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Abstract

This paper presents a comparative study of mul-
tiple algorithms that can be used to automati-
cally search for high-performing pipelines on ma-
chine learning problems. These algorithms, namely
Very Large-Scale Neighbourhood search (VLSN),
Breadth-first search, Metropolis-Hastings, Monte-
Carlo tree search (MCTS), enumerative A* search,
and Genetic Programming, are evaluated on three
datasets. The performance of VLSN is consistently
acceptable for this task, but the best performance is
given by MCTS. Interestingly the results show that
limiting the solution space to pipelines containing
only a classifier operator does not significantly de-
crease performance. Three possible explanations
for this are that the datasets used are too simple,
the use of default hyperparameters makes prepro-
cessing and feature selection operators useless, or
the evaluation of pipelines on a limited training set
makes the search procedure ineffective. This re-
search contributes to the field of AutoML by shed-
ding light on algorithm performance and providing
insights for future improvements.

1 Introduction

Even though machine learning is now an integral part of mod-
ern technology, with countless applications ranging from rec-
ommendation systems [1] and protein folding [2] to large lan-
guage models such as ChatGPT [3], applying machine learn-
ing to novel challenges still consumes a significant amount of
time and requires expert knowledge. It is a challenging task
to identify the necessary data pre-processing steps, determine
the suitable machine learning algorithm, and select the opti-
mal hyper-parameters. This complexity often creates a barrier
for individuals without the necessary experience or expertise,
limiting their ability to harness the potential of this powerful
technology for solving their own unique problems.

Automated machine learning (AutoML) aims to alleviate
these challenges by automating the process of model selec-
tion and optimization, as well as other tasks such as data pre-
processing, meta-learning, and feature learning [4]. At the
same time, program synthesis concerns itself with the task
of automatically generating computer programs that satisfy
some specified user intent. To increase the efficiency of pro-
gram synthesis and interpretability of the generated program,
a grammar can be provided [5], which dictates the set of pro-
grams that can be generated. When the grammar expresses
machine learning pipelines the fields of AutoML and pro-
gram synthesis intersect. In that case, an attempt is made
to achieve AutoML, the automation of model selection and
optimization, using program synthesis.

Despite significant progress in program synthesis and Au-
toML research, important questions remain unanswered. One
of the critical issues that demands further investigation is
the effectiveness of various search algorithms applied to a
context-free grammar describing the domain of pipelines.
This study aims to address this gap by investigating the

performance of program synthesis using Very Large-Scale
Neighborhood search (VLSN) when given such a grammar.
The performance is compared to the performance of pro-
gram synthesis using breadth-first search (BFS), Metropo-
lis—Hastings (MH), Monte-Carlo tree search (MCTS), A*
search (A*), and genetic programming (GP).

In this research, a collection of datasets and a context-free
grammar are established, which are suitable for evaluating
the performance of search algorithms in program synthesis.
The evaluation setup used can be easily reproduced for fur-
ther evaluation of the search algorithms, or adapted to eval-
uate the performance of additional search algorithms. Fur-
thermore, the implementation of VLSN allows its utilization
on any context-free grammar, provided the availability of a
performance measure. Our findings demonstrate that VLSN
achieves a slightly below-average performance on the simple
datasets but a high performance on the complex dataset used.
MCTS shows the highest performance across datasets, mak-
ing it the most promising algorithm for this use case.

This research paper is structured as follows. Chapter 2 pro-
vides a comprehensive review of related work in the fields
of AutoML and program synthesis. Chapter 3 presents the
methodology employed in this study, covering aspects such
as dataset construction, the context-free grammar utilized, the
approach taken to evaluate pipeline performance, the imple-
mentation of VLSN, and the method of evaluating the pro-
gram synthesizer. In Chapter 4, we present our experimental
setup, specifying the runtime environment and the process of
setting the hyperparameters of VLSN. The obtained results
are detailed in Chapter 5. Chapter 6 offers an in-depth dis-
cussion of the findings and the limitations of the research,
while Chapter 7 summarizes the main conclusions and dis-
cusses potential future work. Finally, in Chapter 8 responsi-
ble research considerations connected to the datasets, repro-
ducibility, and credibility are addressed.

2 Related Work

Several notable works have contributed to the development of
AutoML methodologies and tools, of which many are used or
built upon in this research. The idea of AutoML, which fo-
cuses on addressing the challenges associated with automat-
ing the process of pipeline creation and model selection, has
been around since the 1990s [6].

Hyperopt-Sklearn [7] introduced AutoML functionality to
Python, leveraging the widely adopted Scikit-learn [8] pack-
age. Scikit-learn is a comprehensive machine-learning library
that provides a range of algorithms and tools for data prepro-
cessing, model building, and evaluation. It serves as the stan-
dard in AutoML research [4] and is utilized in this research.

The concept of model ensemble was introduced into Au-
toML by AUTO-SKLEARN [9] to enhance existing AutoML
approaches. Model ensemble involves combining predictions
from multiple machine learning models to improve overall
performance and predictive accuracy.

TPOT [10] revolutionized the AutoML field by introducing
Genetic Programming (GP) as a powerful method for auto-
matically searching and evolving machine learning pipelines.
It utilized a restricted set of Scikit-learn operators in its



pipelines and achieved remarkable performance. In this re-
search, GP serves as one of the algorithms VLSN is compared
against and inspiration is drawn from TPOT’s operator set in
determining the grammar for this research.

Additionally, previous works proposed the use of context-
free grammars to enable the creation of pipelines with arbi-
trary Directed Acyclic Graph (DAG) structures [11] [12]. The
utilization of DAG-shaped pipelines enables greater flexibil-
ity and complexity in the construction of machine learning
pipelines.

In the field of AutoML, various search algorithms have
been utilized to automate the process of constructing machine
learning pipelines. Examples include genetic programming
employed by TPOT [10], Bayesian optimization utilized in
Hyperopt-sklearn [7] and Auto-WEKA 2.0 [13], and Monte-
Carlo Tree search explored in [14]. However, due to a scarcity
of research specifically comparing the performance of mul-
tiple algorithms, it remains uncertain which algorithm per-
forms best for the given task.

3 Methodology

In the following sections, an overview is provided of the
components of the program synthesizer and argumentation is
given for why they are designed in the way they are. Firstly,
an overview is given of how the collection of datasets is com-
piled. Secondly, the context-free grammar used by the pro-
gram synthesizer is explained. In the third section, we present
the method of evaluating pipelines generated by the program
synthesizer during the search. After that, the implementa-
tion details of the VLSN algorithm are given and lastly, we
provide an overview of how the performance of the program
synthesizer is evaluated.

3.1 Collection of Datasets

A total of nineteen classification datasets are collected, which
are categorized into 8 simple datasets, 5 complex datasets,
and 6 datasets that are used in similar research [15] [16] [17].
The OpenML [18] platform is used to obtain these datasets.
OpenML provides a vast collection of datasets from various
domains, making it a valuable resource for this research. The
datasets, along with their ID on OpenML, and the number of
entries, features, and target classes, can be found in Tables 1,
2, and 3.

Because of limited access to computational resources, only
two datasets are used for hyperparameter optimization of
the VLSN algorithm and only three datasets are used to
evaluate the performance of the program synthesizer. The
datasets used for hyperparameter optimization are ’diabetes”
and “gsar-biodeg”, and the datasets used for evaluation of the
algorithms are ’seeds”, ”wdbc”” and “har”.

It is important to note that the ratio between any two tar-
get classes within the datasets used in this research is a 1:2
boundary, indicating a balanced distribution of classes. This
does however not hold for all datasets in the collections.

3.2 Context-free Grammar Design

The context-free grammar should find a suitable trade-off be-
tween being expressive and efficient [5]. It should be expres-
sive enough to encompass a broad range of machine learning

Name ID | Entries | Features | Target Classes
diabetes 37 768 8 2
gsar-biodeg 1494 | 1055 42 2

seeds 1499 210 7 3

iris 61 150 4 3
blood-transfusion 1464 748 4 2
monks-problems-2 | 334 601 6 2

ilpd 1480 583 5 2
tic-tac-toe 50 958 9 2

Table 1: Collection of simple datasets

Name ID Entries | Features | Target Classes
har 1478 10299 561 6
gisette 41026 7000 5000 2
madelon | 1485 2600 501 2

musk 1116 6598 167 2
gas-drift | 1476 13910 128 6

Table 2: Collection of complex datasets

Name ID Entries | Features | Target Classes
wdbc 1510 569 30 2
glass 41 214 9 6
car-evaluation 40664 1728 21 4
spambase 44 461 57 2
wine-quality-red 40691 1599 11 6
wine-quality-white | 40498 | 4898 11 7

Table 3: Collection of datasets used in related research

pipelines while being restricted enough to facilitate efficient
search.

The structure a pipeline can take and the operators a
pipeline can use can be seen as the two defining dimensions of
a context-free grammar expressing ML pipelines. In contem-
porary research, a diverse range of grammars is employed, ex-
hibiting variations in both their structure and operators. Some
grammars facilitate the construction of linear pipelines [19]
[9], while others enable the creation of pipelines in the form
of arbitrary Directed Acyclical Graphs (DAG) [12] [20]. Fur-
thermore, there exists considerable diversity in terms of the
operators utilized and the number of operators incorporated
within these pipelines. Now an overview of the structure and
operators implemented in the context-free grammar used in
this research is given.

Structure

The context-free grammar facilitates DAG-shaped pipelines,
with certain constraints. The derivation rules dictating the
structure of the pipeline are given below. The | symbol is the
divider between possible derivations.

* START = Pipeline([CLASSIF]) |

Pipeline([PRE, CLASSIFY))
* PRE = PREPROC | FSELECT |

(’seq”, Pipeline([PRE, PRE))) |

("par”, FeatureUnion([BRANCH, BRANCHY]))
* BRANCH = PRE | CLASSIF |

(’seq”, Pipeline([PRE, CLASSIFY)))
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Figure 1: Node representation of grammar rules that are essential
for the pipeline structure

Using these rules any arbitrary DAG shape can be created.
The non-terminals CLASSIF, PREPROC, and FSELECT de-
rive to a classifier operator, a feature preprocessing operator,
and a feature selection operator respectively. A visual repre-
sentation of these rules can be found in Figure 1. Note that
BRANCH can be derived to PRE, allowing for an arbitrary
amount of parallel branches.

A restriction that follows from the set of rules is that a clas-
sifier operator can only appear at the very end of the DAG or
at the end of a branch. Therefore the output of a classifier is
the final prediction or gets used in ensemble learning respec-
tively. This is done to exclude pipelines in which the output
of a classifier is the input of preprocessing or feature selection
operator. The output of a classifier is a single classification,
which is not a meaningful input to a preprocessing nor to a
feature selection operator. Pipelines in which this occurs are
thus nonsensical and should be avoided to increase efficiency
without losing expressiveness.

Operators

A limited set of common operators from scikit-learn [8] is
used to build the pipelines. This operator set is the same set as
used in TPOT [10], with the only exception being that in this
research the scikit-learn operator GradientBoostingClassifier
is used instead of the separately imported XGBoost operator.

Compared to other operator sets, such as the operator set
used in Auto-SKLearn [9] or RECIPE [20], the set of oper-
ators used by TPOT and thus also in this research is small.
Nevertheless, [10] has shown that using this set of operators
it is possible to obtain good performance on a wide variety of
machine learning problems. Therefore it is sufficient for this
research.

All operators are used with default parameters, except for
SelectKBest for which k=4 is used. This is done because the
default value k=10 surpasses the number of features in the
“diabetes” and ”seeds” datasets.

The seventeen operators used are divided into three cate-
gories based on their functionality. These categories are fea-
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ture preprocessing operators, feature selection operators, and
supervised classification operators. The operators used are:

* Feature preprocessing operators: StandardScaler, Ro-
bustScaler, MinMaxScaler, MaxAbsScaler, PCA, Bina-
rizer, and PolynomialFeatures

¢ Feature selection operators: VarianceThreshold, Se-
lectKBest, SelectPercentile, SelectFwe, and Recursive-
FeatureElimination

* Supervised classification operators: DecisionTree,
RandomForest, GradientBoostingClassifier, LogisticRe-
gression, and NearestNeighborClassifier

Scikit-learn is used as algorithm source in four out of six
AutoML systems analyzed in [4]. Using scikit-learn opera-
tors is thus in line with the standard in AutoML research.

3.3 Pipeline Evaluation Methodology

To make the search procedure more efficient only 300 en-
tries of the training data are used to train models during the
search. The evaluation of a pipeline involves training and
validating the model. Training is computationally expensive,
and evaluating numerous pipelines can quickly become time-
consuming and unfeasible. Using limited training data is ex-
pected to not decrease the performance of the program syn-
thesizer because for stochastic search algorithms like VLSN,
knowing the direction of the search (based on relative pipeline
performance) is more crucial than knowing the actual perfor-
mance. In other words, using a limited training set decreases
the performance of all pipelines, but as long as their relative
performance remains the same the search procedure is not af-
fected. The full training set is used when evaluating the final
pipeline.

3.4 Very Large-Scale Neighborhood Search
Implementation

Neighborhood search is a search algorithm that tries to find
a good solution by repeatedly searching the neighborhood of
the current solution and finding a better solution in that neigh-
borhood [21]. In Very Large-Scale Neighborhood search the
neighborhood is defined in such a way that makes it ’very
large’.

This research uses Herb.jl !, a Julia toolbox for program
synthesis, for the construction of the neighborhood, and thus
also adopts its definition of a neighborhood. In Herb.jl, to
construct the neighborhood of a pipeline it is first represented
as a tree structure. An example of a pipeline and its corre-
sponding tree representation is given in Figure 2. In this tree
representation, each branch node corresponds to an expres-
sion containing at least one non-terminal symbol defined in
the grammar, while the leaf nodes represent terminal sym-
bols. The neighborhood of a pipeline is created by randomly
selecting a node from the tree and replacing it, along with all
its descendant nodes, with various possible derivations of the
non-terminal symbol located in its parent node. A leaf node
can only have the non-terminal CLASSIF, PREPROC, or FS-
ELECT above it and can thus be substituted only by other
leaf nodes that can be derived from the same non-terminal.

'https://github.com/Herb-Al/Herb.jl



Branch nodes can be substituted with much more complex
sub-structures.

At the start of the search algorithm, a pipeline is randomly
chosen from the pool of possible pipelines that can be con-
structed using the grammar. This pipeline is used to construct
the neighborhood for the first iteration. In subsequent iter-
ations, the best-performing pipeline in the neighborhood of
the previous iteration is used to construct the neighborhood
for the next iteration. In cases where the neighborhood does
not contain a pipeline with superior performance compared
to the current one but does contain a pipeline with equal per-
formance, the current program is replaced with the equally
performing pipeline. As a result, when the performance re-
mains unchanged for multiple iterations, the exploration of
the solution space continues. This allows for the potential
discovery of a better solution.

The search process is terminated when 100 pipelines have
been found and evaluated. More about this is explained in
section 3.5.

The behavior of the search algorithm is influenced by the
value of certain hyperparameters. These hyperparameters are:

* Neighbours per iteration (npi): the number of neigh-
bours to consider in each iteration.

* Maximal allowed pipeline depth (mapd): maximal depth
of pipelines in the solution space.

* Maximal allowed substitution depth (masd): maximal
depth of the substitute part of the pipeline.

In the context of this research, the depth of a pipeline refers
to the depth of the tree representation of that pipeline. When
constructing the neighborhood, the substitute part of the
pipeline has to conform to the maximal allowed substitution
depth and the new complete pipeline has to conform to the
maximal allowed pipeline depth.

The best value for a hyperparameter is found by trying a
variety of values for that hyperparameter whilst keeping the
values of the other hyperparameters constant. To evaluate
the performance of each value, the program synthesizer is
run five times on each of the datasets “diabetes” and qgsar-
biodeg”. Running it multiple times helps account for vari-
ance in individual results. After evaluating the performance
of each value, the value that produces the best-performing
pipeline is selected as the final value for that hyperparameter.
This process is repeated for all hyperparameters until the best
values are determined.

3.5 Performance Evaluation

The performance of the program synthesizer using VLSN is
compared to the performance of the same program synthe-
sizer using breadth-first search (BFS), Metropolis-Hastings
(MH), Monte Carlo tree search (MCTS), A* search (A*), and
genetic programming (GP). The performance measurements
for MH, MCTS, A*, and GP are taken from [22], [23], [24],
and [25] respectively. BFS is run once with mapd=2 and once
without a limit on pipeline depth. When mapd=2 the solution
space includes only five pipelines, which consist solely of a
classification operator. This serves as a baseline comparison
of how well the search algorithms perform against simply try-
ing the five classifiers and picking the best. To ensure a fair
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Pipeline(["seq”, Pipeline([{"StandardScaler’, StandardScaler()),
("VarianceThreshold", Variance Threshold(})])),

("DecisionTree", DecisionTreeClassifier())])
b.

depth=10
("seq", Pipeline({[PRE, ["DecisionTrea", depth =2
PREIN DiecisionTreeClassifier]))
("StandardScaler”, ("WarianceThreshold", depth = 4
StandardScaler()) WarianceThreshold(])

C.

Figure 2: Example pipeline representation. (a) Traditional
schematic of the pipeline. (b) Grammar expression corresponding
to the pipeline. (c) Tree representation of the pipeline’s derivation.

and unbiased comparison, all algorithms are executed within
an identical experimental environment, with all settings held
constant except for the search algorithm itself.

To facilitate a fair comparison of the algorithms, it is nec-
essary to ensure consistency even when they are executed on
different machines. To achieve this, a standardized evalua-
tion approach is adopted where each algorithm is terminated
after evaluating 100 pipelines. This approach allows for a
consistent benchmarking of their performance, regardless of
variations in computational resources. Establishing a fixed
evaluation threshold ensures that the comparison is conducted
under the same conditions, enabling meaningful comparisons
and insights into the algorithms’ effectiveness.

The metric used to evaluate the performance of the algo-
rithm is the accuracy of the final pipeline it produces on the
test partition of the dataset. Accuracy is defined as the num-
ber of correct predictions divided by the total number of pre-
dictions made [26]. The choice of accuracy as the metric
for evaluating prediction quality is appropriate in this study
because the datasets are adequately balanced. The ratio be-
tween target classes is within 1:2 for all combinations of tar-
get classes, on all datasets. Furthermore, accuracy is chosen
because of its simplicity and interpretability. Utilizing accu-
racy as the performance measure, we can directly compare



the quality of pipelines produced by different search algo-
rithms.

The datasets are split into a training set, validation set, and
test set, using a ratio of 70:15:15. The training and validation
sets are used to evaluate the performance of pipelines during
the search procedure. Once the final pipeline is found, the
pipeline is trained using the training set, and its performance
is evaluated using the test set. The test set is thus never used
before the final evaluation. By using different datasets for hy-
perparameter optimization than for the final evaluation of the
algorithm, we further ensure the evaluation produces accurate
results, as the test set is truly unseen.

To account for the inherent variability in the results of indi-
vidual algorithm runs, we compute both the average and the
standard deviation of the accuracy scores obtained from ten
runs per dataset. This allows us to acquire a more reliable
and robust comparison between the different algorithms.

4 Experimental Setup

This section outlines crucial components of the experimental
setup to ensure reproducibility. First, an overview of the eval-
uation configuration is given, after which an in-depth expla-
nation of how the hyperparameters of VLSN were determined
can be found.

4.1 Evaluation Configuration

To compare the performance of VLSN to the other algorithms
each algorithm is run ten times on three different datasets,
where each run is allowed to evaluate 100 pipelines before
being halted. VLSN is compared to BFS with a depth limit of
2, BFS without a depth limit, MH, MCTS, A*, and GP.

The datasets used during evaluation are “’seeds”, “wdbc”
and “har”. Datasets ’seeds” and “wdbc” are smaller in terms
of entries, features, and target classes, while “har” is more
complex. All datasets are split into training, validation, and
test set, using a ratio of 70:15:15. A seed is used for random-
ness to ensure the same splits are made for each algorithm.

Furthermore, to speed up the search, pipelines are only
trained on 300 entries of the training data during the search.
During the final evaluation, the complete training set is used.
The hyperparameters for VLSN are set to npi=25, masd=4,
and mapd=4. The implementations of MH, MCTS, A*, and
GP, as well as the hyperparameters they used, are detailed in
[22], [23], [24] and [25] respectively.

4.2 Parameters of VLSN

The hyperparameters neighbours per iteration (npi), maxi-
mal allowed substitution depth (masd) and maximal allowed
pipeline depth (mapd) are optimized using the method ex-
plained in section 3.4 and their final values are npi=25,
masd=4 and mapd=4. Figure 3 provides a visualization of the
performance measures obtained during the optimization pro-
cess. The average accuracy and standard deviation are com-
puted from five runs per value per dataset.

During the optimization, each hyperparameter is individu-
ally optimized while keeping the others at their base values,
which are npi=15, masd=3, and mapd=5. The search is termi-
nated after 100 pipelines were evaluated. The datasets dia-
betes” and “gsar-biodeg” are split into training sets, validation

sets, and test sets, using a 70:15:15 ratio. The validation set is
used to evaluate pipelines during the search, while the test set
is solely utilized when the search has concluded to evaluate
the found pipeline. A seed is used to ensure the splitting of
the data was performed the same for all values of all hyper-
parameters.

The final value of npi is 25. On the “diabetes” dataset,
the average accuracy is 0.778 for npi=25, which is the high-
est of all the values tested. The next best average accuracy
is achieved with npi=5, which gives an average accuracy of
0.764. However, it has a slightly higher standard deviation of
0.053 compared to 0.047 for npi=25. On the “gsar-biodeg”
dataset, npi=25 yields an average accuracy of 0.944, which
is 0.006 lower than npi=5. Both npi=5 and npi=25 are good
candidates with similar performance. When examining Fig-
ure 3a as a whole, except for the outlier on gsar-biodeg” with
npi=15, it can be expected that any value between 5 and 25
for npi is suitable and achieves comparable average accuracy.

The final value of masd is 4. On the “’qsar-biodeg” dataset,
masd=4 achieves the highest average accuracy of 0.9625. The
second highest accuracy of 0.956 is obtained with masd=3,
which performs poorly on the “diabetes” dataset. For the di-
abetes” dataset, both masd=4 and masd=5 exhibit the same
average accuracy of 0.748. However, masd=4 has a slightly
higher standard deviation of 0.036 compared to 0.029 for
masd=5. Based on the results, it is evident that masd=4 is
the best option to choose. All results can be found in Figure
3b.

The value chosen for mapd is 4. It is clear when looking at
Figure 3c that all values other than mapd=4 and mapd=5 re-
sult in lower average accuracy and higher standard deviation
for at least one dataset. Therefore only mapd=4 and mapd=5
are suitable options. On “diabetes” mapd=4 slightly outper-
forms mapd=5 and on gsar-biodeg, mapd=5 slightly outper-
forms mapd=4. To limit the complexity of the search space
mapd=4 is chosen.

5 Results

The average accuracy and standard deviation achieved by
the different algorithms on the “seeds”, “wdbc”, and "har”
datasets can be found in Table 4. A visual representation
can be found in Figure 4, with Figure 4a showing the re-
sults on the ’seeds” database, Figure 4b showing the results
on the "wdbc” dataset, and Figure 4c showing the results on
the "har” dataset. The results of individual runs of VLSN,
BFS(mapd=2), and BFS can be found in Appendix A

As can be seen in Table 4, BFS(mapd=2) slightly outper-
forms BFS on the "wdbc” dataset but is slightly outperformed
by it on the “seeds” datasets. Interestingly, BFS(mapd=2) is
not significantly outperformed by the other search algorithms
on any dataset. On the “’seeds” dataset BFS(mapd=2) is out-
performed by BFS and MCTS with a difference in average
accuracy of 0.01, which is neglectable given the standard de-
viation. BFS(mapd=2) attains the same average accuracy of
0.92 as MH and A*. On the "wdbc” dataset BFS(mapd=2)
attains the highest average accuracy of 0.97, together with
MCTS and A*. Similar results are seen on the "har” dataset,
where BFS(mapd=2), BFS, VLSN, and MCTS all achieve an
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Figure 3: Average accuracy and standard deviation achieved on five
runs for a range of values for VLSN’s hyperparameters. Subfigures
(a), (b), and (c) show the results for the different hyperparameters:
(a) neighbours per iteration, (b) maximally allowed substitution
depth, and (c) maximally allowed pipeline depth.

average accuracy of 0.98, while the other algorithms give a
lower performance.

When specifically looking at the performance of VLSN
compared to the other search algorithms we see that it is nei-
ther the highest nor the lowest-performing algorithm. MH
and A* attain a slightly higher performance on the two simple
datasets than VLSN, but perform worse on the ’har” dataset.
The difference in their average accuracy is within their stan-
dard deviation on all datasets. VLSN is slightly outperformed
by MCTS on all datasets while it greatly outperforms GP on
all datasets. Lastly, it achieves very similar, but sometimes
slightly lower performance than BSF(mapd=2) and BFS.

When looking at the final pipelines outputted by the VLSN
search an average pipeline depth of 3.6 is found on both the
”seeds” and “wdbc” datasets, and an average pipeline depth
of 3.3 is found on the “har” dataset. For the seeds” and
“wdbc” datasets this average is remarkably close to the max-
imal allowed pipeline depth of 4.

Finally, it can be seen that MCTS is among the
highest-performing algorithms on all datasets. It con-
sistently achieves equal or higher average accuracy than
BFS(mapd=2), BFS, VLSN, MH, A*, and GP. These find-
ings suggest that MCTS might be a superior algorithm for
the use case of searching a context-free grammar for high-
performance pipelines. It is however important to notice the
difference in performance is often smaller than the standard
deviation, weakening the claim.

seeds wdbc ha
Algorithm AA. SD. AA. SD. AA. SD.
BFS(mapd=2) 0.92 0.04 097 0.02 098 0.00
BFS 093 0.04 095 0.03 098 0.00
VLSN 091 0.05 095 0.02 098 0.01
MH 092 0.05 096 0.02 097 0.02
MCTS 093 0.03 097 0.02 098 0.00
A* 092 0.04 097 0.02 097 0.02
GP 085 0.17 091 0.12 0.76 0.38

Table 4: Average Accuracy (A.A.) and Standard Deviation (S.D.)
achieved by the different algorithms on the "seeds”, "wdbc”, and
“har” datasets

6 Discussion

The discussion is separated into two parts. First, we discuss
the result of the previous section, after which the limitations
of this research are outlined.

6.1 Explanation of Results

On first notice, it seems illogical that BFS(mapd=2) outper-
forms BFS on the ”wdbc” dataset because the pipelines eval-
uated in BFS(mapd=2) are also evaluated in BFS. However,
this can be explained by the fact that only 300 entries are
used for training during the search. During its search, BFS
evaluates 100 pipelines, and using this limited training set
potentially decreases the accuracy of the evaluation. Of those
100 pipelines 5 consist of only a classifier and 95 are more
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Figure 4: Average accuracy and standard deviation achieved on ten
runs by different search algorithms on three datasets. Subfigures
(a), (b), and (c) show the results for the different datasets: (a) seeds
dataset, (b) wdbc dataset, and (c) har dataset.

complex. Because of this ratio, the probability increases that
a more complex pipeline is chosen by the algorithm based
on its performance after being trained on 300 entries, even
though it has a lower performance than a pipeline using only
a classifier after being trained on the complete training set.

As shown in the results BES(mapd=2) is not significantly
outperformed by any of the search algorithms. By setting the
mapd to 2, which limits the solution space, we are left with
only 5 pipelines that exclusively comprise a classification op-
erator. One possible explanation of these results is that data
preprocessing and feature selection operators are not neces-
sary for achieving high performance on these datasets. Gener-
alizing this observation would lead to the conclusion that data
preprocessing and feature selection operators are not neces-
sary for datasets of comparable complexity to the ones used
in this research. This is a radical conclusion as it eliminates
the need for the very search algorithms we are evaluating and
comparing.

Another explanation could be that search algorithms other
than BFS (and BFS(mapd=2)) are unfairly affected by the use
of a limited training set for the evaluation of a pipeline dur-
ing the search procedure. The search path for all other algo-
rithms is determined based on the evaluation of the pipelines
it encounters during its search. During the search, only 300
samples are used for the evaluation of a pipeline and if that
evaluation is therefore unreliable the algorithm might not find
as good a pipeline. BFS would not be impacted by this in the
same way because its search path is unaffected by the evalu-
ation of pipelines it finds but instead predetermined.

A third and final explanation for the adequate performance
of BFS(mapd=2) may lay in the utilization of default hyper-
parameters for the operators. For the feature selection and
data preprocessing operators to function optimally suitable
values have to be specified for their hyperparameters. Be-
cause the default values are used, the operators might lose
their effectiveness which would explain why pipelines using
solely a classifier operator are equally effective as pipelines
using also feature selection or data preprocessing operators.
This in turn would explain the similarity in performance of
BFS(mapd=2) and the more advanced algorithms.

Furthermore, the depth of the final pipelines produced by
VLSN is notable given the earlier observation that the most
simple pipelines perform at least as well as more complex
pipelines. The explanation for this occurrence finds its roots
in the fact that there are many times more possible pipelines
of depth n than of depth n-1. There are for instance 65
possible pipelines with depth 3, and there are 1505 possible
pipelines with depth 4. Because the initial pipeline is ran-
domly chosen from the set of all possible pipelines within the
solution space, of which there are many more with the max-
imally allowed pipeline depth than any other pipeline depth,
the initial pipeline is most likely to have the maximally al-
lowed pipeline depth. For the same reason, when randomly
choosing neighbours, these are more likely to be long substi-
tutes with the maximal depth allowed than shorter pipelines.
The combination of these two things causes short pipelines to
rarely be evaluated by VLSN. Especially seeing the results
indicate that short pipelines perform better, this imbalance
might negatively impact the performance of VLSN.



When analyzing the performance of VLSN compared to
the other algorithms, except for GP, on the simple datasets
it performs slightly worse, but the difference is in all cases
smaller than the standard deviation. When doing the same on
the more complex “har” dataset we see it achieves the same,
or slightly higher performance than the other algorithms, ex-
cluding GP. Again the difference is smaller than the standard
deviation. Therefore based on this data, the performance of
VLSN can be considered comparable to the performance of
all other algorithms evaluated, except for GP.

As also stated in section 5 MCTS achieves high per-
formance scores on all datasets. However, similar perfor-
mance can be achieved on these datasets with the simple
BFS(mapd=2). When more complex pipelines are required
the performance of BFS(mapd=2) and BFS are expected to
drop because of their inefficient search procedure, in which
case MCTS emerges as the most promising algorithm. This
is however based on the assumption that these results gen-
eralize to more complex datasets, which would need future
research to confirm.

6.2 Limitations of the Research

The limitations of this research include the use of a lim-
ited number of datasets and runs, resulting in a significant
standard deviation and potential bias in the observed per-
formance. To improve the robustness and credibility of the
results, a broader range of datasets and a larger number of
runs should be considered. Additionally, the simplicity of the
datasets used may limit the meaningful assessment of algo-
rithm performance, warranting the inclusion of more diverse
and complex datasets. This simplicity is highlighted by the
adequate performance of BFS(mapd=2).

Furthermore, the exact implementation of VLSN can vary
greatly, with one of the key aspects being the definition of the
neighbourhood. The performance of different implementa-
tions might vary, and this variability applies to all algorithms
compared in this paper, except for BFS and BFS(mapd=2).
Therefore, it is important to note that any conclusions drawn
can only be applied to the specific implementations used and
cannot be generalized to the algorithms themselves.

Lastly, using the depth of the tree representation of a
pipeline as a limiting factor creates a bias toward some deriva-
tions. Getting from PRE to two sequential operators takes one
depth level less than getting to two parallel operators because
the two BRANCH non-terminals have to be derived to PRE
again before being derived to a terminal. This favors the se-
quential arrangement of operators compared to the parallel
arrangement. In future research, this could be fixed by ex-
cluding non-terminals from the depth count.

7 Conclusions and Future Work

In this research, we compare several search algorithms,
namely BFS, MH, MCTS, A*, GP, and VLSN, on the task of
searching a context-free grammar to find high-performance
pipelines for ML problems. The algorithms are evaluated on
three datasets: ’seeds”, "wdbc”, and har”.

The results reveal interesting findings regarding the per-
formance of the algorithms. BFS with a depth limit of

2 (BFS(mapd=2)) achieves comparable performance to the
more advanced algorithms on all datasets, suggesting that
pipelines consisting solely of a classifier perform as well as
more complex pipelines on the datasets used. This finding
challenges the necessity of data preprocessing and feature se-
lection operators for achieving high performance on datasets
of comparable complexity.

Alternatively, the similar performance of BFS(mapd=2)
compared to other search algorithms might indicate that the
limited evaluation of pipelines during the search phase may
impact the performance of more advanced algorithms. Fur-
thermore, it could suggest feature preprocessing and data
preparation operators are useless without hyperparameter op-
timization.

The VLSN algorithm, although not the highest-
performing, demonstrates consistent, acceptable results.
However, the preference for longer pipelines due to the
search process’s imbalance towards maximum depth
pipelines may negatively affect its performance. MCTS
achieves equal or higher performance than all compared
algorithms on all datasets, indicating it might be a superior
algorithm for searching context-free grammars for high-
performance pipelines. However, due to the small difference
in performance and the larger standard deviation observed
this claim needs to be validated.

Nevertheless, it is important to acknowledge the limitations
of this research. The use of a limited number of datasets and
runs, as well as the simplicity of the datasets, may affect the
generalizability of the results. The suspected variability in
performance among different implementations of VLSN and
the other algorithms further restricts the generalizability and
limits the conclusions to the specific implementation used.

Further studies should explore a broader range of datasets,
varying in complexity, and conduct a larger number of runs
to enhance the robustness of the findings. Additionally, fu-
ture research could investigate the reliability of pipeline eval-
uation on a limited number of samples, the impact of adding
hyperparameter tuning for the operators, and the extension of
the operator set to further improve pipeline performance.

In conclusion, this research contributes insights into the
performance of various search algorithms for finding high-
performance pipelines in context-free grammars. The find-
ings challenge the necessity of data preprocessing and fea-
ture selection operators for datasets of comparable complex-
ity and highlight the potential of BFS(mapd=2) and MCTS as
efficient search algorithms. Future research can build upon
these findings by considering more diverse datasets and re-
fining the search algorithms’ implementations to further en-
hance performance.

8 Responsible Research

Responsible research involves ensuring the reproducibility of
the methods employed and questioning the credibility of the
conclusions, thereby promoting transparency and scientific
integrity. In this section, we first discuss the source and re-
liability of the datasets used, after which we critically reflect
on the reproducibility of our research methods and outline
the measures taken to facilitate the replication of our exper-



iments. Lastly, the credibility of the drawn conclusions is
questioned and the shortcomings are outlined.

8.1 Datasets

In this research, the datasets used were obtained from the
OpenML platform, which serves as a reliable source for col-
lecting diverse datasets from various domains. OpenML has
established itself as a reputable resource in the field of ma-
chine learning, providing a vast collection of datasets that
have been extensively used. The platform ensures trans-
parency by providing detailed information about the datasets,
including their origin and characteristics.

Furthermore, except for the “seeds” dataset, all datasets
used have tens or even hundreds of thousands of related
runs on OpenML, increasing credibility. The fact that these
datasets have been used so much increases the likelihood that
they have undergone rigorous evaluation by other researchers.
Lastly, no preprocessing was applied to the datasets, ensuring
the integrity of the original data.

8.2 Reproducibility

Several measures have been taken to ensure reproducibility.

Firstly, all the code used in our research is available in a
dedicated GitHub repository 2. This repository includes the
context-free grammar utilized in the program synthesis, as
well as the implementation of the VLSN algorithm. The code
is extensively documented, providing detailed explanations
that aid in understanding the codebase and facilitate the re-
production of our research.

Furthermore, we have incorporated the Herb.jl framework
in our research, which is also hosted on a GitHub reposi-
tory. To ensure reproducibility, we have specified the exact
branches and commits used in the setup, enabling researchers
to precisely replicate the environment and configurations em-
ployed in our study.

Regarding computational resources, the choice was made
to use the number of pipelines evaluated as a stopping crite-
rion, rather than a time-based one. This allows reproducibility
regardless of the computing power available.

By adopting these measures we aim to enhance the repro-
ducibility of our research. We recognize that reproducibility
serves as a cornerstone of scientific integrity and encourages
future studies to build upon and validate our findings.

8.3 Credibility

While the conclusions drawn in this paper offer valuable in-
sights into the research questions, their credibility is affected
by the limitations in computational resources and the rela-
tively small number of datasets and runs used. The credibility
is further limited by the bias towards sequential pipelines in-
herent in the grammar. As such, these conclusions should be
viewed as preliminary and call for future research efforts to
validate and extend the findings. This can be done using more
extensive resources and the collection of datasets presented in
section 3.1.

*https://github.com/M-Butenaerts/research_project
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A Results of VLSN

In this appendix information about the runs of VLSN, BFS(mapd=2), and BFS is given. This includes the final pipeline that
was found by each run, the test accuracy achieved by that pipeline, and the duration of the run. Tables 5, 6, and 7 show this
information for the runs of VLSN on the ’seeds”, ’wdbc”, and ’har” datasets. Tables 8, 9, and 10 show this information for the
runs of BFS(mapd=2) and Tables 11, 12, and 13 show this for the runs of BFS.

Run

Found Pipeline

Test Accuracy  Duration (seconds)

1

Pipeline([(’seq”, Pipeline([("PCA”, PCA()),
(’SelectKBest”, SelectKBest(k = 4))]))]),
("KNearestNeighbors”, KNeighborsClassifier())])

0.84375

5.17

Pipeline([(’seq”, Pipeline([(”SelectKBest”, SelectKBest(k = 4)),
(’SelectKBest”, SelectKBest(k = 4))]))]),
("RandomForest”, RandomForestClassifier())])

0.9375

8.41

Pipeline([(’seq”, Pipeline([("MinMaxScaler”, MinMaxScaler()),
(’SelectKBest”, SelectKBest(k = 4))]))]),
("RandomForest”, RandomForestClassifier())])

0.90625

2.1

Pipeline([("PolynomialFeatures”, PolynomialFeatures()),
(KNearestNeighbors”, KNeighborsClassifier())])

0.875

6.16

Pipeline([("RobustScaler”, RobustScaler()),
("RandomForest”, RandomForestClassifier())])

0.9375

7.08

Pipeline([(’seq”, Pipeline([("MinMaxScaler”’, MinMaxScaler()),
(’StandardScaler”, StandardScaler())]))]),
("KNearestNeighbors”, KNeighborsClassifier())])

0.90625

0.14

Pipeline([(’seq”, Pipeline([("SelectKBest”, SelectKBest(k = 4)),
("PCA”, PCAO)D)D,
("RandomForest”, RandomForestClassifier())])

0.84375

17.56

Pipeline([(’seq”, Pipeline([("RobustScaler”, RobustScaler()),
("MinMaxScaler”, MinMaxScaler())]))]),
(KNearestNeighbors”, KNeighborsClassifier())])

0.875

0.08

Pipeline([("Recursive Feature Elimination”, RFE(LinearSVC())),
(”KNearestNeighbors”, KNeighborsClassifier())])

0.9375

9.65

10

Pipeline([("Recursive Feature Elimination”, RFE(LinearSVC())),
(’Gradient Boosting Classifier”’, GradientBoostingClassifier())])

1.0

30.36

Table 5: Results of Very Large-Scale Neighbourhood search runs on the “seeds” dataset



Run Found Pipeline Test Accuracy  Duration (seconds)
1 Pipeline([("Recursive Feature Elimination”, RFE(LinearSVC())), 0.953 20.59
("RobustScaler”, RobustScaler())]),
("RandomForest”, RandomForestClassifier())])
2 Pipeline([("Recursive Feature Elimination”, RFE(LinearSVC())), 0.942 28.93
("PCA”, PCAQO)D),
(”RandomForest”, RandomForestClassifier())])
3 Pipeline([(”StandardScaler”, StandardScaler()), 0.953 47.96
("PCA”, PCAQ)D),
(”Gradient Boosting Classifier”, GradientBoostingClassifier())])
4 Pipeline([("MaxAbsScaler”, MaxAbsScaler()), 0.930 2.81
("PCA”, PCA()D),
("RandomForest”, RandomForestClassifier())])
5 Pipeline([(”’SelectFwe”, SelectFwe()), 0.942 26.06
(’Gradient Boosting Classifier”, GradientBoostingClassifier())])
6 Pipeline([("MinMaxScaler”, MinMaxScaler()), 0.988 31.80
(’PolynomialFeatures”, PolynomialFeatures())]),
("KNearestNeighbors”, KNeighborsClassifier())])
7 Pipeline([("PolynomialFeatures”, PolynomialFeatures()), 0.942 61.06
(’SelectPercentile”, SelectPercentile())]),
("DecisionTree”, DecisionTreeClassifier())])
8 Pipeline([("PolynomialFeatures”, PolynomialFeatures()), 0.977 64.17
("MaxAbsScaler”, MaxAbsScaler())]),
(’Gradient Boosting Classifier”, GradientBoostingClassifier())])

9 Pipeline([("SelectFwe”, SelectFwe()), 0.919 31.75
(’Gradient Boosting Classifier”’, GradientBoostingClassifier())])
10 Pipeline([("RandomForest”, RandomForestClassifier())]) 0.942 33.68

Table 6: Results of Very Large-Scale Neighborhood search runs on the "wdbc” dataset

Run Found Pipeline Test Accuracy Duration (seconds)

1 Pipeline([(’seq”, Pipeline([(”StandardScaler”, 0.9799 270.46
StandardScaler()), ("MinMaxScaler”, MinMaxScaler())]))]),
("LogisticRegression”, LogisticRegression())])

2 Pipeline([("PolynomialFeatures”, PolynomialFeatures()), 0.9735 405.2
("RandomForest”, RandomForestClassifier())])

3 Pipeline([(’SelectFwe”, SelectFwe()), 0.9806 438.18
("LogisticRegression”, LogisticRegression())])

4 Pipeline([("SelectFwe”, SelectFwe()), 0.9806 265.96
("LogisticRegression”, LogisticRegression())])

5 Pipeline([(’StandardScaler”, StandardScaler()), 0.9806 150.61
("RandomForest”, RandomForestClassifier())])

6 Pipeline([(’StandardScaler”, StandardScaler()), 0.9793 149.15
("LogisticRegression”, LogisticRegression())])

7 Pipeline([("PolynomialFeatures”, PolynomialFeatures()), 0.9890 468.55
("LogisticRegression”, LogisticRegression())])

8 Pipeline([(’seq”, Pipeline([(”VarianceThreshold”, 0.9767 171.13

VarianceThreshold()), (" VarianceThreshold”, VarianceThreshold())]))]),
("RandomForest”, RandomForestClassifier())])

9 Pipeline([(’seq”, Pipeline([(”SelectFwe”, 0.9709 452.04
SelectFwe()), ("PolynomialFeatures”, PolynomialFeatures())]))]),
("RandomForest”, RandomForestClassifier())])

10 Pipeline([("PCA”, PCA()), 0.9871 667.0
("LogisticRegression”, LogisticRegression())])

Table 7: Results of Very Large-Scale Neighbourhood search runs on the "har” dataset



Run Found Pipeline Test Accuracy Duration (seconds)

1 Pipeline([("DecisionTree”, DecisionTreeClassifier())]) 0.90625 1.82

2 Pipeline([("Gradient Boosting Classifier”, GradientBoostingClassifier())]) 1.0 0.31

3 Pipeline([("DecisionTree”, DecisionTreeClassifier())]) 0.9375 0.3

4 Pipeline([("RandomForest”, RandomForestClassifier())]) 0.9375 0.3

5 Pipeline([(”Gradient Boosting Classifier”’, GradientBoostingClassifier())]) 0.96875 0.32

6 Pipeline([("LogisticRegression”, LogisticRegression())]) 0.875 0.34

7 Pipeline([(”Gradient Boosting Classifier”’, GradientBoostingClassifier())]) 0.90625 0.3

8 Pipeline([("RandomForest”, RandomForestClassifier())]) 0.96875 0.3

9 Pipeline([("RandomForest”, RandomForestClassifier())]) 0.90625 0.3

10 Pipeline([("Gradient Boosting Classifier”’, GradientBoostingClassifier())]) 0.90625 0.3

Table 8: Results of BES(mapd=2) runs on the ”seeds” dataset
Run Found Pipeline Test Accuracy Duration (seconds)

1 Pipeline([("RandomForest”, RandomForestClassifier())]) 0.9534883720930233 0.58
2 Pipeline([("LogisticRegression”, LogisticRegression())]) 0.9767441860465116 0.46
3 Pipeline([("RandomForest”, RandomForestClassifier())]) 0.9767441860465116 0.45
4 Pipeline([("RandomForest”, RandomForestClassifier())]) 1.0 0.47
5 Pipeline([(”Gradient Boosting Classifier”’, GradientBoostingClassifier())]) 0.9418604651162791 0.47
6 Pipeline([(”Gradient Boosting Classifier”’, GradientBoostingClassifier())]) 0.9651162790697675 0.46
7 Pipeline([("RandomForest”, RandomForestClassifier())]) 0.9534883720930233 0.47
8 Pipeline([("RandomForest”, RandomForestClassifier())]) 0.9767441860465116 0.48
9 Pipeline([("RandomForest”, RandomForestClassifier())]) 0.9651162790697675 0.48
10 Pipeline([("RandomForest”, RandomForestClassifier())]) 0.9767441860465116 0.48

Table 9: Results of BFS(mapd=2) runs on the "wdbc” dataset

Run Found Pipeline Test Accuracy Duration (seconds)
1 Pipeline([("RandomForest”, RandomForestClassifier())]) 0.9695989650711514 29.46
2 Pipeline([(’LogisticRegression”, LogisticRegression())])  0.981888745148771 28.84
3 Pipeline([("RandomForest”, RandomForestClassifier())]) 0.9741267787839586 28.66
4 Pipeline([("RandomForest”, RandomForestClassifier())]) 0.9786545924967659 28.67
5 Pipeline([("RandomForest”, RandomForestClassifier())]) 0.9786545924967659 28.67
6 Pipeline([("LogisticRegression”, LogisticRegression())]) 0.98124191461837 28.58
7 Pipeline([(’LogisticRegression”, LogisticRegression())])  0.9851228978007762 28.63
8 Pipeline([("LogisticRegression”, LogisticRegression())])  0.9805950840879689 28.89
9 Pipeline([("RandomForest”, RandomForestClassifier())]) 0.9799482535575679 28.93
10 Pipeline([("LogisticRegression”, LogisticRegression())])  0.9864165588615783 28.61

Table 10: Results of BFS(mapd=2) runs on the "har” dataset



Run Found Pipeline

Test Accuracy

Duration (seconds)

1 Pipeline([("LogisticRegression”, LogisticRegression())]) 0.9375 10.03
2 Pipeline([("RandomForest”, RandomForestClassifier())]) 0.875 7.91
3 Pipeline([(’seq”, Pipeline([(”SelectKBest”, SelectKBest(k = 4)), 0.90625 7.87
("PCA”, PCA()])), ("LogisticRegression”, LogisticRegression())])

4 Pipeline([("RandomForest”, RandomForestClassifier())]) 0.96875 6.64
5 Pipeline([(’SelectKBest”, SelectKBest(k = 4)), 0.90625 6.75

("LogisticRegression”, LogisticRegression())])
6 Pipeline([(’seq”, Pipeline([(” VarianceThreshold”, VarianceThreshold()), 0.875 1.36

(’PolynomialFeatures”, PolynomialFeatures())])),

(”RandomForest”, RandomForestClassifier())])

7 Pipeline([(’seq”, Pipeline([(” VarianceThreshold”, VarianceThreshold()), 0.875 0.02
(’MinMaxScaler”, MinMaxScaler())])),

("LogisticRegression”, LogisticRegression())])
8 Pipeline([("DecisionTree”, DecisionTreeClassifier())]) 0.96875 7.49
9 Pipeline([(’seq”, Pipeline([("Recursive Feature Elimination”, 0.96875 7.17

RFE(LinearSVC())), ("MaxAbsScaler”, MaxAbsScaler())])),
("DecisionTree”, DecisionTreeClassifier())])

10 Pipeline([("MinMaxScaler”, MinMaxScaler()), 0.90625 6.62

("LogisticRegression”, LogisticRegression())])

Table 11: Results of BFS runs on the ”seeds” dataset

Run Found Pipeline Test Accuracy Duration (seconds)
1 Pipeline([(’LogisticRegression”, LogisticRegression())]) 0.9418604651162791 14.83
2 Pipeline([("MaxAbsScaler”’, MaxAbsScaler()), 0.9302325581395349 10.41

("LogisticRegression”, LogisticRegression())])
3 Pipeline([("RandomForest”, RandomForestClassifier())]) 0.9883720930232558 12.14
4 Pipeline([("RandomForest”, RandomForestClassifier())]) 0.9883720930232558 13.53
5 Pipeline([("RandomForest”, RandomForestClassifier())]) 0.9651162790697675 14.35
6 Pipeline([(”VarianceThreshold”, VarianceThreshold()), 0.9418604651162791 12.81

(’DecisionTree”, DecisionTreeClassifier())])
7 Pipeline([("RandomForest”, RandomForestClassifier())]) 0.9767441860465116 14.22
8 Pipeline([("RandomForest”, RandomForestClassifier())]) 0.9651162790697675 14.08
9 Pipeline([(’seq”, Pipeline([("SelectPercentile”, SelectPercentile()), 0.5465116279069767 12.08
(’Binarizer”, Binarizer())])),

("RandomForest”, RandomForestClassifier())])

10 Pipeline([("RandomForest”, RandomForestClassifier())]) 0.9534883720930233 0.51

Table 12: Results of BFS(mapd=2) runs on the

”wdbc” dataset



Run Found Pipeline Test Accuracy Duration (seconds)
1 Pipeline([("LogisticRegression”, LogisticRegression())]) 0.98124191461837 361.63
2 Pipeline([("RandomForest”, RandomForestClassifier())]) 0.9793014230271668 359.77
3 Pipeline([(”StandardScaler”, StandardScaler()), 0.9831824062095731 361.13
("LogisticRegression”, LogisticRegression())])

4 Pipeline([("MaxAbsScaler”’, MaxAbsScaler()), 0.9799482535575679 366.4
("LogisticRegression”, LogisticRegression())])

5 Pipeline([(”StandardScaler”, StandardScaler()), 0.9909443725743855 368.88

(’Gradient Boosting Classifier”, GradientBoostingClassifier())])

6 Pipeline([("MinMaxScaler”, MinMaxScaler()), 0.9741267787839586 158.94
("LogisticRegression”, LogisticRegression())])

7 Pipeline([("MaxAbsScaler”’, MaxAbsScaler()), 0.9864165588615783 160.07
("LogisticRegression”, LogisticRegression())])

8 Pipeline([("LogisticRegression”, LogisticRegression())]) 0.981888745148771 159.78

9 Pipeline([("MaxAbsScaler”, MaxAbsScaler()), 0.9799482535575679 159.67
("LogisticRegression”, LogisticRegression())])

10 Pipeline([(’StandardScaler”, StandardScaler()), 0.9864165588615783 159.42

("LogisticRegression”, LogisticRegression())])

Table 13: Results of BFS runs on the ”har” dataset
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