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Abstract 

Background: Continuous monitoring in paediatric intensive care units (PICUs) generates frequent clinical alarms, 

87-97% of which are nonactionable, contributing to alarm fatigue and patient safety risks. At the Erasmus MC 

Sophia Children’s Hospital PICU, improved alarm management is needed. Machine learning offers a promising 

strategy to distinguish actionable from nonactionable alarms.  

Objectives: The primary objective was to develop a machine learning algorithm to classify actionable alarms 

from multimodal vital signs. Secondary objectives were to characterise the PICU alarm burden, capture 

stakeholder perspectives and evaluate model feasibility for clinical application.  

Methods: Retrospective Dräger monitoring data and alarms from 2,582 PICU patients (Nov 2021 – Oct 2024) 

were analysed. A machine learning algorithm was developed using ART M, HR, RESP and SpO2 data from 26 

patients, with alarms annotated using clinical interventions, small signal deviations and temporal associations 

with other parameters. Logistic regression, decision tree, random forest and XGBoost were evaluated with 

nested cross-validation using pre-alarm features. Performance was assessed by sensitivity, specificity, balanced 

accuracy, with AUROC and F1-score as complementary metrics. Semi-structured interviews with four nurses and 

one psychologist explored alarm experiences, impacts and reduction strategies.  

Results: The best model, a decision tree, showed limited performance (sensitivity 0.36-0.49, specificity 0.51-

0.70, balanced accuracy ≈0.50). No discriminative features were identified, and substantial overlap and outliers 

limited classification. Most alarms involved SpO2 desaturation, with unit variation and temporal patterns linked 

to ward activity. Interviews highlighted overstimulation and desensitisation, but also that nonactionable alarms 

can serve as early warnings, with interpretation requiring clinical context. 

Discussion: This study provides an evaluation of machine learning-based alarm classification in the PICU and 

integrates clinician perspectives to guide future interventions. The machine learning model was not suitable for 

clinical use because of retrospective labelling, the small annotated dataset and the absence of clinical context. 

Future research should focus on prospective annotation, larger and more diverse datasets and complementary 

strategies. Alarm dashboards and daily reviews are recommended to reduce alarm burden and mitigate alarm 

fatigue while maintaining patient safety.  
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1 Introduction 

Paediatric intensive care units (PICUs) are dynamic and high-pressure clinical environments where continuous 

patient monitoring and intensive care are essential. Children admitted to these units are critically ill and at risk 

of acute, life-threatening conditions, necessitating constant observation and life support and treatment. (1)  

To facilitate timely clinical assessment and intervention, bedside monitors are employed to continuously track 

vital parameters such as heart rate (HR), blood pressure (BP) and oxygen saturation (SpO₂). (1) These monitors 

are designed to generate both audible and visual alarms when parameters deviate from predefined thresholds, 

irrespective of the signal quality or the cause of deviation. (2, 3) Continuous monitoring is widely adopted in 

critical care settings, as it has been shown to significantly enhance patient safety by ensuring that healthcare 

professionals are immediately alerted to physiologic changes, enabling prompt and effective response to 

important deterioration events. (1, 2, 4-8)    

In order to minimise the probability of monitors missing indications of patient deterioration, alarm algorithms 

and default parameters are frequently configured to maximise sensitivity, often at the expense of specificity. (3) 

Consequently, this results in a high number of nonactionable alarms being generated by monitors. Previous 

studies have reported that 87–97% of alarms in PICU settings are nonactionable. (9-13) 

The responsibility for distinguishing between true, actionable alarms and false, nonactionable alarms is typically 

delegated to clinicians, most often nurses. In the majority of clinical settings, nurses are required to continuously 

assess whether a response is required. (7) Excessive noise, including frequent alarms, has been shown to 

increase stress among staff, impairing concentration and potentially compromising the care of critically ill 

patients. (14) Frequent exposure to nonactionable alarms can lead to alarm fatigue, a state of desensitisation 

and diminished responsiveness, which has been internationally recognised as a major patient safety concern.  

(15)  

Clinical alarms not only impact healthcare providers but also affect patients and their families. In the PICU, alarm-

related noise is considered one of the most disruptive environmental factors, contributing to sleep disturbance 

and increased anxiety. (1, 16, 17) This disruption can hinder patient recovery, as noise exposure has been linked 

to various negative physiological responses, including elevated HRs, increased respiratory rates (RESP), and sleep 

deprivation. (18, 19) Furthermore, continuous monitoring of patients may capture regular physiological 

fluctuations, often resulting in unnecessary diagnostic workups and interventions, which may contribute to 

longer hospital stays. (20)  

Given the impact of alarm fatigue, primarily driven by the high prevalence of nonactionable alarms, on both 

clinicians and patient outcomes, addressing this issue within the PICU of the Erasmus MC Sophia Children’s 

Hospital has become a priority. Accordingly, the literature review concluded that the development of a machine 

learning algorithm constitutes an appropriate next step in reducing nonactionable alarms in the PICU. (21) 

1.1 Objectives 

The primary objective of this thesis is to develop a machine learning algorithm capable of classifying actionable 

alarms, with the aim of reducing the frequency of nonactionable alarms by utilising multimodal vital sign data. 

It is important to emphasise that the goal is not to predict the occurrence of alarms, but rather to classify alarms 

at the moment they are generated as either actionable or nonactionable.  

The secondary objectives are: firstly, to characterise the current alarm burden in the PICU; secondly, to conduct 

semi-structured interviews with relevant stakeholders in order to explore their experiences with alarm systems, 

the impact of alarms and their perspectives on potential interventions for alarm reduction; and thirdly, to 

evaluate the feasibility of the proposed machine learning model and to outline a strategy for its integration into 

clinical practice.  
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2 Background 

Within the PICU of Erasmus MC Sophia Children’s Hospital, the high prevalence of nonactionable alarms has 

created an urgent need to mitigate alarm fatigue. This chapter provides an overview of the alarm environment 

and outlines approaches for addressing this challenge. Section 2.1 describes the sources of alarms in the PICU, 

Section 2.2 outlines the classification of nonactionable alarms, Section 2.3 examines the recognition of alarm 

fatigue as a significant patient safety concern and Section 2.4 reviews existing interventions aimed at reducing 

clinical alarms. Finally, Sections 2.5 and 2.6 consider the current and future alarm environments, with the latter 

addressing the proposed integration of a machine learning model into the alarm pathway.  

2.1 Sources of Alarms in the PICU 

In addition to physiological monitoring, numerous medical devices commonly utilised in PICUs, such as 

ventilators,  extracorporeal membrane oxygenation (ECMO) systems, intravenous infusion pumps, feeding 

pumps and hospital beds, possess their own integrated alarm systems. These devices may indicate a range of 

issues, including technical malfunction, sensor disconnection and treatment interruption, further increasing the 

number of alarms in the clinical environment. (2, 22) 

2.2 Classification of Nonactionable Alarms 

Nonactionable alarms are defined as both false alarms, which do not reflect the patient’s true status, and 

nuisance alarms, which reflect the true patient status but do not require clinical attention or intervention. (1, 

23) False alarms may arise from various factors, including motion artefacts and technical or equipment-related 

issues. (1) In contrast, nuisance alarms are characterised by deviations that are clinically insignificant. For 

instance, a patient may experience a desaturation event, falling just below the minimum acceptable pulse 

oximeter level for a brief period and subsequently return to the established parameters without intervention. 

(7) In addition, redundant alarms represent a specific subset of nuisance alarms. While these alarms are 

technically accurate, they appear to duplicate information already communicated by other monitoring devices 

or alarm sources. For instance, a bedside monitor and a ventilator may both generate alarms in response to the 

same desaturation event. Despite their clinical validity, these alarms offer no additional information and typically 

do not necessitate further clinical intervention. (24) 

2.3 Recognition of Alarm Fatigue as a Patient Safety Concern 

The phenomenon of alarm fatigue is supported by the findings of Bonafide et al.(9), who demonstrated that 

nurses exposed to frequent nonactionable alarms exhibit slower response times to subsequent alarms. Alarm 

fatigue delays recognition of critical changes in patient status, thereby compromising safety and increasing the 

likelihood of missed alarms.(9, 10, 14, 15, 25-29)  

Alarm fatigue has been a major patient safety concern for the Joint Commission in the United States since 2013, 

when a report documented 80 alarm-related deaths between 2009 and 2012. (30, 31) In response, the 2014 

Joint Commission National Patient Safety Goal required hospitals to enhance alarm system safety by developing 

policies and procedures to mitigate alarm fatigue. (32) Since then, clinical alarm safety has remained a key 

priority, consistently appearing in the Joint Commission’s National Patient Safety Goals and frequently ranking 

among the ‘Top 10 Health Technology Hazards’, thereby highlighting the ongoing challenges in effectively 

addressing this issue. (33, 34). In the Netherlands, the Dutch Society for Medical Physics (NVKF) has similarly 

identified alarm fatigue as a serious alarm-related risk, as outlined in its guideline Leidraad medische bewakings- 

en alarmeringssystemen, which highlights the considerable challenges healthcare providers face due to the high 

prevalence of clinically irrelevant alarms. (35)  
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2.4 Interventions to Reduce Clinical Alarms 

A previous literature review (21) examined interventions aimed at reducing clinical alarms in paediatric 

hospitals, as well as relevant practices from the process industry, to identify potential lessons for the PICU 

context. The review identified several effective interventions, including the optimisation of data-driven 

thresholds, adjustment of graduated time delays, daily review of alarm parameters by alarm dashboards, daily 

electrode replacement with proper skin preparation and the implementation of machine learning algorithms. A 

multimodal approach is recommended over single-parameter models. This aligns with strategies commonly 

employed in the process industry, such as multimodal integration, alarm grouping and correlation analysis. 

Based on these findings, the review concluded with a recommendation to develop a machine learning algorithm 

aimed at reducing nonactionable using multimodal vital sign data. 

If this approach is found to be impracticable, attention will shift to the simpler intervention, such as the 

adjustment of alarm thresholds and the implementation of alarm delays. The reduction of ambient noise levels 

will not be considered as an intervention within the scope of this research. Although this strategy is frequently 

reported in the literature and may contribute to an improved ward environment, it addresses the impact of 

alarms rather than its underlying causes.  

2.5 Overview of the Existing Alarm Environment 

The department comprises four distinct units, each with a specific clinical focus. The first unit accommodates 

patients requiring short-term admission and primarily functions as a high-dependency care unit. The second unit 

is designated for cardiothoracic surgical patients, and the third unit admits non-cardiothoracic surgical patients 

as well as those requiring neuromonitoring; both units provide care for critically ill patients. The fourth unit, also 

a high-dependency care unit, is intended for patients requiring long-term admission; although these patients 

are not acutely ill, they nonetheless require substantial care, for example, due to chronic illness. 

Each unit consists of a six-bed ward and two single-patient rooms. Every bed is equipped with a Dräger Infinity® 

Acute Care System (M540 and Medical Cockpit; Dräger, Lübeck, Germany; Figure 1), which continuously displays 

the patient’s vital signs, waveforms and alarms generated  by threshold deviations or artefacts. A central nursing 

station is located in the middle of each ward and includes a Dräger Infinity® CentralStation (Figure 1) providing 

real-time access to monitoring data and active alarm notifications for all patients in the unit. A schematic floor 

plan is shown in Figure 2. 

 

 
 

Figure 1. Dräger monitoring system components: A. Dräger Infinity® Acute Care System Medical Cockpit (bedside monitor) 

(36); B. Dräger Infinity® CentralStation (central nursing workstation) (37); C. Dräger Infinity® Acute Care System M540 

(portable monitor) (38). 
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Figure 2. A schematic floor plan of a PICU unit at Erasmus MC Sophia Children’s Hospital. 

 

Each alarm condition is assigned one of three priority levels: high (life-threatening), medium (serious) or low 

(informational). (39) The corresponding priority level is conveyed through both visual and auditory alarm signals: 

• High-priority alarms are typically associated with physiological conditions that may be life-threatening 

and require immediate clinical intervention (e.g. asystole). High-priority alarms are indicated by a red 

signal.  

• Medium-priority alarms also pertain to physiological conditions. Although they require prompt 

attention, they are not considered immediately life-threatening. For instance, an alarm may be initiated 

when the RESP exceeds a predefined threshold. These alarms are indicated by a yellow signal.  

• Low-priority alarms most often relate to technical issues that could compromise the system’s ca to 

monitor the patient effectively. A typical example is the disconnection of electrodes. Depending on the 

model of the Dräger monitor, these alarms may either lack a visual signal or be displayed in turquoise.  

In addition to visual differentiation, each priority level is characterised by a distinct acoustic pattern. Higher 

priority levels are associated with greater alarm volume, an increased number of audible tones and a higher 

repetition frequency. In contrast to high-priority alarms, medium- and low-priority alarms can often be reduced 

through human factors interventions or system-level improvements. Such interventions may include the 

customisation of alarm limits or the implementation of intelligent algorithms capable of prioritising or 

suppressing alarms. (40)  

2.6 Future Alarm Environment and Technological Integration 

Erasmus MC Sophia Children’s Hospital is scheduled to relocate to a new facility in which the PICU will transition 

from multi-patient wards to single-patient rooms. Previous research by Kalden et al. (41) has demonstrated that 

both the physical care environment and the method of alarm transmission contribute to alarm burden. In wards, 

nursing staff must maintain constant visual and auditory contact with patients, which can constrain workflow 

and increase their exposure to alarms intended for other colleagues. The transition to single-patient rooms is 

expected to enhance acoustic conditions, patient privacy and infection control. However, this change may also 

reduce nurses’ bedside presence, potentially compromising their situational awareness. (41-44) To address this, 

handheld devices will be introduced to support safe alarm management. These devices have the capability to 

modify alarm pathways, thereby enabling the implementation of effective alarm management interventions 

aimed at reducing the number of nonactionable alarms. 
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Erasmus MC has developed a conceptual model describing the anticipated future configuration of the clinical 

alarm chain. As illustrated in Figure 3 , a machine learning algorithm, or an alternative alarm processing method, 

could be integrated into the alarm pathway connecting the Dräger monitor to handheld devices. A machine 

learning algorithm, as an application of artificial intelligence (AI), may be embedded within the alarm processing 

component of the Intelligent Alarm Services. 

 

 
 

Figure 3. Conceptual model of the anticipated clinical alarm chain, showing the flow of alarm data from the Dräger monitor 

to handheld and desktop devices and illustrating how a machine learning algorithm (AI) could be integrated into the alarm 

processing pathway. 

 

To implement the proposed alarm management strategy at the future PICU of Erasmus MC, service-oriented 

device connectivity (SDC) will provide interoperability between medical devices and handheld devices. As part 

of the IEEE 11073 standard, SDC will facilitate a silent ICU by enabling seamless data exchange among medical 

devices from different manufacturers. (35, 45) This connectivity allows related alarms to be aggregated and 

forwarded to handheld devices. Nurses can acknowledge or reject alarms, and their responses are relayed to 

the monitor, creating a closed-loop system. When a stable connection exists between the remote alarm notifiers 

and the medical devices, audible bedside alerts remain silent and only visual indicators appear on the display, 

while audio signals sound where caregivers are located. To ensure safety, the system exchanges bidirectional 

confirmations between the medical devices and remote notifiers; if these fail, the devices automatically resume 

both audible and visual alarms. This capability supports a quieter and safer PICU environment.  
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3 Methods 

This study employed a three-part methodology:  

• Retrospective alarm data were analysed to characterise the current alarm burden in the PICU (Section 

3.2); 

• A supervised machine learning algorithm was developed to classify actionable alarms using multimodal 

vital sign data (Section 3.3); 

• Semi-structured interviews with clinical stakeholders were conducted to explore alarm management 

challenges and their perspectives on strategies for alarm reduction (Section 3.4). 

All quantitative analyses were performed using Python version 3.12.9. Ethical approval for this study was granted 

by the Erasmus Medical Ethics Committee (MEC-2021-0937), with a waiver of consent.  

3.1 Data Acquisition 

The database used in this study to characterise the alarm environment (Section 3.2) and develop the machine 

learning model (Section 3.3) consists of retrospective bedside data collected from Dräger monitors (Dräger, 

Lübeck, Germany). It includes physiological monitoring data for all vital parameters recorded during each patient 

admission, associated alarm settings (including parameter-specific threshold changes) and the alarm events 

generated by the Dräger monitors. The monitoring data were stored at a sampling frequency of 1 Hz. The 

database comprises records from 2,582 patients admitted to the PICU at Erasmus MC Sophia Children’s Hospital 

between November 2021 and October 2024.  

3.2 Problem Definition 

To characterise the clinical alarm problem in the PICU, alarm events generated by Dräger monitors from 2,582 

patient admissions were analysed. The analysis focused on several aspects of the current alarm burden. First, 

the proportions of high-, medium-, and low-priority alarms were calculated. Second, the most frequently 

observed alarm parameters and alarm messages were identified. Third, the median number of alarms per 

patient-day was determined for each PICU unit to enable comparisons between units. Finally, the median hourly 

distribution of alarms was assessed both by unit and by priority level to identify temporal patterns in alarm 

frequency and the types of alarms most frequently occurring at different times of day. This approach provided 

a comprehensive characterisation of the overall alarm burden in the PICU.  

3.3 Machine Learning Model 

This section outlines the development of the machine learning algorithm designed to classify actionable alarms 

using multimodal vital sign data. An overview of the development process is presented in Figure 4. This overall 

procedure comprised three main phases:  Data Handling, Model Building and Model Assessment. The 

components of these phases are described in the following subsections.  

 

 

 

Figure 4. Methodological pipeline from data acquisition to post hoc analysis.  
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3.3.1 Data Acquisition 

For the development of the machine learning model, data from the mean invasive arterial blood pressure (ART 

M), HR, RESP and SpO2 were used. Model development employed data from a randomly selected subset of the 

2,582 PICU patients, including only those for whom all four physiological parameters were recorded during 

admission.  

Gender, age, reason for admission and severity of illness were recorded to characterise the included patients. 

Severity of illness was considered relevant because patients with lower severity are generally more awake and 

active, which may increase movement artefacts and, consequently, the occurrence of nonactionable alarms.  

Illness severity was quantified using the paediatric risk of mortality III (PRISM III) and the paediatric index of 

mortality 3 (PIM 3) scores. Both scores estimate the risk of mortality: PRISM III is derived from the most abnormal 

physiological and laboratory values recorded during the first 12-24 hours following admission to the PICU, 

whereas PIM 3 is based on a smaller set of physiological variables and diagnostic information collected within 

the first hour of admission. (46) The PRISM III score was available from the electronic patient record, while the 

PIM 3 score was calculated using the official calculator provided by the European Society of Paediatric and 

Neonatal Intensive Care (47).   

3.3.2  Reconstruction of the Alarm System 

The alarm system was reconstructed based on physiological monitoring data from four parameters: ART M, HR, 

RESP and SpO2. This reconstruction incorporated parameter-specific threshold settings that varied over time, 

together with configuration details from the Dräger Infinity Acute Care System User Manual (39). Reconstruction 

was required to correct inconsistencies in time synchronisation between stored alarm events and the monitoring 

data.  

3.3.2.1 Detection of Alarm Events 

Alarm events were identified through two approaches: firstly, by comparing signal values with dynamic 

threshold ranges; and secondly, by interpreting categorical flags embedded within the dataset. The threshold-

based alarms were configured per patient and per parameter to determine whether a signal exceeded either 

the upper or lower predefined range, resulting in an alarm classified as either HIGH or LOW. In parallel, 

categorical alarm flags (***, +++, --- and APN) were treated as qualitative indicators of non-numeric alarm status, 

such as artefacts or clinical conditions. These were mapped to corresponding alarm types based on definitions 

from the Dräger Infinity Acute Care System User Manual (39), with the classifications summarised in Table  1.  

To minimise redundant detection of alarms occurring in rapid succession, multiple alarms detected within a 1-

second interval were considered as a single alarm episode. It is important to note that the sampling frequency 

of the Dräger system is higher than the sampling frequency of 1 Hz at which data could be obtained for this 

study. As a result, the Dräger system is likely to detect a greater number of alarms. However, this has no 

implications for the present study, as the reconstructed system is used as the reference standard.  

 

Categorical Flags Description Alarm Type 

*** No parameter values are available, potentially due to patient 
movement, poor electrode contact, expired electrodes or a poor 
signal-to-noise ratio caused by external equipment 
 

ARTEFACT 

+++ The measured parameter value exceeds the upper limit of the 
monitor’s measurement range 
 

OUT OF RANGE HIGH 

--- The measured parameter value falls below the lower limit of the 
monitor’s measurement range 
 

OUT OF RANGE LOW 

APN An apnoeic event (cessation of breathing) has been detected APNOEA 
 

Table  1. Overview of categorical flags and corresponding alarm types used in the reconstructed alarm system. 
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3.3.2.2 Implementation of Alarm Delays 

In the Dräger monitoring system, an alarm validation function, also referred to an alarm delay, is implemented. 

This mechanism ensures that alarm signals are only generated if the alarm condition persists for a specified 

duration. This function helps suppress false alarms caused by transient or self-resolving threshold violations.  

Although the Dräger Infinity Acute Care System User Manual (39) specifies certain alarm delay times, it remained 

unclear whether these delays were active in the Dräger monitors used in the PICU at Erasmus MC Sophia 

Children’s Hospital. The delay times listed in the manual are presented in Table 2.  To investigate this, a 

comparison was conducted between alarms generated by the reconstructed system and those produced by the 

Dräger system in the PICU. The temporal differences between corresponding alarm onset times were used to 

estimate the actual delay times. These estimated delays were then incorporated into the reconstructed system 

to ensure its behaviour more accurately reflected that of the Dräger monitoring system.  

 

 

 

 

 

 
 

ART M = mean invasive arterial blood pressure, HR = heart rate, RESP = respiratory rate,  SpO2  = oxygen saturation 
 

Table  2. Alarm delay times specified in the Dräger Infinity Acute Care System User Manual (39) for the vital parameters of 

this study.  

3.3.3  Data Annotation 

To establish a gold standard for training and evaluating the machine learning algorithm, all alarm events were 

annotated as actionable or nonactionable. The annotation strategy was developed in consultation with two 

clinicians from the PICU and is summarised in Table 3. An alarm was considered actionable if it was followed by 

a clinical intervention or reflected clinically relevant trends in monitoring data. 

Annotations were primarily based on clinical interventions and, as a first step, were applied to ART M and SpO2 

alarms. Informed by previous work (48-50), an alarm was classified as actionable if a change in intervention 

settings occurred within 30 minutes of the alarm.   

For RESP alarms, clinicians noted that actionable alarms did not occur in isolation but were typically 

accompanied by alarms from other parameters. Accordingly, a RESP alarm was classified as actionable if another 

alarm occurred within one minute before or after it.   

Van Kekem et al. (48) further demonstrated that actionable alarms were typically associated with significant 

decreases in SpO2, whereas nonactionable alarms were frequently attributable to transient artefacts. On this 

basis, alarms were classified as nonactionable under three conditions: when the percentage deviation from the 

specified limit was less than 2%, when they did not meet the criteria for actionability or when they were initiated 

by categorical flags such as OUT OF RANGE HIGH, OUT OF RANGE LOW or ARTEFACT. These categorical alarms 

were considered nonactionable as they did not require immediate clinical intervention. 

Finally, HR alarms were excluded from annotation in this study. A complete overview of the criteria used for 

each physiological parameter is presented in Table  3.  

  

Parameter Lower Limit (s) Upper Limit (s) 

ART M  4  
 

10  

HR 6  
 

6  

RESP 14  
 

14  

SpO2 10  6  
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Parameter Interventions Actionable Alarm Nonactionable Alarm 

ART M • Noradrenaline 
• Adrenaline 
• Dobutamine 
• Ringer’s lactate 
• NaCl 

• An intervention occurring during 
the alarm period 

• An intervention occurring within 
30 minutes after an alarm 

 

• Does not meet the criteria 
for classification as an 
actionable alarm 

• Percentage deviation from 
the limit is less than 2% 

• Categorical flags (OUT OF 
RANGE HIGH, OUT OF 
RANGE LOW, ARTEFACT) 

 
SpO2 • FiO2 

• PEEP 
• Tvi 

• An intervention occurring during 
the alarm period 

• An intervention occurring within 
30 minutes after an alarm 

• Does not meet the criteria 
for classification as an 
actionable alarm 

• Percentage deviation from 
the limit is less than 2% 

• Categorical flags (OUT OF 
RANGE HIGH, OUT OF 
RANGE LOW, ARTEFACT) 
 

HR - - - 

RESP - • An alarm from another parameter 
occurring within 1 minute before 
or after the alarm in question 

• Does not meet the criteria 
for classification as an 
actionable alarm 

• Percentage deviation from 
the limit is less than 2% 

• Categorical flags (OUT OF 
RANGE HIGH, OUT OF 
RANGE LOW, ARTEFACT) 

 

ART M = mean invasive arterial blood pressure, FiO2 = fraction of inspired oxygen,  HR = heart rate, NaCl = normal saline, PEEP = positive 

end-expiratory pressure, RESP = respiratory rate,  SpO2  = oxygen saturation, Tvi = inspiratory tidal volume 
 

Table  3. Criteria for annotating actionable and nonactionable alarms for each physiological parameter. 

 

3.3.4  Data Preprocessing 

The monitoring data were preprocessed prior to model development. In some cases, monitoring may began 

before the patient was fully connected to all sensors following admission to the PICU, which resulted in empty 

records. These empty records at the start of the recording, as well as records extending beyond the time of 

patient discharge, were removed. Categorical flags (***, +++,  --- and APN) were converted to NaN values and 

binary indicators were added to denote their presence.  

As the Dräger system had already applied a certain degree of filtering, although the methodology was not 

documented, no additional filtering was performed. Data were retained to reflect clinical reality as closely as 

possible, using values obtained directly from the monitor without further manipulation. 

After preprocessing, alarm data were merged with the monitoring data. For each alarm, a defined time window 

was extracted from the period preceding the event. A 3-minute window was used as the baseline and additional 

windows of 0.5, 1 and 5 minutes were evaluated to assess their impact on model performance. For illustration, 

Figure 5 shows Dräger monitoring signals aligned to an alarm event, with a 3-minute pre-alarm window 

indicated. 
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ART M = mean invasive arterial blood pressure, HR = heart rate, RESP = respiratory rate,  SpO2  = oxygen saturation 
 

Figure 5. Illustration of Dräger monitoring signals aligned to an alarm event (dashed line). The shaded region indicates the 3-

minute pre-alarm window used for feature extraction.  

 

3.3.5 Feature Engineering 

For model development, features were computed within predefined time windows to capture trends and 

variations in physiological parameters. In collaboration with two clinical experts, the extracted features included 

the median, interquartile range (IQR), variability, slope and cross-correlation between parameter pairs. Counts 

and proportions of categorical flags were also extracted. Feature calculation was performed for each parameter 

and detailed descriptions are provided in Appendix I. When more than 50% of values in a window were missing 

(NaN), the corresponding feature was set to NaN.  Features containing NaN values were removed, as several of 

the classifiers evaluated in this study cannot handle missing values.  

Feature extraction was based on a fixed pre-alarm time window to enable near real-time classification at alarm 

onset. Features were computed once at the moment the alarm was initiated, allowing rapid classification while 

avoiding computational overhead of sliding-window processing. A running window was not required, as the task 

concerned classification at alarm onset rather than prediction in advance.  

To ensure comparability across features, all features were scaled to account for differences in units and 

magnitudes. Scaling method selection was informed by feature distributions and outlier presence, evaluated 

using histograms for each feature. StandardScaler was applied when features had approximately normal 

distributions without substantial outliers. RobustScaler was applied when distributions deviated from normality 

or contained significant outliers. The selected scaling method was then applied consistently to all features.  

3.3.6 Model Development 

Four machine learning models, logistic regression (LR), decision tree (DT), random forest (RF) and eXtreme 

Gradient Boosting (XGBoost), were evaluated for alarm classification using a 3-minute baseline window and 

compared with additional windows of 0.5, 1 and 5 minutes. These classifiers represent different levels of 

complexity, ranging from simple, interpretable linear models (LR), through transparent rule-based methods for 

non-linear relationships (DT), to ensemble approaches (RF, XGBoost). RF combines multiple DTs and is less 

susceptible to overfitting than individual DTs, while XGBoost extends gradient boosting with additional 

regularisation to improve performance and capture complex patterns. However, RF and XGBoost are less 

interpretable than LR and DT. (51, 52) Compared with deep learning approaches, these models are generally 

more computationally efficient and scalable, enabling near-real-time deployment and facilitating clinical 

implementation. 

Model training was performed via nested cross-validation with ten outer folds and five inner folds, stratified and 

grouped at the patient level to preserve class imbalance and prevent data leakage. Within each outer training 

set, hyperparameter optimisation was conducted in the inner folds, using Optuna. Optuna adaptively explores 
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the hyperparameter space and prunes unpromising trials, providing a more efficient search than conventional 

grid or random search methods. (53) The hyperparameter spaces for each machine learning model are provided 

in Appendix II. All steps in the modelling pipeline, including feature scaling and hyperparameter optimisation, 

were fitted exclusively on the training data, after which the resulting model was evaluated on the held-out outer 

test fold. Figure 6 illustrates the nested cross-validation procedure.   

To address the expected class imbalance arising from the relatively low number of actionable alarms in the PICU 

data, class weights were set to balanced during model training. In addition, undersampling of the majority class, 

namely nonactionable alarms, was explored as an alternative strategy.  

 

 
 

Figure 6. Nested cross-validation with a 10-fold split in the outer loop and 5 folds in the inner loop. 

 

3.3.7  Model Evaluation 

Model performance was assessed using sensitivity, specificity, balanced accuracy, area under the receiver 

operating characteristic curve (AUROC) and the F1-score. (54) Balanced accuracy was selected as the 

optimisation target, as it equally weights sensitivity and specificity and is more reliable than overall accuracy in 

the presence of class imbalance. Hyperparameters for each outer fold were chosen to maximise balanced 

accuracy in the inner cross validation.  

Sensitivity and specificity quantify the ability to correctly classify actionable and nonactionable alarms, 

respectively. Balanced accuracy, defined as their mean, mitigates the bias of models that achieve high apparent 

accuracy by favouring the majority class. AUROC was reported as a complementary threshold-independent 

measure of a model’s capacity to discriminate between actionable and nonactionable alarms, with 0.5 indicating 

random classification and 1.0 perfect separation. The F1-score quantifies the trade-off between actionable 

alarms (sensitivity) and limiting false positives (precision), though it ignores true negatives and was therefore 

considered alongside other metrics. As no single metric fully characterises performance, results were assessed 

across this set of complementary measures. Final values were reported as the median across the ten outer test 

folds, with the IQR (first quartile (Q1) – third quartile (Q3)) to indicate variability.  

Optimisation was performed using balanced accuracy to maintain an appropriate trade-off between sensitivity 

and specificity, thereby limiting the false positives that contribute to alarm fatigue. In the Results section, 
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however, the best-performing model is presented. This model achieved the highest sensitivity among all 

evaluated models, reducing the risk of missing critical alarms.  

3.3.8  Post Hoc Analysis 

To gain deeper insight into the contribution of features to model performance and into the ability to distinguish 

actionable from nonactionable alarms, a post hoc analysis was conducted on the best-performing model.  

Feature importance was calculated to evaluate the relative contribution of individual features. Features with 

high importance rankings were assessed visually using scatterplots. Feature values for actionable and 

nonactionable alarms were summarised as medians with IQRs (Q1-Q3) and visualised with boxplots. A Pearson 

correlation matrix was computed to examine relationships between features.  

Finally, the speed of alarm classification was assessed to determine whether the model could be applied in near-

real time in a clinical setting. Inference time, defined as the wall-clock time required for a trained model to 

classify new alarms, was measured on each outer test fold. Predictions were repeated five times per fold to 

reduce noise and per-alarm inference time was calculated by dividing the total prediction time by the number 

of alarms. For each outer test fold, the median and IQR (Q1-Q3) of per-alarm inference times were obtained. To 

provide an overall estimate across folds, the median of these fold-level medians, together with the 

corresponding IQR (Q1-Q3) was reported.  

3.4 Stakeholder Input 

To investigate alarm management issues in the PICU, semi-structured interviews were conducted with four 

nurses and one psychologist specialising in patient stress within the PICU environment.  

The nurse interviews addressed three main areas:  

1. Identification of key problems related to alarm management, including the impact of alarms on nurses 

and the circumstances under which they do or do not respond.  

2. Perspectives on alarm prediction, distinctions between actionable and nonactionable alarms and the 

potential use of machine learning algorithms to detect actionable alarms.  

3. Recommendations for strategies to reduce the overall burden in the PICU.  

The interview with the psychologist focused on the impact of alarms on patients’ stress and overall experiences 

within the PICU environment.  
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4 Results 

This chapter presents the main findings of the study, based on the three methodological components: 

• Descriptive analyses of the PICU alarm data from the Erasmus MC Sophia Children’s Hospital to 

characterise the current alarm burden (Section 4.1); 

• The development and evaluation of the machine learning model (Section 4.2);  

• Perspectives from clinical stakeholders on current alarm management practices, challenges and 

potential strategies for reducing the impact of clinical alarms (Section 4.3).  

4.1 Problem Definition 

4.1.1 Distribution of Alarms by Priority Level 

Alarm data from a randomly selected cohort of 66 patients were analysed to determine the proportion of high-

, medium- and low-priority alarms. Among all alarms, 10.8%  were classified as low priority, 83.0% as medium 

and 6.2% as high.  

4.1.2 Distribution of Alarm Parameters 

In the complete dataset, SpO₂ alarms accounted for the largest proportion of clinical alarms. Alarms related to 

HR, ART M and RESP were also frequent. Figure 7 presents the number of alarms for the five most frequent 

parameters.  

 

 

ART M = mean invasive arterial blood pressure, HR = heart rate, PLS = pulse rate derived from pulse oximetry (SpO2),  

RESP = respiratory rate, SpO2  = oxygen saturation 
 

Figure 7.  Top five alarm parameters in the PICU at Erasmus MC Sophia Children’s Hospital,  November 2021 – October 

2024 (n = 2,582 patients). 
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4.1.3 Distribution of Alarm Messages 

Figure 8 presents the distribution of alarms by message, in contrast to Figure 7, which categorises alarms by 

physiological parameters. The most frequent alarm message was SpO2 < lower limit. Technical alarm messages,  

including ECG artefact and SpO2 sensor disconnected, were the second and third most frequent categories. 
Notably, 90.3% of the alarms labelled Unknown, indicating missing alarm messages, were attributable to 

ARTEFACT (***) alarms.  
       

ART M = mean invasive arterial blood pressure ,  ECG = electrocardiogram, HR = heart rate, SpO2  = oxygen saturation 
 

Figure 8.  Top ten alarm message types in the PICU at Erasmus MC Sophia Children’s Hospital,  November 2021 – October 

2024 (n = 2,582 patients). 

 

4.1.4 Distribution of Alarms per PICU unit 

Figure 9 presents the median number of alarms per patient-day across the PICU units. Units 2 and 3 exhibited a 

higher median number of alarms per patient-day compared with units 1 and 4. Unit 2 showed a higher frequency 

of ART M alarms. Unit 4 showed a relatively high number of SpO2 alarms. The distributions of all alarm 

parameters by unit are also shown in Figure 9.  
 

 

ART M = mean invasive arterial blood pressure, HR = heart rate, RESP = respiratory rate,  SpO2  = oxygen saturation 
 

Figure 9.  Median number of alarms per patient-day for each PICU unit at Erasmus MC Sophia Children’s Hospital,  November 

2021 – October 2024 (n = 2,582 patients).   
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4.1.5 Distribution of Alarms over Time 

Figure 10 shows the median hourly distribution of alarms. A peak in alarm occurrence was observed at 

approximately 09:00, with a similar pattern observed for medium-priority alarms (Figure 11). Decreases in alarm 

frequency were observed around 13:00 and 19:00. The median and IQR of the hourly distribution of alarms, 

differentiated by PICU unit and by alarm priority, are presented in Appendix III.  

 

 

Figure 10.  Median hourly distribution of alarms across the four PICU units at Erasmus MC Sophia Children’s Hospital,  

November 2021 – October 2024 (n = 2,582 patients). 

 

 

Figure 11.  Median hourly distribution of alarms by priority level across all PICU units at Erasmus MC Sophia Children’s 

Hospital,  November 2021 – October 2024 (n = 66 patients). 
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4.2 Machine Learning Model 

4.2.1 Research Population 

A total of 26 patients were included in model development. The median age was 1.31 years. Of these, 14 (53.8%) 

were male and 12 (46.2%) were female. Reasons for admission and illness severity scores are summarised in 

Table 4.  

 

 

 

 

 

 

 
 

 

 

PIM 3 = paediatric index of mortality 3, PRISM III = paediatric risk of mortality III 
 

Table  4.  Characteristics of patients included in model development.  

 

4.2.2 Reconstruction of the Alarm System  
Parameter-specific delay times, reported as median with IQR (Q1–Q3), were calculated by comparing 

reconstructed system alarms with Dräger monitor alarms. The shortest alarm delays, with a median of 1 s, were 

observed for the categorical flags and for SpO2  L-T (<80%), whereas the longest delay, with a median of 13 s, 

was observed for the RESP limits. Results for lower and upper limits and categorical flags are presented in Table 

5.  

 

 

 

 

 

 

ART M = mean invasive arterial blood pressure, HR = heart rate, RESP = respiratory rate,  SpO2  = oxygen saturation 
 

Table  5. Estimated alarm delay times (median with IQR (Q1 – Q3) showing the temporal differences between reconstructed 

system alarms and corresponding Dräger alarms.  

 

  

Characteristic Dataset (N = 26) 

Gender, N (%)  
Male 14 (53.8) 
Female 12 (46.2) 

 

Age (years), median (Q1-Q3) 1.31 (0.07 – 14.96) 
 

Reason for Admission, N (%) Cardiovascular: 8 (30.8) 
Craniofacial: 3 (11.5) 
Critical Illness: 1 (3.8) 
Gastrointestinal: 1 (3.8) 
Neurology: 1 (3.8) 
Orthopaedic: 6 (23.1)  
Other Surgery: 1 (3.8) 
Prematurity: 1 (3.8) 
Respiratory: 2 (7.7)  
Trauma/Injury: 2 (7.7) 
 

PRISM III, median (Q1-Q3) 15 (15 – 17) 
 

PIM 3 (%), median (Q1-Q3) 0.8 (0.2 – 2.7) 

Parameter Lower Limit (s) 
Median (Q1-Q3) 

Upper Limit (s) 
Median (Q1-Q3) 

Categorical Flags (s) 
Median (Q1-Q3) 

ART M  3 (3 - 4) 
 

9  (8.5 -9) 1  (0 - 1) 

HR 5  (5 - 6) 
 

5  (5 - 6) 1  (0 - 1) 

RESP 13  (13 - 14) 
 

13  (13 - 14) 1  (0 - 1) 

SpO2
* 9  (6 - 9) 5  (4 – 6) 1  (0 - 1)  

*SpO2 L-T (<80%) has an alarm delay time of 1 s. 
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4.2.3 Alarm Dataset and Features 

The dataset initially comprised 26,832 alarm windows across all window lengths. After excluding alarm windows 

with more than 50% missing values, 19,621 windows of 3 minutes, 14,817 of 0.5 minute, 17,317 of 1 minute and 

20,269 of 5 minutes remained. Actionable alarms accounted for 13% of all alarms. 

For each alarm window, 48 features were extracted and feature distribution histograms (Appendix IV) showed 

non-normal distribution with substantial outliers. Therefore, a RobustScaler transformation was applied to all 

features to enhance comparability and limit the influence of extreme values. 

4.2.4 Model Evaluation 

Among the evaluated algorithms, the DT achieved the highest sensitivity, with a median of 0.48 (0.40 – 0.60) at 

the 0.5-minute window (Table 6). The specificity ranged from 0.51 (0.43 – 0.64) to 0.70 (0.49 – 0.81) across alarm 

windows, with higher values observed at longer windows. Balanced accuracy and AUROC values remained close 

to 0.5 across all windows. F1-scores were consistently low (0.19 – 0.24). Results for the other algorithms, as well 

as the models incorporating undersampling, are presented in Appendix V.  

 
 

 

Table  6. Performance of DT, identified as the best-performing model, across different alarm windows, expressed as median 

with IQR (Q1 -Q3).  

 

4.2.5 Post Hoc Analysis 

A post hoc analysis was performed on the best-performing model, the DT. Feature importance was examined, 

with the ten features contributing most to the model shown in Figure 12. The median feature importance did 

not exceed 0.10 (0.04 – 0.15). The categorical flag features contributed minimally and were therefore not 

considered further in the subsequent post hoc analysis. 

 

 

ART M = mean invasive arterial blood pressure, HR = heart rate, IQR = interquartile range, RESP = respiratory rate,  SpO2  = oxygen 

saturation 
 

Figure 12. Top 10 feature importances of the DT for the baseline alarm window of 3 minutes, expressed as median with IQR. 

 

Alarm Window  
(min) 

Sensitivity 
Median (Q1-Q3) 

Specificity 
Median (Q1-Q3) 

Balanced Accuracy 
Median (Q1-Q3) 

AUROC 
Median (Q1-Q3) 

F1-score 
Median (Q1-Q3) 

3 
 

0.42 (0.33 - 0.55) 0.60 (0.55 – 0.70) 0.53 (0.49 – 0.55) 0.53 (0.52 – 0.56) 0.19 (0.10 – 0.27) 

0.5 
 

0.48 (0.40 – 0.60) 0.51 (0.43 – 0.64) 0.53 (0.49 – 0.56) 0.53 (0.50 – 0.58) 0.22 (0.11 – 0.28) 

1 
 

0.40 (0.19 – 0.67) 0.66 (0.45 – 0.78) 0.52 (0.48 – 0.53) 0.55 (0.52 – 0.58) 0.20 (0.13 – 0.27) 

5 0.36 (0.29 – 0.48) 0.70 (0.49 – 0.81) 0.54 (0.52 – 0.57) 0.55 (0.54 – 0.58) 0.24 (0.12 – 0.26) 
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To assess whether the five most important features of the DT for the 3-minute alarm window (Figure 12) could 

discriminate between actionable and nonactionable alarms, scatterplots of feature pairs were generated. Figure 

13 presents the scatterplots of the three features with the highest importance (‘ART M IQR’, ‘HR Median’ and 

‘SpO2 Variability’). The plots show overlapping distributions of actionable and nonactionable alarms across all 

three feature pairs. Scatterplots for the remaining combinations are provided in Appendix VI.  

 

 

ART M = mean invasive arterial blood pressure, HR = heart rate, IQR = interquartile range, SpO2  = oxygen saturation 
 

Figure 13. Scatterplots of the three most important features of the DT for the 3-minute alarm window. The plots show the 

relationships between ‘ART M IQR’, ‘HR Median’ and ‘SpO2 Variability’, with actionable alarms in light blue and nonactionable 

alarms in dark blue.    

 

To evaluate potential collinearity between the included features, a correlation matrix was generated (Appendix 

VI). Overall, the features showed low correlation with each other. The highest correlation was observed between 

‘RESP Variability’ and ‘RESP IQR’ (r = 0.65). 

To investigate potential differences between alarm groups for the individual features, medians and IQRs (Q1 – 

Q3) for the 3-minute alarm window were calculated for actionable and nonactionable alarms (Table 7). Minimal 

group differences were observed for several features, including ‘ART M Variability’, ‘HR Variability’, ‘RESP IQR’ 

and ‘RESP Variability’, with substantial overlap of the IQRs between the alarm groups. The corresponding boxplot 

distributions are presented in Appendix VI, which likewise demonstrate minimal inter-group differences and 

numerous outliers.  

Finally, inference time per alarm was assessed. For the DT with the 3-minute alarm window, the median 

interference time across outer test folds  was 0.002 (0.002 – 0.003) ms per alarm. 
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ART M = mean invasive arterial blood pressure, HR = heart rate, RESP = respiratory rate,  SpO2  = oxygen saturation 
 

Table  7. Summary of physiological signal features within 3-minute alarm windows for actionable versus nonactionable 

alarms. Data are reported as median values with IQR (Q1–Q3). 

 

4.3 Stakeholder Input 

To investigate alarm management in the PICU, semi-structured interviews were conducted with four nurses and 

one psychologist specialised in patient stress within the PICU. Detailed findings are provided in Appendix VII, 

while the principal themes are summarised below.   

4.3.1 Alarm Management Practices and Challenges  

Analysis of the interviews with the four nurses identified the following themes:  

• Nurses reported routinely adjusting alarm thresholds at the start of each shift, basing these 

adjustments on factors such as patient age, underlying pathology and familiarity with the patient’s 

condition.  

• Repeated exposure to alarm sounds was described as increasing stress and contributing to 

desensitisation, which in turn reduced responsiveness and encouraged a tendency to interpret alarms 

as non-urgent.   

• Nurses emphasised that they consistently responded to all high-priority (red) alarms, regardless of 

whether these originated from their own patients or those under the care of colleagues.  

• Duplicate alarms, such as simultaneous alerts from the ventilator and the Dräger monitor, were not 

generally perceived as problematic. 

• Alarms were frequently described as disruptive during specific clinical situations, including clinical 

interventions and patient movement. Respiratory alarms were regarded as necessary only in cases of 

respiratory insufficiency, while infusion pump alarms for non-critical medication (e.g. paracetamol) 

were often considered avoidable distractions. 

  

Feature Actionable Alarms  
Median (Q1-Q3) 

Nonactionable Alarms  
Median (Q1-Q3) 

ART M Median 60 (52 – 69) 58 (50 – 68) 
ART M IQR 3 (2 – 6) 3 (2 – 4.5) 
ART M Variability 0.92 (0.54 – 1.67) 0.72 (0.47 – 1.25) 
ART M Slope 
 

0.005 (- 0.01 – 0.03) 0.0006 (- 0.01 – 0.02) 

HR Median 146 (118 – 161) 146 (130 – 158) 
HR IQR 2 (1 – 5) 2 (1 – 4) 
HR Variability 0.48 (0.25 – 1.09) 0.44 (0.26 – 0.84) 
HR Slope 
 

0.0017 (-0.009 – 0.02) - 0.00002 (-0.01 – 0.012) 

SpO2 Median 94 (79 – 97) 94 (83 – 98) 
SpO2  IQR 1 (1 – 3) 1 (1 – 2) 
SpO2  Variability 0.46 (0.33 – 0.69) 0.4 (0.3 – 0.54) 
SpO2 Slope 
 

-0.0027 (-0.015 – 0.0038) - 0.0006 (- 0.0065 – 0.004) 

RESP Median 39 (29 – 48) 40 (29 – 51) 
RESP IQR 11.5 (6 – 16.88) 10 (4 -15) 
RESP Variability 3.23 (2 – 4.58) 2.77 (1.5 – 4.27) 
RESP Slope 
 

0.00034 (-0.046 – 0.049) -0.00021 (-0.038 – 0.036) 

ART M x HR Correlation 0.11 (-0.15 – 0.43) 0.2 (-0.09 – 0.5) 
ART M x SpO2 Correlation -0.03 (0.25 – 0.18) -0.02 (-0.22 – 0.18) 
ART M x RESP Correlation 0.08 (-0.16 – 0.31) 0.04 (-0.18 – 0.27) 
HR x  SpO2 Correlation -0.09 (-0.34 – 0.14) -0.05 (-0.27 – 0.16) 
HR x RESP Correlation 0.02 (-0.19 – 0.25) 0.03 (-0.18 – 0.26) 
SpO2 x RESP Correlation 0 (-0.2 – 0.17) -0.004 (-0.18 – 0.17)  
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4.3.2 Perspectives on Alarm Prediction  

From interviews with two nurses, the following themes emerged: 

• Nurses reported that they were often able to anticipate alarms based on information provided during 

handovers, observations of patient restlessness or excessive movement and during clinical 

interventions.  

• The clinical context of the patient was described as crucial for predicting alarms, with assessments 

extending beyond physiological signals alone.  

• Distinguishing between actionable and nonactionable alarms was considered challenging, as clusters of 

nonactionable alarms within a short timeframe could still carry clinical significance.  

• Limited confidence was expressed in the current potential of machine learning algorithms designed to 

transmit only actionable alarms to handheld devices. Nonactionable alarms were regarded as 

potentially useful precursors or early indicators of actionable events. 

• Actionable events, such as episodes of oxygen saturation requiring supplemental oxygen, can be 

documented by nurses in HiX.  

4.3.3 Strategies for Reducing Alarm Burden  

The interviews with the four nurses highlighted several strategies: 

• Many of the proposed interventions focused on reducing the impact of alarm noise. 

• Nurses emphasised the importance of considering interventions directed towards patients, as they 

remain continuously exposed to loud alarm sounds.  

• A need was identified for a foot pedal or push-button mechanism to silence alarms during clinical 

interventions.  

• Alarm settings were considered ideally adjustable for each individual infusion pump.  

• Nurses expressed a preference for the introduction of audiovisual support via handheld devices at the 

current stage, to allow familiarisation prior to the transition to single-patient rooms. 

4.3.4 Patient Stress and Experience  

The interview with the psychologist yielded the following insights into the impact of alarms on patients and their 

families:  

• For parents, the principal source of stress arises not from the alarms themselves, but from the severity 

of their child’s medical condition.  

• Alarms cannot be directly associated with patient recovery or extended hospitalisation, as their 

frequent occurrence is often a consequence of the patient’s deteriorating condition.  

• Auditory stimuli resembling alarms from the PICU frequently evoke recollections of parents’ 

experiences on the unit. 

• Alarms may also contribute to a perceived sense of safety among parents, as they provide reassurance 

that their child is subject to continuous monitoring. 

• Single-patient rooms are regarded by parents as challenging, as children are no longer continuously 

visible to nursing staff. However, such rooms exert a positive influence on the child’s care by reducing 

ambient noise levels.  

• A parental dashboard has been developed to provide contextual information concerning continuous 

monitoring and the significance of alarms.  
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5 Discussion 

This study addressed three objectives: (1) to characterise the current alarm burden in the PICU, (2) to develop a 

machine learning algorithm for classifying actionable alarms using multimodal vital sign data, and (3) to explore 

clinicians’ perspectives on alarm management.  

The best-performing model, a DT, showed limited performance, with sensitivities of 0.36-0.49, 

specificities of 0.51-0.70 and balanced accuracies of approximately 0.50. Post hoc analysis revealed no single 

feature with dominant importance, minimal differences in feature distributions and a high prevalence of 

outliers, indicating that actionable and nonactionable alarms cannot be reliably distinguished, thereby 

addressing Objective 2.  

Descriptive analyses demonstrated that most alarms were related to SpO2 desaturations. Alarm 

frequency varied between units, reflecting differences in patient populations and monitoring practices, and 

showed distinct temporal patterns linked to ward activity. These findings address Objective 1 and support the 

transition to single-patient rooms or the implementation of targeted interventions at ward level.  

Semi-structured interviews with nurses indicated that frequent alarms contribute to overstimulation 

and desensitisation, yet even nonactionable alarms are valued as early warnings of deterioration. Moreover, 

distinguishing actionable from nonactionable alarms was reported to require clinical judgement and contextual 

information beyond physiological signals, addressing Objective 3.  

The following sections situate the findings within the existing literature (Section 5.1), interpret the results in light 

of the three methodological components (Section 5.2), discuss study limitations (Section 5.3) and provide 

recommendations for future research and clinical practice (Section 5.4).  

5.1 Comparison to Literature  

The performance of machine learning models is highly dependent on data quality, with accurate annotation 

representing a critical determinant. Reviewing how other intensive care unit (ICU) studies have addressed 

annotation in developing machine learning approaches for alarm reduction, as well as Dutch initiatives on alarm-

burden reduction, may provide insights relevant to the PICU at Erasmus MC Sophia Children’s Hospital.  

Several neonatal intensive care unit (NICU) studies have relied on retrospective labelling by professional 

judgement or annotator consensus, but with limited methodological detail and risk of bias, underscoring the 

need for prospective, context-supported approaches. (55-57) Other ICU studies have adopted rule-based 

annotation, with expert-defined scenarios and balanced datasets of true and false alarms. (58, 59) While these 

approaches simplify model training, they do not reflect clinical reality, where only 3-13% of alarms are 

actionable, and therefore tend to overestimate performance. Targeted strategies have also been explored. 

Kalden et al. (60) predicted critical oxygen desaturations based on red alarms, enabling delayed presentation of 

yellow alarms without compromising safety, though their scope was limited. Caregiver response has likewise 

been used as a proxy for intervention (61), but is unreliable in open-ward PICUs where silencing may reflect 

either noise suppression or clinical management.   

Taken together, these findings suggest that starting with narrowly defined scenarios, such as desaturations, 

could represent a practical first step before addressing the broader alarm burden. This is particularly relevant 

due to the predominance of SpO2 desaturation alarms in this PICU cohort. Moreover, as most prior studies were 

conducted in the NICU, the present study represents an initial step in developing machine learning approaches 

tailored to the PICU context. 

Dutch initiatives demonstrate complementary strategies for alarm reduction. Within the Smart and Silent ICU 

(SASICU) project (62), Boelhouwer (63) highlighted challenges in configuring personalised alarm settings and 

variability among nurses. A configuration system was developed to guide patient-specific alarm settings based 

on clinical profile and risk level. Varisco et al. (64) implemented an alarm management system in the NICU of 
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Máxima MC, Eindhoven, combining handheld delivery of waveform alarms with workflow changes such as 

sensor replacement protocols, alarm delays, pausing alarms during caregiving moments and regular review of 

policies and alarm settings. These interventions significantly reduced alarms per patient-day without 

compromising patient safety.  

5.2 Interpretation of the Results 

5.2.1 Problem Definition 

Alarm analysis showed that SpO2, HR, ART M and RESP generated the highest number of alarms and were 

therefore selected as model inputs. The most frequent alarm, SpO2 < lower limit, included both true 

desaturations and motion artefacts, while SpO2  sensor disconnected, the third most frequent alarm, remained 

clinically relevant because prompt recognition of sensor detachment is essential for reliable monitoring.  

Alarm frequency varied across units. Units 2 and 3 generated more alarms per patient-day than units 1 and 4, 

reflecting higher illness severity, narrower alarm thresholds and greater need for intensive monitoring. Unit 2 

showed more ART M alarms, consistent with its predominance of cardiothoracic surgical patients. Unit 4 

demonstrated a high number of SpO₂ alarms, likely related to motion artefacts in more active patients.  

Temporal analysis revealed a pronounced alarm peak around 09:00 across all units, coinciding with the start of 

bedside rounds when increased nursing interventions and physician presence heightened patient restlessness. 

Alarm frequency declined thereafter, with a marked reduction between 12:00 and 14:00 during scheduled rest 

periods, when lights were dimmed and interventions minimised. Afternoon shift handovers between 15:00 and 

17:00 were followed by a gradual decline in ward activity. Evening meal breaks around 19:00 were associated 

with a further reduction in alarms, after which frequencies stabilised at lower levels into the night. 

These findings indicate that alarm frequency is influenced by patient factors, technical issues, monitoring 

settings and the daily ward routines, supporting the transition to single-patient rooms to minimise ward-related 

disturbances. 

5.2.2 Machine Learning Model 

The model cohort consisted mainly of younger, elective surgical patients of low illness severity, who may require 

less intensive monitoring but generate more artefacts and nonactionable alarms.  

Observed alarm delays in the reconstructed system closely matched values from the Dräger Infinity Acute Care 

System User Manual (39), with minor discrepancies due to rounding. Manual values were therefore adopted, 

except for categorical flags and SpO2 L-T (< 80%), where calculated delays were retained due to the absence of 

manual values.  

Only 13% of alarms were actionable, creating a pronounced class imbalance that biased models toward the 

majority class. To preserve fidelity to the original Dräger data, upsampling was not applied. The DT achieved the 

highest sensitivity (36-48%), while LR and RF showed higher specificity but lower sensitivity. XGBoost yielded the 

lowest performance, likely due in part to limited hyperparameter tuning, but all models were ultimately 

constrained by the low discriminative value of the available features. Across all models, sensitivity and specificity 

were inadequate for clinical application, with AUROC and balanced accuracy near 0.5 and F1-scores of about 

20%, indicating near-random performance. Undersampling did not improve performance, as reducing majority-

class samples left insufficient data for effective model training. Given this imbalance, some evaluation metrics 

require cautious interpretation; for instance, the F1-score is prevalence-dependent, as precision is strongly 

affected when the positive class is rare. (54) Consistent with the methods, performance was therefore assessed 

across multiple complementary metrics.  

Model performance varied with alarm-window length. The DT achieved its highest sensitivity at 0.5 minutes, 

whereas LR and RF peaked at 5 minutes. These shifts were model-dependent and mainly altered the sensitivity-

specificity balance without improving discrimination. Balanced accuracy and AUROC remained near 0.5 across 
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all windows, indicating no benefit from varying this parameter. Therefore, the baseline 3-minute alarm window 

was adopted for post-hoc analyses. 

Feature-importance analysis showed uniformly low contributions, minimal influence of categorical flag features, 

low inter-feature correlations (< 0.7) and extensive overlap between actionable and nonactionable alarms with 

minimal distributional differences. These findings indicate that the features had limited discriminatory value. 

Inference time was negligible (0.002 ms), suggesting near-instantaneous classification. Residual latency may be 

attributable to data transfer, but this was not investigated in the present study.  

A likely explanation for poor performance is the retrospective annotation, which depends on clinical context and 

subjective judgement not captured in the dataset. This limitation is evident in Figures 14 and 15, where 

actionable and nonactionable alarms show no clear separation, underscoring the uncertainty of labels.  

 
 

 

ART M = mean invasive arterial blood pressure, HR = heart rate, RESP = respiratory rate,  SpO2  = oxygen saturation 
 

Figure 14. Illustration of an actionable ART M LOW alarm for Patient P001. This alarm was classified as actionable, most likely 

because the ART M signal deviated by more than 2% below the threshold.  

 

 

ART M = mean invasive arterial blood pressure, HR = heart rate, RESP = respiratory rate,  SpO2  = oxygen saturation 
 

Figure 15. Illustration of a nonactionable ART M LOW alarm for Patient P001. This annotation may be explained by the fact 

that the ART M signal remained within 2% below the threshold.   
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5.2.3 Stakeholder Input 

Interviews with nursing staff highlighted the need to balance reduced auditory overstimulation with the reliable 

detection of patient deterioration. Nurses expressed concern that a machine learning algorithm transmitting 

only actionable alarms could delay recognition of early warning signs. They also emphasised that interpretation 

of alarms require clinical context, which may explain the model’s limited sensitivity and near-random 

performance of models based solely on physiological signals. Suggested interventions included reducing ambient 

noise, introducing a foot pedal to silence alarms during interventions and enabling adjustment of infusion-pump 

alarm settings.  

The psychologist noted that alarms contribute to stress primarily through overstimulation but also 

provide a sense of safety. The transition to single-patient rooms was considered beneficial for creating a calmer 

environment, and parents were expected to benefit from clear explanations of alarm purposes and reassurance 

that not every alarm signals an emergency.  

Overall, stakeholders preferred interventions that preserve nurses’ control over complex algorithms that 

diminish it. Reflecting this preference for oversight, nurses favoured gradual adoption of handheld devices 

displaying waveforms and alarms to familiarise themselves with the technology before transitioning to single-

patient rooms.  

5.3 Limitations 

This study has several limitations. The main limitation is the retrospective labelling of alarms as actionable if 

followed by an intervention within 30 minutes. This assumption is of uncertain validity, as it presumes that 

interventions were always initiated by the alarm, that all actionable alarms prompted responses and that alarms 

without intervention were nonactionable. In practice, alarms may have been missed due to alarm fatigue or 

misclassified because of incomplete documentation. Moreover, alarm actionability depends on clinical context, 

which cannot be captured solely through physiological signals and intervention data. Future improvements 

could include motion sensors or camera systems to detect motion artefacts, or prospective labelling methods 

such as annotation directly in HiX, integrated buttons in Dräger monitors or handheld devices. However, such 

manual approaches are resource-intensive and may be overlooked during busy clinical workflows.  

Another limitation was the exclusion of HR alarms and those from other physiological parameters, including 

ECG, and devices such as ventilators and infusion pumps. In addition, the relatively small cohort size of 26 

patients limits robustness and generalisability. Future research should therefore incorporate all PICU sources 

and include larger, more diverse patient populations to provide a more representative overview.  

Finally, although the Dräger monitoring system was reconstructed as accurately as possible, discrepancies 

remain. The precise configuration, including the signal-processing filters, is not publicly documented, precluding 

exact replication. Moreover, the Dräger monitor operates at a higher sampling frequency than the stored data, 

making it more sensitive to alarm detection. Silenced alarms were not incorporated because their interpretation 

is ambiguous, as silencing may indicate either suppression of a nonactionable alarm or intervention for an 

actionable event. In addition, the SpO2 L-T (< 80%) delay was incorrectly set to 1 s in the model, whereas it is 

actually 0 s, as this alarm is classified as high-priority alarm. As the calculated alarm delays in this study 

corresponded with those in the Dräger Infinity Acute Care System User Manual (39), time synchronisation is 

unlikely to pose problems. Future research should therefore rely on registered alarm events from the Dräger 

monitoring data to ensure comprehensive inclusion of alarms, especially the immediate activation of high-

priority alarms from other parameters that was not fully captured in this study.  
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5.4 Recommendations 

This section provides recommendations for future research on machine learning algorithms (Section 5.4.1) and 

for clinical practice (Section 5.4.2); with emphasis on the latter, as the findings highlight an immediate need for 

practical clinical interventions over machine learning algorithms.  

5.4.1 Recommendations for Further Research 

Future work on machine learning for alarm reduction should prioritise high-quality data annotation to produce 

reliable labels distinguishing actionable from nonactionable alarms. Poor annotation risks the “garbage in, 

garbage out” problem, where unreliable inputs yield unreliable outputs. (65) Accurate annotation would also 

clarify whether actionable alarms can be identified solely from physiological signals without clinical context. A 

practical first step could involve prospective annotation by shadowing nurses and recording annotations on 

handheld devices.  

In addition, larger and more diverse datasets, including more severely ill patients to increase the 

proportion of actionable alarms, are needed to improve generalisability. The literature review (21) also identified 

relevant strategies from the process industry, such as alarm grouping, where related alarms are aggregated and 

displayed hierarchically rather than separately. Applied in clinical practice, this could help nurses recognise 

clusters of alarms and assess their relevance, though it would not reduce the total number of alarms generated.  

5.4.2 Recommendations for Clinical Practices 

The findings of this study support the implementation of straightforward interventions to reduce alarm burden 

in the PICU, with particular emphasis on threshold adjustments and alarm delays.  

Nurses routinely adjust alarm limits at the beginning of each shift. Therefore, providing them with clear guidance 

on appropriate threshold adjustments could help reduce nonactionable alarms. Analysis of the reconstructed 

data demonstrated that SpO2 alarms below the lower limit constituted the largest proportion of alarms; 

approximately 50% of these alarms could have been prevented by lowering the threshold by 2% (Figure 16). ART 

M alarms also clustered near the threshold, suggesting that modest adjustments (1-2%) may reduce their 

frequency, whereas HR and RESP alarms were more broadly distributed and less amenable to this strategy.  

Alarm delays represent an additional intervention. The majority of alarms occurred within the first seconds, and 

more than 20% of SpO2 alarms could potentially be avoided by extending the default Dräger delay by 2 seconds 

(Figure 17). However, current monitors do not allow manual configuration of delays and HR alarms are 

constrained by the AAMI/ANSI/IEC 60601-2-27 standard, which limits the total delay to 10 seconds. (39) For this 

reason, threshold adjustment should be prioritised.  

To assess nurses’ perspectives on this intervention, additional questions were posed to the two nurses who had 

been interviewed regarding alarm prediction and the implementation of the machine learning model. A 2% 

threshold adjustment was considered to increase the risk of missing important alarms for acutely ill or unfamiliar 

patients but feasible for stable and familiar patients with longer admissions. A similar perspective was expressed 

regarding delay extension. Nurses reported that, in current practice, thresholds are set tightly and subsequently 

broadened if repeated nonactionable alarms occur.  

To ensure safe implementation, nurses emphasised the importance of education on the clinical consequences 

of threshold adjustments and structured dialogue with physicians about the impact of these changes. The 

introduction of alarm dashboards is recommended to enable regular multidisciplinary review during ward 

rounds. Such dashboards would enable identification of patterns, for example a higher number of SpO2 alarms 

due to poor sensor attachment or inappropriate limits. Acutely ill patients could be reviewed daily and stable 

long-term patients weekly. It was further suggested that alarm limits be defined by the multidisciplinary team 

at the time of postoperative admission.  
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In summary, modest threshold adjustments, supported by multidisciplinary review and enhanced education, 

represent feasible interventions to reduce alarm burden while safeguarding patient safety and promoting a 

calmer ward environment. It is further recommended to draw inspiration from and collaborate with existing 

initiatives in the Netherlands, as described in this report, to avoid unnecessary duplication of efforts.  

 

 

 ART M = mean invasive arterial blood pressure, HR = heart rate, RESP = respiratory rate,  SpO2  = oxygen saturation 
 

Figure 16. Percentage difference histograms for ART M, HR, RESP and SpO2 alarms at low and high thresholds. The x-axis 

shows the percentage difference from the threshold, while the y-axis indicates the proportion of alarms. Data are based on 

n = 63 patients admitted to the PICU at Erasmus MC Sophia Children’s Hospital between November 2021 and October 2024.  
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ART M = mean invasive arterial blood pressure, HR = heart rate, RESP = respiratory rate,  SpO2  = oxygen saturation 
 

Figure 17. Alarm duration histograms for ART M, HR, RESP and SpO2 alarms at low and high thresholds. The x-axis shows the 

alarm duration in seconds, while the y-axis indicates the proportion of alarms. Data are based on n = 63 patients admitted 

to the PICU at Erasmus MC Sophia Children’s Hospital between November 2021 and October 2024.  
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6 Conclusion 

This study demonstrates that the machine learning algorithm developed to classify actionable alarms from 

multimodal vital sign data is not yet suitable for clinical application. The best-performing DT model achieved 

sensitivities of only 36-48%, specificities of 51-70% and balanced accuracies of about 50%, with no clear feature 

distinction between actionable and nonactionable alarms. These results indicate that, with the current feature 

set and modelling approach, the algorithm cannot reliably distinguish actionable from nonactionable alarms.  

These findings can be attributed, first, to the limitations of retrospective labelling of actionable alarms based on 

assumptions and, second, to the inherent difficulty of distinguishing actionable alarms from physiological signals 

without clinical context, an observation reinforced by nurses, who also emphasised the value of nonactionable 

alarms as early warnings.  

Future research should prioritise prospective annotation, increase the size and heterogeneity of the dataset and 

consider complementary strategies such as alarm grouping to support clinical decision-making. For current 

practice, the principal recommendation is to implement an alarm dashboard for multidisciplinary review of 

alarm limits and electrode placement, thereby reducing alarm burden and mitigating alarm fatigue while 

safeguarding patient safety.   
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Supplementary Materials 

Appendix I. Feature Descriptions 

 

 

ART M = mean invasive arterial blood pressure, HR = heart rate, IQR = interquartile range, RESP = respiratory rate,  SpO2  = oxygen 

saturation 
 

Figure 1.  Overview of the features accompanied by brief descriptions.  

  

Feature Description 

ART M_median Median of ART M within the alarm window 
ART M_iqr IQR of ART M within the alarm window 
ART M_variability Variability of ART M within the alarm window 
ART M_slope Temporal slope of ART M within the alarm window 
ART M_missing_count Count of ART M time points flagged as ARTEFACT within the alarm window 
ART M_missing_frac Proportion of ART M time points flagged as ARTEFACT within the alarm window 
ART M_high_count Count of ART M time points flagged as OUT OF RANGE HIGH within the alarm window 
ART M_high_frac Proportion of ART M time points flagged as OUT OF RANGE HIGH within the alarm window 
ART M_low_count Count of ART M time points flagged as OUT OF RANGE LOW within the alarm window 
ART M_low_frac Proportion of ART M time points flagged as OUT OF RANGE LOW within the alarm window 
HR_median Median of HR within the alarm window 
HR_iqr IQR of HR within the alarm window 
HR_variability Variability of HR within the alarm window 
HR_slope Temporal slope of HR within the alarm window 
HR_missing_count Count of HR time points flagged as ARTEFACT within the alarm window 
HR_missing_frac Proportion of HR time points flagged as ARTEFACT within the alarm window 
HR_high_count Count of HR time points flagged as OUT OF RANGE HIGH within the alarm window 
HR_high_frac Proportion of HR time points flagged as OUT OF RANGE HIGH within the alarm window 
HR_low_count Count of HR time points flagged as OUT OF RANGE LOW within the alarm window 
HR_low_frac Proportion of HR time points flagged as OUT OF RANGE LOW within the alarm window 
SpO2_median Median of SpO2 within the alarm window 
SpO2_iqr IQR of SpO2 within the alarm window 
SpO2_variability Variability of SpO2 within the alarm window 
SpO2_slope Temporal slope of SpO2 within the alarm window 
SpO2_missing_count Count of SpO2 time points flagged as ARTEFACT within the alarm window 
SpO2_missing_frac Proportion of  SpO2 time points flagged as ARTEFACT within the alarm window 
SpO2_high_count Count of  SpO2 time points flagged as OUT OF RANGE HIGH within the alarm window 
SpO2_high_frac Proportion of SpO2 time points flagged as OUT OF RANGE HIGH within the alarm window 
SpO2_low_count Count of  SpO2 time points flagged as OUT OF RANGE LOW within the alarm window 
SpO2_low_frac Proportion of  SpO2 time points flagged as  OUT OF RANGE LOW within the alarm window 
RESP_median Median of RESP within the alarm window 
RESP_iqr IQR of RESP within the alarm window 
RESP_variability Variability of RESP within the alarm window 
RESP_slope Temporal slope of RESP within the alarm window 
RESP_missing_count Count of RESP time points flagged as ARTEFACT within the alarm window 
RESP_missing_frac Proportion of  RESP time points flagged as ARTEFACT within the alarm window 
RESP_high_count Count of  RESP time points flagged as OUT OF RANGE HIGH within the alarm window 
RESP_high_frac Proportion of RESP time points flagged as OUT OF RANGE HIGH within the alarm window 
RESP_low_count Count of  RESP time points flagged as OUT OF RANGE LOW within the alarm window 
RESP_low_frac Proportion of  RESP time points flagged as  OUT OF RANGE LOW within the alarm window 
RESP_apn_count Count of RESP time points flagged as APNOEA within the alarm window 
RESP_apn_frac Proportion of RESP time points flagged as APNOEA within the alarm window 
ART M_x_HR_corr Correlation between ART M and HR within the alarm window 
ART M_x_SpO2_corr Correlation between ART M and SpO2 within the alarm window 
ART M_x_RESP_corr Correlation between ART M and RESP within the alarm window 
HR_x_SpO2_corr Correlation between HR and SpO2 within the alarm window 
HR_x_RESP_corr Correlation between HR and RESP within the alarm window 
SpO2_x_RESP_corr Correlation between SpO2 and RESP within the alarm window 



Master Thesis | C.A. van de Ruit  47 

 

Appendix II. Hyperparameter Optimisation 

The following tables summarise the hyperparameter search spaces defined for each machine learning model 

within the Optuna optimisation framework.  

Logistic Regression (LR) 

 

 

 
 

Table  1. Hyperparameter search space for LR. 

 

Decision Tree (DT) 

 

 

 

 
 

Table  2. Hyperparameter search space for DT.  

 

Random Forest (RF) 

 

 

 

 
 

Table  3. Hyperparameter search space for RF.  

 

Extreme Gradient Boosting ( XGBoost ) 

 

 

 

 

 

 

Table  4. Hyperparameter search space for XGBoost.  

  

Hyperarameter Range/ Options 

Penalty {“l1”, “l2”, “elasticnet”} 
C [0.001, 100] (log scale) 
l1_ratio [0.0, 1.0] 

Hyperarameter Range/ Options 

Max depth [2, 20]  
Min samples split [2, 20]  
Min samples leaf [1, 10]  
Max features {“sqrt”, “log2”, None} 
ccp_alpha [1e-5, 1e-2] (log scale) 

Hyperarameter Range/ Options 

Number of estimators [100, 1000] (step = 100) 
Max depth [3, 20]  
Min samples split [2, 20]  
Min samples leaf [1, 10]  
Max features  {“sqrt”, “log2”} 
Bootstrap {True, False} 

Hyperarameter Range/ Options 

Number of estimators [200, 800] (step = 100) 
Max depth [3, 10]  
Learning rate [0.001, 0.3] (log scale) 
Subsample [0.5, 1.0] 
Colsample_bytree [0.5, 1.0] 
Gamma [0, 5] 
Reg_lambda [0.001, 10] (log scale) 
Reg_alpha [0.001, 10] (log scale) 
Scale pos weight [0.5, 5.0] 
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Appendix III. Dräger Alarm Statistics 
 

 

Figure 1.  Median hourly distribution of alarms per PICU units at Erasmus MC Sophia Children’s Hospital, November 2021–

October 2024. Values are presented as the median with IQR. Data are based on n = 2,582 patients. 

 
 

 

Figure 2.  Median hourly distribution of alarms by priority level across all PICU units at Erasmus MC Sophia Children’s Hospital, 

November 2021–October 2024. Values are presented as the median with IQR. Data are based on n = 66 patients. 
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Appendix IV. Feature Distributions 

 

 

ART M = mean invasive arterial blood pressure, IQR = interquartile range 
 

Figure 1.  Distributions of the ART M features computed over the 3-minute alarm window, demonstrating their ranges and 

skewness to inform the choice of feature scaling for model development.  

 
 

 

HR = heart rate, IQR = interquartile range 
 

Figure 2.  Distributions of the HR features computed over the 3-minute alarm window, demonstrating their ranges and 

skewness to inform the choice of feature scaling for model development.  

 



Master Thesis | C.A. van de Ruit  50 

 

RESP = respiratory rate, IQR = interquartile range 
 

Figure 3.  Distributions of the RESP features computed over the 3-minute alarm window, demonstrating their ranges and 

skewness to inform the choice of feature scaling for model development.  

 

 

SpO2  = oxygen saturation, IQR = interquartile range 
 

Figure 4.  Distributions of the SpO2 features computed over the 3-minute alarm window, demonstrating their ranges and 

skewness to inform the choice of feature scaling for model development.  
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ART M = mean invasive arterial blood pressure, HR = heart rate, RESP = respiratory rate,  SpO2  = oxygen saturation 

 

Figure 5.  Distributions of the cross-correlation features computed over the 3-minute alarm window, demonstrating their 

ranges and skewness to inform the choice of feature scaling for model development.  

 

 

 

  

 

 

 

  



Master Thesis | C.A. van de Ruit  52 

 

Appendix V. Model Evaluation 

This appendix presents the performance of the class-weighted and undersampled machine learning models 

evaluated in this study, reported as medians with interquartile ranges (IQR) across the outer test folds.   

Class Weighting Models 

Logistic Regression (LR) 

 

Decision Tree (DT) 

 

Random Forest (RF) 

 

Extreme Gradient Boosting (XGBoost)  

 

 

 

 

  

  

Alarm Window  
(min) 

Sensitivity 
Median (Q1-Q3) 

Specificity 
Median (Q1-Q3) 

Balanced Accuracy 
Median (Q1-Q3) 

AUROC 
Median (Q1-Q3) 

F1-score 
Median (Q1-Q3) 

3 0.23 (0.14 – 0.48) 0.76 (0.63 – 0.86) 0.54 (0.53 – 0.56) 0.60 (0.56 – 0.62) 0.20 (0.12 – 0.25) 
 

0.5 0.37 (0.17 – 0.51) 0.69 (0.61 – 0.80) 0.53 (0.51 – 0.57) 0.55 (0.50 – 0.58) 0.21 (0.10 – 0.29) 
 

1 0.34 (0.29 – 0.49) 0.70 (0.63 – 0.77) 0.54 (0.51 – 0.57) 0.54 (0.52 – 0.60) 0.22 (0.14 – 0.29) 
 

5 0.40 (0.24 – 0.57) 0.69 (0.63 – 0.78) 0.54 (0.54 – 0.59) 0.58 (0.55 – 0.66) 0.20 (0.16 – 0.22) 

Alarm Window  
(min) 

Sensitivity 
Median (Q1-Q3) 

Specificity 
Median (Q1-Q3) 

Balanced Accuracy 
Median (Q1-Q3) 

AUROC 
Median (Q1-Q3) 

F1-score 
Median (Q1-Q3) 

3 0.42 (0.33 - 0.55) 0.60 (0.55 – 0.70) 0.53 (0.49 – 0.55) 0.53 (0.52 – 0.56) 0.19 (0.10 – 0.27) 
 

0.5 0.48 (0.40 – 0.60) 0.51 (0.43 – 0.64) 0.53 (0.49 – 0.56) 0.53 (0.50 – 0.58) 0.22 (0.11 – 0.28) 
 

1 0.40 (0.19 – 0.67) 0.66 (0.45 – 0.78) 0.52 (0.48 – 0.53) 0.55 (0.52 – 0.58) 0.20 (0.13 – 0.27) 
 

5 0.36 (0.29 – 0.48) 0.70 (0.49 – 0.81) 0.54 (0.52 – 0.57) 0.55 (0.54 – 0.58) 0.24 (0.12 – 0.26) 

Alarm Window  
(min) 

Sensitivity 
Median (Q1-Q3) 

Specificity 
Median (Q1-Q3) 

Balanced Accuracy 
Median (Q1-Q3) 

AUROC 
Median (Q1-Q3) 

F1-score 
Median (Q1-Q3) 

3 0.37 (0.08 – 0.48) 0.72 (0.58 – 0.87) 0.55 (0.51 – 0.58) 0.58 (0.53 – 0.64) 0.21 (0.06 – 0.29) 
 

0.5 0.21 (0.01 – 0.33) 0.71 (0.69 – 0.92) 0.50 (0.47 – 0.55) 0.55 (0.50 – 0.59) 0.09 (0.02 – 0.27) 
 

1 0.29 (0.05 – 0.37) 0.77 (0.62 – 0.90) 0.53 (0.51 – 0.57) 0.56 (0.52 – 0.61) 0.16 (0.08 – 0.29) 
 

5 0.42 (0.04 – 0.57) 0.68 (0.58 – 0.81) 0.57 (0.50 – 0.61) 0.60 (0.55 – 0.66) 0.19 (0.03 – 0.28) 

Alarm Window  
(min) 

Sensitivity 
Median (Q1-Q3) 

Specificity 
Median (Q1-Q3) 

Balanced Accuracy 
Median (Q1-Q3) 

AUROC 
Median (Q1-Q3) 

F1-score 
Median (Q1-Q3) 

3 0.05 (0.00 – 0.22) 0.90 (0.89 – 0.96) 0.51 (0.48 – 0.54) 0.54 (0.51 – 0.60) 0.07 (0.00 – 0.19) 
 

0.5 0.08 (0.01 – 0.16) 0.90 (0.89 – 0.98) 0.51 (0.50 – 0.52) 0.55 (0.50 – 0.61) 0.10 (0.02 – 0.16) 
 

1 0.05 (0.002 – 0.20) 0.94 (0.82 – 0.98) 0.51 (0.50 – 0.52) 0.53 (0.51 – 0.57) 0.07 (0.00 – 0.16) 
 

5 0.08 (0.03 – 0.18) 0.95 (0.83 – 0.95) 0.51 (0.50 – 0.52) 0.59 (0.53 – 0.64) 0.10 (0.05 – 0.13) 

Table  1. Class weighting performance of LR across alarm windows, reported as median with IQR (Q1-Q3).  

 

Table  2. Class weighting performance of DT across alarm windows, reported as median with IQR (Q1-Q3). 

 

Table  3. Class weighting performance of RF across alarm windows, reported as median with IQR (Q1-Q3). 

 

Table  4. Class weighting performance of XGBoost across alarm windows, reported as median with IQR (Q1-Q3). 
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Undersampling Models 

Logistic Regression (LR) 

 

Decision Tree (DT) 

 

Random Forest (RF) 

 

Extreme Gradient Boosting (XGBoost)  

 

 

Alarm Window  
(min) 

Sensitivity 
Median (Q1-Q3) 

Specificity 
Median (Q1-Q3) 

Balanced Accuracy 
Median (Q1-Q3) 

AUROC 
Median (Q1-Q3) 

F1-score 
Median (Q1-Q3) 

3 0.23 (0.14 – 0.48) 0.76 (0.63 – 0.86) 0.54 (0.53 – 0.56) 0.60 (0.56 – 0.62) 0.20 (0.12 – 0.25) 
 

0.5 0.13 (0.06 – 0.15) 0.92 (0.83 – 0.94) 0.50 (0.49 – 0.54) 0.54 (0.49 – 0.60) 0.14 (0.06 – 0.20) 
 

1 0.12 (0.09 – 0.14) 0.91 (0.86 – 0.92) 0.52 (0.50 – 0.53) 0.56 (0.53 – 0.60) 0.15 (0.09 – 0.16) 
 

5 0.42 (0.28 – 0.60) 0.67 (0.63 – 0.73) 0.55 (0.55 – 0.60) 0.59 (0.56 – 0.66) 0.20 (0.15 – 0.24) 

Alarm Window  
(min) 

Sensitivity 
Median (Q1-Q3) 

Specificity 
Median (Q1-Q3) 

Balanced Accuracy 
Median (Q1-Q3) 

AUROC 
Median (Q1-Q3) 

F1-score 
Median (Q1-Q3) 

3 0.42 (0.33 – 0.55) 0.60 (0.55 – 0.70) 0.53 (0.49 – 0.55) 0.53 (0.52 – 0.56) 0.19 (0.10 – 0.27) 
 

0.5 0.20 (0.09 – 0.28) 0.74 (0.66 – 0.82) 0.49 (0.45 – 0.52) 0.49 (0.47 – 0.53) 0.14 (0.06 – 0.21) 
 

1 0.19 (0.03 – 0.31) 0.76 (0.73 – 0.86) 0.50 (0.49 – 0.52) 0.53 (0.51 – 0.56) 0.14 (0.05 – 0.18) 
 

5 0.54 (0.36 – 0.75) 0.66 (0.39 – 0.79) 0.57 (0.54 – 0.58) 0.59 (0.57 – 0.63) 0.23 (0.16 – 0.28) 

Alarm Window  
(min) 

Sensitivity 
Median (Q1-Q3) 

Specificity 
Median (Q1-Q3) 

Balanced Accuracy 
Median (Q1-Q3) 

AUROC 
Median (Q1-Q3) 

F1-score 
Median (Q1-Q3) 

3 0.37 (0.08 – 0.48) 0.73 (0.58 – 0.87) 0.55 (0.51 – 0.58) 0.58 (0.53 – 0.64) 0.21 (0.06 – 0.29) 
 

0.5 0.14 (0.08 – 0.22) 0.86 (0.80 – 0.95) 0.52 (0.50 – 0.53) 0.56 (0.54 – 0.63) 0.13 (0.10 – 0.21) 
 

1 0.13 (0.08 – 0.28) 0.90 (0.79 – 0.92) 0.52 (0.52 – 0.55) 0.60 (0.54 – 0.62) 0.14 (0.11 – 0.19) 
 

5 0.27 (0.12 – 0.50) 0.78 (0.61 – 0.86) 0.54 (0.50 – 0.59) 0.61 (0.55 – 0.64) 0.17 (0.10 – 0.27) 

Alarm Window  
(min) 

Sensitivity 
Median (Q1-Q3) 

Specificity 
Median (Q1-Q3) 

Balanced Accuracy 
Median (Q1-Q3) 

AUROC 
Median (Q1-Q3) 

F1-score 
Median (Q1-Q3) 

3 0.05 (0.00 – 0.22) 0.90 (0.89 – 0.96) 0.51 (0.48 – 0.54) 0.54 (0.51 – 0.60) 0.07 (0.00 – 0.19) 
 

0.5 0.14 (0.00 – 0.32) 0.80 (0.77 – 0.90) 0.51 (0.50 – 0.53) 0.55 (0.53 – 0.60) 0.11 (0.00 – 0.21) 
 

1 0.17 (0.03 – 0.33) 0.85 (0.79 – 0.90) 0.52 (0.50 – 0.54) 0.56 (0.54 – 0.59) 0.14 (0.03 – 0.25) 
 

5 0.16 (0.10 – 0.25) 0.86 (0.83 – 0.92) 0.52 (0.51 – 0.53) 0.60 (0.56 – 0.62) 0.14 (0.08 – 0.19) 

Table  5. Undersampling performance of LR across alarm windows, reported as median with IQR (Q1-Q3).  

 

Table  6. Undersampling performance of DT across alarm windows, reported as median with IQR (Q1-Q3). 

 

Table  7. Undersampling performance of RF across alarm windows, reported as median with IQR (Q1-Q3). 

 

Table  8. Undersampling performance of XGBoost across alarm windows, reported as median with IQR (Q1-Q3). 
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Appendix VI. Post Hoc Analysis 

Scatterplots 

 

 
 

ART M = mean invasive arterial blood pressure, HR = heart rate, IQR = interquartile range, SpO2  = oxygen saturation 
 

Figure 1.  Scatterplots of the five most important features of the DT for the 3-minute alarm window. Each plot shows the 

relationship between pairs of features (‘ART M IQR’, ‘HR Median’, ‘SpO2 Variability’, ‘HR Variability’ and ‘SpO2 Median’). 

Alarms classified as actionable are shown in light blue and nonactionable alarms are shown in dark blue. (Figure 1 of 3) 

 

 

 

 

 

 

 

 

 

 

 

 

 



Master Thesis | C.A. van de Ruit  55 

 

‘ 

HR = heart rate, SpO2  = oxygen saturation 
 

Figure 2. Scatterplots of additional feature pairs among the five most important features of the DT for the 3-minute alarm 

window. Each plot shows the relationship between two of the selected features. Actionable alarms are shown in light blue 

and nonactionable alarms are shown in dark blue. (Figure 2 of 3).  

 
 

 

HR = heart rate, SpO2  = oxygen saturation 
 

Figure 3. Scatterplots of the remaining feature pairs among the five most important features of the DT for the 3-minute 

alarm window. Each plot shows the relationship between two of the selected features. Actionable alarms are shown in light 

blue and nonactionable alarms in dark blue. (Figure 3 of 3).  
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Correlation Matrix 
 

 

ART M = mean invasive arterial blood pressure, HR = heart rate, RESP = respiratory rate,  SpO2  = oxygen saturation 
 

Figure 4. Correlation matrix of physiological signal features for the 3-minute alarm window. Pairwise Pearson correlation 

coefficients are shown for all extracted features, with colour intensity indicating the strength and direction of the correlation.  
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Boxplots 
 

 

ART M = mean invasive arterial blood pressure, HR = heart rate, RESP = respiratory rate,  SpO2  = oxygen saturation 
 

Figure 5. Boxplot distributions of the median values of ART M, HR, SpO2 and RESP features within the 3-minute alarm window.   

 

 

ART M = mean invasive arterial blood pressure, HR = heart rate, IQR = interquartile range, RESP = respiratory rate,  SpO2  = oxygen 

saturation 
 

Figure 6. Boxplot distributions of the interquartile range (IQR) values of ART M, HR, SpO2 and RESP features within the 3-

minute alarm window.   
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ART M = mean invasive arterial blood pressure, HR = heart rate, RESP = respiratory rate,  SpO2  = oxygen saturation 
 

Figure 7. Boxplot distributions of the slope values of ART M, HR, SpO2 and RESP features within the 3-minute alarm window.   

 

 

ART M = mean invasive arterial blood pressure, HR = heart rate, RESP = respiratory rate,  SpO2  = oxygen saturation 
 

Figure 8. Boxplot distributions of the variability values of ART M, HR, SpO2 and RESP features within the 3-minute alarm 

window.   
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ART M = mean invasive arterial blood pressure, HR = heart rate, RESP = respiratory rate,  SpO2  = oxygen saturation 
 

Figure 9. Boxplot distributions of cross-correlation values between pairs of ART M, HR, SpO2 and RESP features within the 

3-minute alarm window.  
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Appendix VII. Stakeholder Input 

Alarm Management Practices and Challenges  

Interview Questions 

• What are your perspectives on the use of alarms in the paediatric intensive care unit (PICU)? 

• What issues are presently associated with alarm management in the PICU? 

• How do these alarms influence your professional practice or personal experience? 

• In which situations do you respond to alarms and in which do you decide not to? What actions do you 

take in each case?  

Findings 

Interviews with four nurses identified several themes.  

Alarm thresholds are routinely adjusted at the start of each shift. 

Nurses reported tailoring these settings to the patient’s age, underlying pathology and their familiarity 

with the patient’s condition. For example, children with oesophageal atresia often required higher 

respiratory alarm limits. Narrow thresholds are commonly applied early in a shift to facilitate prompt 

detection of clinical deterioration and are subsequently widened to reduce clinically irrelevant alarms. 

Nurses consistently aim to balance the need for early recognition of adverse events with the 

minimisation of unnecessary noise.  

Repeated exposure to alarm sounds contributes to elevated stress levels and desensitisation,  

causing nurses to become less responsive and more likely to interpret alarms as non-urgent.  

Nurses described clinical alarms as indispensable, referring to them as their 'eyes and ears' in situations 

where continuous bedside observation is not feasible. Nonetheless, they reported finishing their shifts 

feeling cognitively overstimulated and physically fatigued. This fatigue arises not only from the general 

activity and noise generated by patients and their families and from frequent workflow interruptions, 

but also from the constant auditory presence of alarms. Moreover, continuous movement between 

patients is not feasible. Consequently, in certain instances, nurses may delay their response to assess 

whether the alarm will self-resolve, intervening only if it persists.  

Nurses respond to all high-priority (red) alarms immediately, irrespective of whether these originate 

from patients under their direct care or from those assigned to colleagues. 

Because the specific source of an alarm is not always immediately identifiable, nursing staff are 

routinely exposed to alerts generated by multiple patients across the unit. These alarms are typically 

emitted at a high volume and may even be audible in neighbouring units when doors are open, thereby 

increasing the overall acoustic burden. Although yellow alarms are equally perceptible to nursing staff, 

they do not prompt the same immediacy of response as red alarms. It appears that nurses employ an 

unconscious cognitive filter that enables them to prioritise red alarms, thereby initiating immediate 

action.  

Alarms are frequently perceived as disruptive during specific clinical situations. 

Nurses emphasised that alarms are particularly disruptive during clinical interventions, as they are 

already positioned at the bedside and unable to silence them repeatedly because their hands are 

occupied. A high frequency of nonactionable alarms was also reported, often initiated by patient 

movement, particularly among those recovering and therefore more physically active. Respiratory 

alarms were identified as a notable source of unnecessary auditory input, contributing to ambient 

noise. Nurses expressed a preference for enabling such alarms only when a patient is in respiratory 

insufficiency. However, even in such cases, the added value of these alarms was considered 

questionable, as patients in respiratory distress are already closely monitored. Infusion pumps were 

likewise cited as frequent sources of unnecessary alarms. Nurses suggested that non-critical 
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medications, such as paracetamol, could be limited to a single alert, whereas critical medications should 

retain the full range of alarm notifications. 

Nurses reported minimal concern regarding duplicate alarms. 

A typical example is when a ventilator alarm is simultaneously displayed on the Dräger monitoring 

system. In these cases, it is common practice to silence one of the devices’ alarms. 

Beyond the impact of alarms on staff, alarms were also described as disruptive to patients and their 

families.  

Continuous exposure to alarm signals was described as a significant source of stress for parents and has 

been associated with adverse effects on the patient’s recovery. Children were reported to become 

overstimulated, as they are exposed not only to alarms from their own monitoring equipment but also 

to those generated by other patients within the unit. 

Perspectives on Alarm Prediction 

Interview Questions 

• Is it possible to predict alarms, and if so, on what basis are such predictions made?  

• Is it feasible to predict alarms that are specifically actionable? 

• Do you observe any recurring patterns in the occurrence of alarms? 

• Are you able to distinguish between actionable and nonactionable alarms? 

• Do you consider it feasible for an algorithm to identify actionable alarms? 

• What is your perspective on the potential implementation of such an algorithm? 

Findings 

Insights in this section are based on an interview with two nurses.  

Alarms can often be anticipated through information obtained during handover, observations of 

patient movement or clinical interventions.  

First, nurses draw on details provided at handover, particularly when multiple incidents, such as 

episodes of oxygen desaturation, have occurred during the preceding shift. Secondly, alarms may be 

predicted when a child exhibits restlessness and excessive movement, which increases the likelihood 

of motion artefacts. Finally, the performance of clinical interventions is recognised as a context in which 

a substantial number of alarms are likely to be generated.  

The patient’s clinical context is of considerable importance in predicting alarms.  

For instance, in the case of a critically ill child, a high probability of adverse events and the consequent 

need for intervention can often be anticipated. Such assessments are informed not only by physiological 

signals but also by factors such as the patient’s overall appearance, the clinician’s prior experience with 

the patient and an intuitive sense that may accompany clinical evaluation. For example,  when a patient 

is experiencing respiratory insufficiency and blood gas analysis indicates physiological distress, alarms 

requiring clinical attention can reasonably be expected. Similarly, an elevated HR may be associated 

with subsequent alarms for reduced SpO₂. However, the actionability of such alarms can only be 

determined by considering the clinical presentation of the patient. A raised heart rate may equally be 

attributable to a crying child rather than to a pathological process. In such cases, clinicians evaluate 

behaviour, breathing patterns, skin colour and, where necessary, undertake a structured ABCDE 

assessment.  

Distinguishing actionable from nonactionable alarms is challenging. 

 A profound decrease in, for example, SpO₂ is almost always actionable and requires intervention. 

However, this does not mean that brief desaturation episodes are by definition nonactionable. For 

instance, if several nonactionable alarms occur within a given timeframe, a response may still be 

warranted. The frequency of these alarms, the duration of the timeframe in which they occur and the 
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clinical context in which an intervention is deemed necessary are, however, highly variable and cannot 

be fully captured by standardised coding rules.  

Limited confidence was expressed in the current potential of a machine learning algorithm designed 

to transmit only actionable alarms to handheld devices.  

The nurses highlighted the importance of being informed about nonactionable alarms, as these may 

nevertheless serve as indicators of clinical deterioration. For example, a patient who exhibits a 

persistently elevated HR with intermittent desaturations that spontaneously resolve may still warrant 

close observation. Similarly, if four nonactionable alarms of one minute each occur within the span of 

an hour, this pattern may hold clinical significance and justify intervention. The nurses regarded it as 

challenging for a model to classify alarms accurately, given the susceptibility of measurements to error 

and the importance of the patient’s clinical context. In addition, concerns were raised about the 

potential risk of missing important alarms. 

Actionable events, such as episodes of oxygen saturation, can be documented by nurses in HiX.  

One nurse emphasised that clinically important events are sometimes recorded in this way. For 

example, in one instance a desaturation was accompanied by visible discolouration of the child and the 

subsequent need for supplemental oxygen. When such an event occurs, the monitoring function allows 

the clinician to return to the relevant timeframe and document associated parameters, such as HR, 

SpO₂ and RESP. These events are then available for retrospective review within the HiX system. 

Although not all nurses consistently record them, documentation is considered valuable in cases of 

clinically significant incidents.  

Strategies for Reducing Alarm Burden 

Interview Question 

• What strategies do you recommend for reducing the frequency of alarms? 

Findings 

Interviews with four nurses highlighted several proposed strategies.  

Many of the proposed interventions focus on reducing the impact of alarm noise.  

The volume of the alarms was regarded as particularly problematic. One nurse suggested the use of 

wireless earphones with noise-cancelling functionality, which would enable staff to hear only the alarms 

of their assigned patient while filtering out environmental alarms and background noise. Another nurse 

reported already using Loop Earplugs to reduce ambient sound during shifts. Suggestions were also 

made regarding greater reliance on visual alarms, for instance by maintaining an audible alarm at the 

patient’s bedside while displaying a prominent visual signal at the nurses’ station. On the NICU, quieter 

and more acoustically friendly alarms are already in use, which has been reported to create a calmer 

ward environment.  In addition, concern was expressed about conversational noise on the ward, with 

proposals such as the introduction of a visual indicator (e.g., a large ear symbol that changes colour 

when the noise level rises). 

 It is important to also consider interventions directed towards patients.  

A patient who had undergone prolonged ECMO treatment later reported that the most distressing 

aspect of the experience was the loud sound of the alarms. Whereas a nurse is able to go home and 

recover at the end of a shift, patients remain continuously exposed to these loud noises. Addressing 

this issue is challenging, as it is difficult for patients to wear headphones while lying on their side and 

children may place earplugs in their mouths. Potential solutions considered included, for example, the 

use of acoustic screens.  
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A need was identified for a foot pedal or push-button to silence alarms during the performance of 

interventions. 

Such procedures are frequently accompanied by alarms, yet these cannot easily be silenced as both 

hands are often occupied. Although it is possible to deactivate alarms entirely, this carries the risk that 

they may not subsequently be reactivated. Similarly, widening alarm thresholds may reduce the 

number of alarms triggered during interventions, but also entails potential risks. The ability to silence 

alarms independently was emphasised by nurses, and it was considered essential that any pedal or 

button be placed in a fixed and safe location to avoid slips or accidents. As nurses usually stand on the 

right side of the bed, a button attached to the bed frame or a foot pedal in that position was regarded 

as most practical. The option of a silencing button at the nurses’ station was also proposed; however, 

concern was raised that this might encourage silencing alarms without reviewing the associated 

waveforms. 

Alarm settings should be adjustable for each infusion pump.  

For pumps administering critical medication, it would be desirable to activate all alarms, whereas for 

less critical infusions, such as paracetamol, not all alarms would necessarily need to be enabled. 

Nurses expressed a preference for the introduction of audiovisual support via handheld devices at 

the current stage, in order to familiarise themselves with their use prior to the transition to single-

patient rooms. 

Nurses expressed concern that, with the transition to single-patient rooms, they would no longer be 

able to observe patients immediately and would have reduced control. For this reason, it was 

considered beneficial to become accustomed to handheld devices in advance. Ideally, handheld devices 

would be equipped with the functionality to display monitor waveforms and incorporate a camera to 

provide additional support. This would allow nurses to review the waveforms and assess whether, for 

example, patient movement is the probable cause of an alarm. It was further proposed that all red 

alarms be transmitted to all staff members via handheld devices. A buddy system was also suggested, 

whereby alarms not acknowledged on one device would automatically be forwarded to another nurse.  

Patient Stress and Experience 

Interview Questions 

• What are the experiences of patients in the PICU with alarms and how do they reflect upon these in the 

longer term? 

• How do the families of patients experience alarms and how do they perceive them in the longer term? 

• What strategies do you consider effective in mitigating the impact of alarms? 

• To what extent does prior explanation of the meaning of alarms help to mitigate their impact? 

• How do you anticipate single-patient rooms will influence patient and family experiences of alarms? 

Findings 

Interview with the psychologist yielded the following insights regarding the impact of alarms on patients and 

their families. 

Research within the PICU primarily focuses on the impact of stress on parents, as they are 

continuously exposed to the clinical environment and often feel a heightened sense of responsibility.  

For parents, this experience can be particularly overwhelming, leading them to act with great caution, 

whereas children are frequently more eager to resume normal activities. Nonetheless, children also 

demonstrate signs of distress, such as difficulties with sleep, nightmares and challenges in articulating 

their feelings.  
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For parents, the principal source of stress is not the alarms themselves, but rather the severity of 

their child’s illness.  

Other devices, signals and the stress expressed by fellow parents are perceived as less burdensome. 

Alarms nevertheless contribute to parental strain, as a highly stimulating environment is likely to 

intensify their emotional burden. Consequently, many parents also experience poorer sleep quality. 

Additional stressors within the PICU include the need to communicate with multiple healthcare 

professionals, who may provide differing or even conflicting messages, as well as the inherent difficulty 

of understanding their child’s medical condition.  

Alarms cannot be directly related to patient recovery or prolonged hospital stay.  

A high frequency of alarms often occurs because the patient’s condition is deteriorating, which in turn 

results in a longer stay in the PICU. However, patients are consistently overstimulated by the general 

noise on the ward and therefore indirectly by alarms as well.  

Auditory stimuli resembling alarms from the PICU frequently evoke recollections of parents’ 

experiences on the unit. 

Families often report that stimuli encountered through television, as well as distinct sounds such as 

alarm tones or the voices of healthcare professionals, remind them of this period. Comparable 

responses may also be elicited by particular smells or pieces of music, which families commonly seek to 

avoid.   

Alarms may also contribute to a perceived sense of safety among parents. 

They provide reassurance that their child is under continuous monitoring and that nursing staff are 

consistently present on the PICU. When alarms indicate potential clinical changes, parents feel 

confident that timely intervention can be initiated. This is also related to the transition towards single-

patient rooms. Such rooms are often perceived as challenging for parents, as children are no longer 

continuously visible to nursing staff and parents also value the ease of informal interaction with other 

families. Nonetheless, single-patient rooms have a positive impact on the child’s care, as they reduce 

background noise and enable more individualised treatment.   

A parental dashboard has been developed to provide contextual information about continuous 

monitoring and the meaning of alarms.  

For example, a ‘beep’ may indicate that a measurement has fallen outside a predefined range, which is 

then displayed on the dashboard together with the corresponding values. The system also clarifies that 

not every alarm represents a clinical emergency, thereby linking auditory signals with visual 

information.  When multiple alarms occur, these are displayed in real time on the dashboard. Shown 

on an iPad placed bedside the child’s bed, the dashboard presents trends in vital signs, alarm thresholds 

and, for example, medications being administered.  
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Reducing Clinical Alarms to Mitigate Alarm Fatigue in 

the Paediatric Intensive Care Unit  
C.A. van de Ruit 

Abstract 

Introduction: Paediatric intensive care units (PICUs) are high-acuity environments where continuous patient 

monitoring, facilitated by several medical devices, generates frequent clinical alarms intended to support timely 

intervention. However, between 87% and 97% of these alarms in PICU settings are nonactionable, contributing to 

alarm fatigue. This is a condition in which clinicians become desensitised, leading to delayed responses and 

compromised patient safety. At the PICU of the Erasmus MC Sophia Children’s Hospital, this issue has highlighted an 

urgent need to reduce nonactionable alarms.  

Objectives: This scoping review investigates strategies to mitigate alarm fatigue by reducing clinical alarms in PICUs. 

It addresses three objectives: (1) to identify the causes of clinical alarms in PICUs; (2) to evaluate interventions 

implemented in paediatric hospital settings; and (3) to explore practices from the process industry that may be 

applicable to PICUs.   

Methods: A systematic search was conducted across five databases to evaluate current interventions, supplemented 

by exploratory research to investigate causes of clinical alarms and relevant practices from the process industry.  

Results: A total of 44 studies were included in the analysis. SpO2 alarms were identified as the predominant source 

of clinical alarms and perceived as the greatest contributor to alarm fatigue. Key interventions included the 

adjustment of alarm thresholds, implementation of alarm delays, daily review of alarm parameters, daily electrode 

replacement with proper skin preparation and the application of machine learning algorithms to improve alarm 

accuracy. The process industry offers valuable strategies for reducing alarms, including alarm grouping and 

correlation analysis based on multimodal data.  

Conclusion: The review emphasises the importance of personalised, data-driven approaches to alarm management. 

Further research should focus on the development and implementation of a machine learning algorithm that 

incorporates multimodal vital signs. Incorporating the perspectives of clinicians, patients and families, along with an 

evaluation of patient safety, will be crucial to ensure effective implementation in PICUs.  

Keywords Clinical Alarms; Alarm Fatigue; Nonactionable Alarms; Patient Monitoring; Paediatric Intensive Care Unit 

1. Introduction 

Paediatric intensive care units (PICUs) are dynamic and high-pressure clinical environments where continuous 

patient monitoring and intensive care are essential. Children admitted to these units are critically ill and at risk of 

acute, life-threatening conditions, necessitating constant observation and (acute) life support and treatment. (1)  

In order to facilitate timely clinical assessment and intervention, bedside physiological monitors are 

employed to continuously track vital parameters such as heart rate (HR), blood pressure (BP) and oxygen saturation 

(SpO₂). (1) These monitors are designed to generate both audible and visual alarms when parameters deviate from 

predefined thresholds, irrespective of the signal quality or the cause of deviation. (2, 3) Continuous monitoring is 

widely adopted in critical care settings, as it has been shown to significantly enhance patient safety by ensuring that 

healthcare professionals are immediately alerted to physiologic changes, enabling prompt and effective response to 

important deterioration events. (1, 2, 4-8)   In addition to physiological monitoring, numerous medical devices 

commonly utilised in PICUs, such as ventilators, intravenous infusion pumps, feeding pumps and hospital beds, 

possess their own integrated alarm systems. These devices may signal a variety of problems, including technical 
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malfunction, sensor disconnection and treatment interruption, further increasing the number of alarms in the 

clinical environment. (2, 9) 

In order to minimise the probability of monitors missing indications of deterioration, alarm algorithms and 

default parameters are frequently configured to maximise sensitivity, often at the expense of specificity. (3) 

Consequently, this results in a high number of nonactionable alarms being generated by monitors. Nonactionable 

alarms are defined as both false alarms, which do not reflect the patient’s true status, and nuisance alarms, which 

reflect the true patient status but do not require clinical attention or intervention. (1, 10) False alarms may arise 

from various factors, including motion artefacts and technical or equipment-related issues. (1) In contrast, nuisance 

alarms are characterised by deviations that are clinically insignificant. For instance, a patient may experience a 

desaturation event, falling just below the minimum acceptable pulse oximeter level for a brief period and 

subsequently return to the established parameters without intervention. (7) In addition, redundant alarms represent 

a specific subset of nuisance alarms. While these alarms are technically accurate, they appear to duplicate 

information already communicated by other monitoring devices or alarm sources. For instance, a bedside monitor 

and a ventilator may both generate alarms in response to the same desaturation event. Despite their clinical validity, 

these alarms offer no additional information and typically do not necessitate further clinical intervention. (11)   Prior 

research has demonstrated that the proportion of nonactionable alarms has been found to range between 87% and 

97% in PICU settings. (12-16) 

The responsibility for distinguishing between true, actionable alarms and false or nonactionable ones is 

typically delegated to clinicians, most often nurses. In the majority of clinical settings, nurses are required to 

continuously assess whether to respond to alarms from multiple patients or to continue with their current tasks, 

presuming that the alarms do not necessitate their immediate attention. (7) Excessive noise, including frequent 

alarms, has been shown to elevate stress levels among staff, potentially impairing their ability to concentrate on 

tasks and provide optimal care for critically ill patients. (17)  Furthermore, frequent exposure to nonactionable 

alarms has been associated with the development of alarm fatigue, a condition characterised by desensitisation and 

diminished responsiveness among nurses. (18) This phenomenon is supported by the findings of Bonafide et al. (12), 

who demonstrated that nurses subjected to a high frequency of nonactionable alarms exhibit slower response times 

to subsequent alarms. Alarm fatigue has been shown to result in delayed recognition of critical changes in patient 

status, thereby compromising patient safety and increasing the risk of missed alarms. (12, 13, 17-23)  

Alarm fatigue has been a major patient safety concern for the Joint Commission in the United States since 

2013, when a report revealed 80 alarm-related deaths between 2009 and 2012. (24, 25) In response, the 2014 Joint 

Commission National Patient Safety Goal called for hospitals to enhance alarm system safety by developing policies 

and procedures to mitigate alarm fatigue. (26) Since then, clinical alarm safety has remained a key priority, 

consistently appearing in the Joint Commission’s National Patient Safety Goals and frequently ranking among the 

"Top 10 Health Technology Hazards," thereby highlighting the ongoing challenges in effectively addressing this issue. 

(27, 28). In the Netherlands, the Dutch Society for Medical Physics (NVKF) has similarly identified alarm fatigue as a 

serious alarm-related risk, as outlined in its guideline ‘Leidraad medische bewakings- en alarmeringssystemen’. (29) 

This document highlights the considerable challenge encountered by healthcare providers due to the high 

prevalence of clinically irrelevant alarms. Alarm fatigue in hospital settings has been shown to share similarities with 

issues encountered in industrial process control systems. (30) The implementation of strategies employed in these 

settings to mitigate alarm fatigue may offer valuable insights for hospital environments.   

Clinical alarms not only impact healthcare providers but also affect patients and their families. In the PICU, 

alarm-related noise has been identified as a major source of disruption, contributing to sleep disturbances and 

increased anxiety among patients and their families. (1) Research has shown that alarm noise is perceived as one of 

the most disruptive factors by PICU staff and families alike. (31, 32) This disruption can hinder patient recovery, as 

noise exposure has been linked to various negative physiological responses, including elevated heart rates, increased 
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respiratory rates, and sleep deprivation. (33, 34) Furthermore, continuous monitoring of patients may capture 

regular physiological fluctuations, often resulting in unnecessary diagnostic workups and interventions, which may 

contribute to longer hospital stays. (35)  

At the PICU of the Erasmus MC Sophia Children's Hospital, there is an urgent need to reduce nonactionable 

alarms with a view to mitigating alarm fatigue. Pilot data collected between January and June 2023 revealed that 

the average total number of alarms generated by Dräger monitors across all units per month was 148 557. Of these, 

high-priority alarms constituted an average of 8.23%, while medium- and low-priority alarms accounted for 66.52% 

and 25.25%, respectively. (36) High-priority alarms are defined as those necessitating immediate clinical intervention. 

By contrast, medium- and low-priority alarms comprise the majority and are frequently amenable to reduction 

through human factors interventions or system-level improvements. Such interventions may include the 

customisation of alarm limits, or the integration of smart algorithms capable of prioritising or eliminating alarms. 

(37) The substantial volume of alarms, particularly the predominance of non-urgent alarms, underscores the 

imperative for strategies that are oriented towards the minimisation of nonactionable alarms.  

Kalden et al. (38) indicated that both the patient environment and the methods of alarm transmission 

contribute to alarm burden. Erasmus MC Sophia Children’s Hospital is scheduled to move to a new building, wherein 

the PICU will transition to single-patient rooms, replacing the multi-patient ward setup. It is important to note that 

this transition may also compromise nurses' situational awareness in the absence of continuous bedside presence. 

(38-41) To address this issue, handheld devices will be introduced to support safe alarm management. These devices 

have the capability to modify alarm pathways, thereby enabling the implementation of effective alarm management 

interventions aimed at reducing the number of nonactionable alarms. 

 

The objective of this scoping review is, therefore, to investigate strategies to mitigate alarm fatigue by reducing 

clinical alarms in the PICU. The objective is underpinned by three specific aims: 

1. To identify the causes of clinical alarms in the PICU; 

2. To evaluate the interventions currently implemented to reduce clinical alarms in paediatric hospitals; 

3. To explore and compare practices from the process industry to identify potential lessons that could be 

applied to the PICU context.  

2. Methods 

2.1 Search strategy 

In order to achieve the second objective, a systematic literature search was conducted to identify prior interventions 

employed to mitigate clinical alarms in paediatric hospital settings. In collaboration with the Erasmus MC medical 

library, search terms were developed for the following databases: Medline ALL, Embase, Web of Science Core 

Collection, Cochrane Central Register of Controlled Trials and Google Scholar. A detailed list of the search terms is 

provided in Appendix I. Duplicate studies were removed prior to screening. 

2.2 Study inclusion 

The initial screening of the identified literature was conducted based on titles and abstracts, and following this 

preliminary assessment, the selected studies underwent a comprehensive full-text review. The screening was 

conducted using Covidence (42). 

To be considered for inclusion in the analysis, studies were required to specifically address interventions 

aimed at reducing clinical alarms within paediatric hospital settings. Exclusion criteria encompassed studies where 

interventions for reducing clinical alarms were inadequately described, interventions targeting the reduction of 

medication alarms, studies exclusively focused on the education of healthcare professionals, approaches solely 

aimed at reducing ward noise without addressing alarm management and the use of alternative alarm systems, such 
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as handheld devices, as a means of alarm reduction. Additionally, studies that were not available in English or lacked 

full-text accessibility were excluded.  

2.3 Supplementary research 

Supplementary research was conducted for the first and third objectives in order to investigate the causes of clinical 

alarms in PICUs, as well as to examine approaches to alarm reduction in the process industry. In contrast to the 

systematic search strategy previously delineated, this literature search did not adhere to predefined search terms. 

Instead, an exploratory approach was adopted, whereby relevant studies were identified and reviewed based on 

their relevance to the objectives of the review. 

2.4 Data extraction 

The included studies were imported into EndNote (43) and data were extracted for analysis. The data extracted 

included the author, publication year, department, type of patient rooms (single-patient room versus multi-patient 

ward), described interventions, parameters, validation of interventions and study outcomes. The most commonly 

employed interventions are presented in the results section. 

3. Results 

3.1 Systematic search 

The search was conducted on 14 January 2025, resulting in the identification of 1650 records. The detailed results 

of the search terms for each database are presented in Appendix I. Following the removal of duplicates, a total of 

1003 records remained. Of these, 908 were excluded based on title and abstract screening and a further 60 full-text 

articles were excluded with reasons provided. Consequently, 35 studies were included in the review.  

In addition, supplementary research included 12 studies concerning the causes of clinical alarms in PICU 

and four studies related to alarm reduction strategies in the process industry. However, seven of these studies were 

found to overlap with the 35 studies that were included through the systematic search, and as a result, they were 

excluded. The final number of studies included in this scoping review was 44. A summary of the study selection 

process is presented in Figure 1.  
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Figure 1.  Flow diagram of the study selection process. 

 

3.2 Study characteristics 

A review of studies concerning the causes of clinical alarms in PICUs was conducted, and it was found that one study 

was conducted specifically within PICU settings, five were conducted in NICU settings and six were undertaken across 

paediatric hospital-wide environments. Comprehensive details concerning the characteristics of the studies 

evaluating interventions currently implemented to reduce clinical alarms in paediatric hospitals are provided in 

Appendix II. Of these studies, five were carried out in PICUs, 14 in NICUs and 16 across paediatric hospital-wide 

settings. Furthermore, seven studies were conducted in units with single-patient rooms, while four were conducted 

in multi-patient ward settings. The remaining 24 studies did not specify the type of rooms. In addition, the four 

studies related to alarm reduction strategies within the process industry were all focused on conditions specific to 

industrial process environments.  

3.3 Causes of clinical alarms  

The majority of studies examining the causes of clinical alarms have been conducted in NICUs, where SpO₂ alarms, 

both high and low, have consistently been identified as the predominant source.  (44-46) Surveys conducted in NICU 

settings further indicated that nonactionable SpO₂ alarms were perceived by staff as the greatest contributor to 

alarm fatigue. (47, 48) 

In a study conducted within PICUs, Cvach et al. (49) identified the ten most common causes of monitor 

alarms. These included low SpO₂, poor signal quality, elevated HR, electrocardiogram (ECG) lead disconnection, SpO₂ 

low perfusion, inability to analyse ECG, low HR and irregular HR.  

At the paediatric hospital-wide level, Schondelmeyer et al. (50) reported that 33% of total alarms were 

technical alarms, such as those initiated by artefact or lead failure, while the remaining 67% were related to clinical 

conditions. Across paediatric hospitals, SpO₂ alarms has been identified in numerous studies as the primary 
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contributor to alarm frequency. (13, 51-53). The effectiveness of low SpO₂ threshold alarms is influenced by multiple 

factors, including patient size, skin condition, sensor technology, patient movement and the signal processing 

algorithm used. Consequently, a significant proportion of low SpO₂ alarms do not necessitate clinician intervention. 

(54) Following SpO₂ alarms, the most commonly observed alarm types were those related to elevated HR, elevated 

RR and failures of ECG and respiratory leads. (50, 52)  

3.4 Current interventions to reduce clinical alarms in paediatric hospitals 

Within the context of the PICU, the reduction of clinical alarms has emerged as a critical concern, given their potential 

role in contributing to alarm fatigue. This section delineates the various interventions currently employed in 

paediatric hospitals to decrease the frequency of clinical alarms. The interventions commonly implemented in the 

reviewed studies include the adjustment of alarm thresholds, the introduction of alarm delays, daily manual 

procedures and the application of machine learning algorithms.  

3.4.1 Alarm thresholds 

The adjustment of alarm thresholds has been identified as a prevalent strategy in the field of paediatric hospital 

settings, aimed at reducing alarm frequency and enhancing management. (10, 55, 56) The widening of alarm 

thresholds has been demonstrated to decrease alarm sensitivity to minor or transient deviations, whether due to 

genuine instability or self-correcting monitoring artefacts. (10, 21, 57, 58) A significant reduction in alarm burden 

has been demonstrated by lowering the lower SpO₂ threshold to 80%-88%. (45, 47, 59)   

 

Beyond widening thresholds, a promising approach identified in the literature is the customisation of alarm settings 

based on individual patient data, whereby a patient’s history and condition are considered when defining alarm 

parameters. (46, 48) It has been highlighted by numerous studies that reference ranges for paediatric vital signs are 

often dependent on limited observational data or expert consensus. (60, 61) Bonafide et al. (62) reported that 54% 

of vital sign measurements in hospitalised children fall outside widely accepted limits, questioning their validity for 

clinical alarms. 

In order to address this issue, age-based and data-driven alarm thresholds have been explored. (49, 63) 

Johnson et al. (47) developed postmenstrual age-based SpO₂ alarm profiles, while other studies have used percentile 

curves from hospitalised children to define age-appropriate alarm thresholds for HR, RR, and SpO₂. (60, 64)   

Hravnak et al. (57) and Yang et al. (5) further advocate for the establishment of alarm thresholds based on 

baseline vital signs, ensuring that alarms are triggered exclusively by clinically significant deviations from an 

established baseline. Similarly, Herrera et al. (1) recommend adjusting default alarm thresholds to 10% above or 

below the patient’s baseline values.  

Schmid et al. (65) finally explored autoregressive models in order to enable real-time, personalised alarm 

settings by dynamically integrating individual patient data. 

3.4.2 Alarm delays  

The implementation of a delay prior to the activation of alarms has been identified as an effective strategy for the 

reduction of clinical alarms. Alarm thresholds are frequently exceeded during patient care or movement, resulting 

in the generation of frequent audible alarms. A brief delay has been shown to help minimise recurrent alarms 

triggered by transient, self-resolving threshold breaches. If the alarm persists beyond this designated period, it is 

more likely to signify a clinically significant event rather than an artefact. (1, 7, 45, 49, 55, 56, 66)   
There are several methods that can be employed for the incorporation of an alarm delay.  One such 

approach involves the implementation of fixed alarm delays. Studies have demonstrated that extending the SpO₂ 

alarm delay to a range of 10 to 60 seconds results in a substantial reduction in the number of false alarms. (45, 47-

49, 63, 66, 67) McClure et al. (44)  found that combining alarm delays with shorter averaging times further decreases 
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alarm frequency and duration while improving oxygenation data accuracy. Specifically, a 15-second delay with a 2-

second averaging time resulted in a 67% reduction in SpO₂ alarms. 

Nevertheless, the occurrence of simple delays has the potential to result in the failure to detect brief yet 

critical events. A graduated delay strategy enhances safety and flexibility by ensuring severe deviations trigger alarms 

more rapidly, while minor, clinically insignificant deviations allow for a longer delay. (57, 65, 68) Exploration of 

hierarchical time delays and conditional triggers for SpO₂ has been undertaken by Yang et al. (5) and Pater et al. (66) 

In the study by Yang et al. (5), conditional alarm delays varied according to the severity of hypoxaemia, ranging from 

30 to 60 seconds for SpO₂ levels between 80% and 89%, with immediate notification for SpO₂ levels below 60%. 

A further refinement of this approach is the SatSeconds™ algorithm, incorporated in the Nellcor™ device 

manufactured by Medtronic. This algorithm considers both the magnitude and duration of desaturation events when 

adjusting alarm activation. It has been demonstrated to trigger immediate alarms in cases of severe desaturation 

episodes, while minor fluctuations result in delayed activation. (1, 7, 69-71)  

3.4.3 Daily manual procedures 

In order to achieve an effective reduction in the number of clinical alarms, two key daily manual procedures should 

be implemented: the structured review of alarm data and routine electrode replacement with proper skin 

preparation. 

Daily review of alarm parameters 

Structured daily reviews of alarm data, such as safety huddles, have been identified as effective in reducing alarm 

burdens for individual patients. (48, 63, 66) Bonafide et al. (72) demonstrated that safety huddles, supported by 

customised alarm dashboards, reduced alarm frequency among high-alarm paediatric patients. These dashboards 

highlight prevalent alarm types and settings while incorporating a structured script to guide discussions and 

document agreed modifications. Dewan et al. (4) also implemented a brief script within safety huddles, integrating 

an alarm data sheet to focus on key parameters (e.g., RR, HR or SpO₂). This strategy contributed to a substantial 

reduction in alarm activations by modifying alarm parameters based on discussions regarding optimal alarm settings. 

The visualisation of alarm data has been found to provide valuable insights into alarm frequency and impact, assisting 

in the comparison of filtering methods such as filtering by alarm duration or type. Smit et al. (73) noted that this 

visualisation could aid in assessing alarm load per nurse and developing filters to further reduce alarm burdens. 

Daily electrode replacement and skin preparation 

Daily electrode replacement, in conjunction with proper skin preparation, is essential for minimising alarm frequency. 

(7, 46, 70) Invalid alarms frequently occur due to inadequate contact between the patient’s skin and the electrodes, 

which can be caused by sensor drying or patient movement. (1) Prolonged electrode use may increase signal 

impedance and noise due to reduced conductivity, resulting in a higher number of false alarms. (63) When 

continuous monitoring is required for patients, the correct placement of leads, along with proper skin preparation 

and the replacement of electrodes every 24 hours, can significantly reduce these alarms. (1, 10, 57, 74-76)  

3.4.4 Machine learning algorithms 

Machine learning has demonstrated potential in enhancing the efficacy of clinical alarm systems in paediatric 

hospital settings. The enhancement involves improving alarm accuracy, reducing false positives and personalising 

responses to individual patients.  

Many studies have adopted a multimodal approach, using data from bedside monitors rather than single-

parameter models. Schmid et al. (65) and Sabournia et al. (77) found that incorporating multiple parameters reduces 

false alarms and can predict patient deterioration. For example, a time-clustering algorithm revealed a correlation 

between simultaneous cardiovascular and pulmonary alarms. Similarly, Ostojic et al. (78) demonstrated that 

combining standard physiological monitoring with cerebral oximetry data also reduces false alarms. The 
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employment of decision trees, k-nearest neighbours, naïve Bayes, and support vector machines has yielded optimal 

specificity, with decision trees demonstrating the highest sensitivity and accuracy. Tsien et al. (79) and Monasterio 

et al. (80) further confirmed that integrating multiple signals and analysing physiological data, such as SpO₂, HR and 

RR, improves alarm accuracy. Decision trees and support vector machines were employed in these studies, with 

decision trees selected for their interpretability and their capacity to identify the most informative features from a 

large set of candidate features.    

A number of models have been developed with a view to detecting critical alarms and enhancing their 

interventions. Cabrera-Quirós et al. (81) and Joshi et al. (82) utilised multimodal vital signs to identify critical events 

and predict alarm escalation, aiming to enhance alarm response and reduce nurse desensitisation. A further focus 

of research has been the differentiation of true physiological instability from artefacts through the analysis of vital 

sign patterns (57, 83), with random forest models showing high accuracy (84).  

In the context of personalised approaches, Zhang et al. (85) critiqued the utilisation of generalised 

algorithms, highlighting their inability to account for the variability amongst individual patients. They proposed using 

classification trees and neural networks to develop models that adapt to both patient characteristics and the target 

population. Classification trees were found to be effective in handling fixed attributes, while neural networks were 

found to be more adept at capturing non-linear patterns, integrating multiple physiological signals to predict adverse 

events. 

3.5 Lessons from the process industry in alarm reduction 

This section outlines the key lessons derived from industrial alarm management, offering potential applications for 

improving alarm management in the PICU.  

An effective approach involves grouping alarms based on causal relationships within the system. When 

alarms are interconnected, they should be aggregated and presented as a single alarm issue rather than as multiple 

individual alarms.  (86, 87) For instance, a compressor failure may trigger multiple alarms related to pressure, 

temperature and flow rate, which would typically be displayed sequentially without indicating their underlying 

connection. By grouping such alarms, the overall number of individual alarm messages can be significantly reduced 

while preserving essential information. Schleburg et al. (87) propose an automated method for alarm grouping 

within process automation systems, demonstrating that this strategy can reduce the number of alarms an operator 

must manage by 70-80%. Their method integrates historical alarm logs, plant connectivity data and interrelation 

rules to identify alarms with a common cause, ensuring that they are not removed from the alarm log but instead 

presented in a structured, hierarchical manner. This hierarchical organisation reduces the number of visible 

messages at the top level while maintaining information density. Similarly, Rodrigo et al. (30) develop a systematic 

approach to isolating the causal alarm in the event of an alarm flood, defined as the occurrence of more than ten 

alarms per ten minutes per operator. By analysing alarm logs, process data and system connectivity, their approach 

successfully groups related alarms triggered during an alarm flood and identifies the causal alarm.  

In addition to alarm grouping, alarm correlation analysis has been proposed as a further strategy for refining 

alarm management. Rao et al. (88) propose a systematic approach for identifying and analysing alarm correlations 

by applying pattern mining techniques to historical Alarm and Event logs. This method captures the order of alarm 

occurrences, enabling the identification of alarm directionality and tracing of abnormality propagation paths. 

Furthermore, graph visualisation techniques generate correlation networks that facilitate the prioritisation of alarm 

analysis and reveal process interactions.  

4. Discussion 

4.1 Discussion of the findings 

This scoping review investigated strategies to mitigate alarm fatigue by reducing clinical alarms in the PICU. The 

objectives of the review were threefold: firstly, to identify the underlying causes of clinical alarms in the PICU; 
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secondly, to evaluate existing interventions aimed at reducing alarm frequency in paediatric hospital settings; and 

thirdly, to explore practices from the process industry to identify potential lessons applicable to the PICU context. 

4.1.1 Causes of clinical alarms 

The findings indicate that SpO₂ alarms represent the primary source of clinical alarms in the PICU. Research 

demonstrates that SpO₂ alarms, particularly those indicating low SpO₂ levels, account for a substantial proportion of 

total alarms, many of which are false or nuisance alarms requiring no clinical intervention. Technical issues, including 

the disconnection of ECG and respiratory leads, have also been identified as contributing factors to the frequency of 

these alarms. These findings are consistent with pilot data from the PICU at Erasmus MC Sophia Children’s Hospital 

(36), collected between January 2023 and June 2023, which identified SpO₂ alarms exceeding thresholds as the most 

common. Other frequent alarms included HR ECG artefacts, mean invasive blood pressures (ART M) exceeding limits, 

SpO₂ sensor disconnections, and HR surpassing the predefined thresholds. However, ECG and respiratory lead 

disconnections were less frequent causes. 

4.1.2 Current interventions to reduce clinical alarms in paediatric hospitals 

The most frequently cited interventions for reducing clinical alarms in paediatric hospital settings included the 

adjustment of alarm limits, the introduction of alarm delays, the application of daily manual procedures, such as the 

regular review of alarm parameters and optimisation of electrode placement and skin preparation, and the 

application of machine learning algorithms.  

The adjustment of alarm limits is achieved through a number of methodologies. These include widening 

alarm thresholds, customising alarm parameters based on individual patient data, utilising age-based and data-

driven thresholds and employing dynamic adjustment models. It is recommended that alarm thresholds are 

generated based on the method of using baseline vital signs, because the alarm parameters vary significantly 

between individuals due to age and the course of the disease. To illustrate this point, alarm thresholds may be set 

at 10% above or below the patient's baseline values. Consequently, this results in the establishment of appropriate 

alarm thresholds for the patient, thereby minimising nonactionable alarms. 

Furthermore, the implementation of alarm delays prior to alarm activation has been demonstrated to be 

an effective strategy for reducing nonactionable alarms. Graduated delay strategies are of particular value in that 

they preserve responsiveness to severe clinical deterioration while filtering out less critical fluctuations.  

Another effective approach involves the implementation of daily manual procedures. The utilisation of  

customised dashboards has been shown to facilitate discussions that are focused on the optimisation of alarm 

settings and the minimisation of nonactionable alarms. For instance, this could be a topic of discussion during the 

patient's visit on a daily basis. The dashboard presents data on alarm frequency and identifies the three most 

common sources, thereby informing decisions regarding potential adjustments to alarm settings or technical 

interventions, such as improving sensor attachment. In addition, it is recommended that the electrodes be changed 

on a daily basis, in conjunction with appropriate skin preparation, to enhance the signal quality and minimise the 

likelihood of nonactionable alarms.  

The utilisation of machine learning algorithms, notably those that integrate multimodal vital signs, holds 

considerable promise for improving alarm management in PICUs. Evidence indicates that machine learning models 

incorporating multimodal vital signs are preferable to single-parameter models, as they improve the identification 

of critical events while reducing false alarms.  

 

Numerous studies on alarm management within the medical field have focused on the education of staff members, 

the reduction of noise levels within the ward and the discontinuation of monitoring when deemed unnecessary. 

Nevertheless, staff education does not involve technical modifications and only indirectly reduces clinical alarms. 

While lowering noise levels primarily enhances the overall ward environment, it mitigates the impact rather than 
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directly reducing alarm frequency. Moreover, the discontinuation of monitoring is not a viable option in the PICU, 

given the critical condition of the patients. Consequently, these interventions were not the focus of this study.  

4.1.3 Lessons from the process industry in alarm reduction 

The findings indicate that the utilisation of multimodal vital signs, as opposed to single-parameter models, is 

consistent with the principles observed in the process industry, wherein alarm grouping and correlation analysis are 

conducted based on multiple parameters. In clinical settings, the grouping of alarms has been demonstrated to 

alleviate alarm overload by aggregating related alarms, thereby preserving essential information and reducing 

cognitive load. Furthermore, alarm correlation analysis, employing pattern mining on historical data, could assist in 

prioritising critical alarms and filtering out nonactionable ones. The integration of machine learning algorithms that 

incorporate multimodal vital signs with alarm grouping or correlation analysis has the potential to enhance their 

ability to reduce false alarms. As previously mentioned in the introduction, the utilisation of handheld devices in 

single-patient rooms facilitates the customisation of alarm delivery. Consequently, it becomes feasible to group 

alarms from multiple vital parameters according to a common cause and subsequently to transmit a consolidated 

alert to handheld devices.  

4.2 Relevant research in the Netherlands 

In the Netherlands, the reduction of clinical alarms to address alarm fatigue has become a key area of focus. 

The guideline ‘Leidraad medische bewakings- en alarmeringssystemen’ provides also recommendations on 

medical alarm systems. (29) The guideline’s requirements align with the interventions identified in this study. The 

requirement for alarms to be visually prominent, as outlined in NEN-EN-IEC 60601-1-8/A1, is emphasised and the 

inclusion of an auditory component is mandatory. It should be possible to set alarm thresholds for different patient 

profiles, apply filtering and delay functions at the level of departments or profiles and generate department-level 

alarm reports to optimise workflow. A dashboard should provide retrospective data on alarm frequency, escalation 

times and alarm types. The software must allow for filtering, grouping and delaying alarms prior to transmission, 

including selecting which alarms to forward and adjusting prioritisation based on predefined parameters. The 

utilisation of artificial intelligence for decision support within the alarm system necessitates the establishment of 

specific policies for maintenance, validation, and testing, in accordance with national AI guidelines for healthcare. 

These requirements should be considered in future research on implementing strategies to reduce clinical alarms. 

The Smart and Silent ICU (SASICU) project (89), an initiative involving institutions such as Erasmus MC and 

UMC Utrecht, aims to enhance clinical decision support and alarm management. This initiative focuses on enhancing 

medical device interoperability, directing alarms to appropriate staff, silencing unnecessary alarms and developing 

AI algorithms to predict Post-Intensive Care Syndrome and monitor critical patient developments.  

A Technical Medicine graduate student's thesis (90) contributes to these efforts by analysing the auditory 

alarm landscape at the Leiden University Medical Center's ICU, with a focus on SpO₂ alarms. The study's findings 

revealed that the majority of these alarms were nonactionable, thereby contributing to an excessive number of 

alarms. The study proposes a solution in the form of annotation based on clinical context, paving the way for the 

development of predictive algorithms that can identify and suppress nonactionable alarms. Actionable alarms were 

found to be associated with significant declines in SpO₂, while nonactionable alarms were often transient artefacts. 

FiO2 increases were the most common response to actionable alarms, though these may also reflect routine care. 

The study suggests incorporating contextual data, such as electronic medical records and clinician logs, to better 

distinguish between genuine interventions and routine actions.  

Professor Carola van Pul, a Professor of Clinical Physics at Eindhoven University of Technology, has 

specialised in research related to patient monitoring within NICU and ICU settings, as well as complex patient 

monitoring and medical alarm systems utilising ICT networks. (91) She contributed to the included study conducted 

by Cabrera-Quirós et al. (81), which investigated machine learning algorithms for the detection of critical events 
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through the analysis of multimodal vital signs. Additionally, she has been involved in other research exploring 

machine learning methodologies for analysing multimodal signals and identifying patterns in alarm activation. (92-

94) Furthermore, her contributions extend to studies comparing alarm management between multi-patient wards 

and single-patient rooms, as well as research on workflow optimisation, including the development of protocols for 

electrode placement, periodic review of alarm parameters and adjustments to delay times for SpO₂ alarms. (95, 96) 

These interventions are consistent with the findings of this study.  

At the NICU at Erasmus MC Sophia Children’s Hospital, Kalden et al. (38) examined the impact of a modified 

alarm system in the NICU, which combined handheld devices with filtered and delayed alarms. The system reduced 

alarms by 84% without affecting the number of critical events, ensuring patient safety was maintained. The study 

emphasises the prevalence of alarm fatigue, especially in open bay units where nurses are overwhelmed with alarms.  

The development of machine learning algorithms based on multimodal vital signs would constitute a 

valuable contribution to research in the Netherlands, particularly in reducing false alarms and mitigating alarm 

fatigue in PICU settings. 

4.3 Limitations 

This study aimed to identify interventions that have been implemented to reduce clinical alarms in the PICU. 

However, several limitations must be acknowledged. 

Firstly, only a minority of the included studies were conducted specifically in PICU settings, which limits the 

generalisability of the findings to this context. Further research in PICU environments is warranted to enhance 

understanding of interventions that may reduce nonactionable alarms in this setting.  

Secondly, this scoping review focused exclusively on interventions implemented within paediatric hospital 

settings. Consequently, relevant strategies developed and evaluated in adult care environments may have been 

excluded, despite their potential applicability to paediatric contexts.   

Furthermore, the review did not consider how the implementation of interventions may differ between 

multi-patient wards and single-patient rooms, nor whether the interventions can be integrated in the handheld 

devices. This should be addressed in future research, particularly in light of the transition to single-patient rooms. 

Moreover, the findings are presented without a meta-analysis, as the heterogeneity of outcomes and 

interventions across the included studies rendered this approach unfeasible.  

A further limitation is the absence of a formal quality assessment of the studies, which prevented 

assessment of their methodological quality. As a result, all studies were treated equally.  

Finally, the study did not prioritise patient safety, meaning that no analysis was undertaken to assess the 

safety of interventions in clinical practice. Further research should incorporate patient safety considerations to 

enhance the applicability and clinical relevance of the findings.  

4.4 Recommendations for future research 

The findings of the present study suggest that further research at the PICU of Erasmus MC Sophia Children's Hospital 

should prioritise the development of a machine learning algorithm based on multimodal vital signs, as there is 

considerable evidence supporting the efficacy of such algorithms in reducing nonactionable alarms. The 

development and implementation of this algorithm will be the focus of the final thesis project, drawing on relevant 

studies identified in this scoping review as illustrative examples. It is imperative that the perspectives of medical 

specialists, nurses, patients and families are incorporated into the development process to ensure that the resulting 

technological solutions are aligned with their needs. In the event that the implementation of a multimodal algorithm 

is deemed to be unfeasible, it is recommended that subsequent research explore single-parameter interventions, 

such as data-driven alarm thresholds and graduated time delays. Following the transition to the new building with 

single-patient rooms, the potential utilisation of customised dashboards should also be considered.  
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5. Conclusion 

In conclusion, alarm fatigue remains a critical issue in PICUs, where the frequent occurrence of nonactionable alarms 

not only diminishes the responsiveness of healthcare professionals but also comprises patient safety. The high 

volume of nonactionable alarms contributes significantly to alarm fatigue, leading to desensitisation and delays in 

responding to actual clinical deterioration. This scoping review has highlighted that SpO₂ alarms represent the 

primary source of clinical alarms in the PICU.  

A number of interventions have been shown to be effective in reducing clinical alarms, including the 

optimisation of data-driven alarm thresholds, the adjustment of graduated time delays, the refinement of daily 

manual procedures and the application of machine learning algorithms. Moreover, valuable lessons can be drawn 

from the process industry, where similar challenges of alarm management have been addressed through strategies 

such as multimodal data integration, alarm grouping, and correlation analysis. 

Consequently, further research should focus on the development of a machine learning algorithm to reduce 

nonactionable alarms based on multimodal vital signs. Incorporating the perspectives of medical specialists, nurses, 

patients and families will be crucial in the development of this intervention. It is vital to consider the implementation 

of this intervention in clinical practice, alongside a thorough evaluation of patient safety, to ensure successful 

reduction of clinical alarms and mitigation of alarm fatigue in the PICU.  
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Appendix I. 

To identify literature on methods for reducing alarms in paediatric hospitals, search terms were developed in 

collaboration with the Erasmus MC Medical Library. This appendix presents the search results and details the search 

terms used for each database. 

Table 1. Results of database searches based on search terms. 

Database searched Platform Years of coverage Records Records after duplicates 
removed 

Medline ALL  
 

Ovid  1946 - 2025 384 381 

Embase  
 

Embase.com 1971 - 2025 553 284 

Web of Science Core Collection*  
 

Web of Knowledge  1975 - 2025 474 228 

Cochrane Central Register of Controlled 
Trials** 
 

Wiley  1992 - 2025 39 12 

Additional Search Engines: Google 
Scholar*** 

  200 105 

Total 1650 1010 

*Science Citation Index Expanded (1975-present) ; Social Sciences Citation Index (1975-present) ; Arts & Humanities Citation Index (1975-

present) ; Conference Proceedings Citation Index- Science (1990-present) ; Conference Proceedings Citation Index- Social Science & Humanities 

(1990-present) ; Emerging Sources Citation Index (2005-present)  
** Manually deleted abstracts from trial registries 
***Google Scholar was searched via "Publish or Perish" to download the results in EndNote. 
 
No other database limits were used than those specified in the search strategies 

The following search terms were used to identify relevant studies from the databases: 

Medline 

(exp "Clinical Alarms"/ OR exp "Alert Fatigue, Health Personnel"/ OR (alarm OR alarms OR ((alert*) ADJ3 

(fatigue*))).ab,ti,kf. OR (alert* AND monitor*).ti.) AND (exp "Intensive Care Units, Pediatric"/ OR exp *"Infant, 

Newborn"/ OR (PICU OR NICU OR ((pediatr* OR paediatr* OR child* OR neonate* OR neo-nate* OR newborn* OR 

new-born*) ADJ4 (intensive*) ADJ4 (care* OR unit* OR ward* OR room* OR department*)) OR ((pediatr* OR 

paediatr* OR child*) ADJ4 (ICU)) OR ((pediatr* OR paediatr* OR child* OR neonat* OR neo-nat* OR newborn* OR 

new-born*) ADJ3 (hospital*))).ab,ti,kf.) 

Embase 

('alarm monitor'/exp OR 'alert fatigue (health care)'/exp OR (alarm OR alarms OR ((alert*) NEAR/3 

(fatigue*))):ab,ti,kw OR (alert* AND monitor*):ti) AND ('pediatric intensive care unit'/exp OR 'neonatal intensive 

care unit'/exp OR 'newborn'/de/mj OR (PICU OR NICU OR ((pediatr* OR paediatr* OR child* OR neonate* OR neo-

nate* OR newborn* OR new-born*) NEAR/4 (intensive*) NEAR/4 (care* OR unit* OR ward* OR room* OR 

department*)) OR ((pediatr* OR paediatr* OR child*) NEAR/4 (ICU)) OR ((pediatr* OR paediatr* OR child* OR 

neonat* OR neo-nat* OR newborn* OR new-born*) NEAR/3 (hospital*))):ab,ti,kw)  

Web of Science 

(TS=(alarm OR alarms OR ((alert*) NEAR/2 (fatigue*))) OR TI=(alert* AND monitor*)) AND (TS=(PICU OR NICU OR 

((pediatr* OR paediatr* OR child* OR neonate* OR neo-nate* OR newborn* OR new-born*) NEAR/4 (intensive*) 

NEAR/4 (care* OR unit* OR ward* OR room* OR department*)) OR ((pediatr* OR paediatr* OR child*) NEAR/4 (ICU)) 

OR ((pediatr* OR paediatr* OR child* OR neonat* OR neo-nat* OR newborn* OR new-born*) NEAR/2 (hospital*))))  
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Cochrane CENTRAL 

((alarm OR alarms OR ((alert*) NEAR/3 (fatigue*))):ab,ti,kw OR (alert* AND monitor*):ti) AND ((PICU OR NICU OR 

((pediatr* OR paediatr* OR child* OR neonate* OR neo NEXT/1 nate* OR newborn* OR new NEXT/1 born*) NEAR/4 

(intensive*) NEAR/4 (care* OR unit* OR ward* OR room* OR department*)) OR ((pediatr* OR paediatr* OR child*) 

NEAR/4 (ICU)) OR ((pediatr* OR paediatr* OR child* OR neonat* OR neo NEXT/1 nat* OR newborn* OR new NEXT/1 

born*) NEAR/3 (hospital*))):ab,ti,kw)  

Google Scholar 

alarm|alarms PICU|NICU|'pediatric|paediatric|neonatal intensive care'|'children|pediatric|paediatric|neonatal 

hospital' 
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Appendix II. 

Table 1. Study characteristics  

Author Publication 
year 

Department Type of 
rooms 

Interventions Parameters Validation of 
interventions 

Results 

Benincasa 
et al.  

2024 NICU Single-
patient 
rooms 

Extension of alarm delays to 60 seconds, daily 
review of pulse oximeter prescriptions, pulse 
oximeter parameters for specified patient 
populations and education regarding alarm 
settings 

SpO₂ Survey and 
alarms rates per 
patient day 

More than 40% alarm reduction within four 
months. There was an increase in nurse 
satisfaction.  

Berg 
et al.  

2023 Paediatric 
hospital wide 
(NICU and 
PICU 
excluded) 

Single-
patient 
rooms 

Modification of default alarm SpO₂ limits on 

monitors to <88% 

SpO₂ SpO₂ alarm 

rates per 
patient day, 
alarms rates for 

SpO₂ ≥ 88% per 

patient day 

Relative reduction of SpO₂ alarms per patient 

day was 17.93% and relative reduction for SpO₂ 

alarms ≥ 88% per patient day was 35.8%, both 
between January 2021 and June 2022.  

Bonafide  
et al.  

2018 Paediatric 
hospital wide  

NA Structured safety huddle review of alarm data 
from high-frequency patients, with discussions 
on reducing alarms 

NA Unit-level alarm 
rates per 
patient day, 
individual 
patient alarm 
rates per 
patient day 

Safety huddle-based alarm discussions did not 
influence unit-level alarm rates due to low 
intervention dose but were effective in 
reducing alarms for individual patients. 
 

Brinks 2015 PICU NA Priority levels based on urgency, specific 
parameter settings, alarm delay, naïve signal 
filtering, graphical monitor interface design and 
multi-parametric approaches (clinical decision 
support systems and machine learning 
techniques) 

NA NA NA 

Brostowicz 
et al. 

2010 NICU NA SatSeconds™ alarm feature (extended alarm 
delays) 

SpO₂ Percentage of 
alarm rate 
reduction using 
various 
SatSeconds™ 
settings 

Overall decrease in alarms by 40% with a 
setting of 50 SatSeconds™.  

Cabrera-
Quirós  
et al. 

2021 NICU Single-
patient 
rooms 

Machine learning algorithm to detect urgent 
moments using multimodal vital signs from 
bedside patient monitors and caregiver alarm 
responses 

ECG and SpO₂ ROC and AUC 
curves 

General detection of caregiver response with a 
mean AUC of 0.82. Classifiers perform better in 
distinguishing alarms requiring no immediate 
response from those that do when trained 
solely with stable and genuinely deteriorating 
samples.  
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Author Publication 
year 

Department Type of 
rooms 

Interventions Parameters Validation of 
interventions 

Results 

Cole  
et al.  

2024 Paediatric 
hospital wide 

NA Scoping review of interventions to improve 
alarm management and reduce alarm fatigue: 
changing alarm parameters (modifying alarm 
limits and extending alarm delay), clinician 
education, communication and planning, 
technology changes, alarm ordering, 
standardisation and guidelines 

NA NA Most studies focused on changing alarm 
parameters. 
 
 
 
 
 

Cvach  
et al. 

2017 ICUs, IMCUs, 
paediatrics 
and 
emergency 
departments 

NA Alarm customization (alarm parameter limits 

based on patient need), alarm delays (SpO₂: 15-

second; ST: 1-minute) and patient profiles (age 
range or disease conditions) 

NA NA NA 

Dandoy  
et al.  

2014 Paediatric 
hospital wide 
(BMTU) 

NA Cardiac Monitor Care Process (CMCP): age-
appropriate monitor parameters, daily 
electrode replacement, individualized 
assessment of cardiac monitor parameters, 
appropriate discontinuation method, 

customized monitor delays (SpO₂ alarm delay 

from 5 to 10 seconds) and increased threshold 
settings (increased high RR limit) 

Cardiac monitor 
parameters (e.g., 

SpO₂, RR) 

Alarm rates per 
patient day 

CMCP resulted in an 80% decrease in alarm 
rates per patient day after the full 
implementation of the intervention process. 
They achieved a 55% reduction in the number 
of alarms through human factor-dependent 
processes, such as changing leads, with a 
further 25% reduction attained through the 
customisation of monitor settings.  

Dewan  
et al.  

2017 PICU Single-
patient 
rooms 

Data-driven monitor alarm discussions in safety 
huddles and monitor parameter adjustments 

NA Priority alarm 
activation rate 
per 24 hours 
before and after 
the huddle 

Reduction of 116 priority alarms (95% CI, 37-
194) per 24 hours (P=.004) 

Goel  
et al.  

2016 Paediatric 
hospital wide 
(general 
medical and 
surgical 
units) 

NA Modification of alarm limits using data-driven, 
age-stratified 5th and 95th  percentile values 

HR and RR Proportion of 
out-of-range 
observations 
with the 
intervention 
versus the 
current (NIH) 
reference range 

55.6% reduction in out-of-range measurements 
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Author Publication 
year 

Department Type of 
rooms 

Interventions Parameters Validation of 
interventions 

Results 

Gul  
et al.  

2023 ICUs 
(including 
NICUs and 
PICUs) 

NA Meta-analysis and systematic review on 
interventions for alarm management: electrode 
evaluation/replacement, suitability assessment, 
customised alarm parameters and thresholds, 
training, multidisciplinary communication, 
alarm delays, auxiliary screens alarm 
notification, volume adjustments, skin 
preparation, clinical workflow adjustments, 
identifying primary alarm response 
responsibility, alarm analysis sharing, 
disposable ECG leads, recurrent alarm 
elimination and physical reminders  

NA Heterogeneity 
analysis, 
random effects 
model (effect 
size indicating 
the clinical 
usability of the 
study results) 

The studies were heterogeneous and showed 
varied distributions. The combined effect size 
for reducing alarms was weak, with minimal 
impact in clinical settings. The level of evidence 
for the effectiveness of interventions in 
reducing alarm numbers remained low.  
 
 
 
 
 
 

Herrera  
et al.  

2023 PICU NA Daily ECG electrode changes, pulse oximeter 
sensor replacement as needed, age-related 
parameters (1st and 99th percentile for age), 
patient-specific parameters (alarm defaults ± 
10% of baseline), alarm delays (SatSeconds ™), 
secondary notification systems and monitor 
watchers 

HR, RR, SpO₂, BP 

and temperature 

NA NA 
 
 
 
 
 
 

Hravnak  
et al.  

2018 ICU NA Adequate skin preparation, daily electrode 
changes, disposable wiring and sensors, 
customised alarm thresholds and delays, 
environment/education/organization 
strategies, secondary notification systems, 
alarm suppression and artifact discrimination 
algorithms, an integrated monitoring system 
displaying a single risk score using neural 
networking and machine learning algorithms 

NA NA More accurate and unbiased alarm fatigue 
metrics need to be developed to assess the 
impact of interventions. Currently, evaluation is 
based on comparing alarm rates or alarm 
fatigue surveys. However, these metrics should 
also incorporate safety, quality, process of care 
and human factors outcomes. 
 
 

Jacques  
et al.  

2017 Paediatric 
hospital wide 
(PCU) 

NA Age-related alarm limits derived from 
hospitalised population data by characterising 
percentile curves for parameters 
 

HR, RR and SpO₂ Percentile 
curves of 
parameters 
(current alarm 
limits versus 
actual 
physiological 
data) and 
histograms of 
parameter 
distributions for 
the 6–12-
month-old 
population 

Comparison of current alarm limits with actual 
physiological data highlights a mismatch 
between alarm settings and patient physiology. 
Age-based recommended alarm limits, derived 
from healthy cohorts, can result in higher-than-
desired alarm loads in the paediatric 
population.  
 
 
 
 
 
 
 
 
 



   
 

June 2025  22 
 

Author Publication 
year 

Department Type of 
rooms 

Interventions Parameters Validation of 
interventions 

Results 

Johnson  
et al.  

2018 NICU Multi-
patient 
ward 

Quality improvement study: cycles included 
lowering the low alarm limit (<85%), increasing 
the low alarm delay (15 seconds), developing 
postmenstrual age-based alarm profiles and 
updating bedside visual reminders 
 

SpO₂ Total number of 
nonactionable 

SpO₂ alarms per 

patient per hour 
and number of 
nonactionable 

low SpO₂ alarms 

per patient per 
hour 

After the improvement cycles, the mean total 
nonactionable alarms per patient per hour 
decreased by 78% from baseline and the mean 
number of nonactionable low alarms per 
patient per hour decreased by 80% from 
baseline.  
 
 
 

Joshi  
et al.  

2019 NICU Single-
patient 
rooms 

Machine learning model using a 
multiparametric approach to predict whether a 
yellow alarm will escalate to a red alarm within 
a short time window 

HR, RR and SpO₂ AUROC 
(performance of 
alarm 
classification) 

Performance of boosted trees on the test set: 
AUROC of 0.89 with a sensitivity of 0.33 and 
specificity fixed at 0.98. Implementing this 
model could reduce the total number of 
auditory alarms by nearly 80% while increasing 
the number of red alarms by 7%.  

Karnik  
et al.  

2015 Paediatric 
hospital wide 

NA The framework conceptualised various 
interventions, including monitoring only 
patients at significant risk of life-threatening 
events, skin preparation and daily electrode 
changes, age-based alarm limits for heart and 

respiratory rates (1st and 99th percentiles), SpO₂ 

alarm limit <80%, allowing nurses to adjust 
alarm parameters within a ± 10% margin, 
increasing alarm delays (SatSeconds ™), 
secondary notification systems and monitor 
watchers 

HR, RR and SpO₂ NA NA 

Lilja  
et al.  

2017 NICU NA Neural network approach for the automatic 
detection of acoustic alarms 

Period duration, 
frequency 
components, 
samples and 
frames of 
acoustic alarms 

Evaluation of 
detection 
performance by 
frame-level 
metrics (MR, 
FAR and EER) 
and event-level 
metrics (PB-
ERR) 

Both generic and class-specific models were 
proposed. The class-specific input model, which 
utilises knowledge of alarm frequency 
components, produced better results than the 
generic input model.  

McCauley et 
al.  

2021 NICU Multi-
patient 
ward 

Quality improvement study: lowering alarm 
limits to 88% and 86%, trialling a new pulse 
oximeter and increasing the low-limit yellow 
alarm delay to 20 seconds 

SpO₂ Alarms per 
patient hour, 
staff survey 

The improvement cycles reduced yellow SpO₂ 

self-resolving alarms by 64%. There was a 
reduced need for staff to modify alarm limits 
following the interventions and parental 
concern regarding staff responsiveness to 
alarms decreased.   
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Author Publication 
year 

Department Type of 
rooms 

Interventions Parameters Validation of 
interventions 

Results 

McClure  
et al.  

2016 NICU Multi-
patient 
ward 

SpO₂ averaging times of 2, 8 and 16 seconds  

and a 15-second alarm delay for SpO₂ ranges of 

88%-95% and 70%-98% 

SpO₂ Events per day 
per infant, 
mean seconds 
per event and 
seconds per day 
per infant 

Longer averaging times mask the number and 
severity of aberrant oxygenation events in 
preterm infants without reducing total alarm 
time. Incorporating an alarm delay with shorter 

SpO₂ averaging times can reduce alarm 

frequency and duration, enabling more 
accurate assessment of oxygenation. 
Implementing a 15-second alarm delay to 2-

second SpO₂ averaging in this analysis 

decreased SpO₂ alarms by 67%.  

 
Monasterio 
et al.  

2012 NICU NA Multimodal analysis framework to reduce the  
false alarm rate in neonatal apnoea monitoring. 

SpO₂, HR, RR and 

signal quality of 
ECG, impedance 
pneumogram and 
photoplethy-
mographic signals 

Classifier 
performance: 
sensitivity, 
specificity and 
accuracy 

Optimal classification performance was 
achieved with a combination of 13 features, 
yielding sensitivity, specificity and accuracy of 
100% in the training set and sensitivity of 86%, 
specificity of 91% and accuracy of 90% in the 
validation set. The most useful feature for false 
alarm detection was the minimum HR within 
the 30-second interval before a desaturation.  
 

Nguyen  
et al.  

2018 Paediatric 
hospital wide 
 

NA AdaBoost machine learning classifier with a 
reject option, specifically tuned to avoid 
silencing valid alarms while suppressing as 

many false low SpO₂ alarms as possible 

SpO₂, HR and RR Classifier 
performance: 
specificity and 
sensitivity 

The classifier is able to silence 23.12% of false 

SpO₂ alarms while maintaining clinically 

significant alarm sensitivity at 99.27% 

Ostojic  
et al.  

2020 NICU NA Machine learning algorithm that intelligently 
analyses data from standard physiological 
monitoring with cerebral oximetry data. Four 
algorithms were used to categorise the alarms:  
Decision tree, 5-nearest neighbours, naïve 
Bayes and support vector machine 

HR, SpO₂ and 

StO2 

Classifier 
performance: 
specificity, 
sensitivity and 
accuracy 

All four approaches achieved a specificity of 
>99%. The decision tree showed the highest 
sensitivity (87.52%) and accuracy (98.67%). 
Cerebral oximetry data enhanced classification 
accuracy. 

Paine  
et al.  

2016 Paediatric 
hospital wide 
(one of eight 
intervention 
studies 
included 
paediatric 
patients) 

NA Systematic review evaluating the following 
interventions: widening alarm parameters, 
alarm delays, reconfiguring alarm acuity, 
secondary notifications, daily ECG electrode 
changes or disposable ECG wires, universal 
monitoring in high-risk populations and timely 
discontinuation of monitoring in low-risk 
populations 

SpO₂, ECG- 

parameters and 
BP 

NA Widening alarm parameters, implementing 
alarm delays and using disposable ECG lead 
wires and/or changing electrodes daily are the 
most effective interventions for reducing 
alarms.  
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Author Publication 
year 

Department Type of 
rooms 

Interventions Parameters Validation of 
interventions 

Results 

Pater  
et al.  

2020 Paediatric 
hospital wide 
(ACCU) 

Single-
patient 
rooms 

Quality improvement study: technology 
interventions, alarm delays based on alarm 
limits, escalation algorithms to reduce initial 
and secondary notifications, team discussions 
of patient-specific vital sign parameters and the 
need for continuous monitoring, turn off in-
room alarm volume and lead changes every 24 
hours 

SpO₂, HR and RR Reduction in 
initial alarm 
notifications per 
monitored bed 
per day, 
averaged per 
month, and 
nursing 
satisfaction 
survey 

The number of alarm notifications was reduced 
by 68% over a 3.5-year period using quality 
improvement methodology. Alarm notifications 
decreased successfully, leading to improved 
nursing satisfaction, with no negative impact on 
patient safety.   

Poets  
et al.  

2018 NICU NA Staff education, modification of alarm limits, 
alarm delays and averaging times 

SpO₂ and 

ventilator 
parameters 

NA Appropriate parameter settings and the 
introduction of alarm delays are likely to lead to 
a significant reduction in alarm rates for both 
ventilators and patient monitors, particularly 
pulse oximeters.  

Probst  
et al.  

2015 NICU NA Evidence-based practice (EBP) intervention 
protocols: monitoring parameter EBP protocol 
and electrode lead and probe changing EBP 
protocol 

SpO₂, HR, RR and 

BP 

Monitoring 
parameter EBP 
protocol: 
average number 
of nuisance 
alarms per hour 
per bed; 
electrode lead 
and probe 
changing EBP 
protocol: 
average number 
of false alarms 
per hour per 
bed  

The monitoring parameter EBP protocol 
reduced the average nuisance alarms per hour 
per bed by 85%. The electrode lead and probe 
changing EBP protocol decreased the average 
number of false alarms per hour per bed by 
57%. The percentage of clinical alarms 
increased post-intervention, indicating 
improvement in alarm safety according to the 
model.  
 
 
 
 

Sabournia 
et al.  

2024 NICU and 
PICU 

NA Machine learning approach (time-series 
clustering algorithm with dynamic time 
warping) to identify subgroups of ICU patients 
and examine the relationships between 
different alarm types 

Cardiovascular 
and pulmonary 
physiological 
parameters 

Temporal 
analysis of 
alarm data 

The study identified the simultaneous 
occurrence of cardiovascular and pulmonary 
physiological alarms, suggesting a correlation 
between these two.   Additionally, patterns of 
stable alarms followed by surges provide early 
warning of patient functional decline, aiding in 
resource optimisation, prioritisation of 
interventions and the tailoring of monitoring 
protocols to individual patient needs.  
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Author Publication 
year 

Department Type of 
rooms 

Interventions Parameters Validation of 
interventions 

Results  

Schmid  
et al.  

2013 ICU and OR 
(including 
paediatric 
hospital) 

NA Phase specific settings to reduce false alarms 
(e.g., for specific ICU settings), integrated alarm 
validation, alarm delays (e.g., 14-second, 19-
second or graduated delays), statistical 
approaches for artifact reduction 
(autoregressive models, self-adjusting 
thresholds, statistical process control, median 
filter) and artificial intelligence (rule-based 
expert systems, neural networks, fuzzy logic, 
Bayesian networks) 

NA NA Many promising approaches using statistical 
methods and artificial intelligence have been 
developed to reduce false alarms, yet no 
obvious changes in false alarms have been 
observed in clinical practice.  
 

Smit  
et al.  

2024 PICU  NA Visual system displaying alarms per bed and 
alarm load for nurses. Filtering options include 
duration of alarms (1-60 second delay) and 
input-based filtering (select when the alarm is 
silenced based on input). 

NA Percentage of 
filtered alarms 
and alarm rate 
per nurse per 
hour.  

The percentage of filtered alarms increases with 
the application of a 1-second filter (9.5%) and a 
3-second filter (28.9%). The number of technical 
alarms filtered out (10.1% and 30.4%) exceeds 
the number of physiological alarms filtered out 
(8.6% and 26.7%). The filters reduce the 
average alarm load from 28 alarms per nurse 
per hour to 25 alarms per nurse per hour with 
the 1-second filter and to 20 alarms per nurse 
per hour with the 3-second filter.  

Stiglich  
et al.  

2024 NICU Multi-
patient 
ward 

Alarm Management Program (AMP): correct 
and individual setting of alarm limits based on 
each patient’s orders in the electronic medical 
record, proper use of each device (alarm signal 
automatically stops when the triggering event 
ceases), role assignment for adjusting alarm 
limits, sensor checking schedule and brief alarm 
pauses during patient manipulation 

SpO₂, BP, HR, 

tidal volume, 
peak inspiratory 
pressure, positive 
end-expiratory 
pressure and leak 
percentage 

Proportion of 
true and 
nonactionable 
alarms, 
response time 
and variables 
associated with 
nonactionable 
alarms 
 

The proportion of true alarms before and after 
AMP was 31% versus 57% (p=0.001), while the 
proportion of nonactionable alarms was 69 
versus 43% (p=0.001). Median response time 
was significantly reduced (37 seconds versus 12 
seconds; p=0.001). Neonates with less intensive 
care needs exhibited a higher proportion of 
nonactionable alarms and a longer response 
time. The need for respiratory support was 
significantly associated with true alarms 
(p=0.001). In the adjusted analysis, response 
time (p=0.001) and respiratory support 
(p=0.003) remained associated with 
nonactionable alarms.  
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Tsien  
et al.  

2000 NICU NA Detection algorithm for artifact patterns across 
multiple physiological data signals using 
decision tree induction 

HR, BP, pCO2 and 
pO2 (collected 
transcutaneously) 

Classifier 
performance: 
sensitivity, 
specificity, PPV, 
accuracy, and 
AUROC 

HR decision tree model: sensitivity 65.4%, 
specificity 99.8%, PPV 91.4%, accuracy 98.5%, 
AUROC 92.8%.  
BP decision tree model: sensitivity 57.7%, 
specificity 99.9%, PPV 90.0%, accuracy 98.9%, 
AUROC 89.4%. 
pCO2 decision tree model: sensitivity 82.5%, 
specificity 99.2%, PPV 84.4%, accuracy 98.3%, 
AUROC 93.3%.  
pO2 decision tree model:  
sensitivity 87.5%, specificity and PPV 100%, 
accuracy 99.8%, AUROC 99.9%. 

Yang 
et al.  

2025 PICU and 
ACCU  

Single-
patient 
rooms 

Quality improvement study: hierarchical time 

delays and conditional alarm triggers for SpO₂ 

and alarm limit modifications for RR and PVCs 

SpO₂, RR and 

PVCs 

Median alarm 
rates per 
monitored 
patient day and 
surveys 

The median numbers of alarms per monitored 
patient day decreased by 75% in PICU (P < .001) 
and 82% in the ACCU (P<.001) with a sustained 
effect at the 2-year follow-up. Nursing surveys 
reported improved capacity to respond to 
alarms and fewer perceived nonactionable 
alarms. However, family surveys did not 
demonstrate improved sleep quality. 

Zhang 2007 PICU NA Patient-specific alarm algorithms using machine 
learning techniques: classification tree learning 
and neural network learning 

All consistently 
and frequently 
monitored 
parameters (i.e., 

HR, SpO₂, RR and 

BP)  

Classifier 
performance: 
sensitivity, 
specificity, PPV 
and accuracy 

Neural networks: sensitivity 0.96, specificity 
0.99, PPV 0.79, accuracy 0.99.  
Classification trees: sensitivity 0.84, specificity 
0.98, PPV 0.72, accuracy 0.98.  
 
The neural network models performed better 
than the classification trees. 

Abbreviations: ACCU, Acute Care Cardiology Unit; AUC, Area Under the Curve; AUROC, Area Under the Receiver Operating Characteristic Curve; BMTU, Bone 

Marrow Transplant Unit; BP, Blood Pressure; ECG, Electrocardiogram; HR, Heart Rate; ICU, Intensive Care Unit; IMCU, Intermediate Care Unit; NICU, Neonatal 

Intensive Care Unit; OR, Operating Room; PCU, Progressive Care Unit; pCO2, Partial Pressure of Carbon Dioxide; PICU, Paediatric Intensive Care Unit; pO2, Partial 

Pressure of Oxygen; PPV, Positive Predictive Value; PVC, Premature Ventricular Contractions; ROC curve, Receiver Operating Characteristic Curve; RR, Respiratory 

Rate; SpO₂, Peripheral Capillary Oxygen Saturation. 

 

 


