierarchy. By contrast, not all metro networks are multi-centric, and some of them
have a small number of high-degree vertices concentrated. Additionally, the flexible stopping
patterns in some BRT networks result in a wider distribution of high-degree vertices and have
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positive effects on the PTN hierarchy in the network modularity dimension.

4.3.8. Network assortativity dimension
The order of modes having a high PTN hierarchy is BRT, tram and metro in the network as-
sortativity dimension. In the scattered box plot as Figure 4.39, the assortativity coefficient
values of BRT networks have the widest distribution range, from negative values to over 0.5.
Compared to tram networks, more metro networks have a lower hierarchy.
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Assortativity coefficient
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Figure 4.39: Mode-wise PTN hierarchy box plot in the network assortativity dimension

In PTNs, the high-degree transfer stops usually have a larger coverage of areas, so there is
no need to have multiple high-degree transfer stops directly connected. The larger coverage
of areas and land use for metro transfer stops reduce the possibility for metro networks to
have high-degree vertices connected with high-degree vertices patterns. In a PTN with a high
assortativity coefficient, the high-degree vertices are directly connected and form a connection
pattern. Moreover, the stopping patterns during operations have effects on the assortativity
coefficient. The flexible stopping pattern can increase the number of connected high-degree
transfer stops and increase the assortativity coefficients. These stopping patterns are more
likely to occur in the BRT networks, thus the distribution ranges of assortativity coefficients of
metro and BRT networks are wider than tram networks.

4.4. Continent-wise comparison
In the database of this case study, the high-capacity unimodal PTNs are distributed in six
continents: Africa, Asia, Europe, Oceania, North America, and South America. Figure 4.40(a)
shows the pie chart of the continents of high-capacity unimodal PTNs.

In the pie chart, PTNs from two continents occupy the majority of the proportion: North
America and Europe. They have 20 and 35 high-capacity unimodal PTNs each. By contrast,
the numbers of PTNs in other continents are too small to represent the continents and have
credible conclusions about the continent-wise effects. Thus, the continent-wise comparison
only considers the high-capacity unimodal PTN located in North America and Europe. The
nested pie chart in Figure 4.40(b) presents the mode compositions of the PTNs in North Amer-
ica and Europe, where the outer ring represents the proportion of continents, and the inner
ring represents the mode components of corresponding continents. PTNs in Europe consist
of 13 tram networks and 21 metro networks. Besides, 10 metro networks, 9 BRT networks
and a tram network consisting of the North American PTNs.
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Figure 4.40: Pie charts of continents and modes of the selected PTNs

4.4.1. Continient-wise effects
Figure 4.41(a) and Table 4.41(b) present the radar chart and the table of the median continent-
wise six-dimension PTN hierarchy. In the radar chart, the PTN hierarchy in the two continents
is similar in vertex degree and network assortativity dimensions. In the network modular-
ity, closeness centrality and betweenness centrality dimensions, the European PTNs have a
higher hierarchy than North American PTNs. North American PTNs have a higher hierarchy in
the eigenvector centrality dimension. In general, the European PTNs have a higher hierarchy
and a larger enclosed area by the indicator points than North American PTNs.

4.4.2. Box plots by dimensions
Box plots of continent-wise PTN hierarchy by the six dimensions are presented. Associated
with historical reasons, urban density, and public transport-related policies, a discussion about
the reasons that result in the continent-wise difference is proposed in Appendix B.

In Figure 4.42, the PTN hierarchy of the two continents has a strong similarity. The differ-
ences between the median values and the distribution range are small. Most PTNs in both
continents have a low hierarchy from 0.2 to 0.4.

In Figure 4.43, the median hierarchy of the European PTNs is higher than the North Amer-
ican PTNs. The majority of PTNs in the two continents have a medium and above hierarchy.
In addition, North American PTNs’ distribution range is larger than European PTNs and has
a higher proportion of negative values. The larger number of tram networks increases the
general PTN hierarchy in Europe, and the European networks tend to have a higher hierarchy
than North Americans.

In Figure 4.44, the hierarchy distribution ranges of the two continents are similar, both
from around 0.6 to 1.0. Most PTNs in these two continents show a high hierarchy in the
betweenness centrality dimension. Besides, most European PTNs have a hierarchy in the
range higher than 0.8, while the North American PTNs show less concentration. It has been
found previously that metro networks usually have a higher hierarchy in the betweenness
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Figure 4.41: Continent-wise comparison of PTN hierarchy indicators
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Figure 4.42: Continent-wise PTN hierarchy box plot in the vertex degree dimension

centrality dimension. Hence, the larger number of metro networks in Europe has positive
effects on the PTN hierarchy, resulting in European PTNs tending to have a higher hierarchy
than North Americans.

In Figure 4.45, the majority of PTNs in the two continents have a medium and above hi-
erarchy. Besides, the distribution range of European PTNs’ hierarchy is wider than the North
American PTNs. Most of the North American PTNs have a hierarchy in the range from 0.6
to 0.8, while the European PTNs’ hierarchy is evenly distributed from around 0.43 to 0.95.
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Figure 4.43: Continent-wise PTN hierarchy box plot in the closeness centrality dimension
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Figure 4.44: Continent-wise PTN hierarchy box plot in the betweenness centrality dimension
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Figure 4.45: Continent-wise PTN hierarchy box plot in the eigenvector centrality dimension

Previous findings show that metro networks tend to have a relatively high hierarchy, and tram
networks generally have a relatively low hierarchy in the eigenvector centrality. The larger
proportions of metro and tram PTNs result in a wider range of PTN hierarchy in Europe than
in North America.

In Figure 4.46, most of the PTNs in the two continents have a high hierarchy. The dis-
tribution range of North American PTNs’ hierarchy (around 0.70 to 0.85) is smaller than the
European PTNs (around 0.62 to 0.90). Similar to the eigenvector centrality dimensions, the
higher proportions of metro and tram networks in Europe enlarge its hierarchy distribution
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Figure 4.46: Continent-wise PTN hierarchy box plot in the network modularity dimension
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Figure 4.47: Continent-wise PTN hierarchy box plot in the network assortativity dimension

In Figure 4.47, the PTN hierarchy in the two continents is generally low, both concentrated
around 0. The lowest values of the two boxes are similar, around -0.2, but several North
American PTNs have a hierarchy higher than 0.3. The distribution range of the European
PTNs is smaller than the North American PTNs. Due to the more commonly flexible stop-
ping patterns, the BRT networks usually have a higher hierarchy in the network assortativity
dimension. Since no European BRT network is included in this study, the distribution range of
European PTNs is smaller than North Americans.

4.4.3. Discussion
In the continent-wise comparison, the modal composition of the two continents influences the
PTN hierarchy. Apart from metro networks, the number of European tram networks is larger
than in North America, and only North American BRT networks are included in the database.
For example, European PTNs in the study have a generally high hierarchy in the closeness
centrality dimension and a generally low hierarchy in the assortativity dimension. The results
of the continent-wise comparison confirm the previous assessment of the mode-wise effects
on PTN hierarchy.





5
Conclusion

This chapter presents the conclusions and recommendations based on the research con-
ducted. In Section 5.1, the key findings are summarized along with the answers to the research
questions. Section 5.2 and Section 5.3 outline the contributions and practical applications of
the research. Finally, in Section 5.4 and Section 5.5, the limitations and future work recom-
mendations are presented.

5.1. Key findings
This thesis presented an assessment of the hierarchy in high-capacity unimodal PTNs and
how modes of transport and geographical location might influence this hierarchy. With regard
to the organisation of network elements, the PTN hierarchy is defined as a network property. A
six-dimension topology-based quantification methodology is developed on both network and
element scales. A database that relies on GTFS data and contains the network topology in-
formation of 63 high-capacity unimodal PTNs worldwide is used as a case study. The PTN
hierarchy is interpreted and analysed along the dimensions of topological indicators. Further-
more, the effects of modes and continents are discussed by comparing the PTN hierarchy.

Through the research presented in this thesis, the proposed research questions are an-
swered. The following contents provide a summary of the answers to the sub-research ques-
tions.

1. What are the definition and the topological characteristics of the PTN hierarchy?
The PTN hierarchy is defined as a property of a PTN, indicating the organisation of
the elements in the PTN, where the number of elements gradually descends when the
importance increases, with very few elements of high importance and the majority of
elements in the network with low importance.
By reviewing and synthesising relevant literature, this research identified six topologi-
cal characteristics of the PTN hierarchy with two scales. There are three element-scale
characteristics, including accessibility, intermediacy, and clusters’ importance, and three
network-scale characteristics, including scale-free network structure, high-clustering net-
work structure, and vertex connection pattern.

2. What indicators can be used to quantify the network topology characteristics of PTN
hierarchy?
The PTN hierarchy quantification method uses six topological indicators in two types,
vertex-based and network-based.

63
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The vertex-based indicators include the vertex degree, closeness centrality, between-
ness centrality, and eigenvector centrality, which are used to quantify the scale-free
network structure, the vertex’s accessibility, the elements’ intermediacy, and the vertex
cluster’s importance, respectively. The goodness of fit indicator, R square value, be-
tween the indicators’ PDF and the regressed skewed normal curves quantify the PTN
hierarchy.

Apart from scale-free network structures using the vertex-based degree for hierarchy
quantification, other network-scale PTN hierarchy characteristics are quantified with network-
based indicators. The network-based indicators include the modularity coefficient and
assortativity coefficient, which represent the PTN hierarchy by quantifying the high-
clustering network structure and vertex connection pattern of PTNs.

Moreover, based on the normalised hierarchy in dimensions, six-dimension radar charts
comprehensively show the hierarchy of each PTN and enable visualised comparison.

3. Based on the selected indicators, how do the high-capacity unimodal PTNs worldwide
quantify and compare in terms of hierarchy?

According to the values of the selected indicators, the 63 high-capacity unimodal world-
wide PTNs’ hierarchy are evaluated in the six dimensions.

(a) Vertex degree dimension: The 𝑅2(𝐷𝑒𝑔𝑟𝑒𝑒) value distribution indicates a tendency
of PTNs to have a relatively low hierarchy. It appears that for most PTNs in the
study, the scale-free network structure is not significant. The excessive low-degree
vertices and the lack of high-degree vertices reduce the hierarchy.

(b) Closeness centrality dimension: The 𝑅2(𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠) value distribution indicates a
tendency towards a relatively high hierarchy of PTNs in the database, denoting hier-
archical organisations of stops in terms of their accessibility. The low heterogeneity
of vertex numbers with different closeness centrality can reduce the PTN hierarchy.

(c) Betweenness centrality dimension: The 𝑅2(𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠) value distribution indi-
cates a tendency towards a relatively high hierarchy of PTNs in the database, de-
noting hierarchical organisations of stops or links in terms of their intermediacy of
traffic load. The lack of elements with medium intermediacy can reduce the good-
ness of fit.

(d) Eigenvector centrality: The 𝑅2(𝐸𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟) values present a slightly left-skewed
distribution, indicating a similarity in the numbers of PTNs exhibiting relatively low
and high hierarchy. High PTN hierarchy is characterised by a hierarchical organisa-
tion of vertex clusters based on their importance and the presence of mono-centric
structures.

(e) Networkmodularity dimension: The optimal modularity coefficients present a slightly
left-skewed distribution, indicating a similarity in the numbers of PTNs exhibiting
relatively low and high hierarchy. Wide-distributed high-degree vertices and the
presence of multi-centric structures characterise high PTN hierarchy.

(f) Network assortativity dimension: The assortativity coefficient distribution indicates
a tendency towards a relatively low hierarchy, indicating the vertex connection pat-
terns with high-degree vertices connect to high-degree vertices are not significant in
most PTNs of the database. The small number of high-degree vertices and limited
direct connections between them reduce the coefficient values.



5.2. Contributions 65

According to the PTN hierarchy in the six dimensions, evaluations in the closeness cen-
trality and betweenness centrality dimensions hold a high priority across the six dimen-
sions. The hierarchy in these two dimensions evaluates the organisation of PTN ele-
ments from the perspectives of stop accessing and traffic flow intermediacy, which could
serve as important references for passengers and public service providers during PTN
operations. The hierarchy in the eigenvector centrality and network modularity dimen-
sions assesses the mono-centric and multi-centric structures, respectively. The hierar-
chy in the vertex degree and network assortativity dimensions is less apparent than in
the former four dimensions, because of the insignificant scale-free structures and vertex
connection patterns by degrees in PTNs of the database.

4. Based on high-capacity unimodal PTNs’ hierarchy, what are themode-wise and continent-
wise effects on PTN hierarchy?
The mode-wise effect analysis considers three high-capacity public transport modes,
the metro, tram and BRT. In continent-wise comparison, due to the limited data sizes of
PTNs in some continents, such as Asia and South America, only PTNs in Europe and
North America are included. The mode-wise and continent-wise effects are based on
the median PTN hierarchy in each of the six dimensions of modes and continents.
The order of modes having PTN hierarchy from high to low is metro, tram, and BRT. None
of the modes has the highest PTN hierarchy in all dimensions. Metro has the highest
PTN hierarchy in the dimensions of vertex degree, betweenness centrality and eigen-
vector centrality dimensions. Tram has the highest PTN hierarchy in the dimensions
of network modularity and closeness centrality. BRT has the highest PTN hierarchy in
the dimension of network assortativity. The PTN hierarchy is mainly influenced by stop
spacing and line spacing (vertex degree, closeness centrality, betweenness centrality,
eigenvector centrality and the network modularity dimensions), the stop infrastructure
(vertex degree, betweenness centrality and network assortativity dimensions), the oper-
ating speed (eigenvector centrality dimension) and stopping pattern (network modularity
dimension and network assortativity dimension). These influencing factors affect the
number of vertices in the PTNs, the number of connections between vertices and the
weights of edges, which affect the topology of PTNs in different modes, and cause the
mode-wise effects on the PTN hierarchy.
The European PTNs tend to have a higher hierarchy than North American PTNs. Neither
of the two continents has a higher PTN hierarchy in all dimensions. In the vertex degree
and network assortativity dimensions, the PTN hierarchy of the two continents is almost
the same. Europe has a higher PTN hierarchy in the dimensions of network modular-
ity, closeness centrality and betweenness centrality. North America has a higher PTN
hierarchy in the eigenvector centrality dimension. The continent-wise effects mainly re-
sult from the different modal compositions, especially the proportions of tram and BRT
networks in the two continents.

By answering the sub-research questions above, the main research question, “How to
quantify and compare unimodal PTN hierarchy?”, is answered.

5.2. Contributions
This research contributes to the field of PTN hierarchy comparison and quantification inmethod-
ology, GTFS data processing pipeline and results analysis.

This research develops a methodology for PTN hierarchy comparison and quantification.
First, a unified definition of the PTN hierarchy is established. In this definition, the PTN hierar-
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chy is determined by the essential organisation of the elements in PTNs. Then, based on the
literature review, six topological characteristics of the PTN hierarchy are identified in element
and network scales. Each characteristic is quantified by either vertex-based or network-based
topological indicators, in order to quantify the PTN hierarchy from six dimensions. For vertex-
based indicators, the R square values between element-scale indicators’ PDF and skewed
normal distributions are regarded as the PTN hierarchy. Besides, the network-based coeffi-
cients are direct as the quantified PTN hierarchy. Based on the normalised PTN hierarchy
in the six dimensions, the PTN hierarchy is visually compared through radar charts. Since
the methodology is solely based on network topology theories, it also has the potential to be
applied to multi-modal PTNs.

To apply the methodology to a case study for high-capacity unimodal PTNs worldwide,
a database that depends on GTFS data and contains L-space topology information is con-
structed with a data pipeline. First, the GTFS data are collected from online open resources.
Next, the high-capacity unimodal PTN data are filtered from the whole PTN. After represent-
ing and calibrating filtered data in L-space, a high-capacity unimodal PTN is converted to a
graph file, and visualised with its map. Relying on this GTFS data processing pipeline, 63
high-capacity unimodal PTNs worldwide are processed and included in the database.

With the quantified hierarchy of the high-capacity unimodal PTNs in the database, the anal-
ysis and discussion of the PTN hierarchy are conducted. It has been found that PTN hierarchy
in the closeness centrality and betweenness centrality holds priority across the six dimen-
sions, which could serve as important references for passengers and service providers during
operation. The PTN hierarchy in eigenvector centrality and network modularity dimensions
evaluates the mono-centric or multi-centric structures. The scale-free structures and vertex
connection patterns by degree implicated by PTN hierarchy in vertex degree and network as-
sortativity dimensions are generally not significant for PTNs in the database, and relatively less
apparent. In addition, metro networks present a tendency to have a high hierarchy than the
tram and BRT networks. The mode-wise effects result from factors influencing PTN topolo-
gies, such as stop spacing and line spacing. For different modal compositions, the European
PTNs have a higher hierarchy compared to North American PTNs.

5.3. Practical applications
The contributions of the research can practically support public transport authorities. Sup-
ported by the six-dimension radar charts, the PTN hierarchy can be compared to PTNs with
similar sizes or populations. In the PTN planning stages, the related authorities can set sev-
eral PTNs with good network performance and mature operations as comparators. Applying
the quantification methodology to the planned PTN and compared PTNs, the normalised six-
dimension PTN hierarchy can be visually compared in the same radar chart. The PTN hierar-
chy in the closeness centrality and betweenness centrality dimensions needs more attention,
which can reflect the PTN performance in terms of stop accessing and traffic flow intermediacy,
and are important for passengers and public transport service providers. When the hierarchy
in the two dimensions is significantly lower than the compared PTNs, it indicates that the topol-
ogy of the planned PTN needs improvement. The hierarchy in the eigenvector centrality and
network modularity dimensions indicates the mono-centric or multi-centric network structure
of the planned PTN, guiding the authorities to plan the related facilities with different strate-
gies, such as parking lots. The planned PTN also need to achieve the average hierarchy of
the compared PTNs in the vertex degree and network assortativity dimensions. Based on the
contributions of this study, the planning can be optimised before committing to construction.
The PTN hierarchy methodology has the following advantages in practical use. Initially, the
data requirement of the methodology is not extensive, and only GTFS data are needed, which
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are generated during the daily operation and easily accessible. Next, the assessment of the
PTN hierarchy is multi-dimension, including network-scale characteristics and element-scale
characteristics from different aspects. Moreover, the PTN hierarchy is presented as standard-
ised quantified values, making the results clear and intuitive.

5.4. Limitations
While some insights are gained from this research, there are several limitations to the research
scope.

The first limitation is the coverage of the database used in the case study. Due to a lack
of publicly-available data or the low quality of data, some iconic PTNs are not included in this
case study, especially some PTNs in Asia and America, such as the metro networks of Beijing,
Tokyo and Shanghai, and the BRT networks of Jakarta and Mexico City. This limitation affects
the coverage of the continent-wise comparison, and only European and North American PTNs
are included, limiting the application scope of conclusions about the continent-wise effects.

Second, the calibration of PTN representation brings limitations. When representing the
GTFS data of high-capacity unimodal PTNs in L-space, the calibration of vertices and edges in
the PTNs with the operating maps is semi-automatic and needs manual confirmation, which is
time-consuming and can easily result in human errors. The errors of vertices and edges in the
PTNs can lead to different PTN hierarchy results. For example, if wrongly merged two stops
in the calibration of PTN graphs, the topological indicator values would change, and change
the quantified PTN hierarchy in the six dimensions.

The third limitation is the analysis of mode-wise effects on PTN hierarchy is based on
the typical values of the influencing factors due to the data limitation. For instance, the stop
spacing and operating speed of modes, rather than the actual values of each PTN in the
database. Although the PTNs with the same mode have similar characteristics, they can also
be adjusted to suit the needs or features of cities. By applying the typical influencing factor
values, the special cases of PTNs are excluded, and the conclusion applicability of the mode-
wise effects can be reduced in some PTNs.

5.5. Recommendations for future research
Based on the limitations, recommendations are given for future research.

First, to improve the current methodology, future work can focus on the progress of con-
verting GTFS data to PTNs with L-space representation. For example, the manual calibration
of the draft PTN graphs. The calibration with the PTN operating maps can be optimised with
automatic methods. The machine learning algorithms can be used for studying the operating
maps of PTNs and automatically calibrating the visualised PTNs. The optimised data cali-
bration can avoid human errors, and improve the accuracy of results and manual processing
time.

Second, the six-dimension PTN hierarchy can be attempted to integrate into one single
metric. In the case study, it has been found that the PTN hierarchy in the six dimensions
has different levels of priority. For example, PTN hierarchy in the closeness centrality and
betweenness centrality dimensions hold a higher priority than the other four dimensions. Fu-
ture work can work on quantifying the weights of dimensions and integrating the six-dimension
PTN hierarchy with one single quantified metric. Based on the single quantified PTN hierarchy
metric, the assessment of the PTN hierarchy can be direct, simplified and accurate.

Third, the PTN hierarchy can be further studied with the relationship between the vulner-
ability of PTNs. In past research, the topological indicators are usually associated with PTN
vulnerability analysis, such as closeness centrality and betweenness centrality (Berche et al.,
2009; Cats et al., 2017; Chopra et al., 2016). For example, a PTN can be robust to random
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failures, but vulnerable to disruptions on some critical stops (Chopra et al., 2016). Both PTN
hierarchy and PTN vulnerability focus on the element organisations in PTNs, especially the
elements with high importance. Thus, the relationship between the PTN’s hierarchy and vul-
nerability can be an interesting topic to explore in the future.

Fourth, the influencing factors for evaluating the PTN hierarchy mode-wise effects can use
the actual data of each PTN. By applying the actual data of influencing factors, the relation
between the mode-wise effects and influencing factors can be quantified analysis.

Fifth, the continent-wise effects on PTN hierarchy can be further discussed. To begin
with, the PTNs in different continents can be unimodally compared to exclude the influence
of modes. Next, the analyse of continent-wise effects can be evaluated with more related
quantified factors, such as population density and GDP. These factors offer new perspectives
on continent-wise effects and help to build deep understanding.
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Figure A.1: Pairplot of the six topological indicators of PTN hierarchy
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B
Continent-wise effects discussion

In addition to addressing the main research questions, an analysis of the factors relating to
the continent-wise effects on high-capacity unimodal PTN hierarchy is of significant interest.
Therefore, this section provides a detailed discussion of this question. Three factors related
to the continent-wise effects on the PTN hierarchy are proposed: historical reasons, urban
density, and public transport-related policies.

The development of the automotive industry after World War II had a profound impact on
the development of PTN. Back in time to the post-World War II period, the economic devel-
opment of Europe and North America are different. Since no war happened in North Amer-
ica, North American industry recovered and developed earlier than European’s, especially the
modern automotive industry (Buehler and Pucher, 2012). Plus the automotive industry-friendly
policies of the time, car ownership witnessed a rapid rising in North America. By contrast, the
North American financial allocation for public transport was undermined and resulted in the
abandonment of the dilapidated public transport infrastructures (Yago et al., 1984). These
historical reasons make North American transport car-oriented, and the modes of PTNs are
mainly low-cost BRT, rather than metro and tram.

Urban density is another critical factor in determining the mode of high-capacity PTN. Be-
cause of the massive passenger demand in metropolises, both Europe and North American
metropolises intend to use the metro as the mode of high-capacity PTN. The differences in
mode choices for high-capacity PTNs are mainly in small and medium-sized cities. Due to
the high urban density in Europe, the central areas of median and small-sized European cities
usually have limited space and concentrated traffic demands. Tram is the appropriate mode
for these cities for its higher unit capacity and the smaller line spacing requiredKołoś and
Taczanowski (2016). As for the North American median and small-sized cities, BRT is the
suitable mode for high-capacity PTNs. For the lower urban density with the lower demand
for public transport, the revenue cannot meet the high cost of rail-bound PTN, such as tram
(Kołoś and Taczanowski, 2016; Vuchic, 2007). BRT is the mode with the highest cost-effective
for medium and small-sized North American cities (Sidloski and Diab, 2020).

Public transport-related policies are another essential factor in the differences between
European and North American public transport. Different from the North American policies tilt
towards car travel, the European policies are more public transport-friendly. In Europe, the
fuel and car purchase taxes, and the restrictions on car parking and car use are more strict
than in North America Buehler and Pucher (2012). The policies discourage travel by car. On
the other hand, the EU invests a lot every year to develop sustainable transport infrastructures
(Directorate-General for Mobility and Transport, 2022). The electrically powered trams meet
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the environment-friendly policies and the high public transport demand of Europeans (Kołoś
and Taczanowski, 2016).

In summary, the differences in public transport between Europe and North America have
contributed to the different preferences for public transport modes, with rail-bound PTNs more
prevalent in Europe, while BRT is more common in North America, and further influence the
continent-wise effects on PTN hierarchy.
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