
On Learning for Node Selection in
the Branch-and-Bound Algorithm
using Reinforcement Learning

J. J. Groenheide

Master’s Thesis
Delft University of Technology

On Learning for Node
Selection in the

Branch-and-Bound
Algorithm using
Reinforcement

Learning
by

J. J. Groenheide
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Monday 15th of July, 2024 at 15:00 CET.

Student number: 4915623
Project duration: 6th of November, 2023 – 8th of July, 2024
Thesis committee: Dr. N. Yorke-Smith, TU Delft, supervisor

Dr. D. de Laat, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
As I am writing this preface, just a few hours before the deadline - because of course - I would like
to take a quick moment to look back on this journey. I have had an incredible time as a student at
the TU Delft, starting all the way back in 2018 when I had only just turned 17, to now 6 years later.
It has been a luxury and a privilege to be the student of so many amazing professors over the years,
and to meet so many amazing peers and friends. And all of it has lead up to this final project, which I
started over 8 months ago. I remember seeing the open research position for learning to optimise, and
immediately feeling drawn to it. I had experience with combinatorial optimisation, and had an absolute
blast with the deep reinforcement learning course. Like I did over 6 years ago, when I blindly chose
to do a Bachelor in Computer Science and Engineering at the TU Delft without considering any other
options, I also chose this thesis research without considering anything else. And just like back then, it
worked out beautifully for me. The benefit of being born with golden hat.

With that said, I would like to thank my supervisor, professor Neil Yorke-Smith, for putting up with
my weekly rambling sessions, as I had few other people willing and able to listen to everything I had
been working on that week. Of those few other people, I most importantly want to thank Lara Scavuzzo
for not only taking the time to discuss some particularly difficult questions with me, but also for giving
me the idea for this research both through her previous work and during the meeting we had at the
very start of this whole journey. Additionally, I would like to thank Reuben Gardos Reid for picking up
some meetings, giving my supervisor some well-deserved rest, as well as professor David de Laat for
reading this thesis and being part of my thesis defence committee. On a more personal note, I would
like to thank my family, who always pretended to understand what I was talking about at the dinner
table. Finally, I would like to thank my girlfriend for staying up with me while I write this, as well as for
all the support these last 8 months. I would not have been able to do it without you.

While I would love to say that this experience has taught me a lot about having realistic expectations
and setting approachable goals, that would be a lie. I’m still just as stubborn as ever, and I’m afraid it
will stay that way forever. I’m really grateful for this amazing experience, however. I’m grateful for all
the guidance, but most importantly for all of the challenges that I was allowed to overcome on my own.
I hope my life can continue to be this good.

J. J. Groenheide
Maasdijk, July 2024

iii

Abstract
The branch-and-bound algorithm is used by solvers to efficiently find the optimal solution of discrete
optimisation problems. It does so by sequentially partitioning parts of the search space based on
the solution to the linear relaxation of the problem. This sequential decision-making is performed by
the variable selection and node selection heuristics. The sequential nature of these heuristics makes
them suitable for trajectory-based learning in the form of imitation learning and reinforcement learning.
Learning problem-specific heuristics in this way has become increasingly popular in recent years.
Despite their similarities, the two heuristics have very different dynamics during learning, and success
has mainly been achieved for variable selection. In this work, we evaluate the node selection problem
and formulate a learning to select paradigm for both imitation and reinforcement learning. We find
that learning to select is generally more difficult due to the small margin of possible improvement over
the current baselines, and the lack of informative features to distinguish nodes during ranking. These
challenges are exacerbated by focusing on sibling comparisons, which are generally the most difficult
due to the high similarity between the nodes. Sibling comparisons are also arguably the most important
in node selection, however, due to the importance of plunging to reduce context switching overhead.
The results indicate that both approaches fail to learn meaningful decision-making policies based on the
limited fixed-size feature representation of the nodes. A code repository for reproducing and extending
the experiments is publicly available at https://github.com/jgroenheide/rl2select.

v

https://github.com/jgroenheide/rl2select

Contents

1 Introduction 1
1.1 Research questions . 2
1.2 Contributions . 3
1.3 Thesis outline . 3

2 Preliminaries 5
2.1 Background . 5
2.2 Related work . 6

3 Methodology 9
3.1 Defining the environment. 9
3.2 Defining the reward function . 10
3.3 Defining the state representation . 11
3.4 Training procedure . 13

4 Experimental results 15
4.1 Benchmarks . 15

4.1.1 Generalised independent set problem. 15
4.1.2 Single source capacitated facility location problem 16
4.1.3 Multiple knapsack problem. 16
4.1.4 Dataset generation . 16

4.2 Training . 17
4.3 Evaluation. 18
4.4 Discussion . 19

5 Conclusions 21

vii

1
Introduction

With the Earth’s population surpassing 8 billion people in November of 2022, it is more important than
ever to optimally schedule, design, and route the logistics of the world. The capacity of the global mer-
chant fleet has grown by more than 43 percent in the last decade, reaching 2.2 million dead-weight
tons in 20221. In that same year, the global production of agricultural commodities reached 9.6 billion
tonnes, a growth of 56 percent since the start of the millennium2. Simultaneously, sustainability re-
quirements are forcing innovation in all sectors. Advanced planning and scheduling (APS) software is
becoming more common. Finding optimal solutions to these kinds of tasks has been done for centuries,
but never in a way as structured and on as large a scale as today [Paschos, 2014]. This has created a
demand for solvers that can provide optimal solutions to a wide range of problems at a very high rate.

Integer programming is a prominent way of solving combinatorial optimisation problems [Hoffman
and Padberg, 2001]. It offers a way to encode combinatorial optimisation problems as an integer
assignment problem. The benefit of encoding problems in this way is that the integer assignment
problem can be efficiently solved using the branch-and-bound algorithm [Land and Doig, 1960]. This
algorithm relies on the natural relaxation of the integer assignment problem to a linear program, which
can be efficiently solved using the simplex algorithm. The solution to the relaxation can be used to
bound the optimal solution value and prune parts of the solution space. Different solvers have sprung
up around the mixed-integer linear programming (MILP) approach, each implementing slightly different
variants of the branch-and-bound algorithm and the mechanisms that help complete the search as
quickly as possible, like presolve, cutting planes, and heuristics [Koch et al., 2022].

At its core, the branch-and-bound algorithm consists of two main heuristics, which sequentially
determine how the solution space is traversed. The variable selection rule decides which variable is
chosen for branching. The solution space is then divided into two child nodes, with each child node
representing a partition of the original problem with a new bound on the chosen variable. The new
nodes are added to a list of open nodes, one of which must be chosen to continue the search. Which
sub-problem is solved at each step is determined by the node selection rule. The node selection rule
can choose from any unsolved sub-problem in any sub-tree of the branch-and-bound tree, but it is
common for special priority to be given to child and sibling nodes of the last-solved LP due to overhead
incurred from context-switching [Sabharwal et al., 2012].

The node selection rule is dependent on a node comparison operator to order the open nodes,
similar to a priority queue. This node comparison operator is deterministic and depends only on the
features of the nodes being compared. These two aspects make it particularly well-suited for a statis-
tical learning approach. Recent work has created a learned node comparison rule through the use of
imitation learning on a graph neural network [Labassi et al., 2022]. While this approach is similar to
the state-of-the-art in learning to branch [Gasse et al., 2019, Scavuzzo et al., 2022], the node selec-
tion problem has not reached the same level of success. In this work we will highlight the differences
between these heuristics, the implications for the learning process, and explore the effect of learning a
node comparison rule using reinforcement learning.

1https://unctad.org/system/files/official-document/tdstat47_FS14_en.pdf
2https://fao.org/3/cc9205en/cc9205en.pdf

1

https://unctad.org/system/files/official-document/tdstat47_FS14_en.pdf
https://fao.org/3/cc9205en/cc9205en.pdf

2 1. Introduction

1.1. Research questions
While variable selection and node selection appear to fulfil similar goals, they actually work quite differ-
ently in practice. Variable selection directly influences the sub-problems that are created at each node,
and as such the search tree that is created. Depending on the order in which variables are branched
on, the path to a primal solution can be different. It can therefore be used to minimise the length of
the path from the root node to the solution. Node selection only determines the order in which nodes
created by the variable selection heuristic are explored. This makes variable selection much more
influential in determining the efficiency of the solver [Achterberg, 2007].

The influence of node selection is limited by the fact that, regardless of search order, all nodes
created by the variable selection rule with a lower bound better than or equal to the optimal objective
value will have to be expanded to prove optimality of the solution. Meanwhile, any node with a lower
bound that is worse than the optimal objective value can be pruned at some point during the search.
The only way node selection can increase the number of nodes solved in a static search is by choosing
a node that could have otherwise been pruned. With this in mind, we can easily form a greedy heuristic
that is always optimal for minimising the number of nodes in a static branch-and-bound tree. By always
choosing the node with the best lower bound we are guaranteed to never select a node with a lower
bound worse than the optimal objective value. This approach is known as best-first search.

It is then interesting to note that this “optimal greedy heuristic” is not the default for most solvers.
Indeed, they generally use a much more advanced procedure involving plunging with early plunge-
abort, periodically performing best-first search, and otherwise following the highest-priority selection
according to some heuristic. The reason for this is two-fold. Firstly, there is non-negligible overhead
when switching between sub-problems. This makes repeatedly solving child-nodes of the current focus
node during short plunges more efficient than constantly switching contexts to solve the new best
bound node. Secondly, solvers do not work on a static branch-and-bound tree. Instead they use a
combination of many different heuristics, cut techniques, and advanced variable selection rules that
use information gathered during the search to speed up the solving process beyond the influence of
the node selection rule itself. When these components are active, the solving time can be influenced
in subtle ways by the order in which nodes are explored [Achterberg et al., 2008].

This puts into perspective previous research on learning for node selection and node comparison,
which has mostly focused on imitating a diving oracle that plunges towards the optimal solution, without
any regard for how this might affect the behaviour of other components of the search. Additionally,
this approach ignores the effects of an imbalanced search tree on the proving phase of the solving
process. We argue that the current direction of research for learning to select and compare is not
making meaningful progress because of this lack of consideration for the softer components of solving,
and uses incorrect metrics to describe the achieved results. For this section, we look towards answering
the following research questions.

1. What kind of behaviour makes a good node selection heuristic?
2. How much room for improvement is there for node selection?
3. How accurate is number of nodes solved as a success metric?

The most important thing to realise is that node selection, heuristics, and the branch-and-bound
algorithm are not an exact science. The components interact with each other in subtle, sometimes
undefined ways. What works well for some problems might not work for others. We can relate the
success of the node selector to many different things that make sense in theory, but sometimes a
seemingly poor node selection decision can still improve the solving time because of the interaction
with other components of the search. Because of this, we think reinforcement learning will be a better
fit for node selection than imitation learning.

We posit that reinforcement learning, which is unbounded by the performance of an oracle, will be
able to learn more nuanced interactions of the solving process and act accordingly. As such, our main
question is that of whether a reinforcement learning approach is able to achieve better results than a
policy trained with imitation learning. To test this, we will answer the following sub-questions.

4. Which proxy-metrics can be used as reward signal during learning?
5. What kind of behaviour is learned by an agent based on this reward?
6. Can an agent learn to optimise the efficiency of other components?

1.2. Contributions 3

1.2. Contributions
Previous work has mainly focused on learning to imitate the decisions of a diving oracle, with the goal
of finding a (near-)optimal solution early on, which should enable a high amount of pruning later in the
search. In this research we assume that optimal node comparison behaviour cannot be approximated
by an oracle because of the subtle interactions node selection can have with other components of the
search, and as such is better learned through exploration using reinforcement learning.

As part of this research, we will explore the differences between node selection and variable selec-
tion, design different proxy-metrics for quantifying success, and evaluate the potential of reinforcement
learning in learning to select. We use a CPU-friendly fixed-size feature array and a MLP architecture
based on the baseline of previous work [Labassi et al., 2022]. Contrary to previous work, however, we
only focus on sibling comparisons, which leads to a more natural formulation of the MDP environment
and rewards. Learned policies are implemented and evaluated in the SCIP solver [Achterberg et al.,
2005], a leading open-source MIP solver which has become the default for much of the research on
learning to optimise. We compare these results against SCIP’s default node selection rule, a greedy
best-first search selector, and a random selector.

The results show that both imitation learning and reinforcement learning fail to convincingly de-
cide between sibling nodes, which we attribute to the lack of distinct features between sibling nodes.
We speculate that the fixed-size feature array is not informative enough for the network to make an
informed decision, which is particularly visible in primal difficult problem sets where the global upper
bound remains poor throughout the search. Simultaneously, we show that there is still a lot of room for
improvement within node selection, with SCIP’s default rule being outperformed by the random selector
on a number of occasions.

1.3. Thesis outline
Chapter 2.1 will provide an introduction to the topics of combinatorial optimisation and integer pro-
gramming, the branch-and-bound algorithm, machine learning, imitation learning, and reinforcement
learning. Chapter 2.2 contains an overview of the related work in the field of learning for combina-
torial optimisation. In Chapter 3 we will discuss the limitations of the standard MDP representation
for learning to select when applying reinforcement learning, and explain our reasoning for limiting the
node comparisons to sibling nodes. The experimental setup and the results can be found in Chapter 4.
Finally we discuss the findings of the research in Chapter 5.

2
Preliminaries

In this chapter we cover the preliminary information for this research, including an introduction of the
different techniques used, and the related work in the field of learning to optimise.

2.1. Background
Mixed-integer linear programming (MILP) is a way of representing mathematical optimisation problems
where some or all of the variables are constrained to take integer values. As is common in the literature,
we assume mixed-integer linear programs to be of the following form:

min
𝐱,𝐲

𝐜⊤𝐱 + 𝐡⊤𝐲

subject to 𝐀𝐱 + 𝐆𝐲 ≤ 𝐛
𝐱 ≥ 𝟎, 𝐱 ∈ ℤ
𝐲 ≥ 𝟎, 𝐲 ∈ ℝ,

where (𝐜|𝐡) ∈ ℝ𝑛, [𝐀|𝐆] ∈ ℝ𝑚×𝑛, and 𝐛 ∈ ℝ𝑚 denote the objective coefficients, the coefficient matrix,
and the right-hand side respectively. The additional integrality constraints turn the polynomially solvable
linear program into an NP-Hard problem, because the optimal solutions are no longer restricted to the
vertices of the solution space. This means that, despite the additional constraints, the search space
is exponentially larger than that of the relaxed linear program. Still, the solution to the linear program
can be used as a bound on the solution of the integer problem. If the solution to the linear relaxation
is integral, its objective value is used as an upper bound on the optimal solution value. If the solution
has fractional variables, the objective value forms a lower bound on the optimal solution value in this
sub-problem. If the lower bound of a sub-problem ever exceeds the global upper bound, we have a
numerical guarantee that the optimal solution will not be in this part of the search space. By repeatedly
splitting the search space and solving the linear relaxation of the sub-problems that are created, nodes
can be pruned before they are fully explored.

This approach, later named the Branch-and-Bound algorithm, was first introduced in a 1960 jour-
nal article titled “An automatic method of solving discrete programming problems” [Land and Doig,
1960]. Already in the original introduction of the approach, the node selection is performed based on
a best-first search approach of always expanding the node with the best lower bound on the problem.
Simultaneously, the authors mention computational constraints, and suggest “carrying down the tree to
a pre-determined cut-off value”, which is still the most widely used approach for node selection to this
day. Their prescience did not extend to branching variable selection, however, as they initially used a
heuristic based on the distance from each variable value to the nearest integer. Other variable selec-
tion approaches were discussed in the appendices of their work, though none compare to the current
state-of-the-art variable branching techniques. For a more extensive overview of the branch-and-bound
algorithm and its components, we refer the reader to Achterberg, 2007.

5

6 2. Preliminaries

While it has been proven that there cannot exist a universally effective heuristic for all problems,
some heuristics are more generally effective than others. The best universal branching variable se-
lection heuristic currently known is strong-branching, which is a computationally expensive branching
strategy based on calculating and scoring the bound improvement in each branching candidate before
taking a step. The computational cost of strong-branching makes it difficult to use in practice, but it
does offer a strong baseline for approximation and imitation [Bengio et al., 2021]. This has been the
motivation behind the development of techniques like partial strong-branching and reliability branching
[Fischetti and Monaci, 2012, Achterberg et al., 2005]. While these heuristics are able to make highly
effective branching decisions, their performance still falls behind that of full strong-branching.

In an attempt to better approximate the full strong-branching decisions, research has investigated
creating a fast approximation provided by a machine learning model, learned through imitation with
strong-branching decisions as oracle [Alvarez et al., 2014, Khalil et al., 2016, Gasse et al., 2019]. Node
selection lacks such a strong baseline for imitation. Instead, research for node selection has focused
on imitating a diving oracle that always chooses a node on the path from the root to the optimal solution
[He et al., 2014, Song et al., 2018, Yilmaz and Yorke-Smith, 2021].

One of the prerequisites for this type of learning is that the environment must be able to be described
using a Markov decision process (MDP). This was shown to be possible for the branch-and-bound
algorithm by He et al., 2014. A MDP describes a set of states and actions, with transitions defined for
each state-action pair. Importantly, MDPs must follow the Markov property, which states that transitions
only depend on the current state and action. This ensures that the outcome of an action can be entirely
judged by the future trajectory, without taking into account the history of the trajectory. This allows us to
learn from each individual action, instead of the entire trajectory, which greatly increases the learning
efficiency. The MDP control problem is the problem of finding a state-dependent action distribution that
maximises the expected reward. The action distribution is referred to as the policy [Howard, 1960].

We consider two main approaches for solving the MDP control problem. The first is imitation learn-
ing, which is a type of supervised learning for sequential decision making. Samples are taken from the
trajectories of an oracle policy. The actions of the oracle policy are assumed to be optimal regarding
the expected cumulative reward, without having to quantify the exact value of each action. This is often
done with the goal of automating human decisions, or to reduce computational costs. The policy is
trained to predict (imitate) the actions of the oracle as closely as possible, while having access to a
more limited state.

The second approach is reinforcement learning. Instead of learning the relation between the state
and some external information known only by the oracle, we directly aim to learn the relation between
the state and the reward. Since we no longer have examples of state-action pairs that lead to high
reward, however, we need to gather this information by evaluating the policy and exploring different
state-action pairs. Through an inherent desire to optimise the reward, the reinforcement learning agent
will learn which actions to take in which states to maximise the obtained reward. For a further overview
of reinforcement learning techniques, we refer the reader to Sutton and Barto, 2018.

2.2. Related work
Learning for combinatorial optimisation has been around for over a decade, with both variable and node
selection being approached using imitation learning for the first time in 2014. For branching variable
selection this research was done by Alvarez et al., 2014. Before this work, some attempts at learning
to branch had used restarts to learn instance-specific branching information, but this was the first time
it had been attempted to learn a general branching rule through an off-line training phase. They use a
fixed-size feature array and an Extremely Randomised Trees (ExtRaTrees) model [Geurts et al., 2006]
to approximate strong-branching decisions. Later, two separate works propose an on-line variant that
learns to imitate calculated strong-branching decisions early in the search, before applying the learned
approximation once the accuracy has been proven [Alvarez et al., 2016, Khalil et al., 2016]. More
recent work has attempted to generalise the learned variable branching rules to heterogeneous sets
of problems [Zarpellon et al., 2020]. They report much better generalisation across instance types, but
fall short of SCIP’s default performance.

The node selection problem has received relatively little attention compared to branching vari-
able selection. The first research on learning to select with imitation learning was performed using
a SVMrank model trained using the DAgger algorithm [He et al., 2014]. They learn to imitate the actions

2.2. Related work 7

of a diving oracle, which has become the standard for learning to select. The research combined a
learned node selection rule with an early-pruning mechanism. This work was later improved upon by
switching to a MLP model, alongside a new type of diving oracle [Song et al., 2018]. The new approach
was referred to as retrospective imitation learning. The resulting trajectories are almost identical to the
trajectories of the original diving oracle, however. This work was then superseded by switching to a
plunging policy approach, where the selection decision is reduced to the direct child nodes of the cur-
rent focus node [Yilmaz and Yorke-Smith, 2021]. They use a similar MLP architecture, but show that
the performance of the learned rule can be greatly improved with this approach.

For both branching variable and node selection, the performance of the learned policies was lim-
ited by the fixed-size feature representation, which necessarily loses information during aggregation.
This was changed with the introduction of a GNN-based architecture, which takes as input a variable-
constraint bipartite graph representation of the entire sub-problem at each node [Gasse et al., 2019].
The variable-constraint bipartite graph representation constitutes the current state-of-the-art for both
learning to branch and learning to select [Scavuzzo et al., 2022, Labassi et al., 2022]. The current
state-of-the-art for learning to select uses a Siamese GNN architecture to learn a good node com-
parison function, which is used by the node selection rule to order the open nodes. The Siamese
architecture is a natural choice for node comparison, as it ensures the model defines a total order on
the nodes of the search process. Since these developments, questions have been raised about the
feasibility of using a GPU-reliant architecture to perform historically CPU-based processes. As such,
the performance of GNN models was reevaluated on CPU-based machines, and a hybrid model was
created which uses a MLP model during later stages of the search [Gupta et al., 2020].

Few attempts have been made to replace the imitation learning component in these works. Re-
inforcement learning was first applied to learning to branch using (among others) an actor-critic MLP
architecture trained using PPO updates [Scavuzzo, 2020]. Unfortunately, the reinforcement learning
approach was not able to consistently outperform the imitation learning approach in either performance
or inference time, leading to the hypothesis that the imitation learning approach had already managed
to reach near-optimal behaviour, or a strong local optimum. Similar research was performed simulta-
neously by Etheve et al., 2020, as well as in unpublished work by DS4DM1.

This research was followed up by the introduction of an improved definition of the MDP environment
for learning to branch, referred to as the TreeMDP, which improves on the way rewards are distributed
across branching variable decisions [Scavuzzo et al., 2022]. When using a TreeMDP, the return of a
branching decision is based entirely on the sub-tree that is created from the node in which that decision
takes place. This is valid as long as the pruning bound is not externally changed after entering a sub-
tree. While branching rules trained using the TreeMDP outperform the standard temporal MDPs and
improve convergence, they are still unable to beat the performance of the imitation learning approach.

The work of Mattick and Mutschler, 2023, constitutes the only attempt at applying reinforcement
learning to node selection we are aware of thus far. They introduce a novel approach for representing
the state of the search tree based on a complex bi-simulation framework that aims to quantify interre-
lations between nodes through embedded message passing. The approach relies on simulating the
entire branch-and-bound tree as a graph, with a score assigned to the leaf nodes, which are then used
as a probability distribution over the open nodes. A reinforcement learning agent is then trained to
choose actions from this probability distribution. We instead propose to return to a per-node approach.

One area where reinforcement learning has been successful is in learning to approximate. Bello
et al., 2016, report significant improvements in creating near-optimal solutions for TSP by employ-
ing reinforcement learning instead of imitation learning, when applied to an identical pointer network
architecture [Vinyals et al., 2015]. The reinforcement learning is implemented using an actor-critic
approach. Khalil et al., 2017, then further improved on this approach using a structure2vec ar-
chitecture, trained using deep Q-learning. This proves that, with the right features and architecture,
reinforcement learning is able to make meaningful decisions in mathematical optimisation processes.
For this reason, we continue to believe that reinforcement learning can make improvements in learning
to select, and learning to optimise in general.

1Canada Excellence Research Chair in Data Science for Real-Time Decision-Making at Polytechnique Montréal.
URL: https://cerc-datascience.polymtl.ca.

https://cerc-datascience.polymtl.ca

3
Methodology

Labassi et al., 2022, showed that the node comparison operator can be replaced with a learned policy
that is able to compare any two nodes. The environment they use for this is not suitable for reinforce-
ment learning, however. Instead, we create a new representation of the environment and adjust the
feature set accordingly. These adjusted features are used to train a policy according to a reward sig-
nal through reinforcement learning. This learned policy is then applied within the SCIP solver. In this
chapter we will go over the methodology and design choices that were made during this process.

3.1. Defining the environment
During solving, newly created nodes are inserted into the priority queue of open nodes through a series
of comparisons with the nodes already present. These comparisons are performed by the node com-
parison operator and called by the ordering algorithm of the solver to create a partial order on the open
nodes. Not every comparison has to be correct to optimally traverse the search tree, however. This
is because some nodes might be removed from the queue before they are expanded, meaning their
exact placement is irrelevant. Additionally, some orderings can be inferred from the transitive property
of the node comparison operator. Solvers use this to minimise the number of comparisons needed to
determine the next node to select. As a side effect of this optimisation, however, the selection reward
cannot be distributed over the node comparisons.

Previous work using imitation learning gets around this by only considering trajectories containing
exclusively comparisons involving a node on the path to the optimal solution. When such an optimal
node is added to the queue of open nodes, all comparisons should be in favour of the new node, after
which it is selected. By manually constructing the trajectories in this way, the dynamics of the order-
ing algorithm are completely circumvented. This same approach cannot be used with reinforcement
learning, where trajectories are generated from evaluating the policy. Instead, we use the approach of
[Yilmaz and Yorke-Smith, 2021] and only compare between the child nodes of the current focus node.
By reducing the node selection to a single comparison, we completely remove the influence of the or-
dering algorithm from our environment. Additionally, limiting the node selection to a single comparison
allows us to directly assign the selection reward to this comparison. With only a single comparison per
node selection step, we can formulate our MDP with states s = (node1,node2) and actions a ∈ [-1,0,1]
for left, equal, and right node preference. The transitions are defined between tree states, which are
determined by SCIP’s solver implementation.

The downside of this approach is that the policy is forced to continue until a leaf node is reached,
even after a mistake is made. This is not a problem when learning to imitate the trajectories of a div-
ing oracle, which always guarantee a perfect dive towards the solution. But in reinforcement learning,
where mistakes will undoubtedly happen in the generated trajectories, this can lead to a large, unbal-
anced search tree that can be hard to recover from. To tackle this issue, we apply the policy in a node
selection rule with a deterministic early plunge-abort mechanism, instead of the highest-priority node
selection rule used in previous work. After plunging, the next node is chosen using a best-first search
heuristic, with the intention to provide the best new starting position without relying on an external node
comparison rule.

9

10 3. Methodology

3.2. Defining the reward function
The only true success metric for learning to optimise is the solving time. Unfortunately, the solving time
is hardware dependent and cannot easily be distributed over the trajectory. Instead, previous research
has used the number of solved nodes in the completed branch-and-bound tree as a proxy metric. The
number of nodes is easily distributed among node and variable selection decisions, as each solving
step simply adds one new node to the number of solved nodes. While this reward makes sense for
variable selection heuristics, where the branching decisions directly determine the sub-problems that
are created, and therefore the size of the resulting sub-trees, node selection does not have this ability.
In fact, node selection does not influence the efficiency of the created sub-problems in any way beyond
the influence it has on other components of the search. This makes the number of solved nodes a
much less informative reward for learning to select than for learning to branch.

To the best of our knowledge, there has only been one work on learning to select with a reward signal
[Mattick and Mutschler, 2023]. They propose a reward signal based on the ratio between the achieved
optimality gap of the agent and the default SCIP performance after 45 seconds of solving. This reward
is then shifted to evenly match the [-1, 1] range. For this reward to work, however, instances cannot be
completed to optimality within the 45 seconds solving time, as this would lead to a divide-by-zero error.
As such, these instances are removed during training. This is justified by stating that small problems
will give less informative reward signals, but this makes it unsuitable for our research, as we aim to
train instances to completion. Instead, we look towards designing alternative reward signals.

Before designing a new reward signal, it is important to describe the desired behaviour. We can
quantify a good node selection rule by the following three criteria. A good node selection rule should:

1. Avoid nodes that can later be pruned.
2. Minimise overhead from context switching.
3. Choose nodes that help other components.

Criteria 1 can be formulated into a per-step reward based on the inequality between the chosen
node’s lower bound and the optimal objective value. If the lower bound of a chosen node is higher than
the optimal objective value, the pruning bound would have surpassed the lower bound at some point
during the search, and the node could have been pruned1. By applying a penalty for choosing a node
like this, the agent will learn to avoid these nodes while also finishing the search as quickly as possible.
As previously mentioned, Criteria 1 is naturally satisfied by a best-first search approach, since it will
never select a node with a lower bound above the optimal objective value. The “lb-obj” reward is more
general, however, allowing for more optimisation in the order in which nodes are chosen.

One of the main issues with using the number of nodes (“nnodes”) as a proxy metric for the solving
time is that it does not include any penalty for incurring overhead (Criteria 2). While it is possible
to apply a penalty for choosing nodes that are not child- or sibling-nodes of the current focus node,
context switching is strictly necessary for efficiently traversing the branch-and-bound tree. When blindly
following this criteria, the policy would collapse to some form of unbounded plunging or depth-first
search. Instead, a penalty would need to be added to other reward signals based on whether a context-
switching node was chosen. What we believe to be a better solution, however, is to apply the learned
node comparison operator in a node selection rule that performs plunging as part of its procedure.

Finally, learning to satisfy Criteria 3 is the novel focus of this research. Node decisions that are
valuable to the performance of other components are difficult to define before-hand, but with the right
reward signal we believe that a reinforcement learning agent will be able to learn how to optimally feed
these components. Wemeasure the success of the components based on the efficiency with which they
find feasible solutions. Larger upper bound improvements should be rewarded more heavily, however.
We award the agent with a reward equal to the achieved global upper bound improvement, normalised
by the total achievable upper bound improvement after presolve, and multiplied by a discount factor to
incentivise finding good solutions early in the solve. This reward is naturally maximised by the plunging
oracle of previous work using imitation learning, but with additional freedom to optimise the trajectory.

1Cut techniques can create a situation where the lower bound of a node is improved beyond the optimal objective value when the
LP-relaxation is strengthened with additional cuts. For the sake of the argument, however, we will assume a static environment
without cutting planes.

3.3. Defining the state representation 11

3.3. Defining the state representation
We use a modified version of the state representation of Labassi et al., 2022, which is itself a simplifi-
cation of the state representation of He et al., 2014. To evaluate the variety in the state representation,
we aggregate all of the created imitation samples to the minimum value, the maximum value, and the
average value for each feature in the state representation. Since the number of sibling comparisons in
a single instance is relatively small, we use the sampling procedure of Yilmaz and Yorke-Smith, 2021,
which creates trajectories from the root to the top-k solutions. Samples are taken from the search tree
created by SCIP’s BestEstimate heuristic. At every node visited in this process, we check for each
of the two children nodes which of the top-k solutions of that instance are present in the sub-tree of
that node. Contrary to the approach of previous work, however, when both of the children lead to one
of the top-k solutions, the associated action is the node leading to the highest ranking solution. This
reduces the action space of the samples to just “left” and “right”. Because of the symmetric property of
the node comparison operator, comp(node1,node2) = 1−comp(node2,node1), changing the order of
the nodes in the comparison also changes the associated action, such that the same node is prioritised
again. We use this to create an equal class balance between “left” and “right” actions by randomly
swapping the nodes in each sample with a 50% probability.

We evaluate each of the problem benchmarks (discussed in section 4.1) separately to highlight the
different behaviours among them. The number of samples for each benchmark set is based on the
average number of samples that can be generated per instance. 50 for GISP, 25 for CFLP, and 5 for
MKP. These statistics are for the combined samples of the training and validation set, generated for
the top-10 solutions. The results can be found in Table 3.1.

GISP CFLP MKP

Min Max Mean Min Max Mean Min Max Mean

prio_down 0 0 0 0 0 0 0 0 0
prio_up 0 0 0 0 0 0 0 0 0
bound_lp_diff 0 1 0.548 0 1 0.508 -1 1 0.508
root_lp_diff -0.75 0.208 -0.198 -0.992 0.886 -0.156 -1 1 -0.073
pseudo_cost 0 69.334 27.796 0 603.290 46.088 0 45.000 0.179
n_inferences 0 34.75 2.196 0 66.714 4.180 0 83.333 3.460

node_type_child 1 1 1 1 1 1 1 1 1
node_type_sibling 0 0 0 0 0 0 0 0 0
node_type_leaf 0 0 0 0 0 0 0 0 0
estimate -0.086 0.922 0.419 0 1.337 1.023 0 1 1.000
node_lb 0 1 0.820 0 1.059 1.008 0 1 1.000
relative_bound 0 0.981 0.391 0 0.984 0.301 0 0.900 6.19e-3
relative_depth 1 1 1 1 1 1 1 1 1
node_depth 0 32 10.068 0 34 10.672 0 21 2.518

focus_depth 0 32 10.068 0 34 10.672 0 21 2.518
plunge_depth 0 9 0.693 0 11 0.667 0 8 0.234
global_ub 0 0.723 0.664 0 1.129 1.023 0 0.999 0.992
bound_gap 0 0.531 0.269 0 0.129 0.019 0 0.034 7.86e-3
ub_is_infinite 0 0 0 0 0 0 0 0 0
gap_is_infinite 0 0 0 0 0 0 0 0 0

Table 3.1: Original feature statistics

We evaluate the results to create an adjusted feature array for the sibling comparison setting. The
original feature array contains 8 features that are constant. The prio_down and prio_up features
are never active, because the priority setting for each variable is set to AUTO by default. We also see
that the infinity indicators ub_is_infinite and gap_is_infinite are never active. While this is
not guaranteed, all instances for all problem sets are apparently easy enough for SCIP’s presolve to
find at least one primal solution in the root node. Interestingly, these features are independent of the
type of comparison, meaning they are also never active for general node comparison.

12 3. Methodology

Unsurprisingly, the node type is always node_type_child when performing child comparisons,
making this feature redundant. Similarly, the relative_depth between nodes will always be 1, since
sibling nodes are always at the same depth. Finally, the node_depth and focus_depth are always
the same, meaning one of the two can be removed. After removing these features, we are left with 11
of the original 20 features.

We propose to add a binary indicator is_prio_child, which is true if the node is marked as
the priority child of the current focus node. We also normalise the plunge_depth by the maximum
plunge depth as calculated by SCIP’s BestEstimate selection rule, and the node_depth by the maxi-
mum depth of the entire search process. The adjusted feature statistics can be found in Table 3.2.

GISP CFLP MKP

Min Max Mean Min Max Mean Min Max Mean

bound_lp_diff 0 1 0.548 0 1 0.508 -1 1 0.508
root_lp_diff -0.75 0.208 -0.198 -0.992 0.886 -0.156 -1 1 -0.073
pseudo_cost 0 69.334 27.796 0 603.290 46.088 0 45.000 0.179
n_inferences 0 34.75 2.196 0 66.714 4.180 0 83.333 3.460

estimate -0.086 0.922 0.419 0 1.337 1.023 0 1 1.000
node_lb 0 1 0.820 0 1.059 1.008 0 1 1.000
relative_bound 0 0.981 0.391 0 0.984 0.301 0 0.900 6.19e-3
is_prio_child 0 1 0.5 0 1 0.5 0 1 0.5
node_depth 0 1 0.568 0 1 0.422 0 1 0.650

plunge_depth 0 2 0.102 0 1 0.051 0 1.5 0.018
global_ub 0 0.723 0.664 0 1.129 1.023 0 0.999 0.992
bound_gap 0 0.531 0.269 0 0.129 0.019 0 0.034 7.86e-3

Table 3.2: Adjusted feature statistics

8 of the 12 remaining features will be the same between child nodes, which leaves only 4 distinct
features to distinguish the two nodes in a sibling comparison. Developing an informative set of features
for node selection will continue to be an issue, as there is simply not a lot of defining features for the
nodes without using a bipartite graph representation of each sub-problem. To quantify the loss of
information in the new representation, both the original and the adjusted feature arrays were used to
train a model based on node comparisons and sibling comparisons. The results are shown in Table 3.3.

Nodes Children

Original Adjusted Original Adjusted

GISP 82.9% 82.9% 74.9% 75.0%
CFLP 85.5% 83.2% 73.6% 74.0%
MKP 92.6% 96.5% 61.2% 85.2%

Table 3.3: Imitation accuracy for original and adjusted features.

As expected, there is very little difference between the imitation accuracy of the original and the
adjusted node representation for child comparisons2. More surprisingly, this is also the case for node
comparisons. This indicates that the reduced feature set is as expressive as the original. Only for the
MKP benchmark do we see a large change in accuracy, from 61.2% to 85.2%. We believe this increase
is due to the newly added is_prio_child feature, which appears to be highly informative for MKP.

We note the general drop in accuracy between nodes and children. This indicates that child com-
parisons are indeed more difficult to imitate than general node comparisons, which makes sense con-
sidering the reduced number of distinct features between sibling node representations. The decrease

2Samples were generated separately, meaning small variances in performance can be attributed to variance in the samples.

3.4. Training procedure 13

(a) IL training loss (Binary cross-entropy) (b) IL validation loss (Binary cross-entropy)

(c) IL training accuracy (compared to oracle) (d) IL validation accuracy (compared to oracle)

Figure 3.1: Learning behaviour for imitation learning baselines.

in accuracy does not lead to a decrease in performance, however, as policies trained on node compar-
isons perform equal to those trained on child comparisons during evaluation. This is to be expected
though, since during evaluation we exclusively perform sibling comparisons. Despite the decrease in
accuracy, we believe it will be important to continue reporting the sibling comparison accuracy in learn-
ing to select research. Because of the importance of plunging to minimise context switching overhead,
it will be important to focus on optimising the sibling comparison performance alongside general node
comparison accuracy. Figure 3.1 shows the learning behaviour for all IL baselines3.

3.4. Training procedure
Our training procedure is based on the architecture of Scavuzzo et al., 2022. They use a plain REIN-
FORCE algorithm with an entropy bonus to train a GNNmodel. We instead use a Siamese MLPmodel,
which was shown to be effective for learning a good node comparison function by Labassi et al., 2022,
achieving over 95% test accuracy in imitating the node comparison decisions of a diving oracle on all
benchmark sets. The implementation uses PyTorch [Paszke et al., 2019] and PySCIPOpt [Maher et al.,
2016] for interfacing with SCIP Optimization Suite 9.0 [Bolusani et al., 2024]. We obtain state-action-
reward samples from running the current policy. Changes to the model are made based on the return
of the state-action until the end of the episode. Episodes can run very long, however, so we only take
a small subset of samples to learn on; roughly 5%. We stop the training once the optimal solution is
found, since node selection is most impactful when the global upper bound is poor. The approach is
implemented asynchronously, with 𝑛 agents able to run in parallel on different seeds, which helps to
stabilise learning by decorrelating the data [Mnih et al., 2016]. We refer to the individual papers for
more information on the exact implementation.

3In case of printing in black-and-white. Experiments are reported from highest to lowest.
Loss results: CFLP children, GISP children, GISP nodes, MKP children, CFLP nodes, MKP nodes.
Accuracy results: MKP nodes, MKP children, CFLP nodes, GISP nodes, GISP children, CFLP children.

4
Experimental results

We start this chapter with an introduction of the benchmark problems that were used for this research,
the parameters that were chosen, and the generation methods that were used. We then explain the
training procedure for our reinforcement learning agents, and introduce some initial findings about their
behaviour. We then move on to large-scale tests and the results thereof. We discuss the observed
behaviour of the agent for each phase, before moving on to any potential additions or ablations of the
approach.

4.1. Benchmarks
We evaluate our results on three separate problem sets comprising different NP-hard instance families.
In line with previous work on the node comparison problem by Labassi et al., 2022, these problem sets
are chosen to be primal difficult, since the impact of node selection is highest when the global upper
bound is poor. The first benchmark is taken directly from their work, but refactored for better readability.
The other two benchmarks are taken from the field of learning to select. These benchmarks create
plenty of variety in the types of instances to learn on.

4.1.1. Generalised independent set problem
An independent set is a set of vertices within a network such that no two vertices are adjacent. When
the aim is to find a maximal size independent set in a graph, we are dealing with the NP-Hard maximum
independent set problem. A graph can have many independent sets, however. To limit the number of
optimal solutions, we can add a value to each vertex, with the objective to find an independent set
that maximises the total value of the vertices contained. This problem is referred to as the maximum-
weight independent set problem. To further increase the complexity, we can make a subset of edges
removable for a fixed cost. This increases the total number of possible independent sets in the solution
space, while keeping the number of optimal sets low. This variant of the problem was first introduced in
a 1997 article on forest harvesting [Hochbaum and Pathria, 1997]. The problem is posed as finding a
balance between lumber quality and wildlife habitat preservation. We use a heavily refactored version
of the instance generator of Chmiela et al., 2021, to generate instances.

max
𝐱,𝐲

∑
𝑖∈𝑉
𝑤𝑖𝑥𝑖 − ∑

(𝑖,𝑗)∈𝐸2
𝑐𝑖𝑗𝑦𝑖𝑗

subject to 𝑥𝑖 + 𝑥𝑗 ≤ 1, ∀(𝑖, 𝑗) ∈ 𝐸1
𝑥𝑖 + 𝑥𝑗 − 𝑦𝑖𝑗 ≤ 1, ∀(𝑖, 𝑗) ∈ 𝐸2

𝑥𝑖 ∈ {0, 1}, ∀𝑖 ∈ 𝑉
𝑦𝑖𝑗 ∈ {0, 1}, ∀(𝑖, 𝑗) ∈ 𝐸2

15

16 4. Experimental results

4.1.2. Single source capacitated facility location problem
The facility location problem is a well-known combinatorial problem based on a real-world issue of
supply and demand. Customers want their demands to be met by facilities that can supply them. Which
facilities supply which customers is based on a variable cost incurred by transferring goods between
those locations, and whether the facility is opened, which also incurs a fixed cost. The variant of this
problem we consider here is a capacitated single-source variant, which means that facilities have a
limited capacity on the amount of supply they can deliver, and each customer can only be supplied by
one facility. These additional constraints increase the primal difficulty of the problem. For an overview
of the problem, we refer the reader to Holmberg et al., 1999. The code for the instance generator was
taken from the work of Gasse et al., 2019, who in turn cite Cornuejols et al., 1991.

min
𝐱,𝐲

∑
𝑖∈𝑀

∑
𝑗∈𝑁

𝑐𝑖𝑗𝑥𝑖𝑗 +∑
𝑖∈𝑀
𝑓𝑖𝑦𝑖

subject to ∑
𝑗∈𝑁

𝑎𝑗𝑥𝑖𝑗 ≤ 𝑏𝑖𝑦𝑖 , ∀𝑖 ∈ 𝑀

∑
𝑖∈𝑀

𝑥𝑖𝑗 ≥ 1, ∀𝑗 ∈ 𝑁

𝑥𝑖𝑗 − 𝑦𝑖 ≤ 0, ∀𝑖 ∈ 𝑀, ∀𝑗 ∈ 𝑁
𝑥𝑖𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝑀, ∀𝑗 ∈ 𝑁
𝑦𝑖 ∈ {0, 1}, ∀𝑖 ∈ 𝑀

4.1.3. Multiple knapsack problem
In the standard knapsack problem we are given a set of items 𝑁, each with a value 𝑣𝑖 and a weight 𝑤𝑖.
The goal is then to choose a subset of items �̂� such that the total value is maximised while keeping the
total weight within some capacity value 𝑐. If the capacity of the knapsack is subdivided into multiple
sections, we speak of the multiple knapsack problem, as each section of the total capacity can be seen
as a separate knapsack. In this generalisation of the knapsack problem we consider a set of knapsacks
𝑀, each having a separate capacity value 𝑐𝑗. Note that the linear relaxation of the multiple knapsack
problem is the same as that of the standard knapsack problem when ∑𝑗∈𝑀 𝑐𝑗 = 𝑐. The generator is
taken from the work of Scavuzzo et al., 2022, who cite Fukunaga, 2011.

max
𝐱

∑
𝑖∈𝑀

∑
𝑗∈𝑁

𝑣𝑗𝑥𝑖𝑗

subject to ∑
𝑗∈𝑁

𝑤𝑗𝑥𝑖𝑗 ≤ 𝑐𝑖 ∀𝑖 ∈ 𝑀

∑
𝑖∈𝑀

𝑥𝑖𝑗 ≤ 1, ∀𝑗 ∈ 𝑁

𝑥𝑖𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝑀, ∀𝑗 ∈ 𝑁

4.1.4. Dataset generation
For each of the aforementioned problem types we simultaneously generate and solve instances. This
gives us greater control over the difficulty of instances that are saved, based on the solving statistics.
Solving every generated instance to optimality is also necessary to collect optimal solutions of the
instances, which are used for training and evaluation. All instances are solved using SCIP’s default
settings, with a time limit of 30 seconds. Feasible problems are saved if the number of nodes in the
solve are between 100 and 1000 nodes.

4.2. Training 17

For the instance generation we use the following parameters. Generalised independent set in-
stances are generated on Erdos-Renyi graphs of 60 nodes for standard instances and 80 nodes for
transfer instances with an edge probability of 0.5. Each edge is made removable with a 60% chance.
Capacitated facility location instances are generated with 25 customers and 25 facilities, and a capac-
ity/demand ratio of 3. Transfer instances are generated with 60 customers instead. Multiple knapsack
instances are generated with 100 items and 4 knapsacks for standard instances and 8 knapsacks for
transfer instances using weakly-correlated weights and values for the items.

These parameters were chosen based on the average number of nodes and the percentage of
passing instances, with the goal of keeping the average number of nodes low, while maximising the
number of instances that pass. In addition to speeding up the generation process for convenience,
having a high number of passing instances is also important for ensuring the instances are actually
difficult to solve. Since instances are only solved for one seed, there might be cases where an easy
instance required a lot of nodes because SCIP was initialised with a difficult seed, but on average the
instance is much easier. While this could be prevented by solving each instance multiple times during
generation, we instead favour generating larger datasets.

4.2. Training
The reinforcement learning agent is trained on a set of 4000 instances, and validated every 50 episodes
on a stable set of 50 validation instances. Model parameters are updated after each training batch of
10 training episodes. The model is saved if the 1-shifted geometric mean on the number of nodes in
the final tree improves upon the current best achieved tree size. We run to a maximum of 1000 epochs,
or 3 days of computation time. All experiments were run on two single-threaded Intel Xeon Platinum
8358P CPUs running at 2.60GHz. The CPUs were provided by the TU Delft through a remote virtual
machine. Training was initially done in a static environment, which means disabling primal heuristic,
cut generation, and conflict analysis. We experimented with enforcing a static variable selection rule,
but this did not lead to improved learning behaviour. Even with static variable selection, however, there
was still variance in the created search tree based on the order in which nodes were selected, of which
we were unable to identify the source.

Training was done for each of the three reward signals discussed in Section 3.2. Namely, the
tree size (“nnodes”), the lower bound-objective value inequality (“lb-obj”), and the global upper bound
improvement (“gub+”). Initial tests were done using the “nnodes” reward signal, trained in a static
environment. This did not create the desired learning behaviour, however. The agent would have a
high variance in the training loss, without meaningful validation improvement. Our hypothesis for this
behaviour is that the REINFORCE algorithm penalises correct node selection decisions at the top of the
tree, when the tree size penalty is very high, while ignoring correct decisions that are further down the
tree. As mentioned previously, the node selection rule only influences the total tree size by maximising
pruning and through its impact on other components of the search. In a static environment these other
components are turned off, leaving only pruning decisions to be learned, which is done mostly near
the leaves of the tree. Unfortunately, switching to an active environment did not improve the learning
behaviour, which we attribute to the lack of distinct features for the agent to draw on.

The “lb-obj” reward works similarly to the tree size reward, but only penalises nodes that have a
lower bound higher than the optimal objective value. While this reward is more suitable for learning in
a static environment, as it creates less variance in the training loss, it still lacks meaningful validation
score improvement. This should not be the case, since theoretically the “lb-obj” value can be minimised
based solely on the node_lb feature. However, it seems the reward distribution still pushes the policy
away from this behaviour, possibly based on decisions where both nodes of the comparison would
receive a penalty.

Finally, the “gub+” reward is the most tree size independent, focusing purely on finding good primal
solutions early in the search. The return value of each action is the discounted sum of normalised
upper bound improvements, normalised over the total obtainable upper bound improvement between
the root node solution and the optimal objective value. Even with an extremely slow discount factor of
0.997, however, the rewards are too sparse to create a strong reward signal. Despite different learning
behaviour, evaluating the learned policies gave identical results for all benchmarks. We attribute this
behaviour to a lack of distinguishing features and the presence of strong local optima.

18 4. Experimental results

4.3. Evaluation
We report the performance of each node selection rule as the geometric mean over a set of 50 test
and 50 transfer instances, with a time limit of 150 seconds. The results of each instance are averaged
over all the completed runs from 5 distinct seeds, which reduces variance and discrepancies from
crashed runs. Results that contain instances that ended because of timeout are indicated with an
asterisk. All heuristics are evaluated in both a static and non-static search environment, regardless of
which environment they were trained on. We consider three non-policy baselines. We evaluate SCIP’s
BestEstimate node selection heuristic (SCIP default), which is the default node selection heuristic for
SCIP. We also evaluate the greedy best-first search heuristic, which always chooses the best bound
node in the tree (B*FS). Note that this is not the BestFirstSearch node selector as implemented in SCIP.
Finally, we evaluate a random node comparison function, which randomly chooses between the two
nodes of the comparison with a 50% probability (Random). Every learned policy, as well as the Random
node selector, are added to a node selector using amodified version of the BestEstimate node selection
heuristic, which always chooses the highest priority child while plunging, and the best bound node
otherwise. Only the node comparison is performed by the policy. We first report the performance of an
untrained policy (Untrained). We then report the performance of the imitation learning benchmarks (IL
policies), which have been trained according to the description in section 3.3. Finally, the performance
of the reinforcement learning agents, trained with different reward signals, is reported (RL policies).
The results for the policies have been grouped to avoid repetitive data, since all policies reached the
same local optimum, regardless of training procedure.

Test Transfer

Static Active Static Active

Nodes Time Nodes Time Nodes Time Nodes Time

SCIP default 1994×/1.23 1.36×/1.14 812×/1.47 2.05×/1.12 11803×/1.18 9.09×/1.17 5521×/1.30 10.00×/1.17
B*FS 1855×/1.32 1.50×/1.19 809×/1.54 2.81×/1.21 11388×/1.19 10.76×/1.19 5407×/1.35 17.29×/1.23
Random 1976×/1.25 1.46×/1.15 885×/1.48 2.22×/1.13 10657×/1.17 8.95×/1.18 5620×/1.31 10.10×/1.17

Untrained 2055×/1.25 1.73×/1.17 1299×/1.36 2.62×/1.15 11923×/1.19 11.10×/1.19 7417×/1.31 13.34×/1.19
IL Policy 2055×/1.25 1.78×/1.17 1299×/1.36 2.69×/1.15 11923×/1.19 11.32×/1.19 7417×/1.31 13.99×/1.19
RL Policy 2055×/1.25 1.78×/1.17 1299×/1.36 2.68×/1.15 11923×/1.19 11.36×/1.19 7417×/1.31 13.66×/1.19

Table 4.1: Evaluation results for GISP benchmark.

Test Transfer

Static Active Static Active

Nodes Time Nodes Time Nodes Time Nodes Time

SCIP default 24076×/1.96 44.17×/1.99 805×/3.47 8.19×/1.80 7119×/2.50 43.14×/1.94 1178×/3.08 20.67×/1.91
B*FS 28978×/1.61 67.31×/1.61 375×/5.65 8.24×/2.04 5771×/2.80 52.33×/2.09 406×/5.62 17.65×/2.21
Random 33226×/1.61 60.38×/1.71 598×/4.49 7.73×/1.84 9766×/1.92 60.00×/1.70 875×/4.31 20.19×/2.11

Untrained *80738×/1.41 117.01×/1.41 989×/3.71 9.02×/1.87 *21324×/1.95 86.01×/1.75 1095×/4.17 22.15×/2.07
IL Policies *80726×/1.41 117.14×/1.41 989×/3.71 9.22×/1.87 *21248×/1.95 86.14×/1.75 1095×/4.17 22.17×/2.07
RL Policies *80767×/1.41 116.92×/1.42 989×/3.71 8.94×/1.87 *21345×/1.95 85.93×/1.75 1162×/4.59 22.68×/2.25

Table 4.2: Evaluation results for CFLP benchmark.

Test Transfer

Static Active Static Active

Nodes Time Nodes Time Nodes Time Nodes Time

SCIP default 1155×/4.40 0.35×/3.86 508×/2.80 0.54×/1.50 4846×/3.54 4.58×/3.01 1060×/4.18 2.30×/2.20
B*FS 3152×/7.67 0.94×/7.16 618×/6.12 0.63×/2.67 4579×/5.39 3.94×/4.46 630×/11.14 1.72×/4.46
Random 5993×/6.15 1.91×/6.56 2346×/4.24 1.41×/2.83 32834×/3.68 30.03×/3.27 16185×/3.54 16.86×/2.73

Policy *116015×/2.08 72.49×/2.15 9424×/3.52 6.54×/3.11 TIMEOUT TIMEOUT *82801×/1.86 110.86×/1.78
IL Policies *117543×/2.09 72.33×/2.19 9594×/4.04 6.83×/3.44 TIMEOUT TIMEOUT *75099×/2.15 107.07×/1.97
RL Policies *115832×/2.11 71.39×/2.16 8463×/4.34 6.12×/3.39 TIMEOUT TIMEOUT *86805×/1.61 115.98×/1.57

Table 4.3: Evaluation results for MKP benchmark.

4.4. Discussion 19

4.4. Discussion
While the behaviour of each of the three problem benchmarks varies, the learned policies perform
worse than the baselines in all cases. This was the expected outcome, since machine learning models
have not beaten the state-of-the-art in node selection before. It is surprising, however, that the un-
trained policy performs equal to the learned policies. This would suggest that either no learning has
occurred at all, or the randomly initialised policy is immediately in a local optimum. We hypothesise
that the feature representation is not expressive enough to meaningfully decide between the nodes,
leading to worse-than-random decision making. We will discuss the behaviour of the policies in the
context of each of the benchmarks.

GISP is the most well-behaved benchmark, with small differences between the learned policies and
the baselines. This might be explained by the performance of the Random baseline, which performs al-
most identical to the other two baselines. This indicates that the node selection decisions are not highly
impactful in determining the efficiency of the solve for GISP instances. We also see the expected be-
haviour from the baselines. If we ignore the strong performance of the Random selector for the static
transfer set, SCIP’s default rule has the best time performance in all cases, while B*FS successfully
minimises the number of nodes in the tree, at the cost of higher solving time due to context switching.

The CFLP benchmark shows similar behaviour, but with some outliers. B*FS reduces the number
of nodes in all evaluations except for static test instances, where SCIP’s default has a lower geomet-
ric mean, though with a considerably higher standard deviation. SCIP’s BestEstimate node selector
is also outperformed in static evaluations by the Random selection rule and B*FS respectively. We
attribute this to the much larger number of nodes needed in the solve, which indicates that the lower
bound is quite weak for these instances, leading to a low amount of pruning. In fact, the active transfer
evaluation is the only one where the policies outperform SCIP’s default selection rule on the number
of nodes, though they still fall behind in solving time. In general, we see a large increase in the solving
time for CFLP instances in the static environment, indicating that CFLP benefits greatly from other com-
ponents of the search. We attribute the respectable performance of the policies in active evaluations
to the efficiency of other components of the search, and consequently the poor performance in static
evaluations to the lack thereof. While evaluating in a static environment is not a realistic setting, an
active environment can sometimes mask the poor performance of a node selection rule, which is very
clearly visible in this case.

MKP is the most unwieldy benchmark. Not only does it contain the largest differences in perfor-
mance between the selection rules, but within each evaluation we also see shockingly large variance.
The instances are extremely easy for the baselines, with test instances being solved on average within
2 seconds by even the Random selection rule, but taking more taking more than 70 seconds during
policy evaluation. We also see that every run of every transfer instance under static evaluation timed
out after 150 seconds. We again relate these results to the performance of the Random heuristic, which
for the transfer instances takes almost 10 times as long as the other two baselines. This indicates that
MKP instances are very difficult to solve by random selection, meaning the node selection decisions
are highly impactful. We attribute this to a poor lower bound again, as indicated by the domination of the
B*FS selector on the transfer instances. This exposes a highly intriguing aspect of learning to select,
which is the benchmark selection. There appears to be an inherent difficulty to problems for learning a
node selection rule, which is separate from the difficulty of solving the instances using SCIP’s default
implementation. While a full analysis of the learning behaviour is beyond the scope of this research, it
lays the groundwork for further investigation and improvement.

5
Conclusions

The aim of this research was to investigate the differences between variable selection and node selec-
tion within the context of learning to optimise, and investigate the applicability of reinforcement learning
for the node selection problem. We divided the research into a number of sub-questions (Section 1.1).

We first analyse the influence of the node selection rule on the branch-and-bound tree and identify
the ways it can improve the efficiency of the solving process as part of answering the preliminary re-
search questions. We define the behaviour of a good node selection rule in Section 3.2, determining
that the best way to minimise the solving time is to maximise pruning, avoid context switching, and
choose informative nodes for other components of the search. We also show that node selection has
gone through relatively little development since the introduction of the branch-and-bound procedure
in 1960, where the node selection was already performed using best-first search and plunging. How
the plunge is performed still provides some room for improvement, but in general node selection is not
very impactful in the efficiency of the solver. This is highlighted by the performance of the Random
plunger heuristic evaluated in Section 4.3. The results also show that the number of nodes used in
the solve does not always equate to the best solving time. Despite these results, the number of nodes
needed to complete the solve remains the best proxy metric for solving time, assuming that context
switching overhead is taken into consideration during the design. This answers the final question of
the preliminary investigation. Based on these findings we then design an environment for learning.

The objective in learning to select can be reduced to creating a ranking of the open nodes in the
search, such that the best one can be chosen. In the SCIP solver, this ranking is created by an ordering
algorithm, which calls the node comparison operator when two nodes need to be compared. While this
simplifies the node selection decision to an efficient set of binary comparisons, it adds hidden dynamics
to the environment due to the implicit comparisons inferred from previous comparisons. What’s more,
reward signals that quantify the number of nodes used in the solve cannot easily be distributed over
node comparisons, since not all comparisons are impactful to the search. We solve this issue by follow-
ing previous work by Yilmaz and Yorke-Smith, 2021. By limiting the search to the immediate children of
the focus node, we can directly assign the node selection reward to the single node comparison that is
made at each step. We incorporate this approach into a selection rule with a deterministic early plunge
abort mechanism to avoid creating large imbalanced search trees during unbounded plunges.

Based on this definition of the environment we answer question 4 by introducing two additional
reward signals in Section 3.2. We introduce the lb-obj inequality reward, which penalises node deci-
sions where the chosen node has a worse lower bound than the optimal objective value, and the upper
bound improvement reward, which gives a normalised reward based on the improvement of the global
upper bound. These rewards are naturally optimised by B*FS and the plunging oracle of previous work
respectively, but are less restrictive, allowing for further optimisation. While question 5 can then be
answered theoretically based on the expected learned behaviour, the experiments do not allow us to
identify what kind of behaviour is actually learned based on these rewards, as all policies converge to
the same local optimum. This is also the case for question 6, which unfortunately means the potential
for reinforcement learning to learn more nuanced interactions of node selection decisions with other
components of the search remains inconclusive.

21

22 5. Conclusions

The results of this research show that a fixed-size feature array is not informative enough for a
reinforcement learning agent to meaningfully decide between sibling nodes. This same outcome can
be seen for the imitation learning setting (Section 3.3), where the performance does not significantly
improve anymore after just a few epochs. At this point, all the information in the feature representation
has been exhausted and there is no further improvement to be made. It should be possible to consider
general node comparisons in the environment, as long as the dynamics of the ordering algorithm are
changed such that the node selection decisions can be directly related to the comparisons that were
impactful to that decision, without considering other comparisons that preceded it. The easiest way
to achieve this might be to return to a ranking model approach, where all comparisons are explicitly
performed at every step. This issue is not simply solved by expanding the scope of the comparisons
to involve all open nodes, however, since plunging is an important part of any effective node selection
rule due to context switching overhead. We also show in Section 3.3 that a policy trained based on
general node comparisons achieves equal performance to a policy trained on child comparisons when
evaluated in a plunging node selector. This indicates that sibling comparisons will continue to be dif-
ficult, even for policies that perform well on general node comparisons. As such, we believe this will
continue to be a challenge for node selection, as the defining features of the sub-problems are limited.

Future work might investigate applying the node bipartite graph representation to a GNN model,
which has been shown to be more expressive in representing sub-problems. The usefulness of this
approach is limited by the necessity of GPU access for training and applying the GNN model on histori-
cally CPU-based machines. Additionally, the training setup might be changed to produce better results.
Alternatively, we might look to enhance the feature representation using diving statistics gathered dur-
ing a preliminary dive starting in each of the two child nodes, or even all open nodes in the search.
Another possible direction for future work is to learn a better approximation for SCIP’s estimate func-
tion, which is an important component in both the node selection and node comparison of the default
BestEstimate approach. We believe that improving the accuracy of this measure would also improve
the performance of the BestEstimate selector, and as such the efficiency of the solving process.

Based on the results of the sub-questions, we posit that the reward signals are either too small or
too detached from the node selection decisions for a reinforcement learning agent to learn meaningful
decision making. This is in addition to the feature representation being too limited. We also conclude
that the node selection problem creates a generally weaker learning environment than the variable
selection problem because of the inherent difference in the state representation. Variable selection
is defined using state transitions between sub-problems (nodes), while node selection transitions are
defined between states of the entire branch-and-bound tree (generally represented based on the open
nodes of the search). Variable selection decisions directly influence the efficiency of the newly created
sub-problems. As a result, minimising the sub-tree size during plunging also minimises the global tree
size, as mentioned in Etheve et al., 2020. This property is used by the TreeMDP representation of the
variable selection problem to decompose the trajectory and better distribute rewards. In contrast, the
quality of a node selection decision is not related to the decisions made in the ancestors of the focus
node, and the sequential states of the branch-and-bound tree cannot be decomposed in any way.

Despite the challenges of learning to select, we believe that it will offer the best approach for devel-
oping problem-specific node selection rules in the future. We hope that the research performed in this
thesis, along with the insights and baselines contained in it, can serve as a starting point for future work.
As part of this research we have created a code repository for performing further learning to select re-
search. Based on code from the field of learning to branch [Gasse et al., 2019, Scavuzzo et al., 2022],
it has been rewritten to allow for clean and extendable node selection research. The code can be found
at https://github.com/jgroenheide/rl2select, DOI: 10.4121/c93be76f-bb24-488e-895d-98c9810b3364.

https://github.com/jgroenheide/rl2select

Bibliography
Achterberg, T. (2007). Constraint integer programming.
Achterberg, T., Berthold, T., Koch, T., & Wolter, K. (2008). Constraint integer programming: A new

approach to integrate cp and mip. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-
540-68155-7_4

Achterberg, T., Koch, T., & Martin, A. (2005). Branching rules revisited. Operations Research Letters,
33, 42–54. https://doi.org/10.1016/j.orl.2004.04.002

Alvarez, A. M., Wehenkel, L., & Louveaux, Q. (2016). Online learning for strong branching approxima-
tion in branch-and-bound.

Alvarez, A. M., Louveaux, Q., & Wehenkel, L. (2014). A supervised machine learning approach to
variable branching in branch-and-bound in ecml.

Bello, I., Pham, H., Le, Q. V., Norouzi, M., & Bengio, S. (2016). Neural combinatorial optimization with
reinforcement learning.

Bengio, Y., Lodi, A., & Prouvost, A. (2021). Machine learning for combinatorial optimization: A method-
ological tour d’horizon. European Journal of Operational Research, 290, 405–421. https://doi.
org/10.1016/j.ejor.2020.07.063

Bolusani, S., Besançon, M., Bestuzheva, K., Chmiela, A., Dionísio, J., Donkiewicz, T., van Doornmalen,
J., Eifler, L., Ghannam, M., Gleixner, A., Graczyk, C., Halbig, K., Hedtke, I., Hoen, A., Hojny,
C., van der Hulst, R., Kamp, D., Koch, T., Kofler, K., … Xu, L. (2024, February). The SCIP
Optimization Suite 9.0 (ZIB-Report No. 24-02-29). Zuse Institute Berlin. https://nbn-resolving.
org/urn:nbn:de:0297-zib-95528

Chmiela, A., Khalil, E. B., Gleixner, A., Lodi, A., & Pokutta, S. (2021). Learning to schedule heuristics
in branch-and-bound.

Cornuejols, G., Sridharan, R., & Thizy, J. (1991). A comparison of heuristics and relaxations for the
capacitated plant location problem. European Journal of Operational Research, 50, 280–297.
https://doi.org/10.1016/0377-2217(91)90261-S

Etheve, M., Alès, Z., Bissuel, C., Juan, O., & Kedad-Sidhoum, S. (2020). Reinforcement learning for
variable selection in a branch and bound algorithm. In Lecture notes in computer science
(pp. 176–185). Springer International Publishing. https://doi.org/10.1007/978-3-030-58942-
4_12

Fischetti, M., & Monaci, M. (2012). Branching on nonchimerical fractionalities. Operations Research
Letters, 40, 159–164. https://doi.org/10.1016/j.orl.2012.01.008

Fukunaga, A. S. (2011). A branch-and-bound algorithm for hard multiple knapsack problems. Annals
of Operations Research, 184, 97–119. https://doi.org/10.1007/s10479-009-0660-y

Gasse, M., Chételat, D., Ferroni, N., Charlin, L., & Lodi, A. (2019). Exact combinatorial optimization
with graph convolutional neural networks. 33rd Conference on Neural Information Processing
Systems (NeurIPS 2019), 15580–15592. https://doi.org/10.5555/3454287.3455683

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees.Machine Learning, 63, 3–42.
https://doi.org/10.1007/s10994-006-6226-1

Gupta, P., Gasse, M., Khalil, E. B., Kumar, M. P., Lodi, A., & Bengio, Y. (2020). Hybrid models for
learning to branch.

He, H., III, H. D., & Eisner, J. M. (2014). Learning to search in branch and bound algorithms. In Z.
Ghahramani, M. Welling, C. Cortes, N. Lawrence, & K. Q. Weinberger (Eds.). Curran Asso-
ciates, Inc.

Hochbaum, D. S., & Pathria, A. (1997). Forest harvesting and minimum cuts: A new approach to han-
dling spatial constraints. Forest Science, 43, 544–554. https://doi.org/10.1093/forestscience/
43.4.544

Hoffman, K. L., & Padberg, M. (2001). Combinatorial and integer optimization. In S. I. Gass & C. M.
Harris (Eds.), Encyclopedia of operations research and management science (pp. 94–102).
Springer US. https://doi.org/10.1007/1-4020-0611-X_129

23

https://doi.org/10.1007/978-3-540-68155-7_4
https://doi.org/10.1007/978-3-540-68155-7_4
https://doi.org/10.1016/j.orl.2004.04.002
https://doi.org/10.1016/j.ejor.2020.07.063
https://doi.org/10.1016/j.ejor.2020.07.063
https://nbn-resolving.org/urn:nbn:de:0297-zib-95528
https://nbn-resolving.org/urn:nbn:de:0297-zib-95528
https://doi.org/10.1016/0377-2217(91)90261-S
https://doi.org/10.1007/978-3-030-58942-4_12
https://doi.org/10.1007/978-3-030-58942-4_12
https://doi.org/10.1016/j.orl.2012.01.008
https://doi.org/10.1007/s10479-009-0660-y
https://doi.org/10.5555/3454287.3455683
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1093/forestscience/43.4.544
https://doi.org/10.1093/forestscience/43.4.544
https://doi.org/10.1007/1-4020-0611-X_129

24 Bibliography

Holmberg, K., Rönnqvist, M., & Yuan, D. (1999). An exact algorithm for the capacitated facility loca-
tion problems with single sourcing. European Journal of Operational Research, 113, 544–559.
https://doi.org/10.1016/S0377-2217(98)00008-3

Howard, R. A. (1960). Dynamic programming and markov processes. The M.I.T. Press.
Khalil, E. B., Bodic, P. L., Song, L., Nemhauser, G., & Dilkina, B. (2016). Learning to branch in mixed

integer programming. Proceedings of the AAAI Conference on Artificial Intelligence, 30. https:
//doi.org/10.1609/aaai.v30i1.10080

Khalil, E. B., Dai, H., Zhang, Y., Dilkina, B., & Song, L. (2017). Learning combinatorial optimization
algorithms over graphs. http://arxiv.org/abs/1704.01665

Koch, T., Berthold, T., Pedersen, J., & Vanaret, C. (2022). Progress in mathematical programming
solvers from 2001 to 2020. https://doi.org/10.1016/j.ejco.2022.100031

Labassi, A. G., Chételat, D., & Lodi, A. (2022). Learning to compare nodes in branch and bound with
graph neural networks.

Land, A. H., & Doig, A. G. (1960). An automatic method of solving discrete programming problems.
Econometrica, 28, 497. https://doi.org/10.2307/1910129

Maher, S., Miltenberger, M., Pedroso, J. P., Rehfeldt, D., Schwarz, R., & Serrano, F. (2016). Pyscipopt:
Mathematical programming in python with the scip optimization suite. https://doi.org/10.1007/
978-3-319-42432-3_37

Mattick, A., & Mutschler, C. (2023). Reinforcement learning for node selection in branch-and-bound.
Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., & Kavukcuoglu, K.

(2016, July). Asynchronous methods for deep reinforcement learning. In M. F. Balcan & K. Q.
Weinberger (Eds.). PMLR. https://proceedings.mlr.press/v48/mniha16.html

Paschos, V. T. (2014). Applications of combinatorial optimization. John Wiley & Sons.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,

Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy,
S., Steiner, B., Fang, L., … Chintala, S. (2019). Pytorch: An imperative style, high-performance
deep learning library.

Sabharwal, A., Samulowitz, H., & Reddy, C. (2012). Guiding combinatorial optimization with uct. https:
//doi.org/10.1007/978-3-642-29828-8_23

Scavuzzo, L. (2020). Learning variable selection rules for the branch-and-bound algorithm using rein-
forcement learning.

Scavuzzo, L., Chen, F., Chetelat, D., Gasse, M., Lodi, A., Yorke-Smith, N., & Aardal, K. (2022). Learning
to branch with tree mdps. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh
(Eds.). Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2022/file/
756d74cd58592849c904421e3b2ec7a4-Paper-Conference.pdf

Song, J., Lanka, R., Zhao, A., Bhatnagar, A., Yue, Y., & Ono, M. (2018). Learning to search via retro-
spective imitation.

Sutton, R. S., & Barto, A. G. (2018, November). Reinforcement learning: An introduction (Second Edi-
tion). The M.I.T. Press.

Vinyals, O., Fortunato, M., & Jaitly, N. (2015). Pointer networks.
Yilmaz, K., & Yorke-Smith, N. (2021). A study of learning search approximation in mixed integer branch

and bound: Node selection in scip. AI, 2, 150–178. https://doi.org/10.3390/ai2020010
Zarpellon, G., Jo, J., Lodi, A., & Bengio, Y. (2020). Parameterizing branch-and-bound search trees to

learn branching policies.

https://doi.org/10.1016/S0377-2217(98)00008-3
https://doi.org/10.1609/aaai.v30i1.10080
https://doi.org/10.1609/aaai.v30i1.10080
http://arxiv.org/abs/1704.01665
https://doi.org/10.1016/j.ejco.2022.100031
https://doi.org/10.2307/1910129
https://doi.org/10.1007/978-3-319-42432-3_37
https://doi.org/10.1007/978-3-319-42432-3_37
https://proceedings.mlr.press/v48/mniha16.html
https://doi.org/10.1007/978-3-642-29828-8_23
https://doi.org/10.1007/978-3-642-29828-8_23
https://proceedings.neurips.cc/paper_files/paper/2022/file/756d74cd58592849c904421e3b2ec7a4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/756d74cd58592849c904421e3b2ec7a4-Paper-Conference.pdf
https://doi.org/10.3390/ai2020010

	Introduction
	Research questions
	Contributions
	Thesis outline

	Preliminaries
	Background
	Related work

	Methodology
	Defining the environment
	Defining the reward function
	Defining the state representation
	Training procedure

	Experimental results
	Benchmarks
	Generalised independent set problem
	Single source capacitated facility location problem
	Multiple knapsack problem
	Dataset generation

	Training
	Evaluation
	Discussion

	Conclusions

