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ARTICLE INFO ABSTRACT

Article history: In a previous paper (Hennink and Lathouwers, 2017) we developed a finite element
Received 26 April 2018 discretization for the Boltzmann transport equation with forward peaked scatter modeled
Received in revised form 21 September 2018 by the Fokker-Planck approximation. The discretization was based on the discontinuous

Galerkin method in both space and angle. It was expected and found that the regular source

g?z:;irg;'uous Galerkin iteration algorithm for the Boltzmann equation is not effective in solving the discretized
Fokker—Planck system and becomes excessively expensive for problems with many angular degrees of
Particle transport freedom. The purpose of this paper is to develop a multigrid scheme as preconditioner for
Radiation transport the above mentioned discretization. The method exploits the nested nature of the meshes
Multigrid and the natural prolongation/restriction between meshes by Galerkin projection. A set of
Interior penalty test problems ranging from pure spherical diffusion to the complete Boltzmann transport

problem in 3D are presented to illustrate that the method is very effective, resulting in
iteration counts nearly independent of problem size even for highly non-isotropically
refined angular meshes.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Radiative transport as modeled by the Boltzmann transport equation arises in modeling of nuclear reactors, radiotherapy
applications, imaging techniques and astrophysics, among others. The solution of the linear Boltzmann equation (LBE)
is computationally expensive due to its high-dimensionality: 3D transient cases correspond to 7 independent variables.
Studies of numerical techniques for the LBE mostly focus on the steady state, mono-energetic case which is considered
a basic building block for transport methods. The basic discretization of the LBE is usually performed by the discrete
ordinates (Sy) method in angle, which is a collocation technique utilizing a discrete set of angles and associated weights
to perform numerical integration. An advantage of this technique is that it is easily implemented. A drawback however
is that anisotropic directional adaptivity is not possible with standard Sy quadrature sets. A similar issue exists with the
spherical harmonic expansion alternative. For spatial discretization one nowadays often uses discontinuous Galerkin (DG)
finite element techniques which are robust against large jumps in material properties. Whatever the chosen discretization
technique, the solution of the LBE is complex, especially in heterogeneous media.

The most well-known solution technique, source iteration, is effective for thin media but becomes increasingly ineffective
in optically thick, scattering materials. It is well-known that the slowly converging mode in thick scattering media exhibits
little angular dependence. The so-called diffusion synthetic acceleration (DSA) procedure makes use of this by accelerating
exactly these error components through the solution of a scalar diffusion equation. Although this procedure has been applied
with great success it is well known to be unstable for highly heterogeneous media for general spatial discretizations due to a
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lack of consistency between the high-order transport and the diffusion discretization. However, stability and efficiency are
recovered when using the methods as preconditioner within a Krylov context [1].

DSA is also ineffective for highly anisotropic scatter and for thin media where the nearly isotropic assumption no longer
holds. A more generally effective procedure can be obtained by use of a multigrid method. Multigrid methods have been
met with great success in essentially all fields of science and engineering [2,3]. The DSA can in fact be viewed as a two-level
method operating on the fine transport level and the coarse diffusion level. The essential operating procedure of a multigrid
method is to effectively damp error components of different wavelengths by smoothing the error on a hierarchy of grids.
Here, we focus on multigrid methods operating in the angular domain. These methods are a potential refinement of the
two-level method formed by DSA. Some earlier works have appeared in the area of angular multigrids for the LBE which we
briefly review here.

In their pioneering work, Morel and Manteuffel [4] constructed an angular multigrid method for the 1D Sy equations.
The scheme is based on formulating a hierarchy of transport problems of Sy >, down to the coarsest S4 set which is in turn
accelerated by the P; equations. The multigrid method is used as a solver rather than a preconditioner. The 1D formulation
was later extended to 2D by Pautz et al. [5] by introducing several modifications to the coarse problems and the filtering of
high-frequency modes. Without this filtering the method was found to be unstable.

Oliveira et al. [6] used a hierarchical preconditioning of the even-parity transport equation as discretized by spherical
harmonics. It builds upon the hierarchic nature of the Py expansion. The authors show the relative merits of various multigrid
cycling schemes. It appears however that the required number of iterations is still considerable.

Lee [7,8] devised a moment-based multigrid method for the Sy discretized equations based on coarsening in angle
combined with selective coarsening in space. His work uses a Krylov smoother on each level and special interpolation
procedures that do not require the hierarchic meshes to be nested. This is done through Nystrom interpolation. The results
show that high efficiency is obtained for both isotropic as well as for forward-peaked scatter. In his work the method is used
directly as a solver rather than as a preconditioner.

Turcksin, Ragusa, and Morel [9] presented a multigrid preconditioning scheme for the Sy equations. Their work combines
the use of Galerkin quadrature sets [10] with the multigrid method developed earlier by Pautz, Adams and Morel [5],
where the latter is recast as a preconditioner. The last step is crucial as the multigrid scheme by itself was found to exhibit
instability for sufficiently forward-peaked scatter. When combined with a Krylov method stability and efficiency is restored.
The authors applied the method to various problems in a 2D square domain and found considerable speedup compared to
standard source iteration accelerated with diffusion synthetic acceleration.

Recently Drumm and Fan [11] have described a two-level scheme as used in the SCEPTRE neutral and charged particle
radiation transport code. Two variations are presented: one where the coarse grid problem is formed by the Py problem and
one where the discrete ordinates (Sy) method is used with a lower angular resolution. Applications are given to practical
electron transport problems and speedups up to a factor of 10 are reported.

The above works show that angular multigrid holds great promise and we further investigate it in the present paper.

Most of the work in this area was based on the Sy discretization which has the drawback that anisotropic angular
refinement is difficult. Previously we have developed an angular discretization based on the use of discontinuous finite
elements on the sphere [12]. These discretizations were found to exhibit very high convergence rates for the scalar flux.
In later work [13] we extended the Boltzmann equation to include Fokker-Planck scatter as a model for highly-forward
peaked scatter as encountered in charged particle transport modeling. Essentially the Fokker-Planck approximation is the
asymptotic limit of the Boltzmann equation taking the average scatter angle to zero and the scatter cross section to infinity
while keeping the product constant. The discretization was found to be accurate but — as expected - the numerical solution
by the use of standard source iteration was ineffective. In the present work we develop a very effective preconditioner for
the Fokker-Planck problem based on a multigrid procedure exploiting the nested nature of the angular mesh hierarchy.

This paper is organized as follows. In Section 2 we review the discontinuous Galerkin discretization in space-angle that
we introduced [12] for the linear Boltzmann equation with the Fokker-Planck approximation of the forward-peaked scatter
for which we seek acceleration. In Section 3, we review the standard source iteration scheme when used as a preconditioner
for a Krylov method. Section 4 presents the multigrid procedure with an explanation of the mesh hierarchy, the interpolation
operators transferring the residual and solution corrections, and the smoother which is based on the transport sweep. Results
for a pure diffusion problem on the sphere and for the complete 3D LBE are given in Section 5 where we compare the various
choices for preconditioning. We draw final conclusions in Section 6.

2. Space-angle discretization of the transport equation

Charged particle transport exhibiting highly anisotropic scatter can be described by the linear Boltzmann transport
equation which is discretized in energy by a multigroup approach with either no or linear dependence on E within each
group. The focus of this paper is the acceleration of a single group iterative method. Any improvement for the single-group
algorithm immediately carries over to the multi-group case. The linear Boltzmann equation without energy dependence
reads

Q- Vor, D)+ Snor, 2) = / 2T, j0)o(r, 21492 + Q(r, 2) (1)
D
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where r is the spatial coordinate, 2 is the unit direction vector, ¢ is the angular flux density, Q is the independent volumetric
source density, X is the total macroscopic cross section and X; macroscopic scatter cross section that depends on the
deflection cosine po. The LBE is augmented with appropriate conditions on the domain boundary, 17,

o(r, 2)=¢i(r,2), rel}, 2-1<0 (2)

In the case of charged particle transport, particle scatter can be highly anisotropic with very high scatter cross sections and
accompanied by very small deflection angles. One can take the asymptotic limit of the Boltzmann scatter operator where
the average scatter cosine, (g, tends to unity (no deflection) and the frequency of interaction tends toward infinity while
the product @ = X5(1 — o) stays finite. The result of this procedure is

2-Vp(r, 2)+ Zep(r, 2) = %v§¢(r, 2)+Q(r, 2) (3)

where the spherical Laplacian operator is

9 ¢ 1 9%

Vip = 321~ %) (4)

o 1—p2ax?
Here w is the directional cosine of the z-component of {2 and x is the azimuthal angle. The angular Laplacian term is the
Fokker-Planck term describing small angle scatter. Physically it represents that a mono-directional beam diverges during
travel by a continuous scatter process, modeled by a diffusion term on the sphere surface.

2.1. Phase space elements

The spatial domain V is split into elements Vi, where k is the spatial element index. We consider structured and
unstructured meshes consisting of triangles, quadrilaterals, tetrahedrons and hexahedrals. A discontinuous solution space
Sh,p. is defined containing polynomials of order p at most. This is a standard approach and we focus attention on the angular
discretization.

The construction of angular elements is based on hierarchical sectioning of the sphere into patches, D,, where « is the
patch index. The coordinate planes divide the sphere into cardinal octants, which are spherical triangles. We also assign a
level, I, to a patch. The spherical triangles at the coarsest level are assigned a level of [, = 0. Spherical triangles with [, = 1
are obtained by halving the edges of the I, = 0 patches and subsequently connecting the emerged points with great circles.
Every patch is hereby split into four daughters. This procedure can be repeated to arbitrary depth and locally on the sphere
(anisotropic refinement).

The present tessellation of the sphere was chosen over others for several reasons: (i) for 2D cases one can choose
to tessellate the top hemisphere only (impossible when basing tessellation on the icosahedron or on a projection of a
hexahedron) and (ii) the coarsest (level-0) tessellation is relatively coarse.

The angular subdivision of the sphere can be described by determining a set P of patch indices such that UpepD, = D
with D the unit sphere surface and D, N D, = ¢ for Vp, q € P. The phase space mesh is then obtained by assigning an angular
subdivision P; to each spatial element V. In our scheme different angular subdivisions can be assigned to different spatial
elements allowing for flexibility in local refinement at the element level. This ability sets the present work apart from that
based on standard or Galerkin discrete ordinate.

2.2. Basis functions on the sphere

Two different sets of basis functions are used for £2 in this paper. Both sets are local to the patch D, by setting y/,1,(£2) = 0
if £2 ¢ D, and can thus be discontinuous at the patch boundary. Here v}, (§2) denotes the -th basis function on the patch
with index «. The property that the functions are local to the patch ensures that the streaming-removal terms will not
couple to non-overlapping patches. As will be explained later, this enables sweeping of the equations. Also, refinement can
be handled with considerable ease. The basis functions considered are the following:

1. Lin A nodal set of three functions obeying ¥.(§2s) = 8. Where §24 are the vertices of the patch. These basis
functions are constructed by projecting the standard Lagrange functions on the flat triangle onto the sphere. The flat
triangle is the triangle on the octahedron that is formed by projecting the vertices of the patch to the octahedron.

2. Lin-$2 This nodal set consists of four basis functions that span the linear space span{1, £2,, £2,, £2,}. The coefficients
of the functions are chosen in such a way that ¥« (§25) = 8. The §24 are the vertices of the patch and the center of
the patch which is determined as the renormalized average of the vertices. Note that these are similar to those devised
in the work of Jarell [ 14].

2.3. Discretization

In the following we present a shortened version of the complete derivation of the discretization given in [12,13]. Here we
prefer the presentation in terms of physical fluxes (both a physical flux view as well as a tensor math view are presented
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in [12]). The flux in each energy group is approximated as a product of spatial and angular basis functions
S, D) =" > by Pruai(t)¥ppra( 2) 5)
k,i pePy.d

where @;(r) is the ith spatial basis function of element k and ¥;4(§2) is the dth angular basis function on patch (angular
element) p.

2.3.1. Removal, streaming and source discretization

The Galerkin procedure is applied by substituting the expansion into the transport equation (Equation (3)) and multiply-
ing with spatial and angular test functions @;(r) and ¥ m(£2) and integrating over the complete phase space. After this we
obtain

3
id 3 id
Z Tigj.qum — Z Z § :VUJ'iE‘?’U,qJ' Ajgpima T Za E : § :Nﬁlli‘f’u,ql' Migima = Qyj.qiim. (6)
f &=1 i d i d

where the streaming term at the faces reads

i jqum = / ; @uulr) > > bep Pty g pimadr (7)
v/ -
! kelij} peP
i d
and the following shorthand notations have been introduced

N[j]li = / qjm[(l')@[ﬂ,‘(l‘)dl' (8)

Vi
Vijiig = / Ve @yjy(r)@yi(r)dr 9)

V.
A[q,p]md‘é Z/ ‘QEW[G]m(Q)W[p]d(‘Q)d‘Q (10)

Dq

3
Afapimd = Y Bip1eAi pimd (11)

£=1
Aif.qmd = Aff q,qimd (12)
Migsina = | Vi 2o 242 (13)

Dq
Migima = Miq.qima (14)
Gam = [ [ enteam @t 200 (15)

Vj ¥ Dq

Here, element j has faces indexed by f with its neighbor at face f denoted as j} and fif) is the & coordinate of the outward
normal of face f in element j. One recognizes mass matrices in space (N) and angle (M) where the angular matrices contain
mixed levels; volumetric integrals arising from streaming (V), and angular Jacobians arising from streaming (A).

The above discretization is not complete as the surface integrals (Equation (7)) are ambiguous and need further
specification by upwinding contributions. Unlike in Sy schemes, the angular components on a patch need to be handled
together. Riemann procedures have been introduced by various authors (see e.g. [15]) to separate the surface terms into
inward and outward contributions. Outward fluxes are based on flux values at element j while the inward fluxes are based
on flux values in element j;. Besides having to deal with various basis functions simultaneously requiring Riemann handling,
a further complication is that the elements neighboring the face may not have the same angular discretization (because of
local refinement), hence P; # Pj}.

In [12] we have given a thorough derivation of the way upwinding needs to be performed for the various cases where the
neighbor is either equally refined, coarser or finer. Here we present a brief derivation of the upwinding procedure in terms
of numerical fluxes for the equally refined case. We first write the flux as

bt D) =, (1) ¥, (D) (16)

where 9[ ](r) describes the spatial dependence of the solution’s angular coefficients in patch q and wl is the vector con-

taining the angular basis functions on patch q. Multiplying the transport equation with test function @[q]m( £2), substitution
of the expansion and integrating over patch we obtain (highlighting only the streaming terms)

Removal + V -émg[q](r) = Source (17)
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where A fD Yigm($2)82v1q14(£2)d$2 is the angular Jacobian with p = q. This is a coupled set of differential equations
in space ?or the angular coefficients ¢ ]( ). The quantity é[q]g[q]( ) is called flux in the CFD literature. To avoid confusion

such quantities are called contrlbutlon in the present work. Discretizing the system further by multiplying with a spatial
test function @,(r) and performing spatial integration gives the usual volumetric and surface integrals

| owi-a g e [ Vo0 (18)

Rewriting the term fi - A[q]Q[q](r) as the numerical flux h[q] gives

r r— | Vo A r 1
| om0 @~ [ vow-a g a (19)
The angular Jacobian is projected on the face normal A Ag= =n- A and requires further analysis for upwinding. As stated
above, a Riemann procedure is required for separating incoming and outgoing contributions on a face. Riemann procedures
are based on eigenvalue decomposition of the angular Jacobian with the signs of the eigenvalues acting to separate incoming
from outgoing. Positive eigenvalues reflect outgoing information and negative eigenvalues incoming information. As such
the eigenvalue decomposition is a generalization of a scalar equation case to a system. In[12] we have argued based on tensor
analysis that because of the non-orthogonality of the basis functions, we in fact need to construct the generalized eigenvalue
decomposition that includes the mass matrix as additional metric, hence we have introduced the term generalized Riemann
decomposition. If the neighbor element has the same angular discretization (i.e. the patch of interest exists at the neighbor)
then this decomposition reads

A =M P G P (20)

=la1  —lql=lq]=lq]=lq]
Here, M a contains the entries of Migmd, B[ contains the eigenvectors, while G contains the eigenvalues. Such decom-

posmons can be conveniently constructed by calling a LAPACK routine. The parts of the angular Jacobian that select the
appropriate component of the projection are then defined as
A" =M PGP (21)
=lql —lql=lql=lq] =lq]
where g?q] and G are the diagonal matrices formed by the positive and negative eigenvalues respectively by replacing the
opposite signed e(iements with zeros. The numerical flux, hyq; can finally be constructed as

hyg (85 (1), 97, (1) = A& 97 (1) + A~ ¢ () (22)

The above formulation carefully selects the in- and outflow contributions on a face through the generalized eigenvalue
analysis. In case of an Sy-discretization this formulation leads to standard upwinding. For the formulations where the
neighbor patch is either coarser or finer we refer to the original expositions [12,13].

Note that on structured quadrilateral or hexahedral meshes where face normals are oriented along the coordinate axes
the decomposition does not need to be performed as it will lead to one-sided upwinding because any patch is always fully
contained within an angular octant, making all directions in such a patch to move information uni-directionally. Further
note that, the decomposition is only selectively performed, i.e. when bi-directionality is suspected (as indicated by the
directionality of the vertices of the patch). On fine angular meshes combined with unstructured spatial meshes, only a
very small fraction of all angular elements actually require such a decomposition (see [12] for more details on testing bi-
directionality).

2.3.2. Fokker-Planck scatter
Based on our previous work [13], the continuous scatter term V§¢ is discretized with the symmetric interior penalty
method (SIP) [16]. SIP uses the following bilinear form, a*”, for the angular operator.

aP(u, v) = /D Vsu - Vsvd 2 — fZ /f [[v]] {Vsu} - 0+ [[u]] {Vsv} - ndl + fZ /f h"z[[u]][[undl (23)

where u is the angle-dependent solution and v is the angle dependent test function. The face f; has two angular element
neighbors j; and j;, where the normal points from the first to the latter. The jump and averaging operator are defined by

+ -

a

[H]fa =

respectively. The final term contains the stabilization that penalizes the solution discontinuity at interfaces and depends on
the penalty parameter » and on the characteristic length-scale hy,. In the present work we set n = 3 and hy, is the arc-length
of the angular element side. For a discussion of the rationale behind this we refer to [13].

1
—. i and {'}fa = i ( I

, ) (24)

Jja Ja
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Generalization to the present problem where we include spatial dependence is straightforward as the Fokker-Planck
operator has only angular derivatives. The final form is obtained by adding the term

[ 6. oo (25)
Vi

to the discrete system (6).

3. Standard solution approach

The discretized transport problem reads
Lp =S¢ +f (26)

where L denotes the streaming matrix operator combined with particle removal, S is the scatter matrix operator and f the
independent source arising from volumetric sources and boundary conditions. We use the non-symmetric preconditioned
Krylov method Bicgstab [17] to solve the system. A common choice for the preconditioner is to use L~!. This corresponds to
the Krylov-accelerated version of the standard source iteration procedure

L¢k+1 — S¢k +f (27)

The operator L' is easily applied in discrete ordinates codes as the ordinates are independent as far as the streaming operator
is concerned. With the correct visiting order of the elements a single sweep suffices to invert the system. In the present case
of a finite element discretization in angle, such a single sweep is no longer exact due to possible bi-directional dependence
between elements (on unstructured meshes). This bi-directionality is caused by the fact that some directions in a patch are
incoming with respect to the element of interest whereas others are outgoing for the very same face. We have devised a
sweep algorithm to precondition the system as follows: (i) For each octant a sweep direction through the spatial mesh is
determined and stored before starting the solution process. These directions coincide with an S, ordinate set. (ii) For each
octant the sweep direction through the spatial mesh is traversed and all angular elements belonging to the octant are visited
and the local discrete system is solved with the most up to date information from neighbors. Hence we perform a block
Gauss-Seidel iteration with a very specific ordering of the spatial and angular elements. Splitting L into implicit and explicit
parts as L = L; + Lg the Gauss-Seidel iteration is

Lig" = (S — Le)g* + f (28)

and the preconditioner then reads L;. We have demonstrated in our previous work that the sweep described above through
the domain serves as a good preconditioner (see [12] for more details). In cases where scatter is highly anisotropic (as with
the Fokker-Planck model) this procedure unfortunately becomes ineffective.

The Krylov accelerated source iteration outlined above is slightly modified for Fokker-Planck scatter to obtain somewhat
better convergence characteristics. Just as with the transport operator, we also split the Fokker-Planck scatter operator in
an explicit and an implicit part corresponding to a Gauss-Seidel numbering

Lo*T = Spk + Si9¢T + f (29)

This then leads to the following preconditioner: (L; —S;)~!. This will be referred in the remainder of the paper as the standard
sweep preconditioner. Note that this standard sweep preconditioner is just as easy to apply as Lﬂ.

4. An angular multigrid preconditioner

As already stated in the introduction the multigrid method operates by smoothing the error on a given mesh and
subsequently transferring the residual to a coarser mesh where the problem’s lower frequencies error components can be
more effectively attenuated. Here we deal with a linear problem. Hence we use the recursive version of the linear multigrid
algorithm as shown in Fig. 1. Since the multigrid method has been extensively documented and applied for a wide variety
of problems (see e.g. [2]), we only discuss the multigrid components relevant for the present work.

4.1. Hierarchy of angular meshes

The considered angular meshes are obtained from refining a uniformly discretized sphere consisting of 8 spherical
triangles (corresponding to octants). The coarsest mesh, Ty has level 0. Refined meshes are obtained by (locally) refining
specific angular elements as explained earlier. The locality of refinement is constrained by restricting angular meshes to
possess only up to two-irregularity, i.e. neighboring angular elements are allowed to differ by two levels at most. This
constraint is used to bound the cost of a transport sweep (finding all neighbors and include the transport contributions
becomes time-consuming at some point). A series of triangulations, {T;} is thus obtained where the maximum angular
element level on T is [, = L The coarsest angular mesh only contains angular elements of level [, = 0. The finest angular
mesh is denoted as T;. The maximum occurring element refinement in the problem is also [, = L. An example of a series of
angular meshes obtained from local refinement is shown in Fig. 2.
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Algorithm LMG(¢;, fi,1)
if (1 =0) then
S(¢lv fl7 Vcom“se)
else
S(¢l7 fl7 Vpre)
r = — A,
fi_1 = Rr,
¢ =0
LMG(¢;_1,f1-1,1 — 1)
Oy =+ P,y
S(¢17 fl7 Vpast)
endif
end Algorithm LMG

Fig. 1. Recursive linear multigrid (LMG) algorithm using the V-cycle [2].

(a) To (b) T1 (c) T2
(d) T3 (e) Ta (f) Ts

Fig. 2. Example hierarchy of angular meshes. Mesh Ts is the original finest mesh. Note that the mesh elements are shown as bisected triangles rather than
as spherical triangles. This is due to the plotting.

4.2. Interpolation operators

Prolongation of the solution from the coarse to the fine angular mesh is natural as we are dealing with a discontinuous
Galerkin scheme with nested spaces. Prolongation from level [ to level [ 4 1 is thus carried out by a straightforward Galerkin
projection. Due to the nested nature of the spaces, this projection is exact. The restriction operator, R is chosen as the
transpose of prolongation, i.e. R = P,

4.3. Coarse mesh problem

The coarse mesh operator is obtained from direct discretization on the coarser level (DCA). We choose this method as it
is most compatible with our matrix-free implementation. See [2] for a detailed discussion of the merits of DCA.

Coarse grid solution is done by performing 10 smoothing steps. Note that the coarsest angular mesh consists of just 4 (in
2D) or 8 (3D) angular elements. It has been verified for the problem of dealing only with diffusion on the sphere (i.e. without
spatial transport and particle absorption) that this is sufficient to converge to the exact solution.

4.4. Smoother

The linear system at level [ reads
Ligi = Si + fi (30)
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We distinguish two procedures for smoothing (i) the standard block Gauss-Seidel as explained in Section 3 where all
elements in the mesh are visited in the specified order and (ii) an alternative method where we relax only elements that
have a refinement level I, that meets a certain criterion. To elaborate the latter method further we write the linear system
onT;as

! Lk ! !

Here we have ordered the elements such that all level-I, = I elements are numbered first. The solution vector ¢, is partitioned
into a vector q&,’ representing the solution coefficients for elements of level-l on T, and a vector ¢’zk containing the solution
coefficients of level-I, = k elements with k < L Similarly, the (L; — S;) operator is partitioned into the matrices A} and Ag‘
representing the bilinear form for the level-I and level-k elements respectively on T;. The C-matrices contain the coupling
between elements having different levels.

Following Kanschat [ 18,19], the smoother on T, operates only on unknowns belonging to angular elements of level-/, = L.
The solution on the other, coarser, angular elements in T; is untouched during smoothing. The smoother, H; on level T; can
thus be written as

H 0
H = ! 32
! ( 0 0 ) (32)
We effectively perform relaxation on the system
Al =1 = e (33)

The smoother in this work is the sweeping procedure highlighted earlier in this paper for the single grid case. During
smoothing the order of visiting elements is probably not very important as it is the smoothing property we are interested in.
On the coarsest mesh Ty the same procedure is also followed, but here the order is much more important as the smoother is
used as an actual solver.

5. Results

The main reason for deteriorated convergence of the algorithm on single grids is through the diffusion operator on the
sphere. We therefore first examine the performance of the multigrid method as preconditioner on a pure spherical diffusion
problem (Section 5.1). In the second problem (Section 5.2) we consider various performance aspects for the complete
transport equation on a 3D cubic domain, both with a volumetric source as well as with an angular Dirac function on the
boundary of the cube combined with an anisotropically refined angular mesh.

5.1. Spherical diffusion (angular Poisson problem)

We use a manufactured solution that depends only on angle to investigate the performance of the multigrid method for
the case of spherical diffusion. We implemented this by turning spatial streaming off. Also, to stress the algorithm we use
zero absorption (¥, = 0). Note that we still use the non-symmetric Krylov solver Bicgstab for the present test problem even
though it is symmetric and could be done more efficiently with a conjugate gradient (CG) solver. We do so in order to be
more comparable with the results obtained hereafter including streaming, which is non-symmetric. Furthermore if CG was
used, the preconditioner would need to be symmetrized.

We expect that if the algorithm is efficient for this case, it will be also effective for cases that are less dominated by the
Fokker-Planck scatter. Our manufactured solution is chosen as

Gms(£2) = 4+ 2 + 282, + 32 (34)

The solution is quadratic in angle, meaning that none of the basis function choices are able to represent this solution exactly.
We solve the Fokker-Planck equation with an independent source Qy,, such that

ﬂFP‘Pms(”) = V52¢ms(-9) = Qms(ﬂ) (35)

where the transport cross section, « was taken as 2. Note that the manufactured source, Q;s(£2), obeys the compatibility
relation

/Qms(.())dﬂ =fi=0 (36)
D
This relation is also enforced on the coarser levels by
f1
f,:f,—( )1, (37)
(1,1)

where 1 denotes the vector containing 1’s as elements (see [3]).
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Table 1

Iteration counts and timing (between parentheses, in seconds) for isotropically refined angular meshes up to level I,,ox for the spherical Poisson problem.
linax Basis H V(1,1) V(2,1)
0 lin 9 (0.007) - -
1 lin 14 (0.038) 5 (0.009) 4 (0.008)
2 lin 24 (0.27) 6 (0.03) 5 (0.03)
3 lin 41 (1.86) 7 (0.19) 5 (0.19)
4 lin 82 (14.9) 8 (0.92) 7 (0.96)
5 lin 164 (119) 11 (541) 8 (5.09)
6 lin 339 (1119) 15 (274) 10 (24.9)
0 lin-£2 10 (0.009) - -
1 lin-£2 15 (0.047) 6 (0.01) 5 (0.01)
2 lin-£2 26 (0.31) 7 (0.04) 5 (0.04)
3 lin-£2 44 (2.23) 8 (0.19) 6 (0.26)
4 lin-£2 88 (18.1) 10 (1.11) 7 (141)
5 lin-£2 173 (146) 12 (5.96) 9 (6.50)
6 lin-£2 364 (1358) 15 (29.8) 11 (29.2)

Fig. 3. Angular meshes refined in a circular region corresponding to I = 4 (left), 5 (middle), 6 (right). The meshes are viewed from the positive §2,-
direction.

Results for uniformly refined spheres using different choices of preconditioner are shown in Table 1. We compare the
standard sweep Gauss-Seidel preconditioner denoted as H to the multigrid V(vpre, vpost)-cycle which is shorthand for the
LMG(¢,, f;, I) algorithm with v, and vpes as pre- and postconditioning sweeps, respectively.

In all problems in this paper the iterations are stopped when the L, norm of the residual has dropped by 10 orders of
magnitude (we start the iteration with the zero solution). It is clear that Gauss-Seidel sweeping is a poor preconditioner
as the amount of iterations grows almost linear with the refinement level, I,;,.x. The solution time correspondingly grows
around a factor 8 per added refinement instead of the optimal factor 4. The V-cycle preconditioners behave much better
with very limited increase in the number of iterations with problem size. It is well-known that the block Gauss-Seidel
method that is based on clustering of unknowns by element is not optimal in terms of smoothing properties. Hemker [20,21]
showed that another choice of blocks leads to superior smoothing for DG methods. These methods are however less natural
to implement than the present scheme. The slight growth of the iteration counts is thought to be caused by non-optimal
smoothing properties of the present Gauss-Seidel scheme. The timing of the V(1, 1) and V(2, 1) preconditioners shows that
sometimes one is more favorable and sometimes the other. This indicates that additional smoothing by changing the pre or
post-processing counts would not be beneficial.

To investigate the effect of anisotropic refinement on the efficiency of the preconditioners, we define a region around the
pole of the sphere §2, > 0.95 that is refined up to a given level. Note that the refinement algorithm restricts the irregularity
of the spherical mesh to 2, i.e. refinement level of neighboring elements is allowed to differ by 2 at most. Some meshes
with differing maximum levels of refinement are shown in Fig. 3. The number of angular elements obtained for maximum
element levels ranging between 0 and 9 is 8, 20, 32, 44, 92, 440, 1316, 4556, 17096 and 66236 respectively.

The same test problem has been run with the single grid and multigrid preconditioners. Here we smooth all angular
elements present in the mesh T;. Results are compiled in Table 2. Again, the classic block Gauss-Seidel method as
preconditioner shows strong growth of the iteration counts with the maximum refinement level, [;;,.x, and corresponding
increases in computational time. The multigrid methods on the other hand show only slight growth, likely caused by non-
optimal smoothing associated with element-based blocking. The iteration counts obtained here are similar to those of the
work of Kanschat [19] where 2D and 3D planar geometries are investigated.

Following Kanschat [19], in an attempt to reduce costs of a single multigrid cycle we have investigated the effect of
restricting the smoother to visit only elements of refinement level | when smoothing on mesh T,. The results are listed in
Table 3 and indicate that convergence rate is deteriorated quite strongly. This is contrary to the results of Kanschat where
almost mesh-independent convergence was obtained. Note however that his results were obtained on meshes that were
limited to level-1 irregularity and in Cartesian geometry. It is expected that the convergence deteriorates with increasing
mesh irregularity due to less effective smoothing.
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Table 2
Iteration counts and timing (between parentheses, in seconds) for non-isotropically refined angular meshes up to level I, for the spherical Poisson
problem. For a given level [, smoothing consists of visiting all elements in the mesh T;.

Liax Basis H V(1,1) v(2,1)

1 lin 13 (0.02) 5 (0.006) 4 (0.006)
2 lin 15 (0.05) 5 (0.01) 4 (0.009)
3 lin 18 (0.07) 5 (0.02) 4 (0.02)
4 lin 28 (0.25) 7 (0.04) 5 (0.03)
5 lin 52 (2.2) 10 (0.31) 7 (0.18)
6 lin 93 (11.2) 13 (1.24) 9 (0.87)
7 lin 174 (72.6) 14 (4.37) 10 (3.70)
8 lin 333 (524) 21 (21.9) 14 (18.7)
9 lin 636 (3917) 25 (101.2) 17 (85.9)
1 lin-2 14 (0.03) 5 (0.008) 4 (0.007)
2 lin-£2 17 (0.06) 6 (0.01) 4 (0.01)
3 lin-2 19 (0.09) 6 (0.02) 5 (0.02)
4 lin-£2 28 (0.29) 7 (0.04) 6 (0.04)
5 lin-£2 50 (2.3) 10 (0.34) 7 (0.21)
6 lin-02 94 (13.1) 12 (1.29) 10 (1.09)
7 lin-2 171 (80.5) 17 (5.58) 11 (4.40)
8 lin-£2 315 (568) 20 (225) 16 (23.1)
9 lin-£2 706 (4970) 27 (121) 17 (95.2)

Table 3

Iteration counts and timing (between parentheses, in seconds) for non-isotropically refined angular meshes up to level I, for the spherical Poisson
problem. For a given level |, smoothing consists of visiting only elements in the mesh T, that have refinement level I.

Imax Basis V(1,1) V(2,1)

1 lin 7 (0.009) 6 (0.009)
2 lin 7 (0.01) 7 (0.02)
3 lin 8 (0.02) 8 (0.02)
4 lin 11 (0.05) 10 (0.06)
5 lin 13 (0.23) 12 (041)
6 lin 17 (1.32) 12 (1.19)
7 lin 20 (5.70) 15 (5.07)
8 lin 26 (26.0) 23 (29.5)
9 lin 32 (123.9) 25 (123.9)
1 lin-£2 8 (0.01) 7 (0.01)
2 lin-2 9 (0.02) 8 (0.02)
3 lin-£2 10 (0.03) 8 (0.03)
4 lin-£2 12 (0.06) 12 (0.07)
5 lin-2 15 (0.31) 13 (0.50)
6 lin-22 17 (1.56) 15 (1.55)
7 lin-£2 24 (7.38) 18 (6.57)
8 lin-£2 29 (3042) 21 (28.5)
9 lin-2 36 (173.1) 26 (1416)

Based on the present results, in the remainder of this paper smoothing will be done on all elements in a mesh T;. It is
concluded that near mesh-independent results are obtained with the multigrid V(2, 1) preconditioner.

5.2. Boltzmann-Fokker—Planck in a cubic domain

The V-cycle preconditioner was successful in the spherical diffusion problem of the previous section and we will extend
its use here for the complete Boltzmann-Fokker-Planck problem. The test problem is based on a 2D problem used by Turcksin
and Morel [9] where a multigrid scheme for the Sy equation with highly forward peaked scatter was developed and tested.
Here we extend the problem to 3D.

The problem consists of a cube of size 5 x 5 x 5 cm®. The geometry is meshed with a structured mesh containing
30 x 30 x 30 hexahedral elements. All meshes in this work have been made using the Gmsh software [22]. Boundary
conditions are vacuum on all sides and a uniform, isotropic, source is applied throughout the cube. The transport cross
section, « is set to unity, hence the geometry is 5 transport lengths thick. Linear basis functions are used in space (4 spatial
degrees of freedom per hexahedron). Angular refinement is isotropic. Note that this problem contains a large number of
degrees of freedom. Even at the coarsest angular mesh (8 elements) with a linear basis in angle we have over 2.6 x 10°
degrees of freedom increasing by a factor 4 on each subsequent refinement. Results are listed in Table 4. The results show
trends similar to the spherical diffusion problem with increasing iteration counts for the block Gauss-Seidel method and
near mesh-independent counts for the V-cycle methods. It is clear that the use of multigrid as preconditioner leads to great
savings in resources for the complete Boltzmann-Fokker-Planck problem as well. Contrary to our work, in the work of
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Table 4
Iteration counts and timing (between parentheses, in minutes) for isotropically refined angular meshes up to level I4 for the cubic domain with a
volumetric source on a hexahedral mesh.

Inax Basis H V(1,1) V(2,1)

0 lin 17 (15) - -

1 lin 42 (104) 6 (55) 5 (55)

2 lin 126 (848) 7 (152) 6 (154)

3 lin 309 (6397) 7 (438) 6 (423)

0 lin-£2 18 (19) - -

1 lin-£2 43 (126) 7 (72) 6 (70)

2 lin-£2 129 (1064) 7 (186) 6 (182)

3 lin-2 320 (8094) 9 (623) 6 (548)
Table 5

Iteration counts and timing (between parentheses, in minutes) for isotropically refined angular meshes up to level ;4 for the cubic domain with a
volumetric source on a tetrahedral mesh.

Iimax Basis H V(1,1) V(2,1)

0 lin 22 (16) - -

1 lin 47 (91) 6 (48) 5 (44)
2 lin 126 (672) 7 (127) 6 (122)
3 lin 291 (4702) 8 (402) 6 (376)
0 lin-£2 23 (19) - -

1 lin-£2 51 (118) 7 (65) 6 (57)
2 lin-£2 132 (851) 7 (153) 6 (148)
3 lin-2 295 (5867) 8 (477) 7 (488)

Turcksin and Morel [9], the iteration counts show significant increase with the size of the mesh. The main difference from
our work is that they use the discrete ordinates method with a Galerkin quadrature set. The fact that such a set is not nested is
likely to be responsible for the observed differences. Furthermore, in the present DG framework restriction and prolongation
are defined naturally, whereas in their work these are affected indirectly by the flux moments.

To investigate the effect of the choice of spatial mesh on these results, the same test case has been done with an
unstructured tetrahedral mesh of similar size (approximately 26000 elements). An effect might be expected as the spatial
transport in the DG method depends strongly on the orientation of the element faces. For a hexahedral mesh the upwind side
of an element face is clearly defined. As a consequence, in case of no scatter a single well chosen sweep through the domain
is enough to solve the system exactly. In case of arbitrarily oriented faces such as in an unstructured tetrahedral mesh,
so-called bi-directional faces occur where such a sweep direction does not exist. Even when scatter is absent, iteration is
still required. Therefore, in a tetrahedral mesh two reasons for iteration occur simultaneously (scatter and bi-directionality).
More details of the spatial transport can be found in [ 12]. The results of iteration counts and timing are listed in Table 5. The
results indicate that the iteration counts are very similar to those obtained in the hexahedral mesh. It thus appears that the
convergence is dominated by the Fokker-Planck scatter and is not adversely affected further by the bi-directionality.

5.3. A cubic domain with a boundary source

Following the work of Turcksin and Morel [9] we also investigate a problem with a boundary source, consisting of a
uni-directional beam in the z-direction in part of the cube surface

P, 2)=58(02—902,), 2=0,2 <x,y <3 (38)

In their work, to approximate the boundary condition, all ordinate intensities are set to zero for incoming directions except
for the one closest to the z-direction. In the present work the actual Dirac delta is used. In the DG finite element approach
this requires integrals of the form

/ll/[p]a(.(l)a(.(l — £2,)d82 = Ype(92;). (39)
p

To adequately capture the peaked nature of the boundary condition we use a non-isotropically refined angular mesh that
concentrates effort around the z-pole of the sphere surface. More specifically, for a given maximum level [, = L in the
angular mesh, elements with £2, > 0.97 are assigned this refinement level, elements with 0.9 < £2, < 0.97 are assigned
level I,ox — 1, elements with 0.8 < 2, < 0.9 are assigned level [,,,x — 2, elements with 0.6 < §2, < 0.8 are assigned level
Imax — 3, and all other elements are assigned level I, — 4. Specifically, the meshes have respectively 20, 32, 44, 128, 440, 1388
angular elements for I 4, ranging from 1 to 6. To give an idea of the magnitude of these calculations: for l,;5, = 6 combined
with linear-omega basis functions, we have around 5.8 x 108 degrees of freedom. Some example meshes with l,ox = 2, 4
and 6 are shown Fig. 4. The ability to non-isotropically and non-uniformly refine the angular meshes is one of the strengths
of the present method and opens up possibilities not offered by standard or Galerkin discrete ordinate quadratures.
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Fig.4. Non-isotropically refined angular meshes corresponding to l,qy = 2 (left), 4 (middle), 6 (right). The meshes are viewed from the positive §2,-direction.

Table 6
Iteration counts and timing (between parentheses, in minutes) for non-isotropically refined angular meshes up to level I, for the cubic domain with a
boundary source on a hexahedral mesh. For a given level [, smoothing consists of visiting all elements in the mesh T;.

Iax Basis H V(1,1) v(2,1)
1 lin 36 (60) 5 (51) 5 (40)
2 lin 68 (159) 6 (67) 4 (55)
3 lin 95 (285) 6 (98) 5 (90)
4 lin 234 (1420) 8 (240) 6 (224)
5 lin 512 (8491) 10 (796) 8 (761)
6 lin (=) 13 (2607) 10 (2615)
1 lin-2 36 (70) 7 (61) 5 (50)
2 lin-©2 73 (195) 7 (92) 5 (80)
3 lin-2 98 (342) 8 (150) 6 (141)
4 lin-2 247 (1815) 10 (337) 8 (325)
5 lin-£2 537 (10710) 11 (1061) 9 (1092)
6 lin-©2 =) 16 (3787) 11 (3467)

The results are shown in Table 6. Even for these highly non-isotropic meshes, the convergence of the Krylov method when
combined with a V(2, 1) cycle is nearly independent of the number of refinement levels, whereas for the single grid sweep
preconditioner the solution is always more expensive, even on the coarsest levels.

In the Poisson problem on the sphere surface, we concluded that the smoother where only angular elements with [, = |
are included on mesh Tj, led to deteriorated convergence compared to the smoother where all angular elements on T; are
included. In an attempt to overcome this convergence penalty, we tried an intermediate approach where we incorporated
elements of levels [, = [,1 — 1,1 — 2. This way at least all the nearest neighbors of the level [, = I elements are included.
However, we found that the results did not lead to much advantage in terms of CPU time. We have therefore decided to
discard this option.

6. Conclusions

Regular transport sweeps are not effective preconditioners for the Boltzmann transport equation with forward scatter
modeled by Fokker-Planck angular diffusion. Diffusion synthetic acceleration is also known not be very effective [9].
To improve on this, angular multigrid preconditioning/solver procedures have been proposed for the discrete ordinate
equations. In the present work, we have devised an angular multigrid procedure as preconditioner for the transport equation
discretized with discontinuous finite elements in angle. An advantage with respect to discrete ordinates procedures is that
restriction and prolongation operators are defined naturally. The coarse grid problem is defined on the 8 basic spherical
triangles (octants) of the unit sphere. As smoother on each multigrid level we use a block Gauss-Seidel method differing
from a standard transport sweep by incorporation of parts of the angular diffusion operator.

Application to purely spherical diffusion problems (excluding spatial dependence and absorption) showed that our
multigrid preconditioning scheme is highly effective resulting in near constant iteration counts independent of the angular
refinement. These results were obtained for different angular basis sets.

Similar efficiencies were found for the complete transport equation when tested in a 3D geometry with both volumetric
source and a boundary source with a highly non-isotropic angular mesh. The angular multigrid preconditioner using a
single V-cycle is found to always outperform the standard sweep preconditioner, and by large margin on finer meshes. The
present work makes possible the high-performance solution of Fokker-Planck transport, especially as the multigrid scheme
presented is inherently parallelizable.

The present work is based on the Fokker-Planck term for anisotropic scatter. Future work will be focused on combining
goal-oriented angular adaptivity [23,24] with the present solution method and on accelerating forward peaked scatter based
on both the Boltzmann scatter operator and more general scattering kernels.
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