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Abstract 

 
In the shipping industry power prediction methods are commonly used. An option is to predict the 
power based with a theoretical analysis. However, with a purely theoretical approach it is not 
possible to evaluate all operating conditions. The second, simulation methods, are able to describe all 
the necessary quantities in detail. Nonetheless, simulation requires relatively high computational 
power. Thus, the current power prediction methods used in the shipping industry are insufficiently all-
encompassing or accessible. Therefore, a machine learning approach is developed to calculate the 
ships speed over ground using neural network and convolutional neural network techniques. For 
training and validation of the model operational data from a fall-pipe vessel is used. The developed 
method combined with ship motion could result in an optimal power usage, and thus leads to reduced 
fuel consumption and emissions. The method could also be used for optimised routing. Although in 
this case study applied to one single vessel, the developed model is generally applicable, providing 
ship management companies the possibility to train the model with operational data from their fleet, 
therewith, offering the possibility of reduced fuel consumption and thus emissions on a global level. 

 
1. Introduction 
 
In the shipping industry power prediction methods are commonly used. Current speed prediction 
methods are limited and/or expensive. A machine learning approach can improve the accuracy and 
decrease the cost of speed and resistance predictions, Brandsæter and Vanem (2018), Liang et al. 
(2019), Petersen et al. (2012), Pedersen and Larsen (2009). No such speed prediction model is avail-
able tailored to the shipping industry as a whole. In order to predict the ships speed and resistance, 
this research presents an improved power prediction method, based on operational data. This method 
should be able to: 
 

• accurately predict speed and resistance of a vessel, 
• for different operational conditions, 
• that is easy to use and widely accessible (on board) (low computational power). 

 
1.1 Literature Review 
 
Based on the requirements, the need arises for a method that predicts speed and resistance of a vessel 
for different operational conditions that is widely accessible. Thus, a literature review is presented 
about, the current speed and resistance calculation methods in shipping, their mutual benefits and 
shortcomings and other relevant machine learning applications in the field of marine engineering.  
 
There are several methods presented in literature and currently applied in industry. Petersen et al. 
(2012) suggests dividing the different methods in four separate groups, namely: 
 

1. Standardised traditional methods relying mostly on describing the hull using typical parameters, 
Holtrop and Mennen (1982), Holtrop (1984) 

2. Direct model testing in towing tanks, Chuang and Steen (2011) 
3. Methods based on computational fluid dynamics, Sadat-Hosseini et al. (2013), Ozdemir and 

Barlas (2017) 
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4. Regression methods that use sensor measurement data, Brandsæter and Vanem (2018), Pe-
tersen et al. (2012) 
 

These methods differ in their dependence on either theoretical base using physical laws, or empirical 
and data driven insights that base their descriptions on statistics of historical data. In the following 
sections the methods are described and evaluated in more detail. 
 
1.1.1 Traditional Methods 
 
A widely used approximate power prediction method was introduced by Holtrop and Mennen (1982) 
and later improved in Holtrop (1984). Nikolopoulos and Boulougouris (2019) states that Holtrop-
Mennen is considered to be one of the most accurate and computational efficient methods for estima-
tion and speed prediction. The method uses equations that describe various resistance components that 
add up to a total resistance from which, together with the propulsion power the engine and screws, 
provide the speed can predicted. 
 
The equations presented in Holtrop (1984), are based on a regression analysis of the data of 334 ship 
models. The ship hulls were parameterized in a range of dimension ratios. With these equations, using 
the parameters of the hull ratios as input, resistance and speed can be predicted for a vessel. 
 
Another method that is used to predict resistance and speed of a vessel is presented in Hollenbach et 
al. (1999). Matulja and Dejhalla (2007) states that this method is at least as precise as other tradition-
al methods. The Hollenbach method is based on the data of 433 ships and these ships are from the era 
between 1980 and 1995. These more recent hulls are more similar to the hulls designed nowadays 
compared to methods based on older hull shapes. Feijo and De Oliveira (2020) conclude that the 
mean prediction scenario of Hollenbach and the prediction scenario of Holtrop-Mennen are very simi-
lar, and no preference is given. The method proposed in Hollenbach et al. (1999) does give a maxi-
mum and a minimum which can be useful for different operating conditions. 
 
Traditional methods are reasonably accurate at predicting speed and resistance. Matulja and Dejhalla 
(2007), Nikolopoulos and Boulougouris (2019), Grabowska and Szczuko (2015) all agree that 
Holtrop-Mennen gives a good estimate of the ship’s speed and resistance. Matulja and Dejhalla 
(2007), Grabowska and Szczuko (2015) conclude that Hollenbach is also able to make accurate pre-
dictions. Another benefit of both methods is, the calculations are based on dimensions of the hull, 
which are determined in the earlier design phase. Therefore, these traditional methods can be applied 
early in the design process. 
 
However, Holtrop-Mennen as well as Hollenbach can only accurately predict speed and resistance, if 
the dimensions of the hull are in between the boundaries of the method. Therefore, not for all ships 
predictions can be made. Also as explained by Bertram (2012), these methods are outdated and un-
derestimate the resistance of modern hulls. Furthermore, the traditional methods do not take environ-
mental factors into account. According to Mao et al. (2016) environmental factors can increase ship 
resistance by more than 50-100%. 
 
1.1.2 Towing Tank Direct Model Testing 
 
These methods are based on the design of downsized ship models that are tested in towing tanks. In 
the research presented in Chuang and Steen (2011), a scale model of a 8000 DWT tanker is used and 
is towed through a large towing tank (L/W/D= 260/10/5). In the research presented in Chuang and 
Steen (2011) waves were created in the towing tank to measure the influence these waves had on the 
speed of the ship. The force needed to tow the vessel model through the towing tank is recorded. 
From these measurements the resistance and speed of the real size vessel are be predicted. 
 
Direct model tests are performed in a controlled environment, all influential factors can be tested sep-
arately, Chuang and Steen (2011). However, for direct model testing a towing tank is required. Tow-
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ing tanks are expensive and testing approximately costs around 10000 dollars per test, Barczak 
(2020). Furthermore, in model test the waves brake different from the full-scale ship, resulting in 
scale effects, leading to a slight accuracy problem Bertram (2014). 
 
1.1.3 Computational Fluid Dynamics (CFD) Methods 
 
Prediction methods based on CFD simulate the flow around the hull of the ship. Most CFD methods 
roughly take the following steps: 
 

• Preprocessing: 
- Forming the geometry and physical bounds of the problem, to extract fluid domain and vol-

ume 
- Discretization of the fluid domain and volume 
- Defining the physical modelling, e.g. conservation laws and equations of fluid motion 
- Definition of the boundary conditions. E.g. the fluid behaviour, initial system conditions, re-

ciprocally interaction between fluid and objects and properties of bounding surfaces 
• Simulation: iterative solving the equation for each discretization step 
• Processing the outcome, visually as well as analytically 
 

Sadat-Hosseini et al. (2013) verified this technique for added resistance for the KVLCC2 ship model 
in short and long waves. Ozdemir and Barlas (2017) also tested added resistance for the KVLCC2 
that was created by waves. The KVLCC2 is a ship model that is based on the design of the KVLCC 
model. The KVLCC model was presented in Van et al. (2000) to verify CFD models with the measur-
ing of flow experimental and comparing it to the flow calculated by the CFD algorithm. This made 
the verification of CFD models possible and thereby confirming the model. The KVLCC2 model is 
presented in Hino (2005) and is a slight differentiation on the hull presented in Van et al. (2000). 
Ozdemir and Barlas (2017) concludes that the CFD model can calculate the total resistance with a 
margin of 4.1 % of the experimental value. Another conclusion of Ozdemir and Barlas (2017) is that 
since the hull profile is very complex, the motion, and thus resistance, behaves highly nonlinearly. 
This is a useful insight for the choice of models regarding the developed method. 
 
With CFD models every hull type can be tested and the outcome is able to illustrate which part of the 
hull generates most resistance, Sadat-Hosseini et al. (2013). Earlier CFD methods were based on ele-
mentary flow models, resulting in less precise results, compared to enhanced CFD models Bertram 
(2014). However, CFD calculations are expensive and time consuming, Cui et al. (2012), Gatin 
(2019). 
 
1.1.4 Regression Methods 
 
Regression methods rely on the statistical interference of historical data, Brandsæter and Vanem 
(2018). In Petersen et al. (2012) two different techniques are used to predict the speed of a vessel, 
Artificial Neural Networks (ANN) and Gaussian Processes (GP). It is concluded that the ANN works 
better than the GP. Petersen et al. (2012) also concludes that a direct comparison with similar work, 
Pedersen and Larsen (2009), is hard, as different data is used. 
 
Mao et al. (2016) propose and compare a linear model, an autocorrelation method and an autoregres-
sive model. It is concluded that linear regression, without environmental factors, gives poor results. 
When environmental factors are included, an autoregressive process reduces the prediction errors sig-
nificantly. Also, Mao et al. (2016) stresses that travelling direction has an influence on the speed-
resistance relation. Therefore, Mao et al. (2016) suggests to only include travelling direction as input 
value, when there is a clear leading wind and wave direction. 
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Brandsæter and Vanem (2018) tests various models on their ability to accurately predict ship speed. 
Based on data regarding ship motions, wind speed relative to the ship and draft. Other external factors 
are, at least partially, causal to the ship motion and thus accounted for in the data. Hence, this data is 
not used as input. Brandsæter and Vanem (2018) compare a linear regression model (LRM), a general 
additive model (GAM) and a projection pursuit model (PPR) with a baseline model. For these meth-
ods the shaft thrust, wind and sea conditions are used as explanatory variables. Brandsæter and 
Vanem (2018) concludes that in many cases, especially in calm water conditions, the baseline model 
performs well in terms of prediction accuracy. Furthermore, according to Brandsæter and Vanem 
(2018) more advanced models do not perform better than the baseline model, when only thrust is tak-
en as explanatory variable. However, when environmental factors are taken as explanatory variables 
the accuracy increased dramatically. This is a valuable insight for this research, as this data is availa-
ble and thus it is likely to increase the accuracy of the developed model. 
 
Liang et al. (2019) proposes multiple regression models to predict ship speed, based on automatic 
identification system (AIS) sensor data and known weather data. The weather data is derived from the 
AIS data, as the position of the ship is known. Liang et al. (2019) concludes that linear regression 
methods do not predict accurately, due to the highly non-linear tendency of speed over ground. Other 
methods proposed to predict vessel speed based on data, are decision tree regressor and multiple en-
semble methods. The ensemble methods used are a random forest regressor, an extra tree regressor 
and a gradient boost regressor. Liang et al. (2019) concludes that the extra tree regressor and random 
forest regressor are the best for this task. 
 
Kim et al. (2020) use a support vector regression and harvests good results with this method. Li et al. 
(2014) uses varying machine learning techniques and finds that in some situations they perform just as 
good as RANS solvers, which are a type of CFD method. 
 
For the use and development of regression methods no knowledge of the physical phenomena is re-
quired. The underlying mathematical equations do not have to be known to make accurate predictions. 
Furthermore, all influential phenomena can be taken into account and when the method is implement-
ed it calculates outcomes very fast. However, data is needed the develop the model and regression 
algorithms rely heavily on the quantity of data. Also, this data needs to be pre-processed, which often 
is a time-consuming task. Lastly, the training of some methods, for instance convolutional neural net-
works, can be quite computational heavy. 
 
1.1.5 Other Machine Learning Applications 
 
Over recent years numerous applications of machine learning algorithms have been researched, that 
are not in the direct field of resistance-speed prediction. This research can provide useful insights, 
about what approaches are likely to work and which approaches are more likely to fail. 
 
Abramowski (2013) develops a neural network to successfully predict the effective power for a ship. 
The research presented in Abramowski (2008) shows that neural networks are also able to predict ship 
manoeuvrability. Abramowski and Zmuda (2008) develops a method of presenting a hull in parame-
ters using neural networks. 
 
Liang et al. (2019) compare multiple machine learning and traditional algorithms to predict the vessel 
propulsion power. Concluding, that the machine learning techniques performed significantly better on 
ships were a lot of data was available, also they observed big drop in performance when little data was 
available. 
 
1.2 Problem Definition 
 
In the shipping industry power prediction methods are commonly used. As elaborated upon, the statis-
tical design formulas are for a narrow operational range, across many ships, Holtrop and Mennen 
(1982), Holtrop (1984), Bertram (2012). While simulations are for one case, but initial condition only. 
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CFD will be more accurate and far more expensive, Cuiet al. (2012), Gatin (2019), Bertram (2014). 
Concluding, the current speed prediction methods are limited or expensive. 
  
A machine learning approach can improve the accuracy and decrease the cost of speed and resistance 
predictions, Brandsæter and Vanem (2018), Liang et al. (2019), Petersen et al. (2012), Pedersen and 
Larsen (2009). No such speed prediction model is available tailored to shipping. In principle, this is a 
statistical method, based on data from one ship, across many operational conditions, for the as-is, as-
built condition. When the quantity of data is large enough with sufficient variation (in speed, draft, 
trim), results should be equally accurate as simulations at much lower expense. 
 
2. Method 
 
2.1 Scope 
 
This research covers the development of a machine learning algorithm based on the data of one fall 
pipe ship. The data set consist of approximately 15000 data points. The outcome model of this 
research is in principle applicable to data from this ship specifically. There is a possibility that the 
model is also applicable to ships with comparable designs, however this will not be investigated in 
this research. By nature of machine learning techniques, the accuracy of the predictions of situations 
that are not in the original data cannot be determined. However, this does not imply that predictions of 
these situations are not accurate. Rather, it follows that these situations are not within the scope. 
 
2.2 Algorithm Description 
 
2.2.1 Linear Regression 
 
Linear regression models have been used in different parts of science, from psychology to economics. 
Linear regression is used to model linear relationships between a response variable and explanatory 
variable(s). The model can be described using the following formula: 
 
�̂�𝑖 =  𝑎0 +  𝑎1𝑥1𝑖 +  𝑎2𝑥2𝑖 + ⋯ + 𝑎𝑚𝑥𝑚𝑖        (1) 
 
�̂�𝑖 the predicted value, 𝑥𝑖 the value that is known and used to predict �̂�𝑖 and 𝑎𝑖 the linear coefficient 
that states how much a change in 𝑥𝑖 influences �̂�𝑖. 
 
2.2.2 Artificial Neural Network 
 
The concept of neural networks was first described in McCulloch and Pitts (1943). In Hebb (1949) it 
was proposed that these networks could be trained using a mechanism known as neuroplasticity. The 
ability of neural networks to be trained by recognition. Current day neural networks are based around 
the idea of the perceptron, presented first by Rosenblatt (1958). Aggarwal (2018) states that 
perceptrons are able to classify linear data points in the same way as least squares methods. With the 
difference that perceptrons guarantee to find complete separation, on the condition that the underlying 
data is linearly separable. Fig.1 shows the conceptual model of a perceptron. 𝑋𝑖𝑗 with 𝑖 𝜀 1,2, … , 𝑛 and 
𝑗 𝜀 1,2, … , 𝑚 are the input signals, 𝑤𝑖𝑗 with 𝑖 𝜀 1,2, … , 𝑛 and 𝑗 𝜀 1,2, … , 𝑚 the weights which the 
inputs are multiplied by before summing in the neuron, φ the activation function, and 𝑜𝑗 the output. 𝑛 
represents the number of input signals and m the number of alike networks. 
 
Outcome values of a perceptron are calculated using a two-step process. First, the product of weights 
and input is taken as described in Eq.(3). After this the sum is taken of all these inputs and the output 
of the sum is fed into the activation function. This transforms the input to output �̂� as can be seen in 
Eq.(2). In the perceptron described by Rosenblatt (1958) this activation φ was the step function 
described in Eq.(4). Rosenblatt (1958) stated that this design of the perceptron imitated the working of 
neurons in animal brains. From Eq.(4), it is evident that the neuron activates, if and only if, the 
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product sum of the inputs and weights is bigger or equal than the critical, qj in 1, in this case 0, value. 
 
𝑧 =  ∑ 𝑥𝑖  𝑤𝑖

𝑛
𝑖=1            (2) 

  

Fig.1: Perceptron model, https://nl.wikipedia.org/wiki/Perceptron 
 
�̂� =  𝜑(𝑧)           (3) 
 

𝜑(𝑧) =  {
0 𝑖𝑓 𝑧 < 0
1 𝑖𝑓 𝑧 ≥ 0

          (4) 

 
While, as illustrated by Aggarwal (2018), the perceptron model guarantees linear separable decision 
boundaries. Due to its architecture the perceptron model is not able to model nonlinear data, Minsky 
and Papert (2017). This can be solved when coupling multiple perceptrons together. This way, 
activation functions can be used, and thus nonlinear boundaries and relations can be mapped.  
 
To map even more complicated relations slightly more complicated models are needed. These models 
have an input layer, one or more fully connected hidden layers and an output layer. A schematic 
overview of this model is given in Fig.2. The model presented in Fig.2 can be extended unlimited, 
keeping the accuracy computation time ratio in eyesight, by varying the number of hidden layers and 
the size of these hidden layers. The last model that is described is the beginning of the neural 
networks that are used nowadays. Here the main components are described.  
 

 
Fig.2: General neural network, https://www.researchgate.net/figure/General-neural-network

architecture-used-in-this-study-33-43-44-The-input-layer fig1_341200069 
 
Artificial neural networks consist of three components. Neurons, weights and forward propagation. 
Neurons are the intersection of the network. They have input(s) and a single output that can be send to 
multiple other neurons. In the neuron the weighted sum of the inputs is taken as described in Eq.(2) 
and this sum is either directly send as output or put in into an activation function and passed on as 
output. Weights connect neurons to each other and determine how ’heavy’ the output of the sending 

https://nl.wikipedia.org/wiki/Perceptron
https://www.researchgate.net/‌figure/‌‌General-neural-networkarchitecture-used-in-this-study-33-43-44-The-input-layer%20fig1_341200069
https://www.researchgate.net/‌figure/‌‌General-neural-networkarchitecture-used-in-this-study-33-43-44-The-input-layer%20fig1_341200069
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neuron should weigh as input of next neuron. At the initiation of the network the weights can either be 
set at a fixed value equal for all weights, or assigned randomly. Forward propagation (FP) is the 
process that calculates the output of a neural network. The mathematical process follows the same 
principles as described in Eqs.(2) and(3).  
 
As shown in the Perceptron model, Fig.1, neurons in layers can apply activation functions to their 
input to generate their output. Where the Perceptron model use the step function, neural networks are 
capable of using a whole lot of other activation functions. Activation function can vary between 
different layers but in the vast majority all neurons in the same layer apply the same activation 
function. The choice of activation functions is mostly dependent on the type of relationship of the 
underlying data and the form of the outcome variable. For example, to map a value that can be 
everything to a probability the Sigmoid function can be used. By using non-linear activation functions 
the network can be trained to understand nonlinear relations between input and output variables 
Leshno and Schocken (1991). Before the Rectifier Linear Unit (ReLU), Rumelhart et al. (1986), the 
sigmoid function was the most widely used activation function, Pedamonti (2018). Functions that are 
like the Sigmoid function, like the Hyperbolic Tangent (TanH) are also commonly applied. Pattana-
yak (2017) states that because the ReLU functions is faster in training, it has overtaken Sigmoid and 
the other activation in usage. Another benefit of the ReLU is that, unlike the Sigmoid and TanH, it is 
not subject to vanishing gradients Pattanayak (2017). 
 
2.2.3 Convolutional Neural Network 
 
Convolutional neural networks have proven to be very useful in various fields of science, from image 
recognition Sharma et al. (2018), to regression analysis for mass-spectrometry analysis, Visin et al. 
(2015). The foundation of the idea of modern CNNs lies in the LeNet introduced by LeCun et al. 
(1989). LeNet stands for LeNet-5, a simple convolutional neural network. LeNet-5 was one of the 
first convolutional neural networks and promoted the development of deep learning. The original 
purpose of LeNet was to identify handwritten numbers. Nowadays CNNs are still mainly used for 
image recognition tasks but also in other applications as audio recognition CNNs are applied. One of 
the great benefits of CNNs, is that CNNs don’t take single input vectors but take the surrounding data 
into account. It is clear that this will aid the research, since it’s evident that data in near past is more 
likely to have a predictive value to speed at this point than data that has a bigger distance on the 
timeline. Another key benefit of CNNs, is that they are able to share weights across layers which can 
significantly reduce the number of parameters that the model needs. This makes it possible for CNNs 
to model very complex structures with limited amounts of parameters. Another benefit is that 
dimensional information can be stored in the network. 
 
Just like ANNs, CNNs are built of multiple layers. The main part where CNN layers differ from ANN 
is the dimensional structure that is preserved. Where ANNs mainly use fully connected layers (FCL), 
where each neuron of layer l – 1 is connected to all neurons in layer l, CNNs use a great variety of 
layer types. All layers have different function which can vary from mapping multidimensional to 
flattening the outputs of these layers. These flattening layers are mainly used in the final layers of 
CNNs to map the multidimensional output to a single output vector in a regression problem. If the 
architecture of a CNNs into considerations one can see that the input of CNNs can thus be, but does 
not necessarily has to be, of matrix form. Because whole matrices are very big and thus hard to handle 
a solution was found to still be able to handle matrices as input. Three commonly used sorts of CNN 
layers are described in the rest of this paragraph. 
 
The convolutional layer is the main component of interest of CNN. The concept of convolutions 
follows from the assumption that data points share more information with data points that are directly 
surrounding them than data points that are further away. Since it is computational heavy to calculate 
with whole matrices. Sub-matrices of the convolutional layer are multiplied with a so-called filter to 
send this information from layer l to layer l +1 Gulli and Pal (2017). By applying the same filter over 
all the different sub-matrices the convolution is calculated. Also, this way the amount of weights is 
reduced, since very large input vectors can be mapped as a smaller number of sub-matrices. There are 
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a couple of hyperparameters that define how and which filters are applied to the matrices and what the 
outputs dimension will be. These hyperparameters and their meaning are: 
 

• Filter size (F): The dimension size of the filters that will be used. Width, Height and if  
applicable more dimensional measures 

• Number of filter (𝑁𝑓): The number of applied filters 
• Stride (S): The size of shift on the axis that is shifted on. For example, a stride of 1 means  

that the centre of the sub matrix shifts one step on the axis that is iterated 
• Padding (P): Padding increases the matrix size with a border width and height of i with  

zeroes. Padding can be used to preserve matrix input size after the convolution is applied 
 
These parameters are shown in Fig.3. (𝑁𝑓) is not shown but can be seen as the number of green filters 
there are in the convolutional layer or layers. 
 

 
Fig.3: Parameters of CNN, https://stackoverflow.com/questions/51930312/how-to-include-a-custom-

filter-in-a-keras-based-cnn 
 
Pooling layers are used to gain dimension reduction (e.g. decrease required memory), by performing 
an operation on a sub-sample. This way the spatial volume of a matrix can be reduced with huge 
matrix operations. Max pooling, where the element with the maximum value in a sub matrix is 
returned, is one of the most common used forms of pooling layers. Other pooling techniques are 
normalisation pooling and average pooling, Brownlee (2019). Pooling is a robust way of downsizing 
matrix sizes, Brownlee (2019). Desphande (2016) states that there are arguments to remove pooling 
layers from CNN since the gains that are made by matrix size reduction are nullified by the extra 
computational costs of the operation performed by the pooling layer. The hyperparameters used by 
pooling layers are mainly the same as with convolution layers with the important note that with 
padding the addition of extra zeroes or other numbers problems can occur with minimum and 
maximum pooling. 
 
A flattening pooling layer is used to transform the matrix representation into a one-dimensional array. 
For instance, in the last step of image recognition to map to a single word. A flattening layer is a FCL 
that thus maps all the matrix inputs to a one-dimensional vector. It is important to note that this layer 
generates a lot of weights, because it is fully connected to all the matrix elements which can be very 
much. 
 
2.3 Training of ANNs and CNNs 
 
Once the framework is complete, the network is trained. There is a specific training routine that works 
for ANNs and CNNs. This process is described in this paragraph. In this training process a couple 
factors are important to know, these so called hyperparameters are described. Furthermore, there is 
supervised learning, unsupervised learning and reinforcement learning among others. Supervised 

https://stackoverflow.com/questions/51930312/how-to-include-a-custom-filter-in-a-keras-based-cnn
https://stackoverflow.com/questions/51930312/how-to-include-a-custom-filter-in-a-keras-based-cnn
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learning is specifically appropriate for problems where the form of the input data is known and the 
form of the required output is known, therefore supervised learning is applied in this research.  
 
2.3.1 Backward Propagation 
 
The concept of Backward Propagation (BP) is first described in Werbos and John (1974). Later the 
method was made available for practical use by Rumelhart et al. (1986). The main goal of BP is to 
describe derivative of the loss function with regards to the weights using an efficient numerical 
iterative approach. When accomplished other methods can use this information to update the weights 
of network to lower the loss function value. Since the loss function often is a very difficult function, 
and thus is not easy to solve analytically the backward propagation method a combination of 
analytically derived partial derivatives and numerical approaches. A common problem with numerical 
iterative approaches is that they do no guarantee to find a global minimum, because the method might 
get stuck in a local minimum. The BP method thus calculate the derivative of the loss function with 
regard to the weights, to allow other algorithms to use this information to update the weights 
accordingly. The notation for neural network components is as follows: 
 

• L the amount of layers 
• 𝑁𝑙 amount of neurons in layer l 
• 𝑚𝑙𝑛 is the output of neuron n in layer l 
• 𝑤(𝑙+1)𝑗

𝑙(𝑖)  is the weight from node i in layer l to node j in layer l + 1 and 𝑤𝑙𝑛  
denotes all weights into node n in layer l 

• 𝑚0𝑛 is input n 
• 𝑚(𝐿+1)𝑛 is the output of the neural network 
• 𝑧𝑙𝑚 is the sum product of all the inputs from layer l - 1 to node m in layer l 

 
The starting point of the algorithm is to calculate the derivative of the loss function notated as E. After 
this the weights from layer L+1 are updated, after this the weights of layer L are updated and so on 
until layer 1 is reached. Important to note is that the formulations will first be described on the level of 
the nodes. The matrix notation will be derived from this representation per node. Since the goal is to 
minimise the loss function while updating the weights it is important to express the derivative of loss 
in terms of the weights and their derivatives. To accomplish this also the derivative of the loss 
function in terms of 𝑚𝑙𝑛 and 𝑧𝑙 are needed, because these are needed to propagate either forward or 
backward through the network. Using BP the error function and it’s derivative are described. This is 
used to update the weights to train a better network. Following, hyper parameters are described that 
play a crucial role in updating of the weights. 
 
2.3.2 Hyper Parameter Tuning 
 
Weights are not the only parameters present in neural networks. There are numerous, so called, hyper 
parameters that are of influence to the networks behaviour and training process. The number of layers 
and number of neurons or filters are also hyper parameters. The most commonly used hyper para-
meters are: 
 

• Learning rate (ƞ): How heavily should the weights be updated after each iteration 
• Batch size: How much time point should be put in per iteration 
• Specific optimiser parameters: some optimiser algorithms have specific hyper parameters 

 
3. Experimental Setup 
 
This paragraph describes the experimental setup, which is used to train, test and verify the models. 
Also methods that can speed up training and prevent overfitting are described. These experiments are 
conducted to create the most accurate possible model for this data set and compare the results.  
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3.1 System Specifics 
 
The models in this research are implemented using Python (version 3.8). The packages that are used 
for the model implementations are SKlearn, Keras, Tensorflow and Pytorch. The experiments are all 
conducted on a laptop running on Mac OS catalina with a 3 GHz i7 processor and 8 GB RAM stor-
age. When considering computation times, these factors have to be taken into account. 
 
3.2 Model Implementation 
 
3.2.1 Data Preparation 
 
For linear regression no data preparation needed is required. For the ANNs and CNNs the input data 
is normalised. This can improve predictions and reduce computation time Sola and Sevilla (1997). 
Normalisation can also prevent fading gradients with certain activation function such as the sigmoid 
function. With normalisation the data is scaled to certain characteristics of the data set. For instance, 
with min-max scaling all data is scaled between 0 and 1 or -1 and 1 with the max value of the set rep-
resented by 1 and the minimum represented with 0 or 1-. All the other data points are scaled within 
that range. In this research both non-regularised data and min-max-regularised data is used with the 
ANN and CNN approach. 
 
3.2.2 Train Test Split of Data 
 
To address the true performance of models it is preferred that the model performance is tested on un-
seen data. This also validates the model before it is used. This unseen data is created by splitting all 
the data in a train set and a test set. The train set will consist of 80% of the original data set and the 
test set will consist of the other 20%. First, random sample of the size of 80% of the size of the origi-
nal data. All the other points are appointed to the test set. While Flach (2012) proposes a test set size 
of 10%, in this research there is chosen for a bigger test set. Because the training of the models is 
computationally very heavy and thus takes great time, there is no cross validation. To compensate for 
this fact a bigger test size is chosen. Furthermore, there is plenty of data, so the training will not be 
compromised. And this way the test set gets twice as big, which makes the results of the test set more 
reliable. 
 
3.2.3 Set Hyper Parameters 
 
ANNs and CNNs have multiple hyperparameters. Linear regression does not have hyperparameters 
other than the model itself and the loss function. The hyper parameters must be set, this is a delicate 
process. By varying the parameters, the model performance can increase or decrease. Since, the pa-
rameters can be varied in unlimited ways, it is good to map how changes in hyperparameters affect 
the performance of the model. This can be done by grid search Pontes et al. (2016), random search, or 
varying only one hyper parameter at the time.  
 
In grid search a n-dimensional, with n the amount of tuneable hyperparameters, grid is created. The 
model is trained with the setting corresponding to the place in the grid. Every next step the settings are 
changed in the direction of one of the parameters. The setting of hyperparameters that yields the best 
performance is chosen. Random search makes random jumps to other places in the parameters space. 
Varying the neural network hyperparameters by hand also yields a good result, since natural persons 
have the ability to make ‘educated guesses’. In this research there is chosen to vary the hyperparame-
ters by hand, since the parameter space is so big and the data set large, the computation time would 
exceed the research time. 
 
3.2.4 Training and Validating the Model 
 
Training the model is a simple process. Since the data is known, the model is defined and the hy-
perparameters are set. The trained model yields an outcome model. This model then has to be verified. 
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This verification process can take place in many ways as described in subsection 3.2.2. In this re-
search it chosen to predict the test set and calculate the MAE in comparison to the true values. The 
model with the lowest MAE compared to the true data is the best performing model. MAE is chosen 
because it is very explainable. In short MAE states that the predictions will, on average, be off by 
margin of the value of the MAE. 
 
Another verification step is to check if the model is not ’overfitting’. Overfitting is when the model 
fits itself too much to the train data and thereby yields a worse performance on unseen test data. This 
can be checked by comparing the performance on the test set and the training set. If the performance 
on the train data is significantly better than the performance on the training set, the model is likely to 
be overfitting. Since in this research interpolated data is used, the model is also tested versus a subset 
of the true data. To make this possible some time points in the data that are looked for where all sen-
sors have measurements within an acceptable time span. This is only done for the best performing 
methods, since these models will be used in further applications. 
 
3.2.5 Compare Performance of Different Models 
 
After all models and architectures are tested the performances of the models are compared to each 
other. The results of this are presented in paragraph 4. There is no standardised data set or standard-
ised algorithm the model can be compared too. This means that one of the models that will be tested 
will act as a baseline model. The architecture of the baseline model will be described in section 3.3. It 
is important to note that comparisons between models are only sensible if the same kind of measure is 
used for all models. In this research this is the MAE. 
 
3.3 Tested Model Set-ups 
 
3.3.1 Baseline Model 
 
The baseline model is the simplest and most naive model. It uses a linear regression method, with on-
ly engine-power as input. Intuitively this method should work, since power output should be the most 
influential factor on speed. For this linear regression to work the features that have collinearity be-
tween each other should be omitted from the analysis. The features that are omitted, because of col-
linearity, for this linear model are thruster 2 and 3 since they are strongly co-linear with thruster 1 and 
each other. The ordinary least squares (OLS) method is used for fitting the linear regression. 
 
3.3.2 Linear Regression 
 
In the architecture of linear regression models is not much room for changes to improve performance, 
only the data that is given as input can be altered. In this research the linear regression method that is 
tested, is trained on all input features but the derivatives of the ship motions. Further the fitting meth-
od that is used is the OLS method. 
 
3.3.3 Artificial Neural Networks 
 
As described in section 2.3 there is a big diversity of hyperparameters that can be altered. Also the 
features of the data that are given as training data can be varied to see if the derivatives of the ship 
motion have any predicting value. Further the data is given in normalised state and in original state. 
Following, there is a multitude of activation functions that are tested as well as amounts on neurons in 
particular hidden layers. In first instance 1 hidden layer neural networks is tested, after deeper neural 
networks are tested. As explained the hyperparameters are varied by hand. 
 
For computation time purposes, first all models are trained for 50 epochs. An epoch is one complete 
pass through the training data. The model with the best performances will be trained for 250 epochs to 
obtain a better performance. The number of neurons in the first layer is originally set at 23 of the input 
variables. Later greater amounts are tested. When models do not converge in 15 epochs the training is 
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cancelled and the performance is described as non-converging, and the value of the loss functions of 
the last epoch is given. A list of the tested architectures is provided in table 1. In this list not all varie-
ties of the tested architecture are presented; the best of a particular architecture are. When there is a 
significant performance difference between for example 17 or 18 neurons in a particular hidden layer, 
the different architectures will be both be presented. 
 
3.3.4 Convolutional Neural Networks 
 
CNNs share a lot of the hyperparameters with regular ANNs. The extra hyperparameters, needed for 
CNNs are described in section 2.2.3. The list of CNN architectures is given in Table I. The architec-
ture of the best performing ANNs is used as a skeleton for the initial design of the CNNs. Again here 
not all architectures are described. 
 

Table I: Description of Tested Models 

 
 
4. Results 
 
4.1 Baseline and Linear Regression Model 
 
As described, for linear regression models to work first the values of vector a must be calculated using 
the model. After the base model is fitted the parameters of the base model are as follows: a = [2.024, -
4.581e-04, -1.5099e-03, -1.206e-03, 1.131e-03, 1.866e-04]. The mean absolute error (MAE) of this 
model is 2.198 kn. This is not very precise given the range of the true values lying between 0 and 30. 
While the values of the predicted values roughly lie between 0 and 5. This states that the model does 
not fit well, but it does provide a good starting point from where the optimisation models can start. 
The linear regression model with all data (except the derivatives of ship motions) as input was fitted, 
Table II. When observing the predictions of this model over the time span, Fig.4, one thing stands out. 
There are negative speeds predicted, which is not good. Although there are no linear correlations 
found between the independent and dependent variables this model performs well with an MAE of 
0.5512. This is a significant increase in performance from the baseline model. Also the influence of 
the ship motions has negative coefficients, i.e. when ship motions get more extreme the predicted 
speed of the ship goes down. This seems logical, as extreme ship motions imply extreme weather. As 
explained, this affect the resistance of the ship, decreasing the speed. The expectation is that this 
model cannot be improved significantly anymore; for further performance increase, other models and 
methods should be used. 
 

Table II: Parameters of Fitted Model 
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Fig.4: Results of Linear Regression over Interval 

 
4.2 Results of ANNs and CNNs 
 
The best performance reached with linear regression is a MAE of 0.55. The expectation is that the 
machine learning methods will outperform these linear regression models. The training errors and ul-
timate test set errors are presented in table 3. The increase of performance once the sigmoid activation 
function is deployed is remarkable. This can be explained by the non-linearity of speed and resistance. 
As can be seen the tanh activation function is also tested, but yielded similar to worse results. Fur-
thermore, it occurs the derivatives of ship motions do not have predictive value on their own. They 
need a non-linear activation function in the base of the network to exploit their full potential. Also the 
optimiser seems to be of great influence when training for 50 epochs. 
 

Table 3: Results of Machine Learning Approaches 

 
In the ANN model with 2 hidden layers with sigmoid activation function on the first layer the model 
does converge with RMSprop but does not converge with the ADAM optimiser. The batch size had to 
be altered and the architecture of the network had to be changed slightly to get a converging model. 
Also the increase of performance can be up to and even more than 4% when only changing the opti-
miser. This is clearly visible in the models with 2 layers with sigmoid activation on the first layer. 
Adding more layers will not work. The increase from the model NN MM 26 14S 1R 2048 ADAM 
Der to model NN MM 26 14S 5S 1R 2048 ADAM Der is roughly 0.14% the number of parameters 
and thus the required computation times goes up. 
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Analysing the results of both models NN MM 26S 1R 2048 RMSProp Der, illustrates training a sim-
pler model for greater time can cause overfitting. The performance on the training set is better than 
the performance on the test set. Also, the CNN model with sigmoid activation function does not con-
verge. This could be because, the sigmoid function maps all input to a value between 0 and 1 while 
the tanh function maps between -1 and 1. Furthermore, the computation time of the CNN is longer 
than that of their ANN counterparts. This increase is up to a factor six. Increasing the kernel size, 
while not significantly increasing the computation time, does increase the performance of the model. 
Overall, more ANN models converged than CNN models. Small changes in the number of filters per 
layer could induce non convergence. In CNN models a significant improvement is found when the 
model is made more complex, with different layers.  
 
The NN MM 26S 1R 2048 RMSProp Der model behaves as expected and converges. The same pat-
tern is found in all ANN methods that converge. All converging CNN methods converge likewise. 
What can be seen is the difference in convergence speed and the shape of the convergence plot be-
tween the Adam optimiser and the RMSprop optimiser. The Adam optimiser converges faster at the 
beginning. The loss function derivative goes to zero over time, while the RMSprop loss function be-
haves as a straight line from epoch 10 on. 
 
4.3 Model Performance Comparison 
 
There are a couple of important trends that can be picked up from the comparison. More complex 
models perform better than the less complex models. The CNN do not perform significantly better 
than the ANN, in some instances they perform worse. The ADAM optimiser the convergences quick-
er and further than the RMSprop optimiser, as can be seen in Fig.8. When comparing models that use 
standardised data with models that used non-standardised data, it can be concluded that the models 
using standardised data converge quicker, but do not perform better. 
 

Table IV: Approximate Computation Time for Certain Models 

 

 
Fig. 8. Convergence per Epoch for RMSprop (Blue) and Adam (Orange) Optimisers 
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In Table IV the rough estimates of training time per model is presented. Taken these computation 
times into consideration the artificial neural network model with code NN MM 26 14S 1R 2048 AD-
AM Der is the best model in this research. 
 
4.4 Final Validation and Improvement of Best Models 
 
To unlock the full potential of the models, the models NN MM 26 14S 1R 2048 ADAM Der and 
CNN MM 28 15T F 1R 2048 ADAM Der 5 were trained for 250 epochs. The performance of the 
CNN model increased to 0.2274 on the training set and 0.2270 on the test set. The ANN model per-
formance increased to 0.2151 on the training set and 0.2150 on the test set. This is very good in com-
parison to the baseline model and also the first linear model. The MAE of best linear regression meth-
od is approximately 2.5 bigger than the MAE of these two methods. As described in section 4.3 the 
250 epoch version of the best performing models are also tested. 
 
The performance of the NN MM 28S 1R 512 Adam Der model trained for 50 epochs is 0.1845. This 
is a better performance than on the test set of the interpolated data. This is a very promising result. 
Especially since the model will be used on real life data. The CNN MM 28 15T F 1R 2048 ADAM 
Der 5 trained for 250 epochs had an performance of 0.2059 on the true test set. Also this model shows 
an increase in performance which is a positive sign and is another implication that the models are not 
overfitted to the interpolated data. This implies the interpolated data are a good representation of the 
true data. The performance of the NN MM 26 14S 5S 1R 2048 ADAM Der on the true data set is 
0.2003. This is worse than the NN MM 28S 1R 512 Adam Der model but still performing better on 
the true data set than on the training and test set from the interpolated data. The fact that all these 
models perform good on the true data set implies that no overfitted models were created.  
 
5. Discussion of Results  
 
5.1 Novel Approach 
 
This research opens the door for a new way of estimating ships speed during different operational pro-
files with data from on-board sensors. The developed method is industry wide applicable, more accu-
rate, less expensive and therewith more encompassing and accessible then other methods. This model 
could be combined with a model that predicts ship motions, based on environmental phenomena and 
the ships position. Furthermore, the developed model could be combined with an optimiser algorithm 
to find the most optimal power output for the engines, given predicted weather forecasts and related 
ship motions. This combination could be used for route optimisation from point to point since speed 
can be predicted. So optimal power and speed couple could be predicted for the route. This is a very 
complex problem combining routing problems with ship motion, and speed prediction. This model 
could also serve as the start of a prediction model, if data of more ships could be used, where hull 
form parameters would also be given as an input. If this succeeds, the model could be turned into a 
more generic model that could be applied to predict the speed of a series of ships. 
 
5.2 Model Usability 
 
The model is suited to be reproduced and used by any shipping company. The training and calcula-
tions are based on vessel specific variables. This vessel specific dataset can be altered into any other 
similar dataset, when training the model for other vessels. Furthermore, the required computational 
power is very low, the development and training was performed on a normal laptop. Meaning the 
model could be used on the bridge of a vessel for live operational decision making. Concluding the 
developed model is generally available and applicable.  
 
5.3 Discussion 
 
During the research there were several assumptions and limitations to the developed model. Critical 
points of discussion with regards to the assumptions and limitations include: 
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• Due to the nature of the original data, interpolated data was used. Since there is always a 
chance of information loss with interpolation this is ideally prevented. Although the models 
have a decent performance on the ’true’ data, this true data is also an interpretation of the real 
data. Further research might prevent this by actively managing the data gathering procedure. 

• During this research there was a lack of certain context data. Historical wind and wave data was 
not available at the exact position of the ship. When evaluating the outcomes of the models 
these features could have increased the model performance. 

• It is important to note that this model by itself is not capable of predicting the speed of a vessel 
of a future trip. This because the model takes the ship motion as input, and ship motion is not 
known in advance. 

• In this research field it is very hard to relate the outcome of this study to outcomes of other 
studies. It is difficult to compare the results of this study to other studies that assess comparable 
topics. This complicates this particular study because it is hard to map progress on an absolute 
scale. A standardised validation set would improve this research and the maritime research field 
as a whole. 

 
6. Conclusion  
 
The goal of this research is to present a way to improve the speed and resistance prediction of ships. 
This research presents a method, a machine learning approach. The speed over ground of a vessel can 
be predicted with numerous methods. The best predictions on training and testing data were made by 
an artificial neural network containing three hidden layers with sigmoid and relu activation functions. 
The best performance on the ’true’ data was reached with a model with one hidden layer with sigmoid 
activation. 
 
This novel approach for speed and resistance prediction, offers a quick and accurate speed over 
ground based on operational data. For ship design and ship management companies this is important 
information, that can be used in ship design or operation. The method developed in this research is 
inexpensive, generally applicable and proves the concept.  
 
To summarise the findings of this study, it is indeed possible to predict the speed of the ship in 
operational condition with data from on-board sensors. Next to being an improved speed and 
resistance prediction method, the successful implementation and validation of machine leaning to 
predict speed over ground also provided valuable novel insights in machine learning in marine 
engineering in general. Therewith, contributing to the body of knowledge of data-science in marine 
engineering. 
 
Recommendations for further research comprise the development of a benchmark model and 
standardised data set, development of a ship motion prediction model and further development and 
generalisation of the developed model. 
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