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Abstract Advances in structural glass have enabled
a new paradigm in expressive and transparent archi-
tecture. Cast glass can further extend the possibili-
ties of structural glass by allowing for more com-
plex and sophisticated shapes than the current planar
geometries of structural float glass. However, the use
of cast glass is currently limited because of the lengthy
annealing process, making massive component sizes
impractical to fabricate. Topology optimization (TO)
has been proposed as a solution to this problem, as
it is known to generate structurally efficient designs
with a low volume of material. If tailored appropriately,
TO can reduce component sizes and thereby dimin-
ish the total annealing time needed, while intelligently
placing material in the areas where it will be utilized
most effectively. For TO of glass to be successful, algo-
rithms must properly capture glass’s specific material
behavior. This research proposes a suite of TO algo-
rithmic frameworks that design specifically for struc-
tural glass. These algorithms are demonstrated in a 2D
design space, and the resulting geometries are fabri-
cated using cut float glass and tested for experimen-
tal comparison on a 4-point bending load case. The
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results of these experiments provide valuable insights
into the development of TO for structural glass, and
help inform future research in TO of large-scale cast
glass structures.

Keywords Topology optimization · Structural glass ·
Lightweight structures · Physical experiments

1 Introduction

Cast glass is a promising expression of the material for
creating free-form monolithic glass structures that go
beyond the two-dimensionality of float glass and fully
utilize its compressive strength, which is higher than
that of concrete and even steel. By pouring glass into
molds, virtually any shape and size of a glass compo-
nent can be produced. This vast shaping potential of
cast glass, although extensively demonstrated in the
field of glass art, has so far been underexplored in
structural applications in the built environment. The
most characteristic examples of load-bearing cast glass
for architectural applications are tessellated structures,
which utilize solid cast glass blocks of no more than
10 kg in mass. Examples of this approach are shown
in Fig. 1. The limited volume of these structural com-
ponents is necessitated by the lengthy annealing pro-
cess required by glass components of substantial cross-
section, which in turn renders their production unrealis-
tic due to the associated high energy and manufacturing
costs.
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Fig. 1 On left, the Crystal Houses façade (top) and Qaammat Pavilion (bottom) show examples of load-bearing cast glass architectural
applications. In center, the monolithic cast glass telescope blank from the Palomar Observatory. On right, examples of cast glass
components and structures designed using topology optimization

The main factors influencing the annealing time are
the glass composition and geometry, particularly the
relevant cross-section and mass distribution (Shand
and Armistead 1958). Geometrically, the annealing
time increases exponentially when a large cross-
sectional dimension of a glass component is employed
(Oikonomopoulou et al. 2018). As an example, a soda-
lime solid glass block of the Crystal Houses façade
of 65 mm × 210 mm × 210 mm in dimensions and
7.2 kg weight required 36–38 h of annealing. This is 4
times more than a soda-lime block of 50% less volume
(65 mm × 210 mm × 105 mm and 3.6 kg weight, 8 h
of annealing) used in the same project.

Accordingly, optimization of the stiffness-to-weight
ratio can result in cast glass structures of consid-
erably larger overall dimensions and, at the same,
of a significantly reduced required annealing time
(Oikonomopoulou et al. 2018). The benefits of these
strategies are well demonstrated by the monolithic cast
glass blanks of the giant telescope mirrors. The Palo-
mar Observatory telescope blank is shown in Fig. 1 as
an example. These blanks follow a honeycomb struc-
ture, guaranteeing the desired high stiffness with a sub-
stantially reduced mass (Bennet 2024). The choice of
a low-expansion glass and the decreased material vol-
ume enabled the casting of multi-ton monolithic disks
of up to 8.4 m in diameter (Oikonomopoulou et al.
2018; Zirker 2006).

In this regard, Topology Optimization (TO) exhibits
great potential for the design of massive cast glass
structures, enabling the design of relatively lightweight
monolithic structural forms that maximize stiffness
while minimizing volume. This can allow for signif-
icantly reduced annealing times, yielding additional
benefits in fabrication time, embodied energy, and cost
efficiency, rendering such structures feasible to manu-
facture. Previous research by the authors (Damen et al.
2022; Oikonomopoulou et al. 2022) utilizing com-
mercial TO software has proven the potential of this
approach to engineer glass components of minimum
mass, examples of which are shown in Fig. 1. How-
ever, that research also sheds light on the shortcom-
ings of available TO software for designing glass struc-
tures. Existing TO software is typically developed for
isotropic linear elastic materials, and is not able to fully
incorporate essential characteristics of brittle materials
like glass, in particular their asymmetric responses to
tensile and compressive stresses (Damen et al. 2022).

In order to use TO for design of cast glass struc-
tures, it is therefore necessary to develop a materially-
specific TO framework for structural glass design. Pre-
vious work by the authors has developed a system for
TO of cast glass (Koniari et al. 2023) which serves
as a cornerstone of this research. With this exception,
the constraints associated with glass structures have
received little explicit attention in the literature, despite
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there being considerable research devoted to manu-
facturability of TO structures (Lazarov et al. 2016).
The most critical factor is the design tensile strength
of glass, which is at least a magnitude lower than its
compressive strength (Oikonomopoulou 2019). Hence,
the TO formulation should reflect the asymmetrical
strength of glass. Such consideration has been achieved
in TO through stress-based approaches, by implement-
ing either the Drucker–Prager failure criterion (Bruggi
and Duysinx 2012, 2013; Luo and Kang 2012) or uni-
fied functions that can serve different failure crite-
ria (Giraldo-Londoño and Paulino 2020). It has also
been pursued through stiffness-based models, in which
material in tension is given a lower elastic modulus
than material in compression (Cai 2011; Du et al. 2019;
Querin et al. 2010). Although the authors have used
physical tests in concrete to evaluate stress-based opti-
mization (Jewett and Carstensen 2019), experimental
work on glass-specific TO has not yet been performed.

While precedents exist for TO frameworks that
could be used for glass design, there lacks research
on how successful the different approaches would be
for real-world application. Therefore, this paper com-
pares three distinct TO algorithms, which use differ-
ent approaches in designing for structural glass. These
three algorithms are used to design structural glass
specimen, which are fabricated and tested to evalu-
ate the efficacy of their respective optimization frame-
works. Although this research is heavily motivated by
the potential of cast glass, the methods ought to be
broadly applicable to structural glass design. For this
reason, experimental specimen are cut from float glass
using a waterjet cutter, rather than cast. This fabrication
method is less labor-intensive than casting, and guar-
antees that the glass will be equally homogeneous in all
specimens; the probability of random defects such as
bubbles or cord appearing in the glass is close to zero.
This allows for more rapid and reliable testing of the
optimization methods. The results of these experiments
present valuable data for best practices in TO of glass,
and help lay the foundation for research specifically on
TO of cast glass structures in future work.

2 Methods

This research seeks to compare the performance of
three different topology optimization algorithms for
design of materially-efficient glass structures. In the
following sections, the selected optimization algo-
rithms are discussed. Additionally, the fabrication and
testing methods for the built specimen are described.
All algorithms follow the density-based approach
(Bendsøe and Sigmund 2004), with filtering to avoid
numerical instabilities and penalization of intermediate
densities using SIMP (Bendsøe, 1989). In the SIMP
formulation, the elastic modulus of element e, Ee, is
modified by a penalization variable η, such that:
Ee � Emin + (ρe)

η ∗ (E0 − Emin) (1)

where ρe is the density of element e after filtering the
design variables x, E0 is the stiffness of the material,
and Emin is a very small number added to avoid sin-
gularities in the stiffness matrix. This formulation fol-
lows the methodology in the 88 Line Code (Andreassen
et al. 2011). The penalization variable η is given a value
larger than 1 to promote binary (0–1) solutions with
discrete material layouts. When using η > 1, the opti-
mization problem is no longer convex and the solutions
found in this work are therefore local minima, where
the quality of the solutions are sensitive to the η-value
(Ha and Carstensen 2024). Typically, η � 3 is used
as recommended by Bendsøe and Sigmund (Bendsøe
and Sigmund 2004). The filter radius is also used to
establish a minimum feature size, with improves man-
ufacturability for the waterjet cutting used for fabrica-
tion. Soda-lime-silica float glass with 10 mm thickness
is used for the physical experiments, and its properties
are targeted for the optimization simulations.

All three optimization methods are demonstrated on
the same 4-point bending load case, the results of which
are used for the physical tests performed. This load
case is selected following ASTM C158-23 Standard
Test Methods for Strength of Glass by Flexure. This
loading condition is the industry standard for evaluating
bending stress limits of glass; its merits are discussed in
detail by Bristogianni (Bristogianni 2022). The specific
details of the load case are shown in Fig. 2.
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140 mm 

280 mm 

300 mm 70 mm 

Fig. 2 Visualization of the 4-point bending load case used for all
three tested beam designs

2.1 Optimization algorithms

For this project, three topology optimization meth-
ods are used: a stress-based optimization, a volume-
based method, and a stiffness-based approach. A gen-
eral problem formulation for topology optimization is:

Min
x

f (x)

s.t. KU � F
g(x) ≤ 0
0 ≤ x ≤ 1

(2)

where x is the design variables,K is the stiffness matrix,
U is the displacement vector, and F is the force vec-
tor. The objective f (x) is the value being minimized,
and the constraints g(x) are the rules that the system
must adhere to throughout the optimization process.
The KU � F constraint enforces static equilibrium
through finite element analysis (FEA). It should be
noted that this formulation assumes no residual stresses
exist within the structure. This is a potential limitation
for cast glass design, as significant residual stresses can
arise during the annealing process. However, to sim-
plify the optimization problem, these manufacturing
constraints are ignored in this research, and the effects
of residual stresses are not considered.

In this research, each algorithm tested uses different
combinations of objectives and constraints. The stress-
based optimization minimizes the maximum Druck-
er–Prager stress in the structure while respecting a
constraint on the maximum allowable volume. The
volume-based method minimizes the material volume
with constraints on maximum displacement and com-
pliance, principal stress values (in tension and com-
pression), and the maximum thickness of structural
members. The stiffness-based approach minimizes the
compliance of the structure with a maximum mate-
rial volume constraint. The names used for the algo-
rithms herein, as well as their objective functions and

Table 1 Names of all three optimization algorithms used, with
associated objective functions and constraints

Algorithm name Objective function,
f (x)

Constraints,
g(x)

Stress-based Minimize
maximum
Drucker–Prager
stress

Material
volume

Volume-based Minimize material
volume

Displacement,
compliance,
principal
stresses,
maximum
length-scale

Stiffness-based Minimize
compliance

Material
volume

constraints, are shown in Table 1. The specific algo-
rithms are discussed in the following sections.

2.1.1 Stress-based optimization

A stress-based optimization algorithm is used for the
first TO method in this work. Controlling the stresses
within a structure has great potential for optimal glass
design because glass tends to fail from tensile stresses.
Thus, a useful optimization framework would mini-
mize the tension stresses within the structure to gener-
ate high-capacity geometries.

The Drucker–Prager failure criteria is a popular
method for capturing failure modes that are unequal in
tension and compression. Unlike Von Mises stresses,
which treat tension and compression equivalently,
Drucker–Prager has a set of additional terms that
account for directionally-dependent stress responses.
The differences between the two failure criteria are
highlighted in Fig. 3. To predict failure, the stress states
of the material are mapped on the x and y axes of
the graphs. No failure occurs if their coordinates land
within the gray ellipse. However, when the stresses
are high enough to reach the yield surface, the mate-
rial fails. Figure 3a shows the Von Mises failure cri-
teria, in which the magnitude of the maximum neg-
ative stresses are the same as the maximum positive
stresses. In this case, compressive and tensile stresses
would cause failure in the material equally. By contrast,
Fig. 3b shows the Drucker–Prager failure criteria, with

123



More with less: topology optimization strategies for structural glass design Page 5 of 18    12 

Von Mises Yield Criteria

–σy

–σx
σx

σy

σ2

σ1

–σy

–σx
σx

σy

σ2

σ1

Drucker-Prager Yield Criteria

Fig. 3 Visualizations of Von Mises yield criteria and Drucker–Prager yield criteria. The Drucker–Prager model can account for force-
dependent material response, while the Von Mises model assumes identical behavior in tension and compression

different allowable magnitudes for negative and posi-
tive stresses. In this case, the magnitude of −σ x and
−σ y are greater than those of σx and σy , which causes
the model to predict higher compressive capacity.

This work tests the effectiveness of a TO algo-
rithm for glass design that minimizes Drucker–Prager
stresses in the structure with a constraint on how much
material can be used. The stress-based topology opti-
mization code published by Deng et al. (Deng et al.
2022) is used as the backbone of the algorithm, where
this work replaces the Von-Mises stress, σvm , with a
Drucker–Prager failure criteria σDP . The original code
is formulated to work in 3D, but in this research all
examples are executed with one element in the out-
of-plane direction, to approximate a 2D problem. The
reader is directed to the original paper for a more com-
prehensive description of the algorithmic details and
gradient calculations.

The gradients for Von Mises stresses from Deng
et al. are modified in this work to be compatible with
Drucker–Prager stress analysis. To do so, the process
laid out by Luo and Kang (Luo and Kang 2012) is fol-
lowed. A maximum allowable compressive stress σc
and tensile stress σt are defined, which are then used to
calculate the ratios α and H, such that:

α � σc − σt√
3 ∗ σc ∗ σt

(3)

H � 2 ∗ σc ∗ σt√
3 ∗ (σc + σt )

(4)

Using these ratios, the Drucker–Prager stress of ele-
ment i , σDP,i is calculated as:

σDP,i � α ∗ (
σi x + σiy + σi z

)
+ σ DP,i − H (5)

where:

σ DP,i

�

√√
√√

(
σi x − σiy

)2 +
(
σi x − σi z

)2 +
(
σiy − σi z

)2 + 6
(
τ2
i xy + τ2

iyz + τ2
i xz

)

6
(6)

The critical modification in the gradients from Deng
et al. lies in how the stresses change with respect to the
element’s internal stresses. For the work herein, those
gradients are:

∂σDP,i

∂σi x
� +

1

6σ DP

(
2σi x − σiy − σi z

)

∂σDP,i

∂σiy
� +

1

6σ DP

(
2σiy − σi x − σi z

)

∂σDP,i

∂σi z
� +

1

6σ DP

(
2σi z − σi z − σiy

)

∂σDP,i

∂τi xy
� 1

σ DP
τi xy

∂σDP,i

∂τiyz
� 1

σ DP
τiyz

∂σDP,i

∂τi xz
� 1

σ DP
τi xz (7)
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This project seeks to minimize the maximum Druck-
er–Prager stress in the system. To calculate the maxi-
mum value in a way that is differentiable, the p-norm is
used, as is done in Deng et al. The p-norm can be used
to approximate the maximum value in a given set of
numbers, but will not yield the exact solution in most
cases. Readers are referred to Deng et al. for further
description, as well as for explanation of the associated
gradient calculations. The p-norm is calculated as:

σPN �
(
nele∑

i

σ
p
DPi

)1/p
(8)

where σPN is the p-norm estimation of maximum
stress, nele is the number of elements in the optimiza-
tion problem, and p is an exponent value chosen by the
user. The equation tends to yield a more accurate esti-
mation of the maximum stress when a higher value of p
is chosen, but high values may also lead to suboptimal
results in local minima. Therefore, the solution to the
optimization problem is highly sensitive to the chosen
value of p, as shown in Fig. 5.

This algorithm uses the Method of Moving Asymp-
totes (MMA) optimizer (Svanberg 1987) for solving
the optimization problem. The problem formulation is
stated as:

Min
x

σPN

s.t. KU � F
V (x)/Vmax ≤ 1
0 ≤ x ≤ 1

(9)

where V is the material volume and Vmax is the maxi-
mum volume constraint.

The optimization framework is demonstrated on a
cantilever load case, with parameters varied to high-
light benefits and challenges of the code implemented
herein. The load case is shown in Fig. 4 and the gener-
ated designs are shown below in Fig. 5.

Figure 5 shows the effects of choosing different val-
ues for σc and σt within this optimization approach.
In all cases shown, σt � 1 and the volume constraint
is set to 50%. The compressive limit in Fig. 5a is set
to σc � 2, and in Fig. 5b σc � 8. In these cases, it
can be seen that more material is massed into the ten-
sion chords of the designs. These results are promis-
ing, as they reflect the desired ability to account for

2.5

2.5

8

Fig. 4 The cantilever load case, with a design space dimension
ratio of 8 units horizontally and 5 units vertically. A downward
load is applied at the center of the face on the right, while all
degrees of freedom are fixed along the face on the left

the weakness of glass in tension. However, it is also
observed that the optimization is sensitive to parame-
ters, particularly when the ratio of σc/σt is high. For all
results in Fig. 5, continuation is used on the optimiza-
tion parameter η. The optimization starts with η � 3,
and increases to η � 5 by increments of 0.5 every 50
iterations, with 250 iterations in total. For the examples
shown in Fig. 5a, b, the value of the p-norm exponent
p is equal to 2.

It is noted that modest changes in the optimization
parameters make significant differences in generated
designs. In Fig. 5c, d, the optimization is identical to
5b, except that p has been changed from p � 2 to
p � 4 and p � 8, respectively. The outcomes in 5b
and 5c differ greatly, and 5d has failed to converge into
a manufacturable result.

The change from Von Mises to Drucker–Prager
stress evaluation is found to increase the difficulty in
solving the TO algorithm. In particular, it is found that
the high stress concentrations at load and support loca-
tions present great difficulty. Because the optimizer is
trying to minimize the maximum stress in the system,
it can behave unpredictably when it is not possible to
reduce the stresses at these concentration points. This
could be addressed through regional stress measures, as
is done in Le 2010 (Le et al. 2010), but such implemen-
tation is not carried out here. Additionally, the Druck-
er–Pager stress function is highly-nonlinear, making
the design problem difficult to navigate with a gradient-
based optimizer. As demonstrated in Fig. 5, the opti-
mizer had greater difficulty converging as the ratio of
σc/σt increased. Therefore, although the ratio of design
tension and compression capacities in glass can be
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(a) (b)

(c) (d)

Fig. 5 The results are shown for the stress-based optimization of a cantilever when σt � 1, with σc � 2 in (a) and σc � 8 in (b). In
(c, d), the parameters of the optimization are identical to those of (b), except that p has been changed from p � 2 to p � 4 in (c) and
p � 8 in (d), showing the optimization’s sensitivity to parameter values

very high (this research uses 78:1 for the volume-based
design), the compressive and tensile capacities in the
stress-based design are set at σc � 2 and σt � 1. These
values are chosen because they exhibit the desired
behavior of massing more material in the tension zones
of the structure, while still producing manufacturable
results. However, they do not reflect real values related
to the behavior of glass in this case.

To help ease the optimization for the desired 4-
point bending load case, material is enforced at the
point where the load is applied, as well as the loca-
tion of the support. These material blocks are set to
be approximately 8 mm × 20 mm, to satisfy fabrica-
tion constraints. The row of design variables along the
top and bottom of the design space is also deactivated
to prevent structural members from becoming smaller
than the prescribed minimum radius values, which is a
modification of the recommendations in Clausen and
Andreassen (Clausen and Andreassen 2017). Because
the load case is symmetric, only half of the structure
is modelled during the optimization to reduce compu-
tational costs. The load conditions used are shown in
Fig. 6.

With these conditions set, the design shown in
Fig. 7a is generated. A 175 × 70 element mesh is used,
with filter radius of 3 to define the minimum feature size
based on manufacturing constraints, and the volume
constraint set to 0.33. The p-norm variable p is equal to
6, and the penalization starts at η � 2 but is increased

275 mm 70 mm 

140 mm 

70 mm 

Fig. 6 The load case for the stress-based optimization, with black
areas showing where material is forced during the optimization.
The gray bars at the top and bottom show where the design vari-
ables are deactivated

to η � 6 by increments of 2 every 50 iterations, run-
ning for 150 iterations total. To address the gray density
values in the results, all elements greater than 0.2 are
rounded up, for the 0–1 results shown in Fig. 7b.

2.1.2 Volume-based

The second optimization approach aims at mass mini-
mization with concurrent application of structural and
manufacturing constraints. These are implemented as
constraints on the displacement, compliance, and prin-
cipal stresses (in both tension and compression), as well
as through establishment of maximum and minimum
cross section. These constraints follow the main prin-
ciples discussed in Koniari et al. (Koniari et al. 2023).
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(a) (b)

Fig. 7 In (a), the stress-based output for the 4-point bending load case is shown, while (b) shows the results after rounding is used to
remove gray elements and clearly define the borders of the structure

The structural constraints—including global equi-
librium, principal stresses, displacement, and compli-
ance—are calculated using 2D finite element equations
assuming plane stress. The displacement is evaluated
at the upper middle node of the domain, which is con-
sidered a critical node of the structure. The applica-
tion of the compliance constraint follows the formu-
lation described in Bruggi and Duysinx (Bruggi and
Duysinx 2012). In the case of principal stresses, ten-
sile and compressive stress are evaluated individually
and are extracted from the eigenvalues of the stress ten-
sor. The ‘qp’ approach for stress constraint relaxation
as described in Bruggi (Bruggi 2008) is additionally
implemented to prevent from the arising of zero stresses
in void elements.

A minimum feature size is approximated through
filtering, and the maximum structural member sizes are
also controlled according to the maximum length scale
approach (Guest 2009). Although the maximum length
scale is not pertinent for the float glass experiments
described herein, it will be crucial for future works
in cast glass given the importance of annealing con-
straints. Controlling the maximum member size can
reduce annealing time, and, thus, of the total energy
cost of the structure. Further, setting the minimum
and maximum feature sizes to be of similar values
will mitigate residual stresses in the glass by making
the relative cooling rate between members during
annealing nearly equal.

It should be noted that buckling is not taken into
account in this formulation, nor the other optimization
frameworks described in this paper. This may incen-
tivize the use of slender members in the design space
that would fail in real-world application. This short-
coming can be controlled indirectly with the minimum
length scale approach or through post-processing, but
could present critical challenges, especially at larger
scales. Buckling has been addressed in other topology
optimization works, such as the TopBuck250 code (Fer-
rari et al. 2021).

Table 2 Target values for structural and manufacturing
constraints

Flexural strength
(MPa)

Design tensile
strength (MPa)

Design
compressive
strength (MPa)

3.18 6.4 500

This algorithm uses Matlab’s built-in Interior Point
method as the optimizer, and the sensitivities are cal-
culated using finite difference. With the above consid-
erations, the problem formulation is:

Min
x

V (x)

s.t. KU � F

c(x)
cL

≤ 1; c(x) � UT KU ; cL � acc0

ucrmax < 1
500 l

ρ
(p−q)
e

(
σe
σlm

)
≤ 1

0 ≤ x ≤ 1

(10)

where c is the compliance and cL is the allowable com-
pliance defined by a compliance limit c0 and a relax-
ation variable ac. The maximum nodal displacement
of the critical node is ucrmax and l is the length of the
structure. ρe is the pseudo-density value of each finite
element e echoing the presence or lack of material in
it, referenced in Eq. 1; p is the penalization value; q is
the exponent connected to the ‘qp’ approach (Bruggi
2008); σe is each individual principal stress (tensile or
compressive) obtained per finite element and σlm is its
respective limit. The limits used in this optimization
are shown in Table 2, based on experimental findings
by the authors and conservative assumptions of manu-
facturing defects (Oikonomopoulou et al. 2017).
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(a) (b) (c)

(d) (e) (f)

Fig. 8 The results with the volume-based optimization algorithm used on the cantilever load case are demonstrated. In (a–c), the
relaxation parameter ac is reduced from ac � 5 to ac � 3 and ac � 1.7, respectively. As ac is reduced, the compliance constraint
becomes more severe, and more material is added to the system to satisfy the constraint. In (d), the tensile strength is removed from the
formulation, while in (e) the annealing constraint is additionally considered. In the latter case, the outcome consists of smaller chords
connected with elements of intermediate densities, which are highlighted in (f)

In Fig. 8, this optimization approach is demonstrated
on several cases using the same cantilever load case as
shown in Fig. 4. In all examples, a load of 300 kN is
applied, and a mesh resolution of 53 × 33 elements
is used. This resolution is significantly lower than the
examples shown above in Fig. 5 and below in Fig. 13,
which makes direct comparison difficult. However, the
coarse mesh is chosen because the volume-based opti-
mization is much more computationally expensive than
the stress-based and stiffness-based algorithms. This is
primarily because the gradients in the volume-based
method are calculated using finite-difference, which is
computationally taxing compared to calculating gra-
dients analytically. This makes optimization on finer
meshes infeasible. For additional details on this opti-
mization approach, the reader is referred to the original
paper describing this work (Koniari et al. 2023).

The optimization results in Fig. 8 show how mod-
ifying the constraints affects the resulting geometries.
For the results in Fig. 8a–d, the annealing constraint is
not active. In Fig. 8a, b, c, the parameter ac is incre-
mentally decreased, which controls the relaxation of
the compliance constraint. As ac decreases from 5 to 3

and 1.7, respectively, more material must be added to
the system to satisfy the compliance constraint. These
examples show how the severity of constraints affects
the design output. In Fig. 8d, the parameters are iden-
tical to 8b, except that the tensile strength constraint is
removed. Most noticeably, this results in the removal
of the central tension strut. This is done because there
is no need to provide additional support in the tension
zone of the structure given that the tensile strength con-
straint is not considered. The constraints in Fig. 8e are
also identical to 8b, but the annealing constraint is acti-
vated. In this case, rather than placing a small number
of thick structural elements in the design space, sev-
eral chords of smaller dimension are used. This is done
to maintain the structural integrity of the design while
respecting the maximum length scale constraint. How-
ever, as are highlighted in Fig. 8f, it can also be seen
that elements with intermediate densities are added
between the smaller chords to reinforce the structure
while simultaneously respecting the annealing con-
straint. Therefore, these designs would require further
post-processing to be manufacturable.
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177 mm 70 mm 

140 mm 

70 mm 

Fig. 9 The 4-point bending load case used for the volume-based
optimization is visualized

In this paper, the formulation was adjusted to reflect
the 4-point bending setup used for the experiments,
shown in Fig. 9. The final outcome is extracted har-
nessing the symmetry of the structure along the middle
axis, while additional alterations for fabrication pur-
poses were incorporated, such as the avoiding of sharp
edges, leading ultimately to the final design used for the
experiments. The implementation of the maximum and
minimum length scale constraints leads to a truss-like
geometry, shown in Fig. 10.

2.1.3 Stiffness-based

For the third method, a force-dependent stiffness
orthotropy is enforced to encourage more material to be
placed in the tension zones of the structure. In reality,
glass is an isotropic material (Shelby 2005). Its elastic
modulus is the same in compression as tension. How-
ever, as mentioned, the primary failure mode of glass is
caused by tensile stresses interacting with pre-existing
defects (Shelby 2005). For this reason, it is advanta-
geous to develop a TO algorithm that masses more
material in the tension zones of the structure to help
reduce tension stresses and thus increase the structural
capacity of the element. The third algorithm herein thus
tests the viability of using a stiffness-based approach
for the TO design of structural glass.

In the stiffness-based algorithm, compliance is taken
as the objective function, which is the product of the
magnitude of the force and the node displacement at
the location of the applied force. To account for glass’s
weakness in tension, the stiffnesses of the underly-
ing finite elements are modified so that they are stiffer
when acting in compression than in tension. Although
this does not reflect the true behavior of the glass, it
encourages the optimizer to place more material in the
tension zones to compensate for the reduced stiffness,
and thereby increase the load capacity of the struc-
ture. The load-dependent stiffness modification of the
finite elements is implemented (Du et al. 2016, 2019),
which has been used in several related works (Du et al.
2020, 2022; Du and Guo 2014, 2016). An inner loop is
added to the primary optimization loop that generates
the design. The inner loop modifies the local stiffness
of each element such that the elastic modulus depends
on the internal stresses, as visualized in Fig. 11. This
research uses a shear modulus calculation from Weaver
and Johnston (Weaver and Johnston 1984) rather than
that of Du et al., because it is simpler and eases con-
vergence.

Within the inner loop, the principal stresses are cal-
culated in each element, as well as their respective
principal angle θ . Figure 12a shows a global stress
state in which σx , σy , and σxy have been calculated.
Figure 12b–d show the different cases that can occur
after the principal stresses and principal angle have
been calculated for a given element. In Fig. 12b, both
principal stresses are compressive. In this case, the ele-
ment is assigned isotropic material properties with a
high elastic modulus. Figure 12c shows a case in which
both principal stresses are tensile, which is assigned
isotropic properties with a low stiffness. Figure 12d
shows the orthotropic case, wherein the directional-
ity of the two principal stresses is different. Here, an
orthotropic material behavior must be applied.

Fig. 10 Design outcome extracted from the volume-based optimization (left), Final design after rounding of sharp edges to ease
fabrication and improve structural performance (right)
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Compression
E = 1/1

Tension
E = 1/10

σ

Fig. 11 Visualization of how the directionality of the internal
stresses of the finite elements changes their stiffnesses

The stiffness matrix of a 2D element K is defined
as:

K �
∫

BT DBdV

where B is the strain–displacement tensor and D is
the constitutive matrix. Plane stress is assumed for all
calculations. For the isotropic cases, the constitutive
matrix is as follows:

D � 1

1 − ν2

⎡

⎢
⎣

E Eν 0
Eν E 0

0 0
(
1−ν2

)

G

⎤

⎥
⎦ (11)

(a) (b)

Example global stress state

�
�

�

Pure compression, isotropic high stiffness

Combined stress state, orthotropic stiffnessPure tension, isotropic low stiffness

(c) (d)

Fig. 12 For each element, the global stress state is evaluated, an example of which is shown in (a). If both resulting principal stresses
are compressive, an isotropic stiffness matrix is applied to the element with high stiffness, as shown in (b). In (c), both principal stresses
are tensile, so an isotropic model with low stiffness is applied. In (d), the element is in a mixed stress state, and an orthotropic material
model is used

(a) (b)

Fig. 13 The stiffness-based optimization is shown on the cantilever load case, with Ec � 10,000 in both cases and Et modified. In (a),
Et � 5000, while in (b) Et � 1250. These examples show how more material is placed in the tension chords of the structure when Et
is reduced
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170 mm 70 mm 

140 mm 

70 mm 

Fig. 14 The load case for the stiffness-based optimization, with
the black region along the bottom showing where material is
forced during the optimization

where E is the elastic modulus, ν is Poisson’s ratio, and
G � 2(1+ν)

E . In the isotropic case, the E value chosen
would either be high or low, depending on whether the
element is in compression or tension. However, in the
case of a mixed stress-state, the constitutive matrix is
assembled with two different elastic modulus values,
E1 and E2. E1 and E2 have either a high or stiffness
value, depending on the directionality of the principal
stress. The constitutive matrix is first assembled in local
coordinates, Dloc, as shown below:

Dloc � 1

1 − ν1ν2

⎡

⎢
⎣

E1 ν1E2 0
ν1E2 E2 0

0 0 (1−ν1ν2)
G

⎤

⎥
⎦ (12)

where G � (1+ν1)
E1

+ (1+ν2)
E2

And ν1
E1

� ν2
E2

It can be seen that if E1 � E2, the orthotropic con-
stitutive matrix is equivalent to the isotropic model. The
local constitutive matrix Dloc must be multiplied by a
rotation matrix Q which is dependent on the principal
angle θ , so that the elements constitutive matrix D is as
follows:

D � QT Dloc Q (13)

where Q is defined as:

Q �
⎡

⎢
⎣

cos2θ sin2θ 2cosθsinθ

sin2θ cos2θ −2cosθsinθ

−cosθsinθ cosθsinθ cos2θ − sin2θ

⎤

⎥
⎦ (14)

As with the stress-based approach, this algorithm
uses MMA (Svanberg 1987) to solve the optimization

problem. Because the force-dependent stiffnesses of
the elements are set within a loop before each optimiza-
tion step, this modification to the optimization does not
appear in the problem formulation, which is stated as:

Min
x

c(x) � UT KU

s.t. KU � F
V (x) ≤ Vmax

0 ≤ x ≤ 1

(15)

The code is demonstrated on the cantilever load
case shown in Fig. 4 to illustrate how reducing the
stiffnesses of the tensile material affects the resulting
geometry. Material in compression is assigned a stiff-
ness Ec, which is higher than the stiffness assigned
to material in tension, Et . In Fig. 13, both examples
have Ec � 10,000, with Et � 5000 in Fig. 13a and
Et � 1250 in Fig. 13b. This yields a stiffness ratio
Ec/Et � 2 and Ec/Et � 8, respectively. It can be seen
that when the material is less stiff in tension, the com-
pressive struts become thinner, and more material is
placed in the tensile zones to compensate for its dimin-
ished performance. Because this force-dependent stiff-
ness is a non-linear phenomenon, the optimizer is found
to perform better if the step size in MMA is very small.
In each of these examples, the mesh density is 100 ×
160 elements. The penalization variable η starts at 1 and
is increased in increments of 1 every 30 iterations to a
maximum value of 3. The optimizer runs 150 iterations.
The filter radius value is 3. The volume is restricted to
0.5 of the design space. For more details on the behav-
ior of this optimization approach, the reader is directed
to (Du et al. 2019).

Similarly to the stress-based optimization, the
design space for the stiffness-based optimization is
modified slightly to improve manufacturability. In this
case, material is forced to be placed along the bottom
of the structure, as shown in Fig. 14.

Using the stiffness-based approach for the 4-point
bending load case gives the geometries shown in
Fig. 15. The designs are generated with a volume con-
straint V � 0.39 so the resulting geometry has a similar
volume to the stress-based design. A filter radius of 7
is used for manufacturing constraints. The penalization
variable starts at η � 1.5 and increases in increments of
0.5 every 50 iterations until it reaches η � 3. Symmetry
is utilized so only half of the design domain is repre-
sented during optimization, with 126 × 306 elements.
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Relative values of force and stiffness are used rather
than aligning with the real-world values of the glass,
in this case Ec � 10,000 and Et � 1000. The Ec/Et

ratio is therefore equal to 10. A Heaviside projection
filter (Guest et al. 2004) is applied to help sharpen the
boundaries of the design.

2.2 Fabrication

The optimization methods presented above are devel-
oped for use in glass structures. In order to test and com-
pare the efficacy of the three presented TO methods, test
samples are cut from 10 mm float glass using a Sanken
CNC 5 axis (60°) waterjet cutter. As discussed in the
Introduction, waterjet cutting can be done quickly and
reliably, which eases comparison between the different
optimized geometries. Five samples are fabricated for
each of the three design cases. The fabricated designs
are shown in Fig. 16.

The average masses of each design are shown in
Fig. 17a. This figure also shows the estimated mass of
the optimization result, before post-processing. These
values are calculated by summing the density values in
the system, and scaling to the as-built dimensions. This
gives an area calculation (mm2), which is then multi-
plied by the 10 mm thickness and 2.5 g/cm3 density
of the glass to calculate the mass. This figure high-
lights how the optimization results with more interme-
diate densities require more post-processing to produce
manufacturable specimen.

After cutting, it is observed that there is a slight taper
in the cutting angle on all samples. This is because the
waterjet machine is not able to achieve a perfect 90-
degree cutting angle in the glass. Rather, the cut bows
slightly, as visible in Fig. 17b. The fabrication method
also leaves the cut surfaces rough, and specimens are
not polished prior to testing. The unpolished surface
can lead to failure at lower stresses than a polished sur-
face because it leaves more preexisting imperfections in
the glass. However, this is not considered detrimental
for the experimental comparison of the three consid-
ered TO strategies because the effect would be equal in
all samples during testing.

2.3 Testing

After fabrication, 5 specimen of each design were
tested on a Zwick Z010 universal testing machine.
A displacement-controlled loading was used, with
0.5 mm/min of displacement applied until failure. The
loading conditions are identical to the 4-point bending
load case used for the beam design in Fig. 2, with a
280 mm support span, and two loads applied 70 mm
from mid-point of the beam. 3 mm thick neoprene pads
are placed at all four points of contact to prevent direct
interfaces of steel and glass. An example of an exper-
imental sample in the testing apparatus is shown in
Fig. 18.

Over the course of each test, the applied force was
measured. Polarized films in crossed configuration are

Fig. 15 On left, the geometry output by the optimization, while right shows the results after rounding is used to eliminate grey elements

Fig. 16 Images of fabricated waterjet cut float glass beam specimen. The volume-based is on left, the stress-based is in middle, and in
a separate photo the stiffness-based is on right
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Fig. 17 In (a), the mass of the optimization results as well as the average mass of the fabricated samples of each design is shown. In
(b), a photo of a typical glass beam after fabrication, showing irregular cutting angle from waterjet fabrication

Fig. 18 Testing setup for 4-point bending load case on fabricated
glass beams. The loading apparatus and supports (with neoprene
pads) are shown. The screen behind the testing sample is used
for the cross-polarization process. In this case, a volume-based
design without tape is placed in the testing machine

used to view the developing stresses within the struc-
tures during the test. Three of the five specimens of
each design also had tape applied to the front and back
of the glass to avoid shattering after failure, as shown
in Fig. 20d. Taping prevents additional damage to the
glass after failure that might be caused by falling or
collision with the testing equipment. This allows break
patterns in the glass to be studied for indications of how
the glass failed during the test. The results of these tests
are discussed in the following section.

3 Results and discussion

After testing 5 samples of each of the 3 designs, the
maximum forces before failure are recorded and sum-
marized in Fig. 19. Using the polarized filters, it was
observed that, as expected, the specimens accumulate
compressive stress within the top chord of the structure
with tensile stress at the bottom. There is almost no col-
oration observed through the cross-polarization in the
vertical members, suggesting they have relatively low
stress at failure. This is unsurprising, as their thick-
nesses were controlled by manufacturing constraints,
not internal stresses. The failure loads are consistent in
all specimens of a given design.

The data shows that the stress-based optimization
was least successful in generating a high load capacity
for the structure. Even though it has slightly more mass
than the volume-based design, its average load capacity
is about 5.7% lower. This is surprising, as the algorithm
is meant to minimize the tension stresses, which cause
early breakage in the structure. However, as discussed
in Sect. 2.1.1, the optimization problem is highly non-
linear, and there was difficulty in producing practical
geometries. It is also likely that using a strength capac-
ity ratio of σc/σt � 2 was too low to properly design a
glass structure, and this also contributed to its relatively
poor performance. Figure 20a uses cross-polarization
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Fig. 19 Maximum load for
each optimized glass beam
specimen tested, with
averages for each design
shown as a white circle. The
dotted line between average
values is drawn to ease
comparison
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Fig. 20 Photos of glass beams during testing using cross-polarization force visualization technique. In (a), the stress-based design is
shown just before failure, (b) shows the volume-based design, and (c) shows the stiffness-based design, which has been taped in this
case. In (d), a stiffness-based sample that has been taped is shown after being tested to failure
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to show stress concentrations at the locations where
the tension chord is thinned. The concentrations are
especially pronounced where the thinning occurs at
the intersection of the compression chord. The beams
failed consistently at these stress concentrations, show-
ing how these step-backs in the tension chord resulted
in a weakness in the design.

The stiffness-based design yields the most impres-
sive test data, with an average maximum load capacity
about 13.2% higher than the stress-based design with
nearly identical material volume. Stiffness-based topol-
ogy optimization is a very well-understood problem
when using the compliance as the objective function,
and it tends to be easier to solve than other approaches
with more complexity. Previous work by the authors
has also found that more complexity does not always
lead to improved performance (Jewett and Carstensen
2019). The results of these experiments show the power
and usefulness of stiffness-based TO, even for qualities
aside from the stiffness of the structure. In the stiffness-
based samples, failure always started from the bottom
part of the bottom chord in maximum tensile zone, as
anticipated. The location of the failing crack varied, but
most often it was in very close proximity or under one
of the diagonal members of the design.

The volume-based design performed better than the
stress-based, and only 6.8% lower than the stiffness-
based samples. This is especially impressive given than
it has a lower volume of material, and is additionally
held to the maximum length scale constraint, which the
other designs are not. Therefore, these results are espe-
cially promising because the geometry takes anneal-
ing constraints into account, which may prove critical
for cast glass structural performance in future work.
Almost all specimens broke at the edge of the max-
imum tensile zone during testing. Failure originated
close to either of the edges of the specimen. The fail-
ure load and crack origin location vary considerably
more compared to the stress-based designs.

To highlight the difference in performance between
the stress-based designs and the others, Fig. 20 shows
the cross-polarization images of three samples just
before failure. In the volume-based beam in Fig. 20b,
the stresses are constant throughout the tension chord
at the bottom of the beam, until the point where it inter-
sects with the compression chord. This is also the case
for the stiffness-based design in Fig. 20c. By contrast,
the Stress-based design in Fig. 20a shows several stress
spikes along the tension chord where the optimization

had tried to remove material. These stress concentra-
tions led to the early failures of the stress-based designs.

4 Conclusion

This research set out to investigate the potential of
three TO methods for design of low-weight struc-
tural glass. The efficacy of the three TO algorithms
are measured by physically testing beam specimen cut
from float glass to find their maximum load capacities.
One algorithm minimizes Drucker–Prager stresses, one
minimizes volume with structural constraints includ-
ing stiffness, stress, and size limitations, and the last
minimizes compliance. It is found that the stiffness-
based design is able to withstand the greatest loads
before failure. However, the volume-based design per-
formed similarly with less material mass, and may be
a stronger candidate for future work in cast glass, as
it accounts for annealing constraints. It is possible that
the performance of the stress-based optimization could
be improved through regional stress measures in future
studies, and strength capacities σc and σt that more
accurately reflect the behavior of glass. These experi-
ments show the potential for materially-specific TO to
be used to design effective and efficient glass structures.

Future work involves using TO methods informed
by these experiments to design and build structures
made with cast glass. The use of cast glass will present
new challenges, particularly in how molds can be eco-
nomically made that capture the optimized geometry
of the structure while withstanding the high tempera-
tures necessary for casting. Additionally, new polish-
ing methods may need to be explored that can remove
defects along a curved glass surface without signifi-
cantly warping the geometry. Last, this line of research
may encounter challenges as the scale of structures
in increased, because the size of ovens or other cast-
ing facilities may limit how large a single monolithic
piece of glass can be made. However, addressing these
potential challenges would be a worthwhile endeavor,
as casting glass would allow for the use of 3D optimiza-
tion methods that could design even more expressive
and high-performing structures. Fabricating specimen
using cast glass, rather than cutting float glass, would
allow for these more complex geometries to be made,
and help further the progress of the use of free-form
and efficient structural glass in the built environment.
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