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Abstract

Deep-learning (DL) models could greatly advance
the automation of fact-checking, yet have not
widely been adopted by the public because of their
hard-to-explain nature. Although various tech-
niques have been proposed to use local explana-
tions for the behaviour of DL models, little atten-
tion has been paid to global explanations. In re-
sponse, we investigate whether a frequent sequence
mining (FSM) tool finds sequence patterns, that act
as shortcuts, to a state-of-the-art model in the con-
text of fact-checking. By studying the connections
between a model’s input and output, association
rules (ARs) can be used as a global explanation for
the interpretation of the model. The shortcuts were
evaluated using a heuristic-based minimum support
value, the strength of each rule was determined us-
ing confidence, and the support value indicates the
global coverage of rules. Shortcuts help to form an
interpretation for creating counterfactual prompts,
which can be used as a risk assessment tool for DL
models. Other applications for rule-based global
explanations are left for future work.

Keywords — Explainability; Explainable Artificial In-
telligence; Association Rule mining; Frequent Sequence
Mining; Fact-checking.

1 Introduction
Deep-learning (DL) models have gained significant popular-
ity recently due to their impressive performance in a variety
of domains such as natural language processing, sentiment
analysis, and computer vision[1–3].

Surprisingly, the adaptation of DLs has been held back in
areas with impacts on decision-making, such as fact-checking
[4, 5]. The capacity to explain predictions of neural networks
is limited by their complexly layered character of them, cre-
ating a lack of interpretability. [6] This ‘black-box’ charac-
teristic of DL models is what makes them susceptible to bias,
which can have adverse effects when adopted in areas where
the stakes are high: which is especially true for fact-checking
[7].

Currently, a wide range of local (individual prediction) ex-
planations exist for neural network predictions. Feature at-
tributions weigh the importance of attributions to the predic-
tion of a model, such as LIME [8], Kernel SHAP [9] and
Integrated Gradients [10] methods. Other approaches are in-
stance attributions, which utilise a subset of useful attributes
that are required to exist in order to keep or eliminate a
change in the prediction of a model [11] or counterfactual ap-
proaches, which change part of an input such that it flips the
prediction of the model on that specific input. [12] Another
approach is rule-based, where the decisions of DL models
are locally explained by creating if-then rules for black-box
models [13]. But because of their locality, all of the afore-
mentioned strategies can only explain a local population of a
model.

Global explanations, however, can explain entire predic-
tion populations [14] by the use of structures that are regarded
as interpretable, such as trees[15] or decision sets [16]. An-
other work uses summaries of local explanations as global
explanations [17]. While those methods currently make up
the landscape of global explanations, there is limited work on
rule-based global approaches.

In response to that gap of research of global explanations,
we investigate whether sequences or patterns, created by se-
quence mining, are able to globally explain the decisions
made by a complex black-box model. These patterns, known
as frequent sequences, may be indicative of underlying trends
or relationships, with which if-then rules or shortcuts can be
identified [18]. By identifying patterns in a model’s input data
that are connected to output data, it may be possible to gain
a global understanding of how a model is making decisions
and to identify potential biases in the model’s predictions.

In this paper, we answer the following question: can fre-
quent sequence mining find shortcuts to a complex black-box
model? To answer this question, we resolve the following
sub-questions:

1. Can frequent sequence mining create rules that capture
global behaviour in a model for fact-checking?

2. To which categories can the rules found in question 1 be
generalised?

3. What are the applications of global shortcuts for black-
box models?

In summary, our main contributions are:
• A novel method for creating a model-agnostic explana-

tion using association rules, which is investigated and
applied to a fact-checking dataset and model. The rules
are tested by three different methods to show how it cre-
ates global explanations for the model.

• An interpretation of the model which uses part-of-
speech categories for global explanations.

• A risk assessment tool for DL models using association
rules.

The remaining part of this paper is organised as follows.
First, in section 2, a description of the problem is discussed
regarding its input and desired output. Second, the contem-
porary research on the topics is explored in section 3, and
the methodology is elaborated upon in section 4. Afterwards,
in section 5 the experimental set-up and evaluation metrics
will be highlighted, and in section 6 the results of the exper-
iment are displayed. Lastly, the outcomes are discussed and
reflected upon in section 7 and section 8, and the research is
concluded in section 9.

The code used to perform the experiments detailed in this
paper will be made accessible at https://github.com/jpsmit/
Short-Cuts-for-Deep-Neural-models for reproducibility pur-
poses.

2 Problem Description
Given a black box model f : X → Y and a dataset of in-
stances x ∈ X , we seek to find sequence patterns in a black-
box model: that is to use sequence mining to find frequent

https://github.com/jpsmit/Short-Cuts-for-Deep-Neural-models
https://github.com/jpsmit/Short-Cuts-for-Deep-Neural-models


Figure 1: low-level overview of the short-cut creation process with a few examples taken from its training dataset (a) concerning the ‘celebrity-
socialite-artist’ Paris Hilton. After partitioning the claims (b) according to training labels and performing the mining algorithm on the series
of claims, the best-performing sequence patterns (c) are selected, resulting in shortcuts that ‘bypass’ the black-box model (d). See Figure 2a
for a detailed instance of the training set.

items or rules, for which f(x) maps to the same value of Y
for any instance of a subset of X , where f(x) is the individual
prediction for the instance x.

In case a rule makes the model classify an instance on the
same category, even on unseen instances that are intended to
be classified as ‘supported’, the rule can successfully ‘bypass’
the model and a valid shortcut is found for the model predic-
tion. Those rules will be able to aid developers in improving
the transparency and accountability of machine learning mod-
els, making their decisions more interpretable for humans.

The main hypothesis is that we will find high-quality short-
cuts using a sequence mining tool on a dataset. We expect
to reveal that the black-box model that we focus on in this
study, has developed a global reliance on the sequence pat-
terns found by our research and that they expose a bias in the
model’s ability to predict.

Leaving the discussion of what makes a pattern into a good
shortcut for later, we now demonstrate the creation process
and application of shortcuts to a black-box model in the do-
main of fact-checking.

2.1 Shortcuts
Within the context of validating facts, the pipeline of devel-
oping shortcuts can be illustrated with the example given in
Figure 1. We focus on a black-box model trained on binary
classification training data, which contains training input and
corresponding classification labels. Given the set the model
is trained on, which consists of a claim, evidence and classifi-
cation label (see Figure 2), the prediction model has two op-
tions: it will either support (green) or refute (red) on a claim.
Take for example the input claim in Figure 1 “Paris Hilton is
not a recording artist” which is a refuted claim1. The claim
has evidence that the model uses to make a decision, as can
be seen in Figure 2a.

Now from that training data, partitions can be derived us-
ing a trivial selection tool which divides the set into two par-
titions, which are the input of the pattern mining algorithm.
The sequence patterns found by sequence mining can then

1See her single (www.youtube.com/watch?v=2YkCIrJKAY4).

be modelled into rules as illustrated in Figure 1. From the
rules, we can recognise how some words or word groups in
the claim of Figure 1 commonly appear in the dataset among
both classification labels (‘Paris Hilton’, ‘recording artist’)
while other word groups only appear in refuted claims (‘is
not a’, in the red-coloured circle half of 1) creating a rule for
the black-box model. Applied to the example of Figure 1 that
means the rules will show a model’s reliance on input data
created with any of the rules (‘x is not a y’, ‘x is also a y’)
for any value of x or y.

After evaluating the patterns the most significant rules can
be found, and by modifying unseen input data with the found
rules, adversarial input can be crafted to see whether the
model always refutes the found rule, bringing cases for model
debugging to light. Figure 2b illustrates how the model can be
misled by the short-cut ‘x is not a y’, and therefore the model
developer knows what input a model should be (re)trained
on.

3 Related Work
We acknowledged that the approach of this study draws from
existing work in fact-checking models and explanation meth-
ods. Therefore, the related work is divided into three parts
starting with the relevance of explaining models in the context
of fact-checking. Then we elaborate on concepts and cate-
gories of explainability methods that can be used to gather ex-
planations. Lastly, rule-based approaches as a way of explain-
ing a model in the context of fact-checking are discussed.

3.1 Fact-checking
The potential for automated fact-checking lies in its adoption
to decision-making, which is why it is important that neural
models can be interpreted [5]. The errors of a wrong clas-
sification are unwanted if not disastrous [4]. Even though
hard to interpret because of their black-box nature, AI models
can greatly advance the process of verifying claims from tex-
tual sources. Thus if the neural models used in fact-checking
would be more interpretable, they could be widely adopted
by decision-makers.

www.youtube.com/watch?v=2YkCIrJKAY4


Figure 2: rule-based prompt creation process for risk assessment in the ExPred model. Example instance of the FEVER (DeYoung et al.[19])
dataset (a) and an example adverse input (c) crafted with a rule (b). The model classifies the input as refuted (d) while the evidence supports
the claim. A model’s training data (a) can be used to create rules (b), that may be modified into adversarial attacks (c) to show how a model
such as ExPred[20] can be ‘misled’ using an adverse instance based on shortcuts.

Neural models learn how to classify a task from a training
set with ground-truth examples, and are then optimised using
a test set [21]. After being trained and tested, a model can
then be deployed to perturb unseen data.

The FEVER dataset is a valuable resource for research in
the field of natural language processing and fact-checking
[22]. Instances in the set are classified into claims, the la-
bels ‘supported’, ‘refuted’, or ‘not enough information’ and
a reference to one or more reference(s) to a collection of po-
tentially relevant Wikipedia texts, known as evidence. An
example instance taken from FEVER is illustrated in Figure
2a. DeYoung et al.[19] adjusted the dataset to only contain
claims with refuted or supported classifications. The adjusted
dataset still contains a training set of 98.000 annotated claims.

The state-of-the-art model ExPred by Zhang et al.[20] can
be applied to aid in the quest for the automation of fact-
checking. It scores higher than other fact-checking mod-
els: it performs significantly better than current explain-then-
predict methods such as [8] for providing explanations. The
model is trained on the fact-checking dataset adjusted by
DeYoung et al.[19]. Even though the model is interpretable-
by-design, it gives explanations based on single instances
and running it on big datasets would take a lot of resources.
Therefore our approach investigates whether a global post-
hoc explanation can be made to it using a less-consuming
tool.

3.2 Explainability methods
Artificial intelligence (AI) models like neural networks are
difficult to understand by the nature of their design. There-
fore, AI models are considered black boxes, because it is
rather unclear what the inner workings are of the models [7].
By design, models that are interpretable are linear or logis-
tic regression, decision trees, k-nearest neighbours, Bayesian
models and rule-based models. To give insights into the in-
ner workings of black-box models, interpretable models can
be used to explain a model. That is known as explainable AI
(XAI)[6].

Explainable AI methods can be divided into three divisions
based on the explanation phase: pre-model, in-model or post-
model [6]. Pre-model explanations use data exploration and
visualisation to create an explanation, whereas in-model does
that by design. Interpretable-by-design models explain them-
selves, which is common in complex models like ExPred[20]
or the globally faithful decision tree algorithm by Frosst and
Hinton[15]. The main idea behind it is that a model can be-

come more transparent by adding explainable layers to it.
Post-model or post-hoc explainability is the interpretation

of a black-box model’s outputs by looking at the inputs. As
post-hoc explanations seek to provide explanations that are
independent of the inner workings of the specific model be-
ing investigated, they can be applied to a wide range of mod-
els [23]. This study focuses on the latter to create a post-
hoc explanation for an existing model in the context of fact-
checking.

3.3 Post-hoc XAI
The main advantage of post-hoc techniques is their indepen-
dence from the AI model. There are several post-hoc tech-
niques, but no method ‘rules all’. It may be suitable to involve
a combination of methods. Here we outline the important as-
pects of post-hoc XAI methods.

• Feature attributions weigh the importance of attribu-
tions to make a prediction to a model instance. Exam-
ples are the Local Interpretable Model-agnostic (LIME)
technique [8], SHapely Additive exPlanation (SHAP)
[9] and Integrated Gradients [10]. These methods are
widely used because of their simplicity, take for exam-
ple the usability report on LIME: [24]. While praised for
their high simplicity, feature attribution does not scale
well with large sets of data. The methods make a linear
perturbation from local instances, meaning that it can
only be run on individual cases at a single time. This is
problematic in terms of fact-checking, as large datasets
need to be processed, which would take immense re-
sources.

• Instance attributions focus on a subset of useful at-
tributes required to exist in order to keep or eliminate
a change in the prediction of a model. An example is the
k-nearest neighbour algorithm by Rajani et al. [11].

• Counterfactual approaches change part of an input such
that it flips the prediction of the model on that specific
input. Counterfactuals are a risk assessment tool for a
model by attacking a model with adversarial prompts.
The technique by Zhang et al.[12] uses a combination of
gradient-based and prompt-based approaches to perform
adversarial attacks. Normally speaking a type of security
threat, attacks involve intentionally crafting input data
that is designed to trick a machine learning model into
making an incorrect prediction [25]. Prompt-based at-
tacks are more natural-sounding than gradient-based ap-



proaches, yet they have to be manually provided accord-
ing to heuristics[26].

• Association rules observe the connection between in-
and output data and generalise if-then rules that make
a prediction of the model output. Most attribution-based
approaches rely on user studies for measuring their ex-
plainability, while rule-based techniques are considered
explainable themselves by nature[27]. Notable exam-
ples of rule-based techniques are Anchors[13] by the
same authors as LIME, a decision tree model [28], or
similarity neighbourhoods [29]. For more examples of
association rule mining techniques, see the literature sur-
veys by Guidotti et al. [30] and Zhao and S Bhowmick
[27].

Concluding from this, it can be said that rule-based ap-
proaches are a great candidate for creating a global expla-
nation for fact-checking problems. Rules are interpretable by
nature, and in the context of fact-checking, they might be used
to show bias in a model by the same methods used in coun-
terfactuals [12].

3.4 Frequent Sequence Mining
The main advantage of association rules (AR) lies in the fact
that it is traditionally considered interpretable and therefore
applicable to rule-based explanations [27]. ARs can be mined
using Frequent sequence mining (FSM), which identifies fre-
quent sequences in the input data that are connected to cor-
responding outputs [18]. In FSM, rules are selected by com-
paring an (in some cases arbitrary [31]) threshold value or
minimum support value [32] to a support value. The support
is a measurement of the amount of input item covered by a
rule [33]. The probability of a rule predicting a trend is mea-
sured by the confidence of a rule. See figures 4 and 5 for the
formulae of support and confidence.

Building upon the strengths of the FSM algorithm from
[18], an advanced FSM algorithm is Declarative Sequential
Pattern Mining (DESQ), as proposed in [34]. As its name
implies, it allows for the declaration of sequence and hier-
archical constraints, improving the method so it can generate
broadly generalised rules. The hierarchical constraints enable
the use of dictionaries as input for pattern mining, from which
the algorithm can generalise category patterns. We can use
this advanced version of FSM and apply it to fact-checking
for textual generalisations of rules in a dataset.

4 Methodology
The main idea behind our exploratory study is to explain a
black-box model by performing frequent sequence mining to
find rules, similar to the example in section 2.1. First, we
split the FEVER[19] dataset into a ‘Refuted’ set and a ‘Sup-
ported’ set. Then both sets are run on the DESQ[34] Frequent
Sequence Mining tool to generate a set of candidate rules.
Then, the rules that are most likely to globally approximate
predictions of the black-box model ExPred[20] are chosen by
comparing their support to the minimum support value es-
tablished. Lastly, the strength of shortcuts will be illustrated
by comparing the confidence to the success rate of rule-based
attack prompts on the model.

If the results of the experiment show that the study is able
to find high-quality shortcuts that lead to accurate association
rules for the model, it would suggest that the study is effective
at approximating the predictions of the black-box model.

Alternatively, if the results of the experiment do not show
that the study is able to find high-quality shortcuts, it may
indicate that the model does not learn shortcuts and the study
is not effective at approximating the predictions.

4.1 Mining rules
Since the ExPred model is trained on the FEVER dataset
[22] adjusted by DeYoung et al.[19], that training set will
be manipulated for the purpose of applying sequence min-
ing to it. The training set can be observed in the imbalance of
the prevalence of ‘supported’ items (73%), compared to the
amount of ‘refuted’ items (27%) [19].

Because our dataset is imbalanced and will be split into two
sets, a minimum support threshold θ will be calculated for
each class. The minimum support value is a decision-making
tool in the sense that it denotes a threshold parameter, which
will be written in this experiment as θ. The threshold of the
‘Refutes’ set of sequences is denoted as θr from now on, and
the set of ‘Supports’ sequences as θs.

According to the survey by Hikmawati et al.[32], the
choice of a minimum support value depends on the design
of a dataset. Given that 27% of items in the dataset are clas-
sified as ‘refuted’, compared to 73% ‘supported’ claims, we
will have different thresholds for θr and θs respectively. Items
classified as ‘refuted’ with a coverage that is less than 0.01%
will not be tolerated as they are too specific, setting the thresh-
old value at θr = 0.001. The least tolerated coverage value
for the other set will be θs = 27

73 ∗ θr ≈ 0.0027 according to
its proportion in the dataset.

UFEVER[19] = Irefutes ∪ Isupports (1a)

Osupp.,Oref. = FSM(Isupp.), FSM(Iref.) (1b)
Sneutral = Orefutes ∧Osupports (1c)
Srefutes = Orefutes \ Sneutral (1d)
Ssupports = Osupports \ Sneutral (1e)

Figure 3: data partition process to extract the ‘neutral’, ‘refutes’
and ‘supports’ set. U is the universe of all items in the FEVER[19]
dataset, which will be used as the input I sets to the FSM tool, re-
sulting in two O output sets (b). Combining the results of the two
output sets, a neutral set can be deducted (c). The rule subsets S
are extracted in equations (d) and (e). See Figure 8 for a coloured
visualisation of the rule sets.

Two subsets were created from the training data of the
FEVER dataset[19] using the approach shown in Figure 1.
First, the data will be split into claims that have been proven
to be false and claims that have been proven to be true, creat-
ing two input sets: a ’refutes’ and ’supports’ set. The sets are
the input data to the FSM algorithm as illustrated in Figure
1b.

A textual hierarchy dictionary for the DESQ[34] tool will
be created using natural language processing technology. It



would be exhausting to categorise the subset of mined rules
by hand, by going through a dictionary and manually classi-
fying the rules. Therefore we use NLTK2, a technology for
Part-of-Speech (POS) Tagging. This technology minimises
the time spent on creating a dictionary for a declarative se-
quential pattern mining algorithm.

The POS algorithm will be run on the sequences found in
the pattern mining experiment, and a dictionary will be gen-
erated using the output. We expect to find textual categories
by running the DESQ[34] tool on the constructed dictionary,
which can be interpreted by consulting part-of-speech defini-
tions from [35–37].

The rule sets Srefutes, Ssupports are extracted by taking the
set differences between the neutral set and the refutes set as
illustrated in figures 1d and 1e after the neutral set Sneutral
can be created by taking the duplicates (figure 1b) from the
conjunction two output sets Osupports Orefutes. For exam-
ple, if a pattern is found to be common in both output sets,
it does not indicate a rule and therefore belongs to the neu-
tral set. Likewise, when a condition can only be found in the
Orefutes set, it becomes a rule for ‘refuted’ classification.

Lastly, we will test the strength of the rules from rule sets
Srefutes and Ssupports by measuring their support and con-
fidence. We select the ten strongest rules, by comparing the
confidence of the rules, and further investigation to see how
they can be used to create adverse prompts.

4.2 Rule-based prompt generation
To investigate whether the rules can be used as counterfactu-
als, targeted adversarial attacks are performed, by a prompt-
based heuristic, with the intent of generating the highest pos-
sible success rate on the ruleset.

The heuristic for creating adversarial prompts from the
mined rules is described as follows: take a set of claims S,
a claim c ∈ S and a rule or sequence s. The input claim c
containing a rule s can be rewritten as c = (a)s(d), where
a and d are the remainders of the input claims. Now for all
instances of c ⊂ S, swap out sequence s for either a suitable
synonym or antonym such that c = (a)s̄(d) where s̄ denotes
the change of the prompt. The adversarial prompts will be
denoted as s̄ from now on.

Now which placeholder for s̄ should be exchanged in a
prompt to flip its meaning? For that, we use a correspond-
ing antonym from the opposite ruleset. The meaning of a
phrase or sentiment can be flipped by using an antonym for a
specific word in a sentence [37]. The naturally expected re-
sult, in case of an antonym flipping the meaning of a query, is
that the prediction label changes as well, and the naturally ex-
pected result of using a synonym to retain the meaning should
not change the prediction label.

The rule-based prompt creation is illustrated in the example
from Figure 2c and 2d. Take the claim c = “Paris Hilton is
not a recording artist” from the set of ‘refuted’ claims. After
sequence mining and rule selection (figure 2b) the sequence
s =‘is not a’ can be applied to other claims in S with ‘sup-
ported’ labels. Take a =‘Stars are Blind’ and d =‘song’ ,

2https://www.nltk.org/

where the original input evidence is retained, meaning com-
pared to the dataset and human-based ground truth that the
label should flip (figure 2c).

5 Experimental Set Up
In this section, we investigate how frequent sequence mining
can find shortcuts to a complex black-box model and the re-
quired setup and parameters for reproducing the research. As
described in section 4, short-cuts are verified training dataset
patterns for capturing global behaviour in a trained model. In
this study, a few verification techniques common to the do-
main of data mining are used for selecting those shortcuts
from the mined patterns.

5.1 Metrics
There are plenty of metrics for assessing the quality of asso-
ciation rules, four methods were combined to prove the cor-
rectness of the study. First, the confidence and support are
used as measures on the dataset to ensure high-quality rules.
Second, the percentage covered by the rules was computed to
reveal how the model predicts the algorithm, denoted as con-
fidence. Third, the model will be run on unseen, adversarial
rules to see how it generalises using the mined subsequences,
measured as the attack success rate. This mixed approach
to the experiment will allow us to test the performance of our
study under different conditions and compare its results to the
training data.

Supp(A → B) = P (A ∪B) (2)

Figure 4: Support formula as the probability of the union between
the antecedent A and consequent B [33]

Support or coverage can be used to identify the occurrence
of a pattern [33]. The support is counted as the occurrence of
a subset of instances over the entire dataset (see Figure 4)
and support can be identified as the relative number of items
which contains a pattern relative to the total amount of items.
Low support can indicate a limited amount of training data
available or the presence of noise or other confounding fac-
tors.

Conf(A → B) = P (B|A) (3)

Figure 5: Confidence formula as the probability of a consequent B
given antecedent A [33]

Confidence measures the strength of a rule[33], which is
used on both the dataset and the AI model. Independent from
the support value, it measures the conditional probability of
B happening given the known occurrence of A. It shows the
strength of a rule by revealing how high the probability is for
a consequent B, given an antecedent A. In the context of
sequence mining, take input items as the antecedent, and se-
quence mining patterns as the consequent. Then a rule will
be strong when there is a high probability that it can pre-
dict the generalisation of the dataset given the rule. In the
context of explainable AI, take input items as the antecedent,

https://www.nltk.org/


and model predictions as the consequent. Then a rule will be
strong when there is a high probability that it can predict the
outcome of the model given the rule.

Moreover, confidence is also used to calculate the propor-
tion of a rule that is correctly predicting the model. It is cal-
culated as the number of true predictions given a rule divided
by the total number of predictions made by the model. High
confidence means that the model is relying heavily on a rule,
whereas low confidence means a model does not rely on a
rule at all in making its predictions.

Success(s̄) =
successful adversarial examples

all adversarial examples
(4)

Figure 6: Attack Success Rate Formula, denoted as Success(s̄)
where s̄ is adverse input modified using short-cuts.

Attack success rate is the metric that adversarial attacks
are measured with. The metric gives insight into the vulnera-
bilities of a model [38]. The rate of success is the probability
that the model incorrectly classifies a query after performing
an adversarial attack on it, by flipping the meaning, as seen in
Figure 6.

5.2 Effect of θ
To achieve higher support values and better rules, the propor-
tion of the instances on the total data was judged against the
minimum support value, which is essentially our only hyper-
parameter.
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Figure 7: Number of sequence patterns for each classification set,
given the number of items n per sequence. The number of subse-
quence patterns drops with the increasing steps of n. After n = 4,
sequence patterns are below the minimum support value θr+s =
0.004 indicated by the red line.

We combined the value of θr+s to decide how many items
from FSM were relevant to the study. The values for θr and
θs are set at θr = 0.001 and θs = 0.003. As can be seen in
Figure 7, the first four stages of 4-item mining yielded rele-
vant results within the support value of θr+s = 0.004. It can
be observed in Figure 7 that the number of sequences, found
in all three prediction classes, decreases significantly below
the threshold value after each iteration of n-item mining. An

example of the relevance of using the threshold is further ex-
plained by analysis of Table 2, 3,4, 5: where can be observed
how specific rules become in the ‘refutes’ set when they drop
below 0.01%.

Adverbs

Adjectives

Existential

clauses
Conjunctions

Auxiliary

verbs

Dataset

typicalities

‘Supports’
‘Refutes’
‘Neutral’

Figure 8: Venn-diagram depicting dataset partitions and the at-
tributed part-of-speech categorisation of sequence patterns found in
the FEVER dataset[19].

6 Results
We present the results of the experiment using the set-up and
metrics as described in section 5. Unless stated otherwise, all
experiments produced the same results.

During the exploration of the FEVER[19] dataset, four
steps of the DESQ[34] tool were performed, and results were
compared to the threshold value θr+s = 0.004. That implies
a process in which we first performed mining on sequences
containing one item, then two, then three, and four items. The
plot clearly illustrates that from n = 4 onward, results below
the minimum support threshold are so few, and from Table 5
in the Appendix can be derived that the results from four-item
sequences are already below the minimum threshold value.

Once the mined sequences of the two query classes were
extracted, they were divided according to their classifica-
tion labels, from two into three datasets, to gather three
class-specific datasets. As a result, there were now three
datasets containing Refutes-, Supports-, and Neutral-class-
specific subsequences.

s ∈ ‘Refutes’
s Supp(s)

refused 0.36%
yet 0.35%
exclusively 0.31%
unable 0.19%

s ∈ ‘Neutral’
s Supp(s)

and 78%
the 70%
is 58%
a 57%

s ∈ ‘Supports’
s Supp(s)

acted 0.67%
contains 0.29%
birth 0.29%
helped 0.05%

Figure 9: selection of four single-item rule patterns, per query class,
with the highest coverage (support) in the FEVER[19] dataset.

6.1 Rule categories
After that, a dictionary was used as a hierarchy constraint
with the data mining tool from which the results are presented



in the following section. By utilising speech-tagging technol-
ogy, a categorisation was constructed to retrieve more general
patterns in the landscape of found rules. A part-of-speech
dictionary was used as a hierarchy constraint with the data
mining algorithm, to catalogue the patterns in a more general
way. Figure 8 highlights the observed categorisations in the
context of the fact-checking training set.

Neutral rules. The ’neutral’ set, containing the overlap-
ping subsequences, contains dataset-specific words (mostly
FEVER[19]-typicalities) or trivial language tools needed to
construct phrases (think of auxiliary verbs and articles). Aux-
iliary verbs, also known as helping verbs, provide information
about the tense and mood of a phrase, and conjunctions pro-
vide tools to combine words and phrases [36]. For example,
the auxiliary verb ”will” can be used to form the future tense,
while the auxiliary verb ”do” can be used to form the negative
or to add emphasis to a verb phrase.

‘Refuted’ rules. As illustrated in Table 9, most words
from the one-item mining experiment results indicating a ‘re-
futes’ prediction label are either adverbs or adjectives: words
that typically modify or describe other words in a phrase. Ad-
verbs and adjectives usually alter nouns and provide details
on their properties or traits [35]. Both might provide details
on nuances in a statement or claim. For example, the adverb
”beautifully” modifies the verb ”sings” in the sentence ”She
sings beautifully” to characterise the style of her singing. The
adjective ”beautiful” modifies the noun ”voice” in the sen-
tence ”She has a beautiful voice” and identifies a feature of
her voice.

‘Supported’ rules. In contrast to the ‘Rejected’ classifica-
tion set, the ‘Supports’ dataset contains primarily claims with
existential clauses. Testing ExPred to validate a claim start-
ing with There is a [...] has a high chance of being accepted
with a ‘Supports’ label.

6.2 Adversarial attacks using shortcuts
Based on the confidence and support values, shortcuts were
selected from studying the pattern categorisations found in
section 6.1. Table 1 lists the selection of shortcuts with con-
fidence values of more than 85%.

After running the ExPred model on the queries containing
the subsequences, rule confidence scores are reasonably high
at an average of 95%. Thus, the model efficiently generalises
queries containing the sequences found in the model’s train-
ing data.

The confidence values of the selected shortcuts can be ob-
served in Table 1. The adversarial attacks also show how flip-
ping the meaning of the sequences ’was incapable of ’ and
’does not have’ has a high probability of inverting the pre-
diction label. On the other hand, it is hard to find a heuristic
that is powerful enough to flip sequence pattern ‘is only a(n)’
since it only has a 60% success rate, which is low compared to
the other success rates. That leaves options for future investi-
gation into an automated approach for rule-based attacks.

7 Discussion
In the following section, our results will be interpreted and
compared to answer the research questions. Additionally, we
pave the road for future work with some recommendations.

7.1 Interpretation of results
First of all, the method used creates rules that capture the
global behaviour of the ExPred model in the FEVER dataset.
The high support values indicate that the shortcuts can give
global explanations to the dataset. The rules found by the
method have a high support value and therefore, they cover
high populations of the dataset.The model relies heavily on
the sequences to make its predictions, as can be seen by the
high confidence values in Table 1.

The found rules enable interesting generalisations about
the nature of our dataset that we want to highlight in a lin-
guistic context. For interpretation and analysis, the works of
Huddleston[35] and Kroeger[36] were consulted to gain an
interpretation of the found categories.

The sequences found in the neutral set give insight into the
content of the dataset and the kinds of topics that are being
covered by it. Even though the sequences found in the neutral
step do not add towards an explanation for risk assessment, it
explains the model nonetheless. For example, the FEVER
dataset contains a lot of queries on the movie industry and
has many dataset-specific words related to film terminology.
These words help understand the focus of the dataset and can
be used as features in natural language processing tasks such
as classification or clustering. Other words found in the neu-
tral set, such as auxiliary verbs, can be useful for tasks such
as text summarising or machine translation, where it is impor-
tant to accurately convey the tense and mood of the original
text.

As our study points out, the ExPred[20] model is vulnera-
ble to some adversarial attacks, where small changes to the in-
put data can significantly alter the model’s output. The short-
cuts can be used to create adversarial attacks on the model,
which can be used to debug the model. That essentially
means that the rules found are connected to the counterfac-
tual interpretations in [12]. Similarly, our findings can help
in the risk assessment of neural models as the attack success
rate indicates focus areas for model debugging.

7.2 Future work
The specific route taken by this study is not the only approach.
Here we want to highlight that there might be other purposes
for the shortcuts than those shown in our approach. Moreover,
the study relies on an estimated threshold value and was only
tested on one dataset and model.

First, another application for the shortcuts might be inves-
tigated. For example, the counterfactual prompts could be
automatically generated or gradient-based [12, 38].

Second, a lower minimum support value threshold would
have increased the number of subsequences, decreasing con-
fidence but increasing coverage in the model. The estimation
of an adequate minimum support value is difficult [32] yet
impacts the outcomes of the experiment. Likewise, a higher
threshold would have decreased coverage but increased con-
fidence values.

Furthermore, we advise fellow researchers to investigate
whether the method applies to other datasets and models. The
experiment’s results are influenced by the typicalities of the
dataset, its imbalances, and the design of the model. A no-
table drawback of the study is that it only examined one par-



s → r(s) Conf(s → FEVER) Conf(s → ExPred) s̄ Success(s̄)

is incapable of being → Refutes 100% 94% was in a 78%
has only ever been → Refutes 100% 99% has also been 62%
does not have → Refutes 100% 85% does have 83%
is exclusively → Refutes 100% 99% is 60%
is not a(n) → Refutes 100% 100% is also a(n) 74%
has yet to → Refutes 100% 100% has acted 90%
is only a(n) → Refutes 100% 99% is not a(n) 77%
was unable to → Refutes 100% 95% was in the 76%
was incapable of → Refutes 100% 97% was nominated for 89%
There is a → Supports 100% 90% There is not a 89%

Table 1: selection of the 10 strongest rules to the ExPred[20] model s → r(s) using the data from FEVER[19], confidence of connections
between the dataset and the rule Conf(s → FEVER), model prediction confidence Conf(s → ExPred), adverse inputs s̄, and adversarial
attack success-rate values Success(s̄).

ticular dataset and model design, which may not be typical of
real-world datasets or models.

8 Responsible Research
In the following section, we will critically reflect on the re-
sponsibility of the study. The method is assessed using the
principles of FAIR research. Apart from that, we will take
into account the ethical implications in light of our discover-
ies.

8.1 Reproducibility
The study was tested against the FAIR protocol for standard-
ising data management by Chue Hong et al.[39] which states
that research should be ‘Findable, Accessible, Interoperable
and Reusable’. We conclude that our research satisfies all
criteria of the FAIR protocol.

The study’s findings are findable and accessible. The code
was uploaded to Github3, which is an open-source platform.
The ExPred model can be found on GitHub as well, and the
dataset is open-source too.

The study results are reusable and interoperable because
the experiment is described in detail and all input and out-
put data is fully commented with motivations inside several
Jupyter notebooks, one for each shortcut. Additionally, the
notebooks show the database files of the subsets that were
used in calculating the support and confidence values and in
forging the adversarial attacks. Anyone who wishes to can
recreate the process on the same model and dataset can make
use of that.

8.2 Ethical implications
The findings of our experiment expose the vulnerabilities of
a fact-checking model. That means the model can be manip-
ulated and exploited. We did not have the intention to pave
the way for such attacks.

To mitigate the risk of adversarial attacks, we advise de-
velopers to debug the model in a way that is more resistant
to such attacks by designing and (re)training it. This could
involve using techniques such as adversarial training, which

3https://github.com/jpsmit/Short-Cuts-for-Deep-Neural-models.

involves training the model on examples that are specifically
designed to be difficult to classify or predict, or adding ad-
ditional constraints or regularisation terms to the model’s ob-
jective function[38].

It may also be helpful regularly perform evaluations of the
model’s robustness and vulnerability, but that is beyond the
scope of this study.

9 Conclusions
In this paper, we proposed a method for creating shortcuts for
a deep-learning black-box model trained on a fact-checking
dataset, by the use of frequent sequence mining.

We found that (1) sequence mining is a tool that can cap-
ture global behaviour in a training dataset, by creating short-
cuts that act as global rules to a neural model. The rules were
tested with a strict minimum support threshold, and the short-
cuts with a coverage of at least 85% correctly predicted 95%
of the model’s predictions on average.

Additionally, (2) the rules could be visually categorised us-
ing their part-of-speech indication. The findings reveal cate-
gories of grammar attributes, that can globally generalise the
input of the model to interpret global model decisions. Fur-
thermore, (3) we showed how global shortcuts for black-box
models were discovered as a method for creating basic coun-
terfactuals which can be used for model debugging.

There are many possible routes for future work. First, we
would want to extend the manual prompt-based adversarial
attacks and see the results of automated attacks. Secondly,
a lower minimum support value threshold would have in-
creased the number of subsequences and a lower restriction
on confidence would have increased the number of shortcuts.
Finally, an important open question that this work prompts is
whether rule-based approaches can be applied to other fact-
checking datasets and models.

https://github.com/jpsmit/Short-Cuts-for-Deep-Neural-models
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A Appendix
A.1 Frequent Sequence Mining
Note that the Support means the percentage of occurring instances of a subsequence in the entirety of the dataset queries.

s ∈ ‘Neutral’ s ∈ ‘Supports’ s ∈ ‘Refutes’
s Supp(s) s Supp(s) s Supp(s)

and 78% acted 0.67% exclusively 0.31%
the 70% contains 0.29% unable 0.19%
is 58% birth 0.29% yet 0.35%
a 57% helped 0.05% refused 0.36%
in 54% incapable 0.61%
of 52% zero 0.35%
was 37% anything 0.22%
an 30% except 0.19%
by 30% failed 0.33%
to 28% never 0.42%
as 27% always 0.17%
American 26% passed 0.13%
on 25% outside 0.18%
for 23% turned 0.14%
film 21% does 0.40%
born 18% appear 0.19%
s 18% receive 0.14%
with 16% every 0.15%
has 16%

Table 2: selection of 20 one-item patterns with the highest coverage in the FEVER[19] dataset, grouped by query class



s ∈ ‘Neutral’ s ∈ ‘Supports’ s ∈ ‘Refutes’
s Supp(s) s Supp(s) s Supp(s)

, and 35% There is 0.69% not a 0.70%
is a 28% acted in 0.53% incapable of 0.61%
in the 26% her performance 0.44% is only 0.55%
of the 25% played the 0.42% is incapable 0.41%
is an 18% critically acclaimed 0.40% only a 0.40%
an American 16% also appeared 0.36% was only 0.35%
and the 14% has an 0.36% has only 0.34%
, the 13% worked with 0.35% yet to 0.34%
on the 10% also starred 0.35% refused to 0.31%
is the 9% her a 0.35% has yet 0.31%
directed by 8% Actress for 0.34% failed to 0.30%
as the 8% a nomination 0.33% not an 0.27%
as a 7% least one 0.33% of being 0.26%
, is 7% received the 0.33% only ever 0.26%
the United 7% a person 0.33% not have 0.20%
United States 7% acting career 0.33% unable to 0.19%
for the 6% received an 0.33% was incapable 0.18%
to the 6% a character 0.32% to ever 0.17%
, which 6% featured in 0.32% has not 0.15%
at the 5% his roles 0.32% only one 0.15%

Table 3: selection of 20 two-item patterns with the highest coverage in the FEVER[19] dataset, grouped by query class

s ∈ ‘Neutral’ s ∈ ‘Supports’ s ∈ ‘Refutes’
s Supp(s) s Supp(s) s Supp(s)

is an American 11% There is a 0.74% is not a 0.63%
, and the 5% was in a 0.67% is incapable of 0.43%
the United States 5% was in the 0.61% has yet to 0.32%
Award for Best 4% is also known 0.54% is only a 0.31%
one of the 4% nominated for an 0.52% incapable of being 0.27%
film directed by 3% appeared in a 0.50% is not an 0.23%
as well as 3% nominated for a 0.50% has only ever 0.20%
in the United 3% starred in a 0.49% was incapable of 0.18%
was an American 3% the Golden Globe 0.48% was unable to 0.15%
, is a 3% for her roles 0.46% does not have 0.15%
, as well 2% also appeared in 0.46% was not a 0.13%
, is an 2% she won the 0.46% only ever been 0.11%
an American actor 2% film debut in 0.46% to be a 0.17%
and directed by 2% a nomination for 0.45% is a 2015 0.17%
was nominated for 2% at least one 0.45% that premiered on 0.23%
Academy Award for 2% for her performance 0.45% most populous city 0.04%
best known for 2% performance in the 0.45% a population of 0.36%
, for which 2% which she received 0.45% the most populous 0.30%
known for his 2% is in the 0.44% is the capital 0.38%
Golden Globe Award 2% she was nominated 0.43% is a 2014 0.33%

Table 4: selection of 20 three-item patterns with the highest coverage in the FEVER[19] dataset, grouped by query class



s ∈ ‘Neutral’ s ∈ ‘Supports’ s ∈ ‘Refutes’
s Supp(s) s Supp(s) s Supp(s)

in the United States 2.56% for the Academy Award 0.36% is incapable of being 0.20%
, as well as 2.37% is an American film 0.34% has only ever been 0.11%
is an American actor 1.82% was nominated for a 0.34% thriller film directed by 0.16%
Academy Award for Best 1.80% is known for his 0.33% , making it the 0.14%
, is an American 1.57% for which she received 0.32% an American rock band 0.13%
of the same name 1.55% was nominated for an 0.31% is a song by 0.14%
an American actor , 1.37% she was nominated for 0.31%
is an American actress 1.36% BAFTA Award for Best 0.28%
written and directed by 1.26% nominated for the Academy 0.28%
the Academy Award for 1.24% the Billboard Hot 100 0.27%
Award for Best Actress 1.19%
of the United States 1.17%
, for which she 1.10%
is best known for 1.05%
film written and directed 1.05%
singer , songwriter , 0.99%
, also known as 0.98%
Golden Globe Award for 0.97%
as one of the 0.95%
Award for Best Supporting 0.95%

Table 5: selection of 20 four-item patterns with the highest coverage in the FEVER[19] dataset, grouped by query class
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