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Abstract

In this thesis, we have examined conditional dependence in a financial context using con-
ditional Kendall’s tau (CKT). The conditional Kendall’s tau is a measure of concordance
between two random variables given some covariates. This thesis covers topics related
to conditional Kendall’s tau such as (conditional) copulas. We study non-parametric
estimators of the conditional Kendall’s tau using kernel density estimation and kernel
regression. An application of the non-parametric estimator to the returns of thirteen
different financial assets is finally provided. The assets consist of stock indices, bonds,
futures and exchange rates. Further, we apply Principal Component Analysis (PCA) on
the conditional Kendall’s tau data matrix to increase the interpretability. In general, it
seems that conditional dependence is slightly larger in the tails for all assets. Moreover,
the conditional dependence for each group of assets is discussed. It seems that the degree
of the conditional dependence relates to characteristics of an asset such as geographical
properties and type of asset.
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1
Introduction

In the field of dependence modeling, it is common to work with rank correlation coef-
ficients. In this thesis, we use Kendall’s tau. Contrary to usual linear correlations, it
has advantages such as being scale-invariant [14]. Moreover, it can be explicitly written
using underlying copulas. Kendall’s tau can also be extended for the conditional setup.
Surprisingly, their non-parametric estimates have been introduced in the literature only
recently and their properties have not yet been fully studied in depth [8].

In view of applications to finance, conditional dependence is related to three-way in-
teraction of financial assets. It tells us how the dependence evolves between the two
assets when a conditioning variable is changing. Furthermore, it was shown that stock
returns actually exhibit higher correlations during market declines than during market
upturns [3]. This illustrates that analysing a model in which correlations depend on
some conditioning variable is certainly relevant [22].

This thesis is structured as follows. Chapter 2 provides an overview of mathematical
background. In order to understand the basis of this thesis, we touch upon the concept of
(conditional) copulas. Furthermore, we discuss the idea of rank correlation. In particular,
we examine Kendall’s tau and its conditional setup. Next, we discuss the concept of
kernel regression for the construction of non-parametric conditional estimators.

Chapter 3 is devoted to discussing the methodology of our research. First of all, we dis-
cuss several non-parametric estimators of the conditional Kendall’s tau. We will define
the conditional version of the averaging estimator that we use throughout this thesis.
Next, we consider the theory behind Principal Component Analysis (PCA). This is a use-
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2

ful statistical technique that analyses a multidimensional dataset with several dependent
variables. It reduces dimensionality of such datasets and may increase interpretability.

Further, in Chapter 4 we perform an application of our methods to real data. The real
data consists of thirteen different financial assets (variables). This includes eight stock
indices from all over the world (AEX, DJI, EURO STOXX 50, CAC40, DAX, NASDAQ,
Nikkei 225, S&P500). Moreover, we consider one US bond (FVX), one exchange rate
(EURUSD), two futures related to oil prices (WTI and Brent) and the Bitcoin Price
Index (BTC). First we estimate the conditional Kendall’s tau for all assets using the
package ’CondCopulas’ in R. Then, we apply PCA and asses it by discussing principal
components, scores, explained variance and the representation of the variables. More-
over, we cluster the PCA results on which we perform further analysis.

In Chapter 5 the conclusions of this research are summarized.



2
Preliminaries

In this chapter, we provide the necessary mathematical background for this report. First,
some basic concepts of probability and statistics are explained. In section 2.2, copulas
are introduced and defined, and their properties are discussed. Then, in section 2.4,
rank-based correlation is explained, where Kendall’s tau, in particular, is formally de-
fined. Lastly, in Sections 2.5 and 2.6, Kernel density estimation and Kernel regression
are introduced which are fundamental to understanding non-parametric estimation.

The proofs of the theorems in this chapter can be found in [5], [13], [14] and [17]. Besides,
we use the formatting for all definitions and theorems from [22].

2.1. Basic notions
All concepts discussed in this subsection are from [5]. Let us first introduce the concept
of conditional probability. This is essential to understand our main topic in this research:
conditional Kendall’s tau.

Definition 1 (Conditional PDF). If X1 and X2 are continuous random variables in
R, with joint PDF f(x1, x2), marginal density function f1 of X1, then the conditional
probability density function of X2 given X1 = x1 is defined to be

f(x2|X1 = x1) =
f(x1, x2)

f1(x1)
, (2.1)

for all x1, x2 ∈ R such that f1(x1) ≥ 0 and zero otherwise.

Note that this definition is for real-valued random variables. It can be easily extended
for random variables in Rp for some integer p ≥ 2. For this, we refer to [5]. Further,
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there is a relation between conditional probability and independence: random variables
X and Y are independent if and only if f(x2|X1 = x1) = f(x2).

If X1 and X2 are discrete random variables, then the conditional PDF f(x2|x1) is the
conditional probability of the event [X2 = x2] given the event [X1 = x1]. However,
in the continuous case, P(X1 = x1) is defined, but equal to zero. The conditional
PDF can therefore not be interpreted as a conditional probability in this case. Here,
the conditional PDF can be thought of as assigning conditional ”probability density”
to arbitrarily small intervals [x2, x2 + ∆x2]. Thus, the conditional probability is the
following

P(a ≤ X2 ≤ b|X1 = x1) =

∫ b

a

f(x2|X1 = x1)dx. (2.2)

Similarly, we define the conditional CDF.

Definition 2 (Conditional CDF). If X1 and X2 are random variables in R, with joint
PDF f(x1, x2), then the conditional probability distribution function of X2 given X1 = x1

is defined to be
F (x2|X1 = x1) =

∫ x2

−∞
f(x2|X1 = x1)dx. (2.3)

Next, we will explain conditional expectation which will be necessary to understand
Kernel regression in section 2.4.

Definition 3 (Conditional expectation). If X1 and X2 are continuous random variables
with joint distribution function fX,Y (x, y), then the conditional expectation of X2 given
X1 = x1 is given by

m(x1) = E[X2|X1 = x1] =

∫ ∞

−∞
x2f(x2|X1 = x1)dx2 =

∫
x2f(x2|X1 = x1)dx1

f(x1)
. (2.4)

We will finish this subsection by explaining the probability integral transform which
is linked to copulas. This topic describes that random variables from any given con-
tinuous distribution can be converted to random variables having a standard uniform
distribution.

Theorem 1 (Probability Integral Transformation). If a random variable X is contin-
uous with CDF F (x), then the random variable U := F (x) has a standard uniform
distribution, denoted as U ∼ UNIF(0, 1)

2.2. Copulas
The study of copulas and their applications in statistics is a rather modern phenomenon.
From one point of view, copulas are functions that join multivariate distribution func-
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tions to their one-dimensional marginal distribution functions. This is not a formal
definition yet. Therefore, we will give two different definitions of copulas and state some
of their fundamental properties. First, we provide a more analytical definition.

Definition 4 (P-dimensional copula). Let p ≥ 2 be an integer. A copula is a function
C : [0, 1]p −→ [0, 1] with the following properties:

1. For any j = 1, . . . , p and all uj ∈ [0, 1], C(u1, . . . , uj−1, 0, uj+1, . . . , up) = 0.

2. For any j = 1, . . . , p and and all uj ∈ [0, 1], C(1, . . . , 1, uj, 1, . . . , 1) = uj.

3. C is a p-increasing, i.e. for each hyperrectangle A = Πp
j=1[aj, bj] ⊆ [0, 1]p the

C-volume of A is non-negative: ∫
A

dC(u) ≥ 0.

Another definition is that copulas are the joint cumulative distribution functions of a
multivariate random vector with uniform margins. This becomes clear when looking
at Sklar’s theorem, which is central to the theory of copulas and its applications in
statistics.

Theorem 2 (Sklar’s Theorem). Let X = (X1, . . . , Xp) be a random vector with joint
cumulative distribution function F and univariate marginal CDFs F1, . . . , Fp. Then,
there exists a copula C such that for all x ∈ R,

F (x) = C(u1, . . . , up). (2.5)

In addition, C is given for all u ∈ [0, 1]p by

C(u1, . . . , up) = F (F−
1 (u1), . . . , F

−
p (up)), (2.6)

where F−
1 (uj) is the inverse of Fj for j = 1, . . . , p. Therefore, if X is continuous, then C

is unique.

Theorem 2 shows that any joint CDF can be rewritten as a copula and marginal CDFs.
Moreover, if the marginal CDFs are continuous on R, and C is a copula (i.e. a distri-
bution on [0, 1] with p uniform margins), then a joint CDF on Rp can be defined as
[6]

F (x) = C(F1(x), . . . , Fp(x)). (2.7)

We refer to the class of all p-dimensional copulas with the notation Cp. This set has the
following important properties [6]:
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1. Pointwise and uniform convergence are equivalent.

2. Cp is a convex and compact set.

3. Every copula is 1-Lipschitz

4. (Cp, <) is an ordered set, i.e. C1 < C2 if C1(u) ≤ C2(u) for all u ∈ [0, 1]p and
C1, C2 ∈ Cp

Basic concepts in probability, such as densities, also apply to the theory of copulas. If a
copula exists and it has a density, then the probability density function of a copula can
be obtained in the usual manner as follows,

c(u1, . . . , up) =
∂pC(u1, . . . , up)

∂u1 . . . ∂up

. (2.8)

From this, if the marginal densities f1, . . . , fp exist, it follows that the PDF of a random
variable X = (X1, . . . , Xp) can be rewritten as

f(u) = f1(x)f2(x) . . . fp(x) · c(u1, . . . , up). (2.9)

Now, we introduce the conditional setup in the context of the theory of copulas. Condi-
tional copulas are important in applications such as time series and econometric models
[6]. Moreover, conditional copulas are necessary to understand, to compute and to use
conditional Kendall’s. Therefore, we state the previous definition and theorem adjusted
to the conditional version, which are rather similar to the unconditional case.

First of all, we introduce a random variable, say Z = (z1, . . . , zd), which is the con-
ditioning variable on Rd. Conditional copulas form the link between the conditional
joint CDF of a multivariate random vector with the conditional uniform marginals. The
formal definition is as follows

Definition 5 (p-dimensional conditional copula). Let p ≥ 2 be an integer and Z be
a conditioning random vector taking values in Z ⊆ Rd. A conditional copula is a
measurable function C : [0, 1]p × Z −→ [0, 1] such that for PZ-almost every z ∈ Z, the
following properties are satisfied:

1. For any j = 1, . . . , p and all uj ∈ [0, 1], C(u1, . . . , uj−1, 0, uj+1, . . . , up|Z = z) = 0.

2. For any j = 1, . . . , p and and all uj ∈ [0, 1], C(1, . . . , 1, uj, 1, . . . , 1|Z = z) = uj.

3. C is a p-increasing, i.e. for each hyperrectangle A = Πp
j=1[aj, bj] ⊆ [0, 1]p the

C-volume of A is non-negative:∫
A

dC(u|Z = z) ≥ 0.
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Sklar’s theorem can also be translated to the conditional setup. This will be as follows

Theorem 3 (Sklar’s theorem - conditional version). Let X = (X1, . . . , Xp) and Z be a
random vectors taking values in Rp and Z ⊆ Rd, respectively. Let the joint cumulative
distribution function of X given Z=z, denoted by FX|Z=z, have the conditional univariate
marginal CDFs F1|Z=z, . . . , Fp|Z=z. Then, there exists a conditional copula CX|Z=z such
that for all x ∈ Rp and all z ∈ Z ,

FX|Z=z(F
−
1|Z=z(u1), . . . , F

−
p|Z=z(up)) = CX|Z=z(u1, . . . , up), (2.10)

where F−
j|Z=z is the inverse of Fj|Z=z for j = 1, . . . , p. Therefore, if the conditional random

variables X|Z = z are continuous, then CX|Z=z is unique.

From Theorem 3, it follows that a conditional copula connects the conditional CDF
with its conditional marginals. This is similar to what we have seen in the unconditional
version, Theorem 2.

As becomes clear now, copulas let us separate the marginal distribution functions and
the dependency structure of a multivariate distribution. There are a lot of different
parametric classes of copulas that describe this dependence. Frequently used parametric
classes are the Gaussian copula, t-copula, Gumbel’s copula and Clayton copula. For
more examples, we refer to [12] and [14].

2.2.1. Copulas in the financial market
The concept of copula has attracted more and more attention in finance and economics
in recent years. For example, copulas have been widely applied in risk management.

Generally, a copula allows us to separate the univariate probability distribution of the
variables (for example, a financial asset) from the interdependencies between it and
other variables (other financial assets) defined by the copula. By doing so, one can
model each variable separately and, on top of that, have a measure of the relations
between those financial assets. Technically, this means that the univariate probability
distribution, telling us the probabilities of outcomes of one financial asset, in particular,
can be modelled by type of distribution of choice. Whereas another variable can be
modelled using another type of probability distribution. By doing so, one can choose for
each and any asset the most appropriate type of distribution, not influencing the relation
between those assets. These interdependencies between those variables are represented
by a multivariate probability distribution function, which tells us the joint outcomes
of the variables. Looking at Sklar’s theorem 2, it becomes clear that an p-dimensional
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multivariate distribution, representing the copula of p financial assets, can capture all
possible interdependencies between the p-variables [18].

There are risks connected to working with copulas. During the late 1990s, the CDOs
appeared on the financial market. Collateralized Debt Obligations were new financial
instruments which made it possible to form securities out of different types of debts,
e.g. mortgages, via these derivatives. The correlation between defaults needed to be
modelled in order to price these securities. David X. Li’s Gaussian copula approach was
used to model just that. The Gaussian copula, which is a common choice of the cop-
ula, is a helpful tool and relatively easy to fit. However, the Gaussian copula does not
capture tail dependencies; risk in the tail is underestimated. In 2008, the crisis hit Wall
street and the CDO market collapsed. Li’s Gaussian copula model has been accused of
increasing the intensity of the financial crisis [4].

2.3. Dependence measures
There are numerous ways to assess the dependence between random variables. In this
section, we explain linear correlation and rank correlation, in particular Kendall’s tau.

2.3.1. Correlation
Let us start with linear correlation which is most well-known in practice, the so-called
Pearson’s correlation. Pearson’s coefficient measures the strength of linear correlation
between two random variables. An advantage of Pearson coefficient is that it is computed
easily compared to rank correlation. Other advantages are that it is closely related to
the normal distribution and that linear operations are done easily. On the other hand,
the Pearson coefficient has some obvious disadvantages. Most important, it can not
be used for nonlinear dependence [16]. Pearson correlation coefficient is defined as the
covariance of the two variables normalized to the product of the roots of the variance of
both variables.

Definition 6 (Pearson’s correlation coefficient). Let X1 and X2 be real-valued random
variables. The Pearson correlation coefficient is defined by

ρX1,X2 :=
Cov(X1, X2)

σX1σX2

, (2.11)

where σ is the standard deviation of the variables, respectively of X1 and X2.

Now let {(X1,1, X2,1), . . . , (X1,n, X2,n)} be a collection of paired observations, where Xi,j
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represents the j-th observation of the i-th variable. Then, the sample Pearson correlation
coefficient is defined by

rX1,X2 =

∑n
i=1(X1,i − X̄1)(X2,i − X̄2)√∑n

i=1(X1,i − X̄1)2
√∑n

i=1(X2,i − X̄2)2
, (2.12)

where X̄1 and X̄2 denote the sample mean of respectively {(X1,1, . . . , X2,1)} and {(X1,n, X2,n)}.

Note that for heavy-tailed data, this coefficient will lead to misleading results because
outliers will have a different impact on the numerator and denominator [22]. Therefore,
it is necessary to introduce a more robust correlation coefficient.

2.3.2. Rank Correlation
Contrary to Pearson’s coefficient, rank correlation has the advantage of being invari-
ant to (monotonic) changes in the underlying marginal distributions. Rank correlation
coefficient is a non-parametric measure of the strength of the relationship between two
rankings. It returns a value inside the interval [−1, 1]. Rank correlation is popular in the
field of dependence modelling because of its advantages over linear correlation. More-
over, the correlation coefficient can be explicitly written using copulas. Examples of rank
correlation coefficients are Kendall’s tau, Spearman’s rho and Blomqvist’s coefficient.

2.3.3. Kendall’s tau
In this thesis, only Kendall’s tau will be used, in particular the conditional version. First,
we define Kendall’s tau and then we elaborate on this for the conditional setup.

For more than a century, Kendall’s tau has become a popular dependence measure [8].
It quantifies the positive or negative dependence between two random variables in the
interval [−1, 1]. Here, the value −1 corresponds to the perfect negative correlation and
the value 1 corresponds to a perfect positive correlation. Further, note that the value
of Kendall’s tau is equal to zero if the variables are independent. However, the converse
does not hold. So Kendall’s tau being equal to zero does not necessarily mean that the
variables are equal to zero [22]. Kendall’s tau is based on concordance and discordance of
the data. Informally speaking, a pair of random variables are concordant if large values
of one variable tend to be associated with large values of the other and, contrarily, small
values of one with small values of the other [14]. Formally speaking, it is defined as
follows

Definition 7 (Concordance and discordance). Let X1,1:2 and X2,1:2 be two independent
copies of a random vector X ∈ R2, then a pair is
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• condordant when (X1,1 −X2,1)(X1,2 −X2,2) > 0

• discondordant when (X1,1 −X2,1)(X1,2 −X2,2) < 0

A pair of bivariate observations is concordant when both elements of one observation are
either greater than or less than the corresponding elements of the other observation. A
pair is discordant pair when only one of the elements of one observation is greater than
the corresponding element of the other observation [22].

Let us define Kendall’s tau as the difference between the probability of concordance and
the probability of discordance of two independent versions of (X1, X2). Denoting by
C1,2 the unique underlying copula of (X1, X2) that is assumed to be continuous, their
Kendall’s tau can be directly defined as [6]

Definition 8 (Kendall’s tau). Let X1 and X2 be real-valued random variables. The
population Kendall’s tau of X1 and X2 is defined as

τX1,X2 := P((X1,1 −X2,1)(X1,2 −X2,2) > 0)− P((X1,1 −X2,1)(X1,2 −X2,2) < 0), (2.13)

where (X1,i, X2,i)i=1,2 are to independent copies of (X1, X2). Further, we define the
sample Kendall’s tau for paired observations {(X1,1, X2,1), . . . , (X1,n, X2,n)} by

τ̂X1,X2 :=
2

n(n− 1)

∑
i1≤i2

sign((X1,i1 −X1,i2)(X2,i1 −X2,i2)). (2.14)

It becomes clear that Kendall’s tau will have a value inside the interval [−1, 1]. Moreover,
note that the inequalities are strict because no such terms are corresponding to the cases
i = j.

There are several alternative expressions for Kendall’s tau equivalent to Definition 8,
whenever the random variables are continuous.

τX1,X2 : = P((X1,1 −X2,1)(X1,2 −X2,2) > 0)− P((X1,1 −X2,1)(X1,2 −X2,2) < 0),

= 2P((X1,1 −X2,1)(X1,2 −X2,2)) > 0)− 1,

= 4P(X1,1 < X2,1, X1,2 < X2,2)− 1,

= 4P(X1 < X2)− 1, (2.15)

= 1− 4P(X1,1 < X2,1, X1,2 > X2,2),

= 4

∫
C(u1, u2)dC(u1, u2)− 1,

where C(u1, u2) denotes the unique copula. Kendall’s tau, therefore, provides much
information about the underlying dependence structure. For convenience, the notation
τ1,2 will be used instead of τX1,X2 , whenever it is clear which variables are meant.
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Finally, Kendall’s tau has some advantages over Pearson’s rho or other concordance
measures worth mentioning [6].

• Kendall’s tau is invariant for monotonic transformations.

• Kendall’s tau always exists for any couple of marginal distributions.

• For one-dimensional families of copulas, the estimation of the parameter is equiv-
alent to estimating Kendall’s tau.

2.3.4. Conditional Kendall’s tau
Now let us turn to the conditional Kendall’s tau (CKT), having a multivariate covariate,
say Z = (z1, . . . , zp). In this research, we will consider only pointwise conditioning
events. Using conditional Kendall’s tau, the dependence between the variables X1 and
X2 is measured given the p-dimensional vector of covariates Z. Conditional Kendall’s tau,
and more generally conditional dependence measures, are of interest because they tell us
the behaviour of the dependence between X1 and X2 when the covariate Z is changing.
Conditional Kendall’s tau is a conditional dependence measure used to predict whether
a pair of observed random variables is concordant or discordant conditioned on Z [8] [22].
We define the conditional Kendall’s tau similarly as in the previous subsection.

Definition 9 (Conditional Kendall’s tau). Let X1 and X2 be real-valued random vari-
ables and let Z be a random vector taking values in Rp. For any point z ∈ Z, we define
Kendall’s tau of X1 and X2 conditional on Z = z by

τX1,X2|Z=z := P((X1,1 −X2,1)(X1,2 −X2,2) > 0|Z1 = Z2 = z)
− P((X1,1 −X2,1)(X1,2 −X2,2) < 0|Z1 = Z2 = z),

where (X1,i, X2,i,Zi)i=1,2 are independent copies of (X1, X2,Z).

The conditional Kendall’s tau has similar properties as we have seen in the previous
subsection. For every point, z ∈ Z, the conditional Kendall’s tau takes values inside the
interval [−1, 1].

Furthermore, when the conditional marginal distributions of X1 and X2 given Z = z
are continuous, the following alternative expressions of conditional Kendall’s tau are
equivalent to the one in Definition 9.
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τX1,X2|Z=z := 2P((X1,1 −X2,1)(X1,2 −X2,2)) > 0|Z1 = Z2 = z)− 1, (2.16)

= 4P(X1,1 < X2,1, X1,2 < X2,2|Z1 = Z2 = z)− 1, (2.17)

= 4P(X1 < X2|Z1 = Z2 = z)− 1, (2.18)

= 1− 4P(X1,1 < X2,1, X1,2 > X2,2|Z1 = Z2 = z), (2.19)

= 4

∫
[0,1]2

C1,2|Z=z(u1, u2)dC1,2|Z=z(u1, u2)− 1, (2.20)

where C1,2|Z=z(u1, u2) denotes the unique conditional copula. Finally, the advantages
stated in the previous subsection also hold in the conditional setup.

Further, note that we are conditioning on a multivariate covariate Z. Although in most
textbooks conditioning is only defined with respect to one variable, the covariate could
be multivariate as well. Let Z1 and Z2 be random vectors both taking values in Rp. We
define U = (Z1,Z2), and u = (z, z) ∈ R2p, then conditioning by Z1 = Z2 = z ∈ R2p can
be defined as conditioning with respect to the event U = u.

To understand where Z1 and Z2 come from, note that, in the unconditional case of
Kendall’s tau, the observations (X1,1, X1,2) and (X2,1, X2,2) follow the same distribution
FX1,X2 . In the conditional case in (2.20), we see it is coherent that the observations
follow the same distributions FX1,X2|Z=z).

Another way of looking at this, take for example three random vectors representing three
different assets, each taking values in Rp. We call them first asset X1, second asset X2

and the conditioning variable Z, respectively. The conditioning variable of the random
vector’s observations (X1,1, X1,2) and (X2,1, X2,2) would not need to be independent in
general. To be sure we compare the conditioned observations in the right way, we must
ensure that both Z1 = z and Z2 = z.

Defining estimators for a conditional Kendall’s tau is less straightforward as we need
to deal with the dependency on Z. Therefore, we discuss kernel density estimation and
kernel regression in the upcoming sections.

2.4. Kernel Density Estimation
We are using non-parametric estimation in this thesis. Non-parametric modelling favours
generality. Given a set of minimal and weak assumptions it provides methods that are
consistent for broad situations. This means it loses efficiency to some extent. Broadly
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speaking, non-parametric modelling does not rely on parametric assumptions. Paramet-
ric modelling, on the other hand, favours efficiency. Given a model (a strong assump-
tion on the data generating process), parametric inference delivers a set of methods (e.g.
point estimation, confidence intervals, hypothesis testing) tailored for such a model. If
the data generating process truly satisfies the assumptions, then it works. Otherwise,
the methods may be inconsistent.

In a lot of situations, for instance, in the world of financial markets, knowledge of the data
generation process is rarely known. That is the appeal of a non-parametric method: it
will perform adequately no matter what the data generation process is. For that reason,
non-parametric methods are useful [20].

Kernel density estimation is based on estimating the density function from the observed
data. A density function f is simplest estimated from an independent and identical
sample of observations X1, . . . , Xn by a histogram. However, histograms depend on the
bandwidth h and the origin t0. The latter, we would like to avoid by letting the bins to
be dependent on x (the point we want to estimate on f), rather than fixing this point
beforehand. This is called a moving histogram and forms the basis for kernel density
estimation. The presented formulas follow from [10]. This can be written as .... (problem
with my overleaf code) ....

f(x;h) =
1

2nh

n∑
i=1

1{x−h≤Xi≤x+h}, (2.21)

=
1

nh

n∑ 1

2
1{−1≤x−Xi

h
≤1}, (2.22)

=
1

nh

n∑
i=1

K

(
x−Xi

h

)
, (2.23)

where K(z) = 1
2
1{−1<z<1}, which is uniform on (−1, 1). Generally, K(z) can be any

density. Then K(z) is known as a kernel. A kernel K is (most of the time) non-
negative, symmetric, unimodal at zero (density has a single peak at zero) and satisfying∫
K = 1. The histogram estimator can be considered as a sum of ‘boxes’ centred at the

observations, the kernel estimator is a sum of ‘bumps’ placed at the observations. The
kernel function K determines the shape of the bumps while the smoothing parameter h
determines their width [20], hence it is called bandwith. More precise, the bandwidth h

controls the sensitivity of the density estimates towards observations further away from
z. The Gaussian and Epanechnikov kernels are common choices. However, the choice of
kernel is not that important, since all estimates seem to have roughly the same shape
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for different kernels having the same bandwidth. In fact, the bandwidth h is the crucial
factor [10], [22].

This can be extended for a multivariate case. Then kernel density estimation is used to
estimate multivariate densities f in Rp for a sample X1, . . . , Xn, then the KDE at X is
defined as

f(x;H) :=
1

n|H 1
2 |

n∑
i=1

KH(H− 1
2 (x − Xi)), (2.24)

where KH is the multivariate kernel and H is a p× p matrix representing the bandwidth
in the multivariate case. This matrix is symmetric and positive definite. Again, the
same properties as discussed before hold for a p-variate density function ([10], [20]).

2.5. Kernel Regression
Kernel regression is introduced to construct non-parametric conditional estimators which
are necessary for estimating conditional Kendall’s tau. The presented formulas follow
from [10].

Recall Definition 3 for the definition of the conditional expectation. We are condition-
ing on some covariate Z ∈ Z. In kernel regression, the estimates of the densities f

are computed by kernel density estimation from section 2.4. This comes down to the
following

f̂Z,Y (z, y;h) :=
1

n

n∑
i=1

1

hd
K1

(
z − Zi

h

)
1

h
K2

(
y − Yi

h

)
, (2.25)

f̂Z(z;h) :=
1

n

n∑
i=1

1

hd
K1

(
z − Zi

h

)
1

h
K2

(
y − Yi

h

)
, (2.26)

where K1 and K2 are kernel functions. Now the estimate of the conditional expectation
is obtained by replacing the densities in Definition 3 with their estimates (2.25) and
(2.26). This gives the following expression for estimating m(z) = E[X|Z = z]

m̂(z;h) :=
∫
xf̂Y |Z=z(z, x;h)dx

f̂Z(z;h))
,

=

∫
x 1
n

∑n
i=1

1
hdK1(

z−Zi

h
) 1
h
K2(

x−Xi

h
)

1
n

∑n
i=1

1
hdK1(

z−Zi

h

,

=
1
n

∑n
i=1

1
hdK1(

z−Zi

h
)
∫
x 1
h
K2(

x−Xi

h
)

1
n

∑n
i=1

1
hdK1(

z−Zi

h
)

.

(2.27)
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Then change of variables with ui =
x−Xi

h
can be used to compute the integral. Then the

following will be obtained∫
x
1

h
K2

(
x−Xi

h

)
dx =

∫
(hu+Xi)K(u)du,

= h

∫
uK2(u)du+Xi

∫
K2(u)du,

= Xi,

(2.28)

where we used the properties of symmetry and
∫
K = 1 of a kernel. By combining (2.27)

and (2.28) together, we obtain

m̂(z;h) :=
1
n

∑n
i=1

1
hdK1(

z−Zi

h
)Xi

1
n

∑n
i=1 K1(

z−Zi)
h

,

=
n∑

i=1

1
hdK1(

z−Zi

h
)∑n

j=1
1
hdK1(

z−Zj

h
)
Xi,

(2.29)

where the expression in front of the random variable Xi can be seen as a weighted
average of observations X1, . . . , Xn. These are called the Nadaraya-Watson weights.
This means that the Nadaraya-Watson weights are the local means of X1, . . . , Xn about
Z = z. There are different types of weights that can be used to construct an estimate. In
this thesis, however, we will only consider the Nadaraya-Watson weights. The resulting
estimator for the conditional expectation can be rewritten as

m̂(z;h) :=
n∑

i=1

wi,n(z)Xi, (2.30)

where

wi,n(z) :=
Kh(z − Zi)∑n
i=1 Kh(z − Zi)

, (2.31)

where Kh := 1
hdK(·/h).

We will finish this section with a notion of the bias-variance trade-off and the curse of
dimensionality.

First of all, bias is defined as the error between an estimator’s expected value and the
true value of the parameter being estimated. A high bias may cause missing relevant
relations which results in a too simple model (underfitting). Underfitting happens when
a model is unable to capture the underlying pattern of the data. These models usually
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have a high bias [21]. Whereas the variance is defined as to what extent estimates
are spread out from their average value. The variance explains the sensitivity in small
fluctuations in a set. For Kernel estimations, in particular, high variance can be seen
as a result of overfitting. The bias-variance trade-off explains, that when the bias is
high, the variance is small and vice versa. As we have seen in the previous section, the
bandwidth h controls the estimate’s sensitivity towards observations Zi that are further
away from point z. Thus, reducing the bandwidth will decrease the estimator’s bias and
will increase its variance, which is the bias-variance trade-off [22] [10]. Hereby, larger
sample sizes will allow for a smaller choice of bandwidth, since we have more data.

Lastly, note that the volume of the space Z grows exponentially fast when increasing the
dimensionality of Z. This creates a decreasing density of observations within that space.
This is called the curse of dimensionality. In other words, when the dimensionality in-
creases, then the volume of the space increases so fast that the available data becomes
sparse. To still obtain a reliable result, the amount of data often needs to grow expo-
nentially with dimensionality. The immediate consequence is that we can only consider
covariates of a few dimensions at most [22].



3
Methods

In this chapter, we set out the methods that we use to research how the conditional
dependence is for the different assets by using conditional Kendall’s tau (CKT). First,
we will explain what data we use and what properties it has. Then, we introduce the
estimators for a conditional Kendall’s tau that we use throughout this report. Lastly, we
will discuss Principal Component Analysis (PCA) which is a useful method to interpret
high-dimensional data.

3.1. Financial Data
The original financial data used in this thesis is imported from Yahoo Finance. We will
use the monthly returns of thirteen different assets from March 1986 until August 2020.
The different assets, their types and abbreviations are listed below.

Type Name Abbreviation

European
Stock Indices

France CAC 40 Stock Index FCHI

German DAX Index GDAXI
Amsterdam Exchange Index AEX
EURO STOXX 50 (European companies) Eurostoxx

US Stock In-
dices

Dow Jones Industrial Average (30) DJI

Nasdaq Composite (Tech companies) IXIC
SP500 Index SP500

17
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Asian Stock
Indices

Nikkei Index (Japan) N225

Oil prices West Texas Intermediate (oil, price per bar-
rel)

WTI

Brent Crude Oil (North sea, price per Barrel) Brent

Debt and cur-
rency

5 year US Treasury Yield FVX

Price in Euros of 1 bitcoin BTC.EUR
1EUR in USD EURUSD.X

We are interested in the conditional dependence between two different assets on each
other, say X1 and X2, given some conditioning variable Z = z. The degree of conditional
dependence is measured by conditional Kendall’s tau. Given the thirteen assets, we want
the estimates τ̂

Xi,Xj |Zk=z(k)l
for all i ̸= j and k ∈ {1, . . . , 13}\{i.j} and l = 1, . . . , n. Here,

k corresponds to the 11 different conditioning variables and l represents the number of
observations. Note that τ̂X1,X2|Z=z = τ̂X2,X1|Z=z.

In the unconditional case, we have 12 + 11 + · · · + 2 + 1 = 78 possible estimates of
Kendall’s tau. However, each combination of two assets X1 and X2 can be conditioned
on the other 11 assets. Hence, in the conditional case, the total dataset is described by
78 · 11 = 858 variables having each 100 observations. This can be summarized in the
following data matrix

A =


τ̂
X1,X2|Z3=z(3)1

τ̂
X1,X3|Z2=z(2)1

τ̂
X1,X4|Z2=z(2)1

· · · τ̂
X12,X13|Z11=z(11)1

τ̂
X1,X2|Z3=z(3)2

τ̂
X1,X3|Z2=z(2)2

τ̂
X1,X4|Z2=z(2)2

· · · τ̂
X12,X13|Z11=z(11)2... ... ... . . . ...

τ̂
X1,X2|Z3=z(3)100

τ̂
X1,X3|Z2=z(2)100

τ̂
X1,X4|Z2=z(2)100

· · · τ̂
X12,X13|Z11=z(11)100

 (3.1)

In fact, applying Kendall’s tau assumes stationary data. A stationary process has the
property that the mean, variance and autocorrelation structure do not change over
time. A stationary process can be recognized by a flat-looking series, without trend and
constant variance over time. Moreover, there are no periodic fluctuations (seasonality)
[23].

However, since the data of the financial assets is a time series, there is an influence of
past observations on the next observations. This may result in, for instance, observations
having unequal variance. This is called heteroskedasticity. Heteroskedasticity indicates
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the data is non-stationary. Therefore, it could be useful to apply ARMA-GARCH fil-
tering to remove the time dependencies between the observations. This could be done
using the following model

{
σ1,t = γ0 + γ1ϵ

2
1,t−1 + γ2σ

2
1,t−1

X1,t = α + βX1,t−1 + σ1,tϵ1,t,

where α, β are real-valued constants and σ and ϵ are random variables depending on
time. The random variable σ represents the volatility of an asset at time t. The random
variable ϵ represents the noise and is called innovation. In particular, the innovation is
interesting since it is responsible for the unpredictable part of the behaviour of the assets.
This process of filtering such that only the, in our case relevant dependence remains, is
visualized in Figure 3.1.

Figure 3.1: Interdependence structure of two time series. The red arrows show the time-varying
dependence between successive observations in time. The blue arrows show the dependence between

two assets. The difference in the size of the circles is negligible.

In our research, we have not used ARMA-GARCH filtering. It is easier to use just
the returns of the assets. For example, if the return on a given day of a given asset
is 2%, then it seems that on that day the asset price is increased by 2%. However, it
is important to understand how the dependence within our data works. We explicitly
state that our data is not independent with respect to time.
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3.2. Estimation of conditional Kendall’s tau
In this section, we will explain the estimators for the conditional Kendall’s tau. We
formally define the estimators and state some related properties.

Defining estimators for a conditional Kendall’s tau is less straightforward as we need to
deal with the dependency on Z. Non-parametric estimates of a conditional Kendall’s
tau have been introduced in the literature only a few years ago ([7], [8], [11], [22]).
Therefore, some properties of estimates of a conditional Kendall’s tau have been stated
under too demanding assumptions. In particular, some assumptions were related to
the estimation of conditional margins. However, this is not required because Kendall’s
tau are based on ranks. Therefore, we directly study non-parametric estimates τ̂X1,X2|Z=z

without relying on the information about copulas. Therefore, none of the estimators that
we will construct depend on estimation of conditional marginal distributions. In other
words, we only have to conveniently choose the weights wi,n to obtain an estimator of
the conditional Kendall’s tau. This is coherent with the fact that conditional Kendall’s
taus are invariant with respect to conditional marginal distributions [8].

For the construction of non-parametric estimators of the conditional Kendall’s tau, we
first recall the equivalent expressions of the conditional Kendall’s tau in the previous
chapter, see (2.16).

τX1,X2|Z=z : = P((X1,1 −X2,1)(X1,2 −X2,2)) > 0|Z1 = Z2 = z)
− P((X1,1 −X2,1)(X1,2 −X2,2)) < 0|Z1 = Z2 = z),
= 4P(X1,1 < X2,1, X1,2 < X2,2|Z1 = Z2 = z)− 1,

= 1− 4P(X1,1 < X2,1, X1,2 > X2,2|Z1 = Z2 = z).

Using the approach from [8], we introduce the following three kernel-based estimators of
τX1,X2|Z=z where each line corresponds to the equivalent expressions for the conditional
Kendall’s tau above

τ̂
(1)
X1,X2|Z=z : =

n∑
i=1

n∑
j=1

wi,n(z)wj,n(z)
(
1{(Xi,1 −Xj,1)(Xi,2 −Xj,2) > 0} (3.2)

− 1{(Xi,1 −Xj,1)(Xi,2 −Xj,2) < 0}
)
,

τ̂
(2)
X1,X2|Z=z : = 4

n∑
i=1

n∑
j=1

wi,n(z)wj,n(z)1{Xi,1 < Xj,1, Xi,2 < Xj,2} − 1, (3.3)

τ̂
(3)
X1,X2|Z=z : = 1− 4

n∑
i=1

n∑
j=1

wi,n(z)wj,n(z)1{Xi,1 < Xj,1, Xi,2 > Xj,2}, (3.4)
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where 1 denotes the indicator function and wi,n is defined as the Nadaraya-Watson
weights as in (2.31) given by

wi,n(z) :=
Kh(z − Zi)∑n
i=1 Kh(z − Zi)

,

where Kh(·) := 1
hpKh(·/h), for some kernel K on Rp. The bandwidth sequence h = h(n)

is a sequence that converges to zero as n → ∞. Throughout this thesis, we use the
Epanechnikov kernel. As mentioned Section 2.4, recall that the choice of kernel does not
really matter, only the choice of bandwidth. Of course, there are alternative weights
such as local linear and Priestley-Chao, that would lead to different results [8].

The estimators τ̂ (1)1,X2|Z=z, τ̂
(2)
1,2|Z=z and τ̂

(3)
1,2|Z=z look similar, but they are nevertheless differ-

ent. In case of i = j, the the estimator τ̂ (s)1,X2|Z=z will return values in different subsets of
the interval [−1, 1] for i = 1, 2, 3. In fact, the estimators will have values in the following
intervals

τ̂
(1)
X1,X2|Z=z ∈ [−1 + sn, 1 + sn],

τ̂
(2)
X1,X2|Z=z ∈ [−1, 1 + 2sn],

τ̂
(3)
X1,X2|Z=z ∈ [−1 + 2sn, 1],

where sn denotes the sum of squared weights, sn :=
∑n

i=1 w
2
1,n(z). According to Deru-

migny and Fermanian [8], there exists almost surely a direct relationship between these
estimators given by

τ̂
(1)
X1,X2|Z=z = τ̂

(2)
X1,X2|Z=z + sn = τ̂

(3)
X1,X2|Z=z − sn. (3.5)

An event is said to happen almost surely if it happens with probability one. In other
words, the set of possible exceptions may be non-empty, but it has probability zero.

We prefer a rescaled estimator, such that it takes values in the entire interval [−1, 1], over
the estimators we have seen [22]. Consequently, we define a rescaled estimator taking
values in [−1, 1] by

τ̃
(1)
X1,X2|Z=z : =

τ̂
(1)
X1,X2|Z=z

1− sn
, (3.6)

=
τ̂
(2)
X1,X2|Z=z

1− sn
+

sn
1− sn

, (3.7)

=
τ̂
(3)
X1,X2|Z=z

1− sn
− sn

1− sn
. (3.8)
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This estimator has been implemented in the programming language R by the package
CondCopulas, see [9]. In Appendix A, the reader can find the code used to compute the
estimates for the conditional Kendall’s tau.

3.2.1. Choice of the conditioning event
The interval on which we condition is constructed using quantiles. A quantile determines
how many values in a distribution are above or below a certain limit. In this thesis, we
define the conditioning event to be an equidistant sequence starting at q10 and ending
at q90 for 100 points. Here q10 represents the point after which 10% of the data is
distributed. Similarly, q90 represents the point after which 90% of the data is distributed.
This choice of the interval is robust to outliers. Indeed, one outlier could stretch out the
entire interval too much. This procedure is used to construct the conditioning event for
the subset of all conditioning variables.

For estimating CKT, on the other hand, for the complete dataset, we use a sequence
of equidistant quantiles for 100 points, starting from q10 and ending at q90. This con-
struction of the interval takes even more into account the distribution of points in a
dataset.

3.2.2. Choice of the bandwidth
As mentioned in Chapter 2, the choice of bandwidth h is crucial for the behaviour of
the conditional Kendall’s tau. It determines for the most part what the curve will look
like. A too small bandwidth will return a bumpy curve which shows a lot of individual
peeks. This is called undersmoothing. This is not realistic since it is not likely that the
correlation shifts instantly from a large value to a small value. On the other hand, a too
large bandwidth will return a flattening curve. In other words, the curve will look like a
unimodal distribution and hide all non-unimodal distribution properties. This is called
oversmoothing.

The choice of a proper bandwidth is hard. Ideally, it would be preferable to choose the
bandwidth h for the conditional Kendall’s tau for each combination of assets separately.
However, this is tedious and time-consuming work. There are several clever ways, ’rules
of thumb’, that can be used to determine a sufficiently working bandwidth. For instance,
Silverman’s rule of thumb for one-dimensional data or the more generalized Scott’s rule
of thumb for d-dimensional data [2].

ĥSilverman =

(
4σ5

3n

) 1
5

, (3.9)
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where σ is the standard deviation of the distribution and n is the amount of data points.

ĥScott =
1

hd+4
Σ1/2, (3.10)

where Σ is the covariance matrix and d the number of dimensions.

Although they are simple, they have limitations. Scott’s rule requires the data from the
normal distribution. The Silverman’s rule is more robust but only works well for normal
distributed data as well and distributions close to normal.

Therefore, a non-parametric bandwidth selector would be more likely. According to [8],
a common way for kernel methods is to choose h as the minimizer of the cross-validation
criterion.

CV(h) :=
2

n(n− 1)

n∑
i,j=1

(
gk(Xi,Xj)− τ̂

(h,k)
−(i,j),1,2|Z=(Zi+Zj)/2

)2

Kh(Zi − Zj), (3.11)

for τ̃1,2|Z=·. Here, gk is defined as the indicator function in (3.2) for k = 1, 2, 3.

The easiest way to choose a bandwidth h is based on visual inspection. This is often a
well-functioning method. In this research, we have determined the bandwidth manually
for each variable. The bandwidth is adjusted after inspecting the plots of the estimates
of the conditional Kendall’s tau such that all curves look well-behaved. Our choice of
bandwidths for each conditioning variable is listed below

Financial Asset (Variable) Abbreviation Bandwidth h

France CAC 40 Stock Index FCHI h = 0.0009

Amsterdam Exchange Index AEX h = 0.001

German DAX Index GDAXI h = 0.001

EURO STOXX 50 Eurostoxx h = 0.001

Dow Jones Industrial Average DJI h = 0.0009

Nasdaq Composite IXIC h = 0.0007

SP500 Index SP500 h = 0.001

Nikkei Index N225 h = 0.001

Oil prices West Texas Intermediate WTI h = 0.003

Brent Crude Oil Brent h = 0.003

Debt and currency 5 year US Treasury Yield FVX h = 0.0025

Price in Euros of 1 bitcoin BTC.EUR h = 0.005

1EUR in USD EURUSD.X h = 0.0005
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In Appendix A, we have included our visual inspection analysis for each asset. Here, our
choice for bandwidths is supported by several plots.

3.3. Principal Component Analysis (PCA)
As mentioned in Section 3.1, we have a dataset consisting of 858 variables and 100
observations each. It is hard to interpret and visualise this high-dimensional dataset.
Therefore, we introduce Principal Component Analysis.

Principal component analysis (PCA) is a multivariate statistical technique that analyses
multidimensional datasets with several dependent variables. The goal is to reduce the
dimensionality of such datasets, to increase interpretability and, at the same time, to
preserve as much as possible of the information contained in the original dataset. To
achieve these goals, this technique computes new uncorrelated variables called principal
components which are obtained as linear combinations of the original variables multiplied
by weights, so-called factor scores. Thus, the first principal component is intuitively
defined as the linear combination of observed variables, which has the maximum variance.
Then, the second component is orthogonal to the first principal component and captures
the second largest variance. This process iterates for all principal components.

Note that, the PCA method is particularly useful when the variables within the dataset
are highly correlated. Correlation indicates that there is redundancy in the data. Due to
this redundancy, PCA can be used to reduce the original variables into a smaller number
of new variables explaining most of the variance in the original variables [19].

3.3.1. Mathematical background
In the following subsection, we provide a more rigorous explanation of PCA which is
based on the article of Abdi and Williams (2010) [1] and the report of Nguyen [15].
In short, we recognize four steps in Principal Component Analysis. Now each step is
discussed and applied to the dataset containing all estimates of the conditional Kendall’s
tau of all different assets.

Step 1 - Constructing a data matrix
The data p × n matrix, denoted by A, consists of p variables representing the columns
and n observations representing the rows. In our dataset we have p = 858 variables and
n = 100 observations. Hence, our data matrix is constructed as in (3.1)
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Step 2 - Preprocessing the data matrix
Almost always, the data is preprocessed before analysing. First of all, the columns of
A will be centered so that the mean of each column is equal to zero. To obtain this we
subtract the mean µj of each variable per column.

If, in addition, each element of A is divided by the square root of the identity matrix√
I, the method is referred to as the covariance PCA. Recall that the covariance is

defined as Cov(Xi, Xj) = E[(Xi − E[Xi)](Xj − E[Xj)]]. Then the matrix X⊤X is called
the covariance matrix. A covariance matrix is a square matrix giving the covariance
between each pair of variables Xi and Xj. Any covariance matrix, denoted as Σ, is
symmetric and its main diagonal contains variances, i.e. the covariance of each element
with itself.

The variables could have been measured in different units. This may cause issues when
analysing and comparing them. Therefore, we standardize the data by dividing each
variable by its norm. To obtain this, each column is divided by

√∑p
i=1(τ̂Xi,Xj |Z=zk )

2−µj

I .
This preserves the correlations but ensures that the total variance equals one. In this case,
the analysis is referred to as a correlation PCA. Then, the matrix X⊤X is a correlation
matrix, having all diagonal entries equal to one and the other entries are given by∑p

i=1(τ̂Xi,Xj |Z=zl )(τ̂Xi,Xj |Z=zl )√∑I
i=l(τ̂Xi,Xj |Z=zl )

2−µj

√∑I
i=1(τ̂Xi,Xk|Z=zl )

2−µk

. Indeed, the covariance matrix is the correlation

matrix of the standardized random variables for i = 1, . . . , 100, j = 1, . . . , p and l =

1, . . . , 100. Further, note that the correlation matrix is symmetric because the correlation
between Xi and Xj is the same as the correlation between Xj and Xi [19].

The data we have imported are returns that are not centered, standardized and station-
ary. However, this is not necessary because CKTs are directly comparable since they are
all between −1 and 1. So there is no need to normalize them to make them comparable
since they are already comparable without any need for any transformation. Therefore,
we use covariance PCA.

Step 3 - Computing eigenvalues and corresponding eigenvectors of the cor-
relation matrix
In PCA, the components are obtained from the Singular Value Decomposition (SVD) of
the n × p matrix A. Singular Value Decomposition is a factorization of a rectangular
matrix into three simpler matrices, say P,∆,Q⊤. In other words, the singular value
decomposition is given by X = P∆Q⊤, where

1. P is an p× p matrix of the orthonormal eigenvectors of X⊤X.

2. Q is the transposed n× n matrix of the orthonormal eigenvectors of XX⊤.
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3. ∆ is a rectangular diagonal p×n matrix of the singular values. The singular values
can be found by taking the square root of the eigenvalues of both X⊤X and XX⊤.

Every principal component, the new variables, can be written as a linear combination
of the original variables. The values of these new variables are called factor scores.
Geometrically, the factor scores are the projections of the observations onto the principal
components. The factor scores, denoted as F, are following from

F = P∆.

Here, the matrix Q gives the coefficients or weights of the linear combinations. In other
words, the matrix Q is the projection matrix that projects the original values onto the
principal components.

Step 4 - Further analysing of the eigenvalues and corresponding eigenvectors
Eigenvalues indicate the amount of variance explained by each factor. Eigenvectors
are the weights that could be used to calculate factor scores. The eigenvector of the
correlation matrix corresponding to the largest eigenvalue corresponds to the first prin-
cipal component. The second principal component corresponds to the eigenvector of
the second largest eigenvalue of the correlation matrix. We iterate this process for each
principal component.

We need to figure out how many components are necessarily needed. According to Abdi
and Williams (2010), this problem is still open, but there are some useful rules. First, we
investigate this by plotting the principal components against their amount of variance
they explain. In general, the first few principal components account for the vast majority
of the variance of the variables.

Another way to find the ideal number of principal components is to choose only the
components whose eigenvalues are larger than the average. In general, it seems that
these principal components have an eigenvalue larger than one. However, it should be
noted that this rule may lead to ignoring important information.

Since the n × n matrix Q can be seen as the projection matrix, the matrix with the
transformed values is found by multiplying matrix A with Q. By knowing that X =

P∆Q⊤ and Q⊤Q = I holds, we obtain

XQ = P∆QQ⊤Q = P∆.
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3.3.2. (Geometric) Interpretation of PCA
Besides the linear algebraic approach we have seen in the previous section, it is useful
to provide a geometric approach to interpret the PCA results in Chapter 4.

It is not possible to visualize the data p× n data matrix consisting of all combinations
of conditional Kendall’s tau. However, imagine that we are considering three different
assets. We can make a 3D scatter plot of these three variables. Now, PCA first computes
the best fitting line for all data points. When the direction of the best-fit line is found we
can mark the location of each observation along the line. We find the 90-degree projection
of each observation onto the line. The distance from the origin to this projected point on
the best fitting line is called the score. Each observation gets its own score value which
can be both negative or positive. This line is in the direction of maximum variance,
meaning that the variance of these scores will be maximal. This is called the first
principal component.

Then, we could find the second principal component. By rotating the second principal
component’s direction vector we ultimately find a direction that gives the greatest vari-
ance in the score values when projected on the second principal component. Note that
this vector also starts at the origin. Rotating is allowed in all direction if and only if it
keeps perpendicular to the first principal component.

Once we have computed the principal components, we plot them against each other. In
the figure below an example is given for the entire dataset of 858 data points. The data
points are constructed as a linear combination of the first two principal components
(PC1 and PC2). In other words, τ̂Xi,Xj |Z=z = viϕ1(z) + vjϕ2(z), where (vi, vj) are the
score values and ϕ1(z), ϕ2(z) correspond to the first two principal components. The
principal components could be seen as a curve for all Z = z. PC1 and PC2 are the most
relevant patterns of the conditional Kendall’s tau for all different combinations of assets.
A large value of v means that a principal component contributes a lot to the shape of
the conditional Kendall’s tau for specific assets, either in a positive or negative manner.
A small value of v, on the other hand, means that a principal component contributes
only to a small extent.



3.3. Principal Component Analysis (PCA) 28

Figure 3.2: Score plot of PC1 and PC2 for the enitre dataset. The percentage next to the axis titles
is the amount of variance explained by the corresponding principal component. The red dot

corresponds to the conditional Kendall’s tau of FCHI and DJI given IXIC.

From Figure 3.2 it becomes clear that v1 = v1,FCHI,IXIC|Z=z = −0.012 and v2 =

v2,FCHI,IXIC|Z=z = 0. This results in a CKT curve that corresponds to τ̂FCHI,IXIC|Z=z ≃
−0.12ϕ1(z). Note that estimated CKT is not exactly equal to −0.12ϕ1(z). The CKT is
a linear combination of all PCs, not just PC1 and PC2.

Lastly, it is important to have a look at three concepts that help us interpret the results
of our Principal Component Analysis. These three concepts are explained below and
will be used in the next chapter.

• Explained variance of each principal component

• Quality of representation of all variables per component

• Clustering

Explained Variance of the principal components
The explained variance is the ratio between variance that is attributed by each compo-
nent and the total variance. The percentage of variance explained by a component, tells
the percentage of information in the dataset that this component preserves. If the num-
ber is 60%, it means that they preserve 60% of the information in the dataset. Hence,
the lower the total variance is, the higher is the information loss. Interestingly, the fact
is that PCA never tells if the information lost was relevant or irrelevant.

We will use explained variance of each component to evaluate the usefulness of each
component and to choose how many components to use. An example is provided below
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PCA Plot − Percentage explained variance for data conditioned on SP500.Open.Return

Figure 3.3: The explained variance for the subset of conditioning variable SP500. PC1 captures
most of the variance, 81.8%. PC2, PC3, PC4 are around 3%-4% after which the explained variance in

percentage decreases fast.

Quality of representation using cos2
The quality of representation of the variables is estimated using cos2. It’s calculated
as the squared factor scores, which are the coordinates of the PCA plot. A high cos2
indicates a good representation of the variable on the principal component. A low cos2,
on the other hand, indicates that the variable is not perfectly represented by the PCs.
If a variable is perfectly represented by, for instance, only two principal components.
Then, the sum of the cos2 on these two PCs is equal to one. Note that for some of the
variables, more than 2 components might be required to perfectly represent the data
[19].

Clustering
We will use clustering to find meaningful patterns in the results obtained by PCA. The
clusters are computed using the package Factoextra in R using the command fviz_cluster
in combination with the function pam. In Appendix C, the code is provided that we use
to compute and to analyse the clustered PCA results.



4
Results Simulation Study

In this chapter, we present an application of the methods to the financial data discussed
in Chapter 3. In Section 4.1, we show the results of both the estimation of CKT as the
PCA analysis applied to the entire dataset. We will perform a deep-dive on the data of
the subset of one specific conditioning variable in Section 4.2. We have chosen the asset
Dow Jones Index (DJI). Then, we elaborate on the clustering analysis. In Section 4.3
we cluster with respect to the variables X1 and X2. Whereas in Section 4.4, we cluster
with respect to the conditioning variable Z.

4.1. Results Complete Dataset
In Figure 4.1, all different curves of conditional Kendall’s tau are plotted together. The
more overlap the curves have, the darker the colour is. It allows us to see patterns
across the set of CKTs. For instance, we see heavier fluctuating values for values of
the conditional Kendall’s tau in the tails compared to in the middle. This indicates a
stronger correlation, either positive or negative, in the tails. In the middle, around q50,
it seems that there is almost no correlation for most combinations of assets. However,
for a smaller group of combinations of assets, there is certainly a positive correlation in
the middle. These are the curves fluctuating between values 0.5 and 0.75. Moreover,
the curves below zero seem to have a parabolic trend. For positive valued curves, the
parabolic shape seems to be mirrored on the x-axis. Besides, quite a few positive valued
curves do not seem to have a parabolic shape. These curves appear to have a larger
positive correlation.

30
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Plot of all conditional Kendall's tau estimates for the complete dataset

Figure 4.1: All estimates of conditional Kendall’s tau are plotted together for all financial variables.
On the y-axis, we have the values of the coefficient which are between [−1, 1]. On the x-axis the

conditioning event in quantiles.

Minimum and maximum values
The minimum and maximum value of the curve of CKT are shown in Figure 4.2. There
seems to be a clear relation: the larger the minimum value of the CKT, the larger its
maximum value.

The black lines are defined as y = x and y = −x. We have included these lines to
illustrate the differences in size of minimum and maximum values. This could tell us
more about whether curves are flat or fluctuating to some degree. If the minimum and
maximum value are equal, it would have been on the line y = x. If a value has opposite
sign, it will be on the line y = −x. The latter is the case for some combinations of
variables. We see that the closer the points are to the line y = x, the more flattening
the curve is. On the other hand, the further away the points are, the more heavily
fluctuating the curve could be.

According to Figure 4.2, the points are properly distributed diagonally. There are no
points distributed differently. This indicates the choice bandwidth is good. Indeed, when
a bandwidth is chosen too small, it would have been spread across the top left of the
graph. When a bandwidth is chosen too large, on the other hand, the points would have
been closer to or on the line y = x.
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Figure 4.2: Plot of the minimum and maximum value of each possible combination of variables in
the complete dataset.

In Figure 4.2 there could be recognized two clusters. On the one hand, we see most of
the points have a negative minimum value around the interval [−0.5, 0.0] and a positive
maximum value around the interval [−0.5, 0.5]. Intuitively, this tells us that the average
CKT will be around zero. Figure 4.1 reinforces this intuition since most of curves of the
CKTs seem to be constant around zero. On the other hand, some points have positive
minimum value around 0.5 and a large positive maximum value around the interval
[0.5, 1]. Now, the average of CKTs will be positive. Again, Figure 4.1 reinforces this
intuition since there are quite some curves of CKTs that take on larger positive values.

In Figure 4.2, we grouped the points based on all conditioning variables. It appears that
the CKTs behave according to the same pattern. This indicates there seems no clear
pattern per conditioning variable visible.

4.1.1. Results PCA for the complete dataset
In the next section, we will analyse the PCA results on the complete financial dataset.
We will first research its principal components (PC). Then, we will asses the quality of
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representation of the variables by PC1 and PC2. Lastly, the results of clustering of the
score plot will be discussed. This will be the basis for Sections 4.2 and 4.3.

Principal components
As mentioned before, the curve of a CKT is constructed as linear combination of the
principal components. So the shape that the components have, may tell us the shape of
the curve of a CKT.

In Figure 4.3 the first six principal components are plotted which seem to be smooth
and stable. It becomes clear that especially the first five components are relevant since
component number six (plot F) does not show a consistent trend. The influence of PC1
on a CKT is that it will contribute to less correlation in the tails compared to the middle.
Note that we are looking at a negative interval on the y-axis. However, the scores (vi, vj)
could also be negative, resulting in a curve that is mirrored on the x-axis. Further, PC2
has quite a large positive contribution for the left tail, after which the curve ultimately
becomes constant around zero. This means that for larger values of Z there is much less
influence of PC2 on the CKTs.
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Figure 4.3: The curves of the first six principal components for the complete dataset.

Note that the curves of the CKTs in 4.1 are linear combinations of all principal com-
ponents. Since we are looking at only the first two principal components, it gives an
indication of the structure of the CKTs. Therefore, it does not allows us to explain the
exact curves of CKTs in Figure 4.1.
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Note that the average correlation for PC2, PC3 and PC4 are approximately around zero.
Since principal components are uncorrelated, just PC1 determines the average of the
correlation. PC2, PC3, PC4 (and the other components until PC100) still contribute to
the shape of the curve of a CKT.

Furthermore, it is important to know how much variance of the original dataset is cap-
tured by the principal components. Figure 4.4 tells us the percentage of explained
variance of each component. Clearly, PC1 captures most of the variance. This indicates
that most of the observations are distributed across the first dimension. Often a per-
centage of 80% of the total variance works sufficiently, i.e. we will choose component
one and two.
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PCA Plot − Percentage of explained variance per principal component for entire financial data set

Figure 4.4: Percentage of explained variance of the first twenty principal components of the
complete dataset.

Quality of the representation
In Figure 4.5 the quality of the representation of the variables by PC1 and PC2 are
shown. In the tails we see high cos2 values which indicates a very good representation of
the variables on the first two principal component. In the middle of the plot, around the
origin, we see a low cos2. This indicates that these variables are not perfectly represented
by the PCs. It is noticeable that these points seem to have a vertical pattern. This is
coherent with the fact that PC1 explains most of the variance.
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Figure 4.5: Representation of the variables by PC1 and PC2 for the complete dataset. The larger
the value for cos2, the better the representation is.

4.1.2. Clustering
To what extent a curve of an estimated CKT will look as its principal components, is
determined by the factor scores. In Figure 4.6 the plots of all factor scores for PC1 and
PC2 are shown grouped by the conditioning variable.
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Figure 4.6: Score plot for the complete dataset coloured for its conditioning variable.
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It appears there is no clear trend for the scores when clustering on the conditioning
variable. Further, there seems to be a high density of factor scores in the rectangle
[0, 10] × [−2.5, 2.5]. This indicates that a lot of CKTs will probably look like a linear
combination of PC1 and PC2 multiplied by these scores. Remember that the represen-
tation of these variables by PC1 and PC2 is not very good, see Figure 4.5.

Note that the y-axes of the plots in Figure 4.3 consist of intervals of small values. When-
ever, scores take on small values, this results in small contributions of PC1 and PC2 to
the curves of the CKT. This corresponds with our findings in Figure 4.1, where most
curves fluctuate around zero for all Z = z. Moreover, the estimated CKTs have slightly
larger positive values in the left tail. This corresponds to the presence of PC2 which has
a single peak for small values of Z.

Furthermore, there seems to be four clusters appearing in the complete dataset. In
Figure 4.7 these four clusters are plotted. The clusters are vertically composed along
the x-axis (PC1 axis). The differences in the clusters in Figure 4.7 are caused by the large
influence of PC1 on the variables. Recall that PCs are ranked by how much variance of
the original dataset they describe. PC1 reveals the most variation, while PC2 reveals
the second most variation. Therefore, differences among clusters along PC1 axis are
actually larger than along PC2 axis.

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

● ●

●
●

●

●

●

−5.0

−2.5

0.0

2.5

−20 −10 0 10 20
Principal Component 1

P
rin

ci
pa

l C
om

po
ne

nt
 2

cluster

● 1

2

3

4

PCA Plot − Clustering for entire financial data set

Figure 4.7: Score plot of PC1 and PC2 clustered in four groups applied to the entire financial
dataset.
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Cluster 1 includes the points that have the largest negative scores for PC1. For PC2 the
points both have positive and negative scores. It seems that the scores for PC2 are quite
evenly distributed in this cluster. That is, there are not only positive or negative scores
corresponding to PC2. Cluster 4 has similar properties, but for smaller negative scores
for PC1. According to Figure 4.3 PC1 is a curve with only negative values, indicating
a negative correlation. Note that negative factor scores result in mirroring the PC1 on
the x-axis, resulting in a positive correlation. This is coherent with the curves of the
CKTs having positive correlation in Figure 4.1.

Cluster 2 consists of the points having small values for PC1. Since PC1 determines the
average correlation, this means the corresponding CKTs look like a constant line close
to zero. This indicates that the CKTs in this cluster do not correlate. Lastly, cluster
3 consists of points having a negative correlation. Positive scores for PC1 indicates a
negative correlation since PC1 a curve that takes only negative values. However, note
that cluster 3 overlaps cluster 2 on the left side. This means cluster 3 consists also of
points that correspond to curves that seem to fluctuate around zero rather than around
negative values.

The clustered scores can be associated directly with the plot of all CKTs in Figure 4.1.
This gives us Figure 4.8.
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Figure 4.8: All estimates of conditional Kendall’s tau grouped using four clusters.

Indeed, the previously described results per cluster correspond with Figure 4.8. Now, it
is clear that all CKTs seem to be constant fluctuating around its average value. Recall
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that this average value of the CKTs is determined just by PC1. Only in the tails,
the correlation seems a little bit larger. For cluster 1,2 and 4 this means a relatively
larger positive correlation. Whereas for cluster 3 this means a relatively larger negative
correlation. This is coherent with the parabolic shape of PC1.

Next, it is interesting to look at what combinations of assets are in what clusters and
how they interact with each other. In order to examine this, we have created a connected
multigraph G = (V,E) which explains the relation between the assets per cluster. Here,
the set of vertices (V ) consists of the financial assets in a specific cluster. The set of edges
(E) consists of the connections between any two assets. A connection represents a score
of an individual for one conditioning variable. For example, if GDAXI and SP500 are
linked to each other, it means that this cluster contains the point of GDAXI and SP500
for some conditioning variable. The information of the conditioning variable is contained
in the edge and it is not explicitly mentioned which conditioning variable is considered.
However, the conditioning variable is examined using the code provided in Appendix B.6
Clustering. The number of edges is the the number of combinations between the assets
for any conditioning variable. For example, when the vertices of GDAXI and SP500
are connected by five edges, this means there are five scores of GDAXI and SP500 in a
cluster for five different conditioning variables. Note that for each combination of two
assets there are 11 edges in total.

Connected graph of variables in cluster 1 of the complete dataset

FCHI
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IXIC
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AEX

GDAXI
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Eurostoxx

FVX

WTI

Figure 4.9: Multigraph G1 = (V,E) representing the scores and their underlying relation in cluster 1
applied to the complete dataset. The assets EURUSD and BTC are not present in this cluster.

The first cluster corresponds to small to moderate positive correlation. In Figure 4.9 we
recognize two different multigraphs separated from each other. The large multigraph,
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on the top side of Figure 4.9, consists of 9 assets connected by a lot of edges. Note
that N225 and Eurstoxx are connected by 11 edges, i.e. for any conditioning variable
the conditional dependence between N225 and Eurostoxx is moderately positive. The
smaller second multigraph consists only of Brent and WTI having eleven edges with each
other. This means all combinations of Brent and WTI given any conditioning variable
are clustered together. This indicates that there is a positive conditional dependence
between Brent and WTI which is reinforced by Figure 4.10
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Figure 4.10: Conditional Kendall’s tau for Brent and WTI for all conditioning variables. The
conditional dependence between Brent and WTI is moderatly strong. The CKTs fluctuate between 0.2

and 0.7 and it is mostly around 0.45

Cluster 2 corresponds to the data that is not to almost not correlated. In Figure 4.11
the relation between the assets in cluster 2 can be seen. All assets occur at least once
in this multigraph. We see in Figure 4.11 that FVX is connected to all other assets for
almost all conditioning variables. This means for FVX that there is almost no correlation
between the other assets and itself. The remaining connections of between FVX and
other assets are in cluster 3. Similarly, all assets connected to BTC lie for almost all
conditioning variables in cluster 2. The other connections are in cluster 3. However,
the scores are still around the interval [4.5, 8] for which there is almost full overlap with
cluster 2. Only the connection with EURUSD is in cluster 3, without overlap of cluster
2 (around x = 10). This indicates a slightly negative correlation between BTC and
EURUSD for most conditioning variables. This also applies to Brent with the exception
of its connection with WTI. We have seen in Figure 4.9 that for all conditioning variables
the CKTs of Brent and WTI are located entirely in cluster 1 with a moderate positive
conditional dependence.
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Connected graph of variables in cluster 2 of the complete dataset
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Figure 4.11: Multigraph G2 = (V,E) representing the scores and their underlying relation in cluster
2 applied to the complete dataset.

Next, in Figure 4.12 we see the scores in cluster 3 visualised as a multigraph. The scores
in cluster 3 correspond to data that is not to slightly negatively correlated.

Connected graph of variables in cluster 3 of the complete dataset
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Figure 4.12: Multigraph G3 = (V,E) representing the scores and their underlying relation in cluster
3 applied to the complete dataset.

In fact, EURUSD is connected to the European assets (AEX, Eurostoxx, FCHI and
GDAXI) for almost all conditioning variables. Also for N225, FVX and BTC almost
all connections with EURUSD are in this cluster. The other connections are present
to a lesser extent in both cluster 2 and 3. This indicates that EURUSD has no to
small negative correlation with all assets. In particular, a more negative correlation
when combined with European assets. This is because the scores of of the individuals of
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EURUSD with a European asset are located more on the right of the x-axis in Figure
4.7. Recall that larger positive scores result in larger negative correlation.

Lastly, cluster 4 consists of the individuals that have the most positively correlated CKTs.
In Figure 4.13 we recognize two groups. The multigraph in the upper left corner consists
of all European assets which are connected to each other. The European assets are linked
with each other for all conditional variables except for the European assets itself. For
example, AEX misses two links with Eurostoxx, which are exactly the scores for AEX
and Eurostoxx conditioned on GDAXI and FCHI. This indicates that the European have
a strong positive correlation between each other given other assets outside of Europe.

The multigraph in the lower right corner, on the other hand, consists of only US assets
(DJI, IXIC, SP500). SP500 with IXIC, and SP500 with DJI are in this cluster for all
conditioning variables. The scores of DJI and IXIC are not for all conditioning variables
this cluster. In fact, the scores of DJI and IXIC for all conditioning variables are spread
out over both cluster 1 and 4. It is surprising that only the score for DJI and IXIC given
SP500 lies in cluster 4. In fact, it has the largest positive value for the x-axis, around
x = 20. This indicates the largest average negative correlation.

Connected graph of variables in cluster 4 of the complete dataset

FCHI

DJI

IXIC

AEX

GDAXI

Eurostoxx

SP500

Figure 4.13: Multigraph G4 = (V,E) representing the scores and their underlying relation in cluster
4 applied to the complete dataset.

The analysis on the multigraphs is done by using the code in Appendix B. With the code
we created the table dataclust1 with all information on the scores for any combination
of assets.
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4.2. Results deep-dive on one single asset: Dow Jones
Index (DJI)

In this section, we will perform a deep-dive on one single conditioning asset: Dow Jones
Index (DJI). We examine the subset of the conditioning variable DJI using the same
analysis done in Section 4.1.

In Figure 4.14 we see the estimated conditional Kendall’s tau for all combinations of
variables conditioned on DJI. Most of the curves of the CKTs seem to be quite constant
around zero. Only in the tails, there are larger fluctuations which may be both positive
or negative. A few of the CKTs have a stronger positive correlation. These are the
curves around τ̂ = 0.5 which seem to be quite constant, also in the tails. The pattern of
the estimated CKTs conditioned on DJI do not differ much from to the pattern of the
CKTs in the entire dataset from Figure 4.1.
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Figure 4.14: Estimated conditional Kendall’s tau for all combinations of assets conditioned on DJI.

Note that all curves seem smooth and stable. They do not fluctuate too heavily and are
not too flat. This indicates we have used a good choice of bandwidth for DJI.
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Minimum and maximum values
There appear to be two clusters for the points in Figure 4.15. This is similar to the
complete dataset in Figure 4.2. On the one hand, we have a cluster consisting of a nega-
tive minimum and a positive maximum in the interval [0, 0.5]. These points correspond
to a curve of a CKT that fluctuates around zero. Intuitively, the average of this CKT
will be around zero and implies that there is almost no correlation. The other cluster
consists of points with both a positive minimum and maximum value. This time the
maximum value is larger, namely it is in the interval [0.5, 1]. These points correspond to
a curve of a CKT that fluctuates around a positive value. Intuitively, this curve has a
positive valued average which indicates a positive correlation. Indeed, these two clusters
of minimum and maximum values strongly correspond to the two groups of curves in
Figure 4.14.
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Figure 4.15: Minimum and maximum value of each curve of a CKT. On the x-axis the minimum
value is given and on the y-axis the maximum is given.

4.2.1. Results PCA for conditioning on DJI
Principal components
In Figure 4.16 the first four principal components are plotted. First of all, note that
these principal components are different from the ones we have seen in Section 4.1. The
reason for this is that PCA is now applied to a subset of the variables conditioned on
DJI instead of to the entire dataset. This results in different PCs and scores. In fact, a
score still corresponds to the same curve of the CKTs but as a new linear combination
between different principal components multiplied by different scores.
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Figure 4.16: The curves of the first four principal components for the subset of conditioning variable
DJI.

In Figure 4.14 we see the first three principal components describe a trend. PC4 shows
too little consistent behaviour and will not be very useful for interpreting the data. Here,
PC1 is very similar to the one of the entire dataset but mirrored on the x-axis. Because
of the small interval on the y-axis, it seems that the PC1 from Figure 4.16 is a nearly
constant line for a positive value. Further, PC2 starts for positive values and gradually
decreases. In the right tail, PC2 rises rapidly from negative values to approximately
zero. PC3 seems similar to PC2 but it is slightly different in the right tail.

Note that the average correlation for PC2, PC3 and PC4 are approximately around
zero. Since principal components are uncorrelated, just PC1 determines the average
correlation in the curve of a CKT. Of course, PC2, PC3, PC4 (and the other components
until PC100) contribute to the shape of the curve of a CKT.
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Figure 4.17: Percentage of explained variance of the first ten principal components of the subset of
conditioning variable DJI.

It is important to know how much variance of the original dataset is explained by the
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principal components. Figure 4.17 tells us the percentage of explained variance of each
component. Clearly, PC1 maximizes the variance most. This indicates that most of the
observations are distributed across the first dimension. Often a percentage of 80% of
the total variance works sufficiently. Here, choosing the first two components explains
85.2% of the variance.

Quality of the representation
In Figure 4.18 the quality of the representation of the variables by PC1 and PC2 are
shown. In the tails, there is a high value for cos2 which indicates a very good represen-
tation of the variables on the first two principal component. In the middle of the plot,
around the origin, we see a low value for cos2. This indicates that these variables are
not really well represented by the PCs. It is noticeable that these points seem to have
a vertical pattern. This is because of the stronger influence of the variables on PC1.
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Figure 4.18: Representation of the variables by PC1 and PC2 for the subset of conditioning variable
DJI. The larger the value for cos2, the better the representation is.

4.2.2. Clustering
In Figure 4.19, the scores of PC1 and PC2 of each combination conditioned on DJI
are plotted. The names of the combination of assets are included. Since the principal
components and scores are different for this subset of DJI, the distribution of points is
differently compared to the score plot of the complete dataset in Figure 4.6.
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Figure 4.19: Score plot of the subset of conditioning variable DJI using name labels.

From Figure 4.19, it becomes clear we could recognize three different clusters in the sub-
set of conditioning variable DJI. The clusters are constructed using the same approach
as for the complete dataset.

The first cluster contains the largest number of scores. The scores are around the
origin and often have small negative values on the x-axis. Similarly as in the case of the
complete dataset, PC1 seems to be almost constant. In this case, PC1 is almost constant
with a small positive average correlation. For small negative scores, this indicates that
the average correlation will be around zero and slightly negative. This corresponds to
the majority of the CKTs fluctuating around zero, as can be seen in Figure 4.14.

Cluster 2 consists of a few points that have a larger negative value for the PC1 score.
This indicates that these points may correspond to negatively correlated combinations
of assets. Furthermore, all points have a negative values on the y-axis as well except one
single score. From Figure 4.19 becomes clear that this point belongs to the combination
EURUSD BTC conditioned on DJI.

Lastly, the third cluster consists of a few points that have large values on the x-axis. In
other words, PC1 contributes to great extent in the linear combination representing the
original observation. Now, this corresponds to the few curves of CKTs that fluctuate
around values larger than zero, as can be seen in Figure 4.14. Notice that the points are
distributed along the x-axis (horizontal) instead of along the y-axis (vertical). This is
different compared to the clustering for the complete dataset in Figure 4.7.

Note that Figure 4.18 tells us the representation of the points in cluster 1 are not as
good as both cluster 2 and 3.
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Figure 4.20: Score plot of PC1 and PC2 clustered in three groups applied to the subset of
conditioning variable DJI.

Next, it is interesting to look at what combinations of assets are in what clusters and
how they interact with each other. Again, we have created a connected multigraph
GDJI = (V,E) which explains the relation between the assets per cluster. Here, the set
of vertices (V ) and the set of edges (E) are defined similarly as in Section 4.1. Note that
for each combination of two assets there is now only one edge because the conditioning
variable is DJI all the time.

Connected graph of variables in cluster 2 for subset conditioning DJI
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GDAXI

Eurostoxx

Figure 4.21: Multigraph GDJI,2 = (V,E) representing the scores and their underlying relation in
cluster 2 applied to the subset of the conditioning variable DJI. The US assets (SP500, IXIC) and

futures related to oil prices (Brent, WTI) are not present in this cluster.
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In Figure 4.21 the combinations are shown for cluster 2 which all have EURUSD. Inter-
estingly, the the combinations of EURUSD with Brent, WTI and the US assets IXIC
and SP500 are not in this cluster, but in cluster 1. These combinations are all around
x = −5 and around y = −3. This means, when conditioning on DJI, EURUSD is a little
negatively conditionally dependent with European assets and to a lesser extent for US
assets.

Connected graph of variables in cluster 3 for subset conditioning DJI

FCHI
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Brent

Eurostoxx
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WTI

Figure 4.22: Multigraph GDJI,3 = (V,E) representing the scores and their underlying relation in
cluster 3 applied to the subset of the conditioning variable DJI. The assets N225, FVX, EURUSD and

BTC are not present in this cluster.

In Figure 4.22, we recognize three separated connected graphs for cluster 3. In this
cluster the most positively correlated assets are given. The combinations Brent and
WTI, SP500 and IXIC, and the European assets with each other all conditioned on DJI
give a positive correlation. This corresponds with the relationship of the assets in cluster
1 and 4 of the complete dataset, see Figures 4.9 and 4.13.

Next, in Figure 4.23 the connections between the assets conditioned on DJI are shown.
Recall that cluster 1 contains scores corresponding to slightly negatively and not corre-
lated CKTs. The dependence between the European assets and assets outside of Europe
conditioned on DJI are in this cluster. Furthermore, all combinations for Brent and WTI
are in this cluster, except the combination Brent and WTI. The latter combination is
positively correlated. Besides, we see that all possible combinations for N225, FVX and
BTC are in cluster 1. Apparently, there is almost no dependence between these assets
and all other assets conditioning on DJI.
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Connected graph of variables in cluster 1 for subset conditioning DJI
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Figure 4.23: Multigraph GDJI,1 = (V,E) representing the scores and their underlying relation in
cluster 1 applied to the subset of the conditioning variable DJI.

Lastly, the scores for both IXIC and SP500 with the other assets are included in cluster
1, except the one with each other. Namely, the dependence of SP500 and IXIC given
DJI is positively correlated. The curve of this CKT is given in Figure 4.24.
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Figure 4.24: Curve of the conditional Kendall’s tau for SP500 and IXIC given DJI.

The four clusters used in Section 4.1 can be applied on the plot of all estimates of CKT.
This gives us Figure 4.25. This is coherent with the results in Section 4.1. Note that
the combinations N225 and Eurostoxx given DJI and Brent WTI given DJI belong to
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cluster 3 in Figure 4.20 whereas to cluster 1 in Figure 4.25 below.
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Figure 4.25: Curves of the CKTs conditioned on DJI using the clustering approach from Section 4.1.
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4.3. Results clustering with respect to X1 and X2

It is interesting to see how the dependence is between any combination of two assets, say
X1 and X2, for all conditioning variables. We can show this by plotting only the CKT
curves of two variables conditioned on all variables instead of all CKT curves together as
in Figure 4.8. This results in 78 subplots, since we have 12+11+ · · ·+2+1 = 78 possible
combinations of X1 and X2. Note that every subplot contains 11 curves corresponding
to all possibilities where we can condition on. We still apply the clustering of Section
4.1. This provides insight into the extent to which there is negative, no or positive
conditional dependence.

In Figures 4.26 until 4.28, all 78 subplots are shown. We will discuss the subplots ordered
from largest positive correlation (cluster 4) to smallest negative correlation (cluster 3).

To start, we see that cluster 4 consists of the combinations of European and US assets
with themselves. In case of the European assets, for some conditioning variables the
average correlation is smaller.

Then, cluster 1 contains mostly curves that are a combination of one European asset and
one US asset given any conditioning variable. Also combinations between one European
or US asset and N225 are contained in cluster 1 for almost any conditioning variable.
Interestingly, for all conditioning variables the CKT of Brent and WTI is contained in
cluster 1 as well.

Next, cluster 2 contains the points corresponding to curves that have no or slightly
positive correlation, fluctuating around zero. For both FVX and BTC it holds that their
CKTs with almost all other assets given any conditioning value are in this cluster. Note
that there are indeed curves of BTC in cluster 3, but do overlap with cluster 2. In other
words, even though the curves are in cluster 3, they indicate no correlation. Furthermore,
note that FVX has in combination with IXIC and WTI some curves corresponding to
other clusters. However, these curves still fluctuate around zero and indicate there is
almost no correlation. Lastly, almost all CKTs for Brent and WTI in combination with
another asset given all conditional variables are fluctuating around zero. However, only
for the conditional dependence of Brent and WTI it takes large positive values.

Lastly, cluster 3 contains both curves with negative average correlation as curves fluc-
tuating around zero with almost no correlation. The latter group overlaps with cluster
2. It becomes clear that EURUSD is strongly present in this cluster in combination
with all other assets for most conditioning variables. EURUSD is negatively correlated
in combination with AEX, BTC, Eurostoxx, FVX, GDAXI, N225 and FCHI given any
conditioning variable. In combination with Brent, DJI, IXIC, SP500 and WTI the CKTs



4.3. Results clustering with respect to X1 and X2 52

are more fluctuating around zero rather than around negative values.

The results described above are coherent with our results in Section 4.1.
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Figure 4.26: CKTs of a combination of two selected variables for all conditioning variables. The
subplots are ordered in alphabetical order. (1-32)
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Figure 4.27: CKTs of a combination of two selected variables for all conditioning variables. The
subplots are ordered in alphabetical order. (33-64)
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Figure 4.28: CKTs of a combination of two selected variables for all conditioning variables. The
subplots are ordered in alphabetical order. (65-78)
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4.4. Results clustering with respect to conditioning
variable Z

In Figure 4.29 the curves of the CKTs for all combinations of any two assets given a
fixed conditioning variable are plotted. The same clustering approach is used as for the
complete dataset in Section 4.1. It becomes clear from Figure 4.29 that for each subsets
of a conditioning variable, there is a different number of CKTs in the four clusters.
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Figure 4.29: The curves of the conditional Kendalls tau for any two assets given a fixed conditioning
variable using clustering.

Our previous results, reinforce Figure 4.29. For example, most of the assets are uncor-
related when conditioning on European assets (AEX, Eurostoxx, GDAXI, FCHI) since
most curves correspond to cluster 2. Only a few combinations have a stronger posi-
tive correlation corresponding to cluster 1 and 4. Interestingly, only when when the
combination is between US assets, conditioning on a European assets is in cluster 4.

For the other assets, the distributions of CKTs in the four different clusters do not seem
to follow a pattern. This is because for every cluster there appear some curves of the
CKTs per fixed conditioning variable.



5
Conclusion

In this thesis, we have examined estimation of conditional Kendall’s tau (CKT). We have
demonstrated the use of the estimator in a real world application of thirteen different
financial assets. PCA has been used to increase the interpretability of the data of
estimated CKTs. This included the use of clustering.

In general, it seems that conditional dependence is slightly larger in the tails. This
means that when a conditioning variable takes large values, both negative and positive,
there is a stronger correlation between two assets. Note that this holds for the positive
and negative conditional dependence of the assets.

Further, it seems that scores in PCA that are not represented well by PC1 and PC2
tend to correspond to CKTs having almost no average correlation. Conversely, it seems
that the better the representation of the variables by PC1 and PC2 is, the larger the
average correlation. Again, this holds for both positive and negative correlation.

The influence of the conditioning event seems to strongly relate to characteristics such
as the geographical properties and the type of an asset. To analyse the influence of
the conditioning variable further, we used PCA clustering. We distinguish two forms
of clustering. Namely, clustering with respect to X1 and X2 and with respect to the
conditioning variable Z.

To start with the first one, it seems that given any conditioning variable, there is only
positive correlation between the stock indices.

European assets (AEX, GDAXI, FCHI and Eurostoxx) have a relatively large positive
correlation between each other. This holds for any conditional variable except for con-
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ditioning on any European assets. Then the correlation is smaller.

US assets (DJI, IXIC and SP500) have a relatively large positive correlation between
each other for any conditioning variable. Surprisingly, this does not hold for one single
combination: the conditional Kendall’s tau for DJI and IXIC given SP500 which has
the largest negative average correlation in the complete dataset.

For the sets of assets corresponding to ’Oil prices’ and ’Debt and currency’ there seems no
conditional dependence except for some combinations with EURUSD. In fact, EURUSD
is negatively correlated with the European assets for all conditioning variables. On the
other hand, there is no correlation between EURUSD and the US assets given most
of the conditioning variables. For each asset Brent, BTC, FVX, and WTI there seems
almost no correlation between the other assets given any conditioning variable. Only the
correlation between Brent and WTI takes strongly positive values given all conditioning
variables. This could be because both are futures in relation to oil prices and therefore
closely linked.

To end with the second type of clustering, there does not seem a clear trend when
clustering on the conditional variable. However, when we condition on European assets,
the average CKT seems to be less positively correlated compared to the others. Only
for US stock indices there is a strong correlation when we condition on any European
assets.



6
Discussion

It is important to validate your choices and assumptions. We could have done cross-
validation for our choice of bandwidth, for our choice of estimator and for choice of
number of components in PCA.

Choice of bandwidths
Bandwidth selection is a key issue in density estimation [10]. We have chosen the
bandwidths for each conditioning variable using visual inspection. Although this has
been done carefully, it could be done more accurate. There are various ways that we
could consider a next time to improve the choice of bandwidth. On the one hand, we
could have used one of the existing ’rules’. These include Silverman’s rule of thumb
and Scott’s rule of thumb. Note that these rules have some serious limitations [20].
We could also choose h as the minimizer of the cross-validation criterion, see (3.11),
which has been done already for estimation of conditional Kendall’s tau [8]. Lastly,
we could use the Mean Integrated Squared Error (MISE). The MISE is convenient due
to its mathematical tractability and its natural relation with the MSE. For bandwidth
selection using MISE we refer to [10].

On the other hand, we could also have performed a cross-validation for multiple band-
widths by still using visual inspection.

Choice of estimator
We have used the estimator of (3.5) for the conditional Kendall’s tau. This estimator is
used before ( [7], [8]). However, there are other estimators for CKT available. It would
be interesting to use different estimators for the same analysis we have conducted in our
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research.

Choice of number of principal components
In this thesis, we have used only the first two principal components. The explained
variance of the first two components all had a percentage of at least 80%. However, we
have seen in Chapter 4 that the representation of the variables by only PC1 and PC2
is not as good as for all scores. So does this percentage of at least 80% tell us choosing
only PC1 and PC2 will work sufficiently? As we have mentioned before, the problem of
choosing a sufficient number of PCs is still open, but there are some guidelines [1]. One
method is to plot the eigenvalues according to their size and to see if there is a point
in this graph such that the slope of the graph goes from ‘steep’ to ‘flat’. Then, choose
only the components before the steep decrease. This procedure is called the scree or
elbow test. Note that this test has some limitations. For other procedures that could
be considered, we refer to [1].

Furthermore, as choice of the financial data, we have used just the normal returns
(.Open.Return) of thirteen assets to estimate the CKT. Recall that this data is not in-
dependent of time. However, the .Open.RI dataset corresponds to the ARMA-GARCH
filtered innovations of the Open.Return dataset. This dataset is independent of time.
The CKTs estimated from the Open.RI dataset are conceptually different from the one
using the Open.Return dataset. Therefore, it is interesting to estimate CKTs of the
.Open.RI dataset. Note that the distinction between Open.Return and Open.RI is un-
related to the PCA.

Lastly, in this thesis we have used thirteen different financial assets: stock indices, bonds,
futures and exchange rates. It would be interesting whether adding more and different
assets will reinforce our conclusions in Chapter 6. For instance, I would like to include
another Asian stock index to examine the geographical influence on conditional depen-
dence.
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A
Bandwidth Selection

Bandwidth selection
Now we will provide some curves of the conditional Kendall’s tau of randomly chosen
combinations of variables to reason why this bandwidth is used.

France CAC 40 Stock Index FCHI h = 0.0009

Figure A.1 shows four well-behaved curves, i.e. smooth curves that are not too flat-
tened or too much fluctuating. Therefore, the bandwidth is chosen well for these four
combinations of variables. Whenever we inspect plots of the CKT given FCHI for other
variables, we coninue seeing well-behaved curves.
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Figure A.1: Plots of estimates for the conditional Kendall’s tau (CKT) for four different
combinations of variables. The y-axis is the interval between [−1, 1] and the x-axis is the sequence

between quantiles q10 and q90 of the data of FCHI.
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Amsterdam Exchange Index AEX h = 0.001

Figure A.2 shows four smooth curves. The curves are indeed not too flat or too fluctu-
ating. Therefore, the bandwidth is chosen well for these four combinations of variables.
Whenever we inspect plots of the CKT given DJI for other variables, we continue seeing
well-behaved curves.
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Figure A.2: Plots of estimates for the conditional Kendall’s tau (CKT) for four different
combinations of variables given AEX. The y-axis is the interval between [−1, 1] and the x-axis is the

sequence between quantiles q10 and q90 of the data of AEX.
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German DAX Index GDAXI h = 0.001

Figure A.3 shows four smooth curves. The curves are indeed not too flat or too fluctu-
ating. Therefore, the bandwidth is chosen well for these four combinations of variables.
Whenever we inspect plots of the CKT given GDAXI for other variables, we continue
seeing stable curves of the conditional Kendall’s tau.
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Figure A.3: Plots of estimates for the conditional Kendall’s tau (CKT) for four different
combinations of variables given GDAXI. The y-axis is the interval between [−1, 1] and the x-axis is

the sequence between quantiles q10 and q90 of the data of conditioning variable GDAXI.
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EURO STOXX 50 Eurostoxx h = 0.001

Figure A.4 shows four smooth curves without any remarkable behaviour. The curves are
indeed not too flat or too fluctuating. Therefore, the bandwidth is chosen well for these
four combinations of variables. Whenever we inspect plots of the CKT given Eurostoxx
for other variables, we continue seeing well-behaved curves.
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Figure A.4: Plots of estimates for the conditional Kendall’s tau (CKT) for four different
combinations of variables. The y-axis is the interval between [−1, 1] and the x-axis is the sequence

between quantiles q10 and q90 of the data of conditioning variable Eurostoxx.
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Dow Jones Industrial Average DJI h = 0.0009

Figure A.5 shows four stable curves. The curves are indeed not too flat or too fluctu-
ating. Therefore, the bandwidth is chosen well for these four combinations of variables.
Whenever we inspect plots of the CKT given DJI for other variables, we continue seeing
well-behaved curves.
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Figure A.5: Plots of estimates for the conditional Kendall’s tau (CKT) for four different
combinations of variables. The y-axis is the interval between [−1, 1] and the x-axis is the sequence

between quantiles q10 and q90 of the data of conditioning variable DJI.
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Nasdaq Composite IXIC h = 0.0007

Figure A.6 shows four stable curves. Indeed, the curves are not flattened, but they seem
to fluctuate a little heavily. This indicates a large bandwidth. The bandwidth is still
chosen well for these four combinations of variables since the fluctuations are not to
extreme. However, the bandwidth should not have been larger. Whenever we inspect
plots of the CKT given IXIC for other variables, we continue seeing well-behaved curves.
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Figure A.6: Plots of estimates for the conditional Kendall’s tau (CKT) for four different
combinations of variables. The y-axis is the interval between [−1, 1] and the x-axis is the sequence

between quantiles q10 and q90 of the data of conditioning variable IXIC.
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SP500 Index SP500 h = 0.001

Figure A.7 shows four smooth curves that do not fluctuate heavily. Moreover, the curves
are not over-smoothed, on the other hand. Hence, the bandwidth is chosen well for these
four combinations of variables. Whenever we inspect plots of the CKT given SP500 for
other variables, we continue seeing stable curves.
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Figure A.7: Plots of estimates for the conditional Kendall’s tau (CKT) for four different
combinations of variables. The y-axis is the interval between [−1, 1] and the x-axis is the sequence

between quantiles q10 and q90 of the data of conditioning variable SP500.
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Nikkei Index N225 h = 0.001

Figure A.8 shows four stable curves. Only the curve in plot (c) seems to be quite shocky.
This may be due to a too small bandwidth. However, the bumps are not extreme and
the CKT stays most of the time within a rather small interval [−0.25, 0]. Hence, the
bandwidth is chosen sufficiently for these four combinations of variables. Whenever we
inspect plots of the CKT given N225 for other variables, we continue seeing well-behaved
curves.
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Figure A.8: Plots of estimates for the conditional Kendall’s tau (CKT) for four different
combinations of variables given N225. The y-axis is the interval between [−1, 1] and the x-axis is the

sequence between quantiles q10 and q90 of the data of conditioning variable N225.
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Oil prices West Texas Intermediate WTI h = 0.003

Figure A.9 shows four smooth curves without any remarkable behaviour. The curves
are indeed not too flat or too fluctuating. Therefore, the bandwidth is chosen well for
these four combinations of variables. Whenever we inspect plots of the CKT given WTI
for other variables, we continue seeing well-behaved curves.
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Figure A.9: Plots of estimates for the conditional Kendall’s tau (CKT) for four different
combinations of variables. The y-axis is the interval between [−1, 1] and the x-axis is the sequence

between quantiles q10 and q90 of the data of conditioning variable WTI.
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Brent Crude Oil Brent h = 0.003

Figure A.10 shows four stable curves which are not fluctuating too heavily. Hence,
the bandwidths are chosen well for these four combinations of variables. Whenever
we inspect plots of the CKT given Brent for other variables, we continue seeing stable
curves.
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Figure A.10: Plots of estimates for the conditional Kendall’s tau (CKT) for four different
combinations of variables given Brent. The y-axis is the interval between [−1, 1] and the x-axis is the

sequence between interval q10 and q90 of the data of Brent.



73

Debt and currency 5 year US Treasury Yield FVX h = 0.0025

Figure A.11 shows four stable curves. Hence, the bandwidths are chosen well for these
four combinations of variables. Whenever we inspect plots of the CKT given FVX for
other variables, we continue seeing stable curves.
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Figure A.11: Plots of estimates for the conditional Kendall’s tau (CKT) for four different
combinations of variables given FVX. The y-axis is the interval between [−1, 1] and the x-axis is the

sequence between quantiles q10 and q90 of the data of conditioning variable FVX.
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Price in Euros of 1 bitcoin BTC.EUR h = 0.005

Figure A.12 shows four stable curves. Both curves in plot (a) and (b) seem to be quite
flat. This may be due to a too large bandwidth. However, the curves seem to change over
some time and some bumps are still visible. Hence, the bandwidth is chosen sufficiently
for these four combinations of variables. Whenever we inspect plots of the CKT given
BTC for other variables, we continue seeing well-behaved curves.
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Figure A.12: Plots of estimates for the conditional Kendall’s tau (CKT) for four different
combinations of variables given BTC. The y-axis is the interval between [−1, 1] and the x-axis is the

sequence between quantiles q10 and q90 of the data of conditioning variable BTC.
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1EUR in USD EURUSD.X h = 0.0005

Figure A.13 shows four well-behaved curves. Indeed, they seem stable. Hence, the
bandwidth is chosen well for these four combinations of variables. Whenever we inspect
plots of the CKT given IXIC for other variables, we continue seeing well-behaved curves.

−1.0

−0.5

0.0

0.5

1.0

−0.004 0.000 0.004
newZ3

Es
tim

at
ed

 C
KT

Plot Estimated Conditional Kendalls Tau of WTI.Open.Return SP500.Open.Return given EURUSD.X.Open.Return

−1.0

−0.5

0.0

0.5

1.0

−0.004 0.000 0.004
newZ3

Es
tim

at
ed

 C
KT

Plot Estimated Conditional Kendalls Tau of FCHI.Open.Return DJI.Open.Return given EURUSD.X.Open.Return

(a) CKT of WTI and SP500 given EURUSD (b) CKT of FCHI and DJI given EURUSD

−1.0

−0.5

0.0

0.5

1.0

−0.004 0.000 0.004
newZ3

Es
tim

at
ed

 C
KT

Plot Estimated Conditional Kendalls Tau of DJI.Open.Return WTI.Open.Return given EURUSD.X.Open.Return

−1.0

−0.5

0.0

0.5

1.0

−0.004 0.000 0.004
newZ3

Es
tim

at
ed

 C
KT

Plot Estimated Conditional Kendalls Tau of BTC.EUR.Open.Return AEX.Open.Return given EURUSD.X.Open.Return

(c) CKT of DJI and WTI given EURUSD (d) CKT of BTC and AEX given EURUSD

Figure A.13: Plots of estimates for the conditional Kendall’s tau (CKT) for four different
combinations of variables given EURUSD. The y-axis is the interval between [−1, 1] and the x-axis is

the sequence between quantiles q10 and q90 of the data of conditioning variable EURUSD.
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B.1. R Packages
1

2 ## LIBRARIES ESTIMATING CKT -----------------------------
3 library(CondCopulas)
4 library(ggplot2)
5 library(readxl)
6 library(readxl)
7 library(writexl)
8

9 ## LIBRARIES PCA -----------------------------
10 remotes::install_github("vqv/ggbiplot")
11 library(factoextra)
12 library(tidyverse)
13 library(dplyr)
14 library(tidyr)
15 library(ggfortify)
16 library(cluster)
17 library(corrplot)
18 library(ggforce)
19 ggforce::facet_wrap_paginate
20

21 ## LIBRARIES CLUSTERING ---------------------------
22 library(igraph)

76
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B.2. Data
Importing the data

1 ##DATA -----------------------------
2 df <- read_excel("C:/Users/jlvla/Desktop/TU Delft/BEP/03. Data/data_

financial_market.xlsx")
3 financial_assets_separate <- colnames(df)
4 useful_assets <- df[, endsWith(financial_assets_separate, ".Open.Return")]
5 useful_assets_NA = sapply(useful_assets, as.numeric)
6 useful_assets_noNA = na.omit(useful_assets_NA)
7 df_useful <- data.frame(useful_assets_noNA)
8 index <- df$Index

Creating subsets for each conditioning variable
1 ##CREATING DATA SET FOR EACH CONDITIONING VARIABLE ------------------
2

3 l2 = list()
4 l2_pca = list()
5

6 for (asset in 1:length(list_of_financial_assets)) {
7 name_asset = list_of_financial_assets[asset]
8 newZ3 = seq(quantile(df_useful[, name_asset], probs = 0.1),
9 quantile(df_useful[, name_asset], probs = 0.9),

10 length.out = 100)
11

12 temp_df = read.csv(
13 paste0(
14 "C:/Users/jlvla/Desktop/TU Delft/BEP/12. Data2/CKT_conditioning_on_

test3_",
15 name_asset,
16 ".csv"), header = F)
17

18 l2[[name_asset]] <- temp_df
19

20 names_df <- c("V1", newZ3)
21 colnames(l2[[name_asset]]) <- names_df
22

23 l2[[name_asset]] = l2[[name_asset]] %>%
24 separate(
25 col = "V1",
26 into = c("nameX1", "nameX2", "nameZ"),
27 sep = "_")
28

29 l2_pca[[name_asset]] <-
30 prcomp(l2[[name_asset]][, -(1:3)], scale. = TRUE)
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31 summary(l_pca[[name_asset]])
32

33 }

B.3. Estimation of the conditional Kendall’s tau
1 for (index1 in 1:(number_assets - 1)) {
2 for (index2 in (index1 + 1):number_assets) {
3 setindex3 = setdiff(1:number_assets, c(index1, index2))
4

5 for (index3 in setindex3) {
6 name1 = list_of_financial_assets[index1]
7 name2 = list_of_financial_assets[index2]
8 name3 = list_of_financial_assets[index3]
9 newZ3 = seq(

10 quantile(df_useful[, name3], probs = 0.1),
11 quantile(df_useful[, name3], probs = 0.9),
12 length.out = 100
13 )
14 hlist = c(
15 0.0009,
16 0.0009,
17 0.0007,
18 0.0005,
19 0.005,
20 0.0009,
21 0.0009,
22 0.0007,
23 0.0005,
24 0.005,
25 0.001,
26 0.001,
27 0.001
28 )
29

30

31 estimatedCKT_kernel_1 <- CKT.kernel(
32 observedX1 = df_useful[, name1],
33 observedX2 = df_useful[, name2],
34 observedZ = df_useful[, name3],
35 newZ = newZ3,
36 h = hlist[index3],
37 kernel.name = "Epa"
38 )$estimatedCKT
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39

40 for (asset in list_of_financial_assets) {
41 if (asset == name3) {
42 estimatedCKT_kernel_1 <- CKT.kernel(
43 observedX1 = df_useful[, name1],
44 observedX2 = df_useful[, name2],
45 observedZ = df_useful[, name3],
46 newZ = newZ3,
47 h = hlist[index3],
48 kernel.name = "Epa"
49 )$estimatedCKT
50

51 toWrite1 = paste(name1, name2, asset, sep = '_')
52 toWrite2 = paste(estimatedCKT_kernel_1, sep = ',')
53

54 matrixvalues <- matrix(toWrite2 , nrow = 1)
55 colnames(matrixvalues) <- newZ3
56 names_datavalues = cbind(toWrite1 , matrixvalues)
57

58 write.table(
59 x = names_datavalues ,
60 file = paste0(
61 "C:/Users/jlvla/Desktop/TU Delft/BEP/12. Data2/",
62 paste("CKT_conditioning_on_test3", asset, sep = '_'),
63 ".csv"
64 ),
65 sep = ',',
66 append = TRUE,
67 row.names = FALSE,
68 col.names = FALSE
69 )
70

71

72 }
73 }
74 }
75 }
76 }

B.4. MinMax
1 ## MIN/MAX -----------------
2

3 df_min_findata <- apply(df_useful, 2, FUN = min, na.rm = TRUE)
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4 df_max_findata <- apply(df_useful, 2, FUN = max, na.rm = TRUE)
5 df_minmax_findata <- cbind(df_min_findata, df_max_findata)
6

7 ggplot(df_minmax_findata, aes(x = df_min_findata, y = df_max_findata)) +
8 geom_point()
9

10

11 ##PREPARING MIN/MAX applied to PCA--------------------------
12

13 df_min <- apply(df_pca_2[,-1], 1, FUN = min, na.rm = TRUE)
14 df_max <- apply(df_pca_2[,-1], 1, FUN = max, na.rm = TRUE)
15 df_names_pca <- df_pca[1:3]
16 df_minmax_pca <- cbind(df_names_pca, df_min, df_max)
17

18

19 ggplot(df_minmax_pca, aes(x = df_min, y = df_max, colour = nameZ)) +
20 geom_point() +
21 xlim(-1,1) +
22 ylim(-1,1) +
23 ggtitle("Minimum Maximum Plot of the principal components clustered by 

colouring the conditioning variables") +
24 xlab("Minimum") + ylab("Maximum") +
25 # geom_abline(slope=1, intercept=0) +
26 # geom_abline(slope=-1, intercept=0)

B.5. Principal Component Analysis
PRCOMP

1 df_pca <- read.csv(file = "C:/Users/jlvla/Desktop/TU Delft/BEP/12. Data2/
001. CKT_ALL_NAMES.csv",

2 header = F)
3

4 df_pca[,1] <- str_replace_all(df_pca$V1, ".Open.Return", "")
5

6 Useful_assets_pca <- prcomp(df_pca[,-1], scale. = TRUE)
7 Useful_assets_pca_2 <- prcomp(df_pca_2[,-1], scale. = TRUE)
8 row.names(df_pca_2) <- df_pca_2[,1]
9 summary(Useful_assets_pca)

10

11 df_pca = df_pca %>%
12 separate(col = "V1",
13 into = c("nameX1", "nameX2", "nameZ"),
14 sep = "_")
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Dataframe and plot using pivot_longer
1 df_pivot = df_pca %>%
2 pivot_longer(cols = starts_with("V"),
3 names_to = "cond_value",
4 values_to = "CKT") %>%
5 mutate(cond_value = as.numeric( substring(cond_value, 2) ) - 1 ,
6 id = paste(nameX1, nameX2, nameZ, sep = "_"),
7 cond_value_2 = newZ3[cond_value])
8

9 ggplot(df_pivot, aes(x = cond_value, y = CKT, group = id, color = clust))
+

10 geom_line(alpha = 0.1) +
11 ylim(-1,1) +
12 xlim(-1,1) +
13 ggtitle("Plot of all conditional Kendall's tau estimates for the 

complete dataset") +
14 scale_x_continuous(breaks = c(1, 25, 50, 75, 100),
15 labels = c("q10", "", "q50", "", "q90")) +
16 xlab("Z (quantiles)") +
17 ylab("Estimated conditional Kendall's tau")
18

19 ggsave(allCKT, file = "C:/Users/jlvla/Desktop/TU Delft/BEP/13. Pictures2/ 
All_CKT.pdf",

20 width = 20, height = 12, units = "cm")

Plots - complete dataset
1

2 ##00. COLOURING PER CONDITIONING VARIABLE ------------------(2x)
3

4 pwhole_cond1 <- autoplot(Useful_assets_pca_2, data = df_pca, colour = "
nameZ", scale = 0,

5 label = TRUE, label.size = 3,
6 main = "PCA Plot - First two principal components grouped per 

conditioning variables")
7 ggsave(pwhole_cond1, file = "C:/Users/jlvla/Desktop/TU Delft/BEP/13. 

Pictures2/PCA Whole Data set/ Whole Data Set 1 coloured per 
conditioning variable NO NAMES.pdf",

8 height = 12, width = 25, units = "cm")
9

10 pwhole_cond2 <- autoplot(Useful_assets_pca_2, data = df_pca, colour = "
nameZ", scale = 0,

11 main = "PCA Plot - First two principal component grouped per 
conditioning variables for complete dataset")+

12 geom_hline(yintercept = 0, linetype = "dashed") +
13 geom_vline(xintercept = 0, linetype = "dashed")
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14 ggsave(pwhole_cond2, file = "C:/Users/jlvla/Desktop/TU Delft/BEP/13. 
Pictures2/PCA Whole Data set/ WholeCondC.pdf",

15 height = 12, width = 25, units = "cm")
16

17

18 plot(x = Useful_assets_pca_2$x[,1], y = Useful_assets_pca_2$x[,2])
19

20

21 ##01. PC1 and PC2--------------------------(5x)
22

23 pwhole_pc1 <- ggplot(Useful_assets_pca_2$rotation, aes(x = indexZ_whole, y
= Useful_assets_pca_2$rotation[,1])) +

24 geom_line() +
25 ggtitle(paste("PCA Plot - PC1 for entire financial data set")) +
26 xlab("Z") +
27 ylab("PC1")
28 ggsave(pwhole_pc1, file = "C:/Users/jlvla/Desktop/TU Delft/BEP/13. 

Pictures2/PCA Whole Data set/ PCA 1 Whole Data set.pdf",
29 height = 12, width = 20, units = "cm")
30

31 pwhole_pc2 <- ggplot(Useful_assets_pca_2$rotation, aes(x = indexZ_whole, y
= Useful_assets_pca_2$rotation[,2])) +

32 geom_line() +
33 ggtitle(paste("PCA Plot - PC2 for entire financial data set")) +
34 xlab("Z") +
35 ylab("PC2")
36 ggsave(pwhole_pc2, file = "C:/Users/jlvla/Desktop/TU Delft/BEP/13. 

Pictures2/PCA Whole Data set/ PCA 2 Whole Data set.pdf",
37 height = 12, width = 20, units = "cm")
38

39 pwhole_pc3 <- ggplot(Useful_assets_pca_2$rotation, aes(x = indexZ_whole, y
= Useful_assets_pca_2$rotation[,3])) +

40 geom_line() +
41 ggtitle(paste("PCA Plot - PC3 for entire financial data set")) +
42 xlab("Z") +
43 ylab("PC3")
44 ggsave(pwhole_pc3, file = "C:/Users/jlvla/Desktop/TU Delft/BEP/13. 

Pictures2/PCA Whole Data set/ PCA 3 Whole Data set.pdf",
45 height = 12, width = 20, units = "cm")
46

47 pwhole_pc4 <- ggplot(Useful_assets_pca_2$rotation, aes(x = indexZ_whole, y
= Useful_assets_pca_2$rotation[,4])) +

48 geom_line() +
49 ggtitle(paste("PCA Plot - PC4 for entire financial data set")) +
50 xlab("Z") +
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51 ylab("PC4")
52 ggsave(pwhole_pc4, file = "C:/Users/jlvla/Desktop/TU Delft/BEP/13. 

Pictures2/PCA Whole Data set/ PCA 4  Whole Data set.pdf",
53 height = 12, width = 20, units = "cm")
54

55 pwhole_pc5 <- ggplot(Useful_assets_pca_2$rotation, aes(x = indexZ_whole, y
= Useful_assets_pca_2$rotation[,5])) +

56 geom_line() +
57 ggtitle(paste("PCA Plot - PC5 for entire financial data set")) +
58 xlab("Z") +
59 ylab("PC5")
60 ggsave(pwhole_pc5, file = "C:/Users/jlvla/Desktop/TU Delft/BEP/13. 

Pictures2/PCA Whole Data set/ PCA 5 Whole Data set.pdf",
61 height = 12, width = 20, units = "cm")
62

63 pwhole_pc6 <- ggplot(Useful_assets_pca_2$rotation, aes(x = indexZ_whole, y
= Useful_assets_pca_2$rotation[,6])) +

64 geom_line() +
65 ggtitle(paste("PCA Plot - PC6 for entire financial data set")) +
66 xlab("Z") +
67 ylab("PC6")
68

69 ggsave(pwhole_pc6, file = "C:/Users/jlvla/Desktop/TU Delft/BEP/13. 
Pictures2/PCA Whole Data set/ PCA 6 Whole Data set.pdf",

70 height = 12, width = 20, units = "cm")
71

72

73 pwhole_combi <- ggarrange(pwhole_pc1, pwhole_pc2, pwhole_pc3, pwhole_pc4,
pwhole_pc5, pwhole_pc6,

74 labels = c("A", "B", "C", "D", "E", "F"),
75 ncol = 2, nrow = 3)
76 ggsave(pwhole_combi, file = "C:/Users/jlvla/Desktop/TU Delft/BEP/13. 

Pictures2/PCA Whole Data set/ PCA 1-6 Whole Data set.pdf",
77 height = 15, width = 25, units = "cm")
78

79

80 ##02. PERCENTAGES EACH PC-------------------------------
81

82 pwhole_1 <- fviz_eig(Useful_assets_pca_2, addlabels = TRUE, ncp = 20,
83 main = paste("PCA Plot - Percentage of explained variance",
84 "per principal component for entire financial data set",

sep = " "),
85 xlab = "Principal Components")
86 ggsave(pwhole_1, file = "C:/Users/jlvla/Desktop/TU Delft/BEP/13. Pictures2

/PCA Whole Data set/ Whole Data set - Percentage each PC 1-20.pdf",
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87 height = 12, width = 20, units = "cm")
88

89

90 ##03. Individuals -------------------------(2x)
91

92 pwhole_2 <- fviz_pca_ind(Useful_assets_pca_2, repel = F) +
93 geom_point(colour = 'red') +
94 ggtitle(paste("PCA Plot - Individuals with name for entire financial 

data set")) +
95 xlab("Principal Component 1") +
96 ylab("Principal Component 2")
97 # xlim(-35, 20) +
98 # ylim (-5,5)
99 ggsave(pwhole_2, file = "C:/Users/jlvla/Desktop/TU Delft/BEP/13. Pictures2

/PCA Whole Data set/ Whole Data set - Individuals WITH name.pdf",
100 height = 12, width = 20, units = "cm")
101

102 pwhole_3 <- fviz_pca_ind(Useful_assets_pca_2 , repel = F, geom = "point")
+

103 ggtitle(paste("PCA Plot - Individuals with name for entire financial 
data set")) +

104 xlab("Principal Component 1") +
105 ylab("Principal Component 2")
106 ggsave(pwhole_3, file = "C:/Users/jlvla/Desktop/TU Delft/BEP/13. Pictures2

/PCA Whole Data set/ Whole Data set - Individuals WITHOUT names.pdf",
107 height = 12, width = 20, units = "cm")
108

109

110

111 ##07. COS2---------------------------------------------(4x)
112

113 pwhole_7 <- fviz_pca_ind(Useful_assets_pca_2, col.ind="cos2", geom = c("
point")) +

114 scale_color_gradient2(low="white", mid="cyan",
115 high="red", midpoint = 0.4) +
116 ggtitle(paste("PCA Plot - Contribution cos^2 for the complete dataset"))

+
117 xlab("Principal Component 1") +
118 ylab("Principal Component 2")
119 ggsave(pwhole_7, file = "C:/Users/jlvla/Desktop/TU Delft/BEP/13. Pictures2

/PCA Whole Data set/ contributioncos2.pdf",
120 height = 12, width = 20, units = "cm")
121

122

123 ##08. CLUSTERING ------------------------------------(4x)
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124

125 pwhole_8 <- fviz_cluster(pam(df_pca_2[,-1], 4), ellipse.type = "convex",
main = "Cluster plot", geom = "point") +

126 ggtitle("PCA Plot - Clustering for entire financial data set") +
127 # xlab("Principal Component 1") +
128 # ylab("Principal Component 2") +
129 geom_hline(yintercept = 0, linetype = "dashed") +
130 geom_vline(xintercept = 0, linetype = "dashed")
131 ggsave(pwhole_8, file = "C:/Users/jlvla/Desktop/TU Delft/BEP/13. Pictures2

/PCA Whole Data set/ Whole Data set - Clustering.pdf",
132 height = 12, width = 20, units = "cm")

Plots per conditioning variable
1

2 ##PCA Plots Per Conditioning variable -----------------------------
3

4 for (asset in 1:length(list_of_financial_assets)){
5

6 name_asset = list_of_financial_assets[asset]
7 indexZ = seq(quantile(df_useful[,name_asset], probs = 0.1),
8 quantile(df_useful[,name_asset], probs = 0.9), length.out =

100)
9

10 # ##Indivuduals --------------------------
11 # autoplot(l2_pca[[name_asset]], label = TRUE, label.size = 3,
12 # main = paste("PCA Plot - First two principal component for

data conditioned on", name_asset, sep = " "))
13

14

15 ##01. PC1 and PC2----------------------(5x)
16 p_pc1 <- ggplot(l2_pca[[name_asset]]$rotation, aes(x = indexZ, y = l2_

pca[[name_asset]]$rotation[,1])) +
17 geom_line() +
18 ggtitle(paste("PCA Plot - PC1 for", name_asset, sep = " ")) +
19 xlab("Z") +
20 ylab("PC1")
21 ggsave(p_pc1, file = (paste("C:/Users/jlvla/Desktop/TU Delft/BEP/13. 

Pictures2/PLOTS on cond variable ",
22 name_asset, "/ Principal Component 1 for 

values of Z for data of conditioning 
variable ", name_asset, ".pdf", sep = "")
))

23

24

25 p_pc2 <- ggplot(l2_pca[[name_asset]]$rotation, aes(x = indexZ, y = l2_
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pca[[name_asset]]$rotation[,2])) +
26 geom_line() +
27 ggtitle(paste("PCA Plot - PC2 for", name_asset, sep = " ")) +
28 xlab("Z") +
29 ylab("PC2")
30 ggsave(p_pc2, file = (paste("C:/Users/jlvla/Desktop/TU Delft/BEP/13. 

Pictures2/PLOTS on cond variable ",
31 name_asset, "/ Principal Component 2 for 

values of Z for data of conditioning 
variable ", name_asset, ".pdf", sep = "")
),

32 height = 12, width = 20, units = "cm")
33

34 p_pc3 <- ggplot(l2_pca[[name_asset]]$rotation, aes(x = indexZ, y = l2_
pca[[name_asset]]$rotation[,3])) +

35 geom_line() +
36 ggtitle(paste("PCA Plot - PC3 for", name_asset, sep = " ")) +
37 xlab("Z") +
38 ylab("PC2")
39 ggsave(p_pc3, file = (paste("C:/Users/jlvla/Desktop/TU Delft/BEP/13. 

Pictures2/PLOTS on cond variable ",
40 name_asset, "/ Principal Component 3 for 

values of Z for data of conditioning 
variable ", name_asset, ".pdf", sep = "")
),

41 height = 12, width = 20, units = "cm")
42

43 p_pc4 <- ggplot(l2_pca[[name_asset]]$rotation, aes(x = indexZ, y = l2_
pca[[name_asset]]$rotation[,4])) +

44 geom_line() +
45 ggtitle(paste("PCA Plot - PC4 for", name_asset, sep = " ")) +
46 xlab("Z") +
47 ylab("PC2")
48 ggsave(p_pc4, file = (paste("C:/Users/jlvla/Desktop/TU Delft/BEP/13. 

Pictures2/PLOTS on cond variable ",
49 name_asset, "/ Principal Component 4 

for values of Z for data of 
conditioning variable ", name_
asset, ".pdf", sep = "")),

50 height = 15, width = 20, units = "cm")
51

52

53 p_combi <- ggarrange(p_pc1, p_pc2, p_pc3, p_pc4,
54 labels = c("A", "B", "C", "D"),
55 ncol = 2, nrow = 2)
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56 ggsave(p_combi, file = (paste("C:/Users/jlvla/Desktop/TU Delft/BEP/13. 
Pictures2/PLOTS on cond variable ",

57 name_asset, "/ PC1-4 in one figure 
for data of conditioning 
variable ", name_asset, ".pdf",
sep = "")),

58 height = 10, width = 30, units = "cm")
59

60 ##02. Screeplot ------------------------(1x)
61 p1 <- fviz_eig(l2_pca[[name_asset]], addlabels = TRUE, ncp = 10,
62 main = paste("PCA Plot - Percentage of explained variance

 per principal component for data of conditioning 
variable ", name_asset, sep = " "),

63 xlab = "Principal Components")
64 ggsave(p1, file = (paste("C:/Users/jlvla/Desktop/TU Delft/BEP/13. 

Pictures2/PLOTS on cond variable ",
65 name_asset, "/ PCA Plot Percentage PC - 

conditioning on ", name_asset, ".pdf"
, sep = "")),

66 height = 12, width = 20, units = "cm")
67

68 ##03. Individuals ------------------------(2x)
69

70 p2 <- fviz_pca_ind(l2_pca[[name_asset]], repel = F, geom = "text") +
71 geom_point(colour = 'red') +
72 ggtitle(paste("PCA Plot - Individuals for data of conditioning 

variable", name_asset, sep = " ")) +
73 xlab("Principal Component 1") +
74 ylab("Principal Component 2")
75 # xlim(-35, 20) +
76 # ylim (-5,5)
77 ggsave(p2, file = (paste("C:/Users/jlvla/Desktop/TU Delft/BEP/13. 

Pictures2/PLOTS on cond variable ",
78 name_asset, "/ PCA Plot - Individuals - 

conditioning on ", name_asset, ".pdf", sep =
"")),

79 height = 12, width = 20, units = "cm")
80

81 p3 <- fviz_pca_ind(l2_pca[[name_asset]], repel = F, geom = "point") +
82 ggtitle(paste("PCA Plot - Individuals for data of conditioning 

variable", name_asset, sep = " ")) +
83 xlab("Principal Component 1") +
84 ylab("Principal Component 2")
85 ggsave(p3, file = (paste("C:/Users/jlvla/Desktop/TU Delft/BEP/13. 

Pictures2/PLOTS on cond variable ",
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86 name_asset, "/ PCA Plot Individuals NO 
NAME - conditioning on ", name_asset,
".pdf", sep = "")),

87 height = 12, width = 20, units = "cm")
88

89

90 05. Contributions -----------------------(4x)
91 # var <- get_pca_var(Useful_assets_pca)
92 # corrplot(var2$contrib, is.corr=FALSE)
93

94

95 p4 <- fviz_contrib(l2_pca[[name_asset]], choice = "ind", axes = 1:2, top
= 15) +

96 ggtitle(paste("PCA Plot - Contribution to PC1 and PC2 for data of 
conditioning variable", name_asset, sep = " "))

97 ggsave(p4, file = (paste("C:/Users/jlvla/Desktop/TU Delft/BEP/13. 
Pictures2/PLOTS on cond variable ",

98 name_asset, "/ PCA Plot - Contribution 
Histogram - conditioning on ", name_asset, "
.pdf", sep = "")),

99 height = 12, width = 20, units = "cm")
100

101

102

103 p5 <- fviz_pca_ind(l2_pca[[name_asset]], col.ind="contrib", repel = F,
geom = "point") +

104 scale_color_gradient2(low="white", mid="cyan",
105 high="red") +
106 ggtitle(paste("PCA Plot - Contribution for data of conditioning 

variable", name_asset, sep = " ")) +
107 xlab("Principal Component 1") +
108 ylab("Principal Component 2")
109 ggsave(p5, file = (paste("C:/Users/jlvla/Desktop/TU Delft/BEP/13. 

Pictures2/PLOTS on cond variable ",
110 name_asset, "/ PCA Plot - Contribution Names - 

conditioning on ", name_asset, ".pdf", sep =
"")),

111 height = 12, width = 20, units = "cm")
112

113 p5v2 <- fviz_pca_ind(l2_pca[[name_asset]], col.ind="contrib", repel = T
) +

114 scale_color_gradient2(low="white", mid="cyan",
115 high="red", midpoint=1) +
116 ggtitle(paste("PCA Plot - Contribution for data of conditioning 

variable", name_asset, sep = " ")) +
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117 xlab("Principal Component 1") +
118 ylab("Principal Component 2")
119 ggsave(p5v2, file = (paste("C:/Users/jlvla/Desktop/TU Delft/BEP/13. 

Pictures2/PLOTS on cond variable ",
120 name_asset, "/ PCA Plot - Contribution

 Names (No overlap) - conditioning 
on ", name_asset, ".pdf", sep = "")
),

121 height = 12, width = 20, units = "cm")
122

123 p6 <- fviz_pca_ind(l2_pca[[name_asset]], col.ind="contrib", geom = "
point") +

124 scale_color_gradient2(low="white", mid="cyan",
125 high="red", midpoint=1) +
126 ggtitle(paste("PCA Plot - Contribution for data of conditioning 

variable", name_asset, sep = " ")) +
127 xlab("Principal Component 1") +
128 ylab("Principal Component 2")
129 ggsave(p6, file = (paste("C:/Users/jlvla/Desktop/TU Delft/BEP/13. 

Pictures2/PLOTS on cond variable ",
130 name_asset, "/ PCA Plot - Contribution 

Scatter - conditioning on ", name_
asset, ".pdf", sep = "")),

131 height = 12, width = 20, units = "cm")
132

133

134

135 ##07. COS2-----------------------(1x)
136 p7 <- fviz_pca_ind(l2_pca[[name_asset]], col.ind="cos2", geom = c("point

")) +
137 ggtitle(paste("PCA Plot - Representation using cos^2 for data of 

conditioning variable", name_asset, sep = " ")) +
138 xlab("Principal Component 1") +
139 ylab("Principal Component 2") +
140 scale_color_gradient2(low="white", mid="cyan",
141 high="red", midpoint = 0.4)
142 ggsave(p7, file = (paste("C:/Users/jlvla/Desktop/TU Delft/BEP/13. 

Pictures2/PLOTS on cond variable ",
143 name_asset, "/ PCA Plot - COS2 - 

conditioning on ", name_asset, ".pdf"
, sep = "")),

144 height = 12, width = 20, units = "cm")
145

146

147 ##08. Clustering -----------------(1x)
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148

149 p8 <- fviz_cluster(pam(l2[[name_asset]][,-(1:3)], 3), ellipse.type = "
convex", main = "Cluster plot", geom = "point") +

150 ggtitle(paste("PCA Plot - Clustering for data of conditioning variable
", name_asset, sep = " ")) +

151 xlab("Principal Component 1") +
152 ylab("Principal Component 2") +
153 geom_hline(yintercept = 0, linetype = "dashed") +
154 geom_vline(xintercept = 0, linetype = "dashed")
155 ggsave(p8, file = (paste("C:/Users/jlvla/Desktop/TU Delft/BEP/13. 

Pictures2/PLOTS on cond variable ",
156 name_asset, "/ PCA Plot - Clustering - 

conditioning on ", name_asset, ".pdf"
, sep = "")),

157 height = 12, width = 20, units = "cm")
158

159

160 }

B.6. Clustering
1 ##INFORMATION CLUSTERING COMPLETE DATASET -----------------------
2 dataclust1 = pwhole_8$data %>%
3 separate(col = "name",
4 into = c("nameX1", "nameX2", "nameZ"),
5 sep = "_") %>%
6 mutate(nameX1X2 = paste(nameX1, nameX2, sep = "_")) %>%
7 filter(cluster == 3)
8

9

10 ##INFORMATION CLUSTERING SUBSET CONDITIONING VARIABLE DJI
-------------------

11 dataclust_DJI = p8$data %>%
12 separate(
13 col = "name",
14 into = c("nameX1", "nameX2", "nameZ"),
15 sep = "_") %>%
16 mutate(nameX1X2 = paste(nameX1, nameX2, sep = "_")) %>%
17 filter(cluster == 1)
18

19 tables_couples = table(dataclust_DJI$nameX1X2)
20 df_tables_couples = data.frame(nameX1X2 = names(tables_couples),
21 nlinks = as.numeric(tables_couples)) %>%
22 separate(col = "nameX1X2",
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23 into = c("nameX1", "nameX2"),
24 sep = "_")
25

26

27 mygraph = graph_from_data_frame(df_tables_couples,
28 directed = FALSE)
29

30 plot(mygraph, main = "Connected graph of variables in cluster 1 for subset
 conditioning DJI")
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