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Optical tweezers have proved to be a powerful tool with a wide range of applications. The gradient force plays a vital role in
the stable optical trapping of nano-objects. The scalar method is convenient and effective for analyzing the gradient force in
traditional optical trapping. However, when the third-order nonlinear effect of the nano-object is stimulated, the scalar
method cannot adequately present the optical response of the metal nanoparticle to the external optical field. Here,
we propose a theoretical model to interpret the nonlinear gradient force using the vector method. By combining the optical
Kerr effect, the polarizability vector of the metallic nanoparticle is derived. A quantitative analysis is obtained for the gra-
dient force as well as for the optical potential well. The vector method yields better agreement with reported experimental
observations. We suggest that this method could lead to a deeper understanding of the physics relevant to nonlinear optical
trapping and binding phenomena.
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1. Introduction

Optical tweezers can exert piconewton forces on small objects
and control their motion in the surrounding medium[1,2].
This technique is widely applied in physics[3,4], biology[5], and
chemistry[6]. The observation of nonlinear optical trapping
presents an anomalous result where two trapping sites can be
observed via stimulating the third-order nonlinear effect of
dipolar gold nanoparticles, i.e., the “trap split”[7]. Compared
with other optical tweezers[8–10], the adjustable distance between
two spaced trapping positions can reach beyond the diffraction
limit of the focus field without any other complex optical instru-
ments[11–14]. The tunable gap of the trapped particles and the
stable manipulation of multiple nanoparticles thereby provide
new opportunities for application in atomic and molecular trap-
ping[15], micro-fluid mechanics[16], and bio-medicine[17] at the
sub-diffraction-limit scale. The scattering and absorption forces,
resulting from the momentum transfer of scattered and
absorbed photons, tend to destabilize the trap[18]. The gradient
force depends on the distribution of the optical intensity gra-
dients and the polarizability of the nanoparticle[19], which pro-
vides the ability to trap the nanoparticle. Therefore, it is crucial

to achieve a comprehensive method for the analysis of the non-
linear gradient force exerted on the nanoparticle.
The dipole approximation theory is commonly used to calcu-

late the gradient force exerted on the Rayleigh particle[20,21]. For
the particle with a radius much smaller than the wavelength of
the incident light, it can be modeled as a dipole[22]. The scalar
polarizability can be used to describe the response of the dipole
to the external optical field in the linear regime[23]. However, in
the nonlinear regime, it is questionable whether the traditional
scalar method can still be used to analyze the gradient force
being affected by the nonlinear effect. To address this issue,
we broaden the traditional scalar method to a vector method
to find out whether the nonlinear effect on the gradient force
exerted on the metallic nanoparticle can be reflected more
explicitly using the vector method.
In our model, the light source is set as a linearly-polarized

femtosecond pulsed laser. The gold nanoparticle with a radius
of 30 nm is chosen as the metallic model. Using a high NA
objective lens to focus the femtosecond pulsed laser, the optical
nonlinearity of the gold nanoparticle is stimulated under a cor-
respondingly high level of excitation[24–26]. The tightly-focused

Vol. 22, No. 2 | February 2024

© 2024 Chinese Optics Letters 023603-1 Chinese Optics Letters 22(2), 023603 (2024)

mailto:h.p.urbach@tudelft.nl
mailto:xcyuan@szu.edu.cn
https://doi.org/10.3788/COL202422.023603


optical field is decomposed into three-dimensional components

using vector diffraction theory[27]. A vectorial polarizability of
the dipole is formed by the interplay between the nonlinear opti-
cal properties of the dipole and the three components of the
tightly focused field. According to the principle of vector super-
position, the gradient force along a given direction is expressed
based on the interaction between the polarizability vector and
the individual components of the optical field. The nonlinear
optical potential well can be obtained by integrating the gradient
force on the focal plane. In comparison with the gradient force
and potential well obtained by using the scalar method, the
obvious difference between these two methods is shown at
the end. While the model using the scalar method does not give
a clear conclusion, the optical potential calculated with the vec-
tormethod shows that the trapped particles are located along the
axis parallel to the direction of linear polarization. The calcula-
tion results demonstrate that the vector approach is more
consistent with the experimental observations[7]. This new
improvement is a step forward in understanding nonlinear opti-
cal trapping.

2. Theoretical Model

For a nanoparticle in the Rayleigh regime (radius ≪ λ), the
time-averaged forces equation can be written as[21]

hFigrad =
1
4
Refαg∇jEj2, (1)

with α being the polarizability of the dipole given by

α0 = 4πε0r3
n2p − n2h
n2p � 2n2h

, α =
α0

1 − iα0k3=�6πε�
, (2)

where the complex number np is the complex refractive index of
the gold nanoparticle, nh is the refractive index of the host
medium, ε is the permittivity of the hostmedium, r is the particle
radius, c is the speed of light in the vacuum, k is the wave number
of the incident optical field in the host medium, and E andH are
the focused electric and magnetic fields.
We show the configuration of the calculation mode in Fig. 1.

To excite the nonlinear effect of the particle, it is highly desirable
to focus the incident field with a high NA objective lens. In this
work, we consider the incident field as an x-polarized, femtosec-
ond laser pulse. Its characteristics are τ = 100 fs, v = 80MHz,
x-polarization, and the center wavelength is λ = 840 nm. The
pulsed laser is focused with an objective lens of 0.75 NA inside
a glass tube that contains water and gold nanoparticles of 30 nm
radius.

2.1. The scalar polarizability of the gold nanoparticle in
nonlinear regime

Gold nanoparticles have many nonlinear optical properties
that generate great interest in applications such as optical
switches[28,29], optical limiting devices[30], and nanoprobes[31].
The optical extinction spectrum of a gold nanoparticle is plotted
in Fig. 2(a). The peak of the localized surface plasmon resonance
(LSPR) band is at 520 nm, and we choose the near-infrared
pulsed laser (central wavelength of 840 nm) as the light source
to avoid the SPR effect on the traps.
The linear refractive index of the gold nanoparticles is

np = 0.41661� 5.2347i[32]. Assuming the average incident
power increases from 0 W to 0.5 W, the peak intensity of the
focused field I (see Appendix A) is plotted as a function of
the incident average power Pave in Fig. 2(b). The intensity-de-
pendent complex refractive index of the gold nanoparticle is
described by the Kerr effect equation, n = np � n2I

[33,34], where
n2 is the nonlinear refractive index coefficient. Here, the imagi-
nary part of n2 is set as−1.16i × 10−16 m2=W, while the real part
of n2 is much smaller than the imaginary part and is set to be
zero in our simulations[35,36].

Fig. 1. Configuration of the model. The objective lens with an NA of 0.75 is
used.
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Fig. 2. (a) Extinction spectrum of the spherical gold nanoparticles with a radius of 30 nm. (b) The optical intensity of the focused field is plotted as a function of the
average power Pave, increasing from 0 to 0.5 W. (c) The real and imaginary parts of the nonlinear polarizability change with the increasing average power Pave.
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By combining the nonlinear refractive index of the gold nano-
particle, we can write the intensity-dependent nonlinear scalar
polarizability as

α =
4πε0r3��np � n2I�2 − n2h�=��np � n2I�2 � 2n2h�

1 − i2ε0k3r3

3ε ��np � n2I�2 − n2h�=��np � n2I�2 � 2n2h�
: (3)

The calculation results of the nonlinear scalar polarizability
are plotted as a function of the optical intensity in Fig. 2(c).
According to Eq. (1), the real part of polarizability Refαg and
the optical intensity gradients determine the magnitude and
distribution of the gradient force exerted on the gold nanopar-
ticle. The imaginary part of polarizability Imfαg involves the
scattering and absorptive forces, which is not in our scope of
discussion.

2.2. The polarizability vector of the gold nanoparticle in the
nonlinear regime

The focused electromagnetic field can be calculated using the
vectorial diffraction theory[27]. The total electric field E is di-
vided into three-dimensional components Ex, Ey , and Ez (see
Appendix A). Using Eq. (3), the response of the dipole to each
component of the electric field can be calculated individually
and form into a polarizability vector. Following the principle
of vector superposition, the expression of the polarizability vec-
tor can be written as

αi =
4πε0r3��np � n2Ii�2 − n2h�=��np � n2Ii�2 � 2n2h�

1 − i2ε0k3r3

3ε ��np � n2Ii�2 − n2h�=��np � n2Ii�2 � 2n2h�
: (4)

The polarizability vector is marked as αi = fαx, αy, αzg, where
i is the Cartesian coordinates (i = x, y, z). Combining this with
the distribution of the electric field, we can obtain the distribu-
tion of the polarizability on the focal plane.

Supposing the average power Pave of the incident laser is
0.5 W, Figs. 3(a)–3(c) show the distribution and magnitude of
the three components of the electrical field in the Cartesian coor-
dinate on the focal plane. The x-component of the electric field
dominates the total electric field. The real parts of the indivi-
dual polarizability components Refαxg, Refαyg, and Refαzg are
shown in Figs. 3(d)–3(f), respectively. As can be seen in Fig. 3(d),
the sign of Refαxg is negative in a certain region due to the non-
linear effect and indicates the reversal of the direction of gradient
forces based on the Eq. (1). As shown in Figs. 3(e) and 3(f), the
sign inversion of the y- and z-component polarizability does not
occur due to the relatively low intensity of the y- and z-compo-
nents of the electric field. The magnitude of the changes in αy
and αz is not significant compared to αx, but their contribution
to the calculation of gradient forces in the focal plane should not
be ignored.

2.3. The time-averaged gradient force with the vector
method

The gradient force on the x–y plane can be considered as the
sum of the x- and y- component gradient force. Let T = 1=v
be the period of the laser pulses with duration τ; then the
time-averaged gradient force hFigrad in the x- and y- directions
can be written as

hFxigrad =
1
T

Z
τ=2

−τ=2

1
4

X
i

Refαig
∂jE2

i j
∂x

dt, (5)

hFyigrad =
1
T

Z
τ=2

−τ=2

1
4

X
i

Refαig
∂jE2

i j
∂y

dt, (6)

with i = x, y, z. Each component of the electric field contributes
to the x- and y- component gradient force. After calculating the
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sum of all the individual forces along a path r, we can calculate
the potential well in the focused field as

U�r� = −
Z

r

∞
hF�r�idr: (7)

It is worth noting that the gradient force is conservative. The
integral path from r to∞ is limited to a certain area on the x–y
plane, where the net force is a conservative vector field. After
carrying out the integration, we obtain the comparison results
of the potential well between the use of the scalar and vector
methods.

3. Results and Discussion

The x-component gradient force hFxigrad generated by the inter-
action of the x-component of the field intensity gradients
∂jExj2=∂x and Refαxg is shown in Fig. 4(a). The red color indi-
cates that the particle experiences a force along the positive
x-axis, while blue indicates a force along the negative x-axis. The
magnitudes of hFxigrad resulting from the y- and z-components
of the electric field are comparatively small, as shown in
Figs. 4(b) and 4(c). Figures 4(d)–4(f) show the results of the
y-component of the gradient forces derived from each compo-
nent of the electric field using Eq. (13), respectively. As can be
seen in Figs. 4(a) and 4(d), only under the influence of Refαxg is
the direction of the hFxigrad and the hFyigrad reversed in the

center area of the focal plane.
To further understand the difference between the two meth-

ods, we compare the total gradient forces calculated by the scalar
and vector methods. The gradient force obtained by the scalar

method is shown in Fig. 5(a). The red color indicates that the
particle experiences a force towards the center point, while blue
indicates that a force is away from the center of the circle.
Figure 5(b) shows the vector results as the sum of forces in
Figs. 4(a)–4(f). The distribution and magnitude of the gradient
forces obtained by these two methods are different, as shown in
Figs. 5(c) and 5(d). The black line computed by the vectorial
polarizability has a larger maximum value than those calculated
by the scalar polarizability in the x-axis, as shown in Fig. 5(c).
Figure 5(d) shows the results of the total gradient forces using
the scalar method and the vector method in the y-axis, respec-
tively. The total force with α coincides exactly with the results
using α in the y-axis. The difference in the results of the x-com-
ponent of the forces in Fig. 5(c) can be attributed to the use of the
vectorial model. In the scalar method, the scalar polarizability is
calculated using the total electric field, which approximates the
real part of the polarizability along the dominant electric field
component (e.g., the x-component for the x-polarized field).
However, the scalar method cannot explicitly calculate the con-
tributions of the other components (e.g., y and z) of the electric
field and their corresponding polarizabilities (Refαyg and
Refαzg). In contrast to the scalar method, the vectorial model
calculates the interaction between Refαyg and jEyj2 on the x-axis
as well as the interaction between Refαzg and jEzj2 on the x-axis
individually. Although the x-component of the electric field
dominates the total electric field, the y- and z-components of
the electric field also contribute to the force along the x-axis.
To find the position of the trapped particle, we can calculate

the corresponding optical potential at the focal plane. The non-
linear optical potential well can be obtained by integrating the
total force in Figs. 5(a) and 5(b) on the focal plane.
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Figure 6(a) shows the optical potential well by calculating the
polarizability vector. Here, positive and negative values of the
potential well indicate that the nanoparticle experiences a repul-
sive and attractive potential in this plane, respectively. The

coordinate of the minimum potential represents the position
of the stable optical trapping. Figures 6(b) and 6(c) show that
the minimum potential is located at two points along the x-axis,
indicating the presence of two equilibrium positions for the opti-
cal trapping. To illustrate the difference between the scalar
method and the vector method, potential wells calculated by
using the scalar method are plotted in the second rows. The two
different methods can both achieve the “trap split” of the optical
potential well, as shown in Figs. 6(a) and 6(d). However, parallel
projections of the optical potential well reveal the difference
between them. The potential well deduced from the scalar
method has a “ring-like” depth in the lower part, which means
the particle will be trapped in a ring shape, as shown in Figs. 6(e)
and 6(f). This result is consistent with the prediction of the
vectorial model as shown in Fig. 6(a) and is comparable with
the experimental observations reported in Ref. [7] (see
Supplementary Material). Therefore, it can be concluded that
the scalar method is not able to accurately describe the dipole’s
response to the tightly focused optical field in nonlinear optical
trapping, while the vectorial method provides a more precise
description.
It should be noted that, within the linear regime, the optical

properties of the nanoparticle remain almost the same, and there
is no distinct difference between the scalar method and the vec-
torial method. In the nonlinear regime, when the peak intensity
of each individual component of the electric field is sufficiently
high, the third-order nonlinear optical effect can be stimulated,
leading to changes in the polarizability of the nanoparticle. In
the case of a tightly focused field, the nonlinear optical response

Fig. 6. Nonlinear optical potential well on the focal plane. (a) The nonlinear optical potential well on the focal plane with the vectorial method. (b) The parallel
projection of the potential well to the direction of the y-axis. (c) The parallel projection of the potential well to the direction of the x-axis. (d) The potential well with
the scalar method. (e) and (f) Parallel projections to the y-axis and x-axis, respectively.
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to each individual component of the electric field is different.
Therefore, it is necessary to analyze the gradient forces using
the vector method to accurately describe the nonlinear optical
trapping.

4. Conclusion

In summary, we present an improved vectorial model for the
quantitative analysis of nonlinear gradient forces using the
polarizability vector of the dipole. The nonlinear polarizability
as a function of the optical intensity is obtained after taking
the Kerr effect into account. The nonlinear response of a dipolar
gold nanoparticle to the tightly focused field is described using
the vector diffraction theory, resulting in a polarizability vector.
Following the vector approach, we give the individual gradient
forces generated by each component of the electric fields on the
focal plane. By integrating the total gradient force in the focal
plane, the nonlinear potential well is achieved and compared
with the experimental results. The study demonstrates that
the scalar method is insufficient for analyzing nonlinear optical
trapping and that the vectorial model significantly improves the
understanding of the phenomena. This approach extends the
traditional method from a scalar to a vector model and it has
the potential to enhance the development of nonlinear optical
tweezers and their related applications.

Appendix A

In addition to the polarizability of the particle, the electromag-
netic field also plays an essential role in determining the optical
force. To excite the nonlinear effect of the particle, it is highly
desirable to focus the incident field with a high NA objective
lens. In this work, we consider the incident field as an x-polar-
ized, femtosecond laser pulse. For a femtosecond laser pulse, the
peak power of a pulse is estimated from the pulse duration τ and
pulse energy Epulse,

Ppeak ≈ γ
Epulse

τ
= γ

Pave

ντ
, (A1)

where γ is the factor depending on the temporal shape of the
pulse, and ν is the repetition frequency of the pulsed laser.
For the Gaussian shape pulse and soliton pulse, the factor is
0.94 and 0.88, respectively[37]. In this paper, we assign to the
incident pulse in our analytical model a rectangular temporal
envelope and γ = 1. In this scenario, the strength of the pulse
will remain steady over the pulse duration. The peak intensity
of the incident beam can be expressed as I = 2Ppeak=πr2

where the radius of the focal spot r = 0.82λ=NA[38]. The
peak value of the modulus square of the total electric field
jEj2 = 2Ipeak=�ε0cnh�, where ε0 is the permittivity of vacuum.
The individual component of the electric field can be described
using the vectorial diffraction theory. At the excitation wave-
length λ = 840 nm, the wave number in the host medium (water)
is k (k = 2πnh=λ), nh being the refractive index of host medium.

The maximum focal angle θmax is determined by the NA of the
lens and the host medium as θmax = arcsin�NA=nh�. We use
cylindrical coordinates in the focal region given by ρ

(ρ =
����������������
x2 � y2

p
), ϕ, and z, where ϕ is the azimuthal angle and

z is the coordinate along the optical axis with z = 0 correspond-
ing to the focal plane[27],

2
4 Ex

Ey

Ez

3
5 = E00

2
4 I00 � I02 cos�2φ�
I02 sin�2φ�
−2iI01 cosφ

3
5, (A2)

2
4Hx

Hy

Hz

3
5 =

E00

Zμε

2
4 I02 sin�2φ�
I00 − I02 cos�2φ�
−2iI01 sinφ

3
5, (A3)

with

I00 =
Z

θmax

0
l�θ� sin θ�1� cos θ�J0�kρ sin θ� exp�ikz cos θ�dθ,

(A4)

I01 =
Z

θmax

0
l�θ�sin2 θJ1�kρ sin θ� exp�ikz cos θ�dθ, (A5)

I02 =
Z

θmax

0
l�θ� sin θ�1 − cos θ�J2�kρ sin θ� exp�ikz cos θ�dθ,

(A6)

where E00 is the amplitude of the electric field of the incident
light, Zμε denotes the wave impedance, Jm�x� is the mth order
Bessel function of the first kind, and l�θ� represents the apodiza-
tion function of the incident field being expressed as

l�θ� = E00 exp�−sin2 θ=� f w sin θmax�2�
�����������
cos θ

p
, (A7)

where the filling factor f w is 1 (i.e., the radius ratio of the beam
waist to the entrance pupil).
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